Loading...
1/*
2 * File: mca.c
3 * Purpose: Generic MCA handling layer
4 *
5 * Copyright (C) 2003 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 *
8 * Copyright (C) 2002 Dell Inc.
9 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
10 *
11 * Copyright (C) 2002 Intel
12 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
13 *
14 * Copyright (C) 2001 Intel
15 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
16 *
17 * Copyright (C) 2000 Intel
18 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
19 *
20 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
21 * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
22 *
23 * Copyright (C) 2006 FUJITSU LIMITED
24 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
25 *
26 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
27 * Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
28 * added min save state dump, added INIT handler.
29 *
30 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
31 * Added setup of CMCI and CPEI IRQs, logging of corrected platform
32 * errors, completed code for logging of corrected & uncorrected
33 * machine check errors, and updated for conformance with Nov. 2000
34 * revision of the SAL 3.0 spec.
35 *
36 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
37 * Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
38 * set SAL default return values, changed error record structure to
39 * linked list, added init call to sal_get_state_info_size().
40 *
41 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
42 * GUID cleanups.
43 *
44 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
45 * Added INIT backtrace support.
46 *
47 * 2003-12-08 Keith Owens <kaos@sgi.com>
48 * smp_call_function() must not be called from interrupt context
49 * (can deadlock on tasklist_lock).
50 * Use keventd to call smp_call_function().
51 *
52 * 2004-02-01 Keith Owens <kaos@sgi.com>
53 * Avoid deadlock when using printk() for MCA and INIT records.
54 * Delete all record printing code, moved to salinfo_decode in user
55 * space. Mark variables and functions static where possible.
56 * Delete dead variables and functions. Reorder to remove the need
57 * for forward declarations and to consolidate related code.
58 *
59 * 2005-08-12 Keith Owens <kaos@sgi.com>
60 * Convert MCA/INIT handlers to use per event stacks and SAL/OS
61 * state.
62 *
63 * 2005-10-07 Keith Owens <kaos@sgi.com>
64 * Add notify_die() hooks.
65 *
66 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
67 * Add printing support for MCA/INIT.
68 *
69 * 2007-04-27 Russ Anderson <rja@sgi.com>
70 * Support multiple cpus going through OS_MCA in the same event.
71 */
72#include <linux/jiffies.h>
73#include <linux/types.h>
74#include <linux/init.h>
75#include <linux/sched/signal.h>
76#include <linux/sched/debug.h>
77#include <linux/sched/task.h>
78#include <linux/interrupt.h>
79#include <linux/irq.h>
80#include <linux/bootmem.h>
81#include <linux/acpi.h>
82#include <linux/timer.h>
83#include <linux/module.h>
84#include <linux/kernel.h>
85#include <linux/smp.h>
86#include <linux/workqueue.h>
87#include <linux/cpumask.h>
88#include <linux/kdebug.h>
89#include <linux/cpu.h>
90#include <linux/gfp.h>
91
92#include <asm/delay.h>
93#include <asm/machvec.h>
94#include <asm/meminit.h>
95#include <asm/page.h>
96#include <asm/ptrace.h>
97#include <asm/sal.h>
98#include <asm/mca.h>
99#include <asm/kexec.h>
100
101#include <asm/irq.h>
102#include <asm/hw_irq.h>
103#include <asm/tlb.h>
104
105#include "mca_drv.h"
106#include "entry.h"
107
108#if defined(IA64_MCA_DEBUG_INFO)
109# define IA64_MCA_DEBUG(fmt...) printk(fmt)
110#else
111# define IA64_MCA_DEBUG(fmt...)
112#endif
113
114#define NOTIFY_INIT(event, regs, arg, spin) \
115do { \
116 if ((notify_die((event), "INIT", (regs), (arg), 0, 0) \
117 == NOTIFY_STOP) && ((spin) == 1)) \
118 ia64_mca_spin(__func__); \
119} while (0)
120
121#define NOTIFY_MCA(event, regs, arg, spin) \
122do { \
123 if ((notify_die((event), "MCA", (regs), (arg), 0, 0) \
124 == NOTIFY_STOP) && ((spin) == 1)) \
125 ia64_mca_spin(__func__); \
126} while (0)
127
128/* Used by mca_asm.S */
129DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
130DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
131DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
132DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
133DEFINE_PER_CPU(u64, ia64_mca_tr_reload); /* Flag for TR reload */
134
135unsigned long __per_cpu_mca[NR_CPUS];
136
137/* In mca_asm.S */
138extern void ia64_os_init_dispatch_monarch (void);
139extern void ia64_os_init_dispatch_slave (void);
140
141static int monarch_cpu = -1;
142
143static ia64_mc_info_t ia64_mc_info;
144
145#define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
146#define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
147#define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
148#define CPE_HISTORY_LENGTH 5
149#define CMC_HISTORY_LENGTH 5
150
151#ifdef CONFIG_ACPI
152static struct timer_list cpe_poll_timer;
153#endif
154static struct timer_list cmc_poll_timer;
155/*
156 * This variable tells whether we are currently in polling mode.
157 * Start with this in the wrong state so we won't play w/ timers
158 * before the system is ready.
159 */
160static int cmc_polling_enabled = 1;
161
162/*
163 * Clearing this variable prevents CPE polling from getting activated
164 * in mca_late_init. Use it if your system doesn't provide a CPEI,
165 * but encounters problems retrieving CPE logs. This should only be
166 * necessary for debugging.
167 */
168static int cpe_poll_enabled = 1;
169
170extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
171
172static int mca_init __initdata;
173
174/*
175 * limited & delayed printing support for MCA/INIT handler
176 */
177
178#define mprintk(fmt...) ia64_mca_printk(fmt)
179
180#define MLOGBUF_SIZE (512+256*NR_CPUS)
181#define MLOGBUF_MSGMAX 256
182static char mlogbuf[MLOGBUF_SIZE];
183static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */
184static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */
185static unsigned long mlogbuf_start;
186static unsigned long mlogbuf_end;
187static unsigned int mlogbuf_finished = 0;
188static unsigned long mlogbuf_timestamp = 0;
189
190static int loglevel_save = -1;
191#define BREAK_LOGLEVEL(__console_loglevel) \
192 oops_in_progress = 1; \
193 if (loglevel_save < 0) \
194 loglevel_save = __console_loglevel; \
195 __console_loglevel = 15;
196
197#define RESTORE_LOGLEVEL(__console_loglevel) \
198 if (loglevel_save >= 0) { \
199 __console_loglevel = loglevel_save; \
200 loglevel_save = -1; \
201 } \
202 mlogbuf_finished = 0; \
203 oops_in_progress = 0;
204
205/*
206 * Push messages into buffer, print them later if not urgent.
207 */
208void ia64_mca_printk(const char *fmt, ...)
209{
210 va_list args;
211 int printed_len;
212 char temp_buf[MLOGBUF_MSGMAX];
213 char *p;
214
215 va_start(args, fmt);
216 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
217 va_end(args);
218
219 /* Copy the output into mlogbuf */
220 if (oops_in_progress) {
221 /* mlogbuf was abandoned, use printk directly instead. */
222 printk("%s", temp_buf);
223 } else {
224 spin_lock(&mlogbuf_wlock);
225 for (p = temp_buf; *p; p++) {
226 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
227 if (next != mlogbuf_start) {
228 mlogbuf[mlogbuf_end] = *p;
229 mlogbuf_end = next;
230 } else {
231 /* buffer full */
232 break;
233 }
234 }
235 mlogbuf[mlogbuf_end] = '\0';
236 spin_unlock(&mlogbuf_wlock);
237 }
238}
239EXPORT_SYMBOL(ia64_mca_printk);
240
241/*
242 * Print buffered messages.
243 * NOTE: call this after returning normal context. (ex. from salinfod)
244 */
245void ia64_mlogbuf_dump(void)
246{
247 char temp_buf[MLOGBUF_MSGMAX];
248 char *p;
249 unsigned long index;
250 unsigned long flags;
251 unsigned int printed_len;
252
253 /* Get output from mlogbuf */
254 while (mlogbuf_start != mlogbuf_end) {
255 temp_buf[0] = '\0';
256 p = temp_buf;
257 printed_len = 0;
258
259 spin_lock_irqsave(&mlogbuf_rlock, flags);
260
261 index = mlogbuf_start;
262 while (index != mlogbuf_end) {
263 *p = mlogbuf[index];
264 index = (index + 1) % MLOGBUF_SIZE;
265 if (!*p)
266 break;
267 p++;
268 if (++printed_len >= MLOGBUF_MSGMAX - 1)
269 break;
270 }
271 *p = '\0';
272 if (temp_buf[0])
273 printk("%s", temp_buf);
274 mlogbuf_start = index;
275
276 mlogbuf_timestamp = 0;
277 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
278 }
279}
280EXPORT_SYMBOL(ia64_mlogbuf_dump);
281
282/*
283 * Call this if system is going to down or if immediate flushing messages to
284 * console is required. (ex. recovery was failed, crash dump is going to be
285 * invoked, long-wait rendezvous etc.)
286 * NOTE: this should be called from monarch.
287 */
288static void ia64_mlogbuf_finish(int wait)
289{
290 BREAK_LOGLEVEL(console_loglevel);
291
292 spin_lock_init(&mlogbuf_rlock);
293 ia64_mlogbuf_dump();
294 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
295 "MCA/INIT might be dodgy or fail.\n");
296
297 if (!wait)
298 return;
299
300 /* wait for console */
301 printk("Delaying for 5 seconds...\n");
302 udelay(5*1000000);
303
304 mlogbuf_finished = 1;
305}
306
307/*
308 * Print buffered messages from INIT context.
309 */
310static void ia64_mlogbuf_dump_from_init(void)
311{
312 if (mlogbuf_finished)
313 return;
314
315 if (mlogbuf_timestamp &&
316 time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
317 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
318 " and the system seems to be messed up.\n");
319 ia64_mlogbuf_finish(0);
320 return;
321 }
322
323 if (!spin_trylock(&mlogbuf_rlock)) {
324 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
325 "Generated messages other than stack dump will be "
326 "buffered to mlogbuf and will be printed later.\n");
327 printk(KERN_ERR "INIT: If messages would not printed after "
328 "this INIT, wait 30sec and assert INIT again.\n");
329 if (!mlogbuf_timestamp)
330 mlogbuf_timestamp = jiffies;
331 return;
332 }
333 spin_unlock(&mlogbuf_rlock);
334 ia64_mlogbuf_dump();
335}
336
337static inline void
338ia64_mca_spin(const char *func)
339{
340 if (monarch_cpu == smp_processor_id())
341 ia64_mlogbuf_finish(0);
342 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
343 while (1)
344 cpu_relax();
345}
346/*
347 * IA64_MCA log support
348 */
349#define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
350#define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
351
352typedef struct ia64_state_log_s
353{
354 spinlock_t isl_lock;
355 int isl_index;
356 unsigned long isl_count;
357 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
358} ia64_state_log_t;
359
360static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
361
362#define IA64_LOG_ALLOCATE(it, size) \
363 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
364 (ia64_err_rec_t *)alloc_bootmem(size); \
365 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
366 (ia64_err_rec_t *)alloc_bootmem(size);}
367#define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
368#define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
369#define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
370#define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
371#define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
372#define IA64_LOG_INDEX_INC(it) \
373 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
374 ia64_state_log[it].isl_count++;}
375#define IA64_LOG_INDEX_DEC(it) \
376 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
377#define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
378#define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
379#define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
380
381/*
382 * ia64_log_init
383 * Reset the OS ia64 log buffer
384 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
385 * Outputs : None
386 */
387static void __init
388ia64_log_init(int sal_info_type)
389{
390 u64 max_size = 0;
391
392 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
393 IA64_LOG_LOCK_INIT(sal_info_type);
394
395 // SAL will tell us the maximum size of any error record of this type
396 max_size = ia64_sal_get_state_info_size(sal_info_type);
397 if (!max_size)
398 /* alloc_bootmem() doesn't like zero-sized allocations! */
399 return;
400
401 // set up OS data structures to hold error info
402 IA64_LOG_ALLOCATE(sal_info_type, max_size);
403 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
404 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
405}
406
407/*
408 * ia64_log_get
409 *
410 * Get the current MCA log from SAL and copy it into the OS log buffer.
411 *
412 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
413 * irq_safe whether you can use printk at this point
414 * Outputs : size (total record length)
415 * *buffer (ptr to error record)
416 *
417 */
418static u64
419ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
420{
421 sal_log_record_header_t *log_buffer;
422 u64 total_len = 0;
423 unsigned long s;
424
425 IA64_LOG_LOCK(sal_info_type);
426
427 /* Get the process state information */
428 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
429
430 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
431
432 if (total_len) {
433 IA64_LOG_INDEX_INC(sal_info_type);
434 IA64_LOG_UNLOCK(sal_info_type);
435 if (irq_safe) {
436 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
437 __func__, sal_info_type, total_len);
438 }
439 *buffer = (u8 *) log_buffer;
440 return total_len;
441 } else {
442 IA64_LOG_UNLOCK(sal_info_type);
443 return 0;
444 }
445}
446
447/*
448 * ia64_mca_log_sal_error_record
449 *
450 * This function retrieves a specified error record type from SAL
451 * and wakes up any processes waiting for error records.
452 *
453 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
454 * FIXME: remove MCA and irq_safe.
455 */
456static void
457ia64_mca_log_sal_error_record(int sal_info_type)
458{
459 u8 *buffer;
460 sal_log_record_header_t *rh;
461 u64 size;
462 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
463#ifdef IA64_MCA_DEBUG_INFO
464 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
465#endif
466
467 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
468 if (!size)
469 return;
470
471 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
472
473 if (irq_safe)
474 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
475 smp_processor_id(),
476 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
477
478 /* Clear logs from corrected errors in case there's no user-level logger */
479 rh = (sal_log_record_header_t *)buffer;
480 if (rh->severity == sal_log_severity_corrected)
481 ia64_sal_clear_state_info(sal_info_type);
482}
483
484/*
485 * search_mca_table
486 * See if the MCA surfaced in an instruction range
487 * that has been tagged as recoverable.
488 *
489 * Inputs
490 * first First address range to check
491 * last Last address range to check
492 * ip Instruction pointer, address we are looking for
493 *
494 * Return value:
495 * 1 on Success (in the table)/ 0 on Failure (not in the table)
496 */
497int
498search_mca_table (const struct mca_table_entry *first,
499 const struct mca_table_entry *last,
500 unsigned long ip)
501{
502 const struct mca_table_entry *curr;
503 u64 curr_start, curr_end;
504
505 curr = first;
506 while (curr <= last) {
507 curr_start = (u64) &curr->start_addr + curr->start_addr;
508 curr_end = (u64) &curr->end_addr + curr->end_addr;
509
510 if ((ip >= curr_start) && (ip <= curr_end)) {
511 return 1;
512 }
513 curr++;
514 }
515 return 0;
516}
517
518/* Given an address, look for it in the mca tables. */
519int mca_recover_range(unsigned long addr)
520{
521 extern struct mca_table_entry __start___mca_table[];
522 extern struct mca_table_entry __stop___mca_table[];
523
524 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
525}
526EXPORT_SYMBOL_GPL(mca_recover_range);
527
528#ifdef CONFIG_ACPI
529
530int cpe_vector = -1;
531int ia64_cpe_irq = -1;
532
533static irqreturn_t
534ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
535{
536 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
537 static int index;
538 static DEFINE_SPINLOCK(cpe_history_lock);
539
540 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
541 __func__, cpe_irq, smp_processor_id());
542
543 /* SAL spec states this should run w/ interrupts enabled */
544 local_irq_enable();
545
546 spin_lock(&cpe_history_lock);
547 if (!cpe_poll_enabled && cpe_vector >= 0) {
548
549 int i, count = 1; /* we know 1 happened now */
550 unsigned long now = jiffies;
551
552 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
553 if (now - cpe_history[i] <= HZ)
554 count++;
555 }
556
557 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
558 if (count >= CPE_HISTORY_LENGTH) {
559
560 cpe_poll_enabled = 1;
561 spin_unlock(&cpe_history_lock);
562 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
563
564 /*
565 * Corrected errors will still be corrected, but
566 * make sure there's a log somewhere that indicates
567 * something is generating more than we can handle.
568 */
569 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
570
571 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
572
573 /* lock already released, get out now */
574 goto out;
575 } else {
576 cpe_history[index++] = now;
577 if (index == CPE_HISTORY_LENGTH)
578 index = 0;
579 }
580 }
581 spin_unlock(&cpe_history_lock);
582out:
583 /* Get the CPE error record and log it */
584 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
585
586 local_irq_disable();
587
588 return IRQ_HANDLED;
589}
590
591#endif /* CONFIG_ACPI */
592
593#ifdef CONFIG_ACPI
594/*
595 * ia64_mca_register_cpev
596 *
597 * Register the corrected platform error vector with SAL.
598 *
599 * Inputs
600 * cpev Corrected Platform Error Vector number
601 *
602 * Outputs
603 * None
604 */
605void
606ia64_mca_register_cpev (int cpev)
607{
608 /* Register the CPE interrupt vector with SAL */
609 struct ia64_sal_retval isrv;
610
611 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
612 if (isrv.status) {
613 printk(KERN_ERR "Failed to register Corrected Platform "
614 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
615 return;
616 }
617
618 IA64_MCA_DEBUG("%s: corrected platform error "
619 "vector %#x registered\n", __func__, cpev);
620}
621#endif /* CONFIG_ACPI */
622
623/*
624 * ia64_mca_cmc_vector_setup
625 *
626 * Setup the corrected machine check vector register in the processor.
627 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
628 * This function is invoked on a per-processor basis.
629 *
630 * Inputs
631 * None
632 *
633 * Outputs
634 * None
635 */
636void
637ia64_mca_cmc_vector_setup (void)
638{
639 cmcv_reg_t cmcv;
640
641 cmcv.cmcv_regval = 0;
642 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
643 cmcv.cmcv_vector = IA64_CMC_VECTOR;
644 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
645
646 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
647 __func__, smp_processor_id(), IA64_CMC_VECTOR);
648
649 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
650 __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
651}
652
653/*
654 * ia64_mca_cmc_vector_disable
655 *
656 * Mask the corrected machine check vector register in the processor.
657 * This function is invoked on a per-processor basis.
658 *
659 * Inputs
660 * dummy(unused)
661 *
662 * Outputs
663 * None
664 */
665static void
666ia64_mca_cmc_vector_disable (void *dummy)
667{
668 cmcv_reg_t cmcv;
669
670 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
671
672 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
673 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
674
675 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
676 __func__, smp_processor_id(), cmcv.cmcv_vector);
677}
678
679/*
680 * ia64_mca_cmc_vector_enable
681 *
682 * Unmask the corrected machine check vector register in the processor.
683 * This function is invoked on a per-processor basis.
684 *
685 * Inputs
686 * dummy(unused)
687 *
688 * Outputs
689 * None
690 */
691static void
692ia64_mca_cmc_vector_enable (void *dummy)
693{
694 cmcv_reg_t cmcv;
695
696 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
697
698 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
699 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
700
701 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
702 __func__, smp_processor_id(), cmcv.cmcv_vector);
703}
704
705/*
706 * ia64_mca_cmc_vector_disable_keventd
707 *
708 * Called via keventd (smp_call_function() is not safe in interrupt context) to
709 * disable the cmc interrupt vector.
710 */
711static void
712ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
713{
714 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
715}
716
717/*
718 * ia64_mca_cmc_vector_enable_keventd
719 *
720 * Called via keventd (smp_call_function() is not safe in interrupt context) to
721 * enable the cmc interrupt vector.
722 */
723static void
724ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
725{
726 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
727}
728
729/*
730 * ia64_mca_wakeup
731 *
732 * Send an inter-cpu interrupt to wake-up a particular cpu.
733 *
734 * Inputs : cpuid
735 * Outputs : None
736 */
737static void
738ia64_mca_wakeup(int cpu)
739{
740 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
741}
742
743/*
744 * ia64_mca_wakeup_all
745 *
746 * Wakeup all the slave cpus which have rendez'ed previously.
747 *
748 * Inputs : None
749 * Outputs : None
750 */
751static void
752ia64_mca_wakeup_all(void)
753{
754 int cpu;
755
756 /* Clear the Rendez checkin flag for all cpus */
757 for_each_online_cpu(cpu) {
758 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
759 ia64_mca_wakeup(cpu);
760 }
761
762}
763
764/*
765 * ia64_mca_rendez_interrupt_handler
766 *
767 * This is handler used to put slave processors into spinloop
768 * while the monarch processor does the mca handling and later
769 * wake each slave up once the monarch is done. The state
770 * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
771 * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
772 * the cpu has come out of OS rendezvous.
773 *
774 * Inputs : None
775 * Outputs : None
776 */
777static irqreturn_t
778ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
779{
780 unsigned long flags;
781 int cpu = smp_processor_id();
782 struct ia64_mca_notify_die nd =
783 { .sos = NULL, .monarch_cpu = &monarch_cpu };
784
785 /* Mask all interrupts */
786 local_irq_save(flags);
787
788 NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);
789
790 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
791 /* Register with the SAL monarch that the slave has
792 * reached SAL
793 */
794 ia64_sal_mc_rendez();
795
796 NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);
797
798 /* Wait for the monarch cpu to exit. */
799 while (monarch_cpu != -1)
800 cpu_relax(); /* spin until monarch leaves */
801
802 NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);
803
804 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
805 /* Enable all interrupts */
806 local_irq_restore(flags);
807 return IRQ_HANDLED;
808}
809
810/*
811 * ia64_mca_wakeup_int_handler
812 *
813 * The interrupt handler for processing the inter-cpu interrupt to the
814 * slave cpu which was spinning in the rendez loop.
815 * Since this spinning is done by turning off the interrupts and
816 * polling on the wakeup-interrupt bit in the IRR, there is
817 * nothing useful to be done in the handler.
818 *
819 * Inputs : wakeup_irq (Wakeup-interrupt bit)
820 * arg (Interrupt handler specific argument)
821 * Outputs : None
822 *
823 */
824static irqreturn_t
825ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
826{
827 return IRQ_HANDLED;
828}
829
830/* Function pointer for extra MCA recovery */
831int (*ia64_mca_ucmc_extension)
832 (void*,struct ia64_sal_os_state*)
833 = NULL;
834
835int
836ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
837{
838 if (ia64_mca_ucmc_extension)
839 return 1;
840
841 ia64_mca_ucmc_extension = fn;
842 return 0;
843}
844
845void
846ia64_unreg_MCA_extension(void)
847{
848 if (ia64_mca_ucmc_extension)
849 ia64_mca_ucmc_extension = NULL;
850}
851
852EXPORT_SYMBOL(ia64_reg_MCA_extension);
853EXPORT_SYMBOL(ia64_unreg_MCA_extension);
854
855
856static inline void
857copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat)
858{
859 u64 fslot, tslot, nat;
860 *tr = *fr;
861 fslot = ((unsigned long)fr >> 3) & 63;
862 tslot = ((unsigned long)tr >> 3) & 63;
863 *tnat &= ~(1UL << tslot);
864 nat = (fnat >> fslot) & 1;
865 *tnat |= (nat << tslot);
866}
867
868/* Change the comm field on the MCA/INT task to include the pid that
869 * was interrupted, it makes for easier debugging. If that pid was 0
870 * (swapper or nested MCA/INIT) then use the start of the previous comm
871 * field suffixed with its cpu.
872 */
873
874static void
875ia64_mca_modify_comm(const struct task_struct *previous_current)
876{
877 char *p, comm[sizeof(current->comm)];
878 if (previous_current->pid)
879 snprintf(comm, sizeof(comm), "%s %d",
880 current->comm, previous_current->pid);
881 else {
882 int l;
883 if ((p = strchr(previous_current->comm, ' ')))
884 l = p - previous_current->comm;
885 else
886 l = strlen(previous_current->comm);
887 snprintf(comm, sizeof(comm), "%s %*s %d",
888 current->comm, l, previous_current->comm,
889 task_thread_info(previous_current)->cpu);
890 }
891 memcpy(current->comm, comm, sizeof(current->comm));
892}
893
894static void
895finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos,
896 unsigned long *nat)
897{
898 const pal_min_state_area_t *ms = sos->pal_min_state;
899 const u64 *bank;
900
901 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
902 * pmsa_{xip,xpsr,xfs}
903 */
904 if (ia64_psr(regs)->ic) {
905 regs->cr_iip = ms->pmsa_iip;
906 regs->cr_ipsr = ms->pmsa_ipsr;
907 regs->cr_ifs = ms->pmsa_ifs;
908 } else {
909 regs->cr_iip = ms->pmsa_xip;
910 regs->cr_ipsr = ms->pmsa_xpsr;
911 regs->cr_ifs = ms->pmsa_xfs;
912
913 sos->iip = ms->pmsa_iip;
914 sos->ipsr = ms->pmsa_ipsr;
915 sos->ifs = ms->pmsa_ifs;
916 }
917 regs->pr = ms->pmsa_pr;
918 regs->b0 = ms->pmsa_br0;
919 regs->ar_rsc = ms->pmsa_rsc;
920 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, ®s->r1, nat);
921 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, ®s->r2, nat);
922 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, ®s->r3, nat);
923 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, ®s->r8, nat);
924 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, ®s->r9, nat);
925 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, ®s->r10, nat);
926 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, ®s->r11, nat);
927 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, ®s->r12, nat);
928 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, ®s->r13, nat);
929 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, ®s->r14, nat);
930 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, ®s->r15, nat);
931 if (ia64_psr(regs)->bn)
932 bank = ms->pmsa_bank1_gr;
933 else
934 bank = ms->pmsa_bank0_gr;
935 copy_reg(&bank[16-16], ms->pmsa_nat_bits, ®s->r16, nat);
936 copy_reg(&bank[17-16], ms->pmsa_nat_bits, ®s->r17, nat);
937 copy_reg(&bank[18-16], ms->pmsa_nat_bits, ®s->r18, nat);
938 copy_reg(&bank[19-16], ms->pmsa_nat_bits, ®s->r19, nat);
939 copy_reg(&bank[20-16], ms->pmsa_nat_bits, ®s->r20, nat);
940 copy_reg(&bank[21-16], ms->pmsa_nat_bits, ®s->r21, nat);
941 copy_reg(&bank[22-16], ms->pmsa_nat_bits, ®s->r22, nat);
942 copy_reg(&bank[23-16], ms->pmsa_nat_bits, ®s->r23, nat);
943 copy_reg(&bank[24-16], ms->pmsa_nat_bits, ®s->r24, nat);
944 copy_reg(&bank[25-16], ms->pmsa_nat_bits, ®s->r25, nat);
945 copy_reg(&bank[26-16], ms->pmsa_nat_bits, ®s->r26, nat);
946 copy_reg(&bank[27-16], ms->pmsa_nat_bits, ®s->r27, nat);
947 copy_reg(&bank[28-16], ms->pmsa_nat_bits, ®s->r28, nat);
948 copy_reg(&bank[29-16], ms->pmsa_nat_bits, ®s->r29, nat);
949 copy_reg(&bank[30-16], ms->pmsa_nat_bits, ®s->r30, nat);
950 copy_reg(&bank[31-16], ms->pmsa_nat_bits, ®s->r31, nat);
951}
952
953/* On entry to this routine, we are running on the per cpu stack, see
954 * mca_asm.h. The original stack has not been touched by this event. Some of
955 * the original stack's registers will be in the RBS on this stack. This stack
956 * also contains a partial pt_regs and switch_stack, the rest of the data is in
957 * PAL minstate.
958 *
959 * The first thing to do is modify the original stack to look like a blocked
960 * task so we can run backtrace on the original task. Also mark the per cpu
961 * stack as current to ensure that we use the correct task state, it also means
962 * that we can do backtrace on the MCA/INIT handler code itself.
963 */
964
965static struct task_struct *
966ia64_mca_modify_original_stack(struct pt_regs *regs,
967 const struct switch_stack *sw,
968 struct ia64_sal_os_state *sos,
969 const char *type)
970{
971 char *p;
972 ia64_va va;
973 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
974 const pal_min_state_area_t *ms = sos->pal_min_state;
975 struct task_struct *previous_current;
976 struct pt_regs *old_regs;
977 struct switch_stack *old_sw;
978 unsigned size = sizeof(struct pt_regs) +
979 sizeof(struct switch_stack) + 16;
980 unsigned long *old_bspstore, *old_bsp;
981 unsigned long *new_bspstore, *new_bsp;
982 unsigned long old_unat, old_rnat, new_rnat, nat;
983 u64 slots, loadrs = regs->loadrs;
984 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
985 u64 ar_bspstore = regs->ar_bspstore;
986 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
987 const char *msg;
988 int cpu = smp_processor_id();
989
990 previous_current = curr_task(cpu);
991 ia64_set_curr_task(cpu, current);
992 if ((p = strchr(current->comm, ' ')))
993 *p = '\0';
994
995 /* Best effort attempt to cope with MCA/INIT delivered while in
996 * physical mode.
997 */
998 regs->cr_ipsr = ms->pmsa_ipsr;
999 if (ia64_psr(regs)->dt == 0) {
1000 va.l = r12;
1001 if (va.f.reg == 0) {
1002 va.f.reg = 7;
1003 r12 = va.l;
1004 }
1005 va.l = r13;
1006 if (va.f.reg == 0) {
1007 va.f.reg = 7;
1008 r13 = va.l;
1009 }
1010 }
1011 if (ia64_psr(regs)->rt == 0) {
1012 va.l = ar_bspstore;
1013 if (va.f.reg == 0) {
1014 va.f.reg = 7;
1015 ar_bspstore = va.l;
1016 }
1017 va.l = ar_bsp;
1018 if (va.f.reg == 0) {
1019 va.f.reg = 7;
1020 ar_bsp = va.l;
1021 }
1022 }
1023
1024 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
1025 * have been copied to the old stack, the old stack may fail the
1026 * validation tests below. So ia64_old_stack() must restore the dirty
1027 * registers from the new stack. The old and new bspstore probably
1028 * have different alignments, so loadrs calculated on the old bsp
1029 * cannot be used to restore from the new bsp. Calculate a suitable
1030 * loadrs for the new stack and save it in the new pt_regs, where
1031 * ia64_old_stack() can get it.
1032 */
1033 old_bspstore = (unsigned long *)ar_bspstore;
1034 old_bsp = (unsigned long *)ar_bsp;
1035 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
1036 new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET);
1037 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
1038 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
1039
1040 /* Verify the previous stack state before we change it */
1041 if (user_mode(regs)) {
1042 msg = "occurred in user space";
1043 /* previous_current is guaranteed to be valid when the task was
1044 * in user space, so ...
1045 */
1046 ia64_mca_modify_comm(previous_current);
1047 goto no_mod;
1048 }
1049
1050 if (r13 != sos->prev_IA64_KR_CURRENT) {
1051 msg = "inconsistent previous current and r13";
1052 goto no_mod;
1053 }
1054
1055 if (!mca_recover_range(ms->pmsa_iip)) {
1056 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
1057 msg = "inconsistent r12 and r13";
1058 goto no_mod;
1059 }
1060 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
1061 msg = "inconsistent ar.bspstore and r13";
1062 goto no_mod;
1063 }
1064 va.p = old_bspstore;
1065 if (va.f.reg < 5) {
1066 msg = "old_bspstore is in the wrong region";
1067 goto no_mod;
1068 }
1069 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
1070 msg = "inconsistent ar.bsp and r13";
1071 goto no_mod;
1072 }
1073 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1074 if (ar_bspstore + size > r12) {
1075 msg = "no room for blocked state";
1076 goto no_mod;
1077 }
1078 }
1079
1080 ia64_mca_modify_comm(previous_current);
1081
1082 /* Make the original task look blocked. First stack a struct pt_regs,
1083 * describing the state at the time of interrupt. mca_asm.S built a
1084 * partial pt_regs, copy it and fill in the blanks using minstate.
1085 */
1086 p = (char *)r12 - sizeof(*regs);
1087 old_regs = (struct pt_regs *)p;
1088 memcpy(old_regs, regs, sizeof(*regs));
1089 old_regs->loadrs = loadrs;
1090 old_unat = old_regs->ar_unat;
1091 finish_pt_regs(old_regs, sos, &old_unat);
1092
1093 /* Next stack a struct switch_stack. mca_asm.S built a partial
1094 * switch_stack, copy it and fill in the blanks using pt_regs and
1095 * minstate.
1096 *
1097 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1098 * ar.pfs is set to 0.
1099 *
1100 * unwind.c::unw_unwind() does special processing for interrupt frames.
1101 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1102 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1103 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1104 * switch_stack on the original stack so it will unwind correctly when
1105 * unwind.c reads pt_regs.
1106 *
1107 * thread.ksp is updated to point to the synthesized switch_stack.
1108 */
1109 p -= sizeof(struct switch_stack);
1110 old_sw = (struct switch_stack *)p;
1111 memcpy(old_sw, sw, sizeof(*sw));
1112 old_sw->caller_unat = old_unat;
1113 old_sw->ar_fpsr = old_regs->ar_fpsr;
1114 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1115 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1116 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1117 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1118 old_sw->b0 = (u64)ia64_leave_kernel;
1119 old_sw->b1 = ms->pmsa_br1;
1120 old_sw->ar_pfs = 0;
1121 old_sw->ar_unat = old_unat;
1122 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1123 previous_current->thread.ksp = (u64)p - 16;
1124
1125 /* Finally copy the original stack's registers back to its RBS.
1126 * Registers from ar.bspstore through ar.bsp at the time of the event
1127 * are in the current RBS, copy them back to the original stack. The
1128 * copy must be done register by register because the original bspstore
1129 * and the current one have different alignments, so the saved RNAT
1130 * data occurs at different places.
1131 *
1132 * mca_asm does cover, so the old_bsp already includes all registers at
1133 * the time of MCA/INIT. It also does flushrs, so all registers before
1134 * this function have been written to backing store on the MCA/INIT
1135 * stack.
1136 */
1137 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1138 old_rnat = regs->ar_rnat;
1139 while (slots--) {
1140 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1141 new_rnat = ia64_get_rnat(new_bspstore++);
1142 }
1143 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1144 *old_bspstore++ = old_rnat;
1145 old_rnat = 0;
1146 }
1147 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1148 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1149 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1150 *old_bspstore++ = *new_bspstore++;
1151 }
1152 old_sw->ar_bspstore = (unsigned long)old_bspstore;
1153 old_sw->ar_rnat = old_rnat;
1154
1155 sos->prev_task = previous_current;
1156 return previous_current;
1157
1158no_mod:
1159 mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1160 smp_processor_id(), type, msg);
1161 old_unat = regs->ar_unat;
1162 finish_pt_regs(regs, sos, &old_unat);
1163 return previous_current;
1164}
1165
1166/* The monarch/slave interaction is based on monarch_cpu and requires that all
1167 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1168 * not entered rendezvous yet then wait a bit. The assumption is that any
1169 * slave that has not rendezvoused after a reasonable time is never going to do
1170 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1171 * interrupt, as well as cpus that receive the INIT slave event.
1172 */
1173
1174static void
1175ia64_wait_for_slaves(int monarch, const char *type)
1176{
1177 int c, i , wait;
1178
1179 /*
1180 * wait 5 seconds total for slaves (arbitrary)
1181 */
1182 for (i = 0; i < 5000; i++) {
1183 wait = 0;
1184 for_each_online_cpu(c) {
1185 if (c == monarch)
1186 continue;
1187 if (ia64_mc_info.imi_rendez_checkin[c]
1188 == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1189 udelay(1000); /* short wait */
1190 wait = 1;
1191 break;
1192 }
1193 }
1194 if (!wait)
1195 goto all_in;
1196 }
1197
1198 /*
1199 * Maybe slave(s) dead. Print buffered messages immediately.
1200 */
1201 ia64_mlogbuf_finish(0);
1202 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1203 for_each_online_cpu(c) {
1204 if (c == monarch)
1205 continue;
1206 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1207 mprintk(" %d", c);
1208 }
1209 mprintk("\n");
1210 return;
1211
1212all_in:
1213 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1214 return;
1215}
1216
1217/* mca_insert_tr
1218 *
1219 * Switch rid when TR reload and needed!
1220 * iord: 1: itr, 2: itr;
1221 *
1222*/
1223static void mca_insert_tr(u64 iord)
1224{
1225
1226 int i;
1227 u64 old_rr;
1228 struct ia64_tr_entry *p;
1229 unsigned long psr;
1230 int cpu = smp_processor_id();
1231
1232 if (!ia64_idtrs[cpu])
1233 return;
1234
1235 psr = ia64_clear_ic();
1236 for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1237 p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX;
1238 if (p->pte & 0x1) {
1239 old_rr = ia64_get_rr(p->ifa);
1240 if (old_rr != p->rr) {
1241 ia64_set_rr(p->ifa, p->rr);
1242 ia64_srlz_d();
1243 }
1244 ia64_ptr(iord, p->ifa, p->itir >> 2);
1245 ia64_srlz_i();
1246 if (iord & 0x1) {
1247 ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1248 ia64_srlz_i();
1249 }
1250 if (iord & 0x2) {
1251 ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1252 ia64_srlz_i();
1253 }
1254 if (old_rr != p->rr) {
1255 ia64_set_rr(p->ifa, old_rr);
1256 ia64_srlz_d();
1257 }
1258 }
1259 }
1260 ia64_set_psr(psr);
1261}
1262
1263/*
1264 * ia64_mca_handler
1265 *
1266 * This is uncorrectable machine check handler called from OS_MCA
1267 * dispatch code which is in turn called from SAL_CHECK().
1268 * This is the place where the core of OS MCA handling is done.
1269 * Right now the logs are extracted and displayed in a well-defined
1270 * format. This handler code is supposed to be run only on the
1271 * monarch processor. Once the monarch is done with MCA handling
1272 * further MCA logging is enabled by clearing logs.
1273 * Monarch also has the duty of sending wakeup-IPIs to pull the
1274 * slave processors out of rendezvous spinloop.
1275 *
1276 * If multiple processors call into OS_MCA, the first will become
1277 * the monarch. Subsequent cpus will be recorded in the mca_cpu
1278 * bitmask. After the first monarch has processed its MCA, it
1279 * will wake up the next cpu in the mca_cpu bitmask and then go
1280 * into the rendezvous loop. When all processors have serviced
1281 * their MCA, the last monarch frees up the rest of the processors.
1282 */
1283void
1284ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1285 struct ia64_sal_os_state *sos)
1286{
1287 int recover, cpu = smp_processor_id();
1288 struct task_struct *previous_current;
1289 struct ia64_mca_notify_die nd =
1290 { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
1291 static atomic_t mca_count;
1292 static cpumask_t mca_cpu;
1293
1294 if (atomic_add_return(1, &mca_count) == 1) {
1295 monarch_cpu = cpu;
1296 sos->monarch = 1;
1297 } else {
1298 cpumask_set_cpu(cpu, &mca_cpu);
1299 sos->monarch = 0;
1300 }
1301 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1302 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1303
1304 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1305
1306 NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
1307
1308 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1309 if (sos->monarch) {
1310 ia64_wait_for_slaves(cpu, "MCA");
1311
1312 /* Wakeup all the processors which are spinning in the
1313 * rendezvous loop. They will leave SAL, then spin in the OS
1314 * with interrupts disabled until this monarch cpu leaves the
1315 * MCA handler. That gets control back to the OS so we can
1316 * backtrace the other cpus, backtrace when spinning in SAL
1317 * does not work.
1318 */
1319 ia64_mca_wakeup_all();
1320 } else {
1321 while (cpumask_test_cpu(cpu, &mca_cpu))
1322 cpu_relax(); /* spin until monarch wakes us */
1323 }
1324
1325 NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
1326
1327 /* Get the MCA error record and log it */
1328 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1329
1330 /* MCA error recovery */
1331 recover = (ia64_mca_ucmc_extension
1332 && ia64_mca_ucmc_extension(
1333 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1334 sos));
1335
1336 if (recover) {
1337 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1338 rh->severity = sal_log_severity_corrected;
1339 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1340 sos->os_status = IA64_MCA_CORRECTED;
1341 } else {
1342 /* Dump buffered message to console */
1343 ia64_mlogbuf_finish(1);
1344 }
1345
1346 if (__this_cpu_read(ia64_mca_tr_reload)) {
1347 mca_insert_tr(0x1); /*Reload dynamic itrs*/
1348 mca_insert_tr(0x2); /*Reload dynamic itrs*/
1349 }
1350
1351 NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
1352
1353 if (atomic_dec_return(&mca_count) > 0) {
1354 int i;
1355
1356 /* wake up the next monarch cpu,
1357 * and put this cpu in the rendez loop.
1358 */
1359 for_each_online_cpu(i) {
1360 if (cpumask_test_cpu(i, &mca_cpu)) {
1361 monarch_cpu = i;
1362 cpumask_clear_cpu(i, &mca_cpu); /* wake next cpu */
1363 while (monarch_cpu != -1)
1364 cpu_relax(); /* spin until last cpu leaves */
1365 ia64_set_curr_task(cpu, previous_current);
1366 ia64_mc_info.imi_rendez_checkin[cpu]
1367 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1368 return;
1369 }
1370 }
1371 }
1372 ia64_set_curr_task(cpu, previous_current);
1373 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1374 monarch_cpu = -1; /* This frees the slaves and previous monarchs */
1375}
1376
1377static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1378static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1379
1380/*
1381 * ia64_mca_cmc_int_handler
1382 *
1383 * This is corrected machine check interrupt handler.
1384 * Right now the logs are extracted and displayed in a well-defined
1385 * format.
1386 *
1387 * Inputs
1388 * interrupt number
1389 * client data arg ptr
1390 *
1391 * Outputs
1392 * None
1393 */
1394static irqreturn_t
1395ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1396{
1397 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1398 static int index;
1399 static DEFINE_SPINLOCK(cmc_history_lock);
1400
1401 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1402 __func__, cmc_irq, smp_processor_id());
1403
1404 /* SAL spec states this should run w/ interrupts enabled */
1405 local_irq_enable();
1406
1407 spin_lock(&cmc_history_lock);
1408 if (!cmc_polling_enabled) {
1409 int i, count = 1; /* we know 1 happened now */
1410 unsigned long now = jiffies;
1411
1412 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1413 if (now - cmc_history[i] <= HZ)
1414 count++;
1415 }
1416
1417 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1418 if (count >= CMC_HISTORY_LENGTH) {
1419
1420 cmc_polling_enabled = 1;
1421 spin_unlock(&cmc_history_lock);
1422 /* If we're being hit with CMC interrupts, we won't
1423 * ever execute the schedule_work() below. Need to
1424 * disable CMC interrupts on this processor now.
1425 */
1426 ia64_mca_cmc_vector_disable(NULL);
1427 schedule_work(&cmc_disable_work);
1428
1429 /*
1430 * Corrected errors will still be corrected, but
1431 * make sure there's a log somewhere that indicates
1432 * something is generating more than we can handle.
1433 */
1434 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1435
1436 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1437
1438 /* lock already released, get out now */
1439 goto out;
1440 } else {
1441 cmc_history[index++] = now;
1442 if (index == CMC_HISTORY_LENGTH)
1443 index = 0;
1444 }
1445 }
1446 spin_unlock(&cmc_history_lock);
1447out:
1448 /* Get the CMC error record and log it */
1449 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1450
1451 local_irq_disable();
1452
1453 return IRQ_HANDLED;
1454}
1455
1456/*
1457 * ia64_mca_cmc_int_caller
1458 *
1459 * Triggered by sw interrupt from CMC polling routine. Calls
1460 * real interrupt handler and either triggers a sw interrupt
1461 * on the next cpu or does cleanup at the end.
1462 *
1463 * Inputs
1464 * interrupt number
1465 * client data arg ptr
1466 * Outputs
1467 * handled
1468 */
1469static irqreturn_t
1470ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1471{
1472 static int start_count = -1;
1473 unsigned int cpuid;
1474
1475 cpuid = smp_processor_id();
1476
1477 /* If first cpu, update count */
1478 if (start_count == -1)
1479 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1480
1481 ia64_mca_cmc_int_handler(cmc_irq, arg);
1482
1483 cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1484
1485 if (cpuid < nr_cpu_ids) {
1486 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1487 } else {
1488 /* If no log record, switch out of polling mode */
1489 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1490
1491 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1492 schedule_work(&cmc_enable_work);
1493 cmc_polling_enabled = 0;
1494
1495 } else {
1496
1497 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1498 }
1499
1500 start_count = -1;
1501 }
1502
1503 return IRQ_HANDLED;
1504}
1505
1506/*
1507 * ia64_mca_cmc_poll
1508 *
1509 * Poll for Corrected Machine Checks (CMCs)
1510 *
1511 * Inputs : dummy(unused)
1512 * Outputs : None
1513 *
1514 */
1515static void
1516ia64_mca_cmc_poll (struct timer_list *unused)
1517{
1518 /* Trigger a CMC interrupt cascade */
1519 platform_send_ipi(cpumask_first(cpu_online_mask), IA64_CMCP_VECTOR,
1520 IA64_IPI_DM_INT, 0);
1521}
1522
1523/*
1524 * ia64_mca_cpe_int_caller
1525 *
1526 * Triggered by sw interrupt from CPE polling routine. Calls
1527 * real interrupt handler and either triggers a sw interrupt
1528 * on the next cpu or does cleanup at the end.
1529 *
1530 * Inputs
1531 * interrupt number
1532 * client data arg ptr
1533 * Outputs
1534 * handled
1535 */
1536#ifdef CONFIG_ACPI
1537
1538static irqreturn_t
1539ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1540{
1541 static int start_count = -1;
1542 static int poll_time = MIN_CPE_POLL_INTERVAL;
1543 unsigned int cpuid;
1544
1545 cpuid = smp_processor_id();
1546
1547 /* If first cpu, update count */
1548 if (start_count == -1)
1549 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1550
1551 ia64_mca_cpe_int_handler(cpe_irq, arg);
1552
1553 cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1554
1555 if (cpuid < NR_CPUS) {
1556 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1557 } else {
1558 /*
1559 * If a log was recorded, increase our polling frequency,
1560 * otherwise, backoff or return to interrupt mode.
1561 */
1562 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1563 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1564 } else if (cpe_vector < 0) {
1565 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1566 } else {
1567 poll_time = MIN_CPE_POLL_INTERVAL;
1568
1569 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1570 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1571 cpe_poll_enabled = 0;
1572 }
1573
1574 if (cpe_poll_enabled)
1575 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1576 start_count = -1;
1577 }
1578
1579 return IRQ_HANDLED;
1580}
1581
1582/*
1583 * ia64_mca_cpe_poll
1584 *
1585 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1586 * on first cpu, from there it will trickle through all the cpus.
1587 *
1588 * Inputs : dummy(unused)
1589 * Outputs : None
1590 *
1591 */
1592static void
1593ia64_mca_cpe_poll (struct timer_list *unused)
1594{
1595 /* Trigger a CPE interrupt cascade */
1596 platform_send_ipi(cpumask_first(cpu_online_mask), IA64_CPEP_VECTOR,
1597 IA64_IPI_DM_INT, 0);
1598}
1599
1600#endif /* CONFIG_ACPI */
1601
1602static int
1603default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1604{
1605 int c;
1606 struct task_struct *g, *t;
1607 if (val != DIE_INIT_MONARCH_PROCESS)
1608 return NOTIFY_DONE;
1609#ifdef CONFIG_KEXEC
1610 if (atomic_read(&kdump_in_progress))
1611 return NOTIFY_DONE;
1612#endif
1613
1614 /*
1615 * FIXME: mlogbuf will brim over with INIT stack dumps.
1616 * To enable show_stack from INIT, we use oops_in_progress which should
1617 * be used in real oops. This would cause something wrong after INIT.
1618 */
1619 BREAK_LOGLEVEL(console_loglevel);
1620 ia64_mlogbuf_dump_from_init();
1621
1622 printk(KERN_ERR "Processes interrupted by INIT -");
1623 for_each_online_cpu(c) {
1624 struct ia64_sal_os_state *s;
1625 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1626 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1627 g = s->prev_task;
1628 if (g) {
1629 if (g->pid)
1630 printk(" %d", g->pid);
1631 else
1632 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1633 }
1634 }
1635 printk("\n\n");
1636 if (read_trylock(&tasklist_lock)) {
1637 do_each_thread (g, t) {
1638 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1639 show_stack(t, NULL);
1640 } while_each_thread (g, t);
1641 read_unlock(&tasklist_lock);
1642 }
1643 /* FIXME: This will not restore zapped printk locks. */
1644 RESTORE_LOGLEVEL(console_loglevel);
1645 return NOTIFY_DONE;
1646}
1647
1648/*
1649 * C portion of the OS INIT handler
1650 *
1651 * Called from ia64_os_init_dispatch
1652 *
1653 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1654 * this event. This code is used for both monarch and slave INIT events, see
1655 * sos->monarch.
1656 *
1657 * All INIT events switch to the INIT stack and change the previous process to
1658 * blocked status. If one of the INIT events is the monarch then we are
1659 * probably processing the nmi button/command. Use the monarch cpu to dump all
1660 * the processes. The slave INIT events all spin until the monarch cpu
1661 * returns. We can also get INIT slave events for MCA, in which case the MCA
1662 * process is the monarch.
1663 */
1664
1665void
1666ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1667 struct ia64_sal_os_state *sos)
1668{
1669 static atomic_t slaves;
1670 static atomic_t monarchs;
1671 struct task_struct *previous_current;
1672 int cpu = smp_processor_id();
1673 struct ia64_mca_notify_die nd =
1674 { .sos = sos, .monarch_cpu = &monarch_cpu };
1675
1676 NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
1677
1678 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1679 sos->proc_state_param, cpu, sos->monarch);
1680 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1681
1682 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1683 sos->os_status = IA64_INIT_RESUME;
1684
1685 /* FIXME: Workaround for broken proms that drive all INIT events as
1686 * slaves. The last slave that enters is promoted to be a monarch.
1687 * Remove this code in September 2006, that gives platforms a year to
1688 * fix their proms and get their customers updated.
1689 */
1690 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1691 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1692 __func__, cpu);
1693 atomic_dec(&slaves);
1694 sos->monarch = 1;
1695 }
1696
1697 /* FIXME: Workaround for broken proms that drive all INIT events as
1698 * monarchs. Second and subsequent monarchs are demoted to slaves.
1699 * Remove this code in September 2006, that gives platforms a year to
1700 * fix their proms and get their customers updated.
1701 */
1702 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1703 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1704 __func__, cpu);
1705 atomic_dec(&monarchs);
1706 sos->monarch = 0;
1707 }
1708
1709 if (!sos->monarch) {
1710 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1711
1712#ifdef CONFIG_KEXEC
1713 while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress))
1714 udelay(1000);
1715#else
1716 while (monarch_cpu == -1)
1717 cpu_relax(); /* spin until monarch enters */
1718#endif
1719
1720 NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
1721 NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
1722
1723#ifdef CONFIG_KEXEC
1724 while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress))
1725 udelay(1000);
1726#else
1727 while (monarch_cpu != -1)
1728 cpu_relax(); /* spin until monarch leaves */
1729#endif
1730
1731 NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
1732
1733 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1734 ia64_set_curr_task(cpu, previous_current);
1735 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1736 atomic_dec(&slaves);
1737 return;
1738 }
1739
1740 monarch_cpu = cpu;
1741 NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
1742
1743 /*
1744 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1745 * generated via the BMC's command-line interface, but since the console is on the
1746 * same serial line, the user will need some time to switch out of the BMC before
1747 * the dump begins.
1748 */
1749 mprintk("Delaying for 5 seconds...\n");
1750 udelay(5*1000000);
1751 ia64_wait_for_slaves(cpu, "INIT");
1752 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1753 * to default_monarch_init_process() above and just print all the
1754 * tasks.
1755 */
1756 NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
1757 NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
1758
1759 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1760 atomic_dec(&monarchs);
1761 ia64_set_curr_task(cpu, previous_current);
1762 monarch_cpu = -1;
1763 return;
1764}
1765
1766static int __init
1767ia64_mca_disable_cpe_polling(char *str)
1768{
1769 cpe_poll_enabled = 0;
1770 return 1;
1771}
1772
1773__setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1774
1775static struct irqaction cmci_irqaction = {
1776 .handler = ia64_mca_cmc_int_handler,
1777 .name = "cmc_hndlr"
1778};
1779
1780static struct irqaction cmcp_irqaction = {
1781 .handler = ia64_mca_cmc_int_caller,
1782 .name = "cmc_poll"
1783};
1784
1785static struct irqaction mca_rdzv_irqaction = {
1786 .handler = ia64_mca_rendez_int_handler,
1787 .name = "mca_rdzv"
1788};
1789
1790static struct irqaction mca_wkup_irqaction = {
1791 .handler = ia64_mca_wakeup_int_handler,
1792 .name = "mca_wkup"
1793};
1794
1795#ifdef CONFIG_ACPI
1796static struct irqaction mca_cpe_irqaction = {
1797 .handler = ia64_mca_cpe_int_handler,
1798 .name = "cpe_hndlr"
1799};
1800
1801static struct irqaction mca_cpep_irqaction = {
1802 .handler = ia64_mca_cpe_int_caller,
1803 .name = "cpe_poll"
1804};
1805#endif /* CONFIG_ACPI */
1806
1807/* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1808 * these stacks can never sleep, they cannot return from the kernel to user
1809 * space, they do not appear in a normal ps listing. So there is no need to
1810 * format most of the fields.
1811 */
1812
1813static void
1814format_mca_init_stack(void *mca_data, unsigned long offset,
1815 const char *type, int cpu)
1816{
1817 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1818 struct thread_info *ti;
1819 memset(p, 0, KERNEL_STACK_SIZE);
1820 ti = task_thread_info(p);
1821 ti->flags = _TIF_MCA_INIT;
1822 ti->preempt_count = 1;
1823 ti->task = p;
1824 ti->cpu = cpu;
1825 p->stack = ti;
1826 p->state = TASK_UNINTERRUPTIBLE;
1827 cpumask_set_cpu(cpu, &p->cpus_allowed);
1828 INIT_LIST_HEAD(&p->tasks);
1829 p->parent = p->real_parent = p->group_leader = p;
1830 INIT_LIST_HEAD(&p->children);
1831 INIT_LIST_HEAD(&p->sibling);
1832 strncpy(p->comm, type, sizeof(p->comm)-1);
1833}
1834
1835/* Caller prevents this from being called after init */
1836static void * __ref mca_bootmem(void)
1837{
1838 return __alloc_bootmem(sizeof(struct ia64_mca_cpu),
1839 KERNEL_STACK_SIZE, 0);
1840}
1841
1842/* Do per-CPU MCA-related initialization. */
1843void
1844ia64_mca_cpu_init(void *cpu_data)
1845{
1846 void *pal_vaddr;
1847 void *data;
1848 long sz = sizeof(struct ia64_mca_cpu);
1849 int cpu = smp_processor_id();
1850 static int first_time = 1;
1851
1852 /*
1853 * Structure will already be allocated if cpu has been online,
1854 * then offlined.
1855 */
1856 if (__per_cpu_mca[cpu]) {
1857 data = __va(__per_cpu_mca[cpu]);
1858 } else {
1859 if (first_time) {
1860 data = mca_bootmem();
1861 first_time = 0;
1862 } else
1863 data = (void *)__get_free_pages(GFP_KERNEL,
1864 get_order(sz));
1865 if (!data)
1866 panic("Could not allocate MCA memory for cpu %d\n",
1867 cpu);
1868 }
1869 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1870 "MCA", cpu);
1871 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1872 "INIT", cpu);
1873 __this_cpu_write(ia64_mca_data, (__per_cpu_mca[cpu] = __pa(data)));
1874
1875 /*
1876 * Stash away a copy of the PTE needed to map the per-CPU page.
1877 * We may need it during MCA recovery.
1878 */
1879 __this_cpu_write(ia64_mca_per_cpu_pte,
1880 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL)));
1881
1882 /*
1883 * Also, stash away a copy of the PAL address and the PTE
1884 * needed to map it.
1885 */
1886 pal_vaddr = efi_get_pal_addr();
1887 if (!pal_vaddr)
1888 return;
1889 __this_cpu_write(ia64_mca_pal_base,
1890 GRANULEROUNDDOWN((unsigned long) pal_vaddr));
1891 __this_cpu_write(ia64_mca_pal_pte, pte_val(mk_pte_phys(__pa(pal_vaddr),
1892 PAGE_KERNEL)));
1893}
1894
1895static int ia64_mca_cpu_online(unsigned int cpu)
1896{
1897 unsigned long flags;
1898
1899 local_irq_save(flags);
1900 if (!cmc_polling_enabled)
1901 ia64_mca_cmc_vector_enable(NULL);
1902 local_irq_restore(flags);
1903 return 0;
1904}
1905
1906/*
1907 * ia64_mca_init
1908 *
1909 * Do all the system level mca specific initialization.
1910 *
1911 * 1. Register spinloop and wakeup request interrupt vectors
1912 *
1913 * 2. Register OS_MCA handler entry point
1914 *
1915 * 3. Register OS_INIT handler entry point
1916 *
1917 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1918 *
1919 * Note that this initialization is done very early before some kernel
1920 * services are available.
1921 *
1922 * Inputs : None
1923 *
1924 * Outputs : None
1925 */
1926void __init
1927ia64_mca_init(void)
1928{
1929 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1930 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1931 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1932 int i;
1933 long rc;
1934 struct ia64_sal_retval isrv;
1935 unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1936 static struct notifier_block default_init_monarch_nb = {
1937 .notifier_call = default_monarch_init_process,
1938 .priority = 0/* we need to notified last */
1939 };
1940
1941 IA64_MCA_DEBUG("%s: begin\n", __func__);
1942
1943 /* Clear the Rendez checkin flag for all cpus */
1944 for(i = 0 ; i < NR_CPUS; i++)
1945 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1946
1947 /*
1948 * Register the rendezvous spinloop and wakeup mechanism with SAL
1949 */
1950
1951 /* Register the rendezvous interrupt vector with SAL */
1952 while (1) {
1953 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1954 SAL_MC_PARAM_MECHANISM_INT,
1955 IA64_MCA_RENDEZ_VECTOR,
1956 timeout,
1957 SAL_MC_PARAM_RZ_ALWAYS);
1958 rc = isrv.status;
1959 if (rc == 0)
1960 break;
1961 if (rc == -2) {
1962 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1963 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1964 timeout = isrv.v0;
1965 NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
1966 continue;
1967 }
1968 printk(KERN_ERR "Failed to register rendezvous interrupt "
1969 "with SAL (status %ld)\n", rc);
1970 return;
1971 }
1972
1973 /* Register the wakeup interrupt vector with SAL */
1974 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1975 SAL_MC_PARAM_MECHANISM_INT,
1976 IA64_MCA_WAKEUP_VECTOR,
1977 0, 0);
1978 rc = isrv.status;
1979 if (rc) {
1980 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1981 "(status %ld)\n", rc);
1982 return;
1983 }
1984
1985 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
1986
1987 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1988 /*
1989 * XXX - disable SAL checksum by setting size to 0; should be
1990 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1991 */
1992 ia64_mc_info.imi_mca_handler_size = 0;
1993
1994 /* Register the os mca handler with SAL */
1995 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1996 ia64_mc_info.imi_mca_handler,
1997 ia64_tpa(mca_hldlr_ptr->gp),
1998 ia64_mc_info.imi_mca_handler_size,
1999 0, 0, 0)))
2000 {
2001 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
2002 "(status %ld)\n", rc);
2003 return;
2004 }
2005
2006 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
2007 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
2008
2009 /*
2010 * XXX - disable SAL checksum by setting size to 0, should be
2011 * size of the actual init handler in mca_asm.S.
2012 */
2013 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
2014 ia64_mc_info.imi_monarch_init_handler_size = 0;
2015 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
2016 ia64_mc_info.imi_slave_init_handler_size = 0;
2017
2018 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
2019 ia64_mc_info.imi_monarch_init_handler);
2020
2021 /* Register the os init handler with SAL */
2022 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
2023 ia64_mc_info.imi_monarch_init_handler,
2024 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2025 ia64_mc_info.imi_monarch_init_handler_size,
2026 ia64_mc_info.imi_slave_init_handler,
2027 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2028 ia64_mc_info.imi_slave_init_handler_size)))
2029 {
2030 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
2031 "(status %ld)\n", rc);
2032 return;
2033 }
2034 if (register_die_notifier(&default_init_monarch_nb)) {
2035 printk(KERN_ERR "Failed to register default monarch INIT process\n");
2036 return;
2037 }
2038
2039 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2040
2041 /* Initialize the areas set aside by the OS to buffer the
2042 * platform/processor error states for MCA/INIT/CMC
2043 * handling.
2044 */
2045 ia64_log_init(SAL_INFO_TYPE_MCA);
2046 ia64_log_init(SAL_INFO_TYPE_INIT);
2047 ia64_log_init(SAL_INFO_TYPE_CMC);
2048 ia64_log_init(SAL_INFO_TYPE_CPE);
2049
2050 mca_init = 1;
2051 printk(KERN_INFO "MCA related initialization done\n");
2052}
2053
2054
2055/*
2056 * These pieces cannot be done in ia64_mca_init() because it is called before
2057 * early_irq_init() which would wipe out our percpu irq registrations. But we
2058 * cannot leave them until ia64_mca_late_init() because by then all the other
2059 * processors have been brought online and have set their own CMC vectors to
2060 * point at a non-existant action. Called from arch_early_irq_init().
2061 */
2062void __init ia64_mca_irq_init(void)
2063{
2064 /*
2065 * Configure the CMCI/P vector and handler. Interrupts for CMC are
2066 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2067 */
2068 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
2069 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
2070 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
2071
2072 /* Setup the MCA rendezvous interrupt vector */
2073 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
2074
2075 /* Setup the MCA wakeup interrupt vector */
2076 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
2077
2078#ifdef CONFIG_ACPI
2079 /* Setup the CPEI/P handler */
2080 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
2081#endif
2082}
2083
2084/*
2085 * ia64_mca_late_init
2086 *
2087 * Opportunity to setup things that require initialization later
2088 * than ia64_mca_init. Setup a timer to poll for CPEs if the
2089 * platform doesn't support an interrupt driven mechanism.
2090 *
2091 * Inputs : None
2092 * Outputs : Status
2093 */
2094static int __init
2095ia64_mca_late_init(void)
2096{
2097 if (!mca_init)
2098 return 0;
2099
2100 /* Setup the CMCI/P vector and handler */
2101 timer_setup(&cmc_poll_timer, ia64_mca_cmc_poll, 0);
2102
2103 /* Unmask/enable the vector */
2104 cmc_polling_enabled = 0;
2105 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/mca:online",
2106 ia64_mca_cpu_online, NULL);
2107 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2108
2109#ifdef CONFIG_ACPI
2110 /* Setup the CPEI/P vector and handler */
2111 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2112 timer_setup(&cpe_poll_timer, ia64_mca_cpe_poll, 0);
2113
2114 {
2115 unsigned int irq;
2116
2117 if (cpe_vector >= 0) {
2118 /* If platform supports CPEI, enable the irq. */
2119 irq = local_vector_to_irq(cpe_vector);
2120 if (irq > 0) {
2121 cpe_poll_enabled = 0;
2122 irq_set_status_flags(irq, IRQ_PER_CPU);
2123 setup_irq(irq, &mca_cpe_irqaction);
2124 ia64_cpe_irq = irq;
2125 ia64_mca_register_cpev(cpe_vector);
2126 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2127 __func__);
2128 return 0;
2129 }
2130 printk(KERN_ERR "%s: Failed to find irq for CPE "
2131 "interrupt handler, vector %d\n",
2132 __func__, cpe_vector);
2133 }
2134 /* If platform doesn't support CPEI, get the timer going. */
2135 if (cpe_poll_enabled) {
2136 ia64_mca_cpe_poll(0UL);
2137 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2138 }
2139 }
2140#endif
2141
2142 return 0;
2143}
2144
2145device_initcall(ia64_mca_late_init);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * File: mca.c
4 * Purpose: Generic MCA handling layer
5 *
6 * Copyright (C) 2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 *
9 * Copyright (C) 2002 Dell Inc.
10 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
11 *
12 * Copyright (C) 2002 Intel
13 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
14 *
15 * Copyright (C) 2001 Intel
16 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
17 *
18 * Copyright (C) 2000 Intel
19 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
20 *
21 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
22 * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
23 *
24 * Copyright (C) 2006 FUJITSU LIMITED
25 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
26 *
27 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
28 * Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
29 * added min save state dump, added INIT handler.
30 *
31 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
32 * Added setup of CMCI and CPEI IRQs, logging of corrected platform
33 * errors, completed code for logging of corrected & uncorrected
34 * machine check errors, and updated for conformance with Nov. 2000
35 * revision of the SAL 3.0 spec.
36 *
37 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
38 * Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
39 * set SAL default return values, changed error record structure to
40 * linked list, added init call to sal_get_state_info_size().
41 *
42 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
43 * GUID cleanups.
44 *
45 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
46 * Added INIT backtrace support.
47 *
48 * 2003-12-08 Keith Owens <kaos@sgi.com>
49 * smp_call_function() must not be called from interrupt context
50 * (can deadlock on tasklist_lock).
51 * Use keventd to call smp_call_function().
52 *
53 * 2004-02-01 Keith Owens <kaos@sgi.com>
54 * Avoid deadlock when using printk() for MCA and INIT records.
55 * Delete all record printing code, moved to salinfo_decode in user
56 * space. Mark variables and functions static where possible.
57 * Delete dead variables and functions. Reorder to remove the need
58 * for forward declarations and to consolidate related code.
59 *
60 * 2005-08-12 Keith Owens <kaos@sgi.com>
61 * Convert MCA/INIT handlers to use per event stacks and SAL/OS
62 * state.
63 *
64 * 2005-10-07 Keith Owens <kaos@sgi.com>
65 * Add notify_die() hooks.
66 *
67 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
68 * Add printing support for MCA/INIT.
69 *
70 * 2007-04-27 Russ Anderson <rja@sgi.com>
71 * Support multiple cpus going through OS_MCA in the same event.
72 */
73#include <linux/jiffies.h>
74#include <linux/types.h>
75#include <linux/init.h>
76#include <linux/sched/signal.h>
77#include <linux/sched/debug.h>
78#include <linux/sched/task.h>
79#include <linux/interrupt.h>
80#include <linux/irq.h>
81#include <linux/memblock.h>
82#include <linux/acpi.h>
83#include <linux/timer.h>
84#include <linux/module.h>
85#include <linux/kernel.h>
86#include <linux/smp.h>
87#include <linux/workqueue.h>
88#include <linux/cpumask.h>
89#include <linux/kdebug.h>
90#include <linux/cpu.h>
91#include <linux/gfp.h>
92
93#include <asm/delay.h>
94#include <asm/efi.h>
95#include <asm/meminit.h>
96#include <asm/page.h>
97#include <asm/ptrace.h>
98#include <asm/sal.h>
99#include <asm/mca.h>
100#include <asm/mca_asm.h>
101#include <asm/kexec.h>
102
103#include <asm/irq.h>
104#include <asm/hw_irq.h>
105#include <asm/tlb.h>
106
107#include "mca_drv.h"
108#include "entry.h"
109#include "irq.h"
110
111#if defined(IA64_MCA_DEBUG_INFO)
112# define IA64_MCA_DEBUG(fmt...) printk(fmt)
113#else
114# define IA64_MCA_DEBUG(fmt...) do {} while (0)
115#endif
116
117#define NOTIFY_INIT(event, regs, arg, spin) \
118do { \
119 if ((notify_die((event), "INIT", (regs), (arg), 0, 0) \
120 == NOTIFY_STOP) && ((spin) == 1)) \
121 ia64_mca_spin(__func__); \
122} while (0)
123
124#define NOTIFY_MCA(event, regs, arg, spin) \
125do { \
126 if ((notify_die((event), "MCA", (regs), (arg), 0, 0) \
127 == NOTIFY_STOP) && ((spin) == 1)) \
128 ia64_mca_spin(__func__); \
129} while (0)
130
131/* Used by mca_asm.S */
132DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
133DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
134DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
135DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
136DEFINE_PER_CPU(u64, ia64_mca_tr_reload); /* Flag for TR reload */
137
138unsigned long __per_cpu_mca[NR_CPUS];
139
140/* In mca_asm.S */
141extern void ia64_os_init_dispatch_monarch (void);
142extern void ia64_os_init_dispatch_slave (void);
143
144static int monarch_cpu = -1;
145
146static ia64_mc_info_t ia64_mc_info;
147
148#define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
149#define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
150#define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
151#define CPE_HISTORY_LENGTH 5
152#define CMC_HISTORY_LENGTH 5
153
154static struct timer_list cpe_poll_timer;
155static struct timer_list cmc_poll_timer;
156/*
157 * This variable tells whether we are currently in polling mode.
158 * Start with this in the wrong state so we won't play w/ timers
159 * before the system is ready.
160 */
161static int cmc_polling_enabled = 1;
162
163/*
164 * Clearing this variable prevents CPE polling from getting activated
165 * in mca_late_init. Use it if your system doesn't provide a CPEI,
166 * but encounters problems retrieving CPE logs. This should only be
167 * necessary for debugging.
168 */
169static int cpe_poll_enabled = 1;
170
171extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
172
173static int mca_init __initdata;
174
175/*
176 * limited & delayed printing support for MCA/INIT handler
177 */
178
179#define mprintk(fmt...) ia64_mca_printk(fmt)
180
181#define MLOGBUF_SIZE (512+256*NR_CPUS)
182#define MLOGBUF_MSGMAX 256
183static char mlogbuf[MLOGBUF_SIZE];
184static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */
185static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */
186static unsigned long mlogbuf_start;
187static unsigned long mlogbuf_end;
188static unsigned int mlogbuf_finished = 0;
189static unsigned long mlogbuf_timestamp = 0;
190
191static int loglevel_save = -1;
192#define BREAK_LOGLEVEL(__console_loglevel) \
193 oops_in_progress = 1; \
194 if (loglevel_save < 0) \
195 loglevel_save = __console_loglevel; \
196 __console_loglevel = 15;
197
198#define RESTORE_LOGLEVEL(__console_loglevel) \
199 if (loglevel_save >= 0) { \
200 __console_loglevel = loglevel_save; \
201 loglevel_save = -1; \
202 } \
203 mlogbuf_finished = 0; \
204 oops_in_progress = 0;
205
206/*
207 * Push messages into buffer, print them later if not urgent.
208 */
209void ia64_mca_printk(const char *fmt, ...)
210{
211 va_list args;
212 int printed_len;
213 char temp_buf[MLOGBUF_MSGMAX];
214 char *p;
215
216 va_start(args, fmt);
217 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
218 va_end(args);
219
220 /* Copy the output into mlogbuf */
221 if (oops_in_progress) {
222 /* mlogbuf was abandoned, use printk directly instead. */
223 printk("%s", temp_buf);
224 } else {
225 spin_lock(&mlogbuf_wlock);
226 for (p = temp_buf; *p; p++) {
227 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
228 if (next != mlogbuf_start) {
229 mlogbuf[mlogbuf_end] = *p;
230 mlogbuf_end = next;
231 } else {
232 /* buffer full */
233 break;
234 }
235 }
236 mlogbuf[mlogbuf_end] = '\0';
237 spin_unlock(&mlogbuf_wlock);
238 }
239}
240EXPORT_SYMBOL(ia64_mca_printk);
241
242/*
243 * Print buffered messages.
244 * NOTE: call this after returning normal context. (ex. from salinfod)
245 */
246void ia64_mlogbuf_dump(void)
247{
248 char temp_buf[MLOGBUF_MSGMAX];
249 char *p;
250 unsigned long index;
251 unsigned long flags;
252 unsigned int printed_len;
253
254 /* Get output from mlogbuf */
255 while (mlogbuf_start != mlogbuf_end) {
256 temp_buf[0] = '\0';
257 p = temp_buf;
258 printed_len = 0;
259
260 spin_lock_irqsave(&mlogbuf_rlock, flags);
261
262 index = mlogbuf_start;
263 while (index != mlogbuf_end) {
264 *p = mlogbuf[index];
265 index = (index + 1) % MLOGBUF_SIZE;
266 if (!*p)
267 break;
268 p++;
269 if (++printed_len >= MLOGBUF_MSGMAX - 1)
270 break;
271 }
272 *p = '\0';
273 if (temp_buf[0])
274 printk("%s", temp_buf);
275 mlogbuf_start = index;
276
277 mlogbuf_timestamp = 0;
278 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
279 }
280}
281EXPORT_SYMBOL(ia64_mlogbuf_dump);
282
283/*
284 * Call this if system is going to down or if immediate flushing messages to
285 * console is required. (ex. recovery was failed, crash dump is going to be
286 * invoked, long-wait rendezvous etc.)
287 * NOTE: this should be called from monarch.
288 */
289static void ia64_mlogbuf_finish(int wait)
290{
291 BREAK_LOGLEVEL(console_loglevel);
292
293 spin_lock_init(&mlogbuf_rlock);
294 ia64_mlogbuf_dump();
295 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
296 "MCA/INIT might be dodgy or fail.\n");
297
298 if (!wait)
299 return;
300
301 /* wait for console */
302 printk("Delaying for 5 seconds...\n");
303 udelay(5*1000000);
304
305 mlogbuf_finished = 1;
306}
307
308/*
309 * Print buffered messages from INIT context.
310 */
311static void ia64_mlogbuf_dump_from_init(void)
312{
313 if (mlogbuf_finished)
314 return;
315
316 if (mlogbuf_timestamp &&
317 time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
318 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
319 " and the system seems to be messed up.\n");
320 ia64_mlogbuf_finish(0);
321 return;
322 }
323
324 if (!spin_trylock(&mlogbuf_rlock)) {
325 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
326 "Generated messages other than stack dump will be "
327 "buffered to mlogbuf and will be printed later.\n");
328 printk(KERN_ERR "INIT: If messages would not printed after "
329 "this INIT, wait 30sec and assert INIT again.\n");
330 if (!mlogbuf_timestamp)
331 mlogbuf_timestamp = jiffies;
332 return;
333 }
334 spin_unlock(&mlogbuf_rlock);
335 ia64_mlogbuf_dump();
336}
337
338static inline void
339ia64_mca_spin(const char *func)
340{
341 if (monarch_cpu == smp_processor_id())
342 ia64_mlogbuf_finish(0);
343 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
344 while (1)
345 cpu_relax();
346}
347/*
348 * IA64_MCA log support
349 */
350#define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
351#define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
352
353typedef struct ia64_state_log_s
354{
355 spinlock_t isl_lock;
356 int isl_index;
357 unsigned long isl_count;
358 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
359} ia64_state_log_t;
360
361static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
362
363#define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
364#define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
365#define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
366#define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
367#define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
368#define IA64_LOG_INDEX_INC(it) \
369 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
370 ia64_state_log[it].isl_count++;}
371#define IA64_LOG_INDEX_DEC(it) \
372 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
373#define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
374#define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
375#define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
376
377static inline void ia64_log_allocate(int it, u64 size)
378{
379 ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] =
380 (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
381 if (!ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)])
382 panic("%s: Failed to allocate %llu bytes\n", __func__, size);
383
384 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] =
385 (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
386 if (!ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)])
387 panic("%s: Failed to allocate %llu bytes\n", __func__, size);
388}
389
390/*
391 * ia64_log_init
392 * Reset the OS ia64 log buffer
393 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
394 * Outputs : None
395 */
396static void __init
397ia64_log_init(int sal_info_type)
398{
399 u64 max_size = 0;
400
401 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
402 IA64_LOG_LOCK_INIT(sal_info_type);
403
404 // SAL will tell us the maximum size of any error record of this type
405 max_size = ia64_sal_get_state_info_size(sal_info_type);
406 if (!max_size)
407 /* alloc_bootmem() doesn't like zero-sized allocations! */
408 return;
409
410 // set up OS data structures to hold error info
411 ia64_log_allocate(sal_info_type, max_size);
412}
413
414/*
415 * ia64_log_get
416 *
417 * Get the current MCA log from SAL and copy it into the OS log buffer.
418 *
419 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
420 * irq_safe whether you can use printk at this point
421 * Outputs : size (total record length)
422 * *buffer (ptr to error record)
423 *
424 */
425static u64
426ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
427{
428 sal_log_record_header_t *log_buffer;
429 u64 total_len = 0;
430 unsigned long s;
431
432 IA64_LOG_LOCK(sal_info_type);
433
434 /* Get the process state information */
435 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
436
437 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
438
439 if (total_len) {
440 IA64_LOG_INDEX_INC(sal_info_type);
441 IA64_LOG_UNLOCK(sal_info_type);
442 if (irq_safe) {
443 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
444 __func__, sal_info_type, total_len);
445 }
446 *buffer = (u8 *) log_buffer;
447 return total_len;
448 } else {
449 IA64_LOG_UNLOCK(sal_info_type);
450 return 0;
451 }
452}
453
454/*
455 * ia64_mca_log_sal_error_record
456 *
457 * This function retrieves a specified error record type from SAL
458 * and wakes up any processes waiting for error records.
459 *
460 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
461 * FIXME: remove MCA and irq_safe.
462 */
463static void
464ia64_mca_log_sal_error_record(int sal_info_type)
465{
466 u8 *buffer;
467 sal_log_record_header_t *rh;
468 u64 size;
469 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
470#ifdef IA64_MCA_DEBUG_INFO
471 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
472#endif
473
474 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
475 if (!size)
476 return;
477
478 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
479
480 if (irq_safe)
481 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
482 smp_processor_id(),
483 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
484
485 /* Clear logs from corrected errors in case there's no user-level logger */
486 rh = (sal_log_record_header_t *)buffer;
487 if (rh->severity == sal_log_severity_corrected)
488 ia64_sal_clear_state_info(sal_info_type);
489}
490
491/*
492 * search_mca_table
493 * See if the MCA surfaced in an instruction range
494 * that has been tagged as recoverable.
495 *
496 * Inputs
497 * first First address range to check
498 * last Last address range to check
499 * ip Instruction pointer, address we are looking for
500 *
501 * Return value:
502 * 1 on Success (in the table)/ 0 on Failure (not in the table)
503 */
504int
505search_mca_table (const struct mca_table_entry *first,
506 const struct mca_table_entry *last,
507 unsigned long ip)
508{
509 const struct mca_table_entry *curr;
510 u64 curr_start, curr_end;
511
512 curr = first;
513 while (curr <= last) {
514 curr_start = (u64) &curr->start_addr + curr->start_addr;
515 curr_end = (u64) &curr->end_addr + curr->end_addr;
516
517 if ((ip >= curr_start) && (ip <= curr_end)) {
518 return 1;
519 }
520 curr++;
521 }
522 return 0;
523}
524
525/* Given an address, look for it in the mca tables. */
526int mca_recover_range(unsigned long addr)
527{
528 extern struct mca_table_entry __start___mca_table[];
529 extern struct mca_table_entry __stop___mca_table[];
530
531 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
532}
533EXPORT_SYMBOL_GPL(mca_recover_range);
534
535int cpe_vector = -1;
536int ia64_cpe_irq = -1;
537
538static irqreturn_t
539ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
540{
541 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
542 static int index;
543 static DEFINE_SPINLOCK(cpe_history_lock);
544
545 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
546 __func__, cpe_irq, smp_processor_id());
547
548 /* SAL spec states this should run w/ interrupts enabled */
549 local_irq_enable();
550
551 spin_lock(&cpe_history_lock);
552 if (!cpe_poll_enabled && cpe_vector >= 0) {
553
554 int i, count = 1; /* we know 1 happened now */
555 unsigned long now = jiffies;
556
557 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
558 if (now - cpe_history[i] <= HZ)
559 count++;
560 }
561
562 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
563 if (count >= CPE_HISTORY_LENGTH) {
564
565 cpe_poll_enabled = 1;
566 spin_unlock(&cpe_history_lock);
567 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
568
569 /*
570 * Corrected errors will still be corrected, but
571 * make sure there's a log somewhere that indicates
572 * something is generating more than we can handle.
573 */
574 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
575
576 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
577
578 /* lock already released, get out now */
579 goto out;
580 } else {
581 cpe_history[index++] = now;
582 if (index == CPE_HISTORY_LENGTH)
583 index = 0;
584 }
585 }
586 spin_unlock(&cpe_history_lock);
587out:
588 /* Get the CPE error record and log it */
589 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
590
591 local_irq_disable();
592
593 return IRQ_HANDLED;
594}
595
596/*
597 * ia64_mca_register_cpev
598 *
599 * Register the corrected platform error vector with SAL.
600 *
601 * Inputs
602 * cpev Corrected Platform Error Vector number
603 *
604 * Outputs
605 * None
606 */
607void
608ia64_mca_register_cpev (int cpev)
609{
610 /* Register the CPE interrupt vector with SAL */
611 struct ia64_sal_retval isrv;
612
613 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
614 if (isrv.status) {
615 printk(KERN_ERR "Failed to register Corrected Platform "
616 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
617 return;
618 }
619
620 IA64_MCA_DEBUG("%s: corrected platform error "
621 "vector %#x registered\n", __func__, cpev);
622}
623
624/*
625 * ia64_mca_cmc_vector_setup
626 *
627 * Setup the corrected machine check vector register in the processor.
628 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
629 * This function is invoked on a per-processor basis.
630 *
631 * Inputs
632 * None
633 *
634 * Outputs
635 * None
636 */
637void
638ia64_mca_cmc_vector_setup (void)
639{
640 cmcv_reg_t cmcv;
641
642 cmcv.cmcv_regval = 0;
643 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
644 cmcv.cmcv_vector = IA64_CMC_VECTOR;
645 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
646
647 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
648 __func__, smp_processor_id(), IA64_CMC_VECTOR);
649
650 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
651 __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
652}
653
654/*
655 * ia64_mca_cmc_vector_disable
656 *
657 * Mask the corrected machine check vector register in the processor.
658 * This function is invoked on a per-processor basis.
659 *
660 * Inputs
661 * dummy(unused)
662 *
663 * Outputs
664 * None
665 */
666static void
667ia64_mca_cmc_vector_disable (void *dummy)
668{
669 cmcv_reg_t cmcv;
670
671 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
672
673 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
674 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
675
676 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
677 __func__, smp_processor_id(), cmcv.cmcv_vector);
678}
679
680/*
681 * ia64_mca_cmc_vector_enable
682 *
683 * Unmask the corrected machine check vector register in the processor.
684 * This function is invoked on a per-processor basis.
685 *
686 * Inputs
687 * dummy(unused)
688 *
689 * Outputs
690 * None
691 */
692static void
693ia64_mca_cmc_vector_enable (void *dummy)
694{
695 cmcv_reg_t cmcv;
696
697 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
698
699 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
700 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
701
702 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
703 __func__, smp_processor_id(), cmcv.cmcv_vector);
704}
705
706/*
707 * ia64_mca_cmc_vector_disable_keventd
708 *
709 * Called via keventd (smp_call_function() is not safe in interrupt context) to
710 * disable the cmc interrupt vector.
711 */
712static void
713ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
714{
715 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
716}
717
718/*
719 * ia64_mca_cmc_vector_enable_keventd
720 *
721 * Called via keventd (smp_call_function() is not safe in interrupt context) to
722 * enable the cmc interrupt vector.
723 */
724static void
725ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
726{
727 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
728}
729
730/*
731 * ia64_mca_wakeup
732 *
733 * Send an inter-cpu interrupt to wake-up a particular cpu.
734 *
735 * Inputs : cpuid
736 * Outputs : None
737 */
738static void
739ia64_mca_wakeup(int cpu)
740{
741 ia64_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
742}
743
744/*
745 * ia64_mca_wakeup_all
746 *
747 * Wakeup all the slave cpus which have rendez'ed previously.
748 *
749 * Inputs : None
750 * Outputs : None
751 */
752static void
753ia64_mca_wakeup_all(void)
754{
755 int cpu;
756
757 /* Clear the Rendez checkin flag for all cpus */
758 for_each_online_cpu(cpu) {
759 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
760 ia64_mca_wakeup(cpu);
761 }
762
763}
764
765/*
766 * ia64_mca_rendez_interrupt_handler
767 *
768 * This is handler used to put slave processors into spinloop
769 * while the monarch processor does the mca handling and later
770 * wake each slave up once the monarch is done. The state
771 * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
772 * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
773 * the cpu has come out of OS rendezvous.
774 *
775 * Inputs : None
776 * Outputs : None
777 */
778static irqreturn_t
779ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
780{
781 unsigned long flags;
782 int cpu = smp_processor_id();
783 struct ia64_mca_notify_die nd =
784 { .sos = NULL, .monarch_cpu = &monarch_cpu };
785
786 /* Mask all interrupts */
787 local_irq_save(flags);
788
789 NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);
790
791 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
792 /* Register with the SAL monarch that the slave has
793 * reached SAL
794 */
795 ia64_sal_mc_rendez();
796
797 NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);
798
799 /* Wait for the monarch cpu to exit. */
800 while (monarch_cpu != -1)
801 cpu_relax(); /* spin until monarch leaves */
802
803 NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);
804
805 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
806 /* Enable all interrupts */
807 local_irq_restore(flags);
808 return IRQ_HANDLED;
809}
810
811/*
812 * ia64_mca_wakeup_int_handler
813 *
814 * The interrupt handler for processing the inter-cpu interrupt to the
815 * slave cpu which was spinning in the rendez loop.
816 * Since this spinning is done by turning off the interrupts and
817 * polling on the wakeup-interrupt bit in the IRR, there is
818 * nothing useful to be done in the handler.
819 *
820 * Inputs : wakeup_irq (Wakeup-interrupt bit)
821 * arg (Interrupt handler specific argument)
822 * Outputs : None
823 *
824 */
825static irqreturn_t
826ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
827{
828 return IRQ_HANDLED;
829}
830
831/* Function pointer for extra MCA recovery */
832int (*ia64_mca_ucmc_extension)
833 (void*,struct ia64_sal_os_state*)
834 = NULL;
835
836int
837ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
838{
839 if (ia64_mca_ucmc_extension)
840 return 1;
841
842 ia64_mca_ucmc_extension = fn;
843 return 0;
844}
845
846void
847ia64_unreg_MCA_extension(void)
848{
849 if (ia64_mca_ucmc_extension)
850 ia64_mca_ucmc_extension = NULL;
851}
852
853EXPORT_SYMBOL(ia64_reg_MCA_extension);
854EXPORT_SYMBOL(ia64_unreg_MCA_extension);
855
856
857static inline void
858copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat)
859{
860 u64 fslot, tslot, nat;
861 *tr = *fr;
862 fslot = ((unsigned long)fr >> 3) & 63;
863 tslot = ((unsigned long)tr >> 3) & 63;
864 *tnat &= ~(1UL << tslot);
865 nat = (fnat >> fslot) & 1;
866 *tnat |= (nat << tslot);
867}
868
869/* Change the comm field on the MCA/INT task to include the pid that
870 * was interrupted, it makes for easier debugging. If that pid was 0
871 * (swapper or nested MCA/INIT) then use the start of the previous comm
872 * field suffixed with its cpu.
873 */
874
875static void
876ia64_mca_modify_comm(const struct task_struct *previous_current)
877{
878 char *p, comm[sizeof(current->comm)];
879 if (previous_current->pid)
880 snprintf(comm, sizeof(comm), "%s %d",
881 current->comm, previous_current->pid);
882 else {
883 int l;
884 if ((p = strchr(previous_current->comm, ' ')))
885 l = p - previous_current->comm;
886 else
887 l = strlen(previous_current->comm);
888 snprintf(comm, sizeof(comm), "%s %*s %d",
889 current->comm, l, previous_current->comm,
890 task_thread_info(previous_current)->cpu);
891 }
892 memcpy(current->comm, comm, sizeof(current->comm));
893}
894
895static void
896finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos,
897 unsigned long *nat)
898{
899 const struct pal_min_state_area *ms = sos->pal_min_state;
900 const u64 *bank;
901
902 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
903 * pmsa_{xip,xpsr,xfs}
904 */
905 if (ia64_psr(regs)->ic) {
906 regs->cr_iip = ms->pmsa_iip;
907 regs->cr_ipsr = ms->pmsa_ipsr;
908 regs->cr_ifs = ms->pmsa_ifs;
909 } else {
910 regs->cr_iip = ms->pmsa_xip;
911 regs->cr_ipsr = ms->pmsa_xpsr;
912 regs->cr_ifs = ms->pmsa_xfs;
913
914 sos->iip = ms->pmsa_iip;
915 sos->ipsr = ms->pmsa_ipsr;
916 sos->ifs = ms->pmsa_ifs;
917 }
918 regs->pr = ms->pmsa_pr;
919 regs->b0 = ms->pmsa_br0;
920 regs->ar_rsc = ms->pmsa_rsc;
921 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, ®s->r1, nat);
922 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, ®s->r2, nat);
923 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, ®s->r3, nat);
924 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, ®s->r8, nat);
925 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, ®s->r9, nat);
926 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, ®s->r10, nat);
927 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, ®s->r11, nat);
928 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, ®s->r12, nat);
929 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, ®s->r13, nat);
930 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, ®s->r14, nat);
931 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, ®s->r15, nat);
932 if (ia64_psr(regs)->bn)
933 bank = ms->pmsa_bank1_gr;
934 else
935 bank = ms->pmsa_bank0_gr;
936 copy_reg(&bank[16-16], ms->pmsa_nat_bits, ®s->r16, nat);
937 copy_reg(&bank[17-16], ms->pmsa_nat_bits, ®s->r17, nat);
938 copy_reg(&bank[18-16], ms->pmsa_nat_bits, ®s->r18, nat);
939 copy_reg(&bank[19-16], ms->pmsa_nat_bits, ®s->r19, nat);
940 copy_reg(&bank[20-16], ms->pmsa_nat_bits, ®s->r20, nat);
941 copy_reg(&bank[21-16], ms->pmsa_nat_bits, ®s->r21, nat);
942 copy_reg(&bank[22-16], ms->pmsa_nat_bits, ®s->r22, nat);
943 copy_reg(&bank[23-16], ms->pmsa_nat_bits, ®s->r23, nat);
944 copy_reg(&bank[24-16], ms->pmsa_nat_bits, ®s->r24, nat);
945 copy_reg(&bank[25-16], ms->pmsa_nat_bits, ®s->r25, nat);
946 copy_reg(&bank[26-16], ms->pmsa_nat_bits, ®s->r26, nat);
947 copy_reg(&bank[27-16], ms->pmsa_nat_bits, ®s->r27, nat);
948 copy_reg(&bank[28-16], ms->pmsa_nat_bits, ®s->r28, nat);
949 copy_reg(&bank[29-16], ms->pmsa_nat_bits, ®s->r29, nat);
950 copy_reg(&bank[30-16], ms->pmsa_nat_bits, ®s->r30, nat);
951 copy_reg(&bank[31-16], ms->pmsa_nat_bits, ®s->r31, nat);
952}
953
954/* On entry to this routine, we are running on the per cpu stack, see
955 * mca_asm.h. The original stack has not been touched by this event. Some of
956 * the original stack's registers will be in the RBS on this stack. This stack
957 * also contains a partial pt_regs and switch_stack, the rest of the data is in
958 * PAL minstate.
959 *
960 * The first thing to do is modify the original stack to look like a blocked
961 * task so we can run backtrace on the original task. Also mark the per cpu
962 * stack as current to ensure that we use the correct task state, it also means
963 * that we can do backtrace on the MCA/INIT handler code itself.
964 */
965
966static struct task_struct *
967ia64_mca_modify_original_stack(struct pt_regs *regs,
968 const struct switch_stack *sw,
969 struct ia64_sal_os_state *sos,
970 const char *type)
971{
972 char *p;
973 ia64_va va;
974 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
975 const struct pal_min_state_area *ms = sos->pal_min_state;
976 struct task_struct *previous_current;
977 struct pt_regs *old_regs;
978 struct switch_stack *old_sw;
979 unsigned size = sizeof(struct pt_regs) +
980 sizeof(struct switch_stack) + 16;
981 unsigned long *old_bspstore, *old_bsp;
982 unsigned long *new_bspstore, *new_bsp;
983 unsigned long old_unat, old_rnat, new_rnat, nat;
984 u64 slots, loadrs = regs->loadrs;
985 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
986 u64 ar_bspstore = regs->ar_bspstore;
987 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
988 const char *msg;
989 int cpu = smp_processor_id();
990
991 previous_current = curr_task(cpu);
992 ia64_set_curr_task(cpu, current);
993 if ((p = strchr(current->comm, ' ')))
994 *p = '\0';
995
996 /* Best effort attempt to cope with MCA/INIT delivered while in
997 * physical mode.
998 */
999 regs->cr_ipsr = ms->pmsa_ipsr;
1000 if (ia64_psr(regs)->dt == 0) {
1001 va.l = r12;
1002 if (va.f.reg == 0) {
1003 va.f.reg = 7;
1004 r12 = va.l;
1005 }
1006 va.l = r13;
1007 if (va.f.reg == 0) {
1008 va.f.reg = 7;
1009 r13 = va.l;
1010 }
1011 }
1012 if (ia64_psr(regs)->rt == 0) {
1013 va.l = ar_bspstore;
1014 if (va.f.reg == 0) {
1015 va.f.reg = 7;
1016 ar_bspstore = va.l;
1017 }
1018 va.l = ar_bsp;
1019 if (va.f.reg == 0) {
1020 va.f.reg = 7;
1021 ar_bsp = va.l;
1022 }
1023 }
1024
1025 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
1026 * have been copied to the old stack, the old stack may fail the
1027 * validation tests below. So ia64_old_stack() must restore the dirty
1028 * registers from the new stack. The old and new bspstore probably
1029 * have different alignments, so loadrs calculated on the old bsp
1030 * cannot be used to restore from the new bsp. Calculate a suitable
1031 * loadrs for the new stack and save it in the new pt_regs, where
1032 * ia64_old_stack() can get it.
1033 */
1034 old_bspstore = (unsigned long *)ar_bspstore;
1035 old_bsp = (unsigned long *)ar_bsp;
1036 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
1037 new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET);
1038 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
1039 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
1040
1041 /* Verify the previous stack state before we change it */
1042 if (user_mode(regs)) {
1043 msg = "occurred in user space";
1044 /* previous_current is guaranteed to be valid when the task was
1045 * in user space, so ...
1046 */
1047 ia64_mca_modify_comm(previous_current);
1048 goto no_mod;
1049 }
1050
1051 if (r13 != sos->prev_IA64_KR_CURRENT) {
1052 msg = "inconsistent previous current and r13";
1053 goto no_mod;
1054 }
1055
1056 if (!mca_recover_range(ms->pmsa_iip)) {
1057 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
1058 msg = "inconsistent r12 and r13";
1059 goto no_mod;
1060 }
1061 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
1062 msg = "inconsistent ar.bspstore and r13";
1063 goto no_mod;
1064 }
1065 va.p = old_bspstore;
1066 if (va.f.reg < 5) {
1067 msg = "old_bspstore is in the wrong region";
1068 goto no_mod;
1069 }
1070 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
1071 msg = "inconsistent ar.bsp and r13";
1072 goto no_mod;
1073 }
1074 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1075 if (ar_bspstore + size > r12) {
1076 msg = "no room for blocked state";
1077 goto no_mod;
1078 }
1079 }
1080
1081 ia64_mca_modify_comm(previous_current);
1082
1083 /* Make the original task look blocked. First stack a struct pt_regs,
1084 * describing the state at the time of interrupt. mca_asm.S built a
1085 * partial pt_regs, copy it and fill in the blanks using minstate.
1086 */
1087 p = (char *)r12 - sizeof(*regs);
1088 old_regs = (struct pt_regs *)p;
1089 memcpy(old_regs, regs, sizeof(*regs));
1090 old_regs->loadrs = loadrs;
1091 old_unat = old_regs->ar_unat;
1092 finish_pt_regs(old_regs, sos, &old_unat);
1093
1094 /* Next stack a struct switch_stack. mca_asm.S built a partial
1095 * switch_stack, copy it and fill in the blanks using pt_regs and
1096 * minstate.
1097 *
1098 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1099 * ar.pfs is set to 0.
1100 *
1101 * unwind.c::unw_unwind() does special processing for interrupt frames.
1102 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1103 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1104 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1105 * switch_stack on the original stack so it will unwind correctly when
1106 * unwind.c reads pt_regs.
1107 *
1108 * thread.ksp is updated to point to the synthesized switch_stack.
1109 */
1110 p -= sizeof(struct switch_stack);
1111 old_sw = (struct switch_stack *)p;
1112 memcpy(old_sw, sw, sizeof(*sw));
1113 old_sw->caller_unat = old_unat;
1114 old_sw->ar_fpsr = old_regs->ar_fpsr;
1115 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1116 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1117 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1118 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1119 old_sw->b0 = (u64)ia64_leave_kernel;
1120 old_sw->b1 = ms->pmsa_br1;
1121 old_sw->ar_pfs = 0;
1122 old_sw->ar_unat = old_unat;
1123 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1124 previous_current->thread.ksp = (u64)p - 16;
1125
1126 /* Finally copy the original stack's registers back to its RBS.
1127 * Registers from ar.bspstore through ar.bsp at the time of the event
1128 * are in the current RBS, copy them back to the original stack. The
1129 * copy must be done register by register because the original bspstore
1130 * and the current one have different alignments, so the saved RNAT
1131 * data occurs at different places.
1132 *
1133 * mca_asm does cover, so the old_bsp already includes all registers at
1134 * the time of MCA/INIT. It also does flushrs, so all registers before
1135 * this function have been written to backing store on the MCA/INIT
1136 * stack.
1137 */
1138 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1139 old_rnat = regs->ar_rnat;
1140 while (slots--) {
1141 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1142 new_rnat = ia64_get_rnat(new_bspstore++);
1143 }
1144 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1145 *old_bspstore++ = old_rnat;
1146 old_rnat = 0;
1147 }
1148 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1149 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1150 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1151 *old_bspstore++ = *new_bspstore++;
1152 }
1153 old_sw->ar_bspstore = (unsigned long)old_bspstore;
1154 old_sw->ar_rnat = old_rnat;
1155
1156 sos->prev_task = previous_current;
1157 return previous_current;
1158
1159no_mod:
1160 mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1161 smp_processor_id(), type, msg);
1162 old_unat = regs->ar_unat;
1163 finish_pt_regs(regs, sos, &old_unat);
1164 return previous_current;
1165}
1166
1167/* The monarch/slave interaction is based on monarch_cpu and requires that all
1168 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1169 * not entered rendezvous yet then wait a bit. The assumption is that any
1170 * slave that has not rendezvoused after a reasonable time is never going to do
1171 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1172 * interrupt, as well as cpus that receive the INIT slave event.
1173 */
1174
1175static void
1176ia64_wait_for_slaves(int monarch, const char *type)
1177{
1178 int c, i , wait;
1179
1180 /*
1181 * wait 5 seconds total for slaves (arbitrary)
1182 */
1183 for (i = 0; i < 5000; i++) {
1184 wait = 0;
1185 for_each_online_cpu(c) {
1186 if (c == monarch)
1187 continue;
1188 if (ia64_mc_info.imi_rendez_checkin[c]
1189 == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1190 udelay(1000); /* short wait */
1191 wait = 1;
1192 break;
1193 }
1194 }
1195 if (!wait)
1196 goto all_in;
1197 }
1198
1199 /*
1200 * Maybe slave(s) dead. Print buffered messages immediately.
1201 */
1202 ia64_mlogbuf_finish(0);
1203 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1204 for_each_online_cpu(c) {
1205 if (c == monarch)
1206 continue;
1207 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1208 mprintk(" %d", c);
1209 }
1210 mprintk("\n");
1211 return;
1212
1213all_in:
1214 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1215 return;
1216}
1217
1218/* mca_insert_tr
1219 *
1220 * Switch rid when TR reload and needed!
1221 * iord: 1: itr, 2: itr;
1222 *
1223*/
1224static void mca_insert_tr(u64 iord)
1225{
1226
1227 int i;
1228 u64 old_rr;
1229 struct ia64_tr_entry *p;
1230 unsigned long psr;
1231 int cpu = smp_processor_id();
1232
1233 if (!ia64_idtrs[cpu])
1234 return;
1235
1236 psr = ia64_clear_ic();
1237 for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1238 p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX;
1239 if (p->pte & 0x1) {
1240 old_rr = ia64_get_rr(p->ifa);
1241 if (old_rr != p->rr) {
1242 ia64_set_rr(p->ifa, p->rr);
1243 ia64_srlz_d();
1244 }
1245 ia64_ptr(iord, p->ifa, p->itir >> 2);
1246 ia64_srlz_i();
1247 if (iord & 0x1) {
1248 ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1249 ia64_srlz_i();
1250 }
1251 if (iord & 0x2) {
1252 ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1253 ia64_srlz_i();
1254 }
1255 if (old_rr != p->rr) {
1256 ia64_set_rr(p->ifa, old_rr);
1257 ia64_srlz_d();
1258 }
1259 }
1260 }
1261 ia64_set_psr(psr);
1262}
1263
1264/*
1265 * ia64_mca_handler
1266 *
1267 * This is uncorrectable machine check handler called from OS_MCA
1268 * dispatch code which is in turn called from SAL_CHECK().
1269 * This is the place where the core of OS MCA handling is done.
1270 * Right now the logs are extracted and displayed in a well-defined
1271 * format. This handler code is supposed to be run only on the
1272 * monarch processor. Once the monarch is done with MCA handling
1273 * further MCA logging is enabled by clearing logs.
1274 * Monarch also has the duty of sending wakeup-IPIs to pull the
1275 * slave processors out of rendezvous spinloop.
1276 *
1277 * If multiple processors call into OS_MCA, the first will become
1278 * the monarch. Subsequent cpus will be recorded in the mca_cpu
1279 * bitmask. After the first monarch has processed its MCA, it
1280 * will wake up the next cpu in the mca_cpu bitmask and then go
1281 * into the rendezvous loop. When all processors have serviced
1282 * their MCA, the last monarch frees up the rest of the processors.
1283 */
1284void
1285ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1286 struct ia64_sal_os_state *sos)
1287{
1288 int recover, cpu = smp_processor_id();
1289 struct task_struct *previous_current;
1290 struct ia64_mca_notify_die nd =
1291 { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
1292 static atomic_t mca_count;
1293 static cpumask_t mca_cpu;
1294
1295 if (atomic_add_return(1, &mca_count) == 1) {
1296 monarch_cpu = cpu;
1297 sos->monarch = 1;
1298 } else {
1299 cpumask_set_cpu(cpu, &mca_cpu);
1300 sos->monarch = 0;
1301 }
1302 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1303 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1304
1305 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1306
1307 NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
1308
1309 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1310 if (sos->monarch) {
1311 ia64_wait_for_slaves(cpu, "MCA");
1312
1313 /* Wakeup all the processors which are spinning in the
1314 * rendezvous loop. They will leave SAL, then spin in the OS
1315 * with interrupts disabled until this monarch cpu leaves the
1316 * MCA handler. That gets control back to the OS so we can
1317 * backtrace the other cpus, backtrace when spinning in SAL
1318 * does not work.
1319 */
1320 ia64_mca_wakeup_all();
1321 } else {
1322 while (cpumask_test_cpu(cpu, &mca_cpu))
1323 cpu_relax(); /* spin until monarch wakes us */
1324 }
1325
1326 NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
1327
1328 /* Get the MCA error record and log it */
1329 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1330
1331 /* MCA error recovery */
1332 recover = (ia64_mca_ucmc_extension
1333 && ia64_mca_ucmc_extension(
1334 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1335 sos));
1336
1337 if (recover) {
1338 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1339 rh->severity = sal_log_severity_corrected;
1340 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1341 sos->os_status = IA64_MCA_CORRECTED;
1342 } else {
1343 /* Dump buffered message to console */
1344 ia64_mlogbuf_finish(1);
1345 }
1346
1347 if (__this_cpu_read(ia64_mca_tr_reload)) {
1348 mca_insert_tr(0x1); /*Reload dynamic itrs*/
1349 mca_insert_tr(0x2); /*Reload dynamic itrs*/
1350 }
1351
1352 NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
1353
1354 if (atomic_dec_return(&mca_count) > 0) {
1355 int i;
1356
1357 /* wake up the next monarch cpu,
1358 * and put this cpu in the rendez loop.
1359 */
1360 for_each_online_cpu(i) {
1361 if (cpumask_test_cpu(i, &mca_cpu)) {
1362 monarch_cpu = i;
1363 cpumask_clear_cpu(i, &mca_cpu); /* wake next cpu */
1364 while (monarch_cpu != -1)
1365 cpu_relax(); /* spin until last cpu leaves */
1366 ia64_set_curr_task(cpu, previous_current);
1367 ia64_mc_info.imi_rendez_checkin[cpu]
1368 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1369 return;
1370 }
1371 }
1372 }
1373 ia64_set_curr_task(cpu, previous_current);
1374 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1375 monarch_cpu = -1; /* This frees the slaves and previous monarchs */
1376}
1377
1378static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1379static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1380
1381/*
1382 * ia64_mca_cmc_int_handler
1383 *
1384 * This is corrected machine check interrupt handler.
1385 * Right now the logs are extracted and displayed in a well-defined
1386 * format.
1387 *
1388 * Inputs
1389 * interrupt number
1390 * client data arg ptr
1391 *
1392 * Outputs
1393 * None
1394 */
1395static irqreturn_t
1396ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1397{
1398 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1399 static int index;
1400 static DEFINE_SPINLOCK(cmc_history_lock);
1401
1402 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1403 __func__, cmc_irq, smp_processor_id());
1404
1405 /* SAL spec states this should run w/ interrupts enabled */
1406 local_irq_enable();
1407
1408 spin_lock(&cmc_history_lock);
1409 if (!cmc_polling_enabled) {
1410 int i, count = 1; /* we know 1 happened now */
1411 unsigned long now = jiffies;
1412
1413 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1414 if (now - cmc_history[i] <= HZ)
1415 count++;
1416 }
1417
1418 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1419 if (count >= CMC_HISTORY_LENGTH) {
1420
1421 cmc_polling_enabled = 1;
1422 spin_unlock(&cmc_history_lock);
1423 /* If we're being hit with CMC interrupts, we won't
1424 * ever execute the schedule_work() below. Need to
1425 * disable CMC interrupts on this processor now.
1426 */
1427 ia64_mca_cmc_vector_disable(NULL);
1428 schedule_work(&cmc_disable_work);
1429
1430 /*
1431 * Corrected errors will still be corrected, but
1432 * make sure there's a log somewhere that indicates
1433 * something is generating more than we can handle.
1434 */
1435 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1436
1437 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1438
1439 /* lock already released, get out now */
1440 goto out;
1441 } else {
1442 cmc_history[index++] = now;
1443 if (index == CMC_HISTORY_LENGTH)
1444 index = 0;
1445 }
1446 }
1447 spin_unlock(&cmc_history_lock);
1448out:
1449 /* Get the CMC error record and log it */
1450 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1451
1452 local_irq_disable();
1453
1454 return IRQ_HANDLED;
1455}
1456
1457/*
1458 * ia64_mca_cmc_int_caller
1459 *
1460 * Triggered by sw interrupt from CMC polling routine. Calls
1461 * real interrupt handler and either triggers a sw interrupt
1462 * on the next cpu or does cleanup at the end.
1463 *
1464 * Inputs
1465 * interrupt number
1466 * client data arg ptr
1467 * Outputs
1468 * handled
1469 */
1470static irqreturn_t
1471ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1472{
1473 static int start_count = -1;
1474 unsigned int cpuid;
1475
1476 cpuid = smp_processor_id();
1477
1478 /* If first cpu, update count */
1479 if (start_count == -1)
1480 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1481
1482 ia64_mca_cmc_int_handler(cmc_irq, arg);
1483
1484 cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1485
1486 if (cpuid < nr_cpu_ids) {
1487 ia64_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1488 } else {
1489 /* If no log record, switch out of polling mode */
1490 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1491
1492 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1493 schedule_work(&cmc_enable_work);
1494 cmc_polling_enabled = 0;
1495
1496 } else {
1497
1498 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1499 }
1500
1501 start_count = -1;
1502 }
1503
1504 return IRQ_HANDLED;
1505}
1506
1507/*
1508 * ia64_mca_cmc_poll
1509 *
1510 * Poll for Corrected Machine Checks (CMCs)
1511 *
1512 * Inputs : dummy(unused)
1513 * Outputs : None
1514 *
1515 */
1516static void
1517ia64_mca_cmc_poll (struct timer_list *unused)
1518{
1519 /* Trigger a CMC interrupt cascade */
1520 ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CMCP_VECTOR,
1521 IA64_IPI_DM_INT, 0);
1522}
1523
1524/*
1525 * ia64_mca_cpe_int_caller
1526 *
1527 * Triggered by sw interrupt from CPE polling routine. Calls
1528 * real interrupt handler and either triggers a sw interrupt
1529 * on the next cpu or does cleanup at the end.
1530 *
1531 * Inputs
1532 * interrupt number
1533 * client data arg ptr
1534 * Outputs
1535 * handled
1536 */
1537static irqreturn_t
1538ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1539{
1540 static int start_count = -1;
1541 static int poll_time = MIN_CPE_POLL_INTERVAL;
1542 unsigned int cpuid;
1543
1544 cpuid = smp_processor_id();
1545
1546 /* If first cpu, update count */
1547 if (start_count == -1)
1548 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1549
1550 ia64_mca_cpe_int_handler(cpe_irq, arg);
1551
1552 cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1553
1554 if (cpuid < NR_CPUS) {
1555 ia64_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1556 } else {
1557 /*
1558 * If a log was recorded, increase our polling frequency,
1559 * otherwise, backoff or return to interrupt mode.
1560 */
1561 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1562 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1563 } else if (cpe_vector < 0) {
1564 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1565 } else {
1566 poll_time = MIN_CPE_POLL_INTERVAL;
1567
1568 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1569 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1570 cpe_poll_enabled = 0;
1571 }
1572
1573 if (cpe_poll_enabled)
1574 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1575 start_count = -1;
1576 }
1577
1578 return IRQ_HANDLED;
1579}
1580
1581/*
1582 * ia64_mca_cpe_poll
1583 *
1584 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1585 * on first cpu, from there it will trickle through all the cpus.
1586 *
1587 * Inputs : dummy(unused)
1588 * Outputs : None
1589 *
1590 */
1591static void
1592ia64_mca_cpe_poll (struct timer_list *unused)
1593{
1594 /* Trigger a CPE interrupt cascade */
1595 ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CPEP_VECTOR,
1596 IA64_IPI_DM_INT, 0);
1597}
1598
1599static int
1600default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1601{
1602 int c;
1603 struct task_struct *g, *t;
1604 if (val != DIE_INIT_MONARCH_PROCESS)
1605 return NOTIFY_DONE;
1606#ifdef CONFIG_KEXEC
1607 if (atomic_read(&kdump_in_progress))
1608 return NOTIFY_DONE;
1609#endif
1610
1611 /*
1612 * FIXME: mlogbuf will brim over with INIT stack dumps.
1613 * To enable show_stack from INIT, we use oops_in_progress which should
1614 * be used in real oops. This would cause something wrong after INIT.
1615 */
1616 BREAK_LOGLEVEL(console_loglevel);
1617 ia64_mlogbuf_dump_from_init();
1618
1619 printk(KERN_ERR "Processes interrupted by INIT -");
1620 for_each_online_cpu(c) {
1621 struct ia64_sal_os_state *s;
1622 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1623 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1624 g = s->prev_task;
1625 if (g) {
1626 if (g->pid)
1627 printk(" %d", g->pid);
1628 else
1629 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1630 }
1631 }
1632 printk("\n\n");
1633 if (read_trylock(&tasklist_lock)) {
1634 do_each_thread (g, t) {
1635 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1636 show_stack(t, NULL, KERN_DEFAULT);
1637 } while_each_thread (g, t);
1638 read_unlock(&tasklist_lock);
1639 }
1640 /* FIXME: This will not restore zapped printk locks. */
1641 RESTORE_LOGLEVEL(console_loglevel);
1642 return NOTIFY_DONE;
1643}
1644
1645/*
1646 * C portion of the OS INIT handler
1647 *
1648 * Called from ia64_os_init_dispatch
1649 *
1650 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1651 * this event. This code is used for both monarch and slave INIT events, see
1652 * sos->monarch.
1653 *
1654 * All INIT events switch to the INIT stack and change the previous process to
1655 * blocked status. If one of the INIT events is the monarch then we are
1656 * probably processing the nmi button/command. Use the monarch cpu to dump all
1657 * the processes. The slave INIT events all spin until the monarch cpu
1658 * returns. We can also get INIT slave events for MCA, in which case the MCA
1659 * process is the monarch.
1660 */
1661
1662void
1663ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1664 struct ia64_sal_os_state *sos)
1665{
1666 static atomic_t slaves;
1667 static atomic_t monarchs;
1668 struct task_struct *previous_current;
1669 int cpu = smp_processor_id();
1670 struct ia64_mca_notify_die nd =
1671 { .sos = sos, .monarch_cpu = &monarch_cpu };
1672
1673 NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
1674
1675 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1676 sos->proc_state_param, cpu, sos->monarch);
1677 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1678
1679 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1680 sos->os_status = IA64_INIT_RESUME;
1681
1682 /* FIXME: Workaround for broken proms that drive all INIT events as
1683 * slaves. The last slave that enters is promoted to be a monarch.
1684 * Remove this code in September 2006, that gives platforms a year to
1685 * fix their proms and get their customers updated.
1686 */
1687 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1688 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1689 __func__, cpu);
1690 atomic_dec(&slaves);
1691 sos->monarch = 1;
1692 }
1693
1694 /* FIXME: Workaround for broken proms that drive all INIT events as
1695 * monarchs. Second and subsequent monarchs are demoted to slaves.
1696 * Remove this code in September 2006, that gives platforms a year to
1697 * fix their proms and get their customers updated.
1698 */
1699 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1700 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1701 __func__, cpu);
1702 atomic_dec(&monarchs);
1703 sos->monarch = 0;
1704 }
1705
1706 if (!sos->monarch) {
1707 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1708
1709#ifdef CONFIG_KEXEC
1710 while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress))
1711 udelay(1000);
1712#else
1713 while (monarch_cpu == -1)
1714 cpu_relax(); /* spin until monarch enters */
1715#endif
1716
1717 NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
1718 NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
1719
1720#ifdef CONFIG_KEXEC
1721 while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress))
1722 udelay(1000);
1723#else
1724 while (monarch_cpu != -1)
1725 cpu_relax(); /* spin until monarch leaves */
1726#endif
1727
1728 NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
1729
1730 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1731 ia64_set_curr_task(cpu, previous_current);
1732 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1733 atomic_dec(&slaves);
1734 return;
1735 }
1736
1737 monarch_cpu = cpu;
1738 NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
1739
1740 /*
1741 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1742 * generated via the BMC's command-line interface, but since the console is on the
1743 * same serial line, the user will need some time to switch out of the BMC before
1744 * the dump begins.
1745 */
1746 mprintk("Delaying for 5 seconds...\n");
1747 udelay(5*1000000);
1748 ia64_wait_for_slaves(cpu, "INIT");
1749 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1750 * to default_monarch_init_process() above and just print all the
1751 * tasks.
1752 */
1753 NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
1754 NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
1755
1756 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1757 atomic_dec(&monarchs);
1758 ia64_set_curr_task(cpu, previous_current);
1759 monarch_cpu = -1;
1760 return;
1761}
1762
1763static int __init
1764ia64_mca_disable_cpe_polling(char *str)
1765{
1766 cpe_poll_enabled = 0;
1767 return 1;
1768}
1769
1770__setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1771
1772/* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1773 * these stacks can never sleep, they cannot return from the kernel to user
1774 * space, they do not appear in a normal ps listing. So there is no need to
1775 * format most of the fields.
1776 */
1777
1778static void
1779format_mca_init_stack(void *mca_data, unsigned long offset,
1780 const char *type, int cpu)
1781{
1782 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1783 struct thread_info *ti;
1784 memset(p, 0, KERNEL_STACK_SIZE);
1785 ti = task_thread_info(p);
1786 ti->flags = _TIF_MCA_INIT;
1787 ti->preempt_count = 1;
1788 ti->task = p;
1789 ti->cpu = cpu;
1790 p->stack = ti;
1791 p->__state = TASK_UNINTERRUPTIBLE;
1792 cpumask_set_cpu(cpu, &p->cpus_mask);
1793 INIT_LIST_HEAD(&p->tasks);
1794 p->parent = p->real_parent = p->group_leader = p;
1795 INIT_LIST_HEAD(&p->children);
1796 INIT_LIST_HEAD(&p->sibling);
1797 strncpy(p->comm, type, sizeof(p->comm)-1);
1798}
1799
1800/* Caller prevents this from being called after init */
1801static void * __ref mca_bootmem(void)
1802{
1803 return memblock_alloc(sizeof(struct ia64_mca_cpu), KERNEL_STACK_SIZE);
1804}
1805
1806/* Do per-CPU MCA-related initialization. */
1807void
1808ia64_mca_cpu_init(void *cpu_data)
1809{
1810 void *pal_vaddr;
1811 void *data;
1812 long sz = sizeof(struct ia64_mca_cpu);
1813 int cpu = smp_processor_id();
1814 static int first_time = 1;
1815
1816 /*
1817 * Structure will already be allocated if cpu has been online,
1818 * then offlined.
1819 */
1820 if (__per_cpu_mca[cpu]) {
1821 data = __va(__per_cpu_mca[cpu]);
1822 } else {
1823 if (first_time) {
1824 data = mca_bootmem();
1825 first_time = 0;
1826 } else
1827 data = (void *)__get_free_pages(GFP_ATOMIC,
1828 get_order(sz));
1829 if (!data)
1830 panic("Could not allocate MCA memory for cpu %d\n",
1831 cpu);
1832 }
1833 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1834 "MCA", cpu);
1835 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1836 "INIT", cpu);
1837 __this_cpu_write(ia64_mca_data, (__per_cpu_mca[cpu] = __pa(data)));
1838
1839 /*
1840 * Stash away a copy of the PTE needed to map the per-CPU page.
1841 * We may need it during MCA recovery.
1842 */
1843 __this_cpu_write(ia64_mca_per_cpu_pte,
1844 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL)));
1845
1846 /*
1847 * Also, stash away a copy of the PAL address and the PTE
1848 * needed to map it.
1849 */
1850 pal_vaddr = efi_get_pal_addr();
1851 if (!pal_vaddr)
1852 return;
1853 __this_cpu_write(ia64_mca_pal_base,
1854 GRANULEROUNDDOWN((unsigned long) pal_vaddr));
1855 __this_cpu_write(ia64_mca_pal_pte, pte_val(mk_pte_phys(__pa(pal_vaddr),
1856 PAGE_KERNEL)));
1857}
1858
1859static int ia64_mca_cpu_online(unsigned int cpu)
1860{
1861 unsigned long flags;
1862
1863 local_irq_save(flags);
1864 if (!cmc_polling_enabled)
1865 ia64_mca_cmc_vector_enable(NULL);
1866 local_irq_restore(flags);
1867 return 0;
1868}
1869
1870/*
1871 * ia64_mca_init
1872 *
1873 * Do all the system level mca specific initialization.
1874 *
1875 * 1. Register spinloop and wakeup request interrupt vectors
1876 *
1877 * 2. Register OS_MCA handler entry point
1878 *
1879 * 3. Register OS_INIT handler entry point
1880 *
1881 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1882 *
1883 * Note that this initialization is done very early before some kernel
1884 * services are available.
1885 *
1886 * Inputs : None
1887 *
1888 * Outputs : None
1889 */
1890void __init
1891ia64_mca_init(void)
1892{
1893 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1894 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1895 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1896 int i;
1897 long rc;
1898 struct ia64_sal_retval isrv;
1899 unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1900 static struct notifier_block default_init_monarch_nb = {
1901 .notifier_call = default_monarch_init_process,
1902 .priority = 0/* we need to notified last */
1903 };
1904
1905 IA64_MCA_DEBUG("%s: begin\n", __func__);
1906
1907 /* Clear the Rendez checkin flag for all cpus */
1908 for(i = 0 ; i < NR_CPUS; i++)
1909 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1910
1911 /*
1912 * Register the rendezvous spinloop and wakeup mechanism with SAL
1913 */
1914
1915 /* Register the rendezvous interrupt vector with SAL */
1916 while (1) {
1917 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1918 SAL_MC_PARAM_MECHANISM_INT,
1919 IA64_MCA_RENDEZ_VECTOR,
1920 timeout,
1921 SAL_MC_PARAM_RZ_ALWAYS);
1922 rc = isrv.status;
1923 if (rc == 0)
1924 break;
1925 if (rc == -2) {
1926 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1927 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1928 timeout = isrv.v0;
1929 NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
1930 continue;
1931 }
1932 printk(KERN_ERR "Failed to register rendezvous interrupt "
1933 "with SAL (status %ld)\n", rc);
1934 return;
1935 }
1936
1937 /* Register the wakeup interrupt vector with SAL */
1938 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1939 SAL_MC_PARAM_MECHANISM_INT,
1940 IA64_MCA_WAKEUP_VECTOR,
1941 0, 0);
1942 rc = isrv.status;
1943 if (rc) {
1944 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1945 "(status %ld)\n", rc);
1946 return;
1947 }
1948
1949 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
1950
1951 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1952 /*
1953 * XXX - disable SAL checksum by setting size to 0; should be
1954 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1955 */
1956 ia64_mc_info.imi_mca_handler_size = 0;
1957
1958 /* Register the os mca handler with SAL */
1959 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1960 ia64_mc_info.imi_mca_handler,
1961 ia64_tpa(mca_hldlr_ptr->gp),
1962 ia64_mc_info.imi_mca_handler_size,
1963 0, 0, 0)))
1964 {
1965 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1966 "(status %ld)\n", rc);
1967 return;
1968 }
1969
1970 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
1971 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1972
1973 /*
1974 * XXX - disable SAL checksum by setting size to 0, should be
1975 * size of the actual init handler in mca_asm.S.
1976 */
1977 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
1978 ia64_mc_info.imi_monarch_init_handler_size = 0;
1979 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
1980 ia64_mc_info.imi_slave_init_handler_size = 0;
1981
1982 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
1983 ia64_mc_info.imi_monarch_init_handler);
1984
1985 /* Register the os init handler with SAL */
1986 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1987 ia64_mc_info.imi_monarch_init_handler,
1988 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1989 ia64_mc_info.imi_monarch_init_handler_size,
1990 ia64_mc_info.imi_slave_init_handler,
1991 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1992 ia64_mc_info.imi_slave_init_handler_size)))
1993 {
1994 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1995 "(status %ld)\n", rc);
1996 return;
1997 }
1998 if (register_die_notifier(&default_init_monarch_nb)) {
1999 printk(KERN_ERR "Failed to register default monarch INIT process\n");
2000 return;
2001 }
2002
2003 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2004
2005 /* Initialize the areas set aside by the OS to buffer the
2006 * platform/processor error states for MCA/INIT/CMC
2007 * handling.
2008 */
2009 ia64_log_init(SAL_INFO_TYPE_MCA);
2010 ia64_log_init(SAL_INFO_TYPE_INIT);
2011 ia64_log_init(SAL_INFO_TYPE_CMC);
2012 ia64_log_init(SAL_INFO_TYPE_CPE);
2013
2014 mca_init = 1;
2015 printk(KERN_INFO "MCA related initialization done\n");
2016}
2017
2018
2019/*
2020 * These pieces cannot be done in ia64_mca_init() because it is called before
2021 * early_irq_init() which would wipe out our percpu irq registrations. But we
2022 * cannot leave them until ia64_mca_late_init() because by then all the other
2023 * processors have been brought online and have set their own CMC vectors to
2024 * point at a non-existant action. Called from arch_early_irq_init().
2025 */
2026void __init ia64_mca_irq_init(void)
2027{
2028 /*
2029 * Configure the CMCI/P vector and handler. Interrupts for CMC are
2030 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2031 */
2032 register_percpu_irq(IA64_CMC_VECTOR, ia64_mca_cmc_int_handler, 0,
2033 "cmc_hndlr");
2034 register_percpu_irq(IA64_CMCP_VECTOR, ia64_mca_cmc_int_caller, 0,
2035 "cmc_poll");
2036 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
2037
2038 /* Setup the MCA rendezvous interrupt vector */
2039 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, ia64_mca_rendez_int_handler,
2040 0, "mca_rdzv");
2041
2042 /* Setup the MCA wakeup interrupt vector */
2043 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, ia64_mca_wakeup_int_handler,
2044 0, "mca_wkup");
2045
2046 /* Setup the CPEI/P handler */
2047 register_percpu_irq(IA64_CPEP_VECTOR, ia64_mca_cpe_int_caller, 0,
2048 "cpe_poll");
2049}
2050
2051/*
2052 * ia64_mca_late_init
2053 *
2054 * Opportunity to setup things that require initialization later
2055 * than ia64_mca_init. Setup a timer to poll for CPEs if the
2056 * platform doesn't support an interrupt driven mechanism.
2057 *
2058 * Inputs : None
2059 * Outputs : Status
2060 */
2061static int __init
2062ia64_mca_late_init(void)
2063{
2064 if (!mca_init)
2065 return 0;
2066
2067 /* Setup the CMCI/P vector and handler */
2068 timer_setup(&cmc_poll_timer, ia64_mca_cmc_poll, 0);
2069
2070 /* Unmask/enable the vector */
2071 cmc_polling_enabled = 0;
2072 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/mca:online",
2073 ia64_mca_cpu_online, NULL);
2074 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2075
2076 /* Setup the CPEI/P vector and handler */
2077 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2078 timer_setup(&cpe_poll_timer, ia64_mca_cpe_poll, 0);
2079
2080 {
2081 unsigned int irq;
2082
2083 if (cpe_vector >= 0) {
2084 /* If platform supports CPEI, enable the irq. */
2085 irq = local_vector_to_irq(cpe_vector);
2086 if (irq > 0) {
2087 cpe_poll_enabled = 0;
2088 irq_set_status_flags(irq, IRQ_PER_CPU);
2089 if (request_irq(irq, ia64_mca_cpe_int_handler,
2090 0, "cpe_hndlr", NULL))
2091 pr_err("Failed to register cpe_hndlr interrupt\n");
2092 ia64_cpe_irq = irq;
2093 ia64_mca_register_cpev(cpe_vector);
2094 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2095 __func__);
2096 return 0;
2097 }
2098 printk(KERN_ERR "%s: Failed to find irq for CPE "
2099 "interrupt handler, vector %d\n",
2100 __func__, cpe_vector);
2101 }
2102 /* If platform doesn't support CPEI, get the timer going. */
2103 if (cpe_poll_enabled) {
2104 ia64_mca_cpe_poll(0UL);
2105 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2106 }
2107 }
2108
2109 return 0;
2110}
2111
2112device_initcall(ia64_mca_late_init);