Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4/* The driver transmit and receive code */
   5
   6#include <linux/prefetch.h>
   7#include <linux/mm.h>
 
 
 
 
   8#include "ice.h"
 
 
 
   9
  10#define ICE_RX_HDR_SIZE		256
  11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  12/**
  13 * ice_unmap_and_free_tx_buf - Release a Tx buffer
  14 * @ring: the ring that owns the buffer
  15 * @tx_buf: the buffer to free
  16 */
  17static void
  18ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
  19{
  20	if (tx_buf->skb) {
  21		dev_kfree_skb_any(tx_buf->skb);
 
 
 
 
 
  22		if (dma_unmap_len(tx_buf, len))
  23			dma_unmap_single(ring->dev,
  24					 dma_unmap_addr(tx_buf, dma),
  25					 dma_unmap_len(tx_buf, len),
  26					 DMA_TO_DEVICE);
  27	} else if (dma_unmap_len(tx_buf, len)) {
  28		dma_unmap_page(ring->dev,
  29			       dma_unmap_addr(tx_buf, dma),
  30			       dma_unmap_len(tx_buf, len),
  31			       DMA_TO_DEVICE);
  32	}
  33
  34	tx_buf->next_to_watch = NULL;
  35	tx_buf->skb = NULL;
  36	dma_unmap_len_set(tx_buf, len, 0);
  37	/* tx_buf must be completely set up in the transmit path */
  38}
  39
  40static struct netdev_queue *txring_txq(const struct ice_ring *ring)
  41{
  42	return netdev_get_tx_queue(ring->netdev, ring->q_index);
  43}
  44
  45/**
  46 * ice_clean_tx_ring - Free any empty Tx buffers
  47 * @tx_ring: ring to be cleaned
  48 */
  49void ice_clean_tx_ring(struct ice_ring *tx_ring)
  50{
  51	unsigned long size;
  52	u16 i;
  53
 
 
 
 
 
  54	/* ring already cleared, nothing to do */
  55	if (!tx_ring->tx_buf)
  56		return;
  57
  58	/* Free all the Tx ring sk_bufss */
  59	for (i = 0; i < tx_ring->count; i++)
  60		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
  61
  62	size = sizeof(struct ice_tx_buf) * tx_ring->count;
  63	memset(tx_ring->tx_buf, 0, size);
  64
  65	/* Zero out the descriptor ring */
  66	memset(tx_ring->desc, 0, tx_ring->size);
  67
  68	tx_ring->next_to_use = 0;
  69	tx_ring->next_to_clean = 0;
  70
  71	if (!tx_ring->netdev)
  72		return;
  73
  74	/* cleanup Tx queue statistics */
  75	netdev_tx_reset_queue(txring_txq(tx_ring));
  76}
  77
  78/**
  79 * ice_free_tx_ring - Free Tx resources per queue
  80 * @tx_ring: Tx descriptor ring for a specific queue
  81 *
  82 * Free all transmit software resources
  83 */
  84void ice_free_tx_ring(struct ice_ring *tx_ring)
  85{
  86	ice_clean_tx_ring(tx_ring);
  87	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
  88	tx_ring->tx_buf = NULL;
  89
  90	if (tx_ring->desc) {
  91		dmam_free_coherent(tx_ring->dev, tx_ring->size,
  92				   tx_ring->desc, tx_ring->dma);
  93		tx_ring->desc = NULL;
  94	}
  95}
  96
  97/**
  98 * ice_clean_tx_irq - Reclaim resources after transmit completes
  99 * @vsi: the VSI we care about
 100 * @tx_ring: Tx ring to clean
 101 * @napi_budget: Used to determine if we are in netpoll
 102 *
 103 * Returns true if there's any budget left (e.g. the clean is finished)
 104 */
 105static bool ice_clean_tx_irq(struct ice_vsi *vsi, struct ice_ring *tx_ring,
 106			     int napi_budget)
 107{
 108	unsigned int total_bytes = 0, total_pkts = 0;
 109	unsigned int budget = vsi->work_lmt;
 
 110	s16 i = tx_ring->next_to_clean;
 111	struct ice_tx_desc *tx_desc;
 112	struct ice_tx_buf *tx_buf;
 113
 114	tx_buf = &tx_ring->tx_buf[i];
 115	tx_desc = ICE_TX_DESC(tx_ring, i);
 116	i -= tx_ring->count;
 117
 
 
 118	do {
 119		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
 120
 121		/* if next_to_watch is not set then there is no work pending */
 122		if (!eop_desc)
 123			break;
 124
 125		smp_rmb();	/* prevent any other reads prior to eop_desc */
 126
 
 127		/* if the descriptor isn't done, no work yet to do */
 128		if (!(eop_desc->cmd_type_offset_bsz &
 129		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
 130			break;
 131
 132		/* clear next_to_watch to prevent false hangs */
 133		tx_buf->next_to_watch = NULL;
 134
 135		/* update the statistics for this packet */
 136		total_bytes += tx_buf->bytecount;
 137		total_pkts += tx_buf->gso_segs;
 138
 139		/* free the skb */
 140		napi_consume_skb(tx_buf->skb, napi_budget);
 
 
 
 141
 142		/* unmap skb header data */
 143		dma_unmap_single(tx_ring->dev,
 144				 dma_unmap_addr(tx_buf, dma),
 145				 dma_unmap_len(tx_buf, len),
 146				 DMA_TO_DEVICE);
 147
 148		/* clear tx_buf data */
 149		tx_buf->skb = NULL;
 150		dma_unmap_len_set(tx_buf, len, 0);
 151
 152		/* unmap remaining buffers */
 153		while (tx_desc != eop_desc) {
 
 154			tx_buf++;
 155			tx_desc++;
 156			i++;
 157			if (unlikely(!i)) {
 158				i -= tx_ring->count;
 159				tx_buf = tx_ring->tx_buf;
 160				tx_desc = ICE_TX_DESC(tx_ring, 0);
 161			}
 162
 163			/* unmap any remaining paged data */
 164			if (dma_unmap_len(tx_buf, len)) {
 165				dma_unmap_page(tx_ring->dev,
 166					       dma_unmap_addr(tx_buf, dma),
 167					       dma_unmap_len(tx_buf, len),
 168					       DMA_TO_DEVICE);
 169				dma_unmap_len_set(tx_buf, len, 0);
 170			}
 171		}
 
 172
 173		/* move us one more past the eop_desc for start of next pkt */
 174		tx_buf++;
 175		tx_desc++;
 176		i++;
 177		if (unlikely(!i)) {
 178			i -= tx_ring->count;
 179			tx_buf = tx_ring->tx_buf;
 180			tx_desc = ICE_TX_DESC(tx_ring, 0);
 181		}
 182
 183		prefetch(tx_desc);
 184
 185		/* update budget accounting */
 186		budget--;
 187	} while (likely(budget));
 188
 189	i += tx_ring->count;
 190	tx_ring->next_to_clean = i;
 191	u64_stats_update_begin(&tx_ring->syncp);
 192	tx_ring->stats.bytes += total_bytes;
 193	tx_ring->stats.pkts += total_pkts;
 194	u64_stats_update_end(&tx_ring->syncp);
 195	tx_ring->q_vector->tx.total_bytes += total_bytes;
 196	tx_ring->q_vector->tx.total_pkts += total_pkts;
 197
 198	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
 199				  total_bytes);
 200
 201#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
 202	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
 203		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 204		/* Make sure that anybody stopping the queue after this
 205		 * sees the new next_to_clean.
 206		 */
 207		smp_mb();
 208		if (__netif_subqueue_stopped(tx_ring->netdev,
 209					     tx_ring->q_index) &&
 210		   !test_bit(__ICE_DOWN, vsi->state)) {
 211			netif_wake_subqueue(tx_ring->netdev,
 212					    tx_ring->q_index);
 213			++tx_ring->tx_stats.restart_q;
 214		}
 215	}
 216
 217	return !!budget;
 218}
 219
 220/**
 221 * ice_setup_tx_ring - Allocate the Tx descriptors
 222 * @tx_ring: the tx ring to set up
 223 *
 224 * Return 0 on success, negative on error
 225 */
 226int ice_setup_tx_ring(struct ice_ring *tx_ring)
 227{
 228	struct device *dev = tx_ring->dev;
 229	int bi_size;
 230
 231	if (!dev)
 232		return -ENOMEM;
 233
 234	/* warn if we are about to overwrite the pointer */
 235	WARN_ON(tx_ring->tx_buf);
 236	bi_size = sizeof(struct ice_tx_buf) * tx_ring->count;
 237	tx_ring->tx_buf = devm_kzalloc(dev, bi_size, GFP_KERNEL);
 
 238	if (!tx_ring->tx_buf)
 239		return -ENOMEM;
 240
 241	/* round up to nearest 4K */
 242	tx_ring->size = tx_ring->count * sizeof(struct ice_tx_desc);
 243	tx_ring->size = ALIGN(tx_ring->size, 4096);
 244	tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
 245					    GFP_KERNEL);
 246	if (!tx_ring->desc) {
 247		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
 248			tx_ring->size);
 249		goto err;
 250	}
 251
 252	tx_ring->next_to_use = 0;
 253	tx_ring->next_to_clean = 0;
 
 254	return 0;
 255
 256err:
 257	devm_kfree(dev, tx_ring->tx_buf);
 258	tx_ring->tx_buf = NULL;
 259	return -ENOMEM;
 260}
 261
 262/**
 263 * ice_clean_rx_ring - Free Rx buffers
 264 * @rx_ring: ring to be cleaned
 265 */
 266void ice_clean_rx_ring(struct ice_ring *rx_ring)
 267{
 268	struct device *dev = rx_ring->dev;
 269	unsigned long size;
 270	u16 i;
 271
 272	/* ring already cleared, nothing to do */
 273	if (!rx_ring->rx_buf)
 274		return;
 275
 
 
 
 
 
 
 
 
 
 
 276	/* Free all the Rx ring sk_buffs */
 277	for (i = 0; i < rx_ring->count; i++) {
 278		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
 279
 280		if (rx_buf->skb) {
 281			dev_kfree_skb(rx_buf->skb);
 282			rx_buf->skb = NULL;
 283		}
 284		if (!rx_buf->page)
 285			continue;
 286
 287		dma_unmap_page(dev, rx_buf->dma, PAGE_SIZE, DMA_FROM_DEVICE);
 288		__free_pages(rx_buf->page, 0);
 
 
 
 
 
 
 
 
 
 
 289
 290		rx_buf->page = NULL;
 291		rx_buf->page_offset = 0;
 292	}
 293
 294	size = sizeof(struct ice_rx_buf) * rx_ring->count;
 295	memset(rx_ring->rx_buf, 0, size);
 296
 297	/* Zero out the descriptor ring */
 298	memset(rx_ring->desc, 0, rx_ring->size);
 299
 300	rx_ring->next_to_alloc = 0;
 301	rx_ring->next_to_clean = 0;
 302	rx_ring->next_to_use = 0;
 303}
 304
 305/**
 306 * ice_free_rx_ring - Free Rx resources
 307 * @rx_ring: ring to clean the resources from
 308 *
 309 * Free all receive software resources
 310 */
 311void ice_free_rx_ring(struct ice_ring *rx_ring)
 312{
 313	ice_clean_rx_ring(rx_ring);
 
 
 
 
 314	devm_kfree(rx_ring->dev, rx_ring->rx_buf);
 315	rx_ring->rx_buf = NULL;
 316
 317	if (rx_ring->desc) {
 318		dmam_free_coherent(rx_ring->dev, rx_ring->size,
 319				   rx_ring->desc, rx_ring->dma);
 320		rx_ring->desc = NULL;
 321	}
 322}
 323
 324/**
 325 * ice_setup_rx_ring - Allocate the Rx descriptors
 326 * @rx_ring: the rx ring to set up
 327 *
 328 * Return 0 on success, negative on error
 329 */
 330int ice_setup_rx_ring(struct ice_ring *rx_ring)
 331{
 332	struct device *dev = rx_ring->dev;
 333	int bi_size;
 334
 335	if (!dev)
 336		return -ENOMEM;
 337
 338	/* warn if we are about to overwrite the pointer */
 339	WARN_ON(rx_ring->rx_buf);
 340	bi_size = sizeof(struct ice_rx_buf) * rx_ring->count;
 341	rx_ring->rx_buf = devm_kzalloc(dev, bi_size, GFP_KERNEL);
 
 342	if (!rx_ring->rx_buf)
 343		return -ENOMEM;
 344
 345	/* round up to nearest 4K */
 346	rx_ring->size = rx_ring->count * sizeof(union ice_32byte_rx_desc);
 347	rx_ring->size = ALIGN(rx_ring->size, 4096);
 348	rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
 349					    GFP_KERNEL);
 350	if (!rx_ring->desc) {
 351		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
 352			rx_ring->size);
 353		goto err;
 354	}
 355
 356	rx_ring->next_to_use = 0;
 357	rx_ring->next_to_clean = 0;
 
 
 
 
 
 
 
 
 
 358	return 0;
 359
 360err:
 361	devm_kfree(dev, rx_ring->rx_buf);
 362	rx_ring->rx_buf = NULL;
 363	return -ENOMEM;
 364}
 365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366/**
 367 * ice_release_rx_desc - Store the new tail and head values
 368 * @rx_ring: ring to bump
 369 * @val: new head index
 
 
 
 370 */
 371static void ice_release_rx_desc(struct ice_ring *rx_ring, u32 val)
 
 
 372{
 373	rx_ring->next_to_use = val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 374
 375	/* update next to alloc since we have filled the ring */
 376	rx_ring->next_to_alloc = val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377
 378	/* Force memory writes to complete before letting h/w
 379	 * know there are new descriptors to fetch.  (Only
 380	 * applicable for weak-ordered memory model archs,
 381	 * such as IA-64).
 382	 */
 383	wmb();
 384	writel(val, rx_ring->tail);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 385}
 386
 387/**
 388 * ice_alloc_mapped_page - recycle or make a new page
 389 * @rx_ring: ring to use
 390 * @bi: rx_buf struct to modify
 391 *
 392 * Returns true if the page was successfully allocated or
 393 * reused.
 394 */
 395static bool ice_alloc_mapped_page(struct ice_ring *rx_ring,
 396				  struct ice_rx_buf *bi)
 397{
 398	struct page *page = bi->page;
 399	dma_addr_t dma;
 400
 401	/* since we are recycling buffers we should seldom need to alloc */
 402	if (likely(page)) {
 403		rx_ring->rx_stats.page_reuse_count++;
 404		return true;
 405	}
 406
 407	/* alloc new page for storage */
 408	page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
 409	if (unlikely(!page)) {
 410		rx_ring->rx_stats.alloc_page_failed++;
 411		return false;
 412	}
 413
 414	/* map page for use */
 415	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
 
 416
 417	/* if mapping failed free memory back to system since
 418	 * there isn't much point in holding memory we can't use
 419	 */
 420	if (dma_mapping_error(rx_ring->dev, dma)) {
 421		__free_pages(page, 0);
 422		rx_ring->rx_stats.alloc_page_failed++;
 423		return false;
 424	}
 425
 426	bi->dma = dma;
 427	bi->page = page;
 428	bi->page_offset = 0;
 
 
 429
 430	return true;
 431}
 432
 433/**
 434 * ice_alloc_rx_bufs - Replace used receive buffers
 435 * @rx_ring: ring to place buffers on
 436 * @cleaned_count: number of buffers to replace
 437 *
 438 * Returns false if all allocations were successful, true if any fail
 
 
 
 
 
 
 439 */
 440bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
 441{
 442	union ice_32b_rx_flex_desc *rx_desc;
 443	u16 ntu = rx_ring->next_to_use;
 444	struct ice_rx_buf *bi;
 445
 446	/* do nothing if no valid netdev defined */
 447	if (!rx_ring->netdev || !cleaned_count)
 
 448		return false;
 449
 450	/* get the RX descriptor and buffer based on next_to_use */
 451	rx_desc = ICE_RX_DESC(rx_ring, ntu);
 452	bi = &rx_ring->rx_buf[ntu];
 453
 454	do {
 
 455		if (!ice_alloc_mapped_page(rx_ring, bi))
 456			goto no_bufs;
 
 
 
 
 
 
 457
 458		/* Refresh the desc even if buffer_addrs didn't change
 459		 * because each write-back erases this info.
 460		 */
 461		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 462
 463		rx_desc++;
 464		bi++;
 465		ntu++;
 466		if (unlikely(ntu == rx_ring->count)) {
 467			rx_desc = ICE_RX_DESC(rx_ring, 0);
 468			bi = rx_ring->rx_buf;
 469			ntu = 0;
 470		}
 471
 472		/* clear the status bits for the next_to_use descriptor */
 473		rx_desc->wb.status_error0 = 0;
 474
 475		cleaned_count--;
 476	} while (cleaned_count);
 477
 478	if (rx_ring->next_to_use != ntu)
 479		ice_release_rx_desc(rx_ring, ntu);
 480
 481	return false;
 482
 483no_bufs:
 484	if (rx_ring->next_to_use != ntu)
 485		ice_release_rx_desc(rx_ring, ntu);
 486
 487	/* make sure to come back via polling to try again after
 488	 * allocation failure
 489	 */
 490	return true;
 491}
 492
 493/**
 494 * ice_page_is_reserved - check if reuse is possible
 495 * @page: page struct to check
 
 
 
 
 
 
 496 */
 497static bool ice_page_is_reserved(struct page *page)
 
 498{
 499	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
 
 
 
 
 
 
 500}
 501
 502/**
 503 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff
 504 * @rx_buf: buffer containing page to add
 505 * @rx_desc: descriptor containing length of buffer written by hardware
 506 * @skb: sk_buf to place the data into
 507 *
 508 * This function will add the data contained in rx_buf->page to the skb.
 509 * This is done either through a direct copy if the data in the buffer is
 510 * less than the skb header size, otherwise it will just attach the page as
 511 * a frag to the skb.
 512 *
 513 * The function will then update the page offset if necessary and return
 514 * true if the buffer can be reused by the adapter.
 515 */
 516static bool ice_add_rx_frag(struct ice_rx_buf *rx_buf,
 517			    union ice_32b_rx_flex_desc *rx_desc,
 518			    struct sk_buff *skb)
 519{
 520#if (PAGE_SIZE < 8192)
 521	unsigned int truesize = ICE_RXBUF_2048;
 522#else
 523	unsigned int last_offset = PAGE_SIZE - ICE_RXBUF_2048;
 524	unsigned int truesize;
 525#endif /* PAGE_SIZE < 8192) */
 526
 527	struct page *page;
 528	unsigned int size;
 529
 530	size = le16_to_cpu(rx_desc->wb.pkt_len) &
 531		ICE_RX_FLX_DESC_PKT_LEN_M;
 532
 533	page = rx_buf->page;
 534
 535#if (PAGE_SIZE >= 8192)
 536	truesize = ALIGN(size, L1_CACHE_BYTES);
 537#endif /* PAGE_SIZE >= 8192) */
 538
 539	/* will the data fit in the skb we allocated? if so, just
 540	 * copy it as it is pretty small anyway
 541	 */
 542	if (size <= ICE_RX_HDR_SIZE && !skb_is_nonlinear(skb)) {
 543		unsigned char *va = page_address(page) + rx_buf->page_offset;
 544
 545		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
 546
 547		/* page is not reserved, we can reuse buffer as-is */
 548		if (likely(!ice_page_is_reserved(page)))
 549			return true;
 550
 551		/* this page cannot be reused so discard it */
 552		__free_pages(page, 0);
 553		return false;
 554	}
 555
 556	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
 557			rx_buf->page_offset, size, truesize);
 558
 559	/* avoid re-using remote pages */
 560	if (unlikely(ice_page_is_reserved(page)))
 561		return false;
 562
 563#if (PAGE_SIZE < 8192)
 564	/* if we are only owner of page we can reuse it */
 565	if (unlikely(page_count(page) != 1))
 566		return false;
 567
 568	/* flip page offset to other buffer */
 569	rx_buf->page_offset ^= truesize;
 570#else
 571	/* move offset up to the next cache line */
 572	rx_buf->page_offset += truesize;
 573
 574	if (rx_buf->page_offset > last_offset)
 575		return false;
 576#endif /* PAGE_SIZE < 8192) */
 577
 578	/* Even if we own the page, we are not allowed to use atomic_set()
 579	 * This would break get_page_unless_zero() users.
 
 580	 */
 581	get_page(rx_buf->page);
 
 
 
 582
 583	return true;
 584}
 585
 586/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 587 * ice_reuse_rx_page - page flip buffer and store it back on the ring
 588 * @rx_ring: rx descriptor ring to store buffers on
 589 * @old_buf: donor buffer to have page reused
 590 *
 591 * Synchronizes page for reuse by the adapter
 592 */
 593static void ice_reuse_rx_page(struct ice_ring *rx_ring,
 594			      struct ice_rx_buf *old_buf)
 595{
 596	u16 nta = rx_ring->next_to_alloc;
 597	struct ice_rx_buf *new_buf;
 598
 599	new_buf = &rx_ring->rx_buf[nta];
 600
 601	/* update, and store next to alloc */
 602	nta++;
 603	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 604
 605	/* transfer page from old buffer to new buffer */
 606	*new_buf = *old_buf;
 
 
 
 
 
 
 607}
 608
 609/**
 610 * ice_fetch_rx_buf - Allocate skb and populate it
 611 * @rx_ring: rx descriptor ring to transact packets on
 612 * @rx_desc: descriptor containing info written by hardware
 
 613 *
 614 * This function allocates an skb on the fly, and populates it with the page
 615 * data from the current receive descriptor, taking care to set up the skb
 616 * correctly, as well as handling calling the page recycle function if
 617 * necessary.
 618 */
 619static struct sk_buff *ice_fetch_rx_buf(struct ice_ring *rx_ring,
 620					union ice_32b_rx_flex_desc *rx_desc)
 
 621{
 622	struct ice_rx_buf *rx_buf;
 623	struct sk_buff *skb;
 624	struct page *page;
 625
 626	rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
 627	page = rx_buf->page;
 628	prefetchw(page);
 629
 630	skb = rx_buf->skb;
 631
 632	if (likely(!skb)) {
 633		u8 *page_addr = page_address(page) + rx_buf->page_offset;
 634
 635		/* prefetch first cache line of first page */
 636		prefetch(page_addr);
 637#if L1_CACHE_BYTES < 128
 638		prefetch((void *)(page_addr + L1_CACHE_BYTES));
 639#endif /* L1_CACHE_BYTES */
 640
 641		/* allocate a skb to store the frags */
 642		skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
 643				       ICE_RX_HDR_SIZE,
 644				       GFP_ATOMIC | __GFP_NOWARN);
 645		if (unlikely(!skb)) {
 646			rx_ring->rx_stats.alloc_buf_failed++;
 647			return NULL;
 648		}
 649
 650		/* we will be copying header into skb->data in
 651		 * pskb_may_pull so it is in our interest to prefetch
 652		 * it now to avoid a possible cache miss
 653		 */
 654		prefetchw(skb->data);
 655
 656		skb_record_rx_queue(skb, rx_ring->q_index);
 657	} else {
 658		/* we are reusing so sync this buffer for CPU use */
 659		dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
 660					      rx_buf->page_offset,
 661					      ICE_RXBUF_2048,
 662					      DMA_FROM_DEVICE);
 663
 664		rx_buf->skb = NULL;
 665	}
 666
 667	/* pull page into skb */
 668	if (ice_add_rx_frag(rx_buf, rx_desc, skb)) {
 669		/* hand second half of page back to the ring */
 670		ice_reuse_rx_page(rx_ring, rx_buf);
 671		rx_ring->rx_stats.page_reuse_count++;
 672	} else {
 673		/* we are not reusing the buffer so unmap it */
 674		dma_unmap_page(rx_ring->dev, rx_buf->dma, PAGE_SIZE,
 675			       DMA_FROM_DEVICE);
 676	}
 677
 678	/* clear contents of buffer_info */
 679	rx_buf->page = NULL;
 680
 681	return skb;
 682}
 683
 684/**
 685 * ice_pull_tail - ice specific version of skb_pull_tail
 686 * @skb: pointer to current skb being adjusted
 
 
 687 *
 688 * This function is an ice specific version of __pskb_pull_tail.  The
 689 * main difference between this version and the original function is that
 690 * this function can make several assumptions about the state of things
 691 * that allow for significant optimizations versus the standard function.
 692 * As a result we can do things like drop a frag and maintain an accurate
 693 * truesize for the skb.
 694 */
 695static void ice_pull_tail(struct sk_buff *skb)
 696{
 697	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
 698	unsigned int pull_len;
 699	unsigned char *va;
 700
 701	/* it is valid to use page_address instead of kmap since we are
 702	 * working with pages allocated out of the lomem pool per
 703	 * alloc_page(GFP_ATOMIC)
 704	 */
 705	va = skb_frag_address(frag);
 706
 707	/* we need the header to contain the greater of either ETH_HLEN or
 708	 * 60 bytes if the skb->len is less than 60 for skb_pad.
 
 
 709	 */
 710	pull_len = eth_get_headlen(va, ICE_RX_HDR_SIZE);
 711
 712	/* align pull length to size of long to optimize memcpy performance */
 713	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
 
 714
 715	/* update all of the pointers */
 716	skb_frag_size_sub(frag, pull_len);
 717	frag->page_offset += pull_len;
 718	skb->data_len -= pull_len;
 719	skb->tail += pull_len;
 720}
 721
 722/**
 723 * ice_cleanup_headers - Correct empty headers
 724 * @skb: pointer to current skb being fixed
 725 *
 726 * Also address the case where we are pulling data in on pages only
 727 * and as such no data is present in the skb header.
 728 *
 729 * In addition if skb is not at least 60 bytes we need to pad it so that
 730 * it is large enough to qualify as a valid Ethernet frame.
 731 *
 732 * Returns true if an error was encountered and skb was freed.
 733 */
 734static bool ice_cleanup_headers(struct sk_buff *skb)
 735{
 736	/* place header in linear portion of buffer */
 737	if (skb_is_nonlinear(skb))
 738		ice_pull_tail(skb);
 739
 740	/* if eth_skb_pad returns an error the skb was freed */
 741	if (eth_skb_pad(skb))
 742		return true;
 
 
 743
 744	return false;
 745}
 746
 747/**
 748 * ice_test_staterr - tests bits in Rx descriptor status and error fields
 749 * @rx_desc: pointer to receive descriptor (in le64 format)
 750 * @stat_err_bits: value to mask
 751 *
 752 * This function does some fast chicanery in order to return the
 753 * value of the mask which is really only used for boolean tests.
 754 * The status_error_len doesn't need to be shifted because it begins
 755 * at offset zero.
 756 */
 757static bool ice_test_staterr(union ice_32b_rx_flex_desc *rx_desc,
 758			     const u16 stat_err_bits)
 759{
 760	return !!(rx_desc->wb.status_error0 &
 761		  cpu_to_le16(stat_err_bits));
 762}
 763
 764/**
 765 * ice_is_non_eop - process handling of non-EOP buffers
 766 * @rx_ring: Rx ring being processed
 767 * @rx_desc: Rx descriptor for current buffer
 768 * @skb: Current socket buffer containing buffer in progress
 769 *
 770 * This function updates next to clean.  If the buffer is an EOP buffer
 771 * this function exits returning false, otherwise it will place the
 772 * sk_buff in the next buffer to be chained and return true indicating
 773 * that this is in fact a non-EOP buffer.
 774 */
 775static bool ice_is_non_eop(struct ice_ring *rx_ring,
 776			   union ice_32b_rx_flex_desc *rx_desc,
 777			   struct sk_buff *skb)
 778{
 779	u32 ntc = rx_ring->next_to_clean + 1;
 780
 781	/* fetch, update, and store next to clean */
 782	ntc = (ntc < rx_ring->count) ? ntc : 0;
 783	rx_ring->next_to_clean = ntc;
 784
 785	prefetch(ICE_RX_DESC(rx_ring, ntc));
 
 786
 787	/* if we are the last buffer then there is nothing else to do */
 788#define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
 789	if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
 790		return false;
 
 
 
 
 
 
 
 791
 792	/* place skb in next buffer to be received */
 793	rx_ring->rx_buf[ntc].skb = skb;
 794	rx_ring->rx_stats.non_eop_descs++;
 795
 796	return true;
 797}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 798
 799/**
 800 * ice_ptype_to_htype - get a hash type
 801 * @ptype: the ptype value from the descriptor
 802 *
 803 * Returns a hash type to be used by skb_set_hash
 804 */
 805static enum pkt_hash_types ice_ptype_to_htype(u8 __always_unused ptype)
 806{
 807	return PKT_HASH_TYPE_NONE;
 808}
 809
 810/**
 811 * ice_rx_hash - set the hash value in the skb
 812 * @rx_ring: descriptor ring
 813 * @rx_desc: specific descriptor
 814 * @skb: pointer to current skb
 815 * @rx_ptype: the ptype value from the descriptor
 
 
 
 816 */
 817static void
 818ice_rx_hash(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
 819	    struct sk_buff *skb, u8 rx_ptype)
 820{
 821	struct ice_32b_rx_flex_desc_nic *nic_mdid;
 822	u32 hash;
 823
 824	if (!(rx_ring->netdev->features & NETIF_F_RXHASH))
 825		return;
 826
 827	if (rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC)
 828		return;
 829
 830	nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc;
 831	hash = le32_to_cpu(nic_mdid->rss_hash);
 832	skb_set_hash(skb, hash, ice_ptype_to_htype(rx_ptype));
 833}
 834
 835/**
 836 * ice_rx_csum - Indicate in skb if checksum is good
 837 * @vsi: the VSI we care about
 838 * @skb: skb currently being received and modified
 839 * @rx_desc: the receive descriptor
 840 * @ptype: the packet type decoded by hardware
 841 *
 842 * skb->protocol must be set before this function is called
 843 */
 844static void ice_rx_csum(struct ice_vsi *vsi, struct sk_buff *skb,
 845			union ice_32b_rx_flex_desc *rx_desc, u8 ptype)
 846{
 847	struct ice_rx_ptype_decoded decoded;
 848	u32 rx_error, rx_status;
 849	bool ipv4, ipv6;
 850
 851	rx_status = le16_to_cpu(rx_desc->wb.status_error0);
 852	rx_error = rx_status;
 853
 854	decoded = ice_decode_rx_desc_ptype(ptype);
 855
 856	/* Start with CHECKSUM_NONE and by default csum_level = 0 */
 857	skb->ip_summed = CHECKSUM_NONE;
 858	skb_checksum_none_assert(skb);
 859
 860	/* check if Rx checksum is enabled */
 861	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
 862		return;
 863
 864	/* check if HW has decoded the packet and checksum */
 865	if (!(rx_status & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S)))
 866		return;
 867
 868	if (!(decoded.known && decoded.outer_ip))
 869		return;
 870
 871	ipv4 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
 872	       (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV4);
 873	ipv6 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
 874	       (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV6);
 875
 876	if (ipv4 && (rx_error & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |
 877				 BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S))))
 878		goto checksum_fail;
 879	else if (ipv6 && (rx_status &
 880		 (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S))))
 881		goto checksum_fail;
 882
 883	/* check for L4 errors and handle packets that were not able to be
 884	 * checksummed due to arrival speed
 885	 */
 886	if (rx_error & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S))
 887		goto checksum_fail;
 888
 889	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
 890	switch (decoded.inner_prot) {
 891	case ICE_RX_PTYPE_INNER_PROT_TCP:
 892	case ICE_RX_PTYPE_INNER_PROT_UDP:
 893	case ICE_RX_PTYPE_INNER_PROT_SCTP:
 894		skb->ip_summed = CHECKSUM_UNNECESSARY;
 895	default:
 896		break;
 897	}
 898	return;
 899
 900checksum_fail:
 901	vsi->back->hw_csum_rx_error++;
 902}
 903
 904/**
 905 * ice_process_skb_fields - Populate skb header fields from Rx descriptor
 906 * @rx_ring: rx descriptor ring packet is being transacted on
 907 * @rx_desc: pointer to the EOP Rx descriptor
 908 * @skb: pointer to current skb being populated
 909 * @ptype: the packet type decoded by hardware
 910 *
 911 * This function checks the ring, descriptor, and packet information in
 912 * order to populate the hash, checksum, VLAN, protocol, and
 913 * other fields within the skb.
 914 */
 915static void ice_process_skb_fields(struct ice_ring *rx_ring,
 916				   union ice_32b_rx_flex_desc *rx_desc,
 917				   struct sk_buff *skb, u8 ptype)
 918{
 919	ice_rx_hash(rx_ring, rx_desc, skb, ptype);
 920
 921	/* modifies the skb - consumes the enet header */
 922	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
 923
 924	ice_rx_csum(rx_ring->vsi, skb, rx_desc, ptype);
 925}
 926
 927/**
 928 * ice_receive_skb - Send a completed packet up the stack
 929 * @rx_ring: rx ring in play
 930 * @skb: packet to send up
 931 * @vlan_tag: vlan tag for packet
 932 *
 933 * This function sends the completed packet (via. skb) up the stack using
 934 * gro receive functions (with/without vlan tag)
 935 */
 936static void ice_receive_skb(struct ice_ring *rx_ring, struct sk_buff *skb,
 937			    u16 vlan_tag)
 938{
 939	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
 940	    (vlan_tag & VLAN_VID_MASK)) {
 941		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
 942	}
 943	napi_gro_receive(&rx_ring->q_vector->napi, skb);
 944}
 945
 946/**
 947 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
 948 * @rx_ring: rx descriptor ring to transact packets on
 949 * @budget: Total limit on number of packets to process
 950 *
 951 * This function provides a "bounce buffer" approach to Rx interrupt
 952 * processing.  The advantage to this is that on systems that have
 953 * expensive overhead for IOMMU access this provides a means of avoiding
 954 * it by maintaining the mapping of the page to the system.
 955 *
 956 * Returns amount of work completed
 957 */
 958static int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
 959{
 960	unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
 961	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
 962	bool failure = false;
 
 
 
 
 
 
 
 
 
 
 
 963
 964	/* start the loop to process RX packets bounded by 'budget' */
 965	while (likely(total_rx_pkts < (unsigned int)budget)) {
 966		union ice_32b_rx_flex_desc *rx_desc;
 967		struct sk_buff *skb;
 
 
 968		u16 stat_err_bits;
 
 969		u16 vlan_tag = 0;
 970		u8 rx_ptype;
 971
 972		/* return some buffers to hardware, one at a time is too slow */
 973		if (cleaned_count >= ICE_RX_BUF_WRITE) {
 974			failure = failure ||
 975				  ice_alloc_rx_bufs(rx_ring, cleaned_count);
 976			cleaned_count = 0;
 977		}
 978
 979		/* get the RX desc from RX ring based on 'next_to_clean' */
 980		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
 981
 982		/* status_error_len will always be zero for unused descriptors
 983		 * because it's cleared in cleanup, and overlaps with hdr_addr
 984		 * which is always zero because packet split isn't used, if the
 985		 * hardware wrote DD then it will be non-zero
 986		 */
 987		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
 988		if (!ice_test_staterr(rx_desc, stat_err_bits))
 989			break;
 990
 991		/* This memory barrier is needed to keep us from reading
 992		 * any other fields out of the rx_desc until we know the
 993		 * DD bit is set.
 994		 */
 995		dma_rmb();
 996
 997		/* allocate (if needed) and populate skb */
 998		skb = ice_fetch_rx_buf(rx_ring, rx_desc);
 999		if (!skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1000			break;
 
1001
 
1002		cleaned_count++;
1003
1004		/* skip if it is NOP desc */
1005		if (ice_is_non_eop(rx_ring, rx_desc, skb))
1006			continue;
1007
1008		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1009		if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
1010			dev_kfree_skb_any(skb);
1011			continue;
1012		}
1013
1014		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1015			ICE_RX_FLEX_DESC_PTYPE_M;
1016
1017		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
1018		if (ice_test_staterr(rx_desc, stat_err_bits))
1019			vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
1020
1021		/* correct empty headers and pad skb if needed (to make valid
1022		 * ethernet frame
1023		 */
1024		if (ice_cleanup_headers(skb)) {
1025			skb = NULL;
1026			continue;
1027		}
1028
1029		/* probably a little skewed due to removing CRC */
1030		total_rx_bytes += skb->len;
1031
1032		/* populate checksum, VLAN, and protocol */
 
 
 
1033		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1034
 
1035		/* send completed skb up the stack */
1036		ice_receive_skb(rx_ring, skb, vlan_tag);
 
1037
1038		/* update budget accounting */
1039		total_rx_pkts++;
1040	}
1041
1042	/* update queue and vector specific stats */
1043	u64_stats_update_begin(&rx_ring->syncp);
1044	rx_ring->stats.pkts += total_rx_pkts;
1045	rx_ring->stats.bytes += total_rx_bytes;
1046	u64_stats_update_end(&rx_ring->syncp);
1047	rx_ring->q_vector->rx.total_pkts += total_rx_pkts;
1048	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
 
1049
1050	/* guarantee a trip back through this routine if there was a failure */
1051	return failure ? budget : (int)total_rx_pkts;
1052}
1053
1054/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1055 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1056 * @napi: napi struct with our devices info in it
1057 * @budget: amount of work driver is allowed to do this pass, in packets
1058 *
1059 * This function will clean all queues associated with a q_vector.
1060 *
1061 * Returns the amount of work done
1062 */
1063int ice_napi_poll(struct napi_struct *napi, int budget)
1064{
1065	struct ice_q_vector *q_vector =
1066				container_of(napi, struct ice_q_vector, napi);
1067	struct ice_vsi *vsi = q_vector->vsi;
1068	struct ice_pf *pf = vsi->back;
1069	bool clean_complete = true;
1070	int budget_per_ring = 0;
1071	struct ice_ring *ring;
 
1072	int work_done = 0;
1073
1074	/* Since the actual Tx work is minimal, we can give the Tx a larger
1075	 * budget and be more aggressive about cleaning up the Tx descriptors.
1076	 */
1077	ice_for_each_ring(ring, q_vector->tx)
1078		if (!ice_clean_tx_irq(vsi, ring, budget))
 
 
 
 
1079			clean_complete = false;
 
1080
1081	/* Handle case where we are called by netpoll with a budget of 0 */
1082	if (budget <= 0)
1083		return budget;
1084
1085	/* We attempt to distribute budget to each Rx queue fairly, but don't
1086	 * allow the budget to go below 1 because that would exit polling early.
1087	 */
1088	if (q_vector->num_ring_rx)
1089		budget_per_ring = max(budget / q_vector->num_ring_rx, 1);
 
 
 
 
 
1090
1091	ice_for_each_ring(ring, q_vector->rx) {
1092		int cleaned;
1093
1094		cleaned = ice_clean_rx_irq(ring, budget_per_ring);
 
 
 
 
 
 
1095		work_done += cleaned;
1096		/* if we clean as many as budgeted, we must not be done */
1097		if (cleaned >= budget_per_ring)
1098			clean_complete = false;
1099	}
1100
1101	/* If work not completed, return budget and polling will return */
1102	if (!clean_complete)
 
 
 
 
1103		return budget;
 
1104
1105	/* Work is done so exit the polling mode and re-enable the interrupt */
1106	napi_complete_done(napi, work_done);
1107	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
1108		ice_irq_dynamic_ena(&vsi->back->hw, vsi, q_vector);
1109	return 0;
1110}
 
1111
1112/* helper function for building cmd/type/offset */
1113static __le64
1114build_ctob(u64 td_cmd, u64 td_offset, unsigned int size, u64 td_tag)
1115{
1116	return cpu_to_le64(ICE_TX_DESC_DTYPE_DATA |
1117			   (td_cmd    << ICE_TXD_QW1_CMD_S) |
1118			   (td_offset << ICE_TXD_QW1_OFFSET_S) |
1119			   ((u64)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
1120			   (td_tag    << ICE_TXD_QW1_L2TAG1_S));
1121}
1122
1123/**
1124 * __ice_maybe_stop_tx - 2nd level check for tx stop conditions
1125 * @tx_ring: the ring to be checked
1126 * @size: the size buffer we want to assure is available
1127 *
1128 * Returns -EBUSY if a stop is needed, else 0
1129 */
1130static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1131{
1132	netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
1133	/* Memory barrier before checking head and tail */
1134	smp_mb();
1135
1136	/* Check again in a case another CPU has just made room available. */
1137	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1138		return -EBUSY;
1139
1140	/* A reprieve! - use start_subqueue because it doesn't call schedule */
1141	netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
1142	++tx_ring->tx_stats.restart_q;
1143	return 0;
1144}
1145
1146/**
1147 * ice_maybe_stop_tx - 1st level check for tx stop conditions
1148 * @tx_ring: the ring to be checked
1149 * @size:    the size buffer we want to assure is available
1150 *
1151 * Returns 0 if stop is not needed
1152 */
1153static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1154{
1155	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1156		return 0;
 
1157	return __ice_maybe_stop_tx(tx_ring, size);
1158}
1159
1160/**
1161 * ice_tx_map - Build the Tx descriptor
1162 * @tx_ring: ring to send buffer on
1163 * @first: first buffer info buffer to use
1164 * @off: pointer to struct that holds offload parameters
1165 *
1166 * This function loops over the skb data pointed to by *first
1167 * and gets a physical address for each memory location and programs
1168 * it and the length into the transmit descriptor.
1169 */
1170static void
1171ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
1172	   struct ice_tx_offload_params *off)
1173{
1174	u64 td_offset, td_tag, td_cmd;
1175	u16 i = tx_ring->next_to_use;
1176	struct skb_frag_struct *frag;
1177	unsigned int data_len, size;
1178	struct ice_tx_desc *tx_desc;
1179	struct ice_tx_buf *tx_buf;
1180	struct sk_buff *skb;
 
1181	dma_addr_t dma;
1182
1183	td_tag = off->td_l2tag1;
1184	td_cmd = off->td_cmd;
1185	td_offset = off->td_offset;
1186	skb = first->skb;
1187
1188	data_len = skb->data_len;
1189	size = skb_headlen(skb);
1190
1191	tx_desc = ICE_TX_DESC(tx_ring, i);
1192
1193	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1194		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1195		td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1196			  ICE_TX_FLAGS_VLAN_S;
1197	}
1198
1199	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1200
1201	tx_buf = first;
1202
1203	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1204		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1205
1206		if (dma_mapping_error(tx_ring->dev, dma))
1207			goto dma_error;
1208
1209		/* record length, and DMA address */
1210		dma_unmap_len_set(tx_buf, len, size);
1211		dma_unmap_addr_set(tx_buf, dma, dma);
1212
1213		/* align size to end of page */
1214		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1215		tx_desc->buf_addr = cpu_to_le64(dma);
1216
1217		/* account for data chunks larger than the hardware
1218		 * can handle
1219		 */
1220		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1221			tx_desc->cmd_type_offset_bsz =
1222				build_ctob(td_cmd, td_offset, max_data, td_tag);
 
1223
1224			tx_desc++;
1225			i++;
1226
1227			if (i == tx_ring->count) {
1228				tx_desc = ICE_TX_DESC(tx_ring, 0);
1229				i = 0;
1230			}
1231
1232			dma += max_data;
1233			size -= max_data;
1234
1235			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1236			tx_desc->buf_addr = cpu_to_le64(dma);
1237		}
1238
1239		if (likely(!data_len))
1240			break;
1241
1242		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1243							  size, td_tag);
1244
1245		tx_desc++;
1246		i++;
1247
1248		if (i == tx_ring->count) {
1249			tx_desc = ICE_TX_DESC(tx_ring, 0);
1250			i = 0;
1251		}
1252
1253		size = skb_frag_size(frag);
1254		data_len -= size;
1255
1256		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1257				       DMA_TO_DEVICE);
1258
1259		tx_buf = &tx_ring->tx_buf[i];
1260	}
1261
1262	/* record bytecount for BQL */
1263	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1264
1265	/* record SW timestamp if HW timestamp is not available */
1266	skb_tx_timestamp(first->skb);
1267
1268	i++;
1269	if (i == tx_ring->count)
1270		i = 0;
1271
1272	/* write last descriptor with RS and EOP bits */
1273	td_cmd |= (u64)(ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS);
1274	tx_desc->cmd_type_offset_bsz =
1275			build_ctob(td_cmd, td_offset, size, td_tag);
1276
1277	/* Force memory writes to complete before letting h/w know there
1278	 * are new descriptors to fetch.
1279	 *
1280	 * We also use this memory barrier to make certain all of the
1281	 * status bits have been updated before next_to_watch is written.
1282	 */
1283	wmb();
1284
1285	/* set next_to_watch value indicating a packet is present */
1286	first->next_to_watch = tx_desc;
1287
1288	tx_ring->next_to_use = i;
1289
1290	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1291
1292	/* notify HW of packet */
1293	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1294		writel(i, tx_ring->tail);
1295
1296		/* we need this if more than one processor can write to our tail
1297		 * at a time, it synchronizes IO on IA64/Altix systems
1298		 */
1299		mmiowb();
1300	}
1301
1302	return;
1303
1304dma_error:
1305	/* clear dma mappings for failed tx_buf map */
1306	for (;;) {
1307		tx_buf = &tx_ring->tx_buf[i];
1308		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1309		if (tx_buf == first)
1310			break;
1311		if (i == 0)
1312			i = tx_ring->count;
1313		i--;
1314	}
1315
1316	tx_ring->next_to_use = i;
1317}
1318
1319/**
1320 * ice_tx_csum - Enable Tx checksum offloads
1321 * @first: pointer to the first descriptor
1322 * @off: pointer to struct that holds offload parameters
1323 *
1324 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1325 */
1326static
1327int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1328{
1329	u32 l4_len = 0, l3_len = 0, l2_len = 0;
1330	struct sk_buff *skb = first->skb;
1331	union {
1332		struct iphdr *v4;
1333		struct ipv6hdr *v6;
1334		unsigned char *hdr;
1335	} ip;
1336	union {
1337		struct tcphdr *tcp;
1338		unsigned char *hdr;
1339	} l4;
1340	__be16 frag_off, protocol;
1341	unsigned char *exthdr;
1342	u32 offset, cmd = 0;
1343	u8 l4_proto = 0;
1344
1345	if (skb->ip_summed != CHECKSUM_PARTIAL)
1346		return 0;
1347
1348	ip.hdr = skb_network_header(skb);
1349	l4.hdr = skb_transport_header(skb);
1350
1351	/* compute outer L2 header size */
1352	l2_len = ip.hdr - skb->data;
1353	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1354
1355	if (skb->encapsulation)
1356		return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1357
1358	/* Enable IP checksum offloads */
1359	protocol = vlan_get_protocol(skb);
1360	if (protocol == htons(ETH_P_IP)) {
1361		l4_proto = ip.v4->protocol;
1362		/* the stack computes the IP header already, the only time we
1363		 * need the hardware to recompute it is in the case of TSO.
1364		 */
1365		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1366			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1367		else
1368			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1369
1370	} else if (protocol == htons(ETH_P_IPV6)) {
1371		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1372		exthdr = ip.hdr + sizeof(*ip.v6);
1373		l4_proto = ip.v6->nexthdr;
1374		if (l4.hdr != exthdr)
1375			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1376					 &frag_off);
1377	} else {
1378		return -1;
1379	}
1380
1381	/* compute inner L3 header size */
1382	l3_len = l4.hdr - ip.hdr;
1383	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1384
1385	/* Enable L4 checksum offloads */
1386	switch (l4_proto) {
1387	case IPPROTO_TCP:
1388		/* enable checksum offloads */
1389		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1390		l4_len = l4.tcp->doff;
1391		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1392		break;
1393	case IPPROTO_UDP:
1394		/* enable UDP checksum offload */
1395		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1396		l4_len = (sizeof(struct udphdr) >> 2);
1397		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1398		break;
1399	case IPPROTO_SCTP:
 
 
 
 
 
 
1400	default:
1401		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1402			return -1;
1403		skb_checksum_help(skb);
1404		return 0;
1405	}
1406
1407	off->td_cmd |= cmd;
1408	off->td_offset |= offset;
1409	return 1;
1410}
1411
1412/**
1413 * ice_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1414 * @tx_ring: ring to send buffer on
1415 * @first: pointer to struct ice_tx_buf
1416 *
1417 * Checks the skb and set up correspondingly several generic transmit flags
1418 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1419 *
1420 * Returns error code indicate the frame should be dropped upon error and the
1421 * otherwise returns 0 to indicate the flags has been set properly.
1422 */
1423static int
1424ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
1425{
1426	struct sk_buff *skb = first->skb;
1427	__be16 protocol = skb->protocol;
1428
1429	if (protocol == htons(ETH_P_8021Q) &&
1430	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1431		/* when HW VLAN acceleration is turned off by the user the
1432		 * stack sets the protocol to 8021q so that the driver
1433		 * can take any steps required to support the SW only
1434		 * VLAN handling. In our case the driver doesn't need
1435		 * to take any further steps so just set the protocol
1436		 * to the encapsulated ethertype.
1437		 */
1438		skb->protocol = vlan_get_protocol(skb);
1439		goto out;
1440	}
1441
1442	/* if we have a HW VLAN tag being added, default to the HW one */
 
 
1443	if (skb_vlan_tag_present(skb)) {
1444		first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
1445		first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
1446	} else if (protocol == htons(ETH_P_8021Q)) {
1447		struct vlan_hdr *vhdr, _vhdr;
1448
1449		/* for SW VLAN, check the next protocol and store the tag */
1450		vhdr = (struct vlan_hdr *)skb_header_pointer(skb, ETH_HLEN,
1451							     sizeof(_vhdr),
1452							     &_vhdr);
1453		if (!vhdr)
1454			return -EINVAL;
1455
1456		first->tx_flags |= ntohs(vhdr->h_vlan_TCI) <<
1457				   ICE_TX_FLAGS_VLAN_S;
1458		first->tx_flags |= ICE_TX_FLAGS_SW_VLAN;
1459	}
1460
1461out:
1462	return 0;
1463}
1464
1465/**
1466 * ice_tso - computes mss and TSO length to prepare for TSO
1467 * @first: pointer to struct ice_tx_buf
1468 * @off: pointer to struct that holds offload parameters
1469 *
1470 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
1471 */
1472static
1473int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1474{
1475	struct sk_buff *skb = first->skb;
1476	union {
1477		struct iphdr *v4;
1478		struct ipv6hdr *v6;
1479		unsigned char *hdr;
1480	} ip;
1481	union {
1482		struct tcphdr *tcp;
 
1483		unsigned char *hdr;
1484	} l4;
1485	u64 cd_mss, cd_tso_len;
1486	u32 paylen, l4_start;
 
1487	int err;
1488
1489	if (skb->ip_summed != CHECKSUM_PARTIAL)
1490		return 0;
1491
1492	if (!skb_is_gso(skb))
1493		return 0;
1494
1495	err = skb_cow_head(skb, 0);
1496	if (err < 0)
1497		return err;
1498
 
1499	ip.hdr = skb_network_header(skb);
1500	l4.hdr = skb_transport_header(skb);
1501
1502	/* initialize outer IP header fields */
1503	if (ip.v4->version == 4) {
1504		ip.v4->tot_len = 0;
1505		ip.v4->check = 0;
1506	} else {
1507		ip.v6->payload_len = 0;
1508	}
1509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1510	/* determine offset of transport header */
1511	l4_start = l4.hdr - skb->data;
1512
1513	/* remove payload length from checksum */
1514	paylen = skb->len - l4_start;
1515	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
1516
1517	/* compute length of segmentation header */
1518	off->header_len = (l4.tcp->doff * 4) + l4_start;
 
 
 
 
 
 
 
 
 
1519
1520	/* update gso_segs and bytecount */
1521	first->gso_segs = skb_shinfo(skb)->gso_segs;
1522	first->bytecount = (first->gso_segs - 1) * off->header_len;
1523
1524	cd_tso_len = skb->len - off->header_len;
1525	cd_mss = skb_shinfo(skb)->gso_size;
1526
1527	/* record cdesc_qw1 with TSO parameters */
1528	off->cd_qw1 |= ICE_TX_DESC_DTYPE_CTX |
1529			 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
1530			 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
1531			 (cd_mss << ICE_TXD_CTX_QW1_MSS_S);
1532	first->tx_flags |= ICE_TX_FLAGS_TSO;
1533	return 1;
1534}
1535
1536/**
1537 * ice_txd_use_count  - estimate the number of descriptors needed for Tx
1538 * @size: transmit request size in bytes
1539 *
1540 * Due to hardware alignment restrictions (4K alignment), we need to
1541 * assume that we can have no more than 12K of data per descriptor, even
1542 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
1543 * Thus, we need to divide by 12K. But division is slow! Instead,
1544 * we decompose the operation into shifts and one relatively cheap
1545 * multiply operation.
1546 *
1547 * To divide by 12K, we first divide by 4K, then divide by 3:
1548 *     To divide by 4K, shift right by 12 bits
1549 *     To divide by 3, multiply by 85, then divide by 256
1550 *     (Divide by 256 is done by shifting right by 8 bits)
1551 * Finally, we add one to round up. Because 256 isn't an exact multiple of
1552 * 3, we'll underestimate near each multiple of 12K. This is actually more
1553 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
1554 * segment.  For our purposes this is accurate out to 1M which is orders of
1555 * magnitude greater than our largest possible GSO size.
1556 *
1557 * This would then be implemented as:
1558 *     return (((size >> 12) * 85) >> 8) + 1;
1559 *
1560 * Since multiplication and division are commutative, we can reorder
1561 * operations into:
1562 *     return ((size * 85) >> 20) + 1;
1563 */
1564static unsigned int ice_txd_use_count(unsigned int size)
1565{
1566	return ((size * 85) >> 20) + 1;
1567}
1568
1569/**
1570 * ice_xmit_desc_count - calculate number of tx descriptors needed
1571 * @skb: send buffer
1572 *
1573 * Returns number of data descriptors needed for this skb.
1574 */
1575static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
1576{
1577	const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
1578	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
1579	unsigned int count = 0, size = skb_headlen(skb);
1580
1581	for (;;) {
1582		count += ice_txd_use_count(size);
1583
1584		if (!nr_frags--)
1585			break;
1586
1587		size = skb_frag_size(frag++);
1588	}
1589
1590	return count;
1591}
1592
1593/**
1594 * __ice_chk_linearize - Check if there are more than 8 buffers per packet
1595 * @skb: send buffer
1596 *
1597 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
1598 * and so we need to figure out the cases where we need to linearize the skb.
1599 *
1600 * For TSO we need to count the TSO header and segment payload separately.
1601 * As such we need to check cases where we have 7 fragments or more as we
1602 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
1603 * the segment payload in the first descriptor, and another 7 for the
1604 * fragments.
1605 */
1606static bool __ice_chk_linearize(struct sk_buff *skb)
1607{
1608	const struct skb_frag_struct *frag, *stale;
1609	int nr_frags, sum;
1610
1611	/* no need to check if number of frags is less than 7 */
1612	nr_frags = skb_shinfo(skb)->nr_frags;
1613	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
1614		return false;
1615
1616	/* We need to walk through the list and validate that each group
1617	 * of 6 fragments totals at least gso_size.
1618	 */
1619	nr_frags -= ICE_MAX_BUF_TXD - 2;
1620	frag = &skb_shinfo(skb)->frags[0];
1621
1622	/* Initialize size to the negative value of gso_size minus 1.  We
1623	 * use this as the worst case scenerio in which the frag ahead
1624	 * of us only provides one byte which is why we are limited to 6
1625	 * descriptors for a single transmit as the header and previous
1626	 * fragment are already consuming 2 descriptors.
1627	 */
1628	sum = 1 - skb_shinfo(skb)->gso_size;
1629
1630	/* Add size of frags 0 through 4 to create our initial sum */
1631	sum += skb_frag_size(frag++);
1632	sum += skb_frag_size(frag++);
1633	sum += skb_frag_size(frag++);
1634	sum += skb_frag_size(frag++);
1635	sum += skb_frag_size(frag++);
1636
1637	/* Walk through fragments adding latest fragment, testing it, and
1638	 * then removing stale fragments from the sum.
1639	 */
1640	stale = &skb_shinfo(skb)->frags[0];
1641	for (;;) {
 
1642		sum += skb_frag_size(frag++);
1643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1644		/* if sum is negative we failed to make sufficient progress */
1645		if (sum < 0)
1646			return true;
1647
1648		if (!nr_frags--)
1649			break;
1650
1651		sum -= skb_frag_size(stale++);
1652	}
1653
1654	return false;
1655}
1656
1657/**
1658 * ice_chk_linearize - Check if there are more than 8 fragments per packet
1659 * @skb:      send buffer
1660 * @count:    number of buffers used
1661 *
1662 * Note: Our HW can't scatter-gather more than 8 fragments to build
1663 * a packet on the wire and so we need to figure out the cases where we
1664 * need to linearize the skb.
1665 */
1666static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
1667{
1668	/* Both TSO and single send will work if count is less than 8 */
1669	if (likely(count < ICE_MAX_BUF_TXD))
1670		return false;
1671
1672	if (skb_is_gso(skb))
1673		return __ice_chk_linearize(skb);
1674
1675	/* we can support up to 8 data buffers for a single send */
1676	return count != ICE_MAX_BUF_TXD;
1677}
1678
1679/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1680 * ice_xmit_frame_ring - Sends buffer on Tx ring
1681 * @skb: send buffer
1682 * @tx_ring: ring to send buffer on
1683 *
1684 * Returns NETDEV_TX_OK if sent, else an error code
1685 */
1686static netdev_tx_t
1687ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
1688{
1689	struct ice_tx_offload_params offload = { 0 };
 
1690	struct ice_tx_buf *first;
 
1691	unsigned int count;
1692	int tso, csum;
1693
 
 
1694	count = ice_xmit_desc_count(skb);
1695	if (ice_chk_linearize(skb, count)) {
1696		if (__skb_linearize(skb))
1697			goto out_drop;
1698		count = ice_txd_use_count(skb->len);
1699		tx_ring->tx_stats.tx_linearize++;
1700	}
1701
1702	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
1703	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
1704	 *       + 4 desc gap to avoid the cache line where head is,
1705	 *       + 1 desc for context descriptor,
1706	 * otherwise try next time
1707	 */
1708	if (ice_maybe_stop_tx(tx_ring, count + 4 + 1)) {
 
1709		tx_ring->tx_stats.tx_busy++;
1710		return NETDEV_TX_BUSY;
1711	}
1712
1713	offload.tx_ring = tx_ring;
1714
1715	/* record the location of the first descriptor for this packet */
1716	first = &tx_ring->tx_buf[tx_ring->next_to_use];
1717	first->skb = skb;
1718	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1719	first->gso_segs = 1;
1720	first->tx_flags = 0;
1721
1722	/* prepare the VLAN tagging flags for Tx */
1723	if (ice_tx_prepare_vlan_flags(tx_ring, first))
1724		goto out_drop;
1725
1726	/* set up TSO offload */
1727	tso = ice_tso(first, &offload);
1728	if (tso < 0)
1729		goto out_drop;
1730
1731	/* always set up Tx checksum offload */
1732	csum = ice_tx_csum(first, &offload);
1733	if (csum < 0)
1734		goto out_drop;
1735
1736	if (tso || offload.cd_tunnel_params) {
 
 
 
 
 
 
 
 
 
 
 
 
1737		struct ice_tx_ctx_desc *cdesc;
1738		int i = tx_ring->next_to_use;
1739
1740		/* grab the next descriptor */
1741		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
1742		i++;
1743		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1744
1745		/* setup context descriptor */
1746		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
1747		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
1748		cdesc->rsvd = cpu_to_le16(0);
1749		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
1750	}
1751
1752	ice_tx_map(tx_ring, first, &offload);
1753	return NETDEV_TX_OK;
1754
1755out_drop:
 
1756	dev_kfree_skb_any(skb);
1757	return NETDEV_TX_OK;
1758}
1759
1760/**
1761 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
1762 * @skb: send buffer
1763 * @netdev: network interface device structure
1764 *
1765 * Returns NETDEV_TX_OK if sent, else an error code
1766 */
1767netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
1768{
1769	struct ice_netdev_priv *np = netdev_priv(netdev);
1770	struct ice_vsi *vsi = np->vsi;
1771	struct ice_ring *tx_ring;
1772
1773	tx_ring = vsi->tx_rings[skb->queue_mapping];
1774
1775	/* hardware can't handle really short frames, hardware padding works
1776	 * beyond this point
1777	 */
1778	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
1779		return NETDEV_TX_OK;
1780
1781	return ice_xmit_frame_ring(skb, tx_ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1782}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4/* The driver transmit and receive code */
   5
   6#include <linux/prefetch.h>
   7#include <linux/mm.h>
   8#include <linux/bpf_trace.h>
   9#include <net/xdp.h>
  10#include "ice_txrx_lib.h"
  11#include "ice_lib.h"
  12#include "ice.h"
  13#include "ice_trace.h"
  14#include "ice_dcb_lib.h"
  15#include "ice_xsk.h"
  16
  17#define ICE_RX_HDR_SIZE		256
  18
  19#define FDIR_DESC_RXDID 0x40
  20#define ICE_FDIR_CLEAN_DELAY 10
  21
  22/**
  23 * ice_prgm_fdir_fltr - Program a Flow Director filter
  24 * @vsi: VSI to send dummy packet
  25 * @fdir_desc: flow director descriptor
  26 * @raw_packet: allocated buffer for flow director
  27 */
  28int
  29ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
  30		   u8 *raw_packet)
  31{
  32	struct ice_tx_buf *tx_buf, *first;
  33	struct ice_fltr_desc *f_desc;
  34	struct ice_tx_desc *tx_desc;
  35	struct ice_ring *tx_ring;
  36	struct device *dev;
  37	dma_addr_t dma;
  38	u32 td_cmd;
  39	u16 i;
  40
  41	/* VSI and Tx ring */
  42	if (!vsi)
  43		return -ENOENT;
  44	tx_ring = vsi->tx_rings[0];
  45	if (!tx_ring || !tx_ring->desc)
  46		return -ENOENT;
  47	dev = tx_ring->dev;
  48
  49	/* we are using two descriptors to add/del a filter and we can wait */
  50	for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
  51		if (!i)
  52			return -EAGAIN;
  53		msleep_interruptible(1);
  54	}
  55
  56	dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
  57			     DMA_TO_DEVICE);
  58
  59	if (dma_mapping_error(dev, dma))
  60		return -EINVAL;
  61
  62	/* grab the next descriptor */
  63	i = tx_ring->next_to_use;
  64	first = &tx_ring->tx_buf[i];
  65	f_desc = ICE_TX_FDIRDESC(tx_ring, i);
  66	memcpy(f_desc, fdir_desc, sizeof(*f_desc));
  67
  68	i++;
  69	i = (i < tx_ring->count) ? i : 0;
  70	tx_desc = ICE_TX_DESC(tx_ring, i);
  71	tx_buf = &tx_ring->tx_buf[i];
  72
  73	i++;
  74	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  75
  76	memset(tx_buf, 0, sizeof(*tx_buf));
  77	dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
  78	dma_unmap_addr_set(tx_buf, dma, dma);
  79
  80	tx_desc->buf_addr = cpu_to_le64(dma);
  81	td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
  82		 ICE_TX_DESC_CMD_RE;
  83
  84	tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT;
  85	tx_buf->raw_buf = raw_packet;
  86
  87	tx_desc->cmd_type_offset_bsz =
  88		ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
  89
  90	/* Force memory write to complete before letting h/w know
  91	 * there are new descriptors to fetch.
  92	 */
  93	wmb();
  94
  95	/* mark the data descriptor to be watched */
  96	first->next_to_watch = tx_desc;
  97
  98	writel(tx_ring->next_to_use, tx_ring->tail);
  99
 100	return 0;
 101}
 102
 103/**
 104 * ice_unmap_and_free_tx_buf - Release a Tx buffer
 105 * @ring: the ring that owns the buffer
 106 * @tx_buf: the buffer to free
 107 */
 108static void
 109ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
 110{
 111	if (tx_buf->skb) {
 112		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
 113			devm_kfree(ring->dev, tx_buf->raw_buf);
 114		else if (ice_ring_is_xdp(ring))
 115			page_frag_free(tx_buf->raw_buf);
 116		else
 117			dev_kfree_skb_any(tx_buf->skb);
 118		if (dma_unmap_len(tx_buf, len))
 119			dma_unmap_single(ring->dev,
 120					 dma_unmap_addr(tx_buf, dma),
 121					 dma_unmap_len(tx_buf, len),
 122					 DMA_TO_DEVICE);
 123	} else if (dma_unmap_len(tx_buf, len)) {
 124		dma_unmap_page(ring->dev,
 125			       dma_unmap_addr(tx_buf, dma),
 126			       dma_unmap_len(tx_buf, len),
 127			       DMA_TO_DEVICE);
 128	}
 129
 130	tx_buf->next_to_watch = NULL;
 131	tx_buf->skb = NULL;
 132	dma_unmap_len_set(tx_buf, len, 0);
 133	/* tx_buf must be completely set up in the transmit path */
 134}
 135
 136static struct netdev_queue *txring_txq(const struct ice_ring *ring)
 137{
 138	return netdev_get_tx_queue(ring->netdev, ring->q_index);
 139}
 140
 141/**
 142 * ice_clean_tx_ring - Free any empty Tx buffers
 143 * @tx_ring: ring to be cleaned
 144 */
 145void ice_clean_tx_ring(struct ice_ring *tx_ring)
 146{
 
 147	u16 i;
 148
 149	if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
 150		ice_xsk_clean_xdp_ring(tx_ring);
 151		goto tx_skip_free;
 152	}
 153
 154	/* ring already cleared, nothing to do */
 155	if (!tx_ring->tx_buf)
 156		return;
 157
 158	/* Free all the Tx ring sk_buffs */
 159	for (i = 0; i < tx_ring->count; i++)
 160		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
 161
 162tx_skip_free:
 163	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
 164
 165	/* Zero out the descriptor ring */
 166	memset(tx_ring->desc, 0, tx_ring->size);
 167
 168	tx_ring->next_to_use = 0;
 169	tx_ring->next_to_clean = 0;
 170
 171	if (!tx_ring->netdev)
 172		return;
 173
 174	/* cleanup Tx queue statistics */
 175	netdev_tx_reset_queue(txring_txq(tx_ring));
 176}
 177
 178/**
 179 * ice_free_tx_ring - Free Tx resources per queue
 180 * @tx_ring: Tx descriptor ring for a specific queue
 181 *
 182 * Free all transmit software resources
 183 */
 184void ice_free_tx_ring(struct ice_ring *tx_ring)
 185{
 186	ice_clean_tx_ring(tx_ring);
 187	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
 188	tx_ring->tx_buf = NULL;
 189
 190	if (tx_ring->desc) {
 191		dmam_free_coherent(tx_ring->dev, tx_ring->size,
 192				   tx_ring->desc, tx_ring->dma);
 193		tx_ring->desc = NULL;
 194	}
 195}
 196
 197/**
 198 * ice_clean_tx_irq - Reclaim resources after transmit completes
 
 199 * @tx_ring: Tx ring to clean
 200 * @napi_budget: Used to determine if we are in netpoll
 201 *
 202 * Returns true if there's any budget left (e.g. the clean is finished)
 203 */
 204static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget)
 
 205{
 206	unsigned int total_bytes = 0, total_pkts = 0;
 207	unsigned int budget = ICE_DFLT_IRQ_WORK;
 208	struct ice_vsi *vsi = tx_ring->vsi;
 209	s16 i = tx_ring->next_to_clean;
 210	struct ice_tx_desc *tx_desc;
 211	struct ice_tx_buf *tx_buf;
 212
 213	tx_buf = &tx_ring->tx_buf[i];
 214	tx_desc = ICE_TX_DESC(tx_ring, i);
 215	i -= tx_ring->count;
 216
 217	prefetch(&vsi->state);
 218
 219	do {
 220		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
 221
 222		/* if next_to_watch is not set then there is no work pending */
 223		if (!eop_desc)
 224			break;
 225
 226		smp_rmb();	/* prevent any other reads prior to eop_desc */
 227
 228		ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 229		/* if the descriptor isn't done, no work yet to do */
 230		if (!(eop_desc->cmd_type_offset_bsz &
 231		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
 232			break;
 233
 234		/* clear next_to_watch to prevent false hangs */
 235		tx_buf->next_to_watch = NULL;
 236
 237		/* update the statistics for this packet */
 238		total_bytes += tx_buf->bytecount;
 239		total_pkts += tx_buf->gso_segs;
 240
 241		if (ice_ring_is_xdp(tx_ring))
 242			page_frag_free(tx_buf->raw_buf);
 243		else
 244			/* free the skb */
 245			napi_consume_skb(tx_buf->skb, napi_budget);
 246
 247		/* unmap skb header data */
 248		dma_unmap_single(tx_ring->dev,
 249				 dma_unmap_addr(tx_buf, dma),
 250				 dma_unmap_len(tx_buf, len),
 251				 DMA_TO_DEVICE);
 252
 253		/* clear tx_buf data */
 254		tx_buf->skb = NULL;
 255		dma_unmap_len_set(tx_buf, len, 0);
 256
 257		/* unmap remaining buffers */
 258		while (tx_desc != eop_desc) {
 259			ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf);
 260			tx_buf++;
 261			tx_desc++;
 262			i++;
 263			if (unlikely(!i)) {
 264				i -= tx_ring->count;
 265				tx_buf = tx_ring->tx_buf;
 266				tx_desc = ICE_TX_DESC(tx_ring, 0);
 267			}
 268
 269			/* unmap any remaining paged data */
 270			if (dma_unmap_len(tx_buf, len)) {
 271				dma_unmap_page(tx_ring->dev,
 272					       dma_unmap_addr(tx_buf, dma),
 273					       dma_unmap_len(tx_buf, len),
 274					       DMA_TO_DEVICE);
 275				dma_unmap_len_set(tx_buf, len, 0);
 276			}
 277		}
 278		ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf);
 279
 280		/* move us one more past the eop_desc for start of next pkt */
 281		tx_buf++;
 282		tx_desc++;
 283		i++;
 284		if (unlikely(!i)) {
 285			i -= tx_ring->count;
 286			tx_buf = tx_ring->tx_buf;
 287			tx_desc = ICE_TX_DESC(tx_ring, 0);
 288		}
 289
 290		prefetch(tx_desc);
 291
 292		/* update budget accounting */
 293		budget--;
 294	} while (likely(budget));
 295
 296	i += tx_ring->count;
 297	tx_ring->next_to_clean = i;
 298
 299	ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
 300
 301	if (ice_ring_is_xdp(tx_ring))
 302		return !!budget;
 
 303
 304	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
 305				  total_bytes);
 306
 307#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
 308	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
 309		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 310		/* Make sure that anybody stopping the queue after this
 311		 * sees the new next_to_clean.
 312		 */
 313		smp_mb();
 314		if (__netif_subqueue_stopped(tx_ring->netdev,
 315					     tx_ring->q_index) &&
 316		    !test_bit(ICE_VSI_DOWN, vsi->state)) {
 317			netif_wake_subqueue(tx_ring->netdev,
 318					    tx_ring->q_index);
 319			++tx_ring->tx_stats.restart_q;
 320		}
 321	}
 322
 323	return !!budget;
 324}
 325
 326/**
 327 * ice_setup_tx_ring - Allocate the Tx descriptors
 328 * @tx_ring: the Tx ring to set up
 329 *
 330 * Return 0 on success, negative on error
 331 */
 332int ice_setup_tx_ring(struct ice_ring *tx_ring)
 333{
 334	struct device *dev = tx_ring->dev;
 
 335
 336	if (!dev)
 337		return -ENOMEM;
 338
 339	/* warn if we are about to overwrite the pointer */
 340	WARN_ON(tx_ring->tx_buf);
 341	tx_ring->tx_buf =
 342		devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count,
 343			     GFP_KERNEL);
 344	if (!tx_ring->tx_buf)
 345		return -ENOMEM;
 346
 347	/* round up to nearest page */
 348	tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
 349			      PAGE_SIZE);
 350	tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
 351					    GFP_KERNEL);
 352	if (!tx_ring->desc) {
 353		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
 354			tx_ring->size);
 355		goto err;
 356	}
 357
 358	tx_ring->next_to_use = 0;
 359	tx_ring->next_to_clean = 0;
 360	tx_ring->tx_stats.prev_pkt = -1;
 361	return 0;
 362
 363err:
 364	devm_kfree(dev, tx_ring->tx_buf);
 365	tx_ring->tx_buf = NULL;
 366	return -ENOMEM;
 367}
 368
 369/**
 370 * ice_clean_rx_ring - Free Rx buffers
 371 * @rx_ring: ring to be cleaned
 372 */
 373void ice_clean_rx_ring(struct ice_ring *rx_ring)
 374{
 375	struct device *dev = rx_ring->dev;
 
 376	u16 i;
 377
 378	/* ring already cleared, nothing to do */
 379	if (!rx_ring->rx_buf)
 380		return;
 381
 382	if (rx_ring->skb) {
 383		dev_kfree_skb(rx_ring->skb);
 384		rx_ring->skb = NULL;
 385	}
 386
 387	if (rx_ring->xsk_pool) {
 388		ice_xsk_clean_rx_ring(rx_ring);
 389		goto rx_skip_free;
 390	}
 391
 392	/* Free all the Rx ring sk_buffs */
 393	for (i = 0; i < rx_ring->count; i++) {
 394		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
 395
 
 
 
 
 396		if (!rx_buf->page)
 397			continue;
 398
 399		/* Invalidate cache lines that may have been written to by
 400		 * device so that we avoid corrupting memory.
 401		 */
 402		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
 403					      rx_buf->page_offset,
 404					      rx_ring->rx_buf_len,
 405					      DMA_FROM_DEVICE);
 406
 407		/* free resources associated with mapping */
 408		dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
 409				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
 410		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
 411
 412		rx_buf->page = NULL;
 413		rx_buf->page_offset = 0;
 414	}
 415
 416rx_skip_free:
 417	memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count);
 418
 419	/* Zero out the descriptor ring */
 420	memset(rx_ring->desc, 0, rx_ring->size);
 421
 422	rx_ring->next_to_alloc = 0;
 423	rx_ring->next_to_clean = 0;
 424	rx_ring->next_to_use = 0;
 425}
 426
 427/**
 428 * ice_free_rx_ring - Free Rx resources
 429 * @rx_ring: ring to clean the resources from
 430 *
 431 * Free all receive software resources
 432 */
 433void ice_free_rx_ring(struct ice_ring *rx_ring)
 434{
 435	ice_clean_rx_ring(rx_ring);
 436	if (rx_ring->vsi->type == ICE_VSI_PF)
 437		if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
 438			xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
 439	rx_ring->xdp_prog = NULL;
 440	devm_kfree(rx_ring->dev, rx_ring->rx_buf);
 441	rx_ring->rx_buf = NULL;
 442
 443	if (rx_ring->desc) {
 444		dmam_free_coherent(rx_ring->dev, rx_ring->size,
 445				   rx_ring->desc, rx_ring->dma);
 446		rx_ring->desc = NULL;
 447	}
 448}
 449
 450/**
 451 * ice_setup_rx_ring - Allocate the Rx descriptors
 452 * @rx_ring: the Rx ring to set up
 453 *
 454 * Return 0 on success, negative on error
 455 */
 456int ice_setup_rx_ring(struct ice_ring *rx_ring)
 457{
 458	struct device *dev = rx_ring->dev;
 
 459
 460	if (!dev)
 461		return -ENOMEM;
 462
 463	/* warn if we are about to overwrite the pointer */
 464	WARN_ON(rx_ring->rx_buf);
 465	rx_ring->rx_buf =
 466		devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count,
 467			     GFP_KERNEL);
 468	if (!rx_ring->rx_buf)
 469		return -ENOMEM;
 470
 471	/* round up to nearest page */
 472	rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
 473			      PAGE_SIZE);
 474	rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
 475					    GFP_KERNEL);
 476	if (!rx_ring->desc) {
 477		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
 478			rx_ring->size);
 479		goto err;
 480	}
 481
 482	rx_ring->next_to_use = 0;
 483	rx_ring->next_to_clean = 0;
 484
 485	if (ice_is_xdp_ena_vsi(rx_ring->vsi))
 486		WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
 487
 488	if (rx_ring->vsi->type == ICE_VSI_PF &&
 489	    !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
 490		if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
 491				     rx_ring->q_index, rx_ring->q_vector->napi.napi_id))
 492			goto err;
 493	return 0;
 494
 495err:
 496	devm_kfree(dev, rx_ring->rx_buf);
 497	rx_ring->rx_buf = NULL;
 498	return -ENOMEM;
 499}
 500
 501static unsigned int
 502ice_rx_frame_truesize(struct ice_ring *rx_ring, unsigned int __maybe_unused size)
 503{
 504	unsigned int truesize;
 505
 506#if (PAGE_SIZE < 8192)
 507	truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
 508#else
 509	truesize = rx_ring->rx_offset ?
 510		SKB_DATA_ALIGN(rx_ring->rx_offset + size) +
 511		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
 512		SKB_DATA_ALIGN(size);
 513#endif
 514	return truesize;
 515}
 516
 517/**
 518 * ice_run_xdp - Executes an XDP program on initialized xdp_buff
 519 * @rx_ring: Rx ring
 520 * @xdp: xdp_buff used as input to the XDP program
 521 * @xdp_prog: XDP program to run
 522 *
 523 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
 524 */
 525static int
 526ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp,
 527	    struct bpf_prog *xdp_prog)
 528{
 529	struct ice_ring *xdp_ring;
 530	int err, result;
 531	u32 act;
 532
 533	act = bpf_prog_run_xdp(xdp_prog, xdp);
 534	switch (act) {
 535	case XDP_PASS:
 536		return ICE_XDP_PASS;
 537	case XDP_TX:
 538		xdp_ring = rx_ring->vsi->xdp_rings[smp_processor_id()];
 539		result = ice_xmit_xdp_buff(xdp, xdp_ring);
 540		if (result == ICE_XDP_CONSUMED)
 541			goto out_failure;
 542		return result;
 543	case XDP_REDIRECT:
 544		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
 545		if (err)
 546			goto out_failure;
 547		return ICE_XDP_REDIR;
 548	default:
 549		bpf_warn_invalid_xdp_action(act);
 550		fallthrough;
 551	case XDP_ABORTED:
 552out_failure:
 553		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
 554		fallthrough;
 555	case XDP_DROP:
 556		return ICE_XDP_CONSUMED;
 557	}
 558}
 559
 560/**
 561 * ice_xdp_xmit - submit packets to XDP ring for transmission
 562 * @dev: netdev
 563 * @n: number of XDP frames to be transmitted
 564 * @frames: XDP frames to be transmitted
 565 * @flags: transmit flags
 566 *
 567 * Returns number of frames successfully sent. Failed frames
 568 * will be free'ed by XDP core.
 569 * For error cases, a negative errno code is returned and no-frames
 570 * are transmitted (caller must handle freeing frames).
 571 */
 572int
 573ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
 574	     u32 flags)
 575{
 576	struct ice_netdev_priv *np = netdev_priv(dev);
 577	unsigned int queue_index = smp_processor_id();
 578	struct ice_vsi *vsi = np->vsi;
 579	struct ice_ring *xdp_ring;
 580	int nxmit = 0, i;
 581
 582	if (test_bit(ICE_VSI_DOWN, vsi->state))
 583		return -ENETDOWN;
 584
 585	if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq)
 586		return -ENXIO;
 587
 588	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
 589		return -EINVAL;
 590
 591	xdp_ring = vsi->xdp_rings[queue_index];
 592	for (i = 0; i < n; i++) {
 593		struct xdp_frame *xdpf = frames[i];
 594		int err;
 595
 596		err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
 597		if (err != ICE_XDP_TX)
 598			break;
 599		nxmit++;
 600	}
 601
 602	if (unlikely(flags & XDP_XMIT_FLUSH))
 603		ice_xdp_ring_update_tail(xdp_ring);
 604
 605	return nxmit;
 606}
 607
 608/**
 609 * ice_alloc_mapped_page - recycle or make a new page
 610 * @rx_ring: ring to use
 611 * @bi: rx_buf struct to modify
 612 *
 613 * Returns true if the page was successfully allocated or
 614 * reused.
 615 */
 616static bool
 617ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi)
 618{
 619	struct page *page = bi->page;
 620	dma_addr_t dma;
 621
 622	/* since we are recycling buffers we should seldom need to alloc */
 623	if (likely(page))
 
 624		return true;
 
 625
 626	/* alloc new page for storage */
 627	page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
 628	if (unlikely(!page)) {
 629		rx_ring->rx_stats.alloc_page_failed++;
 630		return false;
 631	}
 632
 633	/* map page for use */
 634	dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
 635				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
 636
 637	/* if mapping failed free memory back to system since
 638	 * there isn't much point in holding memory we can't use
 639	 */
 640	if (dma_mapping_error(rx_ring->dev, dma)) {
 641		__free_pages(page, ice_rx_pg_order(rx_ring));
 642		rx_ring->rx_stats.alloc_page_failed++;
 643		return false;
 644	}
 645
 646	bi->dma = dma;
 647	bi->page = page;
 648	bi->page_offset = rx_ring->rx_offset;
 649	page_ref_add(page, USHRT_MAX - 1);
 650	bi->pagecnt_bias = USHRT_MAX;
 651
 652	return true;
 653}
 654
 655/**
 656 * ice_alloc_rx_bufs - Replace used receive buffers
 657 * @rx_ring: ring to place buffers on
 658 * @cleaned_count: number of buffers to replace
 659 *
 660 * Returns false if all allocations were successful, true if any fail. Returning
 661 * true signals to the caller that we didn't replace cleaned_count buffers and
 662 * there is more work to do.
 663 *
 664 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
 665 * buffers. Then bump tail at most one time. Grouping like this lets us avoid
 666 * multiple tail writes per call.
 667 */
 668bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
 669{
 670	union ice_32b_rx_flex_desc *rx_desc;
 671	u16 ntu = rx_ring->next_to_use;
 672	struct ice_rx_buf *bi;
 673
 674	/* do nothing if no valid netdev defined */
 675	if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) ||
 676	    !cleaned_count)
 677		return false;
 678
 679	/* get the Rx descriptor and buffer based on next_to_use */
 680	rx_desc = ICE_RX_DESC(rx_ring, ntu);
 681	bi = &rx_ring->rx_buf[ntu];
 682
 683	do {
 684		/* if we fail here, we have work remaining */
 685		if (!ice_alloc_mapped_page(rx_ring, bi))
 686			break;
 687
 688		/* sync the buffer for use by the device */
 689		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
 690						 bi->page_offset,
 691						 rx_ring->rx_buf_len,
 692						 DMA_FROM_DEVICE);
 693
 694		/* Refresh the desc even if buffer_addrs didn't change
 695		 * because each write-back erases this info.
 696		 */
 697		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 698
 699		rx_desc++;
 700		bi++;
 701		ntu++;
 702		if (unlikely(ntu == rx_ring->count)) {
 703			rx_desc = ICE_RX_DESC(rx_ring, 0);
 704			bi = rx_ring->rx_buf;
 705			ntu = 0;
 706		}
 707
 708		/* clear the status bits for the next_to_use descriptor */
 709		rx_desc->wb.status_error0 = 0;
 710
 711		cleaned_count--;
 712	} while (cleaned_count);
 713
 714	if (rx_ring->next_to_use != ntu)
 715		ice_release_rx_desc(rx_ring, ntu);
 716
 717	return !!cleaned_count;
 
 
 
 
 
 
 
 
 
 718}
 719
 720/**
 721 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
 722 * @rx_buf: Rx buffer to adjust
 723 * @size: Size of adjustment
 724 *
 725 * Update the offset within page so that Rx buf will be ready to be reused.
 726 * For systems with PAGE_SIZE < 8192 this function will flip the page offset
 727 * so the second half of page assigned to Rx buffer will be used, otherwise
 728 * the offset is moved by "size" bytes
 729 */
 730static void
 731ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
 732{
 733#if (PAGE_SIZE < 8192)
 734	/* flip page offset to other buffer */
 735	rx_buf->page_offset ^= size;
 736#else
 737	/* move offset up to the next cache line */
 738	rx_buf->page_offset += size;
 739#endif
 740}
 741
 742/**
 743 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
 744 * @rx_buf: buffer containing the page
 745 * @rx_buf_pgcnt: rx_buf page refcount pre xdp_do_redirect() call
 
 746 *
 747 * If page is reusable, we have a green light for calling ice_reuse_rx_page,
 748 * which will assign the current buffer to the buffer that next_to_alloc is
 749 * pointing to; otherwise, the DMA mapping needs to be destroyed and
 750 * page freed
 751 */
 752static bool
 753ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf, int rx_buf_pgcnt)
 
 
 
 
 754{
 755	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
 756	struct page *page = rx_buf->page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 757
 758	/* avoid re-using remote and pfmemalloc pages */
 759	if (!dev_page_is_reusable(page))
 
 
 
 
 
 
 
 
 760		return false;
 761
 762#if (PAGE_SIZE < 8192)
 763	/* if we are only owner of page we can reuse it */
 764	if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
 765		return false;
 
 
 
 766#else
 767#define ICE_LAST_OFFSET \
 768	(SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048)
 769	if (rx_buf->page_offset > ICE_LAST_OFFSET)
 
 770		return false;
 771#endif /* PAGE_SIZE < 8192) */
 772
 773	/* If we have drained the page fragment pool we need to update
 774	 * the pagecnt_bias and page count so that we fully restock the
 775	 * number of references the driver holds.
 776	 */
 777	if (unlikely(pagecnt_bias == 1)) {
 778		page_ref_add(page, USHRT_MAX - 1);
 779		rx_buf->pagecnt_bias = USHRT_MAX;
 780	}
 781
 782	return true;
 783}
 784
 785/**
 786 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
 787 * @rx_ring: Rx descriptor ring to transact packets on
 788 * @rx_buf: buffer containing page to add
 789 * @skb: sk_buff to place the data into
 790 * @size: packet length from rx_desc
 791 *
 792 * This function will add the data contained in rx_buf->page to the skb.
 793 * It will just attach the page as a frag to the skb.
 794 * The function will then update the page offset.
 795 */
 796static void
 797ice_add_rx_frag(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
 798		struct sk_buff *skb, unsigned int size)
 799{
 800#if (PAGE_SIZE >= 8192)
 801	unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset);
 802#else
 803	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
 804#endif
 805
 806	if (!size)
 807		return;
 808	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
 809			rx_buf->page_offset, size, truesize);
 810
 811	/* page is being used so we must update the page offset */
 812	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
 813}
 814
 815/**
 816 * ice_reuse_rx_page - page flip buffer and store it back on the ring
 817 * @rx_ring: Rx descriptor ring to store buffers on
 818 * @old_buf: donor buffer to have page reused
 819 *
 820 * Synchronizes page for reuse by the adapter
 821 */
 822static void
 823ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
 824{
 825	u16 nta = rx_ring->next_to_alloc;
 826	struct ice_rx_buf *new_buf;
 827
 828	new_buf = &rx_ring->rx_buf[nta];
 829
 830	/* update, and store next to alloc */
 831	nta++;
 832	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 833
 834	/* Transfer page from old buffer to new buffer.
 835	 * Move each member individually to avoid possible store
 836	 * forwarding stalls and unnecessary copy of skb.
 837	 */
 838	new_buf->dma = old_buf->dma;
 839	new_buf->page = old_buf->page;
 840	new_buf->page_offset = old_buf->page_offset;
 841	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
 842}
 843
 844/**
 845 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
 846 * @rx_ring: Rx descriptor ring to transact packets on
 847 * @size: size of buffer to add to skb
 848 * @rx_buf_pgcnt: rx_buf page refcount
 849 *
 850 * This function will pull an Rx buffer from the ring and synchronize it
 851 * for use by the CPU.
 
 
 852 */
 853static struct ice_rx_buf *
 854ice_get_rx_buf(struct ice_ring *rx_ring, const unsigned int size,
 855	       int *rx_buf_pgcnt)
 856{
 857	struct ice_rx_buf *rx_buf;
 
 
 858
 859	rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
 860	*rx_buf_pgcnt =
 861#if (PAGE_SIZE < 8192)
 862		page_count(rx_buf->page);
 863#else
 864		0;
 865#endif
 866	prefetchw(rx_buf->page);
 867
 868	if (!size)
 869		return rx_buf;
 870	/* we are reusing so sync this buffer for CPU use */
 871	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
 872				      rx_buf->page_offset, size,
 873				      DMA_FROM_DEVICE);
 
 
 
 
 
 
 
 
 874
 875	/* We have pulled a buffer for use, so decrement pagecnt_bias */
 876	rx_buf->pagecnt_bias--;
 
 
 
 877
 878	return rx_buf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 879}
 880
 881/**
 882 * ice_build_skb - Build skb around an existing buffer
 883 * @rx_ring: Rx descriptor ring to transact packets on
 884 * @rx_buf: Rx buffer to pull data from
 885 * @xdp: xdp_buff pointing to the data
 886 *
 887 * This function builds an skb around an existing Rx buffer, taking care
 888 * to set up the skb correctly and avoid any memcpy overhead.
 889 */
 890static struct sk_buff *
 891ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
 892	      struct xdp_buff *xdp)
 893{
 894	u8 metasize = xdp->data - xdp->data_meta;
 895#if (PAGE_SIZE < 8192)
 896	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
 897#else
 898	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
 899				SKB_DATA_ALIGN(xdp->data_end -
 900					       xdp->data_hard_start);
 901#endif
 902	struct sk_buff *skb;
 
 
 903
 904	/* Prefetch first cache line of first page. If xdp->data_meta
 905	 * is unused, this points exactly as xdp->data, otherwise we
 906	 * likely have a consumer accessing first few bytes of meta
 907	 * data, and then actual data.
 908	 */
 909	net_prefetch(xdp->data_meta);
 910	/* build an skb around the page buffer */
 911	skb = build_skb(xdp->data_hard_start, truesize);
 912	if (unlikely(!skb))
 913		return NULL;
 914
 915	/* must to record Rx queue, otherwise OS features such as
 916	 * symmetric queue won't work
 917	 */
 918	skb_record_rx_queue(skb, rx_ring->q_index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 919
 920	/* update pointers within the skb to store the data */
 921	skb_reserve(skb, xdp->data - xdp->data_hard_start);
 922	__skb_put(skb, xdp->data_end - xdp->data);
 923	if (metasize)
 924		skb_metadata_set(skb, metasize);
 925
 926	/* buffer is used by skb, update page_offset */
 927	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
 928
 929	return skb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 930}
 931
 932/**
 933 * ice_construct_skb - Allocate skb and populate it
 934 * @rx_ring: Rx descriptor ring to transact packets on
 935 * @rx_buf: Rx buffer to pull data from
 936 * @xdp: xdp_buff pointing to the data
 937 *
 938 * This function allocates an skb. It then populates it with the page
 939 * data from the current receive descriptor, taking care to set up the
 940 * skb correctly.
 941 */
 942static struct sk_buff *
 943ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
 944		  struct xdp_buff *xdp)
 
 945{
 946	unsigned int size = xdp->data_end - xdp->data;
 947	unsigned int headlen;
 948	struct sk_buff *skb;
 
 
 949
 950	/* prefetch first cache line of first page */
 951	net_prefetch(xdp->data);
 952
 953	/* allocate a skb to store the frags */
 954	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
 955			       GFP_ATOMIC | __GFP_NOWARN);
 956	if (unlikely(!skb))
 957		return NULL;
 958
 959	skb_record_rx_queue(skb, rx_ring->q_index);
 960	/* Determine available headroom for copy */
 961	headlen = size;
 962	if (headlen > ICE_RX_HDR_SIZE)
 963		headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
 964
 965	/* align pull length to size of long to optimize memcpy performance */
 966	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
 967							 sizeof(long)));
 968
 969	/* if we exhaust the linear part then add what is left as a frag */
 970	size -= headlen;
 971	if (size) {
 972#if (PAGE_SIZE >= 8192)
 973		unsigned int truesize = SKB_DATA_ALIGN(size);
 974#else
 975		unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
 976#endif
 977		skb_add_rx_frag(skb, 0, rx_buf->page,
 978				rx_buf->page_offset + headlen, size, truesize);
 979		/* buffer is used by skb, update page_offset */
 980		ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
 981	} else {
 982		/* buffer is unused, reset bias back to rx_buf; data was copied
 983		 * onto skb's linear part so there's no need for adjusting
 984		 * page offset and we can reuse this buffer as-is
 985		 */
 986		rx_buf->pagecnt_bias++;
 987	}
 988
 989	return skb;
 
 
 
 
 
 
 
 
 990}
 991
 992/**
 993 * ice_put_rx_buf - Clean up used buffer and either recycle or free
 994 * @rx_ring: Rx descriptor ring to transact packets on
 995 * @rx_buf: Rx buffer to pull data from
 996 * @rx_buf_pgcnt: Rx buffer page count pre xdp_do_redirect()
 997 *
 998 * This function will update next_to_clean and then clean up the contents
 999 * of the rx_buf. It will either recycle the buffer or unmap it and free
1000 * the associated resources.
1001 */
1002static void
1003ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
1004	       int rx_buf_pgcnt)
1005{
1006	u16 ntc = rx_ring->next_to_clean + 1;
 
1007
1008	/* fetch, update, and store next to clean */
1009	ntc = (ntc < rx_ring->count) ? ntc : 0;
1010	rx_ring->next_to_clean = ntc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1011
1012	if (!rx_buf)
1013		return;
1014
1015	if (ice_can_reuse_rx_page(rx_buf, rx_buf_pgcnt)) {
1016		/* hand second half of page back to the ring */
1017		ice_reuse_rx_page(rx_ring, rx_buf);
1018	} else {
1019		/* we are not reusing the buffer so unmap it */
1020		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
1021				     ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1022				     ICE_RX_DMA_ATTR);
1023		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1024	}
 
1025
1026	/* clear contents of buffer_info */
1027	rx_buf->page = NULL;
1028}
1029
1030/**
1031 * ice_is_non_eop - process handling of non-EOP buffers
1032 * @rx_ring: Rx ring being processed
1033 * @rx_desc: Rx descriptor for current buffer
 
 
1034 *
1035 * If the buffer is an EOP buffer, this function exits returning false,
1036 * otherwise return true indicating that this is in fact a non-EOP buffer.
 
1037 */
1038static bool
1039ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc)
 
1040{
1041	/* if we are the last buffer then there is nothing else to do */
1042#define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
1043	if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
1044		return false;
1045
1046	rx_ring->rx_stats.non_eop_descs++;
 
1047
1048	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1049}
1050
1051/**
1052 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1053 * @rx_ring: Rx descriptor ring to transact packets on
1054 * @budget: Total limit on number of packets to process
1055 *
1056 * This function provides a "bounce buffer" approach to Rx interrupt
1057 * processing. The advantage to this is that on systems that have
1058 * expensive overhead for IOMMU access this provides a means of avoiding
1059 * it by maintaining the mapping of the page to the system.
1060 *
1061 * Returns amount of work completed
1062 */
1063int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
1064{
1065	unsigned int total_rx_bytes = 0, total_rx_pkts = 0, frame_sz = 0;
1066	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
1067	unsigned int offset = rx_ring->rx_offset;
1068	unsigned int xdp_res, xdp_xmit = 0;
1069	struct sk_buff *skb = rx_ring->skb;
1070	struct bpf_prog *xdp_prog = NULL;
1071	struct xdp_buff xdp;
1072	bool failure;
1073
1074	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
1075#if (PAGE_SIZE < 8192)
1076	frame_sz = ice_rx_frame_truesize(rx_ring, 0);
1077#endif
1078	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
1079
1080	/* start the loop to process Rx packets bounded by 'budget' */
1081	while (likely(total_rx_pkts < (unsigned int)budget)) {
1082		union ice_32b_rx_flex_desc *rx_desc;
1083		struct ice_rx_buf *rx_buf;
1084		unsigned char *hard_start;
1085		unsigned int size;
1086		u16 stat_err_bits;
1087		int rx_buf_pgcnt;
1088		u16 vlan_tag = 0;
1089		u16 rx_ptype;
 
 
 
 
 
 
 
1090
1091		/* get the Rx desc from Rx ring based on 'next_to_clean' */
1092		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
1093
1094		/* status_error_len will always be zero for unused descriptors
1095		 * because it's cleared in cleanup, and overlaps with hdr_addr
1096		 * which is always zero because packet split isn't used, if the
1097		 * hardware wrote DD then it will be non-zero
1098		 */
1099		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1100		if (!ice_test_staterr(rx_desc, stat_err_bits))
1101			break;
1102
1103		/* This memory barrier is needed to keep us from reading
1104		 * any other fields out of the rx_desc until we know the
1105		 * DD bit is set.
1106		 */
1107		dma_rmb();
1108
1109		ice_trace(clean_rx_irq, rx_ring, rx_desc);
1110		if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) {
1111			struct ice_vsi *ctrl_vsi = rx_ring->vsi;
1112
1113			if (rx_desc->wb.rxdid == FDIR_DESC_RXDID &&
1114			    ctrl_vsi->vf_id != ICE_INVAL_VFID)
1115				ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc);
1116			ice_put_rx_buf(rx_ring, NULL, 0);
1117			cleaned_count++;
1118			continue;
1119		}
1120
1121		size = le16_to_cpu(rx_desc->wb.pkt_len) &
1122			ICE_RX_FLX_DESC_PKT_LEN_M;
1123
1124		/* retrieve a buffer from the ring */
1125		rx_buf = ice_get_rx_buf(rx_ring, size, &rx_buf_pgcnt);
1126
1127		if (!size) {
1128			xdp.data = NULL;
1129			xdp.data_end = NULL;
1130			xdp.data_hard_start = NULL;
1131			xdp.data_meta = NULL;
1132			goto construct_skb;
1133		}
1134
1135		hard_start = page_address(rx_buf->page) + rx_buf->page_offset -
1136			     offset;
1137		xdp_prepare_buff(&xdp, hard_start, offset, size, true);
1138#if (PAGE_SIZE > 4096)
1139		/* At larger PAGE_SIZE, frame_sz depend on len size */
1140		xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size);
1141#endif
1142
1143		xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1144		if (!xdp_prog)
1145			goto construct_skb;
1146
1147		xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog);
1148		if (!xdp_res)
1149			goto construct_skb;
1150		if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
1151			xdp_xmit |= xdp_res;
1152			ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz);
1153		} else {
1154			rx_buf->pagecnt_bias++;
1155		}
1156		total_rx_bytes += size;
1157		total_rx_pkts++;
1158
1159		cleaned_count++;
1160		ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
1161		continue;
1162construct_skb:
1163		if (skb) {
1164			ice_add_rx_frag(rx_ring, rx_buf, skb, size);
1165		} else if (likely(xdp.data)) {
1166			if (ice_ring_uses_build_skb(rx_ring))
1167				skb = ice_build_skb(rx_ring, rx_buf, &xdp);
1168			else
1169				skb = ice_construct_skb(rx_ring, rx_buf, &xdp);
1170		}
1171		/* exit if we failed to retrieve a buffer */
1172		if (!skb) {
1173			rx_ring->rx_stats.alloc_buf_failed++;
1174			if (rx_buf)
1175				rx_buf->pagecnt_bias++;
1176			break;
1177		}
1178
1179		ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
1180		cleaned_count++;
1181
1182		/* skip if it is NOP desc */
1183		if (ice_is_non_eop(rx_ring, rx_desc))
1184			continue;
1185
1186		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1187		if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
1188			dev_kfree_skb_any(skb);
1189			continue;
1190		}
1191
 
 
 
1192		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
1193		if (ice_test_staterr(rx_desc, stat_err_bits))
1194			vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
1195
1196		/* pad the skb if needed, to make a valid ethernet frame */
1197		if (eth_skb_pad(skb)) {
 
 
1198			skb = NULL;
1199			continue;
1200		}
1201
1202		/* probably a little skewed due to removing CRC */
1203		total_rx_bytes += skb->len;
1204
1205		/* populate checksum, VLAN, and protocol */
1206		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1207			ICE_RX_FLEX_DESC_PTYPE_M;
1208
1209		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1210
1211		ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb);
1212		/* send completed skb up the stack */
1213		ice_receive_skb(rx_ring, skb, vlan_tag);
1214		skb = NULL;
1215
1216		/* update budget accounting */
1217		total_rx_pkts++;
1218	}
1219
1220	/* return up to cleaned_count buffers to hardware */
1221	failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);
1222
1223	if (xdp_prog)
1224		ice_finalize_xdp_rx(rx_ring, xdp_xmit);
1225	rx_ring->skb = skb;
1226
1227	ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes);
1228
1229	/* guarantee a trip back through this routine if there was a failure */
1230	return failure ? budget : (int)total_rx_pkts;
1231}
1232
1233/**
1234 * ice_net_dim - Update net DIM algorithm
1235 * @q_vector: the vector associated with the interrupt
1236 *
1237 * Create a DIM sample and notify net_dim() so that it can possibly decide
1238 * a new ITR value based on incoming packets, bytes, and interrupts.
1239 *
1240 * This function is a no-op if the ring is not configured to dynamic ITR.
1241 */
1242static void ice_net_dim(struct ice_q_vector *q_vector)
1243{
1244	struct ice_ring_container *tx = &q_vector->tx;
1245	struct ice_ring_container *rx = &q_vector->rx;
1246
1247	if (ITR_IS_DYNAMIC(tx)) {
1248		struct dim_sample dim_sample = {};
1249		u64 packets = 0, bytes = 0;
1250		struct ice_ring *ring;
1251
1252		ice_for_each_ring(ring, q_vector->tx) {
1253			packets += ring->stats.pkts;
1254			bytes += ring->stats.bytes;
1255		}
1256
1257		dim_update_sample(q_vector->total_events, packets, bytes,
1258				  &dim_sample);
1259
1260		net_dim(&tx->dim, dim_sample);
1261	}
1262
1263	if (ITR_IS_DYNAMIC(rx)) {
1264		struct dim_sample dim_sample = {};
1265		u64 packets = 0, bytes = 0;
1266		struct ice_ring *ring;
1267
1268		ice_for_each_ring(ring, q_vector->rx) {
1269			packets += ring->stats.pkts;
1270			bytes += ring->stats.bytes;
1271		}
1272
1273		dim_update_sample(q_vector->total_events, packets, bytes,
1274				  &dim_sample);
1275
1276		net_dim(&rx->dim, dim_sample);
1277	}
1278}
1279
1280/**
1281 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1282 * @itr_idx: interrupt throttling index
1283 * @itr: interrupt throttling value in usecs
1284 */
1285static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1286{
1287	/* The ITR value is reported in microseconds, and the register value is
1288	 * recorded in 2 microsecond units. For this reason we only need to
1289	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1290	 * granularity as a shift instead of division. The mask makes sure the
1291	 * ITR value is never odd so we don't accidentally write into the field
1292	 * prior to the ITR field.
1293	 */
1294	itr &= ICE_ITR_MASK;
1295
1296	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1297		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1298		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1299}
1300
1301/**
1302 * ice_update_ena_itr - Update ITR moderation and re-enable MSI-X interrupt
1303 * @q_vector: the vector associated with the interrupt to enable
1304 *
1305 * Update the net_dim() algorithm and re-enable the interrupt associated with
1306 * this vector.
1307 *
1308 * If the VSI is down, the interrupt will not be re-enabled.
1309 */
1310static void ice_update_ena_itr(struct ice_q_vector *q_vector)
1311{
1312	struct ice_vsi *vsi = q_vector->vsi;
1313	bool wb_en = q_vector->wb_on_itr;
1314	u32 itr_val;
1315
1316	if (test_bit(ICE_DOWN, vsi->state))
1317		return;
1318
1319	/* When exiting WB_ON_ITR, let ITR resume its normal
1320	 * interrupts-enabled path.
1321	 */
1322	if (wb_en)
1323		q_vector->wb_on_itr = false;
1324
1325	/* This will do nothing if dynamic updates are not enabled. */
1326	ice_net_dim(q_vector);
1327
1328	/* net_dim() updates ITR out-of-band using a work item */
1329	itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1330	/* trigger an immediate software interrupt when exiting
1331	 * busy poll, to make sure to catch any pending cleanups
1332	 * that might have been missed due to interrupt state
1333	 * transition.
1334	 */
1335	if (wb_en) {
1336		itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M |
1337			   GLINT_DYN_CTL_SW_ITR_INDX_M |
1338			   GLINT_DYN_CTL_SW_ITR_INDX_ENA_M;
1339	}
1340	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1341}
1342
1343/**
1344 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1345 * @q_vector: q_vector to set WB_ON_ITR on
1346 *
1347 * We need to tell hardware to write-back completed descriptors even when
1348 * interrupts are disabled. Descriptors will be written back on cache line
1349 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1350 * descriptors may not be written back if they don't fill a cache line until
1351 * the next interrupt.
1352 *
1353 * This sets the write-back frequency to whatever was set previously for the
1354 * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we
1355 * aren't meddling with the INTENA_M bit.
1356 */
1357static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1358{
1359	struct ice_vsi *vsi = q_vector->vsi;
1360
1361	/* already in wb_on_itr mode no need to change it */
1362	if (q_vector->wb_on_itr)
1363		return;
1364
1365	/* use previously set ITR values for all of the ITR indices by
1366	 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and
1367	 * be static in non-adaptive mode (user configured)
1368	 */
1369	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1370	     ((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) &
1371	      GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M |
1372	     GLINT_DYN_CTL_WB_ON_ITR_M);
1373
1374	q_vector->wb_on_itr = true;
1375}
1376
1377/**
1378 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1379 * @napi: napi struct with our devices info in it
1380 * @budget: amount of work driver is allowed to do this pass, in packets
1381 *
1382 * This function will clean all queues associated with a q_vector.
1383 *
1384 * Returns the amount of work done
1385 */
1386int ice_napi_poll(struct napi_struct *napi, int budget)
1387{
1388	struct ice_q_vector *q_vector =
1389				container_of(napi, struct ice_q_vector, napi);
 
 
1390	bool clean_complete = true;
 
1391	struct ice_ring *ring;
1392	int budget_per_ring;
1393	int work_done = 0;
1394
1395	/* Since the actual Tx work is minimal, we can give the Tx a larger
1396	 * budget and be more aggressive about cleaning up the Tx descriptors.
1397	 */
1398	ice_for_each_ring(ring, q_vector->tx) {
1399		bool wd = ring->xsk_pool ?
1400			  ice_clean_tx_irq_zc(ring, budget) :
1401			  ice_clean_tx_irq(ring, budget);
1402
1403		if (!wd)
1404			clean_complete = false;
1405	}
1406
1407	/* Handle case where we are called by netpoll with a budget of 0 */
1408	if (unlikely(budget <= 0))
1409		return budget;
1410
1411	/* normally we have 1 Rx ring per q_vector */
1412	if (unlikely(q_vector->num_ring_rx > 1))
1413		/* We attempt to distribute budget to each Rx queue fairly, but
1414		 * don't allow the budget to go below 1 because that would exit
1415		 * polling early.
1416		 */
1417		budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
1418	else
1419		/* Max of 1 Rx ring in this q_vector so give it the budget */
1420		budget_per_ring = budget;
1421
1422	ice_for_each_ring(ring, q_vector->rx) {
1423		int cleaned;
1424
1425		/* A dedicated path for zero-copy allows making a single
1426		 * comparison in the irq context instead of many inside the
1427		 * ice_clean_rx_irq function and makes the codebase cleaner.
1428		 */
1429		cleaned = ring->xsk_pool ?
1430			  ice_clean_rx_irq_zc(ring, budget_per_ring) :
1431			  ice_clean_rx_irq(ring, budget_per_ring);
1432		work_done += cleaned;
1433		/* if we clean as many as budgeted, we must not be done */
1434		if (cleaned >= budget_per_ring)
1435			clean_complete = false;
1436	}
1437
1438	/* If work not completed, return budget and polling will return */
1439	if (!clean_complete) {
1440		/* Set the writeback on ITR so partial completions of
1441		 * cache-lines will still continue even if we're polling.
1442		 */
1443		ice_set_wb_on_itr(q_vector);
1444		return budget;
1445	}
1446
1447	/* Exit the polling mode, but don't re-enable interrupts if stack might
1448	 * poll us due to busy-polling
1449	 */
1450	if (likely(napi_complete_done(napi, work_done)))
1451		ice_update_ena_itr(q_vector);
1452	else
1453		ice_set_wb_on_itr(q_vector);
1454
1455	return min_t(int, work_done, budget - 1);
 
 
 
 
 
 
 
 
1456}
1457
1458/**
1459 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1460 * @tx_ring: the ring to be checked
1461 * @size: the size buffer we want to assure is available
1462 *
1463 * Returns -EBUSY if a stop is needed, else 0
1464 */
1465static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1466{
1467	netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
1468	/* Memory barrier before checking head and tail */
1469	smp_mb();
1470
1471	/* Check again in a case another CPU has just made room available. */
1472	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1473		return -EBUSY;
1474
1475	/* A reprieve! - use start_subqueue because it doesn't call schedule */
1476	netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
1477	++tx_ring->tx_stats.restart_q;
1478	return 0;
1479}
1480
1481/**
1482 * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1483 * @tx_ring: the ring to be checked
1484 * @size:    the size buffer we want to assure is available
1485 *
1486 * Returns 0 if stop is not needed
1487 */
1488static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1489{
1490	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1491		return 0;
1492
1493	return __ice_maybe_stop_tx(tx_ring, size);
1494}
1495
1496/**
1497 * ice_tx_map - Build the Tx descriptor
1498 * @tx_ring: ring to send buffer on
1499 * @first: first buffer info buffer to use
1500 * @off: pointer to struct that holds offload parameters
1501 *
1502 * This function loops over the skb data pointed to by *first
1503 * and gets a physical address for each memory location and programs
1504 * it and the length into the transmit descriptor.
1505 */
1506static void
1507ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
1508	   struct ice_tx_offload_params *off)
1509{
1510	u64 td_offset, td_tag, td_cmd;
1511	u16 i = tx_ring->next_to_use;
 
1512	unsigned int data_len, size;
1513	struct ice_tx_desc *tx_desc;
1514	struct ice_tx_buf *tx_buf;
1515	struct sk_buff *skb;
1516	skb_frag_t *frag;
1517	dma_addr_t dma;
1518
1519	td_tag = off->td_l2tag1;
1520	td_cmd = off->td_cmd;
1521	td_offset = off->td_offset;
1522	skb = first->skb;
1523
1524	data_len = skb->data_len;
1525	size = skb_headlen(skb);
1526
1527	tx_desc = ICE_TX_DESC(tx_ring, i);
1528
1529	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1530		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1531		td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1532			  ICE_TX_FLAGS_VLAN_S;
1533	}
1534
1535	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1536
1537	tx_buf = first;
1538
1539	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1540		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1541
1542		if (dma_mapping_error(tx_ring->dev, dma))
1543			goto dma_error;
1544
1545		/* record length, and DMA address */
1546		dma_unmap_len_set(tx_buf, len, size);
1547		dma_unmap_addr_set(tx_buf, dma, dma);
1548
1549		/* align size to end of page */
1550		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1551		tx_desc->buf_addr = cpu_to_le64(dma);
1552
1553		/* account for data chunks larger than the hardware
1554		 * can handle
1555		 */
1556		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1557			tx_desc->cmd_type_offset_bsz =
1558				ice_build_ctob(td_cmd, td_offset, max_data,
1559					       td_tag);
1560
1561			tx_desc++;
1562			i++;
1563
1564			if (i == tx_ring->count) {
1565				tx_desc = ICE_TX_DESC(tx_ring, 0);
1566				i = 0;
1567			}
1568
1569			dma += max_data;
1570			size -= max_data;
1571
1572			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1573			tx_desc->buf_addr = cpu_to_le64(dma);
1574		}
1575
1576		if (likely(!data_len))
1577			break;
1578
1579		tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
1580							      size, td_tag);
1581
1582		tx_desc++;
1583		i++;
1584
1585		if (i == tx_ring->count) {
1586			tx_desc = ICE_TX_DESC(tx_ring, 0);
1587			i = 0;
1588		}
1589
1590		size = skb_frag_size(frag);
1591		data_len -= size;
1592
1593		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1594				       DMA_TO_DEVICE);
1595
1596		tx_buf = &tx_ring->tx_buf[i];
1597	}
1598
1599	/* record bytecount for BQL */
1600	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1601
1602	/* record SW timestamp if HW timestamp is not available */
1603	skb_tx_timestamp(first->skb);
1604
1605	i++;
1606	if (i == tx_ring->count)
1607		i = 0;
1608
1609	/* write last descriptor with RS and EOP bits */
1610	td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
1611	tx_desc->cmd_type_offset_bsz =
1612			ice_build_ctob(td_cmd, td_offset, size, td_tag);
1613
1614	/* Force memory writes to complete before letting h/w know there
1615	 * are new descriptors to fetch.
1616	 *
1617	 * We also use this memory barrier to make certain all of the
1618	 * status bits have been updated before next_to_watch is written.
1619	 */
1620	wmb();
1621
1622	/* set next_to_watch value indicating a packet is present */
1623	first->next_to_watch = tx_desc;
1624
1625	tx_ring->next_to_use = i;
1626
1627	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1628
1629	/* notify HW of packet */
1630	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
1631		writel(i, tx_ring->tail);
1632
 
 
 
 
 
 
1633	return;
1634
1635dma_error:
1636	/* clear DMA mappings for failed tx_buf map */
1637	for (;;) {
1638		tx_buf = &tx_ring->tx_buf[i];
1639		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1640		if (tx_buf == first)
1641			break;
1642		if (i == 0)
1643			i = tx_ring->count;
1644		i--;
1645	}
1646
1647	tx_ring->next_to_use = i;
1648}
1649
1650/**
1651 * ice_tx_csum - Enable Tx checksum offloads
1652 * @first: pointer to the first descriptor
1653 * @off: pointer to struct that holds offload parameters
1654 *
1655 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1656 */
1657static
1658int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1659{
1660	u32 l4_len = 0, l3_len = 0, l2_len = 0;
1661	struct sk_buff *skb = first->skb;
1662	union {
1663		struct iphdr *v4;
1664		struct ipv6hdr *v6;
1665		unsigned char *hdr;
1666	} ip;
1667	union {
1668		struct tcphdr *tcp;
1669		unsigned char *hdr;
1670	} l4;
1671	__be16 frag_off, protocol;
1672	unsigned char *exthdr;
1673	u32 offset, cmd = 0;
1674	u8 l4_proto = 0;
1675
1676	if (skb->ip_summed != CHECKSUM_PARTIAL)
1677		return 0;
1678
1679	ip.hdr = skb_network_header(skb);
1680	l4.hdr = skb_transport_header(skb);
1681
1682	/* compute outer L2 header size */
1683	l2_len = ip.hdr - skb->data;
1684	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1685
1686	protocol = vlan_get_protocol(skb);
1687
1688	if (protocol == htons(ETH_P_IP))
1689		first->tx_flags |= ICE_TX_FLAGS_IPV4;
1690	else if (protocol == htons(ETH_P_IPV6))
1691		first->tx_flags |= ICE_TX_FLAGS_IPV6;
1692
1693	if (skb->encapsulation) {
1694		bool gso_ena = false;
1695		u32 tunnel = 0;
1696
1697		/* define outer network header type */
1698		if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1699			tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
1700				  ICE_TX_CTX_EIPT_IPV4 :
1701				  ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
1702			l4_proto = ip.v4->protocol;
1703		} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1704			int ret;
1705
1706			tunnel |= ICE_TX_CTX_EIPT_IPV6;
1707			exthdr = ip.hdr + sizeof(*ip.v6);
1708			l4_proto = ip.v6->nexthdr;
1709			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
1710					       &l4_proto, &frag_off);
1711			if (ret < 0)
1712				return -1;
1713		}
1714
1715		/* define outer transport */
1716		switch (l4_proto) {
1717		case IPPROTO_UDP:
1718			tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
1719			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1720			break;
1721		case IPPROTO_GRE:
1722			tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
1723			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1724			break;
1725		case IPPROTO_IPIP:
1726		case IPPROTO_IPV6:
1727			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1728			l4.hdr = skb_inner_network_header(skb);
1729			break;
1730		default:
1731			if (first->tx_flags & ICE_TX_FLAGS_TSO)
1732				return -1;
1733
1734			skb_checksum_help(skb);
1735			return 0;
1736		}
1737
1738		/* compute outer L3 header size */
1739		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1740			  ICE_TXD_CTX_QW0_EIPLEN_S;
1741
1742		/* switch IP header pointer from outer to inner header */
1743		ip.hdr = skb_inner_network_header(skb);
1744
1745		/* compute tunnel header size */
1746		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1747			   ICE_TXD_CTX_QW0_NATLEN_S;
1748
1749		gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
1750		/* indicate if we need to offload outer UDP header */
1751		if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
1752		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1753			tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
1754
1755		/* record tunnel offload values */
1756		off->cd_tunnel_params |= tunnel;
1757
1758		/* set DTYP=1 to indicate that it's an Tx context descriptor
1759		 * in IPsec tunnel mode with Tx offloads in Quad word 1
1760		 */
1761		off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
1762
1763		/* switch L4 header pointer from outer to inner */
1764		l4.hdr = skb_inner_transport_header(skb);
1765		l4_proto = 0;
1766
1767		/* reset type as we transition from outer to inner headers */
1768		first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
1769		if (ip.v4->version == 4)
1770			first->tx_flags |= ICE_TX_FLAGS_IPV4;
1771		if (ip.v6->version == 6)
1772			first->tx_flags |= ICE_TX_FLAGS_IPV6;
1773	}
1774
1775	/* Enable IP checksum offloads */
1776	if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
 
1777		l4_proto = ip.v4->protocol;
1778		/* the stack computes the IP header already, the only time we
1779		 * need the hardware to recompute it is in the case of TSO.
1780		 */
1781		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1782			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1783		else
1784			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1785
1786	} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1787		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1788		exthdr = ip.hdr + sizeof(*ip.v6);
1789		l4_proto = ip.v6->nexthdr;
1790		if (l4.hdr != exthdr)
1791			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1792					 &frag_off);
1793	} else {
1794		return -1;
1795	}
1796
1797	/* compute inner L3 header size */
1798	l3_len = l4.hdr - ip.hdr;
1799	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1800
1801	/* Enable L4 checksum offloads */
1802	switch (l4_proto) {
1803	case IPPROTO_TCP:
1804		/* enable checksum offloads */
1805		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1806		l4_len = l4.tcp->doff;
1807		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1808		break;
1809	case IPPROTO_UDP:
1810		/* enable UDP checksum offload */
1811		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1812		l4_len = (sizeof(struct udphdr) >> 2);
1813		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1814		break;
1815	case IPPROTO_SCTP:
1816		/* enable SCTP checksum offload */
1817		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
1818		l4_len = sizeof(struct sctphdr) >> 2;
1819		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1820		break;
1821
1822	default:
1823		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1824			return -1;
1825		skb_checksum_help(skb);
1826		return 0;
1827	}
1828
1829	off->td_cmd |= cmd;
1830	off->td_offset |= offset;
1831	return 1;
1832}
1833
1834/**
1835 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
1836 * @tx_ring: ring to send buffer on
1837 * @first: pointer to struct ice_tx_buf
1838 *
1839 * Checks the skb and set up correspondingly several generic transmit flags
1840 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 
 
 
1841 */
1842static void
1843ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
1844{
1845	struct sk_buff *skb = first->skb;
 
1846
1847	/* nothing left to do, software offloaded VLAN */
1848	if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
1849		return;
 
 
 
 
 
 
 
 
 
1850
1851	/* currently, we always assume 802.1Q for VLAN insertion as VLAN
1852	 * insertion for 802.1AD is not supported
1853	 */
1854	if (skb_vlan_tag_present(skb)) {
1855		first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
1856		first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
 
 
 
 
 
 
 
 
 
 
 
 
 
1857	}
1858
1859	ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
 
1860}
1861
1862/**
1863 * ice_tso - computes mss and TSO length to prepare for TSO
1864 * @first: pointer to struct ice_tx_buf
1865 * @off: pointer to struct that holds offload parameters
1866 *
1867 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
1868 */
1869static
1870int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1871{
1872	struct sk_buff *skb = first->skb;
1873	union {
1874		struct iphdr *v4;
1875		struct ipv6hdr *v6;
1876		unsigned char *hdr;
1877	} ip;
1878	union {
1879		struct tcphdr *tcp;
1880		struct udphdr *udp;
1881		unsigned char *hdr;
1882	} l4;
1883	u64 cd_mss, cd_tso_len;
1884	u32 paylen;
1885	u8 l4_start;
1886	int err;
1887
1888	if (skb->ip_summed != CHECKSUM_PARTIAL)
1889		return 0;
1890
1891	if (!skb_is_gso(skb))
1892		return 0;
1893
1894	err = skb_cow_head(skb, 0);
1895	if (err < 0)
1896		return err;
1897
1898	/* cppcheck-suppress unreadVariable */
1899	ip.hdr = skb_network_header(skb);
1900	l4.hdr = skb_transport_header(skb);
1901
1902	/* initialize outer IP header fields */
1903	if (ip.v4->version == 4) {
1904		ip.v4->tot_len = 0;
1905		ip.v4->check = 0;
1906	} else {
1907		ip.v6->payload_len = 0;
1908	}
1909
1910	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1911					 SKB_GSO_GRE_CSUM |
1912					 SKB_GSO_IPXIP4 |
1913					 SKB_GSO_IPXIP6 |
1914					 SKB_GSO_UDP_TUNNEL |
1915					 SKB_GSO_UDP_TUNNEL_CSUM)) {
1916		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1917		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1918			l4.udp->len = 0;
1919
1920			/* determine offset of outer transport header */
1921			l4_start = (u8)(l4.hdr - skb->data);
1922
1923			/* remove payload length from outer checksum */
1924			paylen = skb->len - l4_start;
1925			csum_replace_by_diff(&l4.udp->check,
1926					     (__force __wsum)htonl(paylen));
1927		}
1928
1929		/* reset pointers to inner headers */
1930
1931		/* cppcheck-suppress unreadVariable */
1932		ip.hdr = skb_inner_network_header(skb);
1933		l4.hdr = skb_inner_transport_header(skb);
1934
1935		/* initialize inner IP header fields */
1936		if (ip.v4->version == 4) {
1937			ip.v4->tot_len = 0;
1938			ip.v4->check = 0;
1939		} else {
1940			ip.v6->payload_len = 0;
1941		}
1942	}
1943
1944	/* determine offset of transport header */
1945	l4_start = (u8)(l4.hdr - skb->data);
1946
1947	/* remove payload length from checksum */
1948	paylen = skb->len - l4_start;
 
1949
1950	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1951		csum_replace_by_diff(&l4.udp->check,
1952				     (__force __wsum)htonl(paylen));
1953		/* compute length of UDP segmentation header */
1954		off->header_len = (u8)sizeof(l4.udp) + l4_start;
1955	} else {
1956		csum_replace_by_diff(&l4.tcp->check,
1957				     (__force __wsum)htonl(paylen));
1958		/* compute length of TCP segmentation header */
1959		off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
1960	}
1961
1962	/* update gso_segs and bytecount */
1963	first->gso_segs = skb_shinfo(skb)->gso_segs;
1964	first->bytecount += (first->gso_segs - 1) * off->header_len;
1965
1966	cd_tso_len = skb->len - off->header_len;
1967	cd_mss = skb_shinfo(skb)->gso_size;
1968
1969	/* record cdesc_qw1 with TSO parameters */
1970	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
1971			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
1972			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
1973			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
1974	first->tx_flags |= ICE_TX_FLAGS_TSO;
1975	return 1;
1976}
1977
1978/**
1979 * ice_txd_use_count  - estimate the number of descriptors needed for Tx
1980 * @size: transmit request size in bytes
1981 *
1982 * Due to hardware alignment restrictions (4K alignment), we need to
1983 * assume that we can have no more than 12K of data per descriptor, even
1984 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
1985 * Thus, we need to divide by 12K. But division is slow! Instead,
1986 * we decompose the operation into shifts and one relatively cheap
1987 * multiply operation.
1988 *
1989 * To divide by 12K, we first divide by 4K, then divide by 3:
1990 *     To divide by 4K, shift right by 12 bits
1991 *     To divide by 3, multiply by 85, then divide by 256
1992 *     (Divide by 256 is done by shifting right by 8 bits)
1993 * Finally, we add one to round up. Because 256 isn't an exact multiple of
1994 * 3, we'll underestimate near each multiple of 12K. This is actually more
1995 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
1996 * segment. For our purposes this is accurate out to 1M which is orders of
1997 * magnitude greater than our largest possible GSO size.
1998 *
1999 * This would then be implemented as:
2000 *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
2001 *
2002 * Since multiplication and division are commutative, we can reorder
2003 * operations into:
2004 *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2005 */
2006static unsigned int ice_txd_use_count(unsigned int size)
2007{
2008	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2009}
2010
2011/**
2012 * ice_xmit_desc_count - calculate number of Tx descriptors needed
2013 * @skb: send buffer
2014 *
2015 * Returns number of data descriptors needed for this skb.
2016 */
2017static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
2018{
2019	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2020	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2021	unsigned int count = 0, size = skb_headlen(skb);
2022
2023	for (;;) {
2024		count += ice_txd_use_count(size);
2025
2026		if (!nr_frags--)
2027			break;
2028
2029		size = skb_frag_size(frag++);
2030	}
2031
2032	return count;
2033}
2034
2035/**
2036 * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2037 * @skb: send buffer
2038 *
2039 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2040 * and so we need to figure out the cases where we need to linearize the skb.
2041 *
2042 * For TSO we need to count the TSO header and segment payload separately.
2043 * As such we need to check cases where we have 7 fragments or more as we
2044 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2045 * the segment payload in the first descriptor, and another 7 for the
2046 * fragments.
2047 */
2048static bool __ice_chk_linearize(struct sk_buff *skb)
2049{
2050	const skb_frag_t *frag, *stale;
2051	int nr_frags, sum;
2052
2053	/* no need to check if number of frags is less than 7 */
2054	nr_frags = skb_shinfo(skb)->nr_frags;
2055	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2056		return false;
2057
2058	/* We need to walk through the list and validate that each group
2059	 * of 6 fragments totals at least gso_size.
2060	 */
2061	nr_frags -= ICE_MAX_BUF_TXD - 2;
2062	frag = &skb_shinfo(skb)->frags[0];
2063
2064	/* Initialize size to the negative value of gso_size minus 1. We
2065	 * use this as the worst case scenario in which the frag ahead
2066	 * of us only provides one byte which is why we are limited to 6
2067	 * descriptors for a single transmit as the header and previous
2068	 * fragment are already consuming 2 descriptors.
2069	 */
2070	sum = 1 - skb_shinfo(skb)->gso_size;
2071
2072	/* Add size of frags 0 through 4 to create our initial sum */
2073	sum += skb_frag_size(frag++);
2074	sum += skb_frag_size(frag++);
2075	sum += skb_frag_size(frag++);
2076	sum += skb_frag_size(frag++);
2077	sum += skb_frag_size(frag++);
2078
2079	/* Walk through fragments adding latest fragment, testing it, and
2080	 * then removing stale fragments from the sum.
2081	 */
2082	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2083		int stale_size = skb_frag_size(stale);
2084
2085		sum += skb_frag_size(frag++);
2086
2087		/* The stale fragment may present us with a smaller
2088		 * descriptor than the actual fragment size. To account
2089		 * for that we need to remove all the data on the front and
2090		 * figure out what the remainder would be in the last
2091		 * descriptor associated with the fragment.
2092		 */
2093		if (stale_size > ICE_MAX_DATA_PER_TXD) {
2094			int align_pad = -(skb_frag_off(stale)) &
2095					(ICE_MAX_READ_REQ_SIZE - 1);
2096
2097			sum -= align_pad;
2098			stale_size -= align_pad;
2099
2100			do {
2101				sum -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2102				stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2103			} while (stale_size > ICE_MAX_DATA_PER_TXD);
2104		}
2105
2106		/* if sum is negative we failed to make sufficient progress */
2107		if (sum < 0)
2108			return true;
2109
2110		if (!nr_frags--)
2111			break;
2112
2113		sum -= stale_size;
2114	}
2115
2116	return false;
2117}
2118
2119/**
2120 * ice_chk_linearize - Check if there are more than 8 fragments per packet
2121 * @skb:      send buffer
2122 * @count:    number of buffers used
2123 *
2124 * Note: Our HW can't scatter-gather more than 8 fragments to build
2125 * a packet on the wire and so we need to figure out the cases where we
2126 * need to linearize the skb.
2127 */
2128static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2129{
2130	/* Both TSO and single send will work if count is less than 8 */
2131	if (likely(count < ICE_MAX_BUF_TXD))
2132		return false;
2133
2134	if (skb_is_gso(skb))
2135		return __ice_chk_linearize(skb);
2136
2137	/* we can support up to 8 data buffers for a single send */
2138	return count != ICE_MAX_BUF_TXD;
2139}
2140
2141/**
2142 * ice_tstamp - set up context descriptor for hardware timestamp
2143 * @tx_ring: pointer to the Tx ring to send buffer on
2144 * @skb: pointer to the SKB we're sending
2145 * @first: Tx buffer
2146 * @off: Tx offload parameters
2147 */
2148static void
2149ice_tstamp(struct ice_ring *tx_ring, struct sk_buff *skb,
2150	   struct ice_tx_buf *first, struct ice_tx_offload_params *off)
2151{
2152	s8 idx;
2153
2154	/* only timestamp the outbound packet if the user has requested it */
2155	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2156		return;
2157
2158	if (!tx_ring->ptp_tx)
2159		return;
2160
2161	/* Tx timestamps cannot be sampled when doing TSO */
2162	if (first->tx_flags & ICE_TX_FLAGS_TSO)
2163		return;
2164
2165	/* Grab an open timestamp slot */
2166	idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb);
2167	if (idx < 0)
2168		return;
2169
2170	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2171			     (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) |
2172			     ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S));
2173	first->tx_flags |= ICE_TX_FLAGS_TSYN;
2174}
2175
2176/**
2177 * ice_xmit_frame_ring - Sends buffer on Tx ring
2178 * @skb: send buffer
2179 * @tx_ring: ring to send buffer on
2180 *
2181 * Returns NETDEV_TX_OK if sent, else an error code
2182 */
2183static netdev_tx_t
2184ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
2185{
2186	struct ice_tx_offload_params offload = { 0 };
2187	struct ice_vsi *vsi = tx_ring->vsi;
2188	struct ice_tx_buf *first;
2189	struct ethhdr *eth;
2190	unsigned int count;
2191	int tso, csum;
2192
2193	ice_trace(xmit_frame_ring, tx_ring, skb);
2194
2195	count = ice_xmit_desc_count(skb);
2196	if (ice_chk_linearize(skb, count)) {
2197		if (__skb_linearize(skb))
2198			goto out_drop;
2199		count = ice_txd_use_count(skb->len);
2200		tx_ring->tx_stats.tx_linearize++;
2201	}
2202
2203	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2204	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2205	 *       + 4 desc gap to avoid the cache line where head is,
2206	 *       + 1 desc for context descriptor,
2207	 * otherwise try next time
2208	 */
2209	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2210			      ICE_DESCS_FOR_CTX_DESC)) {
2211		tx_ring->tx_stats.tx_busy++;
2212		return NETDEV_TX_BUSY;
2213	}
2214
2215	offload.tx_ring = tx_ring;
2216
2217	/* record the location of the first descriptor for this packet */
2218	first = &tx_ring->tx_buf[tx_ring->next_to_use];
2219	first->skb = skb;
2220	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2221	first->gso_segs = 1;
2222	first->tx_flags = 0;
2223
2224	/* prepare the VLAN tagging flags for Tx */
2225	ice_tx_prepare_vlan_flags(tx_ring, first);
 
2226
2227	/* set up TSO offload */
2228	tso = ice_tso(first, &offload);
2229	if (tso < 0)
2230		goto out_drop;
2231
2232	/* always set up Tx checksum offload */
2233	csum = ice_tx_csum(first, &offload);
2234	if (csum < 0)
2235		goto out_drop;
2236
2237	/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2238	eth = (struct ethhdr *)skb_mac_header(skb);
2239	if (unlikely((skb->priority == TC_PRIO_CONTROL ||
2240		      eth->h_proto == htons(ETH_P_LLDP)) &&
2241		     vsi->type == ICE_VSI_PF &&
2242		     vsi->port_info->qos_cfg.is_sw_lldp))
2243		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2244					ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2245					ICE_TXD_CTX_QW1_CMD_S);
2246
2247	ice_tstamp(tx_ring, skb, first, &offload);
2248
2249	if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2250		struct ice_tx_ctx_desc *cdesc;
2251		u16 i = tx_ring->next_to_use;
2252
2253		/* grab the next descriptor */
2254		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2255		i++;
2256		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2257
2258		/* setup context descriptor */
2259		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2260		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2261		cdesc->rsvd = cpu_to_le16(0);
2262		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2263	}
2264
2265	ice_tx_map(tx_ring, first, &offload);
2266	return NETDEV_TX_OK;
2267
2268out_drop:
2269	ice_trace(xmit_frame_ring_drop, tx_ring, skb);
2270	dev_kfree_skb_any(skb);
2271	return NETDEV_TX_OK;
2272}
2273
2274/**
2275 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2276 * @skb: send buffer
2277 * @netdev: network interface device structure
2278 *
2279 * Returns NETDEV_TX_OK if sent, else an error code
2280 */
2281netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2282{
2283	struct ice_netdev_priv *np = netdev_priv(netdev);
2284	struct ice_vsi *vsi = np->vsi;
2285	struct ice_ring *tx_ring;
2286
2287	tx_ring = vsi->tx_rings[skb->queue_mapping];
2288
2289	/* hardware can't handle really short frames, hardware padding works
2290	 * beyond this point
2291	 */
2292	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2293		return NETDEV_TX_OK;
2294
2295	return ice_xmit_frame_ring(skb, tx_ring);
2296}
2297
2298/**
2299 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
2300 * @tx_ring: tx_ring to clean
2301 */
2302void ice_clean_ctrl_tx_irq(struct ice_ring *tx_ring)
2303{
2304	struct ice_vsi *vsi = tx_ring->vsi;
2305	s16 i = tx_ring->next_to_clean;
2306	int budget = ICE_DFLT_IRQ_WORK;
2307	struct ice_tx_desc *tx_desc;
2308	struct ice_tx_buf *tx_buf;
2309
2310	tx_buf = &tx_ring->tx_buf[i];
2311	tx_desc = ICE_TX_DESC(tx_ring, i);
2312	i -= tx_ring->count;
2313
2314	do {
2315		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
2316
2317		/* if next_to_watch is not set then there is no pending work */
2318		if (!eop_desc)
2319			break;
2320
2321		/* prevent any other reads prior to eop_desc */
2322		smp_rmb();
2323
2324		/* if the descriptor isn't done, no work to do */
2325		if (!(eop_desc->cmd_type_offset_bsz &
2326		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
2327			break;
2328
2329		/* clear next_to_watch to prevent false hangs */
2330		tx_buf->next_to_watch = NULL;
2331		tx_desc->buf_addr = 0;
2332		tx_desc->cmd_type_offset_bsz = 0;
2333
2334		/* move past filter desc */
2335		tx_buf++;
2336		tx_desc++;
2337		i++;
2338		if (unlikely(!i)) {
2339			i -= tx_ring->count;
2340			tx_buf = tx_ring->tx_buf;
2341			tx_desc = ICE_TX_DESC(tx_ring, 0);
2342		}
2343
2344		/* unmap the data header */
2345		if (dma_unmap_len(tx_buf, len))
2346			dma_unmap_single(tx_ring->dev,
2347					 dma_unmap_addr(tx_buf, dma),
2348					 dma_unmap_len(tx_buf, len),
2349					 DMA_TO_DEVICE);
2350		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
2351			devm_kfree(tx_ring->dev, tx_buf->raw_buf);
2352
2353		/* clear next_to_watch to prevent false hangs */
2354		tx_buf->raw_buf = NULL;
2355		tx_buf->tx_flags = 0;
2356		tx_buf->next_to_watch = NULL;
2357		dma_unmap_len_set(tx_buf, len, 0);
2358		tx_desc->buf_addr = 0;
2359		tx_desc->cmd_type_offset_bsz = 0;
2360
2361		/* move past eop_desc for start of next FD desc */
2362		tx_buf++;
2363		tx_desc++;
2364		i++;
2365		if (unlikely(!i)) {
2366			i -= tx_ring->count;
2367			tx_buf = tx_ring->tx_buf;
2368			tx_desc = ICE_TX_DESC(tx_ring, 0);
2369		}
2370
2371		budget--;
2372	} while (likely(budget));
2373
2374	i += tx_ring->count;
2375	tx_ring->next_to_clean = i;
2376
2377	/* re-enable interrupt if needed */
2378	ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);
2379}