Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 *  This program is free software; you can redistribute it and/or modify
  3 *  it under the terms of the GNU General Public License as published by
  4 *  the Free Software Foundation; either version 2 of the License, or
  5 *  (at your option) any later version.
  6 *
  7 *  This program is distributed in the hope that it will be useful,
  8 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  9 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 10 *  GNU General Public License for more details.
 11 *
 12 *  You should have received a copy of the GNU General Public License
 13 *  along with this program; if not, write to the Free Software
 14 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 15 *
 16 *  Copyright (C) 2001 Rusty Russell.
 17 *  Copyright (C) 2003, 2004 Ralf Baechle (ralf@linux-mips.org)
 18 *  Copyright (C) 2005 Thiemo Seufer
 19 */
 20
 21#undef DEBUG
 22
 23#include <linux/extable.h>
 24#include <linux/moduleloader.h>
 25#include <linux/elf.h>
 26#include <linux/mm.h>
 27#include <linux/numa.h>
 28#include <linux/vmalloc.h>
 29#include <linux/slab.h>
 30#include <linux/fs.h>
 31#include <linux/string.h>
 32#include <linux/kernel.h>
 33#include <linux/spinlock.h>
 34#include <linux/jump_label.h>
 35
 36#include <asm/pgtable.h>	/* MODULE_START */
 37
 38struct mips_hi16 {
 39	struct mips_hi16 *next;
 40	Elf_Addr *addr;
 41	Elf_Addr value;
 42};
 43
 44static LIST_HEAD(dbe_list);
 45static DEFINE_SPINLOCK(dbe_lock);
 46
 47#ifdef MODULE_START
 48void *module_alloc(unsigned long size)
 49{
 50	return __vmalloc_node_range(size, 1, MODULE_START, MODULE_END,
 51				GFP_KERNEL, PAGE_KERNEL, 0, NUMA_NO_NODE,
 52				__builtin_return_address(0));
 53}
 54#endif
 55
 56static int apply_r_mips_none(struct module *me, u32 *location,
 57			     u32 base, Elf_Addr v, bool rela)
 58{
 59	return 0;
 60}
 61
 62static int apply_r_mips_32(struct module *me, u32 *location,
 63			   u32 base, Elf_Addr v, bool rela)
 64{
 65	*location = base + v;
 66
 67	return 0;
 68}
 69
 70static int apply_r_mips_26(struct module *me, u32 *location,
 71			   u32 base, Elf_Addr v, bool rela)
 72{
 73	if (v % 4) {
 74		pr_err("module %s: dangerous R_MIPS_26 relocation\n",
 75		       me->name);
 76		return -ENOEXEC;
 77	}
 78
 79	if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) {
 80		pr_err("module %s: relocation overflow\n",
 81		       me->name);
 82		return -ENOEXEC;
 83	}
 84
 85	*location = (*location & ~0x03ffffff) |
 86		    ((base + (v >> 2)) & 0x03ffffff);
 87
 88	return 0;
 89}
 90
 91static int apply_r_mips_hi16(struct module *me, u32 *location,
 92			     u32 base, Elf_Addr v, bool rela)
 93{
 94	struct mips_hi16 *n;
 95
 96	if (rela) {
 97		*location = (*location & 0xffff0000) |
 98			    ((((long long) v + 0x8000LL) >> 16) & 0xffff);
 99		return 0;
100	}
101
102	/*
103	 * We cannot relocate this one now because we don't know the value of
104	 * the carry we need to add.  Save the information, and let LO16 do the
105	 * actual relocation.
106	 */
107	n = kmalloc(sizeof *n, GFP_KERNEL);
108	if (!n)
109		return -ENOMEM;
110
111	n->addr = (Elf_Addr *)location;
112	n->value = v;
113	n->next = me->arch.r_mips_hi16_list;
114	me->arch.r_mips_hi16_list = n;
115
116	return 0;
117}
118
119static void free_relocation_chain(struct mips_hi16 *l)
120{
121	struct mips_hi16 *next;
122
123	while (l) {
124		next = l->next;
125		kfree(l);
126		l = next;
127	}
128}
129
130static int apply_r_mips_lo16(struct module *me, u32 *location,
131			     u32 base, Elf_Addr v, bool rela)
132{
133	unsigned long insnlo = base;
134	struct mips_hi16 *l;
135	Elf_Addr val, vallo;
136
137	if (rela) {
138		*location = (*location & 0xffff0000) | (v & 0xffff);
139		return 0;
140	}
141
142	/* Sign extend the addend we extract from the lo insn.	*/
143	vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000;
144
145	if (me->arch.r_mips_hi16_list != NULL) {
146		l = me->arch.r_mips_hi16_list;
147		while (l != NULL) {
148			struct mips_hi16 *next;
149			unsigned long insn;
150
151			/*
152			 * The value for the HI16 had best be the same.
153			 */
154			if (v != l->value)
155				goto out_danger;
156
157			/*
158			 * Do the HI16 relocation.  Note that we actually don't
159			 * need to know anything about the LO16 itself, except
160			 * where to find the low 16 bits of the addend needed
161			 * by the LO16.
162			 */
163			insn = *l->addr;
164			val = ((insn & 0xffff) << 16) + vallo;
165			val += v;
166
167			/*
168			 * Account for the sign extension that will happen in
169			 * the low bits.
170			 */
171			val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff;
172
173			insn = (insn & ~0xffff) | val;
174			*l->addr = insn;
175
176			next = l->next;
177			kfree(l);
178			l = next;
179		}
180
181		me->arch.r_mips_hi16_list = NULL;
182	}
183
184	/*
185	 * Ok, we're done with the HI16 relocs.	 Now deal with the LO16.
186	 */
187	val = v + vallo;
188	insnlo = (insnlo & ~0xffff) | (val & 0xffff);
189	*location = insnlo;
190
191	return 0;
192
193out_danger:
194	free_relocation_chain(l);
195	me->arch.r_mips_hi16_list = NULL;
196
197	pr_err("module %s: dangerous R_MIPS_LO16 relocation\n", me->name);
198
199	return -ENOEXEC;
200}
201
202static int apply_r_mips_pc(struct module *me, u32 *location, u32 base,
203			   Elf_Addr v, unsigned int bits)
204{
205	unsigned long mask = GENMASK(bits - 1, 0);
206	unsigned long se_bits;
207	long offset;
208
209	if (v % 4) {
210		pr_err("module %s: dangerous R_MIPS_PC%u relocation\n",
211		       me->name, bits);
212		return -ENOEXEC;
213	}
214
215	/* retrieve & sign extend implicit addend if any */
216	offset = base & mask;
217	offset |= (offset & BIT(bits - 1)) ? ~mask : 0;
218
219	offset += ((long)v - (long)location) >> 2;
220
221	/* check the sign bit onwards are identical - ie. we didn't overflow */
222	se_bits = (offset & BIT(bits - 1)) ? ~0ul : 0;
223	if ((offset & ~mask) != (se_bits & ~mask)) {
224		pr_err("module %s: relocation overflow\n", me->name);
225		return -ENOEXEC;
226	}
227
228	*location = (*location & ~mask) | (offset & mask);
229
230	return 0;
231}
232
233static int apply_r_mips_pc16(struct module *me, u32 *location,
234			     u32 base, Elf_Addr v, bool rela)
235{
236	return apply_r_mips_pc(me, location, base, v, 16);
237}
238
239static int apply_r_mips_pc21(struct module *me, u32 *location,
240			     u32 base, Elf_Addr v, bool rela)
241{
242	return apply_r_mips_pc(me, location, base, v, 21);
243}
244
245static int apply_r_mips_pc26(struct module *me, u32 *location,
246			     u32 base, Elf_Addr v, bool rela)
247{
248	return apply_r_mips_pc(me, location, base, v, 26);
249}
250
251static int apply_r_mips_64(struct module *me, u32 *location,
252			   u32 base, Elf_Addr v, bool rela)
253{
254	if (WARN_ON(!rela))
255		return -EINVAL;
256
257	*(Elf_Addr *)location = v;
258
259	return 0;
260}
261
262static int apply_r_mips_higher(struct module *me, u32 *location,
263			       u32 base, Elf_Addr v, bool rela)
264{
265	if (WARN_ON(!rela))
266		return -EINVAL;
267
268	*location = (*location & 0xffff0000) |
269		    ((((long long)v + 0x80008000LL) >> 32) & 0xffff);
270
271	return 0;
272}
273
274static int apply_r_mips_highest(struct module *me, u32 *location,
275				u32 base, Elf_Addr v, bool rela)
276{
277	if (WARN_ON(!rela))
278		return -EINVAL;
279
280	*location = (*location & 0xffff0000) |
281		    ((((long long)v + 0x800080008000LL) >> 48) & 0xffff);
282
283	return 0;
284}
285
286/**
287 * reloc_handler() - Apply a particular relocation to a module
 
288 * @me: the module to apply the reloc to
289 * @location: the address at which the reloc is to be applied
290 * @base: the existing value at location for REL-style; 0 for RELA-style
291 * @v: the value of the reloc, with addend for RELA-style
 
292 *
293 * Each implemented reloc_handler function applies a particular type of
294 * relocation to the module @me. Relocs that may be found in either REL or RELA
295 * variants can be handled by making use of the @base & @v parameters which are
296 * set to values which abstract the difference away from the particular reloc
297 * implementations.
298 *
299 * Return: 0 upon success, else -ERRNO
300 */
301typedef int (*reloc_handler)(struct module *me, u32 *location,
302			     u32 base, Elf_Addr v, bool rela);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303
304/* The handlers for known reloc types */
305static reloc_handler reloc_handlers[] = {
306	[R_MIPS_NONE]		= apply_r_mips_none,
307	[R_MIPS_32]		= apply_r_mips_32,
308	[R_MIPS_26]		= apply_r_mips_26,
309	[R_MIPS_HI16]		= apply_r_mips_hi16,
310	[R_MIPS_LO16]		= apply_r_mips_lo16,
311	[R_MIPS_PC16]		= apply_r_mips_pc16,
312	[R_MIPS_64]		= apply_r_mips_64,
313	[R_MIPS_HIGHER]		= apply_r_mips_higher,
314	[R_MIPS_HIGHEST]	= apply_r_mips_highest,
315	[R_MIPS_PC21_S2]	= apply_r_mips_pc21,
316	[R_MIPS_PC26_S2]	= apply_r_mips_pc26,
317};
318
319static int __apply_relocate(Elf_Shdr *sechdrs, const char *strtab,
320			    unsigned int symindex, unsigned int relsec,
321			    struct module *me, bool rela)
322{
323	union {
324		Elf_Mips_Rel *rel;
325		Elf_Mips_Rela *rela;
326	} r;
327	reloc_handler handler;
328	Elf_Sym *sym;
329	u32 *location, base;
330	unsigned int i, type;
331	Elf_Addr v;
332	int err = 0;
333	size_t reloc_sz;
334
335	pr_debug("Applying relocate section %u to %u\n", relsec,
336	       sechdrs[relsec].sh_info);
337
338	r.rel = (void *)sechdrs[relsec].sh_addr;
339	reloc_sz = rela ? sizeof(*r.rela) : sizeof(*r.rel);
340	me->arch.r_mips_hi16_list = NULL;
341	for (i = 0; i < sechdrs[relsec].sh_size / reloc_sz; i++) {
342		/* This is where to make the change */
343		location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
344			+ r.rel->r_offset;
345		/* This is the symbol it is referring to */
346		sym = (Elf_Sym *)sechdrs[symindex].sh_addr
347			+ ELF_MIPS_R_SYM(*r.rel);
348		if (sym->st_value >= -MAX_ERRNO) {
349			/* Ignore unresolved weak symbol */
350			if (ELF_ST_BIND(sym->st_info) == STB_WEAK)
351				continue;
352			pr_warn("%s: Unknown symbol %s\n",
353				me->name, strtab + sym->st_name);
354			err = -ENOENT;
355			goto out;
356		}
357
358		type = ELF_MIPS_R_TYPE(*r.rel);
359		if (type < ARRAY_SIZE(reloc_handlers))
360			handler = reloc_handlers[type];
361		else
362			handler = NULL;
363
364		if (!handler) {
365			pr_err("%s: Unknown relocation type %u\n",
366			       me->name, type);
367			err = -EINVAL;
368			goto out;
369		}
370
371		if (rela) {
372			v = sym->st_value + r.rela->r_addend;
373			base = 0;
374			r.rela = &r.rela[1];
375		} else {
376			v = sym->st_value;
377			base = *location;
378			r.rel = &r.rel[1];
379		}
380
381		err = handler(me, location, base, v, rela);
382		if (err)
383			goto out;
384	}
385
386out:
387	/*
388	 * Normally the hi16 list should be deallocated at this point. A
389	 * malformed binary however could contain a series of R_MIPS_HI16
390	 * relocations not followed by a R_MIPS_LO16 relocation, or if we hit
391	 * an error processing a reloc we might have gotten here before
392	 * reaching the R_MIPS_LO16. In either case, free up the list and
393	 * return an error.
394	 */
395	if (me->arch.r_mips_hi16_list) {
396		free_relocation_chain(me->arch.r_mips_hi16_list);
397		me->arch.r_mips_hi16_list = NULL;
398		err = err ?: -ENOEXEC;
399	}
400
401	return err;
402}
403
404int apply_relocate(Elf_Shdr *sechdrs, const char *strtab,
405		   unsigned int symindex, unsigned int relsec,
406		   struct module *me)
407{
408	return __apply_relocate(sechdrs, strtab, symindex, relsec, me, false);
409}
410
411#ifdef CONFIG_MODULES_USE_ELF_RELA
412int apply_relocate_add(Elf_Shdr *sechdrs, const char *strtab,
413		       unsigned int symindex, unsigned int relsec,
414		       struct module *me)
415{
416	return __apply_relocate(sechdrs, strtab, symindex, relsec, me, true);
417}
418#endif /* CONFIG_MODULES_USE_ELF_RELA */
419
420/* Given an address, look for it in the module exception tables. */
421const struct exception_table_entry *search_module_dbetables(unsigned long addr)
422{
423	unsigned long flags;
424	const struct exception_table_entry *e = NULL;
425	struct mod_arch_specific *dbe;
426
427	spin_lock_irqsave(&dbe_lock, flags);
428	list_for_each_entry(dbe, &dbe_list, dbe_list) {
429		e = search_extable(dbe->dbe_start,
430				   dbe->dbe_end - dbe->dbe_start, addr);
431		if (e)
432			break;
433	}
434	spin_unlock_irqrestore(&dbe_lock, flags);
435
436	/* Now, if we found one, we are running inside it now, hence
437	   we cannot unload the module, hence no refcnt needed. */
438	return e;
439}
440
441/* Put in dbe list if necessary. */
442int module_finalize(const Elf_Ehdr *hdr,
443		    const Elf_Shdr *sechdrs,
444		    struct module *me)
445{
446	const Elf_Shdr *s;
447	char *secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
448
449	/* Make jump label nops. */
450	jump_label_apply_nops(me);
451
452	INIT_LIST_HEAD(&me->arch.dbe_list);
453	for (s = sechdrs; s < sechdrs + hdr->e_shnum; s++) {
454		if (strcmp("__dbe_table", secstrings + s->sh_name) != 0)
455			continue;
456		me->arch.dbe_start = (void *)s->sh_addr;
457		me->arch.dbe_end = (void *)s->sh_addr + s->sh_size;
458		spin_lock_irq(&dbe_lock);
459		list_add(&me->arch.dbe_list, &dbe_list);
460		spin_unlock_irq(&dbe_lock);
461	}
462	return 0;
463}
464
465void module_arch_cleanup(struct module *mod)
466{
467	spin_lock_irq(&dbe_lock);
468	list_del(&mod->arch.dbe_list);
469	spin_unlock_irq(&dbe_lock);
470}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
 
 
 
 
 
 
 
 
 
 
 
 
 
  3 *
  4 *  Copyright (C) 2001 Rusty Russell.
  5 *  Copyright (C) 2003, 2004 Ralf Baechle (ralf@linux-mips.org)
  6 *  Copyright (C) 2005 Thiemo Seufer
  7 */
  8
  9#undef DEBUG
 10
 11#include <linux/extable.h>
 12#include <linux/moduleloader.h>
 13#include <linux/elf.h>
 14#include <linux/mm.h>
 15#include <linux/numa.h>
 16#include <linux/vmalloc.h>
 17#include <linux/slab.h>
 18#include <linux/fs.h>
 19#include <linux/string.h>
 20#include <linux/kernel.h>
 21#include <linux/spinlock.h>
 22#include <linux/jump_label.h>
 23
 
 24
 25struct mips_hi16 {
 26	struct mips_hi16 *next;
 27	Elf_Addr *addr;
 28	Elf_Addr value;
 29};
 30
 31static LIST_HEAD(dbe_list);
 32static DEFINE_SPINLOCK(dbe_lock);
 33
 34#ifdef MODULE_START
 35void *module_alloc(unsigned long size)
 36{
 37	return __vmalloc_node_range(size, 1, MODULE_START, MODULE_END,
 38				GFP_KERNEL, PAGE_KERNEL, 0, NUMA_NO_NODE,
 39				__builtin_return_address(0));
 40}
 41#endif
 42
 43static void apply_r_mips_32(u32 *location, u32 base, Elf_Addr v)
 
 
 
 
 
 
 
 44{
 45	*location = base + v;
 
 
 46}
 47
 48static int apply_r_mips_26(struct module *me, u32 *location, u32 base,
 49			   Elf_Addr v)
 50{
 51	if (v % 4) {
 52		pr_err("module %s: dangerous R_MIPS_26 relocation\n",
 53		       me->name);
 54		return -ENOEXEC;
 55	}
 56
 57	if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) {
 58		pr_err("module %s: relocation overflow\n",
 59		       me->name);
 60		return -ENOEXEC;
 61	}
 62
 63	*location = (*location & ~0x03ffffff) |
 64		    ((base + (v >> 2)) & 0x03ffffff);
 65
 66	return 0;
 67}
 68
 69static int apply_r_mips_hi16(struct module *me, u32 *location, Elf_Addr v,
 70			     bool rela)
 71{
 72	struct mips_hi16 *n;
 73
 74	if (rela) {
 75		*location = (*location & 0xffff0000) |
 76			    ((((long long) v + 0x8000LL) >> 16) & 0xffff);
 77		return 0;
 78	}
 79
 80	/*
 81	 * We cannot relocate this one now because we don't know the value of
 82	 * the carry we need to add.  Save the information, and let LO16 do the
 83	 * actual relocation.
 84	 */
 85	n = kmalloc(sizeof *n, GFP_KERNEL);
 86	if (!n)
 87		return -ENOMEM;
 88
 89	n->addr = (Elf_Addr *)location;
 90	n->value = v;
 91	n->next = me->arch.r_mips_hi16_list;
 92	me->arch.r_mips_hi16_list = n;
 93
 94	return 0;
 95}
 96
 97static void free_relocation_chain(struct mips_hi16 *l)
 98{
 99	struct mips_hi16 *next;
100
101	while (l) {
102		next = l->next;
103		kfree(l);
104		l = next;
105	}
106}
107
108static int apply_r_mips_lo16(struct module *me, u32 *location,
109			     u32 base, Elf_Addr v, bool rela)
110{
111	unsigned long insnlo = base;
112	struct mips_hi16 *l;
113	Elf_Addr val, vallo;
114
115	if (rela) {
116		*location = (*location & 0xffff0000) | (v & 0xffff);
117		return 0;
118	}
119
120	/* Sign extend the addend we extract from the lo insn.	*/
121	vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000;
122
123	if (me->arch.r_mips_hi16_list != NULL) {
124		l = me->arch.r_mips_hi16_list;
125		while (l != NULL) {
126			struct mips_hi16 *next;
127			unsigned long insn;
128
129			/*
130			 * The value for the HI16 had best be the same.
131			 */
132			if (v != l->value)
133				goto out_danger;
134
135			/*
136			 * Do the HI16 relocation.  Note that we actually don't
137			 * need to know anything about the LO16 itself, except
138			 * where to find the low 16 bits of the addend needed
139			 * by the LO16.
140			 */
141			insn = *l->addr;
142			val = ((insn & 0xffff) << 16) + vallo;
143			val += v;
144
145			/*
146			 * Account for the sign extension that will happen in
147			 * the low bits.
148			 */
149			val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff;
150
151			insn = (insn & ~0xffff) | val;
152			*l->addr = insn;
153
154			next = l->next;
155			kfree(l);
156			l = next;
157		}
158
159		me->arch.r_mips_hi16_list = NULL;
160	}
161
162	/*
163	 * Ok, we're done with the HI16 relocs.	 Now deal with the LO16.
164	 */
165	val = v + vallo;
166	insnlo = (insnlo & ~0xffff) | (val & 0xffff);
167	*location = insnlo;
168
169	return 0;
170
171out_danger:
172	free_relocation_chain(l);
173	me->arch.r_mips_hi16_list = NULL;
174
175	pr_err("module %s: dangerous R_MIPS_LO16 relocation\n", me->name);
176
177	return -ENOEXEC;
178}
179
180static int apply_r_mips_pc(struct module *me, u32 *location, u32 base,
181			   Elf_Addr v, unsigned int bits)
182{
183	unsigned long mask = GENMASK(bits - 1, 0);
184	unsigned long se_bits;
185	long offset;
186
187	if (v % 4) {
188		pr_err("module %s: dangerous R_MIPS_PC%u relocation\n",
189		       me->name, bits);
190		return -ENOEXEC;
191	}
192
193	/* retrieve & sign extend implicit addend if any */
194	offset = base & mask;
195	offset |= (offset & BIT(bits - 1)) ? ~mask : 0;
196
197	offset += ((long)v - (long)location) >> 2;
198
199	/* check the sign bit onwards are identical - ie. we didn't overflow */
200	se_bits = (offset & BIT(bits - 1)) ? ~0ul : 0;
201	if ((offset & ~mask) != (se_bits & ~mask)) {
202		pr_err("module %s: relocation overflow\n", me->name);
203		return -ENOEXEC;
204	}
205
206	*location = (*location & ~mask) | (offset & mask);
207
208	return 0;
209}
210
211static int apply_r_mips_pc16(struct module *me, u32 *location, u32 base,
212			     Elf_Addr v)
213{
214	return apply_r_mips_pc(me, location, base, v, 16);
215}
216
217static int apply_r_mips_pc21(struct module *me, u32 *location, u32 base,
218			     Elf_Addr v)
219{
220	return apply_r_mips_pc(me, location, base, v, 21);
221}
222
223static int apply_r_mips_pc26(struct module *me, u32 *location, u32 base,
224			     Elf_Addr v)
225{
226	return apply_r_mips_pc(me, location, base, v, 26);
227}
228
229static int apply_r_mips_64(u32 *location, Elf_Addr v, bool rela)
 
230{
231	if (WARN_ON(!rela))
232		return -EINVAL;
233
234	*(Elf_Addr *)location = v;
235
236	return 0;
237}
238
239static int apply_r_mips_higher(u32 *location, Elf_Addr v, bool rela)
 
240{
241	if (WARN_ON(!rela))
242		return -EINVAL;
243
244	*location = (*location & 0xffff0000) |
245		    ((((long long)v + 0x80008000LL) >> 32) & 0xffff);
246
247	return 0;
248}
249
250static int apply_r_mips_highest(u32 *location, Elf_Addr v, bool rela)
 
251{
252	if (WARN_ON(!rela))
253		return -EINVAL;
254
255	*location = (*location & 0xffff0000) |
256		    ((((long long)v + 0x800080008000LL) >> 48) & 0xffff);
257
258	return 0;
259}
260
261/**
262 * reloc_handler() - Apply a particular relocation to a module
263 * @type: type of the relocation to apply
264 * @me: the module to apply the reloc to
265 * @location: the address at which the reloc is to be applied
266 * @base: the existing value at location for REL-style; 0 for RELA-style
267 * @v: the value of the reloc, with addend for RELA-style
268 * @rela: indication of is this a RELA (true) or REL (false) relocation
269 *
270 * Each implemented relocation function applies a particular type of
271 * relocation to the module @me. Relocs that may be found in either REL or RELA
272 * variants can be handled by making use of the @base & @v parameters which are
273 * set to values which abstract the difference away from the particular reloc
274 * implementations.
275 *
276 * Return: 0 upon success, else -ERRNO
277 */
278static int reloc_handler(u32 type, struct module *me, u32 *location, u32 base,
279			 Elf_Addr v, bool rela)
280{
281	switch (type) {
282	case R_MIPS_NONE:
283		break;
284	case R_MIPS_32:
285		apply_r_mips_32(location, base, v);
286		break;
287	case R_MIPS_26:
288		return apply_r_mips_26(me, location, base, v);
289	case R_MIPS_HI16:
290		return apply_r_mips_hi16(me, location, v, rela);
291	case R_MIPS_LO16:
292		return apply_r_mips_lo16(me, location, base, v, rela);
293	case R_MIPS_PC16:
294		return apply_r_mips_pc16(me, location, base, v);
295	case R_MIPS_PC21_S2:
296		return apply_r_mips_pc21(me, location, base, v);
297	case R_MIPS_PC26_S2:
298		return apply_r_mips_pc26(me, location, base, v);
299	case R_MIPS_64:
300		return apply_r_mips_64(location, v, rela);
301	case R_MIPS_HIGHER:
302		return apply_r_mips_higher(location, v, rela);
303	case R_MIPS_HIGHEST:
304		return apply_r_mips_highest(location, v, rela);
305	default:
306		pr_err("%s: Unknown relocation type %u\n", me->name, type);
307		return -EINVAL;
308	}
309
310	return 0;
311}
 
 
 
 
 
 
 
 
 
 
 
 
312
313static int __apply_relocate(Elf_Shdr *sechdrs, const char *strtab,
314			    unsigned int symindex, unsigned int relsec,
315			    struct module *me, bool rela)
316{
317	union {
318		Elf_Mips_Rel *rel;
319		Elf_Mips_Rela *rela;
320	} r;
 
321	Elf_Sym *sym;
322	u32 *location, base;
323	unsigned int i, type;
324	Elf_Addr v;
325	int err = 0;
326	size_t reloc_sz;
327
328	pr_debug("Applying relocate section %u to %u\n", relsec,
329	       sechdrs[relsec].sh_info);
330
331	r.rel = (void *)sechdrs[relsec].sh_addr;
332	reloc_sz = rela ? sizeof(*r.rela) : sizeof(*r.rel);
333	me->arch.r_mips_hi16_list = NULL;
334	for (i = 0; i < sechdrs[relsec].sh_size / reloc_sz; i++) {
335		/* This is where to make the change */
336		location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
337			+ r.rel->r_offset;
338		/* This is the symbol it is referring to */
339		sym = (Elf_Sym *)sechdrs[symindex].sh_addr
340			+ ELF_MIPS_R_SYM(*r.rel);
341		if (sym->st_value >= -MAX_ERRNO) {
342			/* Ignore unresolved weak symbol */
343			if (ELF_ST_BIND(sym->st_info) == STB_WEAK)
344				continue;
345			pr_warn("%s: Unknown symbol %s\n",
346				me->name, strtab + sym->st_name);
347			err = -ENOENT;
348			goto out;
349		}
350
351		type = ELF_MIPS_R_TYPE(*r.rel);
 
 
 
 
 
 
 
 
 
 
 
352
353		if (rela) {
354			v = sym->st_value + r.rela->r_addend;
355			base = 0;
356			r.rela = &r.rela[1];
357		} else {
358			v = sym->st_value;
359			base = *location;
360			r.rel = &r.rel[1];
361		}
362
363		err = reloc_handler(type, me, location, base, v, rela);
364		if (err)
365			goto out;
366	}
367
368out:
369	/*
370	 * Normally the hi16 list should be deallocated at this point. A
371	 * malformed binary however could contain a series of R_MIPS_HI16
372	 * relocations not followed by a R_MIPS_LO16 relocation, or if we hit
373	 * an error processing a reloc we might have gotten here before
374	 * reaching the R_MIPS_LO16. In either case, free up the list and
375	 * return an error.
376	 */
377	if (me->arch.r_mips_hi16_list) {
378		free_relocation_chain(me->arch.r_mips_hi16_list);
379		me->arch.r_mips_hi16_list = NULL;
380		err = err ?: -ENOEXEC;
381	}
382
383	return err;
384}
385
386int apply_relocate(Elf_Shdr *sechdrs, const char *strtab,
387		   unsigned int symindex, unsigned int relsec,
388		   struct module *me)
389{
390	return __apply_relocate(sechdrs, strtab, symindex, relsec, me, false);
391}
392
393#ifdef CONFIG_MODULES_USE_ELF_RELA
394int apply_relocate_add(Elf_Shdr *sechdrs, const char *strtab,
395		       unsigned int symindex, unsigned int relsec,
396		       struct module *me)
397{
398	return __apply_relocate(sechdrs, strtab, symindex, relsec, me, true);
399}
400#endif /* CONFIG_MODULES_USE_ELF_RELA */
401
402/* Given an address, look for it in the module exception tables. */
403const struct exception_table_entry *search_module_dbetables(unsigned long addr)
404{
405	unsigned long flags;
406	const struct exception_table_entry *e = NULL;
407	struct mod_arch_specific *dbe;
408
409	spin_lock_irqsave(&dbe_lock, flags);
410	list_for_each_entry(dbe, &dbe_list, dbe_list) {
411		e = search_extable(dbe->dbe_start,
412				   dbe->dbe_end - dbe->dbe_start, addr);
413		if (e)
414			break;
415	}
416	spin_unlock_irqrestore(&dbe_lock, flags);
417
418	/* Now, if we found one, we are running inside it now, hence
419	   we cannot unload the module, hence no refcnt needed. */
420	return e;
421}
422
423/* Put in dbe list if necessary. */
424int module_finalize(const Elf_Ehdr *hdr,
425		    const Elf_Shdr *sechdrs,
426		    struct module *me)
427{
428	const Elf_Shdr *s;
429	char *secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
430
431	/* Make jump label nops. */
432	jump_label_apply_nops(me);
433
434	INIT_LIST_HEAD(&me->arch.dbe_list);
435	for (s = sechdrs; s < sechdrs + hdr->e_shnum; s++) {
436		if (strcmp("__dbe_table", secstrings + s->sh_name) != 0)
437			continue;
438		me->arch.dbe_start = (void *)s->sh_addr;
439		me->arch.dbe_end = (void *)s->sh_addr + s->sh_size;
440		spin_lock_irq(&dbe_lock);
441		list_add(&me->arch.dbe_list, &dbe_list);
442		spin_unlock_irq(&dbe_lock);
443	}
444	return 0;
445}
446
447void module_arch_cleanup(struct module *mod)
448{
449	spin_lock_irq(&dbe_lock);
450	list_del(&mod->arch.dbe_list);
451	spin_unlock_irq(&dbe_lock);
452}