Linux Audio

Check our new training course

Loading...
v4.17
  1#include <linux/gfp.h>
  2#include <linux/initrd.h>
  3#include <linux/ioport.h>
  4#include <linux/swap.h>
  5#include <linux/memblock.h>
  6#include <linux/bootmem.h>	/* for max_low_pfn */
 
 
 
  7
  8#include <asm/set_memory.h>
  9#include <asm/e820/api.h>
 10#include <asm/init.h>
 11#include <asm/page.h>
 12#include <asm/page_types.h>
 13#include <asm/sections.h>
 14#include <asm/setup.h>
 15#include <asm/tlbflush.h>
 16#include <asm/tlb.h>
 17#include <asm/proto.h>
 18#include <asm/dma.h>		/* for MAX_DMA_PFN */
 19#include <asm/microcode.h>
 20#include <asm/kaslr.h>
 21#include <asm/hypervisor.h>
 22#include <asm/cpufeature.h>
 23#include <asm/pti.h>
 
 
 24
 25/*
 26 * We need to define the tracepoints somewhere, and tlb.c
 27 * is only compied when SMP=y.
 28 */
 29#define CREATE_TRACE_POINTS
 30#include <trace/events/tlb.h>
 31
 32#include "mm_internal.h"
 33
 34/*
 35 * Tables translating between page_cache_type_t and pte encoding.
 36 *
 37 * The default values are defined statically as minimal supported mode;
 38 * WC and WT fall back to UC-.  pat_init() updates these values to support
 39 * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
 40 * for the details.  Note, __early_ioremap() used during early boot-time
 41 * takes pgprot_t (pte encoding) and does not use these tables.
 42 *
 43 *   Index into __cachemode2pte_tbl[] is the cachemode.
 44 *
 45 *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
 46 *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
 47 */
 48uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
 49	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
 50	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
 51	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
 52	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
 53	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
 54	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
 55};
 56EXPORT_SYMBOL(__cachemode2pte_tbl);
 57
 58uint8_t __pte2cachemode_tbl[8] = {
 
 
 
 
 
 
 
 
 59	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
 60	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
 61	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
 62	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
 63	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
 64	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
 65	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
 66	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
 67};
 68EXPORT_SYMBOL(__pte2cachemode_tbl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 69
 70static unsigned long __initdata pgt_buf_start;
 71static unsigned long __initdata pgt_buf_end;
 72static unsigned long __initdata pgt_buf_top;
 73
 74static unsigned long min_pfn_mapped;
 75
 76static bool __initdata can_use_brk_pgt = true;
 77
 78/*
 79 * Pages returned are already directly mapped.
 80 *
 81 * Changing that is likely to break Xen, see commit:
 82 *
 83 *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
 84 *
 85 * for detailed information.
 86 */
 87__ref void *alloc_low_pages(unsigned int num)
 88{
 89	unsigned long pfn;
 90	int i;
 91
 92	if (after_bootmem) {
 93		unsigned int order;
 94
 95		order = get_order((unsigned long)num << PAGE_SHIFT);
 96		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
 97	}
 98
 99	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
100		unsigned long ret;
101		if (min_pfn_mapped >= max_pfn_mapped)
102			panic("alloc_low_pages: ran out of memory");
103		ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
 
104					max_pfn_mapped << PAGE_SHIFT,
105					PAGE_SIZE * num , PAGE_SIZE);
 
 
 
 
 
 
106		if (!ret)
107			panic("alloc_low_pages: can not alloc memory");
108		memblock_reserve(ret, PAGE_SIZE * num);
109		pfn = ret >> PAGE_SHIFT;
110	} else {
111		pfn = pgt_buf_end;
112		pgt_buf_end += num;
113		printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
114			pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
115	}
116
117	for (i = 0; i < num; i++) {
118		void *adr;
119
120		adr = __va((pfn + i) << PAGE_SHIFT);
121		clear_page(adr);
122	}
123
124	return __va(pfn << PAGE_SHIFT);
125}
126
127/*
128 * By default need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS.
129 * With KASLR memory randomization, depending on the machine e820 memory
130 * and the PUD alignment. We may need twice more pages when KASLR memory
 
131 * randomization is enabled.
132 */
 
 
 
 
 
 
 
133#ifndef CONFIG_RANDOMIZE_MEMORY
134#define INIT_PGD_PAGE_COUNT      6
135#else
136#define INIT_PGD_PAGE_COUNT      12
137#endif
 
138#define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
139RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
140void  __init early_alloc_pgt_buf(void)
141{
142	unsigned long tables = INIT_PGT_BUF_SIZE;
143	phys_addr_t base;
144
145	base = __pa(extend_brk(tables, PAGE_SIZE));
146
147	pgt_buf_start = base >> PAGE_SHIFT;
148	pgt_buf_end = pgt_buf_start;
149	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
150}
151
152int after_bootmem;
153
154early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
155
156struct map_range {
157	unsigned long start;
158	unsigned long end;
159	unsigned page_size_mask;
160};
161
162static int page_size_mask;
163
 
 
 
 
 
 
 
 
 
 
 
 
 
164static void __init probe_page_size_mask(void)
165{
166	/*
167	 * For pagealloc debugging, identity mapping will use small pages.
168	 * This will simplify cpa(), which otherwise needs to support splitting
169	 * large pages into small in interrupt context, etc.
170	 */
171	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
172		page_size_mask |= 1 << PG_LEVEL_2M;
173	else
174		direct_gbpages = 0;
175
176	/* Enable PSE if available */
177	if (boot_cpu_has(X86_FEATURE_PSE))
178		cr4_set_bits_and_update_boot(X86_CR4_PSE);
179
180	/* Enable PGE if available */
181	__supported_pte_mask &= ~_PAGE_GLOBAL;
182	if (boot_cpu_has(X86_FEATURE_PGE)) {
183		cr4_set_bits_and_update_boot(X86_CR4_PGE);
184		__supported_pte_mask |= _PAGE_GLOBAL;
185	}
186
187	/* By the default is everything supported: */
188	__default_kernel_pte_mask = __supported_pte_mask;
189	/* Except when with PTI where the kernel is mostly non-Global: */
190	if (cpu_feature_enabled(X86_FEATURE_PTI))
191		__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
192
193	/* Enable 1 GB linear kernel mappings if available: */
194	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
195		printk(KERN_INFO "Using GB pages for direct mapping\n");
196		page_size_mask |= 1 << PG_LEVEL_1G;
197	} else {
198		direct_gbpages = 0;
199	}
200}
201
202static void setup_pcid(void)
203{
204	if (!IS_ENABLED(CONFIG_X86_64))
205		return;
206
207	if (!boot_cpu_has(X86_FEATURE_PCID))
208		return;
209
210	if (boot_cpu_has(X86_FEATURE_PGE)) {
211		/*
212		 * This can't be cr4_set_bits_and_update_boot() -- the
213		 * trampoline code can't handle CR4.PCIDE and it wouldn't
214		 * do any good anyway.  Despite the name,
215		 * cr4_set_bits_and_update_boot() doesn't actually cause
216		 * the bits in question to remain set all the way through
217		 * the secondary boot asm.
218		 *
219		 * Instead, we brute-force it and set CR4.PCIDE manually in
220		 * start_secondary().
221		 */
222		cr4_set_bits(X86_CR4_PCIDE);
223
224		/*
225		 * INVPCID's single-context modes (2/3) only work if we set
226		 * X86_CR4_PCIDE, *and* we INVPCID support.  It's unusable
227		 * on systems that have X86_CR4_PCIDE clear, or that have
228		 * no INVPCID support at all.
229		 */
230		if (boot_cpu_has(X86_FEATURE_INVPCID))
231			setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
232	} else {
233		/*
234		 * flush_tlb_all(), as currently implemented, won't work if
235		 * PCID is on but PGE is not.  Since that combination
236		 * doesn't exist on real hardware, there's no reason to try
237		 * to fully support it, but it's polite to avoid corrupting
238		 * data if we're on an improperly configured VM.
239		 */
240		setup_clear_cpu_cap(X86_FEATURE_PCID);
241	}
242}
243
244#ifdef CONFIG_X86_32
245#define NR_RANGE_MR 3
246#else /* CONFIG_X86_64 */
247#define NR_RANGE_MR 5
248#endif
249
250static int __meminit save_mr(struct map_range *mr, int nr_range,
251			     unsigned long start_pfn, unsigned long end_pfn,
252			     unsigned long page_size_mask)
253{
254	if (start_pfn < end_pfn) {
255		if (nr_range >= NR_RANGE_MR)
256			panic("run out of range for init_memory_mapping\n");
257		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
258		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
259		mr[nr_range].page_size_mask = page_size_mask;
260		nr_range++;
261	}
262
263	return nr_range;
264}
265
266/*
267 * adjust the page_size_mask for small range to go with
268 *	big page size instead small one if nearby are ram too.
269 */
270static void __ref adjust_range_page_size_mask(struct map_range *mr,
271							 int nr_range)
272{
273	int i;
274
275	for (i = 0; i < nr_range; i++) {
276		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
277		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
278			unsigned long start = round_down(mr[i].start, PMD_SIZE);
279			unsigned long end = round_up(mr[i].end, PMD_SIZE);
280
281#ifdef CONFIG_X86_32
282			if ((end >> PAGE_SHIFT) > max_low_pfn)
283				continue;
284#endif
285
286			if (memblock_is_region_memory(start, end - start))
287				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
288		}
289		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
290		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
291			unsigned long start = round_down(mr[i].start, PUD_SIZE);
292			unsigned long end = round_up(mr[i].end, PUD_SIZE);
293
294			if (memblock_is_region_memory(start, end - start))
295				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
296		}
297	}
298}
299
300static const char *page_size_string(struct map_range *mr)
301{
302	static const char str_1g[] = "1G";
303	static const char str_2m[] = "2M";
304	static const char str_4m[] = "4M";
305	static const char str_4k[] = "4k";
306
307	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
308		return str_1g;
309	/*
310	 * 32-bit without PAE has a 4M large page size.
311	 * PG_LEVEL_2M is misnamed, but we can at least
312	 * print out the right size in the string.
313	 */
314	if (IS_ENABLED(CONFIG_X86_32) &&
315	    !IS_ENABLED(CONFIG_X86_PAE) &&
316	    mr->page_size_mask & (1<<PG_LEVEL_2M))
317		return str_4m;
318
319	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
320		return str_2m;
321
322	return str_4k;
323}
324
325static int __meminit split_mem_range(struct map_range *mr, int nr_range,
326				     unsigned long start,
327				     unsigned long end)
328{
329	unsigned long start_pfn, end_pfn, limit_pfn;
330	unsigned long pfn;
331	int i;
332
333	limit_pfn = PFN_DOWN(end);
334
335	/* head if not big page alignment ? */
336	pfn = start_pfn = PFN_DOWN(start);
337#ifdef CONFIG_X86_32
338	/*
339	 * Don't use a large page for the first 2/4MB of memory
340	 * because there are often fixed size MTRRs in there
341	 * and overlapping MTRRs into large pages can cause
342	 * slowdowns.
343	 */
344	if (pfn == 0)
345		end_pfn = PFN_DOWN(PMD_SIZE);
346	else
347		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
348#else /* CONFIG_X86_64 */
349	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
350#endif
351	if (end_pfn > limit_pfn)
352		end_pfn = limit_pfn;
353	if (start_pfn < end_pfn) {
354		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
355		pfn = end_pfn;
356	}
357
358	/* big page (2M) range */
359	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
360#ifdef CONFIG_X86_32
361	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
362#else /* CONFIG_X86_64 */
363	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
364	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
365		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
366#endif
367
368	if (start_pfn < end_pfn) {
369		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
370				page_size_mask & (1<<PG_LEVEL_2M));
371		pfn = end_pfn;
372	}
373
374#ifdef CONFIG_X86_64
375	/* big page (1G) range */
376	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
377	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
378	if (start_pfn < end_pfn) {
379		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
380				page_size_mask &
381				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
382		pfn = end_pfn;
383	}
384
385	/* tail is not big page (1G) alignment */
386	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
387	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
388	if (start_pfn < end_pfn) {
389		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
390				page_size_mask & (1<<PG_LEVEL_2M));
391		pfn = end_pfn;
392	}
393#endif
394
395	/* tail is not big page (2M) alignment */
396	start_pfn = pfn;
397	end_pfn = limit_pfn;
398	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
399
400	if (!after_bootmem)
401		adjust_range_page_size_mask(mr, nr_range);
402
403	/* try to merge same page size and continuous */
404	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
405		unsigned long old_start;
406		if (mr[i].end != mr[i+1].start ||
407		    mr[i].page_size_mask != mr[i+1].page_size_mask)
408			continue;
409		/* move it */
410		old_start = mr[i].start;
411		memmove(&mr[i], &mr[i+1],
412			(nr_range - 1 - i) * sizeof(struct map_range));
413		mr[i--].start = old_start;
414		nr_range--;
415	}
416
417	for (i = 0; i < nr_range; i++)
418		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
419				mr[i].start, mr[i].end - 1,
420				page_size_string(&mr[i]));
421
422	return nr_range;
423}
424
425struct range pfn_mapped[E820_MAX_ENTRIES];
426int nr_pfn_mapped;
427
428static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
429{
430	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
431					     nr_pfn_mapped, start_pfn, end_pfn);
432	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
433
434	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
435
436	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
437		max_low_pfn_mapped = max(max_low_pfn_mapped,
438					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
439}
440
441bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
442{
443	int i;
444
445	for (i = 0; i < nr_pfn_mapped; i++)
446		if ((start_pfn >= pfn_mapped[i].start) &&
447		    (end_pfn <= pfn_mapped[i].end))
448			return true;
449
450	return false;
451}
452
453/*
454 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
455 * This runs before bootmem is initialized and gets pages directly from
456 * the physical memory. To access them they are temporarily mapped.
457 */
458unsigned long __ref init_memory_mapping(unsigned long start,
459					       unsigned long end)
460{
461	struct map_range mr[NR_RANGE_MR];
462	unsigned long ret = 0;
463	int nr_range, i;
464
465	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
466	       start, end - 1);
467
468	memset(mr, 0, sizeof(mr));
469	nr_range = split_mem_range(mr, 0, start, end);
470
471	for (i = 0; i < nr_range; i++)
472		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
473						   mr[i].page_size_mask);
 
474
475	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
476
477	return ret >> PAGE_SHIFT;
478}
479
480/*
481 * We need to iterate through the E820 memory map and create direct mappings
482 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
483 * create direct mappings for all pfns from [0 to max_low_pfn) and
484 * [4GB to max_pfn) because of possible memory holes in high addresses
485 * that cannot be marked as UC by fixed/variable range MTRRs.
486 * Depending on the alignment of E820 ranges, this may possibly result
487 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
488 *
489 * init_mem_mapping() calls init_range_memory_mapping() with big range.
490 * That range would have hole in the middle or ends, and only ram parts
491 * will be mapped in init_range_memory_mapping().
492 */
493static unsigned long __init init_range_memory_mapping(
494					   unsigned long r_start,
495					   unsigned long r_end)
496{
497	unsigned long start_pfn, end_pfn;
498	unsigned long mapped_ram_size = 0;
499	int i;
500
501	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
502		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
503		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
504		if (start >= end)
505			continue;
506
507		/*
508		 * if it is overlapping with brk pgt, we need to
509		 * alloc pgt buf from memblock instead.
510		 */
511		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
512				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
513		init_memory_mapping(start, end);
514		mapped_ram_size += end - start;
515		can_use_brk_pgt = true;
516	}
517
518	return mapped_ram_size;
519}
520
521static unsigned long __init get_new_step_size(unsigned long step_size)
522{
523	/*
524	 * Initial mapped size is PMD_SIZE (2M).
525	 * We can not set step_size to be PUD_SIZE (1G) yet.
526	 * In worse case, when we cross the 1G boundary, and
527	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
528	 * to map 1G range with PTE. Hence we use one less than the
529	 * difference of page table level shifts.
530	 *
531	 * Don't need to worry about overflow in the top-down case, on 32bit,
532	 * when step_size is 0, round_down() returns 0 for start, and that
533	 * turns it into 0x100000000ULL.
534	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
535	 * needs to be taken into consideration by the code below.
536	 */
537	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
538}
539
540/**
541 * memory_map_top_down - Map [map_start, map_end) top down
542 * @map_start: start address of the target memory range
543 * @map_end: end address of the target memory range
544 *
545 * This function will setup direct mapping for memory range
546 * [map_start, map_end) in top-down. That said, the page tables
547 * will be allocated at the end of the memory, and we map the
548 * memory in top-down.
549 */
550static void __init memory_map_top_down(unsigned long map_start,
551				       unsigned long map_end)
552{
553	unsigned long real_end, start, last_start;
554	unsigned long step_size;
555	unsigned long addr;
556	unsigned long mapped_ram_size = 0;
557
558	/* xen has big range in reserved near end of ram, skip it at first.*/
559	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
560	real_end = addr + PMD_SIZE;
561
562	/* step_size need to be small so pgt_buf from BRK could cover it */
563	step_size = PMD_SIZE;
564	max_pfn_mapped = 0; /* will get exact value next */
565	min_pfn_mapped = real_end >> PAGE_SHIFT;
566	last_start = start = real_end;
567
568	/*
569	 * We start from the top (end of memory) and go to the bottom.
570	 * The memblock_find_in_range() gets us a block of RAM from the
571	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
572	 * for page table.
573	 */
574	while (last_start > map_start) {
 
 
575		if (last_start > step_size) {
576			start = round_down(last_start - 1, step_size);
577			if (start < map_start)
578				start = map_start;
579		} else
580			start = map_start;
581		mapped_ram_size += init_range_memory_mapping(start,
582							last_start);
583		last_start = start;
584		min_pfn_mapped = last_start >> PAGE_SHIFT;
585		if (mapped_ram_size >= step_size)
586			step_size = get_new_step_size(step_size);
587	}
588
589	if (real_end < map_end)
590		init_range_memory_mapping(real_end, map_end);
591}
592
593/**
594 * memory_map_bottom_up - Map [map_start, map_end) bottom up
595 * @map_start: start address of the target memory range
596 * @map_end: end address of the target memory range
597 *
598 * This function will setup direct mapping for memory range
599 * [map_start, map_end) in bottom-up. Since we have limited the
600 * bottom-up allocation above the kernel, the page tables will
601 * be allocated just above the kernel and we map the memory
602 * in [map_start, map_end) in bottom-up.
603 */
604static void __init memory_map_bottom_up(unsigned long map_start,
605					unsigned long map_end)
606{
607	unsigned long next, start;
608	unsigned long mapped_ram_size = 0;
609	/* step_size need to be small so pgt_buf from BRK could cover it */
610	unsigned long step_size = PMD_SIZE;
611
612	start = map_start;
613	min_pfn_mapped = start >> PAGE_SHIFT;
614
615	/*
616	 * We start from the bottom (@map_start) and go to the top (@map_end).
617	 * The memblock_find_in_range() gets us a block of RAM from the
618	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
619	 * for page table.
620	 */
621	while (start < map_end) {
622		if (step_size && map_end - start > step_size) {
623			next = round_up(start + 1, step_size);
624			if (next > map_end)
625				next = map_end;
626		} else {
627			next = map_end;
628		}
629
630		mapped_ram_size += init_range_memory_mapping(start, next);
631		start = next;
632
633		if (mapped_ram_size >= step_size)
634			step_size = get_new_step_size(step_size);
635	}
636}
637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
638void __init init_mem_mapping(void)
639{
640	unsigned long end;
641
642	pti_check_boottime_disable();
643	probe_page_size_mask();
644	setup_pcid();
645
646#ifdef CONFIG_X86_64
647	end = max_pfn << PAGE_SHIFT;
648#else
649	end = max_low_pfn << PAGE_SHIFT;
650#endif
651
652	/* the ISA range is always mapped regardless of memory holes */
653	init_memory_mapping(0, ISA_END_ADDRESS);
654
655	/* Init the trampoline, possibly with KASLR memory offset */
656	init_trampoline();
657
658	/*
659	 * If the allocation is in bottom-up direction, we setup direct mapping
660	 * in bottom-up, otherwise we setup direct mapping in top-down.
661	 */
662	if (memblock_bottom_up()) {
663		unsigned long kernel_end = __pa_symbol(_end);
664
665		/*
666		 * we need two separate calls here. This is because we want to
667		 * allocate page tables above the kernel. So we first map
668		 * [kernel_end, end) to make memory above the kernel be mapped
669		 * as soon as possible. And then use page tables allocated above
670		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
671		 */
672		memory_map_bottom_up(kernel_end, end);
673		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
674	} else {
675		memory_map_top_down(ISA_END_ADDRESS, end);
676	}
677
678#ifdef CONFIG_X86_64
679	if (max_pfn > max_low_pfn) {
680		/* can we preseve max_low_pfn ?*/
681		max_low_pfn = max_pfn;
682	}
683#else
684	early_ioremap_page_table_range_init();
685#endif
686
687	load_cr3(swapper_pg_dir);
688	__flush_tlb_all();
689
690	x86_init.hyper.init_mem_mapping();
691
692	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
693}
694
695/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
696 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
697 * is valid. The argument is a physical page number.
698 *
699 * On x86, access has to be given to the first megabyte of RAM because that
700 * area traditionally contains BIOS code and data regions used by X, dosemu,
701 * and similar apps. Since they map the entire memory range, the whole range
702 * must be allowed (for mapping), but any areas that would otherwise be
703 * disallowed are flagged as being "zero filled" instead of rejected.
704 * Access has to be given to non-kernel-ram areas as well, these contain the
705 * PCI mmio resources as well as potential bios/acpi data regions.
706 */
707int devmem_is_allowed(unsigned long pagenr)
708{
709	if (page_is_ram(pagenr)) {
 
 
710		/*
711		 * For disallowed memory regions in the low 1MB range,
712		 * request that the page be shown as all zeros.
713		 */
714		if (pagenr < 256)
715			return 2;
716
717		return 0;
718	}
719
720	/*
721	 * This must follow RAM test, since System RAM is considered a
722	 * restricted resource under CONFIG_STRICT_IOMEM.
723	 */
724	if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
725		/* Low 1MB bypasses iomem restrictions. */
726		if (pagenr < 256)
727			return 1;
728
729		return 0;
730	}
731
732	return 1;
733}
734
735void free_init_pages(char *what, unsigned long begin, unsigned long end)
736{
737	unsigned long begin_aligned, end_aligned;
738
739	/* Make sure boundaries are page aligned */
740	begin_aligned = PAGE_ALIGN(begin);
741	end_aligned   = end & PAGE_MASK;
742
743	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
744		begin = begin_aligned;
745		end   = end_aligned;
746	}
747
748	if (begin >= end)
749		return;
750
751	/*
752	 * If debugging page accesses then do not free this memory but
753	 * mark them not present - any buggy init-section access will
754	 * create a kernel page fault:
755	 */
756	if (debug_pagealloc_enabled()) {
757		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
758			begin, end - 1);
 
 
 
 
 
759		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
760	} else {
761		/*
762		 * We just marked the kernel text read only above, now that
763		 * we are going to free part of that, we need to make that
764		 * writeable and non-executable first.
765		 */
766		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
767		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
768
769		free_reserved_area((void *)begin, (void *)end,
770				   POISON_FREE_INITMEM, what);
771	}
772}
773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
774void __ref free_initmem(void)
775{
776	e820__reallocate_tables();
777
778	free_init_pages("unused kernel",
779			(unsigned long)(&__init_begin),
780			(unsigned long)(&__init_end));
 
781}
782
783#ifdef CONFIG_BLK_DEV_INITRD
784void __init free_initrd_mem(unsigned long start, unsigned long end)
785{
786	/*
787	 * end could be not aligned, and We can not align that,
788	 * decompresser could be confused by aligned initrd_end
789	 * We already reserve the end partial page before in
790	 *   - i386_start_kernel()
791	 *   - x86_64_start_kernel()
792	 *   - relocate_initrd()
793	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
794	 */
795	free_init_pages("initrd", start, PAGE_ALIGN(end));
796}
797#endif
798
799/*
800 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
801 * and pass it to the MM layer - to help it set zone watermarks more
802 * accurately.
803 *
804 * Done on 64-bit systems only for the time being, although 32-bit systems
805 * might benefit from this as well.
806 */
807void __init memblock_find_dma_reserve(void)
808{
809#ifdef CONFIG_X86_64
810	u64 nr_pages = 0, nr_free_pages = 0;
811	unsigned long start_pfn, end_pfn;
812	phys_addr_t start_addr, end_addr;
813	int i;
814	u64 u;
815
816	/*
817	 * Iterate over all memory ranges (free and reserved ones alike),
818	 * to calculate the total number of pages in the first 16 MB of RAM:
819	 */
820	nr_pages = 0;
821	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
822		start_pfn = min(start_pfn, MAX_DMA_PFN);
823		end_pfn   = min(end_pfn,   MAX_DMA_PFN);
824
825		nr_pages += end_pfn - start_pfn;
826	}
827
828	/*
829	 * Iterate over free memory ranges to calculate the number of free
830	 * pages in the DMA zone, while not counting potential partial
831	 * pages at the beginning or the end of the range:
832	 */
833	nr_free_pages = 0;
834	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
835		start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
836		end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
837
838		if (start_pfn < end_pfn)
839			nr_free_pages += end_pfn - start_pfn;
840	}
841
842	set_dma_reserve(nr_pages - nr_free_pages);
843#endif
844}
845
846void __init zone_sizes_init(void)
847{
848	unsigned long max_zone_pfns[MAX_NR_ZONES];
849
850	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
851
852#ifdef CONFIG_ZONE_DMA
853	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
854#endif
855#ifdef CONFIG_ZONE_DMA32
856	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
857#endif
858	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
859#ifdef CONFIG_HIGHMEM
860	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
861#endif
862
863	free_area_init_nodes(max_zone_pfns);
864}
865
866__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
867	.loaded_mm = &init_mm,
868	.next_asid = 1,
869	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
870};
871EXPORT_PER_CPU_SYMBOL(cpu_tlbstate);
872
873void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
874{
875	/* entry 0 MUST be WB (hardwired to speed up translations) */
876	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
877
878	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
879	__pte2cachemode_tbl[entry] = cache;
880}
v5.14.15
   1#include <linux/gfp.h>
   2#include <linux/initrd.h>
   3#include <linux/ioport.h>
   4#include <linux/swap.h>
   5#include <linux/memblock.h>
   6#include <linux/swapfile.h>
   7#include <linux/swapops.h>
   8#include <linux/kmemleak.h>
   9#include <linux/sched/task.h>
  10
  11#include <asm/set_memory.h>
  12#include <asm/e820/api.h>
  13#include <asm/init.h>
  14#include <asm/page.h>
  15#include <asm/page_types.h>
  16#include <asm/sections.h>
  17#include <asm/setup.h>
  18#include <asm/tlbflush.h>
  19#include <asm/tlb.h>
  20#include <asm/proto.h>
  21#include <asm/dma.h>		/* for MAX_DMA_PFN */
  22#include <asm/microcode.h>
  23#include <asm/kaslr.h>
  24#include <asm/hypervisor.h>
  25#include <asm/cpufeature.h>
  26#include <asm/pti.h>
  27#include <asm/text-patching.h>
  28#include <asm/memtype.h>
  29
  30/*
  31 * We need to define the tracepoints somewhere, and tlb.c
  32 * is only compiled when SMP=y.
  33 */
  34#define CREATE_TRACE_POINTS
  35#include <trace/events/tlb.h>
  36
  37#include "mm_internal.h"
  38
  39/*
  40 * Tables translating between page_cache_type_t and pte encoding.
  41 *
  42 * The default values are defined statically as minimal supported mode;
  43 * WC and WT fall back to UC-.  pat_init() updates these values to support
  44 * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
  45 * for the details.  Note, __early_ioremap() used during early boot-time
  46 * takes pgprot_t (pte encoding) and does not use these tables.
  47 *
  48 *   Index into __cachemode2pte_tbl[] is the cachemode.
  49 *
  50 *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
  51 *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
  52 */
  53static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
  54	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
  55	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
  56	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
  57	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
  58	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
  59	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
  60};
 
  61
  62unsigned long cachemode2protval(enum page_cache_mode pcm)
  63{
  64	if (likely(pcm == 0))
  65		return 0;
  66	return __cachemode2pte_tbl[pcm];
  67}
  68EXPORT_SYMBOL(cachemode2protval);
  69
  70static uint8_t __pte2cachemode_tbl[8] = {
  71	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
  72	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
  73	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
  74	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
  75	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
  76	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  77	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  78	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
  79};
  80
  81/* Check that the write-protect PAT entry is set for write-protect */
  82bool x86_has_pat_wp(void)
  83{
  84	return __pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] == _PAGE_CACHE_MODE_WP;
  85}
  86
  87enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
  88{
  89	unsigned long masked;
  90
  91	masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
  92	if (likely(masked == 0))
  93		return 0;
  94	return __pte2cachemode_tbl[__pte2cm_idx(masked)];
  95}
  96
  97static unsigned long __initdata pgt_buf_start;
  98static unsigned long __initdata pgt_buf_end;
  99static unsigned long __initdata pgt_buf_top;
 100
 101static unsigned long min_pfn_mapped;
 102
 103static bool __initdata can_use_brk_pgt = true;
 104
 105/*
 106 * Pages returned are already directly mapped.
 107 *
 108 * Changing that is likely to break Xen, see commit:
 109 *
 110 *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
 111 *
 112 * for detailed information.
 113 */
 114__ref void *alloc_low_pages(unsigned int num)
 115{
 116	unsigned long pfn;
 117	int i;
 118
 119	if (after_bootmem) {
 120		unsigned int order;
 121
 122		order = get_order((unsigned long)num << PAGE_SHIFT);
 123		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
 124	}
 125
 126	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
 127		unsigned long ret = 0;
 128
 129		if (min_pfn_mapped < max_pfn_mapped) {
 130			ret = memblock_find_in_range(
 131					min_pfn_mapped << PAGE_SHIFT,
 132					max_pfn_mapped << PAGE_SHIFT,
 133					PAGE_SIZE * num , PAGE_SIZE);
 134		}
 135		if (ret)
 136			memblock_reserve(ret, PAGE_SIZE * num);
 137		else if (can_use_brk_pgt)
 138			ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
 139
 140		if (!ret)
 141			panic("alloc_low_pages: can not alloc memory");
 142
 143		pfn = ret >> PAGE_SHIFT;
 144	} else {
 145		pfn = pgt_buf_end;
 146		pgt_buf_end += num;
 
 
 147	}
 148
 149	for (i = 0; i < num; i++) {
 150		void *adr;
 151
 152		adr = __va((pfn + i) << PAGE_SHIFT);
 153		clear_page(adr);
 154	}
 155
 156	return __va(pfn << PAGE_SHIFT);
 157}
 158
 159/*
 160 * By default need to be able to allocate page tables below PGD firstly for
 161 * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
 162 * With KASLR memory randomization, depending on the machine e820 memory and the
 163 * PUD alignment, twice that many pages may be needed when KASLR memory
 164 * randomization is enabled.
 165 */
 166
 167#ifndef CONFIG_X86_5LEVEL
 168#define INIT_PGD_PAGE_TABLES    3
 169#else
 170#define INIT_PGD_PAGE_TABLES    4
 171#endif
 172
 173#ifndef CONFIG_RANDOMIZE_MEMORY
 174#define INIT_PGD_PAGE_COUNT      (2 * INIT_PGD_PAGE_TABLES)
 175#else
 176#define INIT_PGD_PAGE_COUNT      (4 * INIT_PGD_PAGE_TABLES)
 177#endif
 178
 179#define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
 180RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
 181void  __init early_alloc_pgt_buf(void)
 182{
 183	unsigned long tables = INIT_PGT_BUF_SIZE;
 184	phys_addr_t base;
 185
 186	base = __pa(extend_brk(tables, PAGE_SIZE));
 187
 188	pgt_buf_start = base >> PAGE_SHIFT;
 189	pgt_buf_end = pgt_buf_start;
 190	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
 191}
 192
 193int after_bootmem;
 194
 195early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
 196
 197struct map_range {
 198	unsigned long start;
 199	unsigned long end;
 200	unsigned page_size_mask;
 201};
 202
 203static int page_size_mask;
 204
 205/*
 206 * Save some of cr4 feature set we're using (e.g.  Pentium 4MB
 207 * enable and PPro Global page enable), so that any CPU's that boot
 208 * up after us can get the correct flags. Invoked on the boot CPU.
 209 */
 210static inline void cr4_set_bits_and_update_boot(unsigned long mask)
 211{
 212	mmu_cr4_features |= mask;
 213	if (trampoline_cr4_features)
 214		*trampoline_cr4_features = mmu_cr4_features;
 215	cr4_set_bits(mask);
 216}
 217
 218static void __init probe_page_size_mask(void)
 219{
 220	/*
 221	 * For pagealloc debugging, identity mapping will use small pages.
 222	 * This will simplify cpa(), which otherwise needs to support splitting
 223	 * large pages into small in interrupt context, etc.
 224	 */
 225	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
 226		page_size_mask |= 1 << PG_LEVEL_2M;
 227	else
 228		direct_gbpages = 0;
 229
 230	/* Enable PSE if available */
 231	if (boot_cpu_has(X86_FEATURE_PSE))
 232		cr4_set_bits_and_update_boot(X86_CR4_PSE);
 233
 234	/* Enable PGE if available */
 235	__supported_pte_mask &= ~_PAGE_GLOBAL;
 236	if (boot_cpu_has(X86_FEATURE_PGE)) {
 237		cr4_set_bits_and_update_boot(X86_CR4_PGE);
 238		__supported_pte_mask |= _PAGE_GLOBAL;
 239	}
 240
 241	/* By the default is everything supported: */
 242	__default_kernel_pte_mask = __supported_pte_mask;
 243	/* Except when with PTI where the kernel is mostly non-Global: */
 244	if (cpu_feature_enabled(X86_FEATURE_PTI))
 245		__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
 246
 247	/* Enable 1 GB linear kernel mappings if available: */
 248	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
 249		printk(KERN_INFO "Using GB pages for direct mapping\n");
 250		page_size_mask |= 1 << PG_LEVEL_1G;
 251	} else {
 252		direct_gbpages = 0;
 253	}
 254}
 255
 256static void setup_pcid(void)
 257{
 258	if (!IS_ENABLED(CONFIG_X86_64))
 259		return;
 260
 261	if (!boot_cpu_has(X86_FEATURE_PCID))
 262		return;
 263
 264	if (boot_cpu_has(X86_FEATURE_PGE)) {
 265		/*
 266		 * This can't be cr4_set_bits_and_update_boot() -- the
 267		 * trampoline code can't handle CR4.PCIDE and it wouldn't
 268		 * do any good anyway.  Despite the name,
 269		 * cr4_set_bits_and_update_boot() doesn't actually cause
 270		 * the bits in question to remain set all the way through
 271		 * the secondary boot asm.
 272		 *
 273		 * Instead, we brute-force it and set CR4.PCIDE manually in
 274		 * start_secondary().
 275		 */
 276		cr4_set_bits(X86_CR4_PCIDE);
 277
 278		/*
 279		 * INVPCID's single-context modes (2/3) only work if we set
 280		 * X86_CR4_PCIDE, *and* we INVPCID support.  It's unusable
 281		 * on systems that have X86_CR4_PCIDE clear, or that have
 282		 * no INVPCID support at all.
 283		 */
 284		if (boot_cpu_has(X86_FEATURE_INVPCID))
 285			setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
 286	} else {
 287		/*
 288		 * flush_tlb_all(), as currently implemented, won't work if
 289		 * PCID is on but PGE is not.  Since that combination
 290		 * doesn't exist on real hardware, there's no reason to try
 291		 * to fully support it, but it's polite to avoid corrupting
 292		 * data if we're on an improperly configured VM.
 293		 */
 294		setup_clear_cpu_cap(X86_FEATURE_PCID);
 295	}
 296}
 297
 298#ifdef CONFIG_X86_32
 299#define NR_RANGE_MR 3
 300#else /* CONFIG_X86_64 */
 301#define NR_RANGE_MR 5
 302#endif
 303
 304static int __meminit save_mr(struct map_range *mr, int nr_range,
 305			     unsigned long start_pfn, unsigned long end_pfn,
 306			     unsigned long page_size_mask)
 307{
 308	if (start_pfn < end_pfn) {
 309		if (nr_range >= NR_RANGE_MR)
 310			panic("run out of range for init_memory_mapping\n");
 311		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
 312		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
 313		mr[nr_range].page_size_mask = page_size_mask;
 314		nr_range++;
 315	}
 316
 317	return nr_range;
 318}
 319
 320/*
 321 * adjust the page_size_mask for small range to go with
 322 *	big page size instead small one if nearby are ram too.
 323 */
 324static void __ref adjust_range_page_size_mask(struct map_range *mr,
 325							 int nr_range)
 326{
 327	int i;
 328
 329	for (i = 0; i < nr_range; i++) {
 330		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
 331		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
 332			unsigned long start = round_down(mr[i].start, PMD_SIZE);
 333			unsigned long end = round_up(mr[i].end, PMD_SIZE);
 334
 335#ifdef CONFIG_X86_32
 336			if ((end >> PAGE_SHIFT) > max_low_pfn)
 337				continue;
 338#endif
 339
 340			if (memblock_is_region_memory(start, end - start))
 341				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
 342		}
 343		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
 344		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
 345			unsigned long start = round_down(mr[i].start, PUD_SIZE);
 346			unsigned long end = round_up(mr[i].end, PUD_SIZE);
 347
 348			if (memblock_is_region_memory(start, end - start))
 349				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
 350		}
 351	}
 352}
 353
 354static const char *page_size_string(struct map_range *mr)
 355{
 356	static const char str_1g[] = "1G";
 357	static const char str_2m[] = "2M";
 358	static const char str_4m[] = "4M";
 359	static const char str_4k[] = "4k";
 360
 361	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
 362		return str_1g;
 363	/*
 364	 * 32-bit without PAE has a 4M large page size.
 365	 * PG_LEVEL_2M is misnamed, but we can at least
 366	 * print out the right size in the string.
 367	 */
 368	if (IS_ENABLED(CONFIG_X86_32) &&
 369	    !IS_ENABLED(CONFIG_X86_PAE) &&
 370	    mr->page_size_mask & (1<<PG_LEVEL_2M))
 371		return str_4m;
 372
 373	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
 374		return str_2m;
 375
 376	return str_4k;
 377}
 378
 379static int __meminit split_mem_range(struct map_range *mr, int nr_range,
 380				     unsigned long start,
 381				     unsigned long end)
 382{
 383	unsigned long start_pfn, end_pfn, limit_pfn;
 384	unsigned long pfn;
 385	int i;
 386
 387	limit_pfn = PFN_DOWN(end);
 388
 389	/* head if not big page alignment ? */
 390	pfn = start_pfn = PFN_DOWN(start);
 391#ifdef CONFIG_X86_32
 392	/*
 393	 * Don't use a large page for the first 2/4MB of memory
 394	 * because there are often fixed size MTRRs in there
 395	 * and overlapping MTRRs into large pages can cause
 396	 * slowdowns.
 397	 */
 398	if (pfn == 0)
 399		end_pfn = PFN_DOWN(PMD_SIZE);
 400	else
 401		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 402#else /* CONFIG_X86_64 */
 403	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 404#endif
 405	if (end_pfn > limit_pfn)
 406		end_pfn = limit_pfn;
 407	if (start_pfn < end_pfn) {
 408		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
 409		pfn = end_pfn;
 410	}
 411
 412	/* big page (2M) range */
 413	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 414#ifdef CONFIG_X86_32
 415	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 416#else /* CONFIG_X86_64 */
 417	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
 418	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
 419		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 420#endif
 421
 422	if (start_pfn < end_pfn) {
 423		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 424				page_size_mask & (1<<PG_LEVEL_2M));
 425		pfn = end_pfn;
 426	}
 427
 428#ifdef CONFIG_X86_64
 429	/* big page (1G) range */
 430	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
 431	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
 432	if (start_pfn < end_pfn) {
 433		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 434				page_size_mask &
 435				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
 436		pfn = end_pfn;
 437	}
 438
 439	/* tail is not big page (1G) alignment */
 440	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 441	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 442	if (start_pfn < end_pfn) {
 443		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 444				page_size_mask & (1<<PG_LEVEL_2M));
 445		pfn = end_pfn;
 446	}
 447#endif
 448
 449	/* tail is not big page (2M) alignment */
 450	start_pfn = pfn;
 451	end_pfn = limit_pfn;
 452	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
 453
 454	if (!after_bootmem)
 455		adjust_range_page_size_mask(mr, nr_range);
 456
 457	/* try to merge same page size and continuous */
 458	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
 459		unsigned long old_start;
 460		if (mr[i].end != mr[i+1].start ||
 461		    mr[i].page_size_mask != mr[i+1].page_size_mask)
 462			continue;
 463		/* move it */
 464		old_start = mr[i].start;
 465		memmove(&mr[i], &mr[i+1],
 466			(nr_range - 1 - i) * sizeof(struct map_range));
 467		mr[i--].start = old_start;
 468		nr_range--;
 469	}
 470
 471	for (i = 0; i < nr_range; i++)
 472		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
 473				mr[i].start, mr[i].end - 1,
 474				page_size_string(&mr[i]));
 475
 476	return nr_range;
 477}
 478
 479struct range pfn_mapped[E820_MAX_ENTRIES];
 480int nr_pfn_mapped;
 481
 482static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
 483{
 484	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
 485					     nr_pfn_mapped, start_pfn, end_pfn);
 486	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
 487
 488	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
 489
 490	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
 491		max_low_pfn_mapped = max(max_low_pfn_mapped,
 492					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
 493}
 494
 495bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
 496{
 497	int i;
 498
 499	for (i = 0; i < nr_pfn_mapped; i++)
 500		if ((start_pfn >= pfn_mapped[i].start) &&
 501		    (end_pfn <= pfn_mapped[i].end))
 502			return true;
 503
 504	return false;
 505}
 506
 507/*
 508 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
 509 * This runs before bootmem is initialized and gets pages directly from
 510 * the physical memory. To access them they are temporarily mapped.
 511 */
 512unsigned long __ref init_memory_mapping(unsigned long start,
 513					unsigned long end, pgprot_t prot)
 514{
 515	struct map_range mr[NR_RANGE_MR];
 516	unsigned long ret = 0;
 517	int nr_range, i;
 518
 519	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
 520	       start, end - 1);
 521
 522	memset(mr, 0, sizeof(mr));
 523	nr_range = split_mem_range(mr, 0, start, end);
 524
 525	for (i = 0; i < nr_range; i++)
 526		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
 527						   mr[i].page_size_mask,
 528						   prot);
 529
 530	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
 531
 532	return ret >> PAGE_SHIFT;
 533}
 534
 535/*
 536 * We need to iterate through the E820 memory map and create direct mappings
 537 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
 538 * create direct mappings for all pfns from [0 to max_low_pfn) and
 539 * [4GB to max_pfn) because of possible memory holes in high addresses
 540 * that cannot be marked as UC by fixed/variable range MTRRs.
 541 * Depending on the alignment of E820 ranges, this may possibly result
 542 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
 543 *
 544 * init_mem_mapping() calls init_range_memory_mapping() with big range.
 545 * That range would have hole in the middle or ends, and only ram parts
 546 * will be mapped in init_range_memory_mapping().
 547 */
 548static unsigned long __init init_range_memory_mapping(
 549					   unsigned long r_start,
 550					   unsigned long r_end)
 551{
 552	unsigned long start_pfn, end_pfn;
 553	unsigned long mapped_ram_size = 0;
 554	int i;
 555
 556	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
 557		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
 558		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
 559		if (start >= end)
 560			continue;
 561
 562		/*
 563		 * if it is overlapping with brk pgt, we need to
 564		 * alloc pgt buf from memblock instead.
 565		 */
 566		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
 567				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
 568		init_memory_mapping(start, end, PAGE_KERNEL);
 569		mapped_ram_size += end - start;
 570		can_use_brk_pgt = true;
 571	}
 572
 573	return mapped_ram_size;
 574}
 575
 576static unsigned long __init get_new_step_size(unsigned long step_size)
 577{
 578	/*
 579	 * Initial mapped size is PMD_SIZE (2M).
 580	 * We can not set step_size to be PUD_SIZE (1G) yet.
 581	 * In worse case, when we cross the 1G boundary, and
 582	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
 583	 * to map 1G range with PTE. Hence we use one less than the
 584	 * difference of page table level shifts.
 585	 *
 586	 * Don't need to worry about overflow in the top-down case, on 32bit,
 587	 * when step_size is 0, round_down() returns 0 for start, and that
 588	 * turns it into 0x100000000ULL.
 589	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
 590	 * needs to be taken into consideration by the code below.
 591	 */
 592	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
 593}
 594
 595/**
 596 * memory_map_top_down - Map [map_start, map_end) top down
 597 * @map_start: start address of the target memory range
 598 * @map_end: end address of the target memory range
 599 *
 600 * This function will setup direct mapping for memory range
 601 * [map_start, map_end) in top-down. That said, the page tables
 602 * will be allocated at the end of the memory, and we map the
 603 * memory in top-down.
 604 */
 605static void __init memory_map_top_down(unsigned long map_start,
 606				       unsigned long map_end)
 607{
 608	unsigned long real_end, last_start;
 609	unsigned long step_size;
 610	unsigned long addr;
 611	unsigned long mapped_ram_size = 0;
 612
 613	/* xen has big range in reserved near end of ram, skip it at first.*/
 614	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
 615	real_end = addr + PMD_SIZE;
 616
 617	/* step_size need to be small so pgt_buf from BRK could cover it */
 618	step_size = PMD_SIZE;
 619	max_pfn_mapped = 0; /* will get exact value next */
 620	min_pfn_mapped = real_end >> PAGE_SHIFT;
 621	last_start = real_end;
 622
 623	/*
 624	 * We start from the top (end of memory) and go to the bottom.
 625	 * The memblock_find_in_range() gets us a block of RAM from the
 626	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
 627	 * for page table.
 628	 */
 629	while (last_start > map_start) {
 630		unsigned long start;
 631
 632		if (last_start > step_size) {
 633			start = round_down(last_start - 1, step_size);
 634			if (start < map_start)
 635				start = map_start;
 636		} else
 637			start = map_start;
 638		mapped_ram_size += init_range_memory_mapping(start,
 639							last_start);
 640		last_start = start;
 641		min_pfn_mapped = last_start >> PAGE_SHIFT;
 642		if (mapped_ram_size >= step_size)
 643			step_size = get_new_step_size(step_size);
 644	}
 645
 646	if (real_end < map_end)
 647		init_range_memory_mapping(real_end, map_end);
 648}
 649
 650/**
 651 * memory_map_bottom_up - Map [map_start, map_end) bottom up
 652 * @map_start: start address of the target memory range
 653 * @map_end: end address of the target memory range
 654 *
 655 * This function will setup direct mapping for memory range
 656 * [map_start, map_end) in bottom-up. Since we have limited the
 657 * bottom-up allocation above the kernel, the page tables will
 658 * be allocated just above the kernel and we map the memory
 659 * in [map_start, map_end) in bottom-up.
 660 */
 661static void __init memory_map_bottom_up(unsigned long map_start,
 662					unsigned long map_end)
 663{
 664	unsigned long next, start;
 665	unsigned long mapped_ram_size = 0;
 666	/* step_size need to be small so pgt_buf from BRK could cover it */
 667	unsigned long step_size = PMD_SIZE;
 668
 669	start = map_start;
 670	min_pfn_mapped = start >> PAGE_SHIFT;
 671
 672	/*
 673	 * We start from the bottom (@map_start) and go to the top (@map_end).
 674	 * The memblock_find_in_range() gets us a block of RAM from the
 675	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
 676	 * for page table.
 677	 */
 678	while (start < map_end) {
 679		if (step_size && map_end - start > step_size) {
 680			next = round_up(start + 1, step_size);
 681			if (next > map_end)
 682				next = map_end;
 683		} else {
 684			next = map_end;
 685		}
 686
 687		mapped_ram_size += init_range_memory_mapping(start, next);
 688		start = next;
 689
 690		if (mapped_ram_size >= step_size)
 691			step_size = get_new_step_size(step_size);
 692	}
 693}
 694
 695/*
 696 * The real mode trampoline, which is required for bootstrapping CPUs
 697 * occupies only a small area under the low 1MB.  See reserve_real_mode()
 698 * for details.
 699 *
 700 * If KASLR is disabled the first PGD entry of the direct mapping is copied
 701 * to map the real mode trampoline.
 702 *
 703 * If KASLR is enabled, copy only the PUD which covers the low 1MB
 704 * area. This limits the randomization granularity to 1GB for both 4-level
 705 * and 5-level paging.
 706 */
 707static void __init init_trampoline(void)
 708{
 709#ifdef CONFIG_X86_64
 710	if (!kaslr_memory_enabled())
 711		trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
 712	else
 713		init_trampoline_kaslr();
 714#endif
 715}
 716
 717void __init init_mem_mapping(void)
 718{
 719	unsigned long end;
 720
 721	pti_check_boottime_disable();
 722	probe_page_size_mask();
 723	setup_pcid();
 724
 725#ifdef CONFIG_X86_64
 726	end = max_pfn << PAGE_SHIFT;
 727#else
 728	end = max_low_pfn << PAGE_SHIFT;
 729#endif
 730
 731	/* the ISA range is always mapped regardless of memory holes */
 732	init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
 733
 734	/* Init the trampoline, possibly with KASLR memory offset */
 735	init_trampoline();
 736
 737	/*
 738	 * If the allocation is in bottom-up direction, we setup direct mapping
 739	 * in bottom-up, otherwise we setup direct mapping in top-down.
 740	 */
 741	if (memblock_bottom_up()) {
 742		unsigned long kernel_end = __pa_symbol(_end);
 743
 744		/*
 745		 * we need two separate calls here. This is because we want to
 746		 * allocate page tables above the kernel. So we first map
 747		 * [kernel_end, end) to make memory above the kernel be mapped
 748		 * as soon as possible. And then use page tables allocated above
 749		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
 750		 */
 751		memory_map_bottom_up(kernel_end, end);
 752		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
 753	} else {
 754		memory_map_top_down(ISA_END_ADDRESS, end);
 755	}
 756
 757#ifdef CONFIG_X86_64
 758	if (max_pfn > max_low_pfn) {
 759		/* can we preserve max_low_pfn ?*/
 760		max_low_pfn = max_pfn;
 761	}
 762#else
 763	early_ioremap_page_table_range_init();
 764#endif
 765
 766	load_cr3(swapper_pg_dir);
 767	__flush_tlb_all();
 768
 769	x86_init.hyper.init_mem_mapping();
 770
 771	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
 772}
 773
 774/*
 775 * Initialize an mm_struct to be used during poking and a pointer to be used
 776 * during patching.
 777 */
 778void __init poking_init(void)
 779{
 780	spinlock_t *ptl;
 781	pte_t *ptep;
 782
 783	poking_mm = copy_init_mm();
 784	BUG_ON(!poking_mm);
 785
 786	/*
 787	 * Randomize the poking address, but make sure that the following page
 788	 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
 789	 * and adjust the address if the PMD ends after the first one.
 790	 */
 791	poking_addr = TASK_UNMAPPED_BASE;
 792	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
 793		poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
 794			(TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
 795
 796	if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
 797		poking_addr += PAGE_SIZE;
 798
 799	/*
 800	 * We need to trigger the allocation of the page-tables that will be
 801	 * needed for poking now. Later, poking may be performed in an atomic
 802	 * section, which might cause allocation to fail.
 803	 */
 804	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
 805	BUG_ON(!ptep);
 806	pte_unmap_unlock(ptep, ptl);
 807}
 808
 809/*
 810 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
 811 * is valid. The argument is a physical page number.
 812 *
 813 * On x86, access has to be given to the first megabyte of RAM because that
 814 * area traditionally contains BIOS code and data regions used by X, dosemu,
 815 * and similar apps. Since they map the entire memory range, the whole range
 816 * must be allowed (for mapping), but any areas that would otherwise be
 817 * disallowed are flagged as being "zero filled" instead of rejected.
 818 * Access has to be given to non-kernel-ram areas as well, these contain the
 819 * PCI mmio resources as well as potential bios/acpi data regions.
 820 */
 821int devmem_is_allowed(unsigned long pagenr)
 822{
 823	if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
 824				IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
 825			!= REGION_DISJOINT) {
 826		/*
 827		 * For disallowed memory regions in the low 1MB range,
 828		 * request that the page be shown as all zeros.
 829		 */
 830		if (pagenr < 256)
 831			return 2;
 832
 833		return 0;
 834	}
 835
 836	/*
 837	 * This must follow RAM test, since System RAM is considered a
 838	 * restricted resource under CONFIG_STRICT_IOMEM.
 839	 */
 840	if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
 841		/* Low 1MB bypasses iomem restrictions. */
 842		if (pagenr < 256)
 843			return 1;
 844
 845		return 0;
 846	}
 847
 848	return 1;
 849}
 850
 851void free_init_pages(const char *what, unsigned long begin, unsigned long end)
 852{
 853	unsigned long begin_aligned, end_aligned;
 854
 855	/* Make sure boundaries are page aligned */
 856	begin_aligned = PAGE_ALIGN(begin);
 857	end_aligned   = end & PAGE_MASK;
 858
 859	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
 860		begin = begin_aligned;
 861		end   = end_aligned;
 862	}
 863
 864	if (begin >= end)
 865		return;
 866
 867	/*
 868	 * If debugging page accesses then do not free this memory but
 869	 * mark them not present - any buggy init-section access will
 870	 * create a kernel page fault:
 871	 */
 872	if (debug_pagealloc_enabled()) {
 873		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
 874			begin, end - 1);
 875		/*
 876		 * Inform kmemleak about the hole in the memory since the
 877		 * corresponding pages will be unmapped.
 878		 */
 879		kmemleak_free_part((void *)begin, end - begin);
 880		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
 881	} else {
 882		/*
 883		 * We just marked the kernel text read only above, now that
 884		 * we are going to free part of that, we need to make that
 885		 * writeable and non-executable first.
 886		 */
 887		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
 888		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
 889
 890		free_reserved_area((void *)begin, (void *)end,
 891				   POISON_FREE_INITMEM, what);
 892	}
 893}
 894
 895/*
 896 * begin/end can be in the direct map or the "high kernel mapping"
 897 * used for the kernel image only.  free_init_pages() will do the
 898 * right thing for either kind of address.
 899 */
 900void free_kernel_image_pages(const char *what, void *begin, void *end)
 901{
 902	unsigned long begin_ul = (unsigned long)begin;
 903	unsigned long end_ul = (unsigned long)end;
 904	unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
 905
 906	free_init_pages(what, begin_ul, end_ul);
 907
 908	/*
 909	 * PTI maps some of the kernel into userspace.  For performance,
 910	 * this includes some kernel areas that do not contain secrets.
 911	 * Those areas might be adjacent to the parts of the kernel image
 912	 * being freed, which may contain secrets.  Remove the "high kernel
 913	 * image mapping" for these freed areas, ensuring they are not even
 914	 * potentially vulnerable to Meltdown regardless of the specific
 915	 * optimizations PTI is currently using.
 916	 *
 917	 * The "noalias" prevents unmapping the direct map alias which is
 918	 * needed to access the freed pages.
 919	 *
 920	 * This is only valid for 64bit kernels. 32bit has only one mapping
 921	 * which can't be treated in this way for obvious reasons.
 922	 */
 923	if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
 924		set_memory_np_noalias(begin_ul, len_pages);
 925}
 926
 927void __ref free_initmem(void)
 928{
 929	e820__reallocate_tables();
 930
 931	mem_encrypt_free_decrypted_mem();
 932
 933	free_kernel_image_pages("unused kernel image (initmem)",
 934				&__init_begin, &__init_end);
 935}
 936
 937#ifdef CONFIG_BLK_DEV_INITRD
 938void __init free_initrd_mem(unsigned long start, unsigned long end)
 939{
 940	/*
 941	 * end could be not aligned, and We can not align that,
 942	 * decompressor could be confused by aligned initrd_end
 943	 * We already reserve the end partial page before in
 944	 *   - i386_start_kernel()
 945	 *   - x86_64_start_kernel()
 946	 *   - relocate_initrd()
 947	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
 948	 */
 949	free_init_pages("initrd", start, PAGE_ALIGN(end));
 950}
 951#endif
 952
 953/*
 954 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
 955 * and pass it to the MM layer - to help it set zone watermarks more
 956 * accurately.
 957 *
 958 * Done on 64-bit systems only for the time being, although 32-bit systems
 959 * might benefit from this as well.
 960 */
 961void __init memblock_find_dma_reserve(void)
 962{
 963#ifdef CONFIG_X86_64
 964	u64 nr_pages = 0, nr_free_pages = 0;
 965	unsigned long start_pfn, end_pfn;
 966	phys_addr_t start_addr, end_addr;
 967	int i;
 968	u64 u;
 969
 970	/*
 971	 * Iterate over all memory ranges (free and reserved ones alike),
 972	 * to calculate the total number of pages in the first 16 MB of RAM:
 973	 */
 974	nr_pages = 0;
 975	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
 976		start_pfn = min(start_pfn, MAX_DMA_PFN);
 977		end_pfn   = min(end_pfn,   MAX_DMA_PFN);
 978
 979		nr_pages += end_pfn - start_pfn;
 980	}
 981
 982	/*
 983	 * Iterate over free memory ranges to calculate the number of free
 984	 * pages in the DMA zone, while not counting potential partial
 985	 * pages at the beginning or the end of the range:
 986	 */
 987	nr_free_pages = 0;
 988	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
 989		start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
 990		end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
 991
 992		if (start_pfn < end_pfn)
 993			nr_free_pages += end_pfn - start_pfn;
 994	}
 995
 996	set_dma_reserve(nr_pages - nr_free_pages);
 997#endif
 998}
 999
1000void __init zone_sizes_init(void)
1001{
1002	unsigned long max_zone_pfns[MAX_NR_ZONES];
1003
1004	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1005
1006#ifdef CONFIG_ZONE_DMA
1007	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
1008#endif
1009#ifdef CONFIG_ZONE_DMA32
1010	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
1011#endif
1012	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
1013#ifdef CONFIG_HIGHMEM
1014	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
1015#endif
1016
1017	free_area_init(max_zone_pfns);
1018}
1019
1020__visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1021	.loaded_mm = &init_mm,
1022	.next_asid = 1,
1023	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
1024};
 
1025
1026void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1027{
1028	/* entry 0 MUST be WB (hardwired to speed up translations) */
1029	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1030
1031	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1032	__pte2cachemode_tbl[entry] = cache;
1033}
1034
1035#ifdef CONFIG_SWAP
1036unsigned long max_swapfile_size(void)
1037{
1038	unsigned long pages;
1039
1040	pages = generic_max_swapfile_size();
1041
1042	if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1043		/* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1044		unsigned long long l1tf_limit = l1tf_pfn_limit();
1045		/*
1046		 * We encode swap offsets also with 3 bits below those for pfn
1047		 * which makes the usable limit higher.
1048		 */
1049#if CONFIG_PGTABLE_LEVELS > 2
1050		l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1051#endif
1052		pages = min_t(unsigned long long, l1tf_limit, pages);
1053	}
1054	return pages;
1055}
1056#endif