Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v4.17
 
   1/*
   2 * Driver for the Atmel Extensible DMA Controller (aka XDMAC on AT91 systems)
   3 *
   4 * Copyright (C) 2014 Atmel Corporation
   5 *
   6 * Author: Ludovic Desroches <ludovic.desroches@atmel.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify it
   9 * under the terms of the GNU General Public License version 2 as published by
  10 * the Free Software Foundation.
  11 *
  12 * This program is distributed in the hope that it will be useful, but WITHOUT
  13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  15 * more details.
  16 *
  17 * You should have received a copy of the GNU General Public License along with
  18 * this program.  If not, see <http://www.gnu.org/licenses/>.
  19 */
  20
  21#include <asm/barrier.h>
  22#include <dt-bindings/dma/at91.h>
  23#include <linux/clk.h>
  24#include <linux/dmaengine.h>
  25#include <linux/dmapool.h>
  26#include <linux/interrupt.h>
  27#include <linux/irq.h>
  28#include <linux/kernel.h>
  29#include <linux/list.h>
  30#include <linux/module.h>
  31#include <linux/of_dma.h>
  32#include <linux/of_platform.h>
  33#include <linux/platform_device.h>
  34#include <linux/pm.h>
  35
  36#include "dmaengine.h"
  37
  38/* Global registers */
  39#define AT_XDMAC_GTYPE		0x00	/* Global Type Register */
  40#define		AT_XDMAC_NB_CH(i)	(((i) & 0x1F) + 1)		/* Number of Channels Minus One */
  41#define		AT_XDMAC_FIFO_SZ(i)	(((i) >> 5) & 0x7FF)		/* Number of Bytes */
  42#define		AT_XDMAC_NB_REQ(i)	((((i) >> 16) & 0x3F) + 1)	/* Number of Peripheral Requests Minus One */
  43#define AT_XDMAC_GCFG		0x04	/* Global Configuration Register */
 
 
 
 
 
 
 
 
 
 
  44#define AT_XDMAC_GWAC		0x08	/* Global Weighted Arbiter Configuration Register */
 
 
 
 
 
 
 
  45#define AT_XDMAC_GIE		0x0C	/* Global Interrupt Enable Register */
  46#define AT_XDMAC_GID		0x10	/* Global Interrupt Disable Register */
  47#define AT_XDMAC_GIM		0x14	/* Global Interrupt Mask Register */
  48#define AT_XDMAC_GIS		0x18	/* Global Interrupt Status Register */
  49#define AT_XDMAC_GE		0x1C	/* Global Channel Enable Register */
  50#define AT_XDMAC_GD		0x20	/* Global Channel Disable Register */
  51#define AT_XDMAC_GS		0x24	/* Global Channel Status Register */
  52#define AT_XDMAC_GRS		0x28	/* Global Channel Read Suspend Register */
  53#define AT_XDMAC_GWS		0x2C	/* Global Write Suspend Register */
  54#define AT_XDMAC_GRWS		0x30	/* Global Channel Read Write Suspend Register */
  55#define AT_XDMAC_GRWR		0x34	/* Global Channel Read Write Resume Register */
  56#define AT_XDMAC_GSWR		0x38	/* Global Channel Software Request Register */
  57#define AT_XDMAC_GSWS		0x3C	/* Global channel Software Request Status Register */
  58#define AT_XDMAC_GSWF		0x40	/* Global Channel Software Flush Request Register */
  59#define AT_XDMAC_VERSION	0xFFC	/* XDMAC Version Register */
  60
  61/* Channel relative registers offsets */
  62#define AT_XDMAC_CIE		0x00	/* Channel Interrupt Enable Register */
  63#define		AT_XDMAC_CIE_BIE	BIT(0)	/* End of Block Interrupt Enable Bit */
  64#define		AT_XDMAC_CIE_LIE	BIT(1)	/* End of Linked List Interrupt Enable Bit */
  65#define		AT_XDMAC_CIE_DIE	BIT(2)	/* End of Disable Interrupt Enable Bit */
  66#define		AT_XDMAC_CIE_FIE	BIT(3)	/* End of Flush Interrupt Enable Bit */
  67#define		AT_XDMAC_CIE_RBEIE	BIT(4)	/* Read Bus Error Interrupt Enable Bit */
  68#define		AT_XDMAC_CIE_WBEIE	BIT(5)	/* Write Bus Error Interrupt Enable Bit */
  69#define		AT_XDMAC_CIE_ROIE	BIT(6)	/* Request Overflow Interrupt Enable Bit */
  70#define AT_XDMAC_CID		0x04	/* Channel Interrupt Disable Register */
  71#define		AT_XDMAC_CID_BID	BIT(0)	/* End of Block Interrupt Disable Bit */
  72#define		AT_XDMAC_CID_LID	BIT(1)	/* End of Linked List Interrupt Disable Bit */
  73#define		AT_XDMAC_CID_DID	BIT(2)	/* End of Disable Interrupt Disable Bit */
  74#define		AT_XDMAC_CID_FID	BIT(3)	/* End of Flush Interrupt Disable Bit */
  75#define		AT_XDMAC_CID_RBEID	BIT(4)	/* Read Bus Error Interrupt Disable Bit */
  76#define		AT_XDMAC_CID_WBEID	BIT(5)	/* Write Bus Error Interrupt Disable Bit */
  77#define		AT_XDMAC_CID_ROID	BIT(6)	/* Request Overflow Interrupt Disable Bit */
  78#define AT_XDMAC_CIM		0x08	/* Channel Interrupt Mask Register */
  79#define		AT_XDMAC_CIM_BIM	BIT(0)	/* End of Block Interrupt Mask Bit */
  80#define		AT_XDMAC_CIM_LIM	BIT(1)	/* End of Linked List Interrupt Mask Bit */
  81#define		AT_XDMAC_CIM_DIM	BIT(2)	/* End of Disable Interrupt Mask Bit */
  82#define		AT_XDMAC_CIM_FIM	BIT(3)	/* End of Flush Interrupt Mask Bit */
  83#define		AT_XDMAC_CIM_RBEIM	BIT(4)	/* Read Bus Error Interrupt Mask Bit */
  84#define		AT_XDMAC_CIM_WBEIM	BIT(5)	/* Write Bus Error Interrupt Mask Bit */
  85#define		AT_XDMAC_CIM_ROIM	BIT(6)	/* Request Overflow Interrupt Mask Bit */
  86#define AT_XDMAC_CIS		0x0C	/* Channel Interrupt Status Register */
  87#define		AT_XDMAC_CIS_BIS	BIT(0)	/* End of Block Interrupt Status Bit */
  88#define		AT_XDMAC_CIS_LIS	BIT(1)	/* End of Linked List Interrupt Status Bit */
  89#define		AT_XDMAC_CIS_DIS	BIT(2)	/* End of Disable Interrupt Status Bit */
  90#define		AT_XDMAC_CIS_FIS	BIT(3)	/* End of Flush Interrupt Status Bit */
  91#define		AT_XDMAC_CIS_RBEIS	BIT(4)	/* Read Bus Error Interrupt Status Bit */
  92#define		AT_XDMAC_CIS_WBEIS	BIT(5)	/* Write Bus Error Interrupt Status Bit */
  93#define		AT_XDMAC_CIS_ROIS	BIT(6)	/* Request Overflow Interrupt Status Bit */
  94#define AT_XDMAC_CSA		0x10	/* Channel Source Address Register */
  95#define AT_XDMAC_CDA		0x14	/* Channel Destination Address Register */
  96#define AT_XDMAC_CNDA		0x18	/* Channel Next Descriptor Address Register */
  97#define		AT_XDMAC_CNDA_NDAIF(i)	((i) & 0x1)			/* Channel x Next Descriptor Interface */
  98#define		AT_XDMAC_CNDA_NDA(i)	((i) & 0xfffffffc)		/* Channel x Next Descriptor Address */
  99#define AT_XDMAC_CNDC		0x1C	/* Channel Next Descriptor Control Register */
 100#define		AT_XDMAC_CNDC_NDE		(0x1 << 0)		/* Channel x Next Descriptor Enable */
 101#define		AT_XDMAC_CNDC_NDSUP		(0x1 << 1)		/* Channel x Next Descriptor Source Update */
 102#define		AT_XDMAC_CNDC_NDDUP		(0x1 << 2)		/* Channel x Next Descriptor Destination Update */
 103#define		AT_XDMAC_CNDC_NDVIEW_NDV0	(0x0 << 3)		/* Channel x Next Descriptor View 0 */
 104#define		AT_XDMAC_CNDC_NDVIEW_NDV1	(0x1 << 3)		/* Channel x Next Descriptor View 1 */
 105#define		AT_XDMAC_CNDC_NDVIEW_NDV2	(0x2 << 3)		/* Channel x Next Descriptor View 2 */
 106#define		AT_XDMAC_CNDC_NDVIEW_NDV3	(0x3 << 3)		/* Channel x Next Descriptor View 3 */
 107#define AT_XDMAC_CUBC		0x20	/* Channel Microblock Control Register */
 108#define AT_XDMAC_CBC		0x24	/* Channel Block Control Register */
 109#define AT_XDMAC_CC		0x28	/* Channel Configuration Register */
 110#define		AT_XDMAC_CC_TYPE	(0x1 << 0)	/* Channel Transfer Type */
 111#define			AT_XDMAC_CC_TYPE_MEM_TRAN	(0x0 << 0)	/* Memory to Memory Transfer */
 112#define			AT_XDMAC_CC_TYPE_PER_TRAN	(0x1 << 0)	/* Peripheral to Memory or Memory to Peripheral Transfer */
 113#define		AT_XDMAC_CC_MBSIZE_MASK	(0x3 << 1)
 114#define			AT_XDMAC_CC_MBSIZE_SINGLE	(0x0 << 1)
 115#define			AT_XDMAC_CC_MBSIZE_FOUR		(0x1 << 1)
 116#define			AT_XDMAC_CC_MBSIZE_EIGHT	(0x2 << 1)
 117#define			AT_XDMAC_CC_MBSIZE_SIXTEEN	(0x3 << 1)
 118#define		AT_XDMAC_CC_DSYNC	(0x1 << 4)	/* Channel Synchronization */
 119#define			AT_XDMAC_CC_DSYNC_PER2MEM	(0x0 << 4)
 120#define			AT_XDMAC_CC_DSYNC_MEM2PER	(0x1 << 4)
 121#define		AT_XDMAC_CC_PROT	(0x1 << 5)	/* Channel Protection */
 122#define			AT_XDMAC_CC_PROT_SEC		(0x0 << 5)
 123#define			AT_XDMAC_CC_PROT_UNSEC		(0x1 << 5)
 124#define		AT_XDMAC_CC_SWREQ	(0x1 << 6)	/* Channel Software Request Trigger */
 125#define			AT_XDMAC_CC_SWREQ_HWR_CONNECTED	(0x0 << 6)
 126#define			AT_XDMAC_CC_SWREQ_SWR_CONNECTED	(0x1 << 6)
 127#define		AT_XDMAC_CC_MEMSET	(0x1 << 7)	/* Channel Fill Block of memory */
 128#define			AT_XDMAC_CC_MEMSET_NORMAL_MODE	(0x0 << 7)
 129#define			AT_XDMAC_CC_MEMSET_HW_MODE	(0x1 << 7)
 130#define		AT_XDMAC_CC_CSIZE(i)	((0x7 & (i)) << 8)	/* Channel Chunk Size */
 131#define		AT_XDMAC_CC_DWIDTH_OFFSET	11
 132#define		AT_XDMAC_CC_DWIDTH_MASK	(0x3 << AT_XDMAC_CC_DWIDTH_OFFSET)
 133#define		AT_XDMAC_CC_DWIDTH(i)	((0x3 & (i)) << AT_XDMAC_CC_DWIDTH_OFFSET)	/* Channel Data Width */
 134#define			AT_XDMAC_CC_DWIDTH_BYTE		0x0
 135#define			AT_XDMAC_CC_DWIDTH_HALFWORD	0x1
 136#define			AT_XDMAC_CC_DWIDTH_WORD		0x2
 137#define			AT_XDMAC_CC_DWIDTH_DWORD	0x3
 138#define		AT_XDMAC_CC_SIF(i)	((0x1 & (i)) << 13)	/* Channel Source Interface Identifier */
 139#define		AT_XDMAC_CC_DIF(i)	((0x1 & (i)) << 14)	/* Channel Destination Interface Identifier */
 140#define		AT_XDMAC_CC_SAM_MASK	(0x3 << 16)	/* Channel Source Addressing Mode */
 141#define			AT_XDMAC_CC_SAM_FIXED_AM	(0x0 << 16)
 142#define			AT_XDMAC_CC_SAM_INCREMENTED_AM	(0x1 << 16)
 143#define			AT_XDMAC_CC_SAM_UBS_AM		(0x2 << 16)
 144#define			AT_XDMAC_CC_SAM_UBS_DS_AM	(0x3 << 16)
 145#define		AT_XDMAC_CC_DAM_MASK	(0x3 << 18)	/* Channel Source Addressing Mode */
 146#define			AT_XDMAC_CC_DAM_FIXED_AM	(0x0 << 18)
 147#define			AT_XDMAC_CC_DAM_INCREMENTED_AM	(0x1 << 18)
 148#define			AT_XDMAC_CC_DAM_UBS_AM		(0x2 << 18)
 149#define			AT_XDMAC_CC_DAM_UBS_DS_AM	(0x3 << 18)
 150#define		AT_XDMAC_CC_INITD	(0x1 << 21)	/* Channel Initialization Terminated (read only) */
 151#define			AT_XDMAC_CC_INITD_TERMINATED	(0x0 << 21)
 152#define			AT_XDMAC_CC_INITD_IN_PROGRESS	(0x1 << 21)
 153#define		AT_XDMAC_CC_RDIP	(0x1 << 22)	/* Read in Progress (read only) */
 154#define			AT_XDMAC_CC_RDIP_DONE		(0x0 << 22)
 155#define			AT_XDMAC_CC_RDIP_IN_PROGRESS	(0x1 << 22)
 156#define		AT_XDMAC_CC_WRIP	(0x1 << 23)	/* Write in Progress (read only) */
 157#define			AT_XDMAC_CC_WRIP_DONE		(0x0 << 23)
 158#define			AT_XDMAC_CC_WRIP_IN_PROGRESS	(0x1 << 23)
 159#define		AT_XDMAC_CC_PERID(i)	(0x7f & (i) << 24)	/* Channel Peripheral Identifier */
 160#define AT_XDMAC_CDS_MSP	0x2C	/* Channel Data Stride Memory Set Pattern */
 161#define AT_XDMAC_CSUS		0x30	/* Channel Source Microblock Stride */
 162#define AT_XDMAC_CDUS		0x34	/* Channel Destination Microblock Stride */
 163
 164#define AT_XDMAC_CHAN_REG_BASE	0x50	/* Channel registers base address */
 165
 166/* Microblock control members */
 167#define AT_XDMAC_MBR_UBC_UBLEN_MAX	0xFFFFFFUL	/* Maximum Microblock Length */
 168#define AT_XDMAC_MBR_UBC_NDE		(0x1 << 24)	/* Next Descriptor Enable */
 169#define AT_XDMAC_MBR_UBC_NSEN		(0x1 << 25)	/* Next Descriptor Source Update */
 170#define AT_XDMAC_MBR_UBC_NDEN		(0x1 << 26)	/* Next Descriptor Destination Update */
 171#define AT_XDMAC_MBR_UBC_NDV0		(0x0 << 27)	/* Next Descriptor View 0 */
 172#define AT_XDMAC_MBR_UBC_NDV1		(0x1 << 27)	/* Next Descriptor View 1 */
 173#define AT_XDMAC_MBR_UBC_NDV2		(0x2 << 27)	/* Next Descriptor View 2 */
 174#define AT_XDMAC_MBR_UBC_NDV3		(0x3 << 27)	/* Next Descriptor View 3 */
 175
 176#define AT_XDMAC_MAX_CHAN	0x20
 177#define AT_XDMAC_MAX_CSIZE	16	/* 16 data */
 178#define AT_XDMAC_MAX_DWIDTH	8	/* 64 bits */
 179#define AT_XDMAC_RESIDUE_MAX_RETRIES	5
 180
 181#define AT_XDMAC_DMA_BUSWIDTHS\
 182	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
 183	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
 184	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
 185	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |\
 186	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
 187
 188enum atc_status {
 189	AT_XDMAC_CHAN_IS_CYCLIC = 0,
 190	AT_XDMAC_CHAN_IS_PAUSED,
 191};
 192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 193/* ----- Channels ----- */
 194struct at_xdmac_chan {
 195	struct dma_chan			chan;
 196	void __iomem			*ch_regs;
 197	u32				mask;		/* Channel Mask */
 198	u32				cfg;		/* Channel Configuration Register */
 199	u8				perid;		/* Peripheral ID */
 200	u8				perif;		/* Peripheral Interface */
 201	u8				memif;		/* Memory Interface */
 202	u32				save_cc;
 203	u32				save_cim;
 204	u32				save_cnda;
 205	u32				save_cndc;
 
 206	unsigned long			status;
 207	struct tasklet_struct		tasklet;
 208	struct dma_slave_config		sconfig;
 209
 210	spinlock_t			lock;
 211
 212	struct list_head		xfers_list;
 213	struct list_head		free_descs_list;
 214};
 215
 216
 217/* ----- Controller ----- */
 218struct at_xdmac {
 219	struct dma_device	dma;
 220	void __iomem		*regs;
 221	int			irq;
 222	struct clk		*clk;
 223	u32			save_gim;
 224	struct dma_pool		*at_xdmac_desc_pool;
 225	struct at_xdmac_chan	chan[0];
 
 226};
 227
 228
 229/* ----- Descriptors ----- */
 230
 231/* Linked List Descriptor */
 232struct at_xdmac_lld {
 233	dma_addr_t	mbr_nda;	/* Next Descriptor Member */
 234	u32		mbr_ubc;	/* Microblock Control Member */
 235	dma_addr_t	mbr_sa;		/* Source Address Member */
 236	dma_addr_t	mbr_da;		/* Destination Address Member */
 237	u32		mbr_cfg;	/* Configuration Register */
 238	u32		mbr_bc;		/* Block Control Register */
 239	u32		mbr_ds;		/* Data Stride Register */
 240	u32		mbr_sus;	/* Source Microblock Stride Register */
 241	u32		mbr_dus;	/* Destination Microblock Stride Register */
 242};
 243
 244/* 64-bit alignment needed to update CNDA and CUBC registers in an atomic way. */
 245struct at_xdmac_desc {
 246	struct at_xdmac_lld		lld;
 247	enum dma_transfer_direction	direction;
 248	struct dma_async_tx_descriptor	tx_dma_desc;
 249	struct list_head		desc_node;
 250	/* Following members are only used by the first descriptor */
 251	bool				active_xfer;
 252	unsigned int			xfer_size;
 253	struct list_head		descs_list;
 254	struct list_head		xfer_node;
 255} __aligned(sizeof(u64));
 256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 257static inline void __iomem *at_xdmac_chan_reg_base(struct at_xdmac *atxdmac, unsigned int chan_nb)
 258{
 259	return atxdmac->regs + (AT_XDMAC_CHAN_REG_BASE + chan_nb * 0x40);
 260}
 261
 262#define at_xdmac_read(atxdmac, reg) readl_relaxed((atxdmac)->regs + (reg))
 263#define at_xdmac_write(atxdmac, reg, value) \
 264	writel_relaxed((value), (atxdmac)->regs + (reg))
 265
 266#define at_xdmac_chan_read(atchan, reg) readl_relaxed((atchan)->ch_regs + (reg))
 267#define at_xdmac_chan_write(atchan, reg, value) writel_relaxed((value), (atchan)->ch_regs + (reg))
 268
 269static inline struct at_xdmac_chan *to_at_xdmac_chan(struct dma_chan *dchan)
 270{
 271	return container_of(dchan, struct at_xdmac_chan, chan);
 272}
 273
 274static struct device *chan2dev(struct dma_chan *chan)
 275{
 276	return &chan->dev->device;
 277}
 278
 279static inline struct at_xdmac *to_at_xdmac(struct dma_device *ddev)
 280{
 281	return container_of(ddev, struct at_xdmac, dma);
 282}
 283
 284static inline struct at_xdmac_desc *txd_to_at_desc(struct dma_async_tx_descriptor *txd)
 285{
 286	return container_of(txd, struct at_xdmac_desc, tx_dma_desc);
 287}
 288
 289static inline int at_xdmac_chan_is_cyclic(struct at_xdmac_chan *atchan)
 290{
 291	return test_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
 292}
 293
 294static inline int at_xdmac_chan_is_paused(struct at_xdmac_chan *atchan)
 295{
 296	return test_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
 297}
 298
 299static inline int at_xdmac_csize(u32 maxburst)
 300{
 301	int csize;
 302
 303	csize = ffs(maxburst) - 1;
 304	if (csize > 4)
 305		csize = -EINVAL;
 306
 307	return csize;
 308};
 309
 310static inline u8 at_xdmac_get_dwidth(u32 cfg)
 311{
 312	return (cfg & AT_XDMAC_CC_DWIDTH_MASK) >> AT_XDMAC_CC_DWIDTH_OFFSET;
 313};
 314
 315static unsigned int init_nr_desc_per_channel = 64;
 316module_param(init_nr_desc_per_channel, uint, 0644);
 317MODULE_PARM_DESC(init_nr_desc_per_channel,
 318		 "initial descriptors per channel (default: 64)");
 319
 320
 321static bool at_xdmac_chan_is_enabled(struct at_xdmac_chan *atchan)
 322{
 323	return at_xdmac_chan_read(atchan, AT_XDMAC_GS) & atchan->mask;
 324}
 325
 326static void at_xdmac_off(struct at_xdmac *atxdmac)
 327{
 328	at_xdmac_write(atxdmac, AT_XDMAC_GD, -1L);
 329
 330	/* Wait that all chans are disabled. */
 331	while (at_xdmac_read(atxdmac, AT_XDMAC_GS))
 332		cpu_relax();
 333
 334	at_xdmac_write(atxdmac, AT_XDMAC_GID, -1L);
 335}
 336
 337/* Call with lock hold. */
 338static void at_xdmac_start_xfer(struct at_xdmac_chan *atchan,
 339				struct at_xdmac_desc *first)
 340{
 341	struct at_xdmac	*atxdmac = to_at_xdmac(atchan->chan.device);
 342	u32		reg;
 343
 344	dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, first);
 345
 346	if (at_xdmac_chan_is_enabled(atchan))
 347		return;
 348
 349	/* Set transfer as active to not try to start it again. */
 350	first->active_xfer = true;
 351
 352	/* Tell xdmac where to get the first descriptor. */
 353	reg = AT_XDMAC_CNDA_NDA(first->tx_dma_desc.phys)
 354	      | AT_XDMAC_CNDA_NDAIF(atchan->memif);
 
 
 355	at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, reg);
 356
 357	/*
 358	 * When doing non cyclic transfer we need to use the next
 359	 * descriptor view 2 since some fields of the configuration register
 360	 * depend on transfer size and src/dest addresses.
 361	 */
 362	if (at_xdmac_chan_is_cyclic(atchan))
 363		reg = AT_XDMAC_CNDC_NDVIEW_NDV1;
 364	else if (first->lld.mbr_ubc & AT_XDMAC_MBR_UBC_NDV3)
 365		reg = AT_XDMAC_CNDC_NDVIEW_NDV3;
 366	else
 367		reg = AT_XDMAC_CNDC_NDVIEW_NDV2;
 368	/*
 369	 * Even if the register will be updated from the configuration in the
 370	 * descriptor when using view 2 or higher, the PROT bit won't be set
 371	 * properly. This bit can be modified only by using the channel
 372	 * configuration register.
 373	 */
 374	at_xdmac_chan_write(atchan, AT_XDMAC_CC, first->lld.mbr_cfg);
 375
 376	reg |= AT_XDMAC_CNDC_NDDUP
 377	       | AT_XDMAC_CNDC_NDSUP
 378	       | AT_XDMAC_CNDC_NDE;
 379	at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, reg);
 380
 381	dev_vdbg(chan2dev(&atchan->chan),
 382		 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
 383		 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
 384		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
 385		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
 386		 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
 387		 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
 388		 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
 389
 390	at_xdmac_chan_write(atchan, AT_XDMAC_CID, 0xffffffff);
 391	reg = AT_XDMAC_CIE_RBEIE | AT_XDMAC_CIE_WBEIE | AT_XDMAC_CIE_ROIE;
 
 
 
 
 
 
 392	/*
 393	 * There is no end of list when doing cyclic dma, we need to get
 394	 * an interrupt after each periods.
 395	 */
 396	if (at_xdmac_chan_is_cyclic(atchan))
 397		at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
 398				    reg | AT_XDMAC_CIE_BIE);
 399	else
 400		at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
 401				    reg | AT_XDMAC_CIE_LIE);
 402	at_xdmac_write(atxdmac, AT_XDMAC_GIE, atchan->mask);
 403	dev_vdbg(chan2dev(&atchan->chan),
 404		 "%s: enable channel (0x%08x)\n", __func__, atchan->mask);
 405	wmb();
 406	at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
 407
 408	dev_vdbg(chan2dev(&atchan->chan),
 409		 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
 410		 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
 411		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
 412		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
 413		 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
 414		 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
 415		 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
 416
 417}
 418
 419static dma_cookie_t at_xdmac_tx_submit(struct dma_async_tx_descriptor *tx)
 420{
 421	struct at_xdmac_desc	*desc = txd_to_at_desc(tx);
 422	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(tx->chan);
 423	dma_cookie_t		cookie;
 424	unsigned long		irqflags;
 425
 426	spin_lock_irqsave(&atchan->lock, irqflags);
 427	cookie = dma_cookie_assign(tx);
 428
 429	dev_vdbg(chan2dev(tx->chan), "%s: atchan 0x%p, add desc 0x%p to xfers_list\n",
 430		 __func__, atchan, desc);
 431	list_add_tail(&desc->xfer_node, &atchan->xfers_list);
 432	if (list_is_singular(&atchan->xfers_list))
 433		at_xdmac_start_xfer(atchan, desc);
 434
 435	spin_unlock_irqrestore(&atchan->lock, irqflags);
 436	return cookie;
 437}
 438
 439static struct at_xdmac_desc *at_xdmac_alloc_desc(struct dma_chan *chan,
 440						 gfp_t gfp_flags)
 441{
 442	struct at_xdmac_desc	*desc;
 443	struct at_xdmac		*atxdmac = to_at_xdmac(chan->device);
 444	dma_addr_t		phys;
 445
 446	desc = dma_pool_zalloc(atxdmac->at_xdmac_desc_pool, gfp_flags, &phys);
 447	if (desc) {
 448		INIT_LIST_HEAD(&desc->descs_list);
 449		dma_async_tx_descriptor_init(&desc->tx_dma_desc, chan);
 450		desc->tx_dma_desc.tx_submit = at_xdmac_tx_submit;
 451		desc->tx_dma_desc.phys = phys;
 452	}
 453
 454	return desc;
 455}
 456
 457static void at_xdmac_init_used_desc(struct at_xdmac_desc *desc)
 458{
 459	memset(&desc->lld, 0, sizeof(desc->lld));
 460	INIT_LIST_HEAD(&desc->descs_list);
 461	desc->direction = DMA_TRANS_NONE;
 462	desc->xfer_size = 0;
 463	desc->active_xfer = false;
 464}
 465
 466/* Call must be protected by lock. */
 467static struct at_xdmac_desc *at_xdmac_get_desc(struct at_xdmac_chan *atchan)
 468{
 469	struct at_xdmac_desc *desc;
 470
 471	if (list_empty(&atchan->free_descs_list)) {
 472		desc = at_xdmac_alloc_desc(&atchan->chan, GFP_NOWAIT);
 473	} else {
 474		desc = list_first_entry(&atchan->free_descs_list,
 475					struct at_xdmac_desc, desc_node);
 476		list_del(&desc->desc_node);
 477		at_xdmac_init_used_desc(desc);
 478	}
 479
 480	return desc;
 481}
 482
 483static void at_xdmac_queue_desc(struct dma_chan *chan,
 484				struct at_xdmac_desc *prev,
 485				struct at_xdmac_desc *desc)
 486{
 487	if (!prev || !desc)
 488		return;
 489
 490	prev->lld.mbr_nda = desc->tx_dma_desc.phys;
 491	prev->lld.mbr_ubc |= AT_XDMAC_MBR_UBC_NDE;
 492
 493	dev_dbg(chan2dev(chan),	"%s: chain lld: prev=0x%p, mbr_nda=%pad\n",
 494		__func__, prev, &prev->lld.mbr_nda);
 495}
 496
 497static inline void at_xdmac_increment_block_count(struct dma_chan *chan,
 498						  struct at_xdmac_desc *desc)
 499{
 500	if (!desc)
 501		return;
 502
 503	desc->lld.mbr_bc++;
 504
 505	dev_dbg(chan2dev(chan),
 506		"%s: incrementing the block count of the desc 0x%p\n",
 507		__func__, desc);
 508}
 509
 510static struct dma_chan *at_xdmac_xlate(struct of_phandle_args *dma_spec,
 511				       struct of_dma *of_dma)
 512{
 513	struct at_xdmac		*atxdmac = of_dma->of_dma_data;
 514	struct at_xdmac_chan	*atchan;
 515	struct dma_chan		*chan;
 516	struct device		*dev = atxdmac->dma.dev;
 517
 518	if (dma_spec->args_count != 1) {
 519		dev_err(dev, "dma phandler args: bad number of args\n");
 520		return NULL;
 521	}
 522
 523	chan = dma_get_any_slave_channel(&atxdmac->dma);
 524	if (!chan) {
 525		dev_err(dev, "can't get a dma channel\n");
 526		return NULL;
 527	}
 528
 529	atchan = to_at_xdmac_chan(chan);
 530	atchan->memif = AT91_XDMAC_DT_GET_MEM_IF(dma_spec->args[0]);
 531	atchan->perif = AT91_XDMAC_DT_GET_PER_IF(dma_spec->args[0]);
 532	atchan->perid = AT91_XDMAC_DT_GET_PERID(dma_spec->args[0]);
 533	dev_dbg(dev, "chan dt cfg: memif=%u perif=%u perid=%u\n",
 534		 atchan->memif, atchan->perif, atchan->perid);
 535
 536	return chan;
 537}
 538
 539static int at_xdmac_compute_chan_conf(struct dma_chan *chan,
 540				      enum dma_transfer_direction direction)
 541{
 542	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
 
 543	int			csize, dwidth;
 544
 545	if (direction == DMA_DEV_TO_MEM) {
 546		atchan->cfg =
 547			AT91_XDMAC_DT_PERID(atchan->perid)
 548			| AT_XDMAC_CC_DAM_INCREMENTED_AM
 549			| AT_XDMAC_CC_SAM_FIXED_AM
 550			| AT_XDMAC_CC_DIF(atchan->memif)
 551			| AT_XDMAC_CC_SIF(atchan->perif)
 552			| AT_XDMAC_CC_SWREQ_HWR_CONNECTED
 553			| AT_XDMAC_CC_DSYNC_PER2MEM
 554			| AT_XDMAC_CC_MBSIZE_SIXTEEN
 555			| AT_XDMAC_CC_TYPE_PER_TRAN;
 
 
 
 
 556		csize = ffs(atchan->sconfig.src_maxburst) - 1;
 557		if (csize < 0) {
 558			dev_err(chan2dev(chan), "invalid src maxburst value\n");
 559			return -EINVAL;
 560		}
 561		atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
 562		dwidth = ffs(atchan->sconfig.src_addr_width) - 1;
 563		if (dwidth < 0) {
 564			dev_err(chan2dev(chan), "invalid src addr width value\n");
 565			return -EINVAL;
 566		}
 567		atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
 568	} else if (direction == DMA_MEM_TO_DEV) {
 569		atchan->cfg =
 570			AT91_XDMAC_DT_PERID(atchan->perid)
 571			| AT_XDMAC_CC_DAM_FIXED_AM
 572			| AT_XDMAC_CC_SAM_INCREMENTED_AM
 573			| AT_XDMAC_CC_DIF(atchan->perif)
 574			| AT_XDMAC_CC_SIF(atchan->memif)
 575			| AT_XDMAC_CC_SWREQ_HWR_CONNECTED
 576			| AT_XDMAC_CC_DSYNC_MEM2PER
 577			| AT_XDMAC_CC_MBSIZE_SIXTEEN
 578			| AT_XDMAC_CC_TYPE_PER_TRAN;
 
 
 
 
 579		csize = ffs(atchan->sconfig.dst_maxburst) - 1;
 580		if (csize < 0) {
 581			dev_err(chan2dev(chan), "invalid src maxburst value\n");
 582			return -EINVAL;
 583		}
 584		atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
 585		dwidth = ffs(atchan->sconfig.dst_addr_width) - 1;
 586		if (dwidth < 0) {
 587			dev_err(chan2dev(chan), "invalid dst addr width value\n");
 588			return -EINVAL;
 589		}
 590		atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
 591	}
 592
 593	dev_dbg(chan2dev(chan),	"%s: cfg=0x%08x\n", __func__, atchan->cfg);
 594
 595	return 0;
 596}
 597
 598/*
 599 * Only check that maxburst and addr width values are supported by the
 600 * the controller but not that the configuration is good to perform the
 601 * transfer since we don't know the direction at this stage.
 602 */
 603static int at_xdmac_check_slave_config(struct dma_slave_config *sconfig)
 604{
 605	if ((sconfig->src_maxburst > AT_XDMAC_MAX_CSIZE)
 606	    || (sconfig->dst_maxburst > AT_XDMAC_MAX_CSIZE))
 607		return -EINVAL;
 608
 609	if ((sconfig->src_addr_width > AT_XDMAC_MAX_DWIDTH)
 610	    || (sconfig->dst_addr_width > AT_XDMAC_MAX_DWIDTH))
 611		return -EINVAL;
 612
 613	return 0;
 614}
 615
 616static int at_xdmac_set_slave_config(struct dma_chan *chan,
 617				      struct dma_slave_config *sconfig)
 618{
 619	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
 620
 621	if (at_xdmac_check_slave_config(sconfig)) {
 622		dev_err(chan2dev(chan), "invalid slave configuration\n");
 623		return -EINVAL;
 624	}
 625
 626	memcpy(&atchan->sconfig, sconfig, sizeof(atchan->sconfig));
 627
 628	return 0;
 629}
 630
 631static struct dma_async_tx_descriptor *
 632at_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
 633		       unsigned int sg_len, enum dma_transfer_direction direction,
 634		       unsigned long flags, void *context)
 635{
 636	struct at_xdmac_chan		*atchan = to_at_xdmac_chan(chan);
 637	struct at_xdmac_desc		*first = NULL, *prev = NULL;
 638	struct scatterlist		*sg;
 639	int				i;
 640	unsigned int			xfer_size = 0;
 641	unsigned long			irqflags;
 642	struct dma_async_tx_descriptor	*ret = NULL;
 643
 644	if (!sgl)
 645		return NULL;
 646
 647	if (!is_slave_direction(direction)) {
 648		dev_err(chan2dev(chan), "invalid DMA direction\n");
 649		return NULL;
 650	}
 651
 652	dev_dbg(chan2dev(chan), "%s: sg_len=%d, dir=%s, flags=0x%lx\n",
 653		 __func__, sg_len,
 654		 direction == DMA_MEM_TO_DEV ? "to device" : "from device",
 655		 flags);
 656
 657	/* Protect dma_sconfig field that can be modified by set_slave_conf. */
 658	spin_lock_irqsave(&atchan->lock, irqflags);
 659
 660	if (at_xdmac_compute_chan_conf(chan, direction))
 661		goto spin_unlock;
 662
 663	/* Prepare descriptors. */
 664	for_each_sg(sgl, sg, sg_len, i) {
 665		struct at_xdmac_desc	*desc = NULL;
 666		u32			len, mem, dwidth, fixed_dwidth;
 667
 668		len = sg_dma_len(sg);
 669		mem = sg_dma_address(sg);
 670		if (unlikely(!len)) {
 671			dev_err(chan2dev(chan), "sg data length is zero\n");
 672			goto spin_unlock;
 673		}
 674		dev_dbg(chan2dev(chan), "%s: * sg%d len=%u, mem=0x%08x\n",
 675			 __func__, i, len, mem);
 676
 677		desc = at_xdmac_get_desc(atchan);
 678		if (!desc) {
 679			dev_err(chan2dev(chan), "can't get descriptor\n");
 680			if (first)
 681				list_splice_init(&first->descs_list, &atchan->free_descs_list);
 682			goto spin_unlock;
 683		}
 684
 685		/* Linked list descriptor setup. */
 686		if (direction == DMA_DEV_TO_MEM) {
 687			desc->lld.mbr_sa = atchan->sconfig.src_addr;
 688			desc->lld.mbr_da = mem;
 689		} else {
 690			desc->lld.mbr_sa = mem;
 691			desc->lld.mbr_da = atchan->sconfig.dst_addr;
 692		}
 693		dwidth = at_xdmac_get_dwidth(atchan->cfg);
 694		fixed_dwidth = IS_ALIGNED(len, 1 << dwidth)
 695			       ? dwidth
 696			       : AT_XDMAC_CC_DWIDTH_BYTE;
 697		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2			/* next descriptor view */
 698			| AT_XDMAC_MBR_UBC_NDEN					/* next descriptor dst parameter update */
 699			| AT_XDMAC_MBR_UBC_NSEN					/* next descriptor src parameter update */
 700			| (len >> fixed_dwidth);				/* microblock length */
 701		desc->lld.mbr_cfg = (atchan->cfg & ~AT_XDMAC_CC_DWIDTH_MASK) |
 702				    AT_XDMAC_CC_DWIDTH(fixed_dwidth);
 703		dev_dbg(chan2dev(chan),
 704			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
 705			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
 706
 707		/* Chain lld. */
 708		if (prev)
 709			at_xdmac_queue_desc(chan, prev, desc);
 710
 711		prev = desc;
 712		if (!first)
 713			first = desc;
 714
 715		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
 716			 __func__, desc, first);
 717		list_add_tail(&desc->desc_node, &first->descs_list);
 718		xfer_size += len;
 719	}
 720
 721
 722	first->tx_dma_desc.flags = flags;
 723	first->xfer_size = xfer_size;
 724	first->direction = direction;
 725	ret = &first->tx_dma_desc;
 726
 727spin_unlock:
 728	spin_unlock_irqrestore(&atchan->lock, irqflags);
 729	return ret;
 730}
 731
 732static struct dma_async_tx_descriptor *
 733at_xdmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
 734			 size_t buf_len, size_t period_len,
 735			 enum dma_transfer_direction direction,
 736			 unsigned long flags)
 737{
 738	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
 739	struct at_xdmac_desc	*first = NULL, *prev = NULL;
 740	unsigned int		periods = buf_len / period_len;
 741	int			i;
 742	unsigned long		irqflags;
 743
 744	dev_dbg(chan2dev(chan), "%s: buf_addr=%pad, buf_len=%zd, period_len=%zd, dir=%s, flags=0x%lx\n",
 745		__func__, &buf_addr, buf_len, period_len,
 746		direction == DMA_MEM_TO_DEV ? "mem2per" : "per2mem", flags);
 747
 748	if (!is_slave_direction(direction)) {
 749		dev_err(chan2dev(chan), "invalid DMA direction\n");
 750		return NULL;
 751	}
 752
 753	if (test_and_set_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status)) {
 754		dev_err(chan2dev(chan), "channel currently used\n");
 755		return NULL;
 756	}
 757
 758	if (at_xdmac_compute_chan_conf(chan, direction))
 759		return NULL;
 760
 761	for (i = 0; i < periods; i++) {
 762		struct at_xdmac_desc	*desc = NULL;
 763
 764		spin_lock_irqsave(&atchan->lock, irqflags);
 765		desc = at_xdmac_get_desc(atchan);
 766		if (!desc) {
 767			dev_err(chan2dev(chan), "can't get descriptor\n");
 768			if (first)
 769				list_splice_init(&first->descs_list, &atchan->free_descs_list);
 770			spin_unlock_irqrestore(&atchan->lock, irqflags);
 771			return NULL;
 772		}
 773		spin_unlock_irqrestore(&atchan->lock, irqflags);
 774		dev_dbg(chan2dev(chan),
 775			"%s: desc=0x%p, tx_dma_desc.phys=%pad\n",
 776			__func__, desc, &desc->tx_dma_desc.phys);
 777
 778		if (direction == DMA_DEV_TO_MEM) {
 779			desc->lld.mbr_sa = atchan->sconfig.src_addr;
 780			desc->lld.mbr_da = buf_addr + i * period_len;
 781		} else {
 782			desc->lld.mbr_sa = buf_addr + i * period_len;
 783			desc->lld.mbr_da = atchan->sconfig.dst_addr;
 784		}
 785		desc->lld.mbr_cfg = atchan->cfg;
 786		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV1
 787			| AT_XDMAC_MBR_UBC_NDEN
 788			| AT_XDMAC_MBR_UBC_NSEN
 789			| period_len >> at_xdmac_get_dwidth(desc->lld.mbr_cfg);
 790
 791		dev_dbg(chan2dev(chan),
 792			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
 793			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
 794
 795		/* Chain lld. */
 796		if (prev)
 797			at_xdmac_queue_desc(chan, prev, desc);
 798
 799		prev = desc;
 800		if (!first)
 801			first = desc;
 802
 803		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
 804			 __func__, desc, first);
 805		list_add_tail(&desc->desc_node, &first->descs_list);
 806	}
 807
 808	at_xdmac_queue_desc(chan, prev, first);
 809	first->tx_dma_desc.flags = flags;
 810	first->xfer_size = buf_len;
 811	first->direction = direction;
 812
 813	return &first->tx_dma_desc;
 814}
 815
 816static inline u32 at_xdmac_align_width(struct dma_chan *chan, dma_addr_t addr)
 817{
 818	u32 width;
 819
 820	/*
 821	 * Check address alignment to select the greater data width we
 822	 * can use.
 823	 *
 824	 * Some XDMAC implementations don't provide dword transfer, in
 825	 * this case selecting dword has the same behavior as
 826	 * selecting word transfers.
 827	 */
 828	if (!(addr & 7)) {
 829		width = AT_XDMAC_CC_DWIDTH_DWORD;
 830		dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__);
 831	} else if (!(addr & 3)) {
 832		width = AT_XDMAC_CC_DWIDTH_WORD;
 833		dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__);
 834	} else if (!(addr & 1)) {
 835		width = AT_XDMAC_CC_DWIDTH_HALFWORD;
 836		dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__);
 837	} else {
 838		width = AT_XDMAC_CC_DWIDTH_BYTE;
 839		dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__);
 840	}
 841
 842	return width;
 843}
 844
 845static struct at_xdmac_desc *
 846at_xdmac_interleaved_queue_desc(struct dma_chan *chan,
 847				struct at_xdmac_chan *atchan,
 848				struct at_xdmac_desc *prev,
 849				dma_addr_t src, dma_addr_t dst,
 850				struct dma_interleaved_template *xt,
 851				struct data_chunk *chunk)
 852{
 853	struct at_xdmac_desc	*desc;
 854	u32			dwidth;
 855	unsigned long		flags;
 856	size_t			ublen;
 857	/*
 858	 * WARNING: The channel configuration is set here since there is no
 859	 * dmaengine_slave_config call in this case. Moreover we don't know the
 860	 * direction, it involves we can't dynamically set the source and dest
 861	 * interface so we have to use the same one. Only interface 0 allows EBI
 862	 * access. Hopefully we can access DDR through both ports (at least on
 863	 * SAMA5D4x), so we can use the same interface for source and dest,
 864	 * that solves the fact we don't know the direction.
 865	 * ERRATA: Even if useless for memory transfers, the PERID has to not
 866	 * match the one of another channel. If not, it could lead to spurious
 867	 * flag status.
 
 
 
 
 868	 */
 869	u32			chan_cc = AT_XDMAC_CC_PERID(0x3f)
 870					| AT_XDMAC_CC_DIF(0)
 871					| AT_XDMAC_CC_SIF(0)
 872					| AT_XDMAC_CC_MBSIZE_SIXTEEN
 873					| AT_XDMAC_CC_TYPE_MEM_TRAN;
 874
 875	dwidth = at_xdmac_align_width(chan, src | dst | chunk->size);
 876	if (chunk->size >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
 877		dev_dbg(chan2dev(chan),
 878			"%s: chunk too big (%zu, max size %lu)...\n",
 879			__func__, chunk->size,
 880			AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth);
 881		return NULL;
 882	}
 883
 884	if (prev)
 885		dev_dbg(chan2dev(chan),
 886			"Adding items at the end of desc 0x%p\n", prev);
 887
 888	if (xt->src_inc) {
 889		if (xt->src_sgl)
 890			chan_cc |=  AT_XDMAC_CC_SAM_UBS_AM;
 891		else
 892			chan_cc |=  AT_XDMAC_CC_SAM_INCREMENTED_AM;
 893	}
 894
 895	if (xt->dst_inc) {
 896		if (xt->dst_sgl)
 897			chan_cc |=  AT_XDMAC_CC_DAM_UBS_AM;
 898		else
 899			chan_cc |=  AT_XDMAC_CC_DAM_INCREMENTED_AM;
 900	}
 901
 902	spin_lock_irqsave(&atchan->lock, flags);
 903	desc = at_xdmac_get_desc(atchan);
 904	spin_unlock_irqrestore(&atchan->lock, flags);
 905	if (!desc) {
 906		dev_err(chan2dev(chan), "can't get descriptor\n");
 907		return NULL;
 908	}
 909
 910	chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
 911
 912	ublen = chunk->size >> dwidth;
 913
 914	desc->lld.mbr_sa = src;
 915	desc->lld.mbr_da = dst;
 916	desc->lld.mbr_sus = dmaengine_get_src_icg(xt, chunk);
 917	desc->lld.mbr_dus = dmaengine_get_dst_icg(xt, chunk);
 918
 919	desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
 920		| AT_XDMAC_MBR_UBC_NDEN
 921		| AT_XDMAC_MBR_UBC_NSEN
 922		| ublen;
 923	desc->lld.mbr_cfg = chan_cc;
 924
 925	dev_dbg(chan2dev(chan),
 926		"%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
 927		__func__, &desc->lld.mbr_sa, &desc->lld.mbr_da,
 928		desc->lld.mbr_ubc, desc->lld.mbr_cfg);
 929
 930	/* Chain lld. */
 931	if (prev)
 932		at_xdmac_queue_desc(chan, prev, desc);
 933
 934	return desc;
 935}
 936
 937static struct dma_async_tx_descriptor *
 938at_xdmac_prep_interleaved(struct dma_chan *chan,
 939			  struct dma_interleaved_template *xt,
 940			  unsigned long flags)
 941{
 942	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
 943	struct at_xdmac_desc	*prev = NULL, *first = NULL;
 944	dma_addr_t		dst_addr, src_addr;
 945	size_t			src_skip = 0, dst_skip = 0, len = 0;
 946	struct data_chunk	*chunk;
 947	int			i;
 948
 949	if (!xt || !xt->numf || (xt->dir != DMA_MEM_TO_MEM))
 950		return NULL;
 951
 952	/*
 953	 * TODO: Handle the case where we have to repeat a chain of
 954	 * descriptors...
 955	 */
 956	if ((xt->numf > 1) && (xt->frame_size > 1))
 957		return NULL;
 958
 959	dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, numf=%zu, frame_size=%zu, flags=0x%lx\n",
 960		__func__, &xt->src_start, &xt->dst_start,	xt->numf,
 961		xt->frame_size, flags);
 962
 963	src_addr = xt->src_start;
 964	dst_addr = xt->dst_start;
 965
 966	if (xt->numf > 1) {
 967		first = at_xdmac_interleaved_queue_desc(chan, atchan,
 968							NULL,
 969							src_addr, dst_addr,
 970							xt, xt->sgl);
 971
 972		/* Length of the block is (BLEN+1) microblocks. */
 973		for (i = 0; i < xt->numf - 1; i++)
 974			at_xdmac_increment_block_count(chan, first);
 975
 976		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
 977			__func__, first, first);
 978		list_add_tail(&first->desc_node, &first->descs_list);
 979	} else {
 980		for (i = 0; i < xt->frame_size; i++) {
 981			size_t src_icg = 0, dst_icg = 0;
 982			struct at_xdmac_desc *desc;
 983
 984			chunk = xt->sgl + i;
 985
 986			dst_icg = dmaengine_get_dst_icg(xt, chunk);
 987			src_icg = dmaengine_get_src_icg(xt, chunk);
 988
 989			src_skip = chunk->size + src_icg;
 990			dst_skip = chunk->size + dst_icg;
 991
 992			dev_dbg(chan2dev(chan),
 993				"%s: chunk size=%zu, src icg=%zu, dst icg=%zu\n",
 994				__func__, chunk->size, src_icg, dst_icg);
 995
 996			desc = at_xdmac_interleaved_queue_desc(chan, atchan,
 997							       prev,
 998							       src_addr, dst_addr,
 999							       xt, chunk);
1000			if (!desc) {
1001				list_splice_init(&first->descs_list,
1002						 &atchan->free_descs_list);
1003				return NULL;
1004			}
1005
1006			if (!first)
1007				first = desc;
1008
1009			dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1010				__func__, desc, first);
1011			list_add_tail(&desc->desc_node, &first->descs_list);
1012
1013			if (xt->src_sgl)
1014				src_addr += src_skip;
1015
1016			if (xt->dst_sgl)
1017				dst_addr += dst_skip;
1018
1019			len += chunk->size;
1020			prev = desc;
1021		}
1022	}
1023
1024	first->tx_dma_desc.cookie = -EBUSY;
1025	first->tx_dma_desc.flags = flags;
1026	first->xfer_size = len;
1027
1028	return &first->tx_dma_desc;
1029}
1030
1031static struct dma_async_tx_descriptor *
1032at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1033			 size_t len, unsigned long flags)
1034{
1035	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1036	struct at_xdmac_desc	*first = NULL, *prev = NULL;
1037	size_t			remaining_size = len, xfer_size = 0, ublen;
1038	dma_addr_t		src_addr = src, dst_addr = dest;
1039	u32			dwidth;
1040	/*
1041	 * WARNING: We don't know the direction, it involves we can't
1042	 * dynamically set the source and dest interface so we have to use the
1043	 * same one. Only interface 0 allows EBI access. Hopefully we can
1044	 * access DDR through both ports (at least on SAMA5D4x), so we can use
1045	 * the same interface for source and dest, that solves the fact we
1046	 * don't know the direction.
1047	 * ERRATA: Even if useless for memory transfers, the PERID has to not
1048	 * match the one of another channel. If not, it could lead to spurious
1049	 * flag status.
 
 
 
 
1050	 */
1051	u32			chan_cc = AT_XDMAC_CC_PERID(0x3f)
1052					| AT_XDMAC_CC_DAM_INCREMENTED_AM
1053					| AT_XDMAC_CC_SAM_INCREMENTED_AM
1054					| AT_XDMAC_CC_DIF(0)
1055					| AT_XDMAC_CC_SIF(0)
1056					| AT_XDMAC_CC_MBSIZE_SIXTEEN
1057					| AT_XDMAC_CC_TYPE_MEM_TRAN;
1058	unsigned long		irqflags;
1059
1060	dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, len=%zd, flags=0x%lx\n",
1061		__func__, &src, &dest, len, flags);
1062
1063	if (unlikely(!len))
1064		return NULL;
1065
1066	dwidth = at_xdmac_align_width(chan, src_addr | dst_addr);
1067
1068	/* Prepare descriptors. */
1069	while (remaining_size) {
1070		struct at_xdmac_desc	*desc = NULL;
1071
1072		dev_dbg(chan2dev(chan), "%s: remaining_size=%zu\n", __func__, remaining_size);
1073
1074		spin_lock_irqsave(&atchan->lock, irqflags);
1075		desc = at_xdmac_get_desc(atchan);
1076		spin_unlock_irqrestore(&atchan->lock, irqflags);
1077		if (!desc) {
1078			dev_err(chan2dev(chan), "can't get descriptor\n");
1079			if (first)
1080				list_splice_init(&first->descs_list, &atchan->free_descs_list);
1081			return NULL;
1082		}
1083
1084		/* Update src and dest addresses. */
1085		src_addr += xfer_size;
1086		dst_addr += xfer_size;
1087
1088		if (remaining_size >= AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)
1089			xfer_size = AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth;
1090		else
1091			xfer_size = remaining_size;
1092
1093		dev_dbg(chan2dev(chan), "%s: xfer_size=%zu\n", __func__, xfer_size);
1094
1095		/* Check remaining length and change data width if needed. */
1096		dwidth = at_xdmac_align_width(chan,
1097					      src_addr | dst_addr | xfer_size);
1098		chan_cc &= ~AT_XDMAC_CC_DWIDTH_MASK;
1099		chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1100
1101		ublen = xfer_size >> dwidth;
1102		remaining_size -= xfer_size;
1103
1104		desc->lld.mbr_sa = src_addr;
1105		desc->lld.mbr_da = dst_addr;
1106		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2
1107			| AT_XDMAC_MBR_UBC_NDEN
1108			| AT_XDMAC_MBR_UBC_NSEN
1109			| ublen;
1110		desc->lld.mbr_cfg = chan_cc;
1111
1112		dev_dbg(chan2dev(chan),
1113			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1114			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc, desc->lld.mbr_cfg);
1115
1116		/* Chain lld. */
1117		if (prev)
1118			at_xdmac_queue_desc(chan, prev, desc);
1119
1120		prev = desc;
1121		if (!first)
1122			first = desc;
1123
1124		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1125			 __func__, desc, first);
1126		list_add_tail(&desc->desc_node, &first->descs_list);
1127	}
1128
1129	first->tx_dma_desc.flags = flags;
1130	first->xfer_size = len;
1131
1132	return &first->tx_dma_desc;
1133}
1134
1135static struct at_xdmac_desc *at_xdmac_memset_create_desc(struct dma_chan *chan,
1136							 struct at_xdmac_chan *atchan,
1137							 dma_addr_t dst_addr,
1138							 size_t len,
1139							 int value)
1140{
1141	struct at_xdmac_desc	*desc;
1142	unsigned long		flags;
1143	size_t			ublen;
1144	u32			dwidth;
1145	/*
1146	 * WARNING: The channel configuration is set here since there is no
1147	 * dmaengine_slave_config call in this case. Moreover we don't know the
1148	 * direction, it involves we can't dynamically set the source and dest
1149	 * interface so we have to use the same one. Only interface 0 allows EBI
1150	 * access. Hopefully we can access DDR through both ports (at least on
1151	 * SAMA5D4x), so we can use the same interface for source and dest,
1152	 * that solves the fact we don't know the direction.
1153	 * ERRATA: Even if useless for memory transfers, the PERID has to not
1154	 * match the one of another channel. If not, it could lead to spurious
1155	 * flag status.
 
 
 
 
1156	 */
1157	u32			chan_cc = AT_XDMAC_CC_PERID(0x3f)
1158					| AT_XDMAC_CC_DAM_UBS_AM
1159					| AT_XDMAC_CC_SAM_INCREMENTED_AM
1160					| AT_XDMAC_CC_DIF(0)
1161					| AT_XDMAC_CC_SIF(0)
1162					| AT_XDMAC_CC_MBSIZE_SIXTEEN
1163					| AT_XDMAC_CC_MEMSET_HW_MODE
1164					| AT_XDMAC_CC_TYPE_MEM_TRAN;
1165
1166	dwidth = at_xdmac_align_width(chan, dst_addr);
1167
1168	if (len >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
1169		dev_err(chan2dev(chan),
1170			"%s: Transfer too large, aborting...\n",
1171			__func__);
1172		return NULL;
1173	}
1174
1175	spin_lock_irqsave(&atchan->lock, flags);
1176	desc = at_xdmac_get_desc(atchan);
1177	spin_unlock_irqrestore(&atchan->lock, flags);
1178	if (!desc) {
1179		dev_err(chan2dev(chan), "can't get descriptor\n");
1180		return NULL;
1181	}
1182
1183	chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1184
1185	ublen = len >> dwidth;
1186
1187	desc->lld.mbr_da = dst_addr;
1188	desc->lld.mbr_ds = value;
1189	desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
1190		| AT_XDMAC_MBR_UBC_NDEN
1191		| AT_XDMAC_MBR_UBC_NSEN
1192		| ublen;
1193	desc->lld.mbr_cfg = chan_cc;
1194
1195	dev_dbg(chan2dev(chan),
1196		"%s: lld: mbr_da=%pad, mbr_ds=0x%08x, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1197		__func__, &desc->lld.mbr_da, desc->lld.mbr_ds, desc->lld.mbr_ubc,
1198		desc->lld.mbr_cfg);
1199
1200	return desc;
1201}
1202
1203static struct dma_async_tx_descriptor *
1204at_xdmac_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
1205			 size_t len, unsigned long flags)
1206{
1207	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1208	struct at_xdmac_desc	*desc;
1209
1210	dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%zu, pattern=0x%x, flags=0x%lx\n",
1211		__func__, &dest, len, value, flags);
1212
1213	if (unlikely(!len))
1214		return NULL;
1215
1216	desc = at_xdmac_memset_create_desc(chan, atchan, dest, len, value);
1217	list_add_tail(&desc->desc_node, &desc->descs_list);
1218
1219	desc->tx_dma_desc.cookie = -EBUSY;
1220	desc->tx_dma_desc.flags = flags;
1221	desc->xfer_size = len;
1222
1223	return &desc->tx_dma_desc;
1224}
1225
1226static struct dma_async_tx_descriptor *
1227at_xdmac_prep_dma_memset_sg(struct dma_chan *chan, struct scatterlist *sgl,
1228			    unsigned int sg_len, int value,
1229			    unsigned long flags)
1230{
1231	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1232	struct at_xdmac_desc	*desc, *pdesc = NULL,
1233				*ppdesc = NULL, *first = NULL;
1234	struct scatterlist	*sg, *psg = NULL, *ppsg = NULL;
1235	size_t			stride = 0, pstride = 0, len = 0;
1236	int			i;
1237
1238	if (!sgl)
1239		return NULL;
1240
1241	dev_dbg(chan2dev(chan), "%s: sg_len=%d, value=0x%x, flags=0x%lx\n",
1242		__func__, sg_len, value, flags);
1243
1244	/* Prepare descriptors. */
1245	for_each_sg(sgl, sg, sg_len, i) {
1246		dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%d, pattern=0x%x, flags=0x%lx\n",
1247			__func__, &sg_dma_address(sg), sg_dma_len(sg),
1248			value, flags);
1249		desc = at_xdmac_memset_create_desc(chan, atchan,
1250						   sg_dma_address(sg),
1251						   sg_dma_len(sg),
1252						   value);
1253		if (!desc && first)
1254			list_splice_init(&first->descs_list,
1255					 &atchan->free_descs_list);
1256
1257		if (!first)
1258			first = desc;
1259
1260		/* Update our strides */
1261		pstride = stride;
1262		if (psg)
1263			stride = sg_dma_address(sg) -
1264				(sg_dma_address(psg) + sg_dma_len(psg));
1265
1266		/*
1267		 * The scatterlist API gives us only the address and
1268		 * length of each elements.
1269		 *
1270		 * Unfortunately, we don't have the stride, which we
1271		 * will need to compute.
1272		 *
1273		 * That make us end up in a situation like this one:
1274		 *    len    stride    len    stride    len
1275		 * +-------+        +-------+        +-------+
1276		 * |  N-2  |        |  N-1  |        |   N   |
1277		 * +-------+        +-------+        +-------+
1278		 *
1279		 * We need all these three elements (N-2, N-1 and N)
1280		 * to actually take the decision on whether we need to
1281		 * queue N-1 or reuse N-2.
1282		 *
1283		 * We will only consider N if it is the last element.
1284		 */
1285		if (ppdesc && pdesc) {
1286			if ((stride == pstride) &&
1287			    (sg_dma_len(ppsg) == sg_dma_len(psg))) {
1288				dev_dbg(chan2dev(chan),
1289					"%s: desc 0x%p can be merged with desc 0x%p\n",
1290					__func__, pdesc, ppdesc);
1291
1292				/*
1293				 * Increment the block count of the
1294				 * N-2 descriptor
1295				 */
1296				at_xdmac_increment_block_count(chan, ppdesc);
1297				ppdesc->lld.mbr_dus = stride;
1298
1299				/*
1300				 * Put back the N-1 descriptor in the
1301				 * free descriptor list
1302				 */
1303				list_add_tail(&pdesc->desc_node,
1304					      &atchan->free_descs_list);
1305
1306				/*
1307				 * Make our N-1 descriptor pointer
1308				 * point to the N-2 since they were
1309				 * actually merged.
1310				 */
1311				pdesc = ppdesc;
1312
1313			/*
1314			 * Rule out the case where we don't have
1315			 * pstride computed yet (our second sg
1316			 * element)
1317			 *
1318			 * We also want to catch the case where there
1319			 * would be a negative stride,
1320			 */
1321			} else if (pstride ||
1322				   sg_dma_address(sg) < sg_dma_address(psg)) {
1323				/*
1324				 * Queue the N-1 descriptor after the
1325				 * N-2
1326				 */
1327				at_xdmac_queue_desc(chan, ppdesc, pdesc);
1328
1329				/*
1330				 * Add the N-1 descriptor to the list
1331				 * of the descriptors used for this
1332				 * transfer
1333				 */
1334				list_add_tail(&desc->desc_node,
1335					      &first->descs_list);
1336				dev_dbg(chan2dev(chan),
1337					"%s: add desc 0x%p to descs_list 0x%p\n",
1338					__func__, desc, first);
1339			}
1340		}
1341
1342		/*
1343		 * If we are the last element, just see if we have the
1344		 * same size than the previous element.
1345		 *
1346		 * If so, we can merge it with the previous descriptor
1347		 * since we don't care about the stride anymore.
1348		 */
1349		if ((i == (sg_len - 1)) &&
1350		    sg_dma_len(psg) == sg_dma_len(sg)) {
1351			dev_dbg(chan2dev(chan),
1352				"%s: desc 0x%p can be merged with desc 0x%p\n",
1353				__func__, desc, pdesc);
1354
1355			/*
1356			 * Increment the block count of the N-1
1357			 * descriptor
1358			 */
1359			at_xdmac_increment_block_count(chan, pdesc);
1360			pdesc->lld.mbr_dus = stride;
1361
1362			/*
1363			 * Put back the N descriptor in the free
1364			 * descriptor list
1365			 */
1366			list_add_tail(&desc->desc_node,
1367				      &atchan->free_descs_list);
1368		}
1369
1370		/* Update our descriptors */
1371		ppdesc = pdesc;
1372		pdesc = desc;
1373
1374		/* Update our scatter pointers */
1375		ppsg = psg;
1376		psg = sg;
1377
1378		len += sg_dma_len(sg);
1379	}
1380
1381	first->tx_dma_desc.cookie = -EBUSY;
1382	first->tx_dma_desc.flags = flags;
1383	first->xfer_size = len;
1384
1385	return &first->tx_dma_desc;
1386}
1387
1388static enum dma_status
1389at_xdmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
1390		struct dma_tx_state *txstate)
1391{
1392	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1393	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1394	struct at_xdmac_desc	*desc, *_desc;
1395	struct list_head	*descs_list;
1396	enum dma_status		ret;
1397	int			residue, retry;
1398	u32			cur_nda, check_nda, cur_ubc, mask, value;
1399	u8			dwidth = 0;
1400	unsigned long		flags;
1401	bool			initd;
1402
1403	ret = dma_cookie_status(chan, cookie, txstate);
1404	if (ret == DMA_COMPLETE)
1405		return ret;
1406
1407	if (!txstate)
1408		return ret;
1409
1410	spin_lock_irqsave(&atchan->lock, flags);
1411
1412	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node);
1413
1414	/*
1415	 * If the transfer has not been started yet, don't need to compute the
1416	 * residue, it's the transfer length.
1417	 */
1418	if (!desc->active_xfer) {
1419		dma_set_residue(txstate, desc->xfer_size);
1420		goto spin_unlock;
1421	}
1422
1423	residue = desc->xfer_size;
1424	/*
1425	 * Flush FIFO: only relevant when the transfer is source peripheral
1426	 * synchronized. Flush is needed before reading CUBC because data in
1427	 * the FIFO are not reported by CUBC. Reporting a residue of the
1428	 * transfer length while we have data in FIFO can cause issue.
1429	 * Usecase: atmel USART has a timeout which means I have received
1430	 * characters but there is no more character received for a while. On
1431	 * timeout, it requests the residue. If the data are in the DMA FIFO,
1432	 * we will return a residue of the transfer length. It means no data
1433	 * received. If an application is waiting for these data, it will hang
1434	 * since we won't have another USART timeout without receiving new
1435	 * data.
1436	 */
1437	mask = AT_XDMAC_CC_TYPE | AT_XDMAC_CC_DSYNC;
1438	value = AT_XDMAC_CC_TYPE_PER_TRAN | AT_XDMAC_CC_DSYNC_PER2MEM;
1439	if ((desc->lld.mbr_cfg & mask) == value) {
1440		at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask);
1441		while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1442			cpu_relax();
1443	}
1444
1445	/*
1446	 * The easiest way to compute the residue should be to pause the DMA
1447	 * but doing this can lead to miss some data as some devices don't
1448	 * have FIFO.
1449	 * We need to read several registers because:
1450	 * - DMA is running therefore a descriptor change is possible while
1451	 * reading these registers
1452	 * - When the block transfer is done, the value of the CUBC register
1453	 * is set to its initial value until the fetch of the next descriptor.
1454	 * This value will corrupt the residue calculation so we have to skip
1455	 * it.
1456	 *
1457	 * INITD --------                    ------------
1458	 *              |____________________|
1459	 *       _______________________  _______________
1460	 * NDA       @desc2             \/   @desc3
1461	 *       _______________________/\_______________
1462	 *       __________  ___________  _______________
1463	 * CUBC       0    \/ MAX desc1 \/  MAX desc2
1464	 *       __________/\___________/\_______________
1465	 *
1466	 * Since descriptors are aligned on 64 bits, we can assume that
1467	 * the update of NDA and CUBC is atomic.
1468	 * Memory barriers are used to ensure the read order of the registers.
1469	 * A max number of retries is set because unlikely it could never ends.
1470	 */
1471	for (retry = 0; retry < AT_XDMAC_RESIDUE_MAX_RETRIES; retry++) {
1472		check_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1473		rmb();
1474		cur_ubc = at_xdmac_chan_read(atchan, AT_XDMAC_CUBC);
1475		rmb();
1476		initd = !!(at_xdmac_chan_read(atchan, AT_XDMAC_CC) & AT_XDMAC_CC_INITD);
1477		rmb();
1478		cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1479		rmb();
1480
1481		if ((check_nda == cur_nda) && initd)
1482			break;
1483	}
1484
1485	if (unlikely(retry >= AT_XDMAC_RESIDUE_MAX_RETRIES)) {
1486		ret = DMA_ERROR;
1487		goto spin_unlock;
1488	}
1489
1490	/*
1491	 * Flush FIFO: only relevant when the transfer is source peripheral
1492	 * synchronized. Another flush is needed here because CUBC is updated
1493	 * when the controller sends the data write command. It can lead to
1494	 * report data that are not written in the memory or the device. The
1495	 * FIFO flush ensures that data are really written.
1496	 */
1497	if ((desc->lld.mbr_cfg & mask) == value) {
1498		at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask);
1499		while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1500			cpu_relax();
1501	}
1502
1503	/*
1504	 * Remove size of all microblocks already transferred and the current
1505	 * one. Then add the remaining size to transfer of the current
1506	 * microblock.
1507	 */
1508	descs_list = &desc->descs_list;
1509	list_for_each_entry_safe(desc, _desc, descs_list, desc_node) {
1510		dwidth = at_xdmac_get_dwidth(desc->lld.mbr_cfg);
1511		residue -= (desc->lld.mbr_ubc & 0xffffff) << dwidth;
1512		if ((desc->lld.mbr_nda & 0xfffffffc) == cur_nda)
1513			break;
1514	}
1515	residue += cur_ubc << dwidth;
1516
1517	dma_set_residue(txstate, residue);
1518
1519	dev_dbg(chan2dev(chan),
1520		 "%s: desc=0x%p, tx_dma_desc.phys=%pad, tx_status=%d, cookie=%d, residue=%d\n",
1521		 __func__, desc, &desc->tx_dma_desc.phys, ret, cookie, residue);
1522
1523spin_unlock:
1524	spin_unlock_irqrestore(&atchan->lock, flags);
1525	return ret;
1526}
1527
1528/* Call must be protected by lock. */
1529static void at_xdmac_remove_xfer(struct at_xdmac_chan *atchan,
1530				    struct at_xdmac_desc *desc)
1531{
1532	dev_dbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1533
1534	/*
1535	 * Remove the transfer from the transfer list then move the transfer
1536	 * descriptors into the free descriptors list.
1537	 */
1538	list_del(&desc->xfer_node);
1539	list_splice_init(&desc->descs_list, &atchan->free_descs_list);
1540}
1541
1542static void at_xdmac_advance_work(struct at_xdmac_chan *atchan)
1543{
1544	struct at_xdmac_desc	*desc;
1545	unsigned long		flags;
1546
1547	spin_lock_irqsave(&atchan->lock, flags);
1548
1549	/*
1550	 * If channel is enabled, do nothing, advance_work will be triggered
1551	 * after the interruption.
1552	 */
1553	if (!at_xdmac_chan_is_enabled(atchan) && !list_empty(&atchan->xfers_list)) {
1554		desc = list_first_entry(&atchan->xfers_list,
1555					struct at_xdmac_desc,
1556					xfer_node);
1557		dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1558		if (!desc->active_xfer)
1559			at_xdmac_start_xfer(atchan, desc);
1560	}
1561
1562	spin_unlock_irqrestore(&atchan->lock, flags);
1563}
1564
1565static void at_xdmac_handle_cyclic(struct at_xdmac_chan *atchan)
1566{
1567	struct at_xdmac_desc		*desc;
1568	struct dma_async_tx_descriptor	*txd;
1569
1570	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node);
1571	txd = &desc->tx_dma_desc;
 
 
 
 
 
 
 
 
 
 
 
 
1572
1573	if (txd->flags & DMA_PREP_INTERRUPT)
1574		dmaengine_desc_get_callback_invoke(txd, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1575}
1576
1577static void at_xdmac_tasklet(unsigned long data)
1578{
1579	struct at_xdmac_chan	*atchan = (struct at_xdmac_chan *)data;
1580	struct at_xdmac_desc	*desc;
1581	u32			error_mask;
1582
1583	dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08lx\n",
1584		 __func__, atchan->status);
1585
1586	error_mask = AT_XDMAC_CIS_RBEIS
1587		     | AT_XDMAC_CIS_WBEIS
1588		     | AT_XDMAC_CIS_ROIS;
1589
1590	if (at_xdmac_chan_is_cyclic(atchan)) {
1591		at_xdmac_handle_cyclic(atchan);
1592	} else if ((atchan->status & AT_XDMAC_CIS_LIS)
1593		   || (atchan->status & error_mask)) {
1594		struct dma_async_tx_descriptor  *txd;
1595
1596		if (atchan->status & AT_XDMAC_CIS_RBEIS)
1597			dev_err(chan2dev(&atchan->chan), "read bus error!!!");
1598		if (atchan->status & AT_XDMAC_CIS_WBEIS)
1599			dev_err(chan2dev(&atchan->chan), "write bus error!!!");
1600		if (atchan->status & AT_XDMAC_CIS_ROIS)
1601			dev_err(chan2dev(&atchan->chan), "request overflow error!!!");
1602
1603		spin_lock_bh(&atchan->lock);
1604		desc = list_first_entry(&atchan->xfers_list,
1605					struct at_xdmac_desc,
1606					xfer_node);
1607		dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1608		BUG_ON(!desc->active_xfer);
 
 
 
 
1609
1610		txd = &desc->tx_dma_desc;
1611
1612		at_xdmac_remove_xfer(atchan, desc);
1613		spin_unlock_bh(&atchan->lock);
1614
1615		if (!at_xdmac_chan_is_cyclic(atchan)) {
1616			dma_cookie_complete(txd);
1617			if (txd->flags & DMA_PREP_INTERRUPT)
1618				dmaengine_desc_get_callback_invoke(txd, NULL);
1619		}
1620
1621		dma_run_dependencies(txd);
1622
 
1623		at_xdmac_advance_work(atchan);
 
1624	}
1625}
1626
1627static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id)
1628{
1629	struct at_xdmac		*atxdmac = (struct at_xdmac *)dev_id;
1630	struct at_xdmac_chan	*atchan;
1631	u32			imr, status, pending;
1632	u32			chan_imr, chan_status;
1633	int			i, ret = IRQ_NONE;
1634
1635	do {
1636		imr = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1637		status = at_xdmac_read(atxdmac, AT_XDMAC_GIS);
1638		pending = status & imr;
1639
1640		dev_vdbg(atxdmac->dma.dev,
1641			 "%s: status=0x%08x, imr=0x%08x, pending=0x%08x\n",
1642			 __func__, status, imr, pending);
1643
1644		if (!pending)
1645			break;
1646
1647		/* We have to find which channel has generated the interrupt. */
1648		for (i = 0; i < atxdmac->dma.chancnt; i++) {
1649			if (!((1 << i) & pending))
1650				continue;
1651
1652			atchan = &atxdmac->chan[i];
1653			chan_imr = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1654			chan_status = at_xdmac_chan_read(atchan, AT_XDMAC_CIS);
1655			atchan->status = chan_status & chan_imr;
1656			dev_vdbg(atxdmac->dma.dev,
1657				 "%s: chan%d: imr=0x%x, status=0x%x\n",
1658				 __func__, i, chan_imr, chan_status);
1659			dev_vdbg(chan2dev(&atchan->chan),
1660				 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
1661				 __func__,
1662				 at_xdmac_chan_read(atchan, AT_XDMAC_CC),
1663				 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
1664				 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
1665				 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
1666				 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
1667				 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
1668
1669			if (atchan->status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS))
1670				at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1671
1672			tasklet_schedule(&atchan->tasklet);
1673			ret = IRQ_HANDLED;
1674		}
1675
1676	} while (pending);
1677
1678	return ret;
1679}
1680
1681static void at_xdmac_issue_pending(struct dma_chan *chan)
1682{
1683	struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
 
1684
1685	dev_dbg(chan2dev(&atchan->chan), "%s\n", __func__);
1686
1687	if (!at_xdmac_chan_is_cyclic(atchan))
 
1688		at_xdmac_advance_work(atchan);
 
 
1689
1690	return;
1691}
1692
1693static int at_xdmac_device_config(struct dma_chan *chan,
1694				  struct dma_slave_config *config)
1695{
1696	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1697	int ret;
1698	unsigned long		flags;
1699
1700	dev_dbg(chan2dev(chan), "%s\n", __func__);
1701
1702	spin_lock_irqsave(&atchan->lock, flags);
1703	ret = at_xdmac_set_slave_config(chan, config);
1704	spin_unlock_irqrestore(&atchan->lock, flags);
1705
1706	return ret;
1707}
1708
1709static int at_xdmac_device_pause(struct dma_chan *chan)
1710{
1711	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1712	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1713	unsigned long		flags;
1714
1715	dev_dbg(chan2dev(chan), "%s\n", __func__);
1716
1717	if (test_and_set_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status))
1718		return 0;
1719
1720	spin_lock_irqsave(&atchan->lock, flags);
1721	at_xdmac_write(atxdmac, AT_XDMAC_GRWS, atchan->mask);
1722	while (at_xdmac_chan_read(atchan, AT_XDMAC_CC)
1723	       & (AT_XDMAC_CC_WRIP | AT_XDMAC_CC_RDIP))
1724		cpu_relax();
1725	spin_unlock_irqrestore(&atchan->lock, flags);
1726
1727	return 0;
1728}
1729
1730static int at_xdmac_device_resume(struct dma_chan *chan)
1731{
1732	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1733	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1734	unsigned long		flags;
1735
1736	dev_dbg(chan2dev(chan), "%s\n", __func__);
1737
1738	spin_lock_irqsave(&atchan->lock, flags);
1739	if (!at_xdmac_chan_is_paused(atchan)) {
1740		spin_unlock_irqrestore(&atchan->lock, flags);
1741		return 0;
1742	}
1743
1744	at_xdmac_write(atxdmac, AT_XDMAC_GRWR, atchan->mask);
1745	clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1746	spin_unlock_irqrestore(&atchan->lock, flags);
1747
1748	return 0;
1749}
1750
1751static int at_xdmac_device_terminate_all(struct dma_chan *chan)
1752{
1753	struct at_xdmac_desc	*desc, *_desc;
1754	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1755	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1756	unsigned long		flags;
1757
1758	dev_dbg(chan2dev(chan), "%s\n", __func__);
1759
1760	spin_lock_irqsave(&atchan->lock, flags);
1761	at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1762	while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
1763		cpu_relax();
1764
1765	/* Cancel all pending transfers. */
1766	list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node)
1767		at_xdmac_remove_xfer(atchan, desc);
1768
1769	clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1770	clear_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
1771	spin_unlock_irqrestore(&atchan->lock, flags);
1772
1773	return 0;
1774}
1775
1776static int at_xdmac_alloc_chan_resources(struct dma_chan *chan)
1777{
1778	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1779	struct at_xdmac_desc	*desc;
1780	int			i;
1781	unsigned long		flags;
1782
1783	spin_lock_irqsave(&atchan->lock, flags);
1784
1785	if (at_xdmac_chan_is_enabled(atchan)) {
1786		dev_err(chan2dev(chan),
1787			"can't allocate channel resources (channel enabled)\n");
1788		i = -EIO;
1789		goto spin_unlock;
1790	}
1791
1792	if (!list_empty(&atchan->free_descs_list)) {
1793		dev_err(chan2dev(chan),
1794			"can't allocate channel resources (channel not free from a previous use)\n");
1795		i = -EIO;
1796		goto spin_unlock;
1797	}
1798
1799	for (i = 0; i < init_nr_desc_per_channel; i++) {
1800		desc = at_xdmac_alloc_desc(chan, GFP_ATOMIC);
1801		if (!desc) {
1802			dev_warn(chan2dev(chan),
1803				"only %d descriptors have been allocated\n", i);
1804			break;
1805		}
1806		list_add_tail(&desc->desc_node, &atchan->free_descs_list);
1807	}
1808
1809	dma_cookie_init(chan);
1810
1811	dev_dbg(chan2dev(chan), "%s: allocated %d descriptors\n", __func__, i);
1812
1813spin_unlock:
1814	spin_unlock_irqrestore(&atchan->lock, flags);
1815	return i;
1816}
1817
1818static void at_xdmac_free_chan_resources(struct dma_chan *chan)
1819{
1820	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1821	struct at_xdmac		*atxdmac = to_at_xdmac(chan->device);
1822	struct at_xdmac_desc	*desc, *_desc;
1823
1824	list_for_each_entry_safe(desc, _desc, &atchan->free_descs_list, desc_node) {
1825		dev_dbg(chan2dev(chan), "%s: freeing descriptor %p\n", __func__, desc);
1826		list_del(&desc->desc_node);
1827		dma_pool_free(atxdmac->at_xdmac_desc_pool, desc, desc->tx_dma_desc.phys);
1828	}
1829
1830	return;
1831}
1832
1833#ifdef CONFIG_PM
1834static int atmel_xdmac_prepare(struct device *dev)
1835{
1836	struct platform_device	*pdev = to_platform_device(dev);
1837	struct at_xdmac		*atxdmac = platform_get_drvdata(pdev);
1838	struct dma_chan		*chan, *_chan;
1839
1840	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1841		struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1842
1843		/* Wait for transfer completion, except in cyclic case. */
1844		if (at_xdmac_chan_is_enabled(atchan) && !at_xdmac_chan_is_cyclic(atchan))
1845			return -EAGAIN;
1846	}
1847	return 0;
1848}
1849#else
1850#	define atmel_xdmac_prepare NULL
1851#endif
1852
1853#ifdef CONFIG_PM_SLEEP
1854static int atmel_xdmac_suspend(struct device *dev)
1855{
1856	struct platform_device	*pdev = to_platform_device(dev);
1857	struct at_xdmac		*atxdmac = platform_get_drvdata(pdev);
1858	struct dma_chan		*chan, *_chan;
1859
1860	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1861		struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1862
1863		atchan->save_cc = at_xdmac_chan_read(atchan, AT_XDMAC_CC);
1864		if (at_xdmac_chan_is_cyclic(atchan)) {
1865			if (!at_xdmac_chan_is_paused(atchan))
1866				at_xdmac_device_pause(chan);
1867			atchan->save_cim = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1868			atchan->save_cnda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA);
1869			atchan->save_cndc = at_xdmac_chan_read(atchan, AT_XDMAC_CNDC);
1870		}
1871	}
1872	atxdmac->save_gim = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1873
1874	at_xdmac_off(atxdmac);
1875	clk_disable_unprepare(atxdmac->clk);
1876	return 0;
1877}
1878
1879static int atmel_xdmac_resume(struct device *dev)
1880{
1881	struct platform_device	*pdev = to_platform_device(dev);
1882	struct at_xdmac		*atxdmac = platform_get_drvdata(pdev);
1883	struct at_xdmac_chan	*atchan;
1884	struct dma_chan		*chan, *_chan;
1885	int			i;
1886	int ret;
1887
1888	ret = clk_prepare_enable(atxdmac->clk);
1889	if (ret)
1890		return ret;
1891
1892	/* Clear pending interrupts. */
1893	for (i = 0; i < atxdmac->dma.chancnt; i++) {
1894		atchan = &atxdmac->chan[i];
1895		while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
1896			cpu_relax();
1897	}
1898
1899	at_xdmac_write(atxdmac, AT_XDMAC_GIE, atxdmac->save_gim);
1900	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1901		atchan = to_at_xdmac_chan(chan);
1902		at_xdmac_chan_write(atchan, AT_XDMAC_CC, atchan->save_cc);
1903		if (at_xdmac_chan_is_cyclic(atchan)) {
1904			if (at_xdmac_chan_is_paused(atchan))
1905				at_xdmac_device_resume(chan);
1906			at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, atchan->save_cnda);
1907			at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, atchan->save_cndc);
1908			at_xdmac_chan_write(atchan, AT_XDMAC_CIE, atchan->save_cim);
1909			wmb();
1910			at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
1911		}
1912	}
1913	return 0;
1914}
1915#endif /* CONFIG_PM_SLEEP */
1916
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1917static int at_xdmac_probe(struct platform_device *pdev)
1918{
1919	struct resource	*res;
1920	struct at_xdmac	*atxdmac;
1921	int		irq, size, nr_channels, i, ret;
1922	void __iomem	*base;
1923	u32		reg;
1924
1925	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1926	if (!res)
1927		return -EINVAL;
1928
1929	irq = platform_get_irq(pdev, 0);
1930	if (irq < 0)
1931		return irq;
1932
1933	base = devm_ioremap_resource(&pdev->dev, res);
1934	if (IS_ERR(base))
1935		return PTR_ERR(base);
1936
1937	/*
1938	 * Read number of xdmac channels, read helper function can't be used
1939	 * since atxdmac is not yet allocated and we need to know the number
1940	 * of channels to do the allocation.
1941	 */
1942	reg = readl_relaxed(base + AT_XDMAC_GTYPE);
1943	nr_channels = AT_XDMAC_NB_CH(reg);
1944	if (nr_channels > AT_XDMAC_MAX_CHAN) {
1945		dev_err(&pdev->dev, "invalid number of channels (%u)\n",
1946			nr_channels);
1947		return -EINVAL;
1948	}
1949
1950	size = sizeof(*atxdmac);
1951	size += nr_channels * sizeof(struct at_xdmac_chan);
1952	atxdmac = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1953	if (!atxdmac) {
1954		dev_err(&pdev->dev, "can't allocate at_xdmac structure\n");
1955		return -ENOMEM;
1956	}
1957
1958	atxdmac->regs = base;
1959	atxdmac->irq = irq;
1960
 
 
 
 
1961	atxdmac->clk = devm_clk_get(&pdev->dev, "dma_clk");
1962	if (IS_ERR(atxdmac->clk)) {
1963		dev_err(&pdev->dev, "can't get dma_clk\n");
1964		return PTR_ERR(atxdmac->clk);
1965	}
1966
1967	/* Do not use dev res to prevent races with tasklet */
1968	ret = request_irq(atxdmac->irq, at_xdmac_interrupt, 0, "at_xdmac", atxdmac);
1969	if (ret) {
1970		dev_err(&pdev->dev, "can't request irq\n");
1971		return ret;
1972	}
1973
1974	ret = clk_prepare_enable(atxdmac->clk);
1975	if (ret) {
1976		dev_err(&pdev->dev, "can't prepare or enable clock\n");
1977		goto err_free_irq;
1978	}
1979
1980	atxdmac->at_xdmac_desc_pool =
1981		dmam_pool_create(dev_name(&pdev->dev), &pdev->dev,
1982				sizeof(struct at_xdmac_desc), 4, 0);
1983	if (!atxdmac->at_xdmac_desc_pool) {
1984		dev_err(&pdev->dev, "no memory for descriptors dma pool\n");
1985		ret = -ENOMEM;
1986		goto err_clk_disable;
1987	}
1988
1989	dma_cap_set(DMA_CYCLIC, atxdmac->dma.cap_mask);
1990	dma_cap_set(DMA_INTERLEAVE, atxdmac->dma.cap_mask);
1991	dma_cap_set(DMA_MEMCPY, atxdmac->dma.cap_mask);
1992	dma_cap_set(DMA_MEMSET, atxdmac->dma.cap_mask);
1993	dma_cap_set(DMA_MEMSET_SG, atxdmac->dma.cap_mask);
1994	dma_cap_set(DMA_SLAVE, atxdmac->dma.cap_mask);
1995	/*
1996	 * Without DMA_PRIVATE the driver is not able to allocate more than
1997	 * one channel, second allocation fails in private_candidate.
1998	 */
1999	dma_cap_set(DMA_PRIVATE, atxdmac->dma.cap_mask);
2000	atxdmac->dma.dev				= &pdev->dev;
2001	atxdmac->dma.device_alloc_chan_resources	= at_xdmac_alloc_chan_resources;
2002	atxdmac->dma.device_free_chan_resources		= at_xdmac_free_chan_resources;
2003	atxdmac->dma.device_tx_status			= at_xdmac_tx_status;
2004	atxdmac->dma.device_issue_pending		= at_xdmac_issue_pending;
2005	atxdmac->dma.device_prep_dma_cyclic		= at_xdmac_prep_dma_cyclic;
2006	atxdmac->dma.device_prep_interleaved_dma	= at_xdmac_prep_interleaved;
2007	atxdmac->dma.device_prep_dma_memcpy		= at_xdmac_prep_dma_memcpy;
2008	atxdmac->dma.device_prep_dma_memset		= at_xdmac_prep_dma_memset;
2009	atxdmac->dma.device_prep_dma_memset_sg		= at_xdmac_prep_dma_memset_sg;
2010	atxdmac->dma.device_prep_slave_sg		= at_xdmac_prep_slave_sg;
2011	atxdmac->dma.device_config			= at_xdmac_device_config;
2012	atxdmac->dma.device_pause			= at_xdmac_device_pause;
2013	atxdmac->dma.device_resume			= at_xdmac_device_resume;
2014	atxdmac->dma.device_terminate_all		= at_xdmac_device_terminate_all;
2015	atxdmac->dma.src_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2016	atxdmac->dma.dst_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2017	atxdmac->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2018	atxdmac->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2019
2020	/* Disable all chans and interrupts. */
2021	at_xdmac_off(atxdmac);
2022
2023	/* Init channels. */
2024	INIT_LIST_HEAD(&atxdmac->dma.channels);
2025	for (i = 0; i < nr_channels; i++) {
2026		struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2027
2028		atchan->chan.device = &atxdmac->dma;
2029		list_add_tail(&atchan->chan.device_node,
2030			      &atxdmac->dma.channels);
2031
2032		atchan->ch_regs = at_xdmac_chan_reg_base(atxdmac, i);
2033		atchan->mask = 1 << i;
2034
2035		spin_lock_init(&atchan->lock);
2036		INIT_LIST_HEAD(&atchan->xfers_list);
2037		INIT_LIST_HEAD(&atchan->free_descs_list);
2038		tasklet_init(&atchan->tasklet, at_xdmac_tasklet,
2039			     (unsigned long)atchan);
2040
2041		/* Clear pending interrupts. */
2042		while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
2043			cpu_relax();
2044	}
2045	platform_set_drvdata(pdev, atxdmac);
2046
2047	ret = dma_async_device_register(&atxdmac->dma);
2048	if (ret) {
2049		dev_err(&pdev->dev, "fail to register DMA engine device\n");
2050		goto err_clk_disable;
2051	}
2052
2053	ret = of_dma_controller_register(pdev->dev.of_node,
2054					 at_xdmac_xlate, atxdmac);
2055	if (ret) {
2056		dev_err(&pdev->dev, "could not register of dma controller\n");
2057		goto err_dma_unregister;
2058	}
2059
2060	dev_info(&pdev->dev, "%d channels, mapped at 0x%p\n",
2061		 nr_channels, atxdmac->regs);
2062
 
 
2063	return 0;
2064
2065err_dma_unregister:
2066	dma_async_device_unregister(&atxdmac->dma);
2067err_clk_disable:
2068	clk_disable_unprepare(atxdmac->clk);
2069err_free_irq:
2070	free_irq(atxdmac->irq, atxdmac);
2071	return ret;
2072}
2073
2074static int at_xdmac_remove(struct platform_device *pdev)
2075{
2076	struct at_xdmac	*atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev);
2077	int		i;
2078
2079	at_xdmac_off(atxdmac);
2080	of_dma_controller_free(pdev->dev.of_node);
2081	dma_async_device_unregister(&atxdmac->dma);
2082	clk_disable_unprepare(atxdmac->clk);
2083
2084	free_irq(atxdmac->irq, atxdmac);
2085
2086	for (i = 0; i < atxdmac->dma.chancnt; i++) {
2087		struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2088
2089		tasklet_kill(&atchan->tasklet);
2090		at_xdmac_free_chan_resources(&atchan->chan);
2091	}
2092
2093	return 0;
2094}
2095
2096static const struct dev_pm_ops atmel_xdmac_dev_pm_ops = {
2097	.prepare	= atmel_xdmac_prepare,
2098	SET_LATE_SYSTEM_SLEEP_PM_OPS(atmel_xdmac_suspend, atmel_xdmac_resume)
2099};
2100
2101static const struct of_device_id atmel_xdmac_dt_ids[] = {
2102	{
2103		.compatible = "atmel,sama5d4-dma",
 
 
 
 
2104	}, {
2105		/* sentinel */
2106	}
2107};
2108MODULE_DEVICE_TABLE(of, atmel_xdmac_dt_ids);
2109
2110static struct platform_driver at_xdmac_driver = {
2111	.probe		= at_xdmac_probe,
2112	.remove		= at_xdmac_remove,
2113	.driver = {
2114		.name		= "at_xdmac",
2115		.of_match_table	= of_match_ptr(atmel_xdmac_dt_ids),
2116		.pm		= &atmel_xdmac_dev_pm_ops,
2117	}
2118};
2119
2120static int __init at_xdmac_init(void)
2121{
2122	return platform_driver_probe(&at_xdmac_driver, at_xdmac_probe);
2123}
2124subsys_initcall(at_xdmac_init);
2125
2126MODULE_DESCRIPTION("Atmel Extended DMA Controller driver");
2127MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@atmel.com>");
2128MODULE_LICENSE("GPL");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for the Atmel Extensible DMA Controller (aka XDMAC on AT91 systems)
   4 *
   5 * Copyright (C) 2014 Atmel Corporation
   6 *
   7 * Author: Ludovic Desroches <ludovic.desroches@atmel.com>
 
 
 
 
 
 
 
 
 
 
 
 
   8 */
   9
  10#include <asm/barrier.h>
  11#include <dt-bindings/dma/at91.h>
  12#include <linux/clk.h>
  13#include <linux/dmaengine.h>
  14#include <linux/dmapool.h>
  15#include <linux/interrupt.h>
  16#include <linux/irq.h>
  17#include <linux/kernel.h>
  18#include <linux/list.h>
  19#include <linux/module.h>
  20#include <linux/of_dma.h>
  21#include <linux/of_platform.h>
  22#include <linux/platform_device.h>
  23#include <linux/pm.h>
  24
  25#include "dmaengine.h"
  26
  27/* Global registers */
  28#define AT_XDMAC_GTYPE		0x00	/* Global Type Register */
  29#define		AT_XDMAC_NB_CH(i)	(((i) & 0x1F) + 1)		/* Number of Channels Minus One */
  30#define		AT_XDMAC_FIFO_SZ(i)	(((i) >> 5) & 0x7FF)		/* Number of Bytes */
  31#define		AT_XDMAC_NB_REQ(i)	((((i) >> 16) & 0x3F) + 1)	/* Number of Peripheral Requests Minus One */
  32#define AT_XDMAC_GCFG		0x04	/* Global Configuration Register */
  33#define		AT_XDMAC_WRHP(i)		(((i) & 0xF) << 4)
  34#define		AT_XDMAC_WRMP(i)		(((i) & 0xF) << 8)
  35#define		AT_XDMAC_WRLP(i)		(((i) & 0xF) << 12)
  36#define		AT_XDMAC_RDHP(i)		(((i) & 0xF) << 16)
  37#define		AT_XDMAC_RDMP(i)		(((i) & 0xF) << 20)
  38#define		AT_XDMAC_RDLP(i)		(((i) & 0xF) << 24)
  39#define		AT_XDMAC_RDSG(i)		(((i) & 0xF) << 28)
  40#define AT_XDMAC_GCFG_M2M	(AT_XDMAC_RDLP(0xF) | AT_XDMAC_WRLP(0xF))
  41#define AT_XDMAC_GCFG_P2M	(AT_XDMAC_RDSG(0x1) | AT_XDMAC_RDHP(0x3) | \
  42				AT_XDMAC_WRHP(0x5))
  43#define AT_XDMAC_GWAC		0x08	/* Global Weighted Arbiter Configuration Register */
  44#define		AT_XDMAC_PW0(i)		(((i) & 0xF) << 0)
  45#define		AT_XDMAC_PW1(i)		(((i) & 0xF) << 4)
  46#define		AT_XDMAC_PW2(i)		(((i) & 0xF) << 8)
  47#define		AT_XDMAC_PW3(i)		(((i) & 0xF) << 12)
  48#define AT_XDMAC_GWAC_M2M	0
  49#define AT_XDMAC_GWAC_P2M	(AT_XDMAC_PW0(0xF) | AT_XDMAC_PW2(0xF))
  50
  51#define AT_XDMAC_GIE		0x0C	/* Global Interrupt Enable Register */
  52#define AT_XDMAC_GID		0x10	/* Global Interrupt Disable Register */
  53#define AT_XDMAC_GIM		0x14	/* Global Interrupt Mask Register */
  54#define AT_XDMAC_GIS		0x18	/* Global Interrupt Status Register */
  55#define AT_XDMAC_GE		0x1C	/* Global Channel Enable Register */
  56#define AT_XDMAC_GD		0x20	/* Global Channel Disable Register */
  57#define AT_XDMAC_GS		0x24	/* Global Channel Status Register */
 
 
 
 
 
 
 
  58#define AT_XDMAC_VERSION	0xFFC	/* XDMAC Version Register */
  59
  60/* Channel relative registers offsets */
  61#define AT_XDMAC_CIE		0x00	/* Channel Interrupt Enable Register */
  62#define		AT_XDMAC_CIE_BIE	BIT(0)	/* End of Block Interrupt Enable Bit */
  63#define		AT_XDMAC_CIE_LIE	BIT(1)	/* End of Linked List Interrupt Enable Bit */
  64#define		AT_XDMAC_CIE_DIE	BIT(2)	/* End of Disable Interrupt Enable Bit */
  65#define		AT_XDMAC_CIE_FIE	BIT(3)	/* End of Flush Interrupt Enable Bit */
  66#define		AT_XDMAC_CIE_RBEIE	BIT(4)	/* Read Bus Error Interrupt Enable Bit */
  67#define		AT_XDMAC_CIE_WBEIE	BIT(5)	/* Write Bus Error Interrupt Enable Bit */
  68#define		AT_XDMAC_CIE_ROIE	BIT(6)	/* Request Overflow Interrupt Enable Bit */
  69#define AT_XDMAC_CID		0x04	/* Channel Interrupt Disable Register */
  70#define		AT_XDMAC_CID_BID	BIT(0)	/* End of Block Interrupt Disable Bit */
  71#define		AT_XDMAC_CID_LID	BIT(1)	/* End of Linked List Interrupt Disable Bit */
  72#define		AT_XDMAC_CID_DID	BIT(2)	/* End of Disable Interrupt Disable Bit */
  73#define		AT_XDMAC_CID_FID	BIT(3)	/* End of Flush Interrupt Disable Bit */
  74#define		AT_XDMAC_CID_RBEID	BIT(4)	/* Read Bus Error Interrupt Disable Bit */
  75#define		AT_XDMAC_CID_WBEID	BIT(5)	/* Write Bus Error Interrupt Disable Bit */
  76#define		AT_XDMAC_CID_ROID	BIT(6)	/* Request Overflow Interrupt Disable Bit */
  77#define AT_XDMAC_CIM		0x08	/* Channel Interrupt Mask Register */
  78#define		AT_XDMAC_CIM_BIM	BIT(0)	/* End of Block Interrupt Mask Bit */
  79#define		AT_XDMAC_CIM_LIM	BIT(1)	/* End of Linked List Interrupt Mask Bit */
  80#define		AT_XDMAC_CIM_DIM	BIT(2)	/* End of Disable Interrupt Mask Bit */
  81#define		AT_XDMAC_CIM_FIM	BIT(3)	/* End of Flush Interrupt Mask Bit */
  82#define		AT_XDMAC_CIM_RBEIM	BIT(4)	/* Read Bus Error Interrupt Mask Bit */
  83#define		AT_XDMAC_CIM_WBEIM	BIT(5)	/* Write Bus Error Interrupt Mask Bit */
  84#define		AT_XDMAC_CIM_ROIM	BIT(6)	/* Request Overflow Interrupt Mask Bit */
  85#define AT_XDMAC_CIS		0x0C	/* Channel Interrupt Status Register */
  86#define		AT_XDMAC_CIS_BIS	BIT(0)	/* End of Block Interrupt Status Bit */
  87#define		AT_XDMAC_CIS_LIS	BIT(1)	/* End of Linked List Interrupt Status Bit */
  88#define		AT_XDMAC_CIS_DIS	BIT(2)	/* End of Disable Interrupt Status Bit */
  89#define		AT_XDMAC_CIS_FIS	BIT(3)	/* End of Flush Interrupt Status Bit */
  90#define		AT_XDMAC_CIS_RBEIS	BIT(4)	/* Read Bus Error Interrupt Status Bit */
  91#define		AT_XDMAC_CIS_WBEIS	BIT(5)	/* Write Bus Error Interrupt Status Bit */
  92#define		AT_XDMAC_CIS_ROIS	BIT(6)	/* Request Overflow Interrupt Status Bit */
  93#define AT_XDMAC_CSA		0x10	/* Channel Source Address Register */
  94#define AT_XDMAC_CDA		0x14	/* Channel Destination Address Register */
  95#define AT_XDMAC_CNDA		0x18	/* Channel Next Descriptor Address Register */
  96#define		AT_XDMAC_CNDA_NDAIF(i)	((i) & 0x1)			/* Channel x Next Descriptor Interface */
  97#define		AT_XDMAC_CNDA_NDA(i)	((i) & 0xfffffffc)		/* Channel x Next Descriptor Address */
  98#define AT_XDMAC_CNDC		0x1C	/* Channel Next Descriptor Control Register */
  99#define		AT_XDMAC_CNDC_NDE		(0x1 << 0)		/* Channel x Next Descriptor Enable */
 100#define		AT_XDMAC_CNDC_NDSUP		(0x1 << 1)		/* Channel x Next Descriptor Source Update */
 101#define		AT_XDMAC_CNDC_NDDUP		(0x1 << 2)		/* Channel x Next Descriptor Destination Update */
 102#define		AT_XDMAC_CNDC_NDVIEW_NDV0	(0x0 << 3)		/* Channel x Next Descriptor View 0 */
 103#define		AT_XDMAC_CNDC_NDVIEW_NDV1	(0x1 << 3)		/* Channel x Next Descriptor View 1 */
 104#define		AT_XDMAC_CNDC_NDVIEW_NDV2	(0x2 << 3)		/* Channel x Next Descriptor View 2 */
 105#define		AT_XDMAC_CNDC_NDVIEW_NDV3	(0x3 << 3)		/* Channel x Next Descriptor View 3 */
 106#define AT_XDMAC_CUBC		0x20	/* Channel Microblock Control Register */
 107#define AT_XDMAC_CBC		0x24	/* Channel Block Control Register */
 108#define AT_XDMAC_CC		0x28	/* Channel Configuration Register */
 109#define		AT_XDMAC_CC_TYPE	(0x1 << 0)	/* Channel Transfer Type */
 110#define			AT_XDMAC_CC_TYPE_MEM_TRAN	(0x0 << 0)	/* Memory to Memory Transfer */
 111#define			AT_XDMAC_CC_TYPE_PER_TRAN	(0x1 << 0)	/* Peripheral to Memory or Memory to Peripheral Transfer */
 112#define		AT_XDMAC_CC_MBSIZE_MASK	(0x3 << 1)
 113#define			AT_XDMAC_CC_MBSIZE_SINGLE	(0x0 << 1)
 114#define			AT_XDMAC_CC_MBSIZE_FOUR		(0x1 << 1)
 115#define			AT_XDMAC_CC_MBSIZE_EIGHT	(0x2 << 1)
 116#define			AT_XDMAC_CC_MBSIZE_SIXTEEN	(0x3 << 1)
 117#define		AT_XDMAC_CC_DSYNC	(0x1 << 4)	/* Channel Synchronization */
 118#define			AT_XDMAC_CC_DSYNC_PER2MEM	(0x0 << 4)
 119#define			AT_XDMAC_CC_DSYNC_MEM2PER	(0x1 << 4)
 120#define		AT_XDMAC_CC_PROT	(0x1 << 5)	/* Channel Protection */
 121#define			AT_XDMAC_CC_PROT_SEC		(0x0 << 5)
 122#define			AT_XDMAC_CC_PROT_UNSEC		(0x1 << 5)
 123#define		AT_XDMAC_CC_SWREQ	(0x1 << 6)	/* Channel Software Request Trigger */
 124#define			AT_XDMAC_CC_SWREQ_HWR_CONNECTED	(0x0 << 6)
 125#define			AT_XDMAC_CC_SWREQ_SWR_CONNECTED	(0x1 << 6)
 126#define		AT_XDMAC_CC_MEMSET	(0x1 << 7)	/* Channel Fill Block of memory */
 127#define			AT_XDMAC_CC_MEMSET_NORMAL_MODE	(0x0 << 7)
 128#define			AT_XDMAC_CC_MEMSET_HW_MODE	(0x1 << 7)
 129#define		AT_XDMAC_CC_CSIZE(i)	((0x7 & (i)) << 8)	/* Channel Chunk Size */
 130#define		AT_XDMAC_CC_DWIDTH_OFFSET	11
 131#define		AT_XDMAC_CC_DWIDTH_MASK	(0x3 << AT_XDMAC_CC_DWIDTH_OFFSET)
 132#define		AT_XDMAC_CC_DWIDTH(i)	((0x3 & (i)) << AT_XDMAC_CC_DWIDTH_OFFSET)	/* Channel Data Width */
 133#define			AT_XDMAC_CC_DWIDTH_BYTE		0x0
 134#define			AT_XDMAC_CC_DWIDTH_HALFWORD	0x1
 135#define			AT_XDMAC_CC_DWIDTH_WORD		0x2
 136#define			AT_XDMAC_CC_DWIDTH_DWORD	0x3
 137#define		AT_XDMAC_CC_SIF(i)	((0x1 & (i)) << 13)	/* Channel Source Interface Identifier */
 138#define		AT_XDMAC_CC_DIF(i)	((0x1 & (i)) << 14)	/* Channel Destination Interface Identifier */
 139#define		AT_XDMAC_CC_SAM_MASK	(0x3 << 16)	/* Channel Source Addressing Mode */
 140#define			AT_XDMAC_CC_SAM_FIXED_AM	(0x0 << 16)
 141#define			AT_XDMAC_CC_SAM_INCREMENTED_AM	(0x1 << 16)
 142#define			AT_XDMAC_CC_SAM_UBS_AM		(0x2 << 16)
 143#define			AT_XDMAC_CC_SAM_UBS_DS_AM	(0x3 << 16)
 144#define		AT_XDMAC_CC_DAM_MASK	(0x3 << 18)	/* Channel Source Addressing Mode */
 145#define			AT_XDMAC_CC_DAM_FIXED_AM	(0x0 << 18)
 146#define			AT_XDMAC_CC_DAM_INCREMENTED_AM	(0x1 << 18)
 147#define			AT_XDMAC_CC_DAM_UBS_AM		(0x2 << 18)
 148#define			AT_XDMAC_CC_DAM_UBS_DS_AM	(0x3 << 18)
 149#define		AT_XDMAC_CC_INITD	(0x1 << 21)	/* Channel Initialization Terminated (read only) */
 150#define			AT_XDMAC_CC_INITD_TERMINATED	(0x0 << 21)
 151#define			AT_XDMAC_CC_INITD_IN_PROGRESS	(0x1 << 21)
 152#define		AT_XDMAC_CC_RDIP	(0x1 << 22)	/* Read in Progress (read only) */
 153#define			AT_XDMAC_CC_RDIP_DONE		(0x0 << 22)
 154#define			AT_XDMAC_CC_RDIP_IN_PROGRESS	(0x1 << 22)
 155#define		AT_XDMAC_CC_WRIP	(0x1 << 23)	/* Write in Progress (read only) */
 156#define			AT_XDMAC_CC_WRIP_DONE		(0x0 << 23)
 157#define			AT_XDMAC_CC_WRIP_IN_PROGRESS	(0x1 << 23)
 158#define		AT_XDMAC_CC_PERID(i)	(0x7f & (i) << 24)	/* Channel Peripheral Identifier */
 159#define AT_XDMAC_CDS_MSP	0x2C	/* Channel Data Stride Memory Set Pattern */
 160#define AT_XDMAC_CSUS		0x30	/* Channel Source Microblock Stride */
 161#define AT_XDMAC_CDUS		0x34	/* Channel Destination Microblock Stride */
 162
 
 
 163/* Microblock control members */
 164#define AT_XDMAC_MBR_UBC_UBLEN_MAX	0xFFFFFFUL	/* Maximum Microblock Length */
 165#define AT_XDMAC_MBR_UBC_NDE		(0x1 << 24)	/* Next Descriptor Enable */
 166#define AT_XDMAC_MBR_UBC_NSEN		(0x1 << 25)	/* Next Descriptor Source Update */
 167#define AT_XDMAC_MBR_UBC_NDEN		(0x1 << 26)	/* Next Descriptor Destination Update */
 168#define AT_XDMAC_MBR_UBC_NDV0		(0x0 << 27)	/* Next Descriptor View 0 */
 169#define AT_XDMAC_MBR_UBC_NDV1		(0x1 << 27)	/* Next Descriptor View 1 */
 170#define AT_XDMAC_MBR_UBC_NDV2		(0x2 << 27)	/* Next Descriptor View 2 */
 171#define AT_XDMAC_MBR_UBC_NDV3		(0x3 << 27)	/* Next Descriptor View 3 */
 172
 173#define AT_XDMAC_MAX_CHAN	0x20
 174#define AT_XDMAC_MAX_CSIZE	16	/* 16 data */
 175#define AT_XDMAC_MAX_DWIDTH	8	/* 64 bits */
 176#define AT_XDMAC_RESIDUE_MAX_RETRIES	5
 177
 178#define AT_XDMAC_DMA_BUSWIDTHS\
 179	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
 180	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
 181	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
 182	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |\
 183	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
 184
 185enum atc_status {
 186	AT_XDMAC_CHAN_IS_CYCLIC = 0,
 187	AT_XDMAC_CHAN_IS_PAUSED,
 188};
 189
 190struct at_xdmac_layout {
 191	/* Global Channel Read Suspend Register */
 192	u8				grs;
 193	/* Global Write Suspend Register */
 194	u8				gws;
 195	/* Global Channel Read Write Suspend Register */
 196	u8				grws;
 197	/* Global Channel Read Write Resume Register */
 198	u8				grwr;
 199	/* Global Channel Software Request Register */
 200	u8				gswr;
 201	/* Global channel Software Request Status Register */
 202	u8				gsws;
 203	/* Global Channel Software Flush Request Register */
 204	u8				gswf;
 205	/* Channel reg base */
 206	u8				chan_cc_reg_base;
 207	/* Source/Destination Interface must be specified or not */
 208	bool				sdif;
 209	/* AXI queue priority configuration supported */
 210	bool				axi_config;
 211};
 212
 213/* ----- Channels ----- */
 214struct at_xdmac_chan {
 215	struct dma_chan			chan;
 216	void __iomem			*ch_regs;
 217	u32				mask;		/* Channel Mask */
 218	u32				cfg;		/* Channel Configuration Register */
 219	u8				perid;		/* Peripheral ID */
 220	u8				perif;		/* Peripheral Interface */
 221	u8				memif;		/* Memory Interface */
 222	u32				save_cc;
 223	u32				save_cim;
 224	u32				save_cnda;
 225	u32				save_cndc;
 226	u32				irq_status;
 227	unsigned long			status;
 228	struct tasklet_struct		tasklet;
 229	struct dma_slave_config		sconfig;
 230
 231	spinlock_t			lock;
 232
 233	struct list_head		xfers_list;
 234	struct list_head		free_descs_list;
 235};
 236
 237
 238/* ----- Controller ----- */
 239struct at_xdmac {
 240	struct dma_device	dma;
 241	void __iomem		*regs;
 242	int			irq;
 243	struct clk		*clk;
 244	u32			save_gim;
 245	struct dma_pool		*at_xdmac_desc_pool;
 246	const struct at_xdmac_layout	*layout;
 247	struct at_xdmac_chan	chan[];
 248};
 249
 250
 251/* ----- Descriptors ----- */
 252
 253/* Linked List Descriptor */
 254struct at_xdmac_lld {
 255	dma_addr_t	mbr_nda;	/* Next Descriptor Member */
 256	u32		mbr_ubc;	/* Microblock Control Member */
 257	dma_addr_t	mbr_sa;		/* Source Address Member */
 258	dma_addr_t	mbr_da;		/* Destination Address Member */
 259	u32		mbr_cfg;	/* Configuration Register */
 260	u32		mbr_bc;		/* Block Control Register */
 261	u32		mbr_ds;		/* Data Stride Register */
 262	u32		mbr_sus;	/* Source Microblock Stride Register */
 263	u32		mbr_dus;	/* Destination Microblock Stride Register */
 264};
 265
 266/* 64-bit alignment needed to update CNDA and CUBC registers in an atomic way. */
 267struct at_xdmac_desc {
 268	struct at_xdmac_lld		lld;
 269	enum dma_transfer_direction	direction;
 270	struct dma_async_tx_descriptor	tx_dma_desc;
 271	struct list_head		desc_node;
 272	/* Following members are only used by the first descriptor */
 273	bool				active_xfer;
 274	unsigned int			xfer_size;
 275	struct list_head		descs_list;
 276	struct list_head		xfer_node;
 277} __aligned(sizeof(u64));
 278
 279static const struct at_xdmac_layout at_xdmac_sama5d4_layout = {
 280	.grs = 0x28,
 281	.gws = 0x2C,
 282	.grws = 0x30,
 283	.grwr = 0x34,
 284	.gswr = 0x38,
 285	.gsws = 0x3C,
 286	.gswf = 0x40,
 287	.chan_cc_reg_base = 0x50,
 288	.sdif = true,
 289	.axi_config = false,
 290};
 291
 292static const struct at_xdmac_layout at_xdmac_sama7g5_layout = {
 293	.grs = 0x30,
 294	.gws = 0x38,
 295	.grws = 0x40,
 296	.grwr = 0x44,
 297	.gswr = 0x48,
 298	.gsws = 0x4C,
 299	.gswf = 0x50,
 300	.chan_cc_reg_base = 0x60,
 301	.sdif = false,
 302	.axi_config = true,
 303};
 304
 305static inline void __iomem *at_xdmac_chan_reg_base(struct at_xdmac *atxdmac, unsigned int chan_nb)
 306{
 307	return atxdmac->regs + (atxdmac->layout->chan_cc_reg_base + chan_nb * 0x40);
 308}
 309
 310#define at_xdmac_read(atxdmac, reg) readl_relaxed((atxdmac)->regs + (reg))
 311#define at_xdmac_write(atxdmac, reg, value) \
 312	writel_relaxed((value), (atxdmac)->regs + (reg))
 313
 314#define at_xdmac_chan_read(atchan, reg) readl_relaxed((atchan)->ch_regs + (reg))
 315#define at_xdmac_chan_write(atchan, reg, value) writel_relaxed((value), (atchan)->ch_regs + (reg))
 316
 317static inline struct at_xdmac_chan *to_at_xdmac_chan(struct dma_chan *dchan)
 318{
 319	return container_of(dchan, struct at_xdmac_chan, chan);
 320}
 321
 322static struct device *chan2dev(struct dma_chan *chan)
 323{
 324	return &chan->dev->device;
 325}
 326
 327static inline struct at_xdmac *to_at_xdmac(struct dma_device *ddev)
 328{
 329	return container_of(ddev, struct at_xdmac, dma);
 330}
 331
 332static inline struct at_xdmac_desc *txd_to_at_desc(struct dma_async_tx_descriptor *txd)
 333{
 334	return container_of(txd, struct at_xdmac_desc, tx_dma_desc);
 335}
 336
 337static inline int at_xdmac_chan_is_cyclic(struct at_xdmac_chan *atchan)
 338{
 339	return test_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
 340}
 341
 342static inline int at_xdmac_chan_is_paused(struct at_xdmac_chan *atchan)
 343{
 344	return test_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
 345}
 346
 347static inline bool at_xdmac_chan_is_peripheral_xfer(u32 cfg)
 348{
 349	return cfg & AT_XDMAC_CC_TYPE_PER_TRAN;
 350}
 
 
 
 
 
 
 351
 352static inline u8 at_xdmac_get_dwidth(u32 cfg)
 353{
 354	return (cfg & AT_XDMAC_CC_DWIDTH_MASK) >> AT_XDMAC_CC_DWIDTH_OFFSET;
 355};
 356
 357static unsigned int init_nr_desc_per_channel = 64;
 358module_param(init_nr_desc_per_channel, uint, 0644);
 359MODULE_PARM_DESC(init_nr_desc_per_channel,
 360		 "initial descriptors per channel (default: 64)");
 361
 362
 363static bool at_xdmac_chan_is_enabled(struct at_xdmac_chan *atchan)
 364{
 365	return at_xdmac_chan_read(atchan, AT_XDMAC_GS) & atchan->mask;
 366}
 367
 368static void at_xdmac_off(struct at_xdmac *atxdmac)
 369{
 370	at_xdmac_write(atxdmac, AT_XDMAC_GD, -1L);
 371
 372	/* Wait that all chans are disabled. */
 373	while (at_xdmac_read(atxdmac, AT_XDMAC_GS))
 374		cpu_relax();
 375
 376	at_xdmac_write(atxdmac, AT_XDMAC_GID, -1L);
 377}
 378
 379/* Call with lock hold. */
 380static void at_xdmac_start_xfer(struct at_xdmac_chan *atchan,
 381				struct at_xdmac_desc *first)
 382{
 383	struct at_xdmac	*atxdmac = to_at_xdmac(atchan->chan.device);
 384	u32		reg;
 385
 386	dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, first);
 387
 388	if (at_xdmac_chan_is_enabled(atchan))
 389		return;
 390
 391	/* Set transfer as active to not try to start it again. */
 392	first->active_xfer = true;
 393
 394	/* Tell xdmac where to get the first descriptor. */
 395	reg = AT_XDMAC_CNDA_NDA(first->tx_dma_desc.phys);
 396	if (atxdmac->layout->sdif)
 397		reg |= AT_XDMAC_CNDA_NDAIF(atchan->memif);
 398
 399	at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, reg);
 400
 401	/*
 402	 * When doing non cyclic transfer we need to use the next
 403	 * descriptor view 2 since some fields of the configuration register
 404	 * depend on transfer size and src/dest addresses.
 405	 */
 406	if (at_xdmac_chan_is_cyclic(atchan))
 407		reg = AT_XDMAC_CNDC_NDVIEW_NDV1;
 408	else if (first->lld.mbr_ubc & AT_XDMAC_MBR_UBC_NDV3)
 409		reg = AT_XDMAC_CNDC_NDVIEW_NDV3;
 410	else
 411		reg = AT_XDMAC_CNDC_NDVIEW_NDV2;
 412	/*
 413	 * Even if the register will be updated from the configuration in the
 414	 * descriptor when using view 2 or higher, the PROT bit won't be set
 415	 * properly. This bit can be modified only by using the channel
 416	 * configuration register.
 417	 */
 418	at_xdmac_chan_write(atchan, AT_XDMAC_CC, first->lld.mbr_cfg);
 419
 420	reg |= AT_XDMAC_CNDC_NDDUP
 421	       | AT_XDMAC_CNDC_NDSUP
 422	       | AT_XDMAC_CNDC_NDE;
 423	at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, reg);
 424
 425	dev_vdbg(chan2dev(&atchan->chan),
 426		 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
 427		 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
 428		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
 429		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
 430		 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
 431		 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
 432		 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
 433
 434	at_xdmac_chan_write(atchan, AT_XDMAC_CID, 0xffffffff);
 435	reg = AT_XDMAC_CIE_RBEIE | AT_XDMAC_CIE_WBEIE;
 436	/*
 437	 * Request Overflow Error is only for peripheral synchronized transfers
 438	 */
 439	if (at_xdmac_chan_is_peripheral_xfer(first->lld.mbr_cfg))
 440		reg |= AT_XDMAC_CIE_ROIE;
 441
 442	/*
 443	 * There is no end of list when doing cyclic dma, we need to get
 444	 * an interrupt after each periods.
 445	 */
 446	if (at_xdmac_chan_is_cyclic(atchan))
 447		at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
 448				    reg | AT_XDMAC_CIE_BIE);
 449	else
 450		at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
 451				    reg | AT_XDMAC_CIE_LIE);
 452	at_xdmac_write(atxdmac, AT_XDMAC_GIE, atchan->mask);
 453	dev_vdbg(chan2dev(&atchan->chan),
 454		 "%s: enable channel (0x%08x)\n", __func__, atchan->mask);
 455	wmb();
 456	at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
 457
 458	dev_vdbg(chan2dev(&atchan->chan),
 459		 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
 460		 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
 461		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
 462		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
 463		 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
 464		 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
 465		 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
 466
 467}
 468
 469static dma_cookie_t at_xdmac_tx_submit(struct dma_async_tx_descriptor *tx)
 470{
 471	struct at_xdmac_desc	*desc = txd_to_at_desc(tx);
 472	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(tx->chan);
 473	dma_cookie_t		cookie;
 474	unsigned long		irqflags;
 475
 476	spin_lock_irqsave(&atchan->lock, irqflags);
 477	cookie = dma_cookie_assign(tx);
 478
 479	dev_vdbg(chan2dev(tx->chan), "%s: atchan 0x%p, add desc 0x%p to xfers_list\n",
 480		 __func__, atchan, desc);
 481	list_add_tail(&desc->xfer_node, &atchan->xfers_list);
 482	if (list_is_singular(&atchan->xfers_list))
 483		at_xdmac_start_xfer(atchan, desc);
 484
 485	spin_unlock_irqrestore(&atchan->lock, irqflags);
 486	return cookie;
 487}
 488
 489static struct at_xdmac_desc *at_xdmac_alloc_desc(struct dma_chan *chan,
 490						 gfp_t gfp_flags)
 491{
 492	struct at_xdmac_desc	*desc;
 493	struct at_xdmac		*atxdmac = to_at_xdmac(chan->device);
 494	dma_addr_t		phys;
 495
 496	desc = dma_pool_zalloc(atxdmac->at_xdmac_desc_pool, gfp_flags, &phys);
 497	if (desc) {
 498		INIT_LIST_HEAD(&desc->descs_list);
 499		dma_async_tx_descriptor_init(&desc->tx_dma_desc, chan);
 500		desc->tx_dma_desc.tx_submit = at_xdmac_tx_submit;
 501		desc->tx_dma_desc.phys = phys;
 502	}
 503
 504	return desc;
 505}
 506
 507static void at_xdmac_init_used_desc(struct at_xdmac_desc *desc)
 508{
 509	memset(&desc->lld, 0, sizeof(desc->lld));
 510	INIT_LIST_HEAD(&desc->descs_list);
 511	desc->direction = DMA_TRANS_NONE;
 512	desc->xfer_size = 0;
 513	desc->active_xfer = false;
 514}
 515
 516/* Call must be protected by lock. */
 517static struct at_xdmac_desc *at_xdmac_get_desc(struct at_xdmac_chan *atchan)
 518{
 519	struct at_xdmac_desc *desc;
 520
 521	if (list_empty(&atchan->free_descs_list)) {
 522		desc = at_xdmac_alloc_desc(&atchan->chan, GFP_NOWAIT);
 523	} else {
 524		desc = list_first_entry(&atchan->free_descs_list,
 525					struct at_xdmac_desc, desc_node);
 526		list_del(&desc->desc_node);
 527		at_xdmac_init_used_desc(desc);
 528	}
 529
 530	return desc;
 531}
 532
 533static void at_xdmac_queue_desc(struct dma_chan *chan,
 534				struct at_xdmac_desc *prev,
 535				struct at_xdmac_desc *desc)
 536{
 537	if (!prev || !desc)
 538		return;
 539
 540	prev->lld.mbr_nda = desc->tx_dma_desc.phys;
 541	prev->lld.mbr_ubc |= AT_XDMAC_MBR_UBC_NDE;
 542
 543	dev_dbg(chan2dev(chan),	"%s: chain lld: prev=0x%p, mbr_nda=%pad\n",
 544		__func__, prev, &prev->lld.mbr_nda);
 545}
 546
 547static inline void at_xdmac_increment_block_count(struct dma_chan *chan,
 548						  struct at_xdmac_desc *desc)
 549{
 550	if (!desc)
 551		return;
 552
 553	desc->lld.mbr_bc++;
 554
 555	dev_dbg(chan2dev(chan),
 556		"%s: incrementing the block count of the desc 0x%p\n",
 557		__func__, desc);
 558}
 559
 560static struct dma_chan *at_xdmac_xlate(struct of_phandle_args *dma_spec,
 561				       struct of_dma *of_dma)
 562{
 563	struct at_xdmac		*atxdmac = of_dma->of_dma_data;
 564	struct at_xdmac_chan	*atchan;
 565	struct dma_chan		*chan;
 566	struct device		*dev = atxdmac->dma.dev;
 567
 568	if (dma_spec->args_count != 1) {
 569		dev_err(dev, "dma phandler args: bad number of args\n");
 570		return NULL;
 571	}
 572
 573	chan = dma_get_any_slave_channel(&atxdmac->dma);
 574	if (!chan) {
 575		dev_err(dev, "can't get a dma channel\n");
 576		return NULL;
 577	}
 578
 579	atchan = to_at_xdmac_chan(chan);
 580	atchan->memif = AT91_XDMAC_DT_GET_MEM_IF(dma_spec->args[0]);
 581	atchan->perif = AT91_XDMAC_DT_GET_PER_IF(dma_spec->args[0]);
 582	atchan->perid = AT91_XDMAC_DT_GET_PERID(dma_spec->args[0]);
 583	dev_dbg(dev, "chan dt cfg: memif=%u perif=%u perid=%u\n",
 584		 atchan->memif, atchan->perif, atchan->perid);
 585
 586	return chan;
 587}
 588
 589static int at_xdmac_compute_chan_conf(struct dma_chan *chan,
 590				      enum dma_transfer_direction direction)
 591{
 592	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
 593	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
 594	int			csize, dwidth;
 595
 596	if (direction == DMA_DEV_TO_MEM) {
 597		atchan->cfg =
 598			AT91_XDMAC_DT_PERID(atchan->perid)
 599			| AT_XDMAC_CC_DAM_INCREMENTED_AM
 600			| AT_XDMAC_CC_SAM_FIXED_AM
 
 
 601			| AT_XDMAC_CC_SWREQ_HWR_CONNECTED
 602			| AT_XDMAC_CC_DSYNC_PER2MEM
 603			| AT_XDMAC_CC_MBSIZE_SIXTEEN
 604			| AT_XDMAC_CC_TYPE_PER_TRAN;
 605		if (atxdmac->layout->sdif)
 606			atchan->cfg |= AT_XDMAC_CC_DIF(atchan->memif) |
 607				       AT_XDMAC_CC_SIF(atchan->perif);
 608
 609		csize = ffs(atchan->sconfig.src_maxburst) - 1;
 610		if (csize < 0) {
 611			dev_err(chan2dev(chan), "invalid src maxburst value\n");
 612			return -EINVAL;
 613		}
 614		atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
 615		dwidth = ffs(atchan->sconfig.src_addr_width) - 1;
 616		if (dwidth < 0) {
 617			dev_err(chan2dev(chan), "invalid src addr width value\n");
 618			return -EINVAL;
 619		}
 620		atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
 621	} else if (direction == DMA_MEM_TO_DEV) {
 622		atchan->cfg =
 623			AT91_XDMAC_DT_PERID(atchan->perid)
 624			| AT_XDMAC_CC_DAM_FIXED_AM
 625			| AT_XDMAC_CC_SAM_INCREMENTED_AM
 
 
 626			| AT_XDMAC_CC_SWREQ_HWR_CONNECTED
 627			| AT_XDMAC_CC_DSYNC_MEM2PER
 628			| AT_XDMAC_CC_MBSIZE_SIXTEEN
 629			| AT_XDMAC_CC_TYPE_PER_TRAN;
 630		if (atxdmac->layout->sdif)
 631			atchan->cfg |= AT_XDMAC_CC_DIF(atchan->perif) |
 632				       AT_XDMAC_CC_SIF(atchan->memif);
 633
 634		csize = ffs(atchan->sconfig.dst_maxburst) - 1;
 635		if (csize < 0) {
 636			dev_err(chan2dev(chan), "invalid src maxburst value\n");
 637			return -EINVAL;
 638		}
 639		atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
 640		dwidth = ffs(atchan->sconfig.dst_addr_width) - 1;
 641		if (dwidth < 0) {
 642			dev_err(chan2dev(chan), "invalid dst addr width value\n");
 643			return -EINVAL;
 644		}
 645		atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
 646	}
 647
 648	dev_dbg(chan2dev(chan),	"%s: cfg=0x%08x\n", __func__, atchan->cfg);
 649
 650	return 0;
 651}
 652
 653/*
 654 * Only check that maxburst and addr width values are supported by the
 655 * the controller but not that the configuration is good to perform the
 656 * transfer since we don't know the direction at this stage.
 657 */
 658static int at_xdmac_check_slave_config(struct dma_slave_config *sconfig)
 659{
 660	if ((sconfig->src_maxburst > AT_XDMAC_MAX_CSIZE)
 661	    || (sconfig->dst_maxburst > AT_XDMAC_MAX_CSIZE))
 662		return -EINVAL;
 663
 664	if ((sconfig->src_addr_width > AT_XDMAC_MAX_DWIDTH)
 665	    || (sconfig->dst_addr_width > AT_XDMAC_MAX_DWIDTH))
 666		return -EINVAL;
 667
 668	return 0;
 669}
 670
 671static int at_xdmac_set_slave_config(struct dma_chan *chan,
 672				      struct dma_slave_config *sconfig)
 673{
 674	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
 675
 676	if (at_xdmac_check_slave_config(sconfig)) {
 677		dev_err(chan2dev(chan), "invalid slave configuration\n");
 678		return -EINVAL;
 679	}
 680
 681	memcpy(&atchan->sconfig, sconfig, sizeof(atchan->sconfig));
 682
 683	return 0;
 684}
 685
 686static struct dma_async_tx_descriptor *
 687at_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
 688		       unsigned int sg_len, enum dma_transfer_direction direction,
 689		       unsigned long flags, void *context)
 690{
 691	struct at_xdmac_chan		*atchan = to_at_xdmac_chan(chan);
 692	struct at_xdmac_desc		*first = NULL, *prev = NULL;
 693	struct scatterlist		*sg;
 694	int				i;
 695	unsigned int			xfer_size = 0;
 696	unsigned long			irqflags;
 697	struct dma_async_tx_descriptor	*ret = NULL;
 698
 699	if (!sgl)
 700		return NULL;
 701
 702	if (!is_slave_direction(direction)) {
 703		dev_err(chan2dev(chan), "invalid DMA direction\n");
 704		return NULL;
 705	}
 706
 707	dev_dbg(chan2dev(chan), "%s: sg_len=%d, dir=%s, flags=0x%lx\n",
 708		 __func__, sg_len,
 709		 direction == DMA_MEM_TO_DEV ? "to device" : "from device",
 710		 flags);
 711
 712	/* Protect dma_sconfig field that can be modified by set_slave_conf. */
 713	spin_lock_irqsave(&atchan->lock, irqflags);
 714
 715	if (at_xdmac_compute_chan_conf(chan, direction))
 716		goto spin_unlock;
 717
 718	/* Prepare descriptors. */
 719	for_each_sg(sgl, sg, sg_len, i) {
 720		struct at_xdmac_desc	*desc = NULL;
 721		u32			len, mem, dwidth, fixed_dwidth;
 722
 723		len = sg_dma_len(sg);
 724		mem = sg_dma_address(sg);
 725		if (unlikely(!len)) {
 726			dev_err(chan2dev(chan), "sg data length is zero\n");
 727			goto spin_unlock;
 728		}
 729		dev_dbg(chan2dev(chan), "%s: * sg%d len=%u, mem=0x%08x\n",
 730			 __func__, i, len, mem);
 731
 732		desc = at_xdmac_get_desc(atchan);
 733		if (!desc) {
 734			dev_err(chan2dev(chan), "can't get descriptor\n");
 735			if (first)
 736				list_splice_init(&first->descs_list, &atchan->free_descs_list);
 737			goto spin_unlock;
 738		}
 739
 740		/* Linked list descriptor setup. */
 741		if (direction == DMA_DEV_TO_MEM) {
 742			desc->lld.mbr_sa = atchan->sconfig.src_addr;
 743			desc->lld.mbr_da = mem;
 744		} else {
 745			desc->lld.mbr_sa = mem;
 746			desc->lld.mbr_da = atchan->sconfig.dst_addr;
 747		}
 748		dwidth = at_xdmac_get_dwidth(atchan->cfg);
 749		fixed_dwidth = IS_ALIGNED(len, 1 << dwidth)
 750			       ? dwidth
 751			       : AT_XDMAC_CC_DWIDTH_BYTE;
 752		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2			/* next descriptor view */
 753			| AT_XDMAC_MBR_UBC_NDEN					/* next descriptor dst parameter update */
 754			| AT_XDMAC_MBR_UBC_NSEN					/* next descriptor src parameter update */
 755			| (len >> fixed_dwidth);				/* microblock length */
 756		desc->lld.mbr_cfg = (atchan->cfg & ~AT_XDMAC_CC_DWIDTH_MASK) |
 757				    AT_XDMAC_CC_DWIDTH(fixed_dwidth);
 758		dev_dbg(chan2dev(chan),
 759			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
 760			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
 761
 762		/* Chain lld. */
 763		if (prev)
 764			at_xdmac_queue_desc(chan, prev, desc);
 765
 766		prev = desc;
 767		if (!first)
 768			first = desc;
 769
 770		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
 771			 __func__, desc, first);
 772		list_add_tail(&desc->desc_node, &first->descs_list);
 773		xfer_size += len;
 774	}
 775
 776
 777	first->tx_dma_desc.flags = flags;
 778	first->xfer_size = xfer_size;
 779	first->direction = direction;
 780	ret = &first->tx_dma_desc;
 781
 782spin_unlock:
 783	spin_unlock_irqrestore(&atchan->lock, irqflags);
 784	return ret;
 785}
 786
 787static struct dma_async_tx_descriptor *
 788at_xdmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
 789			 size_t buf_len, size_t period_len,
 790			 enum dma_transfer_direction direction,
 791			 unsigned long flags)
 792{
 793	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
 794	struct at_xdmac_desc	*first = NULL, *prev = NULL;
 795	unsigned int		periods = buf_len / period_len;
 796	int			i;
 797	unsigned long		irqflags;
 798
 799	dev_dbg(chan2dev(chan), "%s: buf_addr=%pad, buf_len=%zd, period_len=%zd, dir=%s, flags=0x%lx\n",
 800		__func__, &buf_addr, buf_len, period_len,
 801		direction == DMA_MEM_TO_DEV ? "mem2per" : "per2mem", flags);
 802
 803	if (!is_slave_direction(direction)) {
 804		dev_err(chan2dev(chan), "invalid DMA direction\n");
 805		return NULL;
 806	}
 807
 808	if (test_and_set_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status)) {
 809		dev_err(chan2dev(chan), "channel currently used\n");
 810		return NULL;
 811	}
 812
 813	if (at_xdmac_compute_chan_conf(chan, direction))
 814		return NULL;
 815
 816	for (i = 0; i < periods; i++) {
 817		struct at_xdmac_desc	*desc = NULL;
 818
 819		spin_lock_irqsave(&atchan->lock, irqflags);
 820		desc = at_xdmac_get_desc(atchan);
 821		if (!desc) {
 822			dev_err(chan2dev(chan), "can't get descriptor\n");
 823			if (first)
 824				list_splice_init(&first->descs_list, &atchan->free_descs_list);
 825			spin_unlock_irqrestore(&atchan->lock, irqflags);
 826			return NULL;
 827		}
 828		spin_unlock_irqrestore(&atchan->lock, irqflags);
 829		dev_dbg(chan2dev(chan),
 830			"%s: desc=0x%p, tx_dma_desc.phys=%pad\n",
 831			__func__, desc, &desc->tx_dma_desc.phys);
 832
 833		if (direction == DMA_DEV_TO_MEM) {
 834			desc->lld.mbr_sa = atchan->sconfig.src_addr;
 835			desc->lld.mbr_da = buf_addr + i * period_len;
 836		} else {
 837			desc->lld.mbr_sa = buf_addr + i * period_len;
 838			desc->lld.mbr_da = atchan->sconfig.dst_addr;
 839		}
 840		desc->lld.mbr_cfg = atchan->cfg;
 841		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV1
 842			| AT_XDMAC_MBR_UBC_NDEN
 843			| AT_XDMAC_MBR_UBC_NSEN
 844			| period_len >> at_xdmac_get_dwidth(desc->lld.mbr_cfg);
 845
 846		dev_dbg(chan2dev(chan),
 847			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
 848			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
 849
 850		/* Chain lld. */
 851		if (prev)
 852			at_xdmac_queue_desc(chan, prev, desc);
 853
 854		prev = desc;
 855		if (!first)
 856			first = desc;
 857
 858		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
 859			 __func__, desc, first);
 860		list_add_tail(&desc->desc_node, &first->descs_list);
 861	}
 862
 863	at_xdmac_queue_desc(chan, prev, first);
 864	first->tx_dma_desc.flags = flags;
 865	first->xfer_size = buf_len;
 866	first->direction = direction;
 867
 868	return &first->tx_dma_desc;
 869}
 870
 871static inline u32 at_xdmac_align_width(struct dma_chan *chan, dma_addr_t addr)
 872{
 873	u32 width;
 874
 875	/*
 876	 * Check address alignment to select the greater data width we
 877	 * can use.
 878	 *
 879	 * Some XDMAC implementations don't provide dword transfer, in
 880	 * this case selecting dword has the same behavior as
 881	 * selecting word transfers.
 882	 */
 883	if (!(addr & 7)) {
 884		width = AT_XDMAC_CC_DWIDTH_DWORD;
 885		dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__);
 886	} else if (!(addr & 3)) {
 887		width = AT_XDMAC_CC_DWIDTH_WORD;
 888		dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__);
 889	} else if (!(addr & 1)) {
 890		width = AT_XDMAC_CC_DWIDTH_HALFWORD;
 891		dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__);
 892	} else {
 893		width = AT_XDMAC_CC_DWIDTH_BYTE;
 894		dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__);
 895	}
 896
 897	return width;
 898}
 899
 900static struct at_xdmac_desc *
 901at_xdmac_interleaved_queue_desc(struct dma_chan *chan,
 902				struct at_xdmac_chan *atchan,
 903				struct at_xdmac_desc *prev,
 904				dma_addr_t src, dma_addr_t dst,
 905				struct dma_interleaved_template *xt,
 906				struct data_chunk *chunk)
 907{
 908	struct at_xdmac_desc	*desc;
 909	u32			dwidth;
 910	unsigned long		flags;
 911	size_t			ublen;
 912	/*
 913	 * WARNING: The channel configuration is set here since there is no
 914	 * dmaengine_slave_config call in this case. Moreover we don't know the
 915	 * direction, it involves we can't dynamically set the source and dest
 916	 * interface so we have to use the same one. Only interface 0 allows EBI
 917	 * access. Hopefully we can access DDR through both ports (at least on
 918	 * SAMA5D4x), so we can use the same interface for source and dest,
 919	 * that solves the fact we don't know the direction.
 920	 * ERRATA: Even if useless for memory transfers, the PERID has to not
 921	 * match the one of another channel. If not, it could lead to spurious
 922	 * flag status.
 923	 * For SAMA7G5x case, the SIF and DIF fields are no longer used.
 924	 * Thus, no need to have the SIF/DIF interfaces here.
 925	 * For SAMA5D4x and SAMA5D2x the SIF and DIF are already configured as
 926	 * zero.
 927	 */
 928	u32			chan_cc = AT_XDMAC_CC_PERID(0x7f)
 
 
 929					| AT_XDMAC_CC_MBSIZE_SIXTEEN
 930					| AT_XDMAC_CC_TYPE_MEM_TRAN;
 931
 932	dwidth = at_xdmac_align_width(chan, src | dst | chunk->size);
 933	if (chunk->size >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
 934		dev_dbg(chan2dev(chan),
 935			"%s: chunk too big (%zu, max size %lu)...\n",
 936			__func__, chunk->size,
 937			AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth);
 938		return NULL;
 939	}
 940
 941	if (prev)
 942		dev_dbg(chan2dev(chan),
 943			"Adding items at the end of desc 0x%p\n", prev);
 944
 945	if (xt->src_inc) {
 946		if (xt->src_sgl)
 947			chan_cc |=  AT_XDMAC_CC_SAM_UBS_AM;
 948		else
 949			chan_cc |=  AT_XDMAC_CC_SAM_INCREMENTED_AM;
 950	}
 951
 952	if (xt->dst_inc) {
 953		if (xt->dst_sgl)
 954			chan_cc |=  AT_XDMAC_CC_DAM_UBS_AM;
 955		else
 956			chan_cc |=  AT_XDMAC_CC_DAM_INCREMENTED_AM;
 957	}
 958
 959	spin_lock_irqsave(&atchan->lock, flags);
 960	desc = at_xdmac_get_desc(atchan);
 961	spin_unlock_irqrestore(&atchan->lock, flags);
 962	if (!desc) {
 963		dev_err(chan2dev(chan), "can't get descriptor\n");
 964		return NULL;
 965	}
 966
 967	chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
 968
 969	ublen = chunk->size >> dwidth;
 970
 971	desc->lld.mbr_sa = src;
 972	desc->lld.mbr_da = dst;
 973	desc->lld.mbr_sus = dmaengine_get_src_icg(xt, chunk);
 974	desc->lld.mbr_dus = dmaengine_get_dst_icg(xt, chunk);
 975
 976	desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
 977		| AT_XDMAC_MBR_UBC_NDEN
 978		| AT_XDMAC_MBR_UBC_NSEN
 979		| ublen;
 980	desc->lld.mbr_cfg = chan_cc;
 981
 982	dev_dbg(chan2dev(chan),
 983		"%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
 984		__func__, &desc->lld.mbr_sa, &desc->lld.mbr_da,
 985		desc->lld.mbr_ubc, desc->lld.mbr_cfg);
 986
 987	/* Chain lld. */
 988	if (prev)
 989		at_xdmac_queue_desc(chan, prev, desc);
 990
 991	return desc;
 992}
 993
 994static struct dma_async_tx_descriptor *
 995at_xdmac_prep_interleaved(struct dma_chan *chan,
 996			  struct dma_interleaved_template *xt,
 997			  unsigned long flags)
 998{
 999	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1000	struct at_xdmac_desc	*prev = NULL, *first = NULL;
1001	dma_addr_t		dst_addr, src_addr;
1002	size_t			src_skip = 0, dst_skip = 0, len = 0;
1003	struct data_chunk	*chunk;
1004	int			i;
1005
1006	if (!xt || !xt->numf || (xt->dir != DMA_MEM_TO_MEM))
1007		return NULL;
1008
1009	/*
1010	 * TODO: Handle the case where we have to repeat a chain of
1011	 * descriptors...
1012	 */
1013	if ((xt->numf > 1) && (xt->frame_size > 1))
1014		return NULL;
1015
1016	dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, numf=%zu, frame_size=%zu, flags=0x%lx\n",
1017		__func__, &xt->src_start, &xt->dst_start,	xt->numf,
1018		xt->frame_size, flags);
1019
1020	src_addr = xt->src_start;
1021	dst_addr = xt->dst_start;
1022
1023	if (xt->numf > 1) {
1024		first = at_xdmac_interleaved_queue_desc(chan, atchan,
1025							NULL,
1026							src_addr, dst_addr,
1027							xt, xt->sgl);
1028
1029		/* Length of the block is (BLEN+1) microblocks. */
1030		for (i = 0; i < xt->numf - 1; i++)
1031			at_xdmac_increment_block_count(chan, first);
1032
1033		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1034			__func__, first, first);
1035		list_add_tail(&first->desc_node, &first->descs_list);
1036	} else {
1037		for (i = 0; i < xt->frame_size; i++) {
1038			size_t src_icg = 0, dst_icg = 0;
1039			struct at_xdmac_desc *desc;
1040
1041			chunk = xt->sgl + i;
1042
1043			dst_icg = dmaengine_get_dst_icg(xt, chunk);
1044			src_icg = dmaengine_get_src_icg(xt, chunk);
1045
1046			src_skip = chunk->size + src_icg;
1047			dst_skip = chunk->size + dst_icg;
1048
1049			dev_dbg(chan2dev(chan),
1050				"%s: chunk size=%zu, src icg=%zu, dst icg=%zu\n",
1051				__func__, chunk->size, src_icg, dst_icg);
1052
1053			desc = at_xdmac_interleaved_queue_desc(chan, atchan,
1054							       prev,
1055							       src_addr, dst_addr,
1056							       xt, chunk);
1057			if (!desc) {
1058				list_splice_init(&first->descs_list,
1059						 &atchan->free_descs_list);
1060				return NULL;
1061			}
1062
1063			if (!first)
1064				first = desc;
1065
1066			dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1067				__func__, desc, first);
1068			list_add_tail(&desc->desc_node, &first->descs_list);
1069
1070			if (xt->src_sgl)
1071				src_addr += src_skip;
1072
1073			if (xt->dst_sgl)
1074				dst_addr += dst_skip;
1075
1076			len += chunk->size;
1077			prev = desc;
1078		}
1079	}
1080
1081	first->tx_dma_desc.cookie = -EBUSY;
1082	first->tx_dma_desc.flags = flags;
1083	first->xfer_size = len;
1084
1085	return &first->tx_dma_desc;
1086}
1087
1088static struct dma_async_tx_descriptor *
1089at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1090			 size_t len, unsigned long flags)
1091{
1092	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1093	struct at_xdmac_desc	*first = NULL, *prev = NULL;
1094	size_t			remaining_size = len, xfer_size = 0, ublen;
1095	dma_addr_t		src_addr = src, dst_addr = dest;
1096	u32			dwidth;
1097	/*
1098	 * WARNING: We don't know the direction, it involves we can't
1099	 * dynamically set the source and dest interface so we have to use the
1100	 * same one. Only interface 0 allows EBI access. Hopefully we can
1101	 * access DDR through both ports (at least on SAMA5D4x), so we can use
1102	 * the same interface for source and dest, that solves the fact we
1103	 * don't know the direction.
1104	 * ERRATA: Even if useless for memory transfers, the PERID has to not
1105	 * match the one of another channel. If not, it could lead to spurious
1106	 * flag status.
1107	 * For SAMA7G5x case, the SIF and DIF fields are no longer used.
1108	 * Thus, no need to have the SIF/DIF interfaces here.
1109	 * For SAMA5D4x and SAMA5D2x the SIF and DIF are already configured as
1110	 * zero.
1111	 */
1112	u32			chan_cc = AT_XDMAC_CC_PERID(0x7f)
1113					| AT_XDMAC_CC_DAM_INCREMENTED_AM
1114					| AT_XDMAC_CC_SAM_INCREMENTED_AM
 
 
1115					| AT_XDMAC_CC_MBSIZE_SIXTEEN
1116					| AT_XDMAC_CC_TYPE_MEM_TRAN;
1117	unsigned long		irqflags;
1118
1119	dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, len=%zd, flags=0x%lx\n",
1120		__func__, &src, &dest, len, flags);
1121
1122	if (unlikely(!len))
1123		return NULL;
1124
1125	dwidth = at_xdmac_align_width(chan, src_addr | dst_addr);
1126
1127	/* Prepare descriptors. */
1128	while (remaining_size) {
1129		struct at_xdmac_desc	*desc = NULL;
1130
1131		dev_dbg(chan2dev(chan), "%s: remaining_size=%zu\n", __func__, remaining_size);
1132
1133		spin_lock_irqsave(&atchan->lock, irqflags);
1134		desc = at_xdmac_get_desc(atchan);
1135		spin_unlock_irqrestore(&atchan->lock, irqflags);
1136		if (!desc) {
1137			dev_err(chan2dev(chan), "can't get descriptor\n");
1138			if (first)
1139				list_splice_init(&first->descs_list, &atchan->free_descs_list);
1140			return NULL;
1141		}
1142
1143		/* Update src and dest addresses. */
1144		src_addr += xfer_size;
1145		dst_addr += xfer_size;
1146
1147		if (remaining_size >= AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)
1148			xfer_size = AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth;
1149		else
1150			xfer_size = remaining_size;
1151
1152		dev_dbg(chan2dev(chan), "%s: xfer_size=%zu\n", __func__, xfer_size);
1153
1154		/* Check remaining length and change data width if needed. */
1155		dwidth = at_xdmac_align_width(chan,
1156					      src_addr | dst_addr | xfer_size);
1157		chan_cc &= ~AT_XDMAC_CC_DWIDTH_MASK;
1158		chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1159
1160		ublen = xfer_size >> dwidth;
1161		remaining_size -= xfer_size;
1162
1163		desc->lld.mbr_sa = src_addr;
1164		desc->lld.mbr_da = dst_addr;
1165		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2
1166			| AT_XDMAC_MBR_UBC_NDEN
1167			| AT_XDMAC_MBR_UBC_NSEN
1168			| ublen;
1169		desc->lld.mbr_cfg = chan_cc;
1170
1171		dev_dbg(chan2dev(chan),
1172			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1173			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc, desc->lld.mbr_cfg);
1174
1175		/* Chain lld. */
1176		if (prev)
1177			at_xdmac_queue_desc(chan, prev, desc);
1178
1179		prev = desc;
1180		if (!first)
1181			first = desc;
1182
1183		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1184			 __func__, desc, first);
1185		list_add_tail(&desc->desc_node, &first->descs_list);
1186	}
1187
1188	first->tx_dma_desc.flags = flags;
1189	first->xfer_size = len;
1190
1191	return &first->tx_dma_desc;
1192}
1193
1194static struct at_xdmac_desc *at_xdmac_memset_create_desc(struct dma_chan *chan,
1195							 struct at_xdmac_chan *atchan,
1196							 dma_addr_t dst_addr,
1197							 size_t len,
1198							 int value)
1199{
1200	struct at_xdmac_desc	*desc;
1201	unsigned long		flags;
1202	size_t			ublen;
1203	u32			dwidth;
1204	/*
1205	 * WARNING: The channel configuration is set here since there is no
1206	 * dmaengine_slave_config call in this case. Moreover we don't know the
1207	 * direction, it involves we can't dynamically set the source and dest
1208	 * interface so we have to use the same one. Only interface 0 allows EBI
1209	 * access. Hopefully we can access DDR through both ports (at least on
1210	 * SAMA5D4x), so we can use the same interface for source and dest,
1211	 * that solves the fact we don't know the direction.
1212	 * ERRATA: Even if useless for memory transfers, the PERID has to not
1213	 * match the one of another channel. If not, it could lead to spurious
1214	 * flag status.
1215	 * For SAMA7G5x case, the SIF and DIF fields are no longer used.
1216	 * Thus, no need to have the SIF/DIF interfaces here.
1217	 * For SAMA5D4x and SAMA5D2x the SIF and DIF are already configured as
1218	 * zero.
1219	 */
1220	u32			chan_cc = AT_XDMAC_CC_PERID(0x7f)
1221					| AT_XDMAC_CC_DAM_UBS_AM
1222					| AT_XDMAC_CC_SAM_INCREMENTED_AM
 
 
1223					| AT_XDMAC_CC_MBSIZE_SIXTEEN
1224					| AT_XDMAC_CC_MEMSET_HW_MODE
1225					| AT_XDMAC_CC_TYPE_MEM_TRAN;
1226
1227	dwidth = at_xdmac_align_width(chan, dst_addr);
1228
1229	if (len >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
1230		dev_err(chan2dev(chan),
1231			"%s: Transfer too large, aborting...\n",
1232			__func__);
1233		return NULL;
1234	}
1235
1236	spin_lock_irqsave(&atchan->lock, flags);
1237	desc = at_xdmac_get_desc(atchan);
1238	spin_unlock_irqrestore(&atchan->lock, flags);
1239	if (!desc) {
1240		dev_err(chan2dev(chan), "can't get descriptor\n");
1241		return NULL;
1242	}
1243
1244	chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1245
1246	ublen = len >> dwidth;
1247
1248	desc->lld.mbr_da = dst_addr;
1249	desc->lld.mbr_ds = value;
1250	desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
1251		| AT_XDMAC_MBR_UBC_NDEN
1252		| AT_XDMAC_MBR_UBC_NSEN
1253		| ublen;
1254	desc->lld.mbr_cfg = chan_cc;
1255
1256	dev_dbg(chan2dev(chan),
1257		"%s: lld: mbr_da=%pad, mbr_ds=0x%08x, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1258		__func__, &desc->lld.mbr_da, desc->lld.mbr_ds, desc->lld.mbr_ubc,
1259		desc->lld.mbr_cfg);
1260
1261	return desc;
1262}
1263
1264static struct dma_async_tx_descriptor *
1265at_xdmac_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
1266			 size_t len, unsigned long flags)
1267{
1268	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1269	struct at_xdmac_desc	*desc;
1270
1271	dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%zu, pattern=0x%x, flags=0x%lx\n",
1272		__func__, &dest, len, value, flags);
1273
1274	if (unlikely(!len))
1275		return NULL;
1276
1277	desc = at_xdmac_memset_create_desc(chan, atchan, dest, len, value);
1278	list_add_tail(&desc->desc_node, &desc->descs_list);
1279
1280	desc->tx_dma_desc.cookie = -EBUSY;
1281	desc->tx_dma_desc.flags = flags;
1282	desc->xfer_size = len;
1283
1284	return &desc->tx_dma_desc;
1285}
1286
1287static struct dma_async_tx_descriptor *
1288at_xdmac_prep_dma_memset_sg(struct dma_chan *chan, struct scatterlist *sgl,
1289			    unsigned int sg_len, int value,
1290			    unsigned long flags)
1291{
1292	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1293	struct at_xdmac_desc	*desc, *pdesc = NULL,
1294				*ppdesc = NULL, *first = NULL;
1295	struct scatterlist	*sg, *psg = NULL, *ppsg = NULL;
1296	size_t			stride = 0, pstride = 0, len = 0;
1297	int			i;
1298
1299	if (!sgl)
1300		return NULL;
1301
1302	dev_dbg(chan2dev(chan), "%s: sg_len=%d, value=0x%x, flags=0x%lx\n",
1303		__func__, sg_len, value, flags);
1304
1305	/* Prepare descriptors. */
1306	for_each_sg(sgl, sg, sg_len, i) {
1307		dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%d, pattern=0x%x, flags=0x%lx\n",
1308			__func__, &sg_dma_address(sg), sg_dma_len(sg),
1309			value, flags);
1310		desc = at_xdmac_memset_create_desc(chan, atchan,
1311						   sg_dma_address(sg),
1312						   sg_dma_len(sg),
1313						   value);
1314		if (!desc && first)
1315			list_splice_init(&first->descs_list,
1316					 &atchan->free_descs_list);
1317
1318		if (!first)
1319			first = desc;
1320
1321		/* Update our strides */
1322		pstride = stride;
1323		if (psg)
1324			stride = sg_dma_address(sg) -
1325				(sg_dma_address(psg) + sg_dma_len(psg));
1326
1327		/*
1328		 * The scatterlist API gives us only the address and
1329		 * length of each elements.
1330		 *
1331		 * Unfortunately, we don't have the stride, which we
1332		 * will need to compute.
1333		 *
1334		 * That make us end up in a situation like this one:
1335		 *    len    stride    len    stride    len
1336		 * +-------+        +-------+        +-------+
1337		 * |  N-2  |        |  N-1  |        |   N   |
1338		 * +-------+        +-------+        +-------+
1339		 *
1340		 * We need all these three elements (N-2, N-1 and N)
1341		 * to actually take the decision on whether we need to
1342		 * queue N-1 or reuse N-2.
1343		 *
1344		 * We will only consider N if it is the last element.
1345		 */
1346		if (ppdesc && pdesc) {
1347			if ((stride == pstride) &&
1348			    (sg_dma_len(ppsg) == sg_dma_len(psg))) {
1349				dev_dbg(chan2dev(chan),
1350					"%s: desc 0x%p can be merged with desc 0x%p\n",
1351					__func__, pdesc, ppdesc);
1352
1353				/*
1354				 * Increment the block count of the
1355				 * N-2 descriptor
1356				 */
1357				at_xdmac_increment_block_count(chan, ppdesc);
1358				ppdesc->lld.mbr_dus = stride;
1359
1360				/*
1361				 * Put back the N-1 descriptor in the
1362				 * free descriptor list
1363				 */
1364				list_add_tail(&pdesc->desc_node,
1365					      &atchan->free_descs_list);
1366
1367				/*
1368				 * Make our N-1 descriptor pointer
1369				 * point to the N-2 since they were
1370				 * actually merged.
1371				 */
1372				pdesc = ppdesc;
1373
1374			/*
1375			 * Rule out the case where we don't have
1376			 * pstride computed yet (our second sg
1377			 * element)
1378			 *
1379			 * We also want to catch the case where there
1380			 * would be a negative stride,
1381			 */
1382			} else if (pstride ||
1383				   sg_dma_address(sg) < sg_dma_address(psg)) {
1384				/*
1385				 * Queue the N-1 descriptor after the
1386				 * N-2
1387				 */
1388				at_xdmac_queue_desc(chan, ppdesc, pdesc);
1389
1390				/*
1391				 * Add the N-1 descriptor to the list
1392				 * of the descriptors used for this
1393				 * transfer
1394				 */
1395				list_add_tail(&desc->desc_node,
1396					      &first->descs_list);
1397				dev_dbg(chan2dev(chan),
1398					"%s: add desc 0x%p to descs_list 0x%p\n",
1399					__func__, desc, first);
1400			}
1401		}
1402
1403		/*
1404		 * If we are the last element, just see if we have the
1405		 * same size than the previous element.
1406		 *
1407		 * If so, we can merge it with the previous descriptor
1408		 * since we don't care about the stride anymore.
1409		 */
1410		if ((i == (sg_len - 1)) &&
1411		    sg_dma_len(psg) == sg_dma_len(sg)) {
1412			dev_dbg(chan2dev(chan),
1413				"%s: desc 0x%p can be merged with desc 0x%p\n",
1414				__func__, desc, pdesc);
1415
1416			/*
1417			 * Increment the block count of the N-1
1418			 * descriptor
1419			 */
1420			at_xdmac_increment_block_count(chan, pdesc);
1421			pdesc->lld.mbr_dus = stride;
1422
1423			/*
1424			 * Put back the N descriptor in the free
1425			 * descriptor list
1426			 */
1427			list_add_tail(&desc->desc_node,
1428				      &atchan->free_descs_list);
1429		}
1430
1431		/* Update our descriptors */
1432		ppdesc = pdesc;
1433		pdesc = desc;
1434
1435		/* Update our scatter pointers */
1436		ppsg = psg;
1437		psg = sg;
1438
1439		len += sg_dma_len(sg);
1440	}
1441
1442	first->tx_dma_desc.cookie = -EBUSY;
1443	first->tx_dma_desc.flags = flags;
1444	first->xfer_size = len;
1445
1446	return &first->tx_dma_desc;
1447}
1448
1449static enum dma_status
1450at_xdmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
1451		struct dma_tx_state *txstate)
1452{
1453	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1454	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1455	struct at_xdmac_desc	*desc, *_desc;
1456	struct list_head	*descs_list;
1457	enum dma_status		ret;
1458	int			residue, retry;
1459	u32			cur_nda, check_nda, cur_ubc, mask, value;
1460	u8			dwidth = 0;
1461	unsigned long		flags;
1462	bool			initd;
1463
1464	ret = dma_cookie_status(chan, cookie, txstate);
1465	if (ret == DMA_COMPLETE)
1466		return ret;
1467
1468	if (!txstate)
1469		return ret;
1470
1471	spin_lock_irqsave(&atchan->lock, flags);
1472
1473	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node);
1474
1475	/*
1476	 * If the transfer has not been started yet, don't need to compute the
1477	 * residue, it's the transfer length.
1478	 */
1479	if (!desc->active_xfer) {
1480		dma_set_residue(txstate, desc->xfer_size);
1481		goto spin_unlock;
1482	}
1483
1484	residue = desc->xfer_size;
1485	/*
1486	 * Flush FIFO: only relevant when the transfer is source peripheral
1487	 * synchronized. Flush is needed before reading CUBC because data in
1488	 * the FIFO are not reported by CUBC. Reporting a residue of the
1489	 * transfer length while we have data in FIFO can cause issue.
1490	 * Usecase: atmel USART has a timeout which means I have received
1491	 * characters but there is no more character received for a while. On
1492	 * timeout, it requests the residue. If the data are in the DMA FIFO,
1493	 * we will return a residue of the transfer length. It means no data
1494	 * received. If an application is waiting for these data, it will hang
1495	 * since we won't have another USART timeout without receiving new
1496	 * data.
1497	 */
1498	mask = AT_XDMAC_CC_TYPE | AT_XDMAC_CC_DSYNC;
1499	value = AT_XDMAC_CC_TYPE_PER_TRAN | AT_XDMAC_CC_DSYNC_PER2MEM;
1500	if ((desc->lld.mbr_cfg & mask) == value) {
1501		at_xdmac_write(atxdmac, atxdmac->layout->gswf, atchan->mask);
1502		while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1503			cpu_relax();
1504	}
1505
1506	/*
1507	 * The easiest way to compute the residue should be to pause the DMA
1508	 * but doing this can lead to miss some data as some devices don't
1509	 * have FIFO.
1510	 * We need to read several registers because:
1511	 * - DMA is running therefore a descriptor change is possible while
1512	 * reading these registers
1513	 * - When the block transfer is done, the value of the CUBC register
1514	 * is set to its initial value until the fetch of the next descriptor.
1515	 * This value will corrupt the residue calculation so we have to skip
1516	 * it.
1517	 *
1518	 * INITD --------                    ------------
1519	 *              |____________________|
1520	 *       _______________________  _______________
1521	 * NDA       @desc2             \/   @desc3
1522	 *       _______________________/\_______________
1523	 *       __________  ___________  _______________
1524	 * CUBC       0    \/ MAX desc1 \/  MAX desc2
1525	 *       __________/\___________/\_______________
1526	 *
1527	 * Since descriptors are aligned on 64 bits, we can assume that
1528	 * the update of NDA and CUBC is atomic.
1529	 * Memory barriers are used to ensure the read order of the registers.
1530	 * A max number of retries is set because unlikely it could never ends.
1531	 */
1532	for (retry = 0; retry < AT_XDMAC_RESIDUE_MAX_RETRIES; retry++) {
1533		check_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1534		rmb();
1535		cur_ubc = at_xdmac_chan_read(atchan, AT_XDMAC_CUBC);
1536		rmb();
1537		initd = !!(at_xdmac_chan_read(atchan, AT_XDMAC_CC) & AT_XDMAC_CC_INITD);
1538		rmb();
1539		cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1540		rmb();
1541
1542		if ((check_nda == cur_nda) && initd)
1543			break;
1544	}
1545
1546	if (unlikely(retry >= AT_XDMAC_RESIDUE_MAX_RETRIES)) {
1547		ret = DMA_ERROR;
1548		goto spin_unlock;
1549	}
1550
1551	/*
1552	 * Flush FIFO: only relevant when the transfer is source peripheral
1553	 * synchronized. Another flush is needed here because CUBC is updated
1554	 * when the controller sends the data write command. It can lead to
1555	 * report data that are not written in the memory or the device. The
1556	 * FIFO flush ensures that data are really written.
1557	 */
1558	if ((desc->lld.mbr_cfg & mask) == value) {
1559		at_xdmac_write(atxdmac, atxdmac->layout->gswf, atchan->mask);
1560		while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1561			cpu_relax();
1562	}
1563
1564	/*
1565	 * Remove size of all microblocks already transferred and the current
1566	 * one. Then add the remaining size to transfer of the current
1567	 * microblock.
1568	 */
1569	descs_list = &desc->descs_list;
1570	list_for_each_entry_safe(desc, _desc, descs_list, desc_node) {
1571		dwidth = at_xdmac_get_dwidth(desc->lld.mbr_cfg);
1572		residue -= (desc->lld.mbr_ubc & 0xffffff) << dwidth;
1573		if ((desc->lld.mbr_nda & 0xfffffffc) == cur_nda)
1574			break;
1575	}
1576	residue += cur_ubc << dwidth;
1577
1578	dma_set_residue(txstate, residue);
1579
1580	dev_dbg(chan2dev(chan),
1581		 "%s: desc=0x%p, tx_dma_desc.phys=%pad, tx_status=%d, cookie=%d, residue=%d\n",
1582		 __func__, desc, &desc->tx_dma_desc.phys, ret, cookie, residue);
1583
1584spin_unlock:
1585	spin_unlock_irqrestore(&atchan->lock, flags);
1586	return ret;
1587}
1588
1589/* Call must be protected by lock. */
1590static void at_xdmac_remove_xfer(struct at_xdmac_chan *atchan,
1591				    struct at_xdmac_desc *desc)
1592{
1593	dev_dbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1594
1595	/*
1596	 * Remove the transfer from the transfer list then move the transfer
1597	 * descriptors into the free descriptors list.
1598	 */
1599	list_del(&desc->xfer_node);
1600	list_splice_init(&desc->descs_list, &atchan->free_descs_list);
1601}
1602
1603static void at_xdmac_advance_work(struct at_xdmac_chan *atchan)
1604{
1605	struct at_xdmac_desc	*desc;
 
 
 
1606
1607	/*
1608	 * If channel is enabled, do nothing, advance_work will be triggered
1609	 * after the interruption.
1610	 */
1611	if (!at_xdmac_chan_is_enabled(atchan) && !list_empty(&atchan->xfers_list)) {
1612		desc = list_first_entry(&atchan->xfers_list,
1613					struct at_xdmac_desc,
1614					xfer_node);
1615		dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1616		if (!desc->active_xfer)
1617			at_xdmac_start_xfer(atchan, desc);
1618	}
 
 
1619}
1620
1621static void at_xdmac_handle_cyclic(struct at_xdmac_chan *atchan)
1622{
1623	struct at_xdmac_desc		*desc;
1624	struct dma_async_tx_descriptor	*txd;
1625
1626	if (!list_empty(&atchan->xfers_list)) {
1627		desc = list_first_entry(&atchan->xfers_list,
1628					struct at_xdmac_desc, xfer_node);
1629		txd = &desc->tx_dma_desc;
1630
1631		if (txd->flags & DMA_PREP_INTERRUPT)
1632			dmaengine_desc_get_callback_invoke(txd, NULL);
1633	}
1634}
1635
1636static void at_xdmac_handle_error(struct at_xdmac_chan *atchan)
1637{
1638	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1639	struct at_xdmac_desc	*bad_desc;
1640
1641	/*
1642	 * The descriptor currently at the head of the active list is
1643	 * broken. Since we don't have any way to report errors, we'll
1644	 * just have to scream loudly and try to continue with other
1645	 * descriptors queued (if any).
1646	 */
1647	if (atchan->irq_status & AT_XDMAC_CIS_RBEIS)
1648		dev_err(chan2dev(&atchan->chan), "read bus error!!!");
1649	if (atchan->irq_status & AT_XDMAC_CIS_WBEIS)
1650		dev_err(chan2dev(&atchan->chan), "write bus error!!!");
1651	if (atchan->irq_status & AT_XDMAC_CIS_ROIS)
1652		dev_err(chan2dev(&atchan->chan), "request overflow error!!!");
1653
1654	spin_lock_irq(&atchan->lock);
1655
1656	/* Channel must be disabled first as it's not done automatically */
1657	at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1658	while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
1659		cpu_relax();
1660
1661	bad_desc = list_first_entry(&atchan->xfers_list,
1662				    struct at_xdmac_desc,
1663				    xfer_node);
1664
1665	spin_unlock_irq(&atchan->lock);
1666
1667	/* Print bad descriptor's details if needed */
1668	dev_dbg(chan2dev(&atchan->chan),
1669		"%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
1670		__func__, &bad_desc->lld.mbr_sa, &bad_desc->lld.mbr_da,
1671		bad_desc->lld.mbr_ubc);
1672
1673	/* Then continue with usual descriptor management */
1674}
1675
1676static void at_xdmac_tasklet(struct tasklet_struct *t)
1677{
1678	struct at_xdmac_chan	*atchan = from_tasklet(atchan, t, tasklet);
1679	struct at_xdmac_desc	*desc;
1680	u32			error_mask;
1681
1682	dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08x\n",
1683		__func__, atchan->irq_status);
1684
1685	error_mask = AT_XDMAC_CIS_RBEIS
1686		     | AT_XDMAC_CIS_WBEIS
1687		     | AT_XDMAC_CIS_ROIS;
1688
1689	if (at_xdmac_chan_is_cyclic(atchan)) {
1690		at_xdmac_handle_cyclic(atchan);
1691	} else if ((atchan->irq_status & AT_XDMAC_CIS_LIS)
1692		   || (atchan->irq_status & error_mask)) {
1693		struct dma_async_tx_descriptor  *txd;
1694
1695		if (atchan->irq_status & error_mask)
1696			at_xdmac_handle_error(atchan);
 
 
 
 
1697
1698		spin_lock_irq(&atchan->lock);
1699		desc = list_first_entry(&atchan->xfers_list,
1700					struct at_xdmac_desc,
1701					xfer_node);
1702		dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1703		if (!desc->active_xfer) {
1704			dev_err(chan2dev(&atchan->chan), "Xfer not active: exiting");
1705			spin_unlock_irq(&atchan->lock);
1706			return;
1707		}
1708
1709		txd = &desc->tx_dma_desc;
1710
1711		at_xdmac_remove_xfer(atchan, desc);
1712		spin_unlock_irq(&atchan->lock);
1713
1714		dma_cookie_complete(txd);
1715		if (txd->flags & DMA_PREP_INTERRUPT)
1716			dmaengine_desc_get_callback_invoke(txd, NULL);
 
 
1717
1718		dma_run_dependencies(txd);
1719
1720		spin_lock_irq(&atchan->lock);
1721		at_xdmac_advance_work(atchan);
1722		spin_unlock_irq(&atchan->lock);
1723	}
1724}
1725
1726static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id)
1727{
1728	struct at_xdmac		*atxdmac = (struct at_xdmac *)dev_id;
1729	struct at_xdmac_chan	*atchan;
1730	u32			imr, status, pending;
1731	u32			chan_imr, chan_status;
1732	int			i, ret = IRQ_NONE;
1733
1734	do {
1735		imr = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1736		status = at_xdmac_read(atxdmac, AT_XDMAC_GIS);
1737		pending = status & imr;
1738
1739		dev_vdbg(atxdmac->dma.dev,
1740			 "%s: status=0x%08x, imr=0x%08x, pending=0x%08x\n",
1741			 __func__, status, imr, pending);
1742
1743		if (!pending)
1744			break;
1745
1746		/* We have to find which channel has generated the interrupt. */
1747		for (i = 0; i < atxdmac->dma.chancnt; i++) {
1748			if (!((1 << i) & pending))
1749				continue;
1750
1751			atchan = &atxdmac->chan[i];
1752			chan_imr = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1753			chan_status = at_xdmac_chan_read(atchan, AT_XDMAC_CIS);
1754			atchan->irq_status = chan_status & chan_imr;
1755			dev_vdbg(atxdmac->dma.dev,
1756				 "%s: chan%d: imr=0x%x, status=0x%x\n",
1757				 __func__, i, chan_imr, chan_status);
1758			dev_vdbg(chan2dev(&atchan->chan),
1759				 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
1760				 __func__,
1761				 at_xdmac_chan_read(atchan, AT_XDMAC_CC),
1762				 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
1763				 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
1764				 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
1765				 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
1766				 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
1767
1768			if (atchan->irq_status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS))
1769				at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1770
1771			tasklet_schedule(&atchan->tasklet);
1772			ret = IRQ_HANDLED;
1773		}
1774
1775	} while (pending);
1776
1777	return ret;
1778}
1779
1780static void at_xdmac_issue_pending(struct dma_chan *chan)
1781{
1782	struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1783	unsigned long flags;
1784
1785	dev_dbg(chan2dev(&atchan->chan), "%s\n", __func__);
1786
1787	if (!at_xdmac_chan_is_cyclic(atchan)) {
1788		spin_lock_irqsave(&atchan->lock, flags);
1789		at_xdmac_advance_work(atchan);
1790		spin_unlock_irqrestore(&atchan->lock, flags);
1791	}
1792
1793	return;
1794}
1795
1796static int at_xdmac_device_config(struct dma_chan *chan,
1797				  struct dma_slave_config *config)
1798{
1799	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1800	int ret;
1801	unsigned long		flags;
1802
1803	dev_dbg(chan2dev(chan), "%s\n", __func__);
1804
1805	spin_lock_irqsave(&atchan->lock, flags);
1806	ret = at_xdmac_set_slave_config(chan, config);
1807	spin_unlock_irqrestore(&atchan->lock, flags);
1808
1809	return ret;
1810}
1811
1812static int at_xdmac_device_pause(struct dma_chan *chan)
1813{
1814	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1815	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1816	unsigned long		flags;
1817
1818	dev_dbg(chan2dev(chan), "%s\n", __func__);
1819
1820	if (test_and_set_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status))
1821		return 0;
1822
1823	spin_lock_irqsave(&atchan->lock, flags);
1824	at_xdmac_write(atxdmac, atxdmac->layout->grws, atchan->mask);
1825	while (at_xdmac_chan_read(atchan, AT_XDMAC_CC)
1826	       & (AT_XDMAC_CC_WRIP | AT_XDMAC_CC_RDIP))
1827		cpu_relax();
1828	spin_unlock_irqrestore(&atchan->lock, flags);
1829
1830	return 0;
1831}
1832
1833static int at_xdmac_device_resume(struct dma_chan *chan)
1834{
1835	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1836	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1837	unsigned long		flags;
1838
1839	dev_dbg(chan2dev(chan), "%s\n", __func__);
1840
1841	spin_lock_irqsave(&atchan->lock, flags);
1842	if (!at_xdmac_chan_is_paused(atchan)) {
1843		spin_unlock_irqrestore(&atchan->lock, flags);
1844		return 0;
1845	}
1846
1847	at_xdmac_write(atxdmac, atxdmac->layout->grwr, atchan->mask);
1848	clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1849	spin_unlock_irqrestore(&atchan->lock, flags);
1850
1851	return 0;
1852}
1853
1854static int at_xdmac_device_terminate_all(struct dma_chan *chan)
1855{
1856	struct at_xdmac_desc	*desc, *_desc;
1857	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1858	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1859	unsigned long		flags;
1860
1861	dev_dbg(chan2dev(chan), "%s\n", __func__);
1862
1863	spin_lock_irqsave(&atchan->lock, flags);
1864	at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1865	while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
1866		cpu_relax();
1867
1868	/* Cancel all pending transfers. */
1869	list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node)
1870		at_xdmac_remove_xfer(atchan, desc);
1871
1872	clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1873	clear_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
1874	spin_unlock_irqrestore(&atchan->lock, flags);
1875
1876	return 0;
1877}
1878
1879static int at_xdmac_alloc_chan_resources(struct dma_chan *chan)
1880{
1881	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1882	struct at_xdmac_desc	*desc;
1883	int			i;
 
 
 
1884
1885	if (at_xdmac_chan_is_enabled(atchan)) {
1886		dev_err(chan2dev(chan),
1887			"can't allocate channel resources (channel enabled)\n");
1888		return -EIO;
 
1889	}
1890
1891	if (!list_empty(&atchan->free_descs_list)) {
1892		dev_err(chan2dev(chan),
1893			"can't allocate channel resources (channel not free from a previous use)\n");
1894		return -EIO;
 
1895	}
1896
1897	for (i = 0; i < init_nr_desc_per_channel; i++) {
1898		desc = at_xdmac_alloc_desc(chan, GFP_KERNEL);
1899		if (!desc) {
1900			dev_warn(chan2dev(chan),
1901				"only %d descriptors have been allocated\n", i);
1902			break;
1903		}
1904		list_add_tail(&desc->desc_node, &atchan->free_descs_list);
1905	}
1906
1907	dma_cookie_init(chan);
1908
1909	dev_dbg(chan2dev(chan), "%s: allocated %d descriptors\n", __func__, i);
1910
 
 
1911	return i;
1912}
1913
1914static void at_xdmac_free_chan_resources(struct dma_chan *chan)
1915{
1916	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1917	struct at_xdmac		*atxdmac = to_at_xdmac(chan->device);
1918	struct at_xdmac_desc	*desc, *_desc;
1919
1920	list_for_each_entry_safe(desc, _desc, &atchan->free_descs_list, desc_node) {
1921		dev_dbg(chan2dev(chan), "%s: freeing descriptor %p\n", __func__, desc);
1922		list_del(&desc->desc_node);
1923		dma_pool_free(atxdmac->at_xdmac_desc_pool, desc, desc->tx_dma_desc.phys);
1924	}
1925
1926	return;
1927}
1928
1929#ifdef CONFIG_PM
1930static int atmel_xdmac_prepare(struct device *dev)
1931{
1932	struct at_xdmac		*atxdmac = dev_get_drvdata(dev);
 
1933	struct dma_chan		*chan, *_chan;
1934
1935	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1936		struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1937
1938		/* Wait for transfer completion, except in cyclic case. */
1939		if (at_xdmac_chan_is_enabled(atchan) && !at_xdmac_chan_is_cyclic(atchan))
1940			return -EAGAIN;
1941	}
1942	return 0;
1943}
1944#else
1945#	define atmel_xdmac_prepare NULL
1946#endif
1947
1948#ifdef CONFIG_PM_SLEEP
1949static int atmel_xdmac_suspend(struct device *dev)
1950{
1951	struct at_xdmac		*atxdmac = dev_get_drvdata(dev);
 
1952	struct dma_chan		*chan, *_chan;
1953
1954	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1955		struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1956
1957		atchan->save_cc = at_xdmac_chan_read(atchan, AT_XDMAC_CC);
1958		if (at_xdmac_chan_is_cyclic(atchan)) {
1959			if (!at_xdmac_chan_is_paused(atchan))
1960				at_xdmac_device_pause(chan);
1961			atchan->save_cim = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1962			atchan->save_cnda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA);
1963			atchan->save_cndc = at_xdmac_chan_read(atchan, AT_XDMAC_CNDC);
1964		}
1965	}
1966	atxdmac->save_gim = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1967
1968	at_xdmac_off(atxdmac);
1969	clk_disable_unprepare(atxdmac->clk);
1970	return 0;
1971}
1972
1973static int atmel_xdmac_resume(struct device *dev)
1974{
1975	struct at_xdmac		*atxdmac = dev_get_drvdata(dev);
 
1976	struct at_xdmac_chan	*atchan;
1977	struct dma_chan		*chan, *_chan;
1978	int			i;
1979	int ret;
1980
1981	ret = clk_prepare_enable(atxdmac->clk);
1982	if (ret)
1983		return ret;
1984
1985	/* Clear pending interrupts. */
1986	for (i = 0; i < atxdmac->dma.chancnt; i++) {
1987		atchan = &atxdmac->chan[i];
1988		while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
1989			cpu_relax();
1990	}
1991
1992	at_xdmac_write(atxdmac, AT_XDMAC_GIE, atxdmac->save_gim);
1993	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1994		atchan = to_at_xdmac_chan(chan);
1995		at_xdmac_chan_write(atchan, AT_XDMAC_CC, atchan->save_cc);
1996		if (at_xdmac_chan_is_cyclic(atchan)) {
1997			if (at_xdmac_chan_is_paused(atchan))
1998				at_xdmac_device_resume(chan);
1999			at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, atchan->save_cnda);
2000			at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, atchan->save_cndc);
2001			at_xdmac_chan_write(atchan, AT_XDMAC_CIE, atchan->save_cim);
2002			wmb();
2003			at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
2004		}
2005	}
2006	return 0;
2007}
2008#endif /* CONFIG_PM_SLEEP */
2009
2010static void at_xdmac_axi_config(struct platform_device *pdev)
2011{
2012	struct at_xdmac	*atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev);
2013	bool dev_m2m = false;
2014	u32 dma_requests;
2015
2016	if (!atxdmac->layout->axi_config)
2017		return; /* Not supported */
2018
2019	if (!of_property_read_u32(pdev->dev.of_node, "dma-requests",
2020				  &dma_requests)) {
2021		dev_info(&pdev->dev, "controller in mem2mem mode.\n");
2022		dev_m2m = true;
2023	}
2024
2025	if (dev_m2m) {
2026		at_xdmac_write(atxdmac, AT_XDMAC_GCFG, AT_XDMAC_GCFG_M2M);
2027		at_xdmac_write(atxdmac, AT_XDMAC_GWAC, AT_XDMAC_GWAC_M2M);
2028	} else {
2029		at_xdmac_write(atxdmac, AT_XDMAC_GCFG, AT_XDMAC_GCFG_P2M);
2030		at_xdmac_write(atxdmac, AT_XDMAC_GWAC, AT_XDMAC_GWAC_P2M);
2031	}
2032}
2033
2034static int at_xdmac_probe(struct platform_device *pdev)
2035{
 
2036	struct at_xdmac	*atxdmac;
2037	int		irq, size, nr_channels, i, ret;
2038	void __iomem	*base;
2039	u32		reg;
2040
 
 
 
 
2041	irq = platform_get_irq(pdev, 0);
2042	if (irq < 0)
2043		return irq;
2044
2045	base = devm_platform_ioremap_resource(pdev, 0);
2046	if (IS_ERR(base))
2047		return PTR_ERR(base);
2048
2049	/*
2050	 * Read number of xdmac channels, read helper function can't be used
2051	 * since atxdmac is not yet allocated and we need to know the number
2052	 * of channels to do the allocation.
2053	 */
2054	reg = readl_relaxed(base + AT_XDMAC_GTYPE);
2055	nr_channels = AT_XDMAC_NB_CH(reg);
2056	if (nr_channels > AT_XDMAC_MAX_CHAN) {
2057		dev_err(&pdev->dev, "invalid number of channels (%u)\n",
2058			nr_channels);
2059		return -EINVAL;
2060	}
2061
2062	size = sizeof(*atxdmac);
2063	size += nr_channels * sizeof(struct at_xdmac_chan);
2064	atxdmac = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
2065	if (!atxdmac) {
2066		dev_err(&pdev->dev, "can't allocate at_xdmac structure\n");
2067		return -ENOMEM;
2068	}
2069
2070	atxdmac->regs = base;
2071	atxdmac->irq = irq;
2072
2073	atxdmac->layout = of_device_get_match_data(&pdev->dev);
2074	if (!atxdmac->layout)
2075		return -ENODEV;
2076
2077	atxdmac->clk = devm_clk_get(&pdev->dev, "dma_clk");
2078	if (IS_ERR(atxdmac->clk)) {
2079		dev_err(&pdev->dev, "can't get dma_clk\n");
2080		return PTR_ERR(atxdmac->clk);
2081	}
2082
2083	/* Do not use dev res to prevent races with tasklet */
2084	ret = request_irq(atxdmac->irq, at_xdmac_interrupt, 0, "at_xdmac", atxdmac);
2085	if (ret) {
2086		dev_err(&pdev->dev, "can't request irq\n");
2087		return ret;
2088	}
2089
2090	ret = clk_prepare_enable(atxdmac->clk);
2091	if (ret) {
2092		dev_err(&pdev->dev, "can't prepare or enable clock\n");
2093		goto err_free_irq;
2094	}
2095
2096	atxdmac->at_xdmac_desc_pool =
2097		dmam_pool_create(dev_name(&pdev->dev), &pdev->dev,
2098				sizeof(struct at_xdmac_desc), 4, 0);
2099	if (!atxdmac->at_xdmac_desc_pool) {
2100		dev_err(&pdev->dev, "no memory for descriptors dma pool\n");
2101		ret = -ENOMEM;
2102		goto err_clk_disable;
2103	}
2104
2105	dma_cap_set(DMA_CYCLIC, atxdmac->dma.cap_mask);
2106	dma_cap_set(DMA_INTERLEAVE, atxdmac->dma.cap_mask);
2107	dma_cap_set(DMA_MEMCPY, atxdmac->dma.cap_mask);
2108	dma_cap_set(DMA_MEMSET, atxdmac->dma.cap_mask);
2109	dma_cap_set(DMA_MEMSET_SG, atxdmac->dma.cap_mask);
2110	dma_cap_set(DMA_SLAVE, atxdmac->dma.cap_mask);
2111	/*
2112	 * Without DMA_PRIVATE the driver is not able to allocate more than
2113	 * one channel, second allocation fails in private_candidate.
2114	 */
2115	dma_cap_set(DMA_PRIVATE, atxdmac->dma.cap_mask);
2116	atxdmac->dma.dev				= &pdev->dev;
2117	atxdmac->dma.device_alloc_chan_resources	= at_xdmac_alloc_chan_resources;
2118	atxdmac->dma.device_free_chan_resources		= at_xdmac_free_chan_resources;
2119	atxdmac->dma.device_tx_status			= at_xdmac_tx_status;
2120	atxdmac->dma.device_issue_pending		= at_xdmac_issue_pending;
2121	atxdmac->dma.device_prep_dma_cyclic		= at_xdmac_prep_dma_cyclic;
2122	atxdmac->dma.device_prep_interleaved_dma	= at_xdmac_prep_interleaved;
2123	atxdmac->dma.device_prep_dma_memcpy		= at_xdmac_prep_dma_memcpy;
2124	atxdmac->dma.device_prep_dma_memset		= at_xdmac_prep_dma_memset;
2125	atxdmac->dma.device_prep_dma_memset_sg		= at_xdmac_prep_dma_memset_sg;
2126	atxdmac->dma.device_prep_slave_sg		= at_xdmac_prep_slave_sg;
2127	atxdmac->dma.device_config			= at_xdmac_device_config;
2128	atxdmac->dma.device_pause			= at_xdmac_device_pause;
2129	atxdmac->dma.device_resume			= at_xdmac_device_resume;
2130	atxdmac->dma.device_terminate_all		= at_xdmac_device_terminate_all;
2131	atxdmac->dma.src_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2132	atxdmac->dma.dst_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2133	atxdmac->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2134	atxdmac->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2135
2136	/* Disable all chans and interrupts. */
2137	at_xdmac_off(atxdmac);
2138
2139	/* Init channels. */
2140	INIT_LIST_HEAD(&atxdmac->dma.channels);
2141	for (i = 0; i < nr_channels; i++) {
2142		struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2143
2144		atchan->chan.device = &atxdmac->dma;
2145		list_add_tail(&atchan->chan.device_node,
2146			      &atxdmac->dma.channels);
2147
2148		atchan->ch_regs = at_xdmac_chan_reg_base(atxdmac, i);
2149		atchan->mask = 1 << i;
2150
2151		spin_lock_init(&atchan->lock);
2152		INIT_LIST_HEAD(&atchan->xfers_list);
2153		INIT_LIST_HEAD(&atchan->free_descs_list);
2154		tasklet_setup(&atchan->tasklet, at_xdmac_tasklet);
 
2155
2156		/* Clear pending interrupts. */
2157		while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
2158			cpu_relax();
2159	}
2160	platform_set_drvdata(pdev, atxdmac);
2161
2162	ret = dma_async_device_register(&atxdmac->dma);
2163	if (ret) {
2164		dev_err(&pdev->dev, "fail to register DMA engine device\n");
2165		goto err_clk_disable;
2166	}
2167
2168	ret = of_dma_controller_register(pdev->dev.of_node,
2169					 at_xdmac_xlate, atxdmac);
2170	if (ret) {
2171		dev_err(&pdev->dev, "could not register of dma controller\n");
2172		goto err_dma_unregister;
2173	}
2174
2175	dev_info(&pdev->dev, "%d channels, mapped at 0x%p\n",
2176		 nr_channels, atxdmac->regs);
2177
2178	at_xdmac_axi_config(pdev);
2179
2180	return 0;
2181
2182err_dma_unregister:
2183	dma_async_device_unregister(&atxdmac->dma);
2184err_clk_disable:
2185	clk_disable_unprepare(atxdmac->clk);
2186err_free_irq:
2187	free_irq(atxdmac->irq, atxdmac);
2188	return ret;
2189}
2190
2191static int at_xdmac_remove(struct platform_device *pdev)
2192{
2193	struct at_xdmac	*atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev);
2194	int		i;
2195
2196	at_xdmac_off(atxdmac);
2197	of_dma_controller_free(pdev->dev.of_node);
2198	dma_async_device_unregister(&atxdmac->dma);
2199	clk_disable_unprepare(atxdmac->clk);
2200
2201	free_irq(atxdmac->irq, atxdmac);
2202
2203	for (i = 0; i < atxdmac->dma.chancnt; i++) {
2204		struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2205
2206		tasklet_kill(&atchan->tasklet);
2207		at_xdmac_free_chan_resources(&atchan->chan);
2208	}
2209
2210	return 0;
2211}
2212
2213static const struct dev_pm_ops atmel_xdmac_dev_pm_ops = {
2214	.prepare	= atmel_xdmac_prepare,
2215	SET_LATE_SYSTEM_SLEEP_PM_OPS(atmel_xdmac_suspend, atmel_xdmac_resume)
2216};
2217
2218static const struct of_device_id atmel_xdmac_dt_ids[] = {
2219	{
2220		.compatible = "atmel,sama5d4-dma",
2221		.data = &at_xdmac_sama5d4_layout,
2222	}, {
2223		.compatible = "microchip,sama7g5-dma",
2224		.data = &at_xdmac_sama7g5_layout,
2225	}, {
2226		/* sentinel */
2227	}
2228};
2229MODULE_DEVICE_TABLE(of, atmel_xdmac_dt_ids);
2230
2231static struct platform_driver at_xdmac_driver = {
2232	.probe		= at_xdmac_probe,
2233	.remove		= at_xdmac_remove,
2234	.driver = {
2235		.name		= "at_xdmac",
2236		.of_match_table	= of_match_ptr(atmel_xdmac_dt_ids),
2237		.pm		= &atmel_xdmac_dev_pm_ops,
2238	}
2239};
2240
2241static int __init at_xdmac_init(void)
2242{
2243	return platform_driver_probe(&at_xdmac_driver, at_xdmac_probe);
2244}
2245subsys_initcall(at_xdmac_init);
2246
2247MODULE_DESCRIPTION("Atmel Extended DMA Controller driver");
2248MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@atmel.com>");
2249MODULE_LICENSE("GPL");