Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (C) 2021, Intel Corporation. */
   3
   4#include "ice.h"
   5#include "ice_lib.h"
   6
   7#define E810_OUT_PROP_DELAY_NS 1
   8
   9/**
  10 * ice_set_tx_tstamp - Enable or disable Tx timestamping
  11 * @pf: The PF pointer to search in
  12 * @on: bool value for whether timestamps are enabled or disabled
  13 */
  14static void ice_set_tx_tstamp(struct ice_pf *pf, bool on)
  15{
  16	struct ice_vsi *vsi;
  17	u32 val;
  18	u16 i;
  19
  20	vsi = ice_get_main_vsi(pf);
  21	if (!vsi)
  22		return;
  23
  24	/* Set the timestamp enable flag for all the Tx rings */
  25	ice_for_each_txq(vsi, i) {
  26		if (!vsi->tx_rings[i])
  27			continue;
  28		vsi->tx_rings[i]->ptp_tx = on;
  29	}
  30
  31	/* Configure the Tx timestamp interrupt */
  32	val = rd32(&pf->hw, PFINT_OICR_ENA);
  33	if (on)
  34		val |= PFINT_OICR_TSYN_TX_M;
  35	else
  36		val &= ~PFINT_OICR_TSYN_TX_M;
  37	wr32(&pf->hw, PFINT_OICR_ENA, val);
  38}
  39
  40/**
  41 * ice_set_rx_tstamp - Enable or disable Rx timestamping
  42 * @pf: The PF pointer to search in
  43 * @on: bool value for whether timestamps are enabled or disabled
  44 */
  45static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
  46{
  47	struct ice_vsi *vsi;
  48	u16 i;
  49
  50	vsi = ice_get_main_vsi(pf);
  51	if (!vsi)
  52		return;
  53
  54	/* Set the timestamp flag for all the Rx rings */
  55	ice_for_each_rxq(vsi, i) {
  56		if (!vsi->rx_rings[i])
  57			continue;
  58		vsi->rx_rings[i]->ptp_rx = on;
  59	}
  60}
  61
  62/**
  63 * ice_ptp_cfg_timestamp - Configure timestamp for init/deinit
  64 * @pf: Board private structure
  65 * @ena: bool value to enable or disable time stamp
  66 *
  67 * This function will configure timestamping during PTP initialization
  68 * and deinitialization
  69 */
  70static void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena)
  71{
  72	ice_set_tx_tstamp(pf, ena);
  73	ice_set_rx_tstamp(pf, ena);
  74
  75	if (ena) {
  76		pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_ALL;
  77		pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_ON;
  78	} else {
  79		pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
  80		pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_OFF;
  81	}
  82}
  83
  84/**
  85 * ice_get_ptp_clock_index - Get the PTP clock index
  86 * @pf: the PF pointer
  87 *
  88 * Determine the clock index of the PTP clock associated with this device. If
  89 * this is the PF controlling the clock, just use the local access to the
  90 * clock device pointer.
  91 *
  92 * Otherwise, read from the driver shared parameters to determine the clock
  93 * index value.
  94 *
  95 * Returns: the index of the PTP clock associated with this device, or -1 if
  96 * there is no associated clock.
  97 */
  98int ice_get_ptp_clock_index(struct ice_pf *pf)
  99{
 100	struct device *dev = ice_pf_to_dev(pf);
 101	enum ice_aqc_driver_params param_idx;
 102	struct ice_hw *hw = &pf->hw;
 103	u8 tmr_idx;
 104	u32 value;
 105	int err;
 106
 107	/* Use the ptp_clock structure if we're the main PF */
 108	if (pf->ptp.clock)
 109		return ptp_clock_index(pf->ptp.clock);
 110
 111	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
 112	if (!tmr_idx)
 113		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
 114	else
 115		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
 116
 117	err = ice_aq_get_driver_param(hw, param_idx, &value, NULL);
 118	if (err) {
 119		dev_err(dev, "Failed to read PTP clock index parameter, err %d aq_err %s\n",
 120			err, ice_aq_str(hw->adminq.sq_last_status));
 121		return -1;
 122	}
 123
 124	/* The PTP clock index is an integer, and will be between 0 and
 125	 * INT_MAX. The highest bit of the driver shared parameter is used to
 126	 * indicate whether or not the currently stored clock index is valid.
 127	 */
 128	if (!(value & PTP_SHARED_CLK_IDX_VALID))
 129		return -1;
 130
 131	return value & ~PTP_SHARED_CLK_IDX_VALID;
 132}
 133
 134/**
 135 * ice_set_ptp_clock_index - Set the PTP clock index
 136 * @pf: the PF pointer
 137 *
 138 * Set the PTP clock index for this device into the shared driver parameters,
 139 * so that other PFs associated with this device can read it.
 140 *
 141 * If the PF is unable to store the clock index, it will log an error, but
 142 * will continue operating PTP.
 143 */
 144static void ice_set_ptp_clock_index(struct ice_pf *pf)
 145{
 146	struct device *dev = ice_pf_to_dev(pf);
 147	enum ice_aqc_driver_params param_idx;
 148	struct ice_hw *hw = &pf->hw;
 149	u8 tmr_idx;
 150	u32 value;
 151	int err;
 152
 153	if (!pf->ptp.clock)
 154		return;
 155
 156	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
 157	if (!tmr_idx)
 158		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
 159	else
 160		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
 161
 162	value = (u32)ptp_clock_index(pf->ptp.clock);
 163	if (value > INT_MAX) {
 164		dev_err(dev, "PTP Clock index is too large to store\n");
 165		return;
 166	}
 167	value |= PTP_SHARED_CLK_IDX_VALID;
 168
 169	err = ice_aq_set_driver_param(hw, param_idx, value, NULL);
 170	if (err) {
 171		dev_err(dev, "Failed to set PTP clock index parameter, err %d aq_err %s\n",
 172			err, ice_aq_str(hw->adminq.sq_last_status));
 173	}
 174}
 175
 176/**
 177 * ice_clear_ptp_clock_index - Clear the PTP clock index
 178 * @pf: the PF pointer
 179 *
 180 * Clear the PTP clock index for this device. Must be called when
 181 * unregistering the PTP clock, in order to ensure other PFs stop reporting
 182 * a clock object that no longer exists.
 183 */
 184static void ice_clear_ptp_clock_index(struct ice_pf *pf)
 185{
 186	struct device *dev = ice_pf_to_dev(pf);
 187	enum ice_aqc_driver_params param_idx;
 188	struct ice_hw *hw = &pf->hw;
 189	u8 tmr_idx;
 190	int err;
 191
 192	/* Do not clear the index if we don't own the timer */
 193	if (!hw->func_caps.ts_func_info.src_tmr_owned)
 194		return;
 195
 196	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
 197	if (!tmr_idx)
 198		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
 199	else
 200		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
 201
 202	err = ice_aq_set_driver_param(hw, param_idx, 0, NULL);
 203	if (err) {
 204		dev_dbg(dev, "Failed to clear PTP clock index parameter, err %d aq_err %s\n",
 205			err, ice_aq_str(hw->adminq.sq_last_status));
 206	}
 207}
 208
 209/**
 210 * ice_ptp_read_src_clk_reg - Read the source clock register
 211 * @pf: Board private structure
 212 * @sts: Optional parameter for holding a pair of system timestamps from
 213 *       the system clock. Will be ignored if NULL is given.
 214 */
 215static u64
 216ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
 217{
 218	struct ice_hw *hw = &pf->hw;
 219	u32 hi, lo, lo2;
 220	u8 tmr_idx;
 221
 222	tmr_idx = ice_get_ptp_src_clock_index(hw);
 223	/* Read the system timestamp pre PHC read */
 224	ptp_read_system_prets(sts);
 225
 226	lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
 227
 228	/* Read the system timestamp post PHC read */
 229	ptp_read_system_postts(sts);
 230
 231	hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
 232	lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
 233
 234	if (lo2 < lo) {
 235		/* if TIME_L rolled over read TIME_L again and update
 236		 * system timestamps
 237		 */
 238		ptp_read_system_prets(sts);
 239		lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
 240		ptp_read_system_postts(sts);
 241		hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
 242	}
 243
 244	return ((u64)hi << 32) | lo;
 245}
 246
 247/**
 248 * ice_ptp_update_cached_phctime - Update the cached PHC time values
 249 * @pf: Board specific private structure
 250 *
 251 * This function updates the system time values which are cached in the PF
 252 * structure and the Rx rings.
 253 *
 254 * This function must be called periodically to ensure that the cached value
 255 * is never more than 2 seconds old. It must also be called whenever the PHC
 256 * time has been changed.
 257 */
 258static void ice_ptp_update_cached_phctime(struct ice_pf *pf)
 259{
 260	u64 systime;
 261	int i;
 262
 263	/* Read the current PHC time */
 264	systime = ice_ptp_read_src_clk_reg(pf, NULL);
 265
 266	/* Update the cached PHC time stored in the PF structure */
 267	WRITE_ONCE(pf->ptp.cached_phc_time, systime);
 268
 269	ice_for_each_vsi(pf, i) {
 270		struct ice_vsi *vsi = pf->vsi[i];
 271		int j;
 272
 273		if (!vsi)
 274			continue;
 275
 276		if (vsi->type != ICE_VSI_PF)
 277			continue;
 278
 279		ice_for_each_rxq(vsi, j) {
 280			if (!vsi->rx_rings[j])
 281				continue;
 282			WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
 283		}
 284	}
 285}
 286
 287/**
 288 * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
 289 * @cached_phc_time: recently cached copy of PHC time
 290 * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
 291 *
 292 * Hardware captures timestamps which contain only 32 bits of nominal
 293 * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
 294 * Note that the captured timestamp values may be 40 bits, but the lower
 295 * 8 bits are sub-nanoseconds and generally discarded.
 296 *
 297 * Extend the 32bit nanosecond timestamp using the following algorithm and
 298 * assumptions:
 299 *
 300 * 1) have a recently cached copy of the PHC time
 301 * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
 302 *    seconds) before or after the PHC time was captured.
 303 * 3) calculate the delta between the cached time and the timestamp
 304 * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
 305 *    captured after the PHC time. In this case, the full timestamp is just
 306 *    the cached PHC time plus the delta.
 307 * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
 308 *    timestamp was captured *before* the PHC time, i.e. because the PHC
 309 *    cache was updated after the timestamp was captured by hardware. In this
 310 *    case, the full timestamp is the cached time minus the inverse delta.
 311 *
 312 * This algorithm works even if the PHC time was updated after a Tx timestamp
 313 * was requested, but before the Tx timestamp event was reported from
 314 * hardware.
 315 *
 316 * This calculation primarily relies on keeping the cached PHC time up to
 317 * date. If the timestamp was captured more than 2^31 nanoseconds after the
 318 * PHC time, it is possible that the lower 32bits of PHC time have
 319 * overflowed more than once, and we might generate an incorrect timestamp.
 320 *
 321 * This is prevented by (a) periodically updating the cached PHC time once
 322 * a second, and (b) discarding any Tx timestamp packet if it has waited for
 323 * a timestamp for more than one second.
 324 */
 325static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
 326{
 327	u32 delta, phc_time_lo;
 328	u64 ns;
 329
 330	/* Extract the lower 32 bits of the PHC time */
 331	phc_time_lo = (u32)cached_phc_time;
 332
 333	/* Calculate the delta between the lower 32bits of the cached PHC
 334	 * time and the in_tstamp value
 335	 */
 336	delta = (in_tstamp - phc_time_lo);
 337
 338	/* Do not assume that the in_tstamp is always more recent than the
 339	 * cached PHC time. If the delta is large, it indicates that the
 340	 * in_tstamp was taken in the past, and should be converted
 341	 * forward.
 342	 */
 343	if (delta > (U32_MAX / 2)) {
 344		/* reverse the delta calculation here */
 345		delta = (phc_time_lo - in_tstamp);
 346		ns = cached_phc_time - delta;
 347	} else {
 348		ns = cached_phc_time + delta;
 349	}
 350
 351	return ns;
 352}
 353
 354/**
 355 * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
 356 * @pf: Board private structure
 357 * @in_tstamp: Ingress/egress 40b timestamp value
 358 *
 359 * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
 360 * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
 361 *
 362 *  *--------------------------------------------------------------*
 363 *  | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
 364 *  *--------------------------------------------------------------*
 365 *
 366 * The low bit is an indicator of whether the timestamp is valid. The next
 367 * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
 368 * and the remaining 32 bits are the lower 32 bits of the PHC timer.
 369 *
 370 * It is assumed that the caller verifies the timestamp is valid prior to
 371 * calling this function.
 372 *
 373 * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
 374 * time stored in the device private PTP structure as the basis for timestamp
 375 * extension.
 376 *
 377 * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
 378 * algorithm.
 379 */
 380static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
 381{
 382	const u64 mask = GENMASK_ULL(31, 0);
 383
 384	return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
 385				     (in_tstamp >> 8) & mask);
 386}
 387
 388/**
 389 * ice_ptp_read_time - Read the time from the device
 390 * @pf: Board private structure
 391 * @ts: timespec structure to hold the current time value
 392 * @sts: Optional parameter for holding a pair of system timestamps from
 393 *       the system clock. Will be ignored if NULL is given.
 394 *
 395 * This function reads the source clock registers and stores them in a timespec.
 396 * However, since the registers are 64 bits of nanoseconds, we must convert the
 397 * result to a timespec before we can return.
 398 */
 399static void
 400ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts,
 401		  struct ptp_system_timestamp *sts)
 402{
 403	u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts);
 404
 405	*ts = ns_to_timespec64(time_ns);
 406}
 407
 408/**
 409 * ice_ptp_write_init - Set PHC time to provided value
 410 * @pf: Board private structure
 411 * @ts: timespec structure that holds the new time value
 412 *
 413 * Set the PHC time to the specified time provided in the timespec.
 414 */
 415static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
 416{
 417	u64 ns = timespec64_to_ns(ts);
 418	struct ice_hw *hw = &pf->hw;
 419
 420	return ice_ptp_init_time(hw, ns);
 421}
 422
 423/**
 424 * ice_ptp_write_adj - Adjust PHC clock time atomically
 425 * @pf: Board private structure
 426 * @adj: Adjustment in nanoseconds
 427 *
 428 * Perform an atomic adjustment of the PHC time by the specified number of
 429 * nanoseconds.
 430 */
 431static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
 432{
 433	struct ice_hw *hw = &pf->hw;
 434
 435	return ice_ptp_adj_clock(hw, adj);
 436}
 437
 438/**
 439 * ice_ptp_adjfine - Adjust clock increment rate
 440 * @info: the driver's PTP info structure
 441 * @scaled_ppm: Parts per million with 16-bit fractional field
 442 *
 443 * Adjust the frequency of the clock by the indicated scaled ppm from the
 444 * base frequency.
 445 */
 446static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
 447{
 448	struct ice_pf *pf = ptp_info_to_pf(info);
 449	u64 freq, divisor = 1000000ULL;
 450	struct ice_hw *hw = &pf->hw;
 451	s64 incval, diff;
 452	int neg_adj = 0;
 453	int err;
 454
 455	incval = ICE_PTP_NOMINAL_INCVAL_E810;
 456
 457	if (scaled_ppm < 0) {
 458		neg_adj = 1;
 459		scaled_ppm = -scaled_ppm;
 460	}
 461
 462	while ((u64)scaled_ppm > div_u64(U64_MAX, incval)) {
 463		/* handle overflow by scaling down the scaled_ppm and
 464		 * the divisor, losing some precision
 465		 */
 466		scaled_ppm >>= 2;
 467		divisor >>= 2;
 468	}
 469
 470	freq = (incval * (u64)scaled_ppm) >> 16;
 471	diff = div_u64(freq, divisor);
 472
 473	if (neg_adj)
 474		incval -= diff;
 475	else
 476		incval += diff;
 477
 478	err = ice_ptp_write_incval_locked(hw, incval);
 479	if (err) {
 480		dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
 481			err);
 482		return -EIO;
 483	}
 484
 485	return 0;
 486}
 487
 488/**
 489 * ice_ptp_extts_work - Workqueue task function
 490 * @work: external timestamp work structure
 491 *
 492 * Service for PTP external clock event
 493 */
 494static void ice_ptp_extts_work(struct kthread_work *work)
 495{
 496	struct ice_ptp *ptp = container_of(work, struct ice_ptp, extts_work);
 497	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
 498	struct ptp_clock_event event;
 499	struct ice_hw *hw = &pf->hw;
 500	u8 chan, tmr_idx;
 501	u32 hi, lo;
 502
 503	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
 504	/* Event time is captured by one of the two matched registers
 505	 *      GLTSYN_EVNT_L: 32 LSB of sampled time event
 506	 *      GLTSYN_EVNT_H: 32 MSB of sampled time event
 507	 * Event is defined in GLTSYN_EVNT_0 register
 508	 */
 509	for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
 510		/* Check if channel is enabled */
 511		if (pf->ptp.ext_ts_irq & (1 << chan)) {
 512			lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
 513			hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
 514			event.timestamp = (((u64)hi) << 32) | lo;
 515			event.type = PTP_CLOCK_EXTTS;
 516			event.index = chan;
 517
 518			/* Fire event */
 519			ptp_clock_event(pf->ptp.clock, &event);
 520			pf->ptp.ext_ts_irq &= ~(1 << chan);
 521		}
 522	}
 523}
 524
 525/**
 526 * ice_ptp_cfg_extts - Configure EXTTS pin and channel
 527 * @pf: Board private structure
 528 * @ena: true to enable; false to disable
 529 * @chan: GPIO channel (0-3)
 530 * @gpio_pin: GPIO pin
 531 * @extts_flags: request flags from the ptp_extts_request.flags
 532 */
 533static int
 534ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin,
 535		  unsigned int extts_flags)
 536{
 537	u32 func, aux_reg, gpio_reg, irq_reg;
 538	struct ice_hw *hw = &pf->hw;
 539	u8 tmr_idx;
 540
 541	if (chan > (unsigned int)pf->ptp.info.n_ext_ts)
 542		return -EINVAL;
 543
 544	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
 545
 546	irq_reg = rd32(hw, PFINT_OICR_ENA);
 547
 548	if (ena) {
 549		/* Enable the interrupt */
 550		irq_reg |= PFINT_OICR_TSYN_EVNT_M;
 551		aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;
 552
 553#define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE	BIT(0)
 554#define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE	BIT(1)
 555
 556		/* set event level to requested edge */
 557		if (extts_flags & PTP_FALLING_EDGE)
 558			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
 559		if (extts_flags & PTP_RISING_EDGE)
 560			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;
 561
 562		/* Write GPIO CTL reg.
 563		 * 0x1 is input sampled by EVENT register(channel)
 564		 * + num_in_channels * tmr_idx
 565		 */
 566		func = 1 + chan + (tmr_idx * 3);
 567		gpio_reg = ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) &
 568			    GLGEN_GPIO_CTL_PIN_FUNC_M);
 569		pf->ptp.ext_ts_chan |= (1 << chan);
 570	} else {
 571		/* clear the values we set to reset defaults */
 572		aux_reg = 0;
 573		gpio_reg = 0;
 574		pf->ptp.ext_ts_chan &= ~(1 << chan);
 575		if (!pf->ptp.ext_ts_chan)
 576			irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
 577	}
 578
 579	wr32(hw, PFINT_OICR_ENA, irq_reg);
 580	wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
 581	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg);
 582
 583	return 0;
 584}
 585
 586/**
 587 * ice_ptp_cfg_clkout - Configure clock to generate periodic wave
 588 * @pf: Board private structure
 589 * @chan: GPIO channel (0-3)
 590 * @config: desired periodic clk configuration. NULL will disable channel
 591 * @store: If set to true the values will be stored
 592 *
 593 * Configure the internal clock generator modules to generate the clock wave of
 594 * specified period.
 595 */
 596static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan,
 597			      struct ice_perout_channel *config, bool store)
 598{
 599	u64 current_time, period, start_time, phase;
 600	struct ice_hw *hw = &pf->hw;
 601	u32 func, val, gpio_pin;
 602	u8 tmr_idx;
 603
 604	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
 605
 606	/* 0. Reset mode & out_en in AUX_OUT */
 607	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);
 608
 609	/* If we're disabling the output, clear out CLKO and TGT and keep
 610	 * output level low
 611	 */
 612	if (!config || !config->ena) {
 613		wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0);
 614		wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0);
 615		wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0);
 616
 617		val = GLGEN_GPIO_CTL_PIN_DIR_M;
 618		gpio_pin = pf->ptp.perout_channels[chan].gpio_pin;
 619		wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
 620
 621		/* Store the value if requested */
 622		if (store)
 623			memset(&pf->ptp.perout_channels[chan], 0,
 624			       sizeof(struct ice_perout_channel));
 625
 626		return 0;
 627	}
 628	period = config->period;
 629	start_time = config->start_time;
 630	div64_u64_rem(start_time, period, &phase);
 631	gpio_pin = config->gpio_pin;
 632
 633	/* 1. Write clkout with half of required period value */
 634	if (period & 0x1) {
 635		dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
 636		goto err;
 637	}
 638
 639	period >>= 1;
 640
 641	/* For proper operation, the GLTSYN_CLKO must be larger than clock tick
 642	 */
 643#define MIN_PULSE 3
 644	if (period <= MIN_PULSE || period > U32_MAX) {
 645		dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33",
 646			MIN_PULSE * 2);
 647		goto err;
 648	}
 649
 650	wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));
 651
 652	/* Allow time for programming before start_time is hit */
 653	current_time = ice_ptp_read_src_clk_reg(pf, NULL);
 654
 655	/* if start time is in the past start the timer at the nearest second
 656	 * maintaining phase
 657	 */
 658	if (start_time < current_time)
 659		start_time = div64_u64(current_time + NSEC_PER_SEC - 1,
 660				       NSEC_PER_SEC) * NSEC_PER_SEC + phase;
 661
 662	start_time -= E810_OUT_PROP_DELAY_NS;
 663
 664	/* 2. Write TARGET time */
 665	wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time));
 666	wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time));
 667
 668	/* 3. Write AUX_OUT register */
 669	val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
 670	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);
 671
 672	/* 4. write GPIO CTL reg */
 673	func = 8 + chan + (tmr_idx * 4);
 674	val = GLGEN_GPIO_CTL_PIN_DIR_M |
 675	      ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & GLGEN_GPIO_CTL_PIN_FUNC_M);
 676	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
 677
 678	/* Store the value if requested */
 679	if (store) {
 680		memcpy(&pf->ptp.perout_channels[chan], config,
 681		       sizeof(struct ice_perout_channel));
 682		pf->ptp.perout_channels[chan].start_time = phase;
 683	}
 684
 685	return 0;
 686err:
 687	dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n");
 688	return -EFAULT;
 689}
 690
 691/**
 692 * ice_ptp_disable_all_clkout - Disable all currently configured outputs
 693 * @pf: pointer to the PF structure
 694 *
 695 * Disable all currently configured clock outputs. This is necessary before
 696 * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to
 697 * re-enable the clocks again.
 698 */
 699static void ice_ptp_disable_all_clkout(struct ice_pf *pf)
 700{
 701	uint i;
 702
 703	for (i = 0; i < pf->ptp.info.n_per_out; i++)
 704		if (pf->ptp.perout_channels[i].ena)
 705			ice_ptp_cfg_clkout(pf, i, NULL, false);
 706}
 707
 708/**
 709 * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs
 710 * @pf: pointer to the PF structure
 711 *
 712 * Enable all currently configured clock outputs. Use this after
 713 * ice_ptp_disable_all_clkout to reconfigure the output signals according to
 714 * their configuration.
 715 */
 716static void ice_ptp_enable_all_clkout(struct ice_pf *pf)
 717{
 718	uint i;
 719
 720	for (i = 0; i < pf->ptp.info.n_per_out; i++)
 721		if (pf->ptp.perout_channels[i].ena)
 722			ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i],
 723					   false);
 724}
 725
 726/**
 727 * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC
 728 * @info: the driver's PTP info structure
 729 * @rq: The requested feature to change
 730 * @on: Enable/disable flag
 731 */
 732static int
 733ice_ptp_gpio_enable_e810(struct ptp_clock_info *info,
 734			 struct ptp_clock_request *rq, int on)
 735{
 736	struct ice_pf *pf = ptp_info_to_pf(info);
 737	struct ice_perout_channel clk_cfg = {0};
 738	unsigned int chan;
 739	u32 gpio_pin;
 740	int err;
 741
 742	switch (rq->type) {
 743	case PTP_CLK_REQ_PEROUT:
 744		chan = rq->perout.index;
 745		if (chan == PPS_CLK_GEN_CHAN)
 746			clk_cfg.gpio_pin = PPS_PIN_INDEX;
 747		else
 748			clk_cfg.gpio_pin = chan;
 749
 750		clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) +
 751				   rq->perout.period.nsec);
 752		clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) +
 753				       rq->perout.start.nsec);
 754		clk_cfg.ena = !!on;
 755
 756		err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true);
 757		break;
 758	case PTP_CLK_REQ_EXTTS:
 759		chan = rq->extts.index;
 760		gpio_pin = chan;
 761
 762		err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin,
 763					rq->extts.flags);
 764		break;
 765	default:
 766		return -EOPNOTSUPP;
 767	}
 768
 769	return err;
 770}
 771
 772/**
 773 * ice_ptp_gettimex64 - Get the time of the clock
 774 * @info: the driver's PTP info structure
 775 * @ts: timespec64 structure to hold the current time value
 776 * @sts: Optional parameter for holding a pair of system timestamps from
 777 *       the system clock. Will be ignored if NULL is given.
 778 *
 779 * Read the device clock and return the correct value on ns, after converting it
 780 * into a timespec struct.
 781 */
 782static int
 783ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
 784		   struct ptp_system_timestamp *sts)
 785{
 786	struct ice_pf *pf = ptp_info_to_pf(info);
 787	struct ice_hw *hw = &pf->hw;
 788
 789	if (!ice_ptp_lock(hw)) {
 790		dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n");
 791		return -EBUSY;
 792	}
 793
 794	ice_ptp_read_time(pf, ts, sts);
 795	ice_ptp_unlock(hw);
 796
 797	return 0;
 798}
 799
 800/**
 801 * ice_ptp_settime64 - Set the time of the clock
 802 * @info: the driver's PTP info structure
 803 * @ts: timespec64 structure that holds the new time value
 804 *
 805 * Set the device clock to the user input value. The conversion from timespec
 806 * to ns happens in the write function.
 807 */
 808static int
 809ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
 810{
 811	struct ice_pf *pf = ptp_info_to_pf(info);
 812	struct timespec64 ts64 = *ts;
 813	struct ice_hw *hw = &pf->hw;
 814	int err;
 815
 816	if (!ice_ptp_lock(hw)) {
 817		err = -EBUSY;
 818		goto exit;
 819	}
 820
 821	/* Disable periodic outputs */
 822	ice_ptp_disable_all_clkout(pf);
 823
 824	err = ice_ptp_write_init(pf, &ts64);
 825	ice_ptp_unlock(hw);
 826
 827	if (!err)
 828		ice_ptp_update_cached_phctime(pf);
 829
 830	/* Reenable periodic outputs */
 831	ice_ptp_enable_all_clkout(pf);
 832exit:
 833	if (err) {
 834		dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
 835		return err;
 836	}
 837
 838	return 0;
 839}
 840
 841/**
 842 * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
 843 * @info: the driver's PTP info structure
 844 * @delta: Offset in nanoseconds to adjust the time by
 845 */
 846static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
 847{
 848	struct timespec64 now, then;
 849
 850	then = ns_to_timespec64(delta);
 851	ice_ptp_gettimex64(info, &now, NULL);
 852	now = timespec64_add(now, then);
 853
 854	return ice_ptp_settime64(info, (const struct timespec64 *)&now);
 855}
 856
 857/**
 858 * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
 859 * @info: the driver's PTP info structure
 860 * @delta: Offset in nanoseconds to adjust the time by
 861 */
 862static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
 863{
 864	struct ice_pf *pf = ptp_info_to_pf(info);
 865	struct ice_hw *hw = &pf->hw;
 866	struct device *dev;
 867	int err;
 868
 869	dev = ice_pf_to_dev(pf);
 870
 871	/* Hardware only supports atomic adjustments using signed 32-bit
 872	 * integers. For any adjustment outside this range, perform
 873	 * a non-atomic get->adjust->set flow.
 874	 */
 875	if (delta > S32_MAX || delta < S32_MIN) {
 876		dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
 877		return ice_ptp_adjtime_nonatomic(info, delta);
 878	}
 879
 880	if (!ice_ptp_lock(hw)) {
 881		dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
 882		return -EBUSY;
 883	}
 884
 885	/* Disable periodic outputs */
 886	ice_ptp_disable_all_clkout(pf);
 887
 888	err = ice_ptp_write_adj(pf, delta);
 889
 890	/* Reenable periodic outputs */
 891	ice_ptp_enable_all_clkout(pf);
 892
 893	ice_ptp_unlock(hw);
 894
 895	if (err) {
 896		dev_err(dev, "PTP failed to adjust time, err %d\n", err);
 897		return err;
 898	}
 899
 900	ice_ptp_update_cached_phctime(pf);
 901
 902	return 0;
 903}
 904
 905/**
 906 * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
 907 * @pf: Board private structure
 908 * @ifr: ioctl data
 909 *
 910 * Copy the timestamping config to user buffer
 911 */
 912int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
 913{
 914	struct hwtstamp_config *config;
 915
 916	if (!test_bit(ICE_FLAG_PTP, pf->flags))
 917		return -EIO;
 918
 919	config = &pf->ptp.tstamp_config;
 920
 921	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
 922		-EFAULT : 0;
 923}
 924
 925/**
 926 * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
 927 * @pf: Board private structure
 928 * @config: hwtstamp settings requested or saved
 929 */
 930static int
 931ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
 932{
 933	/* Reserved for future extensions. */
 934	if (config->flags)
 935		return -EINVAL;
 936
 937	switch (config->tx_type) {
 938	case HWTSTAMP_TX_OFF:
 939		ice_set_tx_tstamp(pf, false);
 940		break;
 941	case HWTSTAMP_TX_ON:
 942		ice_set_tx_tstamp(pf, true);
 943		break;
 944	default:
 945		return -ERANGE;
 946	}
 947
 948	switch (config->rx_filter) {
 949	case HWTSTAMP_FILTER_NONE:
 950		ice_set_rx_tstamp(pf, false);
 951		break;
 952	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
 953	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
 954	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
 955	case HWTSTAMP_FILTER_PTP_V2_EVENT:
 956	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
 957	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
 958	case HWTSTAMP_FILTER_PTP_V2_SYNC:
 959	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
 960	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
 961	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
 962	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
 963	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
 964	case HWTSTAMP_FILTER_NTP_ALL:
 965	case HWTSTAMP_FILTER_ALL:
 966		config->rx_filter = HWTSTAMP_FILTER_ALL;
 967		ice_set_rx_tstamp(pf, true);
 968		break;
 969	default:
 970		return -ERANGE;
 971	}
 972
 973	return 0;
 974}
 975
 976/**
 977 * ice_ptp_set_ts_config - ioctl interface to control the timestamping
 978 * @pf: Board private structure
 979 * @ifr: ioctl data
 980 *
 981 * Get the user config and store it
 982 */
 983int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
 984{
 985	struct hwtstamp_config config;
 986	int err;
 987
 988	if (!test_bit(ICE_FLAG_PTP, pf->flags))
 989		return -EAGAIN;
 990
 991	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
 992		return -EFAULT;
 993
 994	err = ice_ptp_set_timestamp_mode(pf, &config);
 995	if (err)
 996		return err;
 997
 998	/* Save these settings for future reference */
 999	pf->ptp.tstamp_config = config;
1000
1001	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1002		-EFAULT : 0;
1003}
1004
1005/**
1006 * ice_ptp_rx_hwtstamp - Check for an Rx timestamp
1007 * @rx_ring: Ring to get the VSI info
1008 * @rx_desc: Receive descriptor
1009 * @skb: Particular skb to send timestamp with
1010 *
1011 * The driver receives a notification in the receive descriptor with timestamp.
1012 * The timestamp is in ns, so we must convert the result first.
1013 */
1014void
1015ice_ptp_rx_hwtstamp(struct ice_ring *rx_ring,
1016		    union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb)
1017{
1018	u32 ts_high;
1019	u64 ts_ns;
1020
1021	/* Populate timesync data into skb */
1022	if (rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID) {
1023		struct skb_shared_hwtstamps *hwtstamps;
1024
1025		/* Use ice_ptp_extend_32b_ts directly, using the ring-specific
1026		 * cached PHC value, rather than accessing the PF. This also
1027		 * allows us to simply pass the upper 32bits of nanoseconds
1028		 * directly. Calling ice_ptp_extend_40b_ts is unnecessary as
1029		 * it would just discard these bits itself.
1030		 */
1031		ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
1032		ts_ns = ice_ptp_extend_32b_ts(rx_ring->cached_phctime, ts_high);
1033
1034		hwtstamps = skb_hwtstamps(skb);
1035		memset(hwtstamps, 0, sizeof(*hwtstamps));
1036		hwtstamps->hwtstamp = ns_to_ktime(ts_ns);
1037	}
1038}
1039
1040/**
1041 * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs
1042 * @info: PTP clock capabilities
1043 */
1044static void ice_ptp_setup_pins_e810(struct ptp_clock_info *info)
1045{
1046	info->n_per_out = E810_N_PER_OUT;
1047	info->n_ext_ts = E810_N_EXT_TS;
1048}
1049
1050/**
1051 * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
1052 * @pf: Board private structure
1053 * @info: PTP info to fill
1054 *
1055 * Assign functions to the PTP capabiltiies structure for E810 devices.
1056 * Functions which operate across all device families should be set directly
1057 * in ice_ptp_set_caps. Only add functions here which are distinct for e810
1058 * devices.
1059 */
1060static void
1061ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info)
1062{
1063	info->enable = ice_ptp_gpio_enable_e810;
1064
1065	ice_ptp_setup_pins_e810(info);
1066}
1067
1068/**
1069 * ice_ptp_set_caps - Set PTP capabilities
1070 * @pf: Board private structure
1071 */
1072static void ice_ptp_set_caps(struct ice_pf *pf)
1073{
1074	struct ptp_clock_info *info = &pf->ptp.info;
1075	struct device *dev = ice_pf_to_dev(pf);
1076
1077	snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
1078		 dev_driver_string(dev), dev_name(dev));
1079	info->owner = THIS_MODULE;
1080	info->max_adj = 999999999;
1081	info->adjtime = ice_ptp_adjtime;
1082	info->adjfine = ice_ptp_adjfine;
1083	info->gettimex64 = ice_ptp_gettimex64;
1084	info->settime64 = ice_ptp_settime64;
1085
1086	ice_ptp_set_funcs_e810(pf, info);
1087}
1088
1089/**
1090 * ice_ptp_create_clock - Create PTP clock device for userspace
1091 * @pf: Board private structure
1092 *
1093 * This function creates a new PTP clock device. It only creates one if we
1094 * don't already have one. Will return error if it can't create one, but success
1095 * if we already have a device. Should be used by ice_ptp_init to create clock
1096 * initially, and prevent global resets from creating new clock devices.
1097 */
1098static long ice_ptp_create_clock(struct ice_pf *pf)
1099{
1100	struct ptp_clock_info *info;
1101	struct ptp_clock *clock;
1102	struct device *dev;
1103
1104	/* No need to create a clock device if we already have one */
1105	if (pf->ptp.clock)
1106		return 0;
1107
1108	ice_ptp_set_caps(pf);
1109
1110	info = &pf->ptp.info;
1111	dev = ice_pf_to_dev(pf);
1112
1113	/* Allocate memory for kernel pins interface */
1114	if (info->n_pins) {
1115		info->pin_config = devm_kcalloc(dev, info->n_pins,
1116						sizeof(*info->pin_config),
1117						GFP_KERNEL);
1118		if (!info->pin_config) {
1119			info->n_pins = 0;
1120			return -ENOMEM;
1121		}
1122	}
1123
1124	/* Attempt to register the clock before enabling the hardware. */
1125	clock = ptp_clock_register(info, dev);
1126	if (IS_ERR(clock))
1127		return PTR_ERR(clock);
1128
1129	pf->ptp.clock = clock;
1130
1131	return 0;
1132}
1133
1134/**
1135 * ice_ptp_tx_tstamp_work - Process Tx timestamps for a port
1136 * @work: pointer to the kthread_work struct
1137 *
1138 * Process timestamps captured by the PHY associated with this port. To do
1139 * this, loop over each index with a waiting skb.
1140 *
1141 * If a given index has a valid timestamp, perform the following steps:
1142 *
1143 * 1) copy the timestamp out of the PHY register
1144 * 4) clear the timestamp valid bit in the PHY register
1145 * 5) unlock the index by clearing the associated in_use bit.
1146 * 2) extend the 40b timestamp value to get a 64bit timestamp
1147 * 3) send that timestamp to the stack
1148 *
1149 * After looping, if we still have waiting SKBs, then re-queue the work. This
1150 * may cause us effectively poll even when not strictly necessary. We do this
1151 * because it's possible a new timestamp was requested around the same time as
1152 * the interrupt. In some cases hardware might not interrupt us again when the
1153 * timestamp is captured.
1154 *
1155 * Note that we only take the tracking lock when clearing the bit and when
1156 * checking if we need to re-queue this task. The only place where bits can be
1157 * set is the hard xmit routine where an SKB has a request flag set. The only
1158 * places where we clear bits are this work function, or the periodic cleanup
1159 * thread. If the cleanup thread clears a bit we're processing we catch it
1160 * when we lock to clear the bit and then grab the SKB pointer. If a Tx thread
1161 * starts a new timestamp, we might not begin processing it right away but we
1162 * will notice it at the end when we re-queue the work item. If a Tx thread
1163 * starts a new timestamp just after this function exits without re-queuing,
1164 * the interrupt when the timestamp finishes should trigger. Avoiding holding
1165 * the lock for the entire function is important in order to ensure that Tx
1166 * threads do not get blocked while waiting for the lock.
1167 */
1168static void ice_ptp_tx_tstamp_work(struct kthread_work *work)
1169{
1170	struct ice_ptp_port *ptp_port;
1171	struct ice_ptp_tx *tx;
1172	struct ice_pf *pf;
1173	struct ice_hw *hw;
1174	u8 idx;
1175
1176	tx = container_of(work, struct ice_ptp_tx, work);
1177	if (!tx->init)
1178		return;
1179
1180	ptp_port = container_of(tx, struct ice_ptp_port, tx);
1181	pf = ptp_port_to_pf(ptp_port);
1182	hw = &pf->hw;
1183
1184	for_each_set_bit(idx, tx->in_use, tx->len) {
1185		struct skb_shared_hwtstamps shhwtstamps = {};
1186		u8 phy_idx = idx + tx->quad_offset;
1187		u64 raw_tstamp, tstamp;
1188		struct sk_buff *skb;
1189		int err;
1190
1191		err = ice_read_phy_tstamp(hw, tx->quad, phy_idx,
1192					  &raw_tstamp);
1193		if (err)
1194			continue;
1195
1196		/* Check if the timestamp is valid */
1197		if (!(raw_tstamp & ICE_PTP_TS_VALID))
1198			continue;
1199
1200		/* clear the timestamp register, so that it won't show valid
1201		 * again when re-used.
1202		 */
1203		ice_clear_phy_tstamp(hw, tx->quad, phy_idx);
1204
1205		/* The timestamp is valid, so we'll go ahead and clear this
1206		 * index and then send the timestamp up to the stack.
1207		 */
1208		spin_lock(&tx->lock);
1209		clear_bit(idx, tx->in_use);
1210		skb = tx->tstamps[idx].skb;
1211		tx->tstamps[idx].skb = NULL;
1212		spin_unlock(&tx->lock);
1213
1214		/* it's (unlikely but) possible we raced with the cleanup
1215		 * thread for discarding old timestamp requests.
1216		 */
1217		if (!skb)
1218			continue;
1219
1220		/* Extend the timestamp using cached PHC time */
1221		tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
1222		shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
1223
1224		skb_tstamp_tx(skb, &shhwtstamps);
1225		dev_kfree_skb_any(skb);
1226	}
1227
1228	/* Check if we still have work to do. If so, re-queue this task to
1229	 * poll for remaining timestamps.
1230	 */
1231	spin_lock(&tx->lock);
1232	if (!bitmap_empty(tx->in_use, tx->len))
1233		kthread_queue_work(pf->ptp.kworker, &tx->work);
1234	spin_unlock(&tx->lock);
1235}
1236
1237/**
1238 * ice_ptp_request_ts - Request an available Tx timestamp index
1239 * @tx: the PTP Tx timestamp tracker to request from
1240 * @skb: the SKB to associate with this timestamp request
1241 */
1242s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
1243{
1244	u8 idx;
1245
1246	/* Check if this tracker is initialized */
1247	if (!tx->init)
1248		return -1;
1249
1250	spin_lock(&tx->lock);
1251	/* Find and set the first available index */
1252	idx = find_first_zero_bit(tx->in_use, tx->len);
1253	if (idx < tx->len) {
1254		/* We got a valid index that no other thread could have set. Store
1255		 * a reference to the skb and the start time to allow discarding old
1256		 * requests.
1257		 */
1258		set_bit(idx, tx->in_use);
1259		tx->tstamps[idx].start = jiffies;
1260		tx->tstamps[idx].skb = skb_get(skb);
1261		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1262	}
1263
1264	spin_unlock(&tx->lock);
1265
1266	/* return the appropriate PHY timestamp register index, -1 if no
1267	 * indexes were available.
1268	 */
1269	if (idx >= tx->len)
1270		return -1;
1271	else
1272		return idx + tx->quad_offset;
1273}
1274
1275/**
1276 * ice_ptp_process_ts - Spawn kthread work to handle timestamps
1277 * @pf: Board private structure
1278 *
1279 * Queue work required to process the PTP Tx timestamps outside of interrupt
1280 * context.
1281 */
1282void ice_ptp_process_ts(struct ice_pf *pf)
1283{
1284	if (pf->ptp.port.tx.init)
1285		kthread_queue_work(pf->ptp.kworker, &pf->ptp.port.tx.work);
1286}
1287
1288/**
1289 * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
1290 * @tx: Tx tracking structure to initialize
1291 *
1292 * Assumes that the length has already been initialized. Do not call directly,
1293 * use the ice_ptp_init_tx_e822 or ice_ptp_init_tx_e810 instead.
1294 */
1295static int
1296ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
1297{
1298	tx->tstamps = kcalloc(tx->len, sizeof(*tx->tstamps), GFP_KERNEL);
1299	if (!tx->tstamps)
1300		return -ENOMEM;
1301
1302	tx->in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
1303	if (!tx->in_use) {
1304		kfree(tx->tstamps);
1305		tx->tstamps = NULL;
1306		return -ENOMEM;
1307	}
1308
1309	spin_lock_init(&tx->lock);
1310	kthread_init_work(&tx->work, ice_ptp_tx_tstamp_work);
1311
1312	tx->init = 1;
1313
1314	return 0;
1315}
1316
1317/**
1318 * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
1319 * @pf: Board private structure
1320 * @tx: the tracker to flush
1321 */
1322static void
1323ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
1324{
1325	u8 idx;
1326
1327	for (idx = 0; idx < tx->len; idx++) {
1328		u8 phy_idx = idx + tx->quad_offset;
1329
1330		spin_lock(&tx->lock);
1331		if (tx->tstamps[idx].skb) {
1332			dev_kfree_skb_any(tx->tstamps[idx].skb);
1333			tx->tstamps[idx].skb = NULL;
1334		}
1335		clear_bit(idx, tx->in_use);
1336		spin_unlock(&tx->lock);
1337
1338		/* Clear any potential residual timestamp in the PHY block */
1339		if (!pf->hw.reset_ongoing)
1340			ice_clear_phy_tstamp(&pf->hw, tx->quad, phy_idx);
1341	}
1342}
1343
1344/**
1345 * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
1346 * @pf: Board private structure
1347 * @tx: Tx tracking structure to release
1348 *
1349 * Free memory associated with the Tx timestamp tracker.
1350 */
1351static void
1352ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
1353{
1354	tx->init = 0;
1355
1356	kthread_cancel_work_sync(&tx->work);
1357
1358	ice_ptp_flush_tx_tracker(pf, tx);
1359
1360	kfree(tx->tstamps);
1361	tx->tstamps = NULL;
1362
1363	kfree(tx->in_use);
1364	tx->in_use = NULL;
1365
1366	tx->len = 0;
1367}
1368
1369/**
1370 * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
1371 * @pf: Board private structure
1372 * @tx: the Tx tracking structure to initialize
1373 *
1374 * Initialize the Tx timestamp tracker for this PF. For E810 devices, each
1375 * port has its own block of timestamps, independent of the other ports.
1376 */
1377static int
1378ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
1379{
1380	tx->quad = pf->hw.port_info->lport;
1381	tx->quad_offset = 0;
1382	tx->len = INDEX_PER_QUAD;
1383
1384	return ice_ptp_alloc_tx_tracker(tx);
1385}
1386
1387/**
1388 * ice_ptp_tx_tstamp_cleanup - Cleanup old timestamp requests that got dropped
1389 * @tx: PTP Tx tracker to clean up
1390 *
1391 * Loop through the Tx timestamp requests and see if any of them have been
1392 * waiting for a long time. Discard any SKBs that have been waiting for more
1393 * than 2 seconds. This is long enough to be reasonably sure that the
1394 * timestamp will never be captured. This might happen if the packet gets
1395 * discarded before it reaches the PHY timestamping block.
1396 */
1397static void ice_ptp_tx_tstamp_cleanup(struct ice_ptp_tx *tx)
1398{
1399	u8 idx;
1400
1401	if (!tx->init)
1402		return;
1403
1404	for_each_set_bit(idx, tx->in_use, tx->len) {
1405		struct sk_buff *skb;
1406
1407		/* Check if this SKB has been waiting for too long */
1408		if (time_is_after_jiffies(tx->tstamps[idx].start + 2 * HZ))
1409			continue;
1410
1411		spin_lock(&tx->lock);
1412		skb = tx->tstamps[idx].skb;
1413		tx->tstamps[idx].skb = NULL;
1414		clear_bit(idx, tx->in_use);
1415		spin_unlock(&tx->lock);
1416
1417		/* Free the SKB after we've cleared the bit */
1418		dev_kfree_skb_any(skb);
1419	}
1420}
1421
1422static void ice_ptp_periodic_work(struct kthread_work *work)
1423{
1424	struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
1425	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
1426
1427	if (!test_bit(ICE_FLAG_PTP, pf->flags))
1428		return;
1429
1430	ice_ptp_update_cached_phctime(pf);
1431
1432	ice_ptp_tx_tstamp_cleanup(&pf->ptp.port.tx);
1433
1434	/* Run twice a second */
1435	kthread_queue_delayed_work(ptp->kworker, &ptp->work,
1436				   msecs_to_jiffies(500));
1437}
1438
1439/**
1440 * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
1441 * @pf: Board private structure
1442 *
1443 * Setup and initialize a PTP clock device that represents the device hardware
1444 * clock. Save the clock index for other functions connected to the same
1445 * hardware resource.
1446 */
1447static int ice_ptp_init_owner(struct ice_pf *pf)
1448{
1449	struct device *dev = ice_pf_to_dev(pf);
1450	struct ice_hw *hw = &pf->hw;
1451	struct timespec64 ts;
1452	u8 src_idx;
1453	int err;
1454
1455	wr32(hw, GLTSYN_SYNC_DLAY, 0);
1456
1457	/* Clear some HW residue and enable source clock */
1458	src_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1459
1460	/* Enable source clocks */
1461	wr32(hw, GLTSYN_ENA(src_idx), GLTSYN_ENA_TSYN_ENA_M);
1462
1463	/* Enable PHY time sync */
1464	err = ice_ptp_init_phy_e810(hw);
1465	if (err)
1466		goto err_exit;
1467
1468	/* Clear event status indications for auxiliary pins */
1469	(void)rd32(hw, GLTSYN_STAT(src_idx));
1470
1471	/* Acquire the global hardware lock */
1472	if (!ice_ptp_lock(hw)) {
1473		err = -EBUSY;
1474		goto err_exit;
1475	}
1476
1477	/* Write the increment time value to PHY and LAN */
1478	err = ice_ptp_write_incval(hw, ICE_PTP_NOMINAL_INCVAL_E810);
1479	if (err) {
1480		ice_ptp_unlock(hw);
1481		goto err_exit;
1482	}
1483
1484	ts = ktime_to_timespec64(ktime_get_real());
1485	/* Write the initial Time value to PHY and LAN */
1486	err = ice_ptp_write_init(pf, &ts);
1487	if (err) {
1488		ice_ptp_unlock(hw);
1489		goto err_exit;
1490	}
1491
1492	/* Release the global hardware lock */
1493	ice_ptp_unlock(hw);
1494
1495	/* Ensure we have a clock device */
1496	err = ice_ptp_create_clock(pf);
1497	if (err)
1498		goto err_clk;
1499
1500	/* Store the PTP clock index for other PFs */
1501	ice_set_ptp_clock_index(pf);
1502
1503	return 0;
1504
1505err_clk:
1506	pf->ptp.clock = NULL;
1507err_exit:
1508	dev_err(dev, "PTP failed to register clock, err %d\n", err);
1509
1510	return err;
1511}
1512
1513/**
1514 * ice_ptp_init - Initialize the PTP support after device probe or reset
1515 * @pf: Board private structure
1516 *
1517 * This function sets device up for PTP support. The first time it is run, it
1518 * will create a clock device. It does not create a clock device if one
1519 * already exists. It also reconfigures the device after a reset.
1520 */
1521void ice_ptp_init(struct ice_pf *pf)
1522{
1523	struct device *dev = ice_pf_to_dev(pf);
1524	struct kthread_worker *kworker;
1525	struct ice_hw *hw = &pf->hw;
1526	int err;
1527
1528	/* PTP is currently only supported on E810 devices */
1529	if (!ice_is_e810(hw))
1530		return;
1531
1532	/* Check if this PF owns the source timer */
1533	if (hw->func_caps.ts_func_info.src_tmr_owned) {
1534		err = ice_ptp_init_owner(pf);
1535		if (err)
1536			return;
1537	}
1538
1539	/* Disable timestamping for both Tx and Rx */
1540	ice_ptp_cfg_timestamp(pf, false);
1541
1542	/* Initialize the PTP port Tx timestamp tracker */
1543	ice_ptp_init_tx_e810(pf, &pf->ptp.port.tx);
1544
1545	/* Initialize work functions */
1546	kthread_init_delayed_work(&pf->ptp.work, ice_ptp_periodic_work);
1547	kthread_init_work(&pf->ptp.extts_work, ice_ptp_extts_work);
1548
1549	/* Allocate a kworker for handling work required for the ports
1550	 * connected to the PTP hardware clock.
1551	 */
1552	kworker = kthread_create_worker(0, "ice-ptp-%s", dev_name(dev));
1553	if (IS_ERR(kworker)) {
1554		err = PTR_ERR(kworker);
1555		goto err_kworker;
1556	}
1557	pf->ptp.kworker = kworker;
1558
1559	set_bit(ICE_FLAG_PTP, pf->flags);
1560
1561	/* Start periodic work going */
1562	kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work, 0);
1563
1564	dev_info(dev, "PTP init successful\n");
1565	return;
1566
1567err_kworker:
1568	/* If we registered a PTP clock, release it */
1569	if (pf->ptp.clock) {
1570		ptp_clock_unregister(pf->ptp.clock);
1571		pf->ptp.clock = NULL;
1572	}
1573	dev_err(dev, "PTP failed %d\n", err);
1574}
1575
1576/**
1577 * ice_ptp_release - Disable the driver/HW support and unregister the clock
1578 * @pf: Board private structure
1579 *
1580 * This function handles the cleanup work required from the initialization by
1581 * clearing out the important information and unregistering the clock
1582 */
1583void ice_ptp_release(struct ice_pf *pf)
1584{
1585	/* Disable timestamping for both Tx and Rx */
1586	ice_ptp_cfg_timestamp(pf, false);
1587
1588	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
1589
1590	clear_bit(ICE_FLAG_PTP, pf->flags);
1591
1592	kthread_cancel_delayed_work_sync(&pf->ptp.work);
1593
1594	if (pf->ptp.kworker) {
1595		kthread_destroy_worker(pf->ptp.kworker);
1596		pf->ptp.kworker = NULL;
1597	}
1598
1599	if (!pf->ptp.clock)
1600		return;
1601
1602	/* Disable periodic outputs */
1603	ice_ptp_disable_all_clkout(pf);
1604
1605	ice_clear_ptp_clock_index(pf);
1606	ptp_clock_unregister(pf->ptp.clock);
1607	pf->ptp.clock = NULL;
1608
1609	dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
1610}