Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/****************************************************************************
  3 * Driver for Solarflare network controllers and boards
  4 * Copyright 2018 Solarflare Communications Inc.
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms of the GNU General Public License version 2 as published
  8 * by the Free Software Foundation, incorporated herein by reference.
  9 */
 10
 11#include "net_driver.h"
 12#include "efx.h"
 13#include "nic_common.h"
 14#include "tx_common.h"
 15
 16static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
 17{
 18	return DIV_ROUND_UP(tx_queue->ptr_mask + 1,
 19			    PAGE_SIZE >> EFX_TX_CB_ORDER);
 20}
 21
 22int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
 23{
 24	struct efx_nic *efx = tx_queue->efx;
 25	unsigned int entries;
 26	int rc;
 27
 28	/* Create the smallest power-of-two aligned ring */
 29	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
 30	EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
 31	tx_queue->ptr_mask = entries - 1;
 32
 33	netif_dbg(efx, probe, efx->net_dev,
 34		  "creating TX queue %d size %#x mask %#x\n",
 35		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
 36
 37	/* Allocate software ring */
 38	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
 39				   GFP_KERNEL);
 40	if (!tx_queue->buffer)
 41		return -ENOMEM;
 42
 43	tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
 44				    sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
 45	if (!tx_queue->cb_page) {
 46		rc = -ENOMEM;
 47		goto fail1;
 48	}
 49
 50	/* Allocate hardware ring, determine TXQ type */
 51	rc = efx_nic_probe_tx(tx_queue);
 52	if (rc)
 53		goto fail2;
 54
 55	tx_queue->channel->tx_queue_by_type[tx_queue->type] = tx_queue;
 56	return 0;
 57
 58fail2:
 59	kfree(tx_queue->cb_page);
 60	tx_queue->cb_page = NULL;
 61fail1:
 62	kfree(tx_queue->buffer);
 63	tx_queue->buffer = NULL;
 64	return rc;
 65}
 66
 67void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
 68{
 69	struct efx_nic *efx = tx_queue->efx;
 70
 71	netif_dbg(efx, drv, efx->net_dev,
 72		  "initialising TX queue %d\n", tx_queue->queue);
 73
 74	tx_queue->insert_count = 0;
 75	tx_queue->notify_count = 0;
 76	tx_queue->write_count = 0;
 77	tx_queue->packet_write_count = 0;
 78	tx_queue->old_write_count = 0;
 79	tx_queue->read_count = 0;
 80	tx_queue->old_read_count = 0;
 81	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
 82	tx_queue->xmit_pending = false;
 83	tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) &&
 84				  tx_queue->channel == efx_ptp_channel(efx));
 85	tx_queue->completed_timestamp_major = 0;
 86	tx_queue->completed_timestamp_minor = 0;
 87
 88	tx_queue->xdp_tx = efx_channel_is_xdp_tx(tx_queue->channel);
 89	tx_queue->tso_version = 0;
 90
 91	/* Set up TX descriptor ring */
 92	efx_nic_init_tx(tx_queue);
 93
 94	tx_queue->initialised = true;
 95}
 96
 97void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
 98{
 99	struct efx_tx_buffer *buffer;
100
101	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
102		  "shutting down TX queue %d\n", tx_queue->queue);
103
104	if (!tx_queue->buffer)
105		return;
106
107	/* Free any buffers left in the ring */
108	while (tx_queue->read_count != tx_queue->write_count) {
109		unsigned int pkts_compl = 0, bytes_compl = 0;
110
111		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
112		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
113
114		++tx_queue->read_count;
115	}
116	tx_queue->xmit_pending = false;
117	netdev_tx_reset_queue(tx_queue->core_txq);
118}
119
120void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
121{
122	int i;
123
124	if (!tx_queue->buffer)
125		return;
126
127	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
128		  "destroying TX queue %d\n", tx_queue->queue);
129	efx_nic_remove_tx(tx_queue);
130
131	if (tx_queue->cb_page) {
132		for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
133			efx_nic_free_buffer(tx_queue->efx,
134					    &tx_queue->cb_page[i]);
135		kfree(tx_queue->cb_page);
136		tx_queue->cb_page = NULL;
137	}
138
139	kfree(tx_queue->buffer);
140	tx_queue->buffer = NULL;
141	tx_queue->channel->tx_queue_by_type[tx_queue->type] = NULL;
142}
143
144void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
145			struct efx_tx_buffer *buffer,
146			unsigned int *pkts_compl,
147			unsigned int *bytes_compl)
148{
149	if (buffer->unmap_len) {
150		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
151		dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
152
153		if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
154			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
155					 DMA_TO_DEVICE);
156		else
157			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
158				       DMA_TO_DEVICE);
159		buffer->unmap_len = 0;
160	}
161
162	if (buffer->flags & EFX_TX_BUF_SKB) {
163		struct sk_buff *skb = (struct sk_buff *)buffer->skb;
164
165		EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
166		(*pkts_compl)++;
167		(*bytes_compl) += skb->len;
168		if (tx_queue->timestamping &&
169		    (tx_queue->completed_timestamp_major ||
170		     tx_queue->completed_timestamp_minor)) {
171			struct skb_shared_hwtstamps hwtstamp;
172
173			hwtstamp.hwtstamp =
174				efx_ptp_nic_to_kernel_time(tx_queue);
175			skb_tstamp_tx(skb, &hwtstamp);
176
177			tx_queue->completed_timestamp_major = 0;
178			tx_queue->completed_timestamp_minor = 0;
179		}
180		dev_consume_skb_any((struct sk_buff *)buffer->skb);
181		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
182			   "TX queue %d transmission id %x complete\n",
183			   tx_queue->queue, tx_queue->read_count);
184	} else if (buffer->flags & EFX_TX_BUF_XDP) {
185		xdp_return_frame_rx_napi(buffer->xdpf);
186	}
187
188	buffer->len = 0;
189	buffer->flags = 0;
190}
191
192/* Remove packets from the TX queue
193 *
194 * This removes packets from the TX queue, up to and including the
195 * specified index.
196 */
197static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
198				unsigned int index,
199				unsigned int *pkts_compl,
200				unsigned int *bytes_compl)
201{
202	struct efx_nic *efx = tx_queue->efx;
203	unsigned int stop_index, read_ptr;
204
205	stop_index = (index + 1) & tx_queue->ptr_mask;
206	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
207
208	while (read_ptr != stop_index) {
209		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
210
211		if (!efx_tx_buffer_in_use(buffer)) {
212			netif_err(efx, tx_err, efx->net_dev,
213				  "TX queue %d spurious TX completion id %d\n",
214				  tx_queue->queue, read_ptr);
215			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
216			return;
217		}
218
219		efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
220
221		++tx_queue->read_count;
222		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
223	}
224}
225
226void efx_xmit_done_check_empty(struct efx_tx_queue *tx_queue)
227{
228	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
229		tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
230		if (tx_queue->read_count == tx_queue->old_write_count) {
231			/* Ensure that read_count is flushed. */
232			smp_mb();
233			tx_queue->empty_read_count =
234				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
235		}
236	}
237}
238
239void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
240{
241	unsigned int fill_level, pkts_compl = 0, bytes_compl = 0;
242	struct efx_nic *efx = tx_queue->efx;
243
244	EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
245
246	efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
247	tx_queue->pkts_compl += pkts_compl;
248	tx_queue->bytes_compl += bytes_compl;
249
250	if (pkts_compl > 1)
251		++tx_queue->merge_events;
252
253	/* See if we need to restart the netif queue.  This memory
254	 * barrier ensures that we write read_count (inside
255	 * efx_dequeue_buffers()) before reading the queue status.
256	 */
257	smp_mb();
258	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
259	    likely(efx->port_enabled) &&
260	    likely(netif_device_present(efx->net_dev))) {
261		fill_level = efx_channel_tx_fill_level(tx_queue->channel);
262		if (fill_level <= efx->txq_wake_thresh)
263			netif_tx_wake_queue(tx_queue->core_txq);
264	}
265
266	efx_xmit_done_check_empty(tx_queue);
267}
268
269/* Remove buffers put into a tx_queue for the current packet.
270 * None of the buffers must have an skb attached.
271 */
272void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
273			unsigned int insert_count)
274{
275	struct efx_tx_buffer *buffer;
276	unsigned int bytes_compl = 0;
277	unsigned int pkts_compl = 0;
278
279	/* Work backwards until we hit the original insert pointer value */
280	while (tx_queue->insert_count != insert_count) {
281		--tx_queue->insert_count;
282		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
283		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
284	}
285}
286
287struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
288				       dma_addr_t dma_addr, size_t len)
289{
290	const struct efx_nic_type *nic_type = tx_queue->efx->type;
291	struct efx_tx_buffer *buffer;
292	unsigned int dma_len;
293
294	/* Map the fragment taking account of NIC-dependent DMA limits. */
295	do {
296		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
297
298		if (nic_type->tx_limit_len)
299			dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
300		else
301			dma_len = len;
302
303		buffer->len = dma_len;
304		buffer->dma_addr = dma_addr;
305		buffer->flags = EFX_TX_BUF_CONT;
306		len -= dma_len;
307		dma_addr += dma_len;
308		++tx_queue->insert_count;
309	} while (len);
310
311	return buffer;
312}
313
314int efx_tx_tso_header_length(struct sk_buff *skb)
315{
316	size_t header_len;
317
318	if (skb->encapsulation)
319		header_len = skb_inner_transport_header(skb) -
320				skb->data +
321				(inner_tcp_hdr(skb)->doff << 2u);
322	else
323		header_len = skb_transport_header(skb) - skb->data +
324				(tcp_hdr(skb)->doff << 2u);
325	return header_len;
326}
327
328/* Map all data from an SKB for DMA and create descriptors on the queue. */
329int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
330		    unsigned int segment_count)
331{
332	struct efx_nic *efx = tx_queue->efx;
333	struct device *dma_dev = &efx->pci_dev->dev;
334	unsigned int frag_index, nr_frags;
335	dma_addr_t dma_addr, unmap_addr;
336	unsigned short dma_flags;
337	size_t len, unmap_len;
338
339	nr_frags = skb_shinfo(skb)->nr_frags;
340	frag_index = 0;
341
342	/* Map header data. */
343	len = skb_headlen(skb);
344	dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
345	dma_flags = EFX_TX_BUF_MAP_SINGLE;
346	unmap_len = len;
347	unmap_addr = dma_addr;
348
349	if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
350		return -EIO;
351
352	if (segment_count) {
353		/* For TSO we need to put the header in to a separate
354		 * descriptor. Map this separately if necessary.
355		 */
356		size_t header_len = efx_tx_tso_header_length(skb);
357
358		if (header_len != len) {
359			tx_queue->tso_long_headers++;
360			efx_tx_map_chunk(tx_queue, dma_addr, header_len);
361			len -= header_len;
362			dma_addr += header_len;
363		}
364	}
365
366	/* Add descriptors for each fragment. */
367	do {
368		struct efx_tx_buffer *buffer;
369		skb_frag_t *fragment;
370
371		buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
372
373		/* The final descriptor for a fragment is responsible for
374		 * unmapping the whole fragment.
375		 */
376		buffer->flags = EFX_TX_BUF_CONT | dma_flags;
377		buffer->unmap_len = unmap_len;
378		buffer->dma_offset = buffer->dma_addr - unmap_addr;
379
380		if (frag_index >= nr_frags) {
381			/* Store SKB details with the final buffer for
382			 * the completion.
383			 */
384			buffer->skb = skb;
385			buffer->flags = EFX_TX_BUF_SKB | dma_flags;
386			return 0;
387		}
388
389		/* Move on to the next fragment. */
390		fragment = &skb_shinfo(skb)->frags[frag_index++];
391		len = skb_frag_size(fragment);
392		dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
393					    DMA_TO_DEVICE);
394		dma_flags = 0;
395		unmap_len = len;
396		unmap_addr = dma_addr;
397
398		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
399			return -EIO;
400	} while (1);
401}
402
403unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
404{
405	/* Header and payload descriptor for each output segment, plus
406	 * one for every input fragment boundary within a segment
407	 */
408	unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
409
410	/* Possibly one more per segment for option descriptors */
411	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
412		max_descs += EFX_TSO_MAX_SEGS;
413
414	/* Possibly more for PCIe page boundaries within input fragments */
415	if (PAGE_SIZE > EFX_PAGE_SIZE)
416		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
417				   DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
418
419	return max_descs;
420}
421
422/*
423 * Fallback to software TSO.
424 *
425 * This is used if we are unable to send a GSO packet through hardware TSO.
426 * This should only ever happen due to per-queue restrictions - unsupported
427 * packets should first be filtered by the feature flags.
428 *
429 * Returns 0 on success, error code otherwise.
430 */
431int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
432{
433	struct sk_buff *segments, *next;
434
435	segments = skb_gso_segment(skb, 0);
436	if (IS_ERR(segments))
437		return PTR_ERR(segments);
438
439	dev_consume_skb_any(skb);
440
441	skb_list_walk_safe(segments, skb, next) {
442		skb_mark_not_on_list(skb);
443		efx_enqueue_skb(tx_queue, skb);
444	}
445
446	return 0;
447}