Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * This file contains NUMA specific variables and functions which can
  7 * be split away from DISCONTIGMEM and are used on NUMA machines with
  8 * contiguous memory.
  9 * 		2002/08/07 Erich Focht <efocht@ess.nec.de>
 10 * Populate cpu entries in sysfs for non-numa systems as well
 11 *  	Intel Corporation - Ashok Raj
 12 * 02/27/2006 Zhang, Yanmin
 13 *	Populate cpu cache entries in sysfs for cpu cache info
 14 */
 15
 16#include <linux/cpu.h>
 17#include <linux/kernel.h>
 18#include <linux/mm.h>
 19#include <linux/node.h>
 20#include <linux/slab.h>
 21#include <linux/init.h>
 22#include <linux/bootmem.h>
 23#include <linux/nodemask.h>
 24#include <linux/notifier.h>
 25#include <linux/export.h>
 26#include <asm/mmzone.h>
 27#include <asm/numa.h>
 28#include <asm/cpu.h>
 29
 30static struct ia64_cpu *sysfs_cpus;
 31
 32void arch_fix_phys_package_id(int num, u32 slot)
 33{
 34#ifdef CONFIG_SMP
 35	if (cpu_data(num)->socket_id == -1)
 36		cpu_data(num)->socket_id = slot;
 37#endif
 38}
 39EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
 40
 41
 42#ifdef CONFIG_HOTPLUG_CPU
 43int __ref arch_register_cpu(int num)
 44{
 45#ifdef CONFIG_ACPI
 46	/*
 47	 * If CPEI can be re-targeted or if this is not
 48	 * CPEI target, then it is hotpluggable
 49	 */
 50	if (can_cpei_retarget() || !is_cpu_cpei_target(num))
 51		sysfs_cpus[num].cpu.hotpluggable = 1;
 52	map_cpu_to_node(num, node_cpuid[num].nid);
 53#endif
 54	return register_cpu(&sysfs_cpus[num].cpu, num);
 55}
 56EXPORT_SYMBOL(arch_register_cpu);
 57
 58void __ref arch_unregister_cpu(int num)
 59{
 60	unregister_cpu(&sysfs_cpus[num].cpu);
 61#ifdef CONFIG_ACPI
 62	unmap_cpu_from_node(num, cpu_to_node(num));
 63#endif
 64}
 65EXPORT_SYMBOL(arch_unregister_cpu);
 66#else
 67static int __init arch_register_cpu(int num)
 68{
 69	return register_cpu(&sysfs_cpus[num].cpu, num);
 70}
 71#endif /*CONFIG_HOTPLUG_CPU*/
 72
 73
 74static int __init topology_init(void)
 75{
 76	int i, err = 0;
 77
 78#ifdef CONFIG_NUMA
 79	/*
 80	 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
 81	 */
 82	for_each_online_node(i) {
 83		if ((err = register_one_node(i)))
 84			goto out;
 85	}
 86#endif
 87
 88	sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);
 89	if (!sysfs_cpus)
 90		panic("kzalloc in topology_init failed - NR_CPUS too big?");
 91
 92	for_each_present_cpu(i) {
 93		if((err = arch_register_cpu(i)))
 94			goto out;
 95	}
 96out:
 97	return err;
 98}
 99
100subsys_initcall(topology_init);
101
102
103/*
104 * Export cpu cache information through sysfs
105 */
106
107/*
108 *  A bunch of string array to get pretty printing
109 */
110static const char *cache_types[] = {
111	"",			/* not used */
112	"Instruction",
113	"Data",
114	"Unified"	/* unified */
115};
116
117static const char *cache_mattrib[]={
118	"WriteThrough",
119	"WriteBack",
120	"",		/* reserved */
121	""		/* reserved */
122};
123
124struct cache_info {
125	pal_cache_config_info_t	cci;
126	cpumask_t shared_cpu_map;
127	int level;
128	int type;
129	struct kobject kobj;
130};
131
132struct cpu_cache_info {
133	struct cache_info *cache_leaves;
134	int	num_cache_leaves;
135	struct kobject kobj;
136};
137
138static struct cpu_cache_info	all_cpu_cache_info[NR_CPUS];
139#define LEAF_KOBJECT_PTR(x,y)    (&all_cpu_cache_info[x].cache_leaves[y])
140
141#ifdef CONFIG_SMP
142static void cache_shared_cpu_map_setup(unsigned int cpu,
143		struct cache_info * this_leaf)
144{
145	pal_cache_shared_info_t	csi;
146	int num_shared, i = 0;
147	unsigned int j;
148
149	if (cpu_data(cpu)->threads_per_core <= 1 &&
150		cpu_data(cpu)->cores_per_socket <= 1) {
151		cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
152		return;
153	}
154
155	if (ia64_pal_cache_shared_info(this_leaf->level,
156					this_leaf->type,
157					0,
158					&csi) != PAL_STATUS_SUCCESS)
159		return;
160
161	num_shared = (int) csi.num_shared;
162	do {
163		for_each_possible_cpu(j)
164			if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
165				&& cpu_data(j)->core_id == csi.log1_cid
166				&& cpu_data(j)->thread_id == csi.log1_tid)
167				cpumask_set_cpu(j, &this_leaf->shared_cpu_map);
168
169		i++;
170	} while (i < num_shared &&
171		ia64_pal_cache_shared_info(this_leaf->level,
172				this_leaf->type,
173				i,
174				&csi) == PAL_STATUS_SUCCESS);
175}
176#else
177static void cache_shared_cpu_map_setup(unsigned int cpu,
178		struct cache_info * this_leaf)
179{
180	cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
181	return;
182}
183#endif
184
185static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
186					char *buf)
187{
188	return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
189}
190
191static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
192					char *buf)
193{
194	return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
195}
196
197static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
198{
199	return sprintf(buf,
200			"%s\n",
201			cache_mattrib[this_leaf->cci.pcci_cache_attr]);
202}
203
204static ssize_t show_size(struct cache_info *this_leaf, char *buf)
205{
206	return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
207}
208
209static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
210{
211	unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
212	number_of_sets /= this_leaf->cci.pcci_assoc;
213	number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
214
215	return sprintf(buf, "%u\n", number_of_sets);
216}
217
218static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
219{
220	cpumask_t shared_cpu_map;
221
222	cpumask_and(&shared_cpu_map,
223				&this_leaf->shared_cpu_map, cpu_online_mask);
224	return scnprintf(buf, PAGE_SIZE, "%*pb\n",
225			 cpumask_pr_args(&shared_cpu_map));
226}
227
228static ssize_t show_type(struct cache_info *this_leaf, char *buf)
229{
230	int type = this_leaf->type + this_leaf->cci.pcci_unified;
231	return sprintf(buf, "%s\n", cache_types[type]);
232}
233
234static ssize_t show_level(struct cache_info *this_leaf, char *buf)
235{
236	return sprintf(buf, "%u\n", this_leaf->level);
237}
238
239struct cache_attr {
240	struct attribute attr;
241	ssize_t (*show)(struct cache_info *, char *);
242	ssize_t (*store)(struct cache_info *, const char *, size_t count);
243};
244
245#ifdef define_one_ro
246	#undef define_one_ro
247#endif
248#define define_one_ro(_name) \
249	static struct cache_attr _name = \
250__ATTR(_name, 0444, show_##_name, NULL)
251
252define_one_ro(level);
253define_one_ro(type);
254define_one_ro(coherency_line_size);
255define_one_ro(ways_of_associativity);
256define_one_ro(size);
257define_one_ro(number_of_sets);
258define_one_ro(shared_cpu_map);
259define_one_ro(attributes);
260
261static struct attribute * cache_default_attrs[] = {
262	&type.attr,
263	&level.attr,
264	&coherency_line_size.attr,
265	&ways_of_associativity.attr,
266	&attributes.attr,
267	&size.attr,
268	&number_of_sets.attr,
269	&shared_cpu_map.attr,
270	NULL
271};
272
273#define to_object(k) container_of(k, struct cache_info, kobj)
274#define to_attr(a) container_of(a, struct cache_attr, attr)
275
276static ssize_t ia64_cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
277{
278	struct cache_attr *fattr = to_attr(attr);
279	struct cache_info *this_leaf = to_object(kobj);
280	ssize_t ret;
281
282	ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
283	return ret;
284}
285
286static const struct sysfs_ops cache_sysfs_ops = {
287	.show   = ia64_cache_show
288};
289
290static struct kobj_type cache_ktype = {
291	.sysfs_ops	= &cache_sysfs_ops,
292	.default_attrs	= cache_default_attrs,
293};
294
295static struct kobj_type cache_ktype_percpu_entry = {
296	.sysfs_ops	= &cache_sysfs_ops,
297};
298
299static void cpu_cache_sysfs_exit(unsigned int cpu)
300{
301	kfree(all_cpu_cache_info[cpu].cache_leaves);
302	all_cpu_cache_info[cpu].cache_leaves = NULL;
303	all_cpu_cache_info[cpu].num_cache_leaves = 0;
304	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
305	return;
306}
307
308static int cpu_cache_sysfs_init(unsigned int cpu)
309{
310	unsigned long i, levels, unique_caches;
311	pal_cache_config_info_t cci;
312	int j;
313	long status;
314	struct cache_info *this_cache;
315	int num_cache_leaves = 0;
316
317	if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
318		printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
319		return -1;
320	}
321
322	this_cache=kzalloc(sizeof(struct cache_info)*unique_caches,
323			GFP_KERNEL);
324	if (this_cache == NULL)
325		return -ENOMEM;
326
327	for (i=0; i < levels; i++) {
328		for (j=2; j >0 ; j--) {
329			if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
330					PAL_STATUS_SUCCESS)
331				continue;
332
333			this_cache[num_cache_leaves].cci = cci;
334			this_cache[num_cache_leaves].level = i + 1;
335			this_cache[num_cache_leaves].type = j;
336
337			cache_shared_cpu_map_setup(cpu,
338					&this_cache[num_cache_leaves]);
339			num_cache_leaves ++;
340		}
341	}
342
343	all_cpu_cache_info[cpu].cache_leaves = this_cache;
344	all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
345
346	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
347
348	return 0;
349}
350
351/* Add cache interface for CPU device */
352static int cache_add_dev(unsigned int cpu)
353{
354	struct device *sys_dev = get_cpu_device(cpu);
355	unsigned long i, j;
356	struct cache_info *this_object;
357	int retval = 0;
358
359	if (all_cpu_cache_info[cpu].kobj.parent)
360		return 0;
361
362
363	retval = cpu_cache_sysfs_init(cpu);
364	if (unlikely(retval < 0))
365		return retval;
366
367	retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
368				      &cache_ktype_percpu_entry, &sys_dev->kobj,
369				      "%s", "cache");
370	if (unlikely(retval < 0)) {
371		cpu_cache_sysfs_exit(cpu);
372		return retval;
373	}
374
375	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
376		this_object = LEAF_KOBJECT_PTR(cpu,i);
377		retval = kobject_init_and_add(&(this_object->kobj),
378					      &cache_ktype,
379					      &all_cpu_cache_info[cpu].kobj,
380					      "index%1lu", i);
381		if (unlikely(retval)) {
382			for (j = 0; j < i; j++) {
383				kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
384			}
385			kobject_put(&all_cpu_cache_info[cpu].kobj);
386			cpu_cache_sysfs_exit(cpu);
387			return retval;
388		}
389		kobject_uevent(&(this_object->kobj), KOBJ_ADD);
390	}
391	kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
392	return retval;
393}
394
395/* Remove cache interface for CPU device */
396static int cache_remove_dev(unsigned int cpu)
397{
398	unsigned long i;
399
400	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
401		kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
402
403	if (all_cpu_cache_info[cpu].kobj.parent) {
404		kobject_put(&all_cpu_cache_info[cpu].kobj);
405		memset(&all_cpu_cache_info[cpu].kobj,
406			0,
407			sizeof(struct kobject));
408	}
409
410	cpu_cache_sysfs_exit(cpu);
411
412	return 0;
413}
414
415static int __init cache_sysfs_init(void)
416{
417	int ret;
418
419	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/topology:online",
420				cache_add_dev, cache_remove_dev);
421	WARN_ON(ret < 0);
422	return 0;
423}
424device_initcall(cache_sysfs_init);
v5.14.15
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * This file contains NUMA specific variables and functions which are used on
  7 * NUMA machines with contiguous memory.
 
  8 * 		2002/08/07 Erich Focht <efocht@ess.nec.de>
  9 * Populate cpu entries in sysfs for non-numa systems as well
 10 *  	Intel Corporation - Ashok Raj
 11 * 02/27/2006 Zhang, Yanmin
 12 *	Populate cpu cache entries in sysfs for cpu cache info
 13 */
 14
 15#include <linux/cpu.h>
 16#include <linux/kernel.h>
 17#include <linux/mm.h>
 18#include <linux/node.h>
 19#include <linux/slab.h>
 20#include <linux/init.h>
 21#include <linux/memblock.h>
 22#include <linux/nodemask.h>
 23#include <linux/notifier.h>
 24#include <linux/export.h>
 25#include <asm/mmzone.h>
 26#include <asm/numa.h>
 27#include <asm/cpu.h>
 28
 29static struct ia64_cpu *sysfs_cpus;
 30
 31void arch_fix_phys_package_id(int num, u32 slot)
 32{
 33#ifdef CONFIG_SMP
 34	if (cpu_data(num)->socket_id == -1)
 35		cpu_data(num)->socket_id = slot;
 36#endif
 37}
 38EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
 39
 40
 41#ifdef CONFIG_HOTPLUG_CPU
 42int __ref arch_register_cpu(int num)
 43{
 
 44	/*
 45	 * If CPEI can be re-targeted or if this is not
 46	 * CPEI target, then it is hotpluggable
 47	 */
 48	if (can_cpei_retarget() || !is_cpu_cpei_target(num))
 49		sysfs_cpus[num].cpu.hotpluggable = 1;
 50	map_cpu_to_node(num, node_cpuid[num].nid);
 
 51	return register_cpu(&sysfs_cpus[num].cpu, num);
 52}
 53EXPORT_SYMBOL(arch_register_cpu);
 54
 55void __ref arch_unregister_cpu(int num)
 56{
 57	unregister_cpu(&sysfs_cpus[num].cpu);
 
 58	unmap_cpu_from_node(num, cpu_to_node(num));
 
 59}
 60EXPORT_SYMBOL(arch_unregister_cpu);
 61#else
 62static int __init arch_register_cpu(int num)
 63{
 64	return register_cpu(&sysfs_cpus[num].cpu, num);
 65}
 66#endif /*CONFIG_HOTPLUG_CPU*/
 67
 68
 69static int __init topology_init(void)
 70{
 71	int i, err = 0;
 72
 73#ifdef CONFIG_NUMA
 74	/*
 75	 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
 76	 */
 77	for_each_online_node(i) {
 78		if ((err = register_one_node(i)))
 79			goto out;
 80	}
 81#endif
 82
 83	sysfs_cpus = kcalloc(NR_CPUS, sizeof(struct ia64_cpu), GFP_KERNEL);
 84	if (!sysfs_cpus)
 85		panic("kzalloc in topology_init failed - NR_CPUS too big?");
 86
 87	for_each_present_cpu(i) {
 88		if((err = arch_register_cpu(i)))
 89			goto out;
 90	}
 91out:
 92	return err;
 93}
 94
 95subsys_initcall(topology_init);
 96
 97
 98/*
 99 * Export cpu cache information through sysfs
100 */
101
102/*
103 *  A bunch of string array to get pretty printing
104 */
105static const char *cache_types[] = {
106	"",			/* not used */
107	"Instruction",
108	"Data",
109	"Unified"	/* unified */
110};
111
112static const char *cache_mattrib[]={
113	"WriteThrough",
114	"WriteBack",
115	"",		/* reserved */
116	""		/* reserved */
117};
118
119struct cache_info {
120	pal_cache_config_info_t	cci;
121	cpumask_t shared_cpu_map;
122	int level;
123	int type;
124	struct kobject kobj;
125};
126
127struct cpu_cache_info {
128	struct cache_info *cache_leaves;
129	int	num_cache_leaves;
130	struct kobject kobj;
131};
132
133static struct cpu_cache_info	all_cpu_cache_info[NR_CPUS];
134#define LEAF_KOBJECT_PTR(x,y)    (&all_cpu_cache_info[x].cache_leaves[y])
135
136#ifdef CONFIG_SMP
137static void cache_shared_cpu_map_setup(unsigned int cpu,
138		struct cache_info * this_leaf)
139{
140	pal_cache_shared_info_t	csi;
141	int num_shared, i = 0;
142	unsigned int j;
143
144	if (cpu_data(cpu)->threads_per_core <= 1 &&
145		cpu_data(cpu)->cores_per_socket <= 1) {
146		cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
147		return;
148	}
149
150	if (ia64_pal_cache_shared_info(this_leaf->level,
151					this_leaf->type,
152					0,
153					&csi) != PAL_STATUS_SUCCESS)
154		return;
155
156	num_shared = (int) csi.num_shared;
157	do {
158		for_each_possible_cpu(j)
159			if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
160				&& cpu_data(j)->core_id == csi.log1_cid
161				&& cpu_data(j)->thread_id == csi.log1_tid)
162				cpumask_set_cpu(j, &this_leaf->shared_cpu_map);
163
164		i++;
165	} while (i < num_shared &&
166		ia64_pal_cache_shared_info(this_leaf->level,
167				this_leaf->type,
168				i,
169				&csi) == PAL_STATUS_SUCCESS);
170}
171#else
172static void cache_shared_cpu_map_setup(unsigned int cpu,
173		struct cache_info * this_leaf)
174{
175	cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
176	return;
177}
178#endif
179
180static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
181					char *buf)
182{
183	return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
184}
185
186static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
187					char *buf)
188{
189	return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
190}
191
192static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
193{
194	return sprintf(buf,
195			"%s\n",
196			cache_mattrib[this_leaf->cci.pcci_cache_attr]);
197}
198
199static ssize_t show_size(struct cache_info *this_leaf, char *buf)
200{
201	return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
202}
203
204static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
205{
206	unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
207	number_of_sets /= this_leaf->cci.pcci_assoc;
208	number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
209
210	return sprintf(buf, "%u\n", number_of_sets);
211}
212
213static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
214{
215	cpumask_t shared_cpu_map;
216
217	cpumask_and(&shared_cpu_map,
218				&this_leaf->shared_cpu_map, cpu_online_mask);
219	return scnprintf(buf, PAGE_SIZE, "%*pb\n",
220			 cpumask_pr_args(&shared_cpu_map));
221}
222
223static ssize_t show_type(struct cache_info *this_leaf, char *buf)
224{
225	int type = this_leaf->type + this_leaf->cci.pcci_unified;
226	return sprintf(buf, "%s\n", cache_types[type]);
227}
228
229static ssize_t show_level(struct cache_info *this_leaf, char *buf)
230{
231	return sprintf(buf, "%u\n", this_leaf->level);
232}
233
234struct cache_attr {
235	struct attribute attr;
236	ssize_t (*show)(struct cache_info *, char *);
237	ssize_t (*store)(struct cache_info *, const char *, size_t count);
238};
239
240#ifdef define_one_ro
241	#undef define_one_ro
242#endif
243#define define_one_ro(_name) \
244	static struct cache_attr _name = \
245__ATTR(_name, 0444, show_##_name, NULL)
246
247define_one_ro(level);
248define_one_ro(type);
249define_one_ro(coherency_line_size);
250define_one_ro(ways_of_associativity);
251define_one_ro(size);
252define_one_ro(number_of_sets);
253define_one_ro(shared_cpu_map);
254define_one_ro(attributes);
255
256static struct attribute * cache_default_attrs[] = {
257	&type.attr,
258	&level.attr,
259	&coherency_line_size.attr,
260	&ways_of_associativity.attr,
261	&attributes.attr,
262	&size.attr,
263	&number_of_sets.attr,
264	&shared_cpu_map.attr,
265	NULL
266};
267
268#define to_object(k) container_of(k, struct cache_info, kobj)
269#define to_attr(a) container_of(a, struct cache_attr, attr)
270
271static ssize_t ia64_cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
272{
273	struct cache_attr *fattr = to_attr(attr);
274	struct cache_info *this_leaf = to_object(kobj);
275	ssize_t ret;
276
277	ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
278	return ret;
279}
280
281static const struct sysfs_ops cache_sysfs_ops = {
282	.show   = ia64_cache_show
283};
284
285static struct kobj_type cache_ktype = {
286	.sysfs_ops	= &cache_sysfs_ops,
287	.default_attrs	= cache_default_attrs,
288};
289
290static struct kobj_type cache_ktype_percpu_entry = {
291	.sysfs_ops	= &cache_sysfs_ops,
292};
293
294static void cpu_cache_sysfs_exit(unsigned int cpu)
295{
296	kfree(all_cpu_cache_info[cpu].cache_leaves);
297	all_cpu_cache_info[cpu].cache_leaves = NULL;
298	all_cpu_cache_info[cpu].num_cache_leaves = 0;
299	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
300	return;
301}
302
303static int cpu_cache_sysfs_init(unsigned int cpu)
304{
305	unsigned long i, levels, unique_caches;
306	pal_cache_config_info_t cci;
307	int j;
308	long status;
309	struct cache_info *this_cache;
310	int num_cache_leaves = 0;
311
312	if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
313		printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
314		return -1;
315	}
316
317	this_cache=kcalloc(unique_caches, sizeof(struct cache_info),
318			   GFP_KERNEL);
319	if (this_cache == NULL)
320		return -ENOMEM;
321
322	for (i=0; i < levels; i++) {
323		for (j=2; j >0 ; j--) {
324			if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
325					PAL_STATUS_SUCCESS)
326				continue;
327
328			this_cache[num_cache_leaves].cci = cci;
329			this_cache[num_cache_leaves].level = i + 1;
330			this_cache[num_cache_leaves].type = j;
331
332			cache_shared_cpu_map_setup(cpu,
333					&this_cache[num_cache_leaves]);
334			num_cache_leaves ++;
335		}
336	}
337
338	all_cpu_cache_info[cpu].cache_leaves = this_cache;
339	all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
340
341	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
342
343	return 0;
344}
345
346/* Add cache interface for CPU device */
347static int cache_add_dev(unsigned int cpu)
348{
349	struct device *sys_dev = get_cpu_device(cpu);
350	unsigned long i, j;
351	struct cache_info *this_object;
352	int retval = 0;
353
354	if (all_cpu_cache_info[cpu].kobj.parent)
355		return 0;
356
357
358	retval = cpu_cache_sysfs_init(cpu);
359	if (unlikely(retval < 0))
360		return retval;
361
362	retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
363				      &cache_ktype_percpu_entry, &sys_dev->kobj,
364				      "%s", "cache");
365	if (unlikely(retval < 0)) {
366		cpu_cache_sysfs_exit(cpu);
367		return retval;
368	}
369
370	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
371		this_object = LEAF_KOBJECT_PTR(cpu,i);
372		retval = kobject_init_and_add(&(this_object->kobj),
373					      &cache_ktype,
374					      &all_cpu_cache_info[cpu].kobj,
375					      "index%1lu", i);
376		if (unlikely(retval)) {
377			for (j = 0; j < i; j++) {
378				kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
379			}
380			kobject_put(&all_cpu_cache_info[cpu].kobj);
381			cpu_cache_sysfs_exit(cpu);
382			return retval;
383		}
384		kobject_uevent(&(this_object->kobj), KOBJ_ADD);
385	}
386	kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
387	return retval;
388}
389
390/* Remove cache interface for CPU device */
391static int cache_remove_dev(unsigned int cpu)
392{
393	unsigned long i;
394
395	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
396		kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
397
398	if (all_cpu_cache_info[cpu].kobj.parent) {
399		kobject_put(&all_cpu_cache_info[cpu].kobj);
400		memset(&all_cpu_cache_info[cpu].kobj,
401			0,
402			sizeof(struct kobject));
403	}
404
405	cpu_cache_sysfs_exit(cpu);
406
407	return 0;
408}
409
410static int __init cache_sysfs_init(void)
411{
412	int ret;
413
414	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/topology:online",
415				cache_add_dev, cache_remove_dev);
416	WARN_ON(ret < 0);
417	return 0;
418}
419device_initcall(cache_sysfs_init);