Loading...
1/*
2 * Copyright (c) 2007-2017 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21#include <linux/skbuff.h>
22#include <linux/in.h>
23#include <linux/ip.h>
24#include <linux/openvswitch.h>
25#include <linux/netfilter_ipv6.h>
26#include <linux/sctp.h>
27#include <linux/tcp.h>
28#include <linux/udp.h>
29#include <linux/in6.h>
30#include <linux/if_arp.h>
31#include <linux/if_vlan.h>
32
33#include <net/dst.h>
34#include <net/ip.h>
35#include <net/ipv6.h>
36#include <net/ip6_fib.h>
37#include <net/checksum.h>
38#include <net/dsfield.h>
39#include <net/mpls.h>
40#include <net/sctp/checksum.h>
41
42#include "datapath.h"
43#include "flow.h"
44#include "conntrack.h"
45#include "vport.h"
46#include "flow_netlink.h"
47
48struct deferred_action {
49 struct sk_buff *skb;
50 const struct nlattr *actions;
51 int actions_len;
52
53 /* Store pkt_key clone when creating deferred action. */
54 struct sw_flow_key pkt_key;
55};
56
57#define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
58struct ovs_frag_data {
59 unsigned long dst;
60 struct vport *vport;
61 struct ovs_skb_cb cb;
62 __be16 inner_protocol;
63 u16 network_offset; /* valid only for MPLS */
64 u16 vlan_tci;
65 __be16 vlan_proto;
66 unsigned int l2_len;
67 u8 mac_proto;
68 u8 l2_data[MAX_L2_LEN];
69};
70
71static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
72
73#define DEFERRED_ACTION_FIFO_SIZE 10
74#define OVS_RECURSION_LIMIT 5
75#define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
76struct action_fifo {
77 int head;
78 int tail;
79 /* Deferred action fifo queue storage. */
80 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
81};
82
83struct action_flow_keys {
84 struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
85};
86
87static struct action_fifo __percpu *action_fifos;
88static struct action_flow_keys __percpu *flow_keys;
89static DEFINE_PER_CPU(int, exec_actions_level);
90
91/* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
92 * space. Return NULL if out of key spaces.
93 */
94static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
95{
96 struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
97 int level = this_cpu_read(exec_actions_level);
98 struct sw_flow_key *key = NULL;
99
100 if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
101 key = &keys->key[level - 1];
102 *key = *key_;
103 }
104
105 return key;
106}
107
108static void action_fifo_init(struct action_fifo *fifo)
109{
110 fifo->head = 0;
111 fifo->tail = 0;
112}
113
114static bool action_fifo_is_empty(const struct action_fifo *fifo)
115{
116 return (fifo->head == fifo->tail);
117}
118
119static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
120{
121 if (action_fifo_is_empty(fifo))
122 return NULL;
123
124 return &fifo->fifo[fifo->tail++];
125}
126
127static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
128{
129 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
130 return NULL;
131
132 return &fifo->fifo[fifo->head++];
133}
134
135/* Return true if fifo is not full */
136static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
137 const struct sw_flow_key *key,
138 const struct nlattr *actions,
139 const int actions_len)
140{
141 struct action_fifo *fifo;
142 struct deferred_action *da;
143
144 fifo = this_cpu_ptr(action_fifos);
145 da = action_fifo_put(fifo);
146 if (da) {
147 da->skb = skb;
148 da->actions = actions;
149 da->actions_len = actions_len;
150 da->pkt_key = *key;
151 }
152
153 return da;
154}
155
156static void invalidate_flow_key(struct sw_flow_key *key)
157{
158 key->mac_proto |= SW_FLOW_KEY_INVALID;
159}
160
161static bool is_flow_key_valid(const struct sw_flow_key *key)
162{
163 return !(key->mac_proto & SW_FLOW_KEY_INVALID);
164}
165
166static int clone_execute(struct datapath *dp, struct sk_buff *skb,
167 struct sw_flow_key *key,
168 u32 recirc_id,
169 const struct nlattr *actions, int len,
170 bool last, bool clone_flow_key);
171
172static void update_ethertype(struct sk_buff *skb, struct ethhdr *hdr,
173 __be16 ethertype)
174{
175 if (skb->ip_summed == CHECKSUM_COMPLETE) {
176 __be16 diff[] = { ~(hdr->h_proto), ethertype };
177
178 skb->csum = ~csum_partial((char *)diff, sizeof(diff),
179 ~skb->csum);
180 }
181
182 hdr->h_proto = ethertype;
183}
184
185static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
186 const struct ovs_action_push_mpls *mpls)
187{
188 struct mpls_shim_hdr *new_mpls_lse;
189
190 /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
191 if (skb->encapsulation)
192 return -ENOTSUPP;
193
194 if (skb_cow_head(skb, MPLS_HLEN) < 0)
195 return -ENOMEM;
196
197 if (!skb->inner_protocol) {
198 skb_set_inner_network_header(skb, skb->mac_len);
199 skb_set_inner_protocol(skb, skb->protocol);
200 }
201
202 skb_push(skb, MPLS_HLEN);
203 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
204 skb->mac_len);
205 skb_reset_mac_header(skb);
206 skb_set_network_header(skb, skb->mac_len);
207
208 new_mpls_lse = mpls_hdr(skb);
209 new_mpls_lse->label_stack_entry = mpls->mpls_lse;
210
211 skb_postpush_rcsum(skb, new_mpls_lse, MPLS_HLEN);
212
213 if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET)
214 update_ethertype(skb, eth_hdr(skb), mpls->mpls_ethertype);
215 skb->protocol = mpls->mpls_ethertype;
216
217 invalidate_flow_key(key);
218 return 0;
219}
220
221static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
222 const __be16 ethertype)
223{
224 int err;
225
226 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
227 if (unlikely(err))
228 return err;
229
230 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
231
232 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
233 skb->mac_len);
234
235 __skb_pull(skb, MPLS_HLEN);
236 skb_reset_mac_header(skb);
237 skb_set_network_header(skb, skb->mac_len);
238
239 if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET) {
240 struct ethhdr *hdr;
241
242 /* mpls_hdr() is used to locate the ethertype field correctly in the
243 * presence of VLAN tags.
244 */
245 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
246 update_ethertype(skb, hdr, ethertype);
247 }
248 if (eth_p_mpls(skb->protocol))
249 skb->protocol = ethertype;
250
251 invalidate_flow_key(key);
252 return 0;
253}
254
255static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
256 const __be32 *mpls_lse, const __be32 *mask)
257{
258 struct mpls_shim_hdr *stack;
259 __be32 lse;
260 int err;
261
262 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
263 if (unlikely(err))
264 return err;
265
266 stack = mpls_hdr(skb);
267 lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
268 if (skb->ip_summed == CHECKSUM_COMPLETE) {
269 __be32 diff[] = { ~(stack->label_stack_entry), lse };
270
271 skb->csum = ~csum_partial((char *)diff, sizeof(diff),
272 ~skb->csum);
273 }
274
275 stack->label_stack_entry = lse;
276 flow_key->mpls.top_lse = lse;
277 return 0;
278}
279
280static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
281{
282 int err;
283
284 err = skb_vlan_pop(skb);
285 if (skb_vlan_tag_present(skb)) {
286 invalidate_flow_key(key);
287 } else {
288 key->eth.vlan.tci = 0;
289 key->eth.vlan.tpid = 0;
290 }
291 return err;
292}
293
294static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
295 const struct ovs_action_push_vlan *vlan)
296{
297 if (skb_vlan_tag_present(skb)) {
298 invalidate_flow_key(key);
299 } else {
300 key->eth.vlan.tci = vlan->vlan_tci;
301 key->eth.vlan.tpid = vlan->vlan_tpid;
302 }
303 return skb_vlan_push(skb, vlan->vlan_tpid,
304 ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
305}
306
307/* 'src' is already properly masked. */
308static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
309{
310 u16 *dst = (u16 *)dst_;
311 const u16 *src = (const u16 *)src_;
312 const u16 *mask = (const u16 *)mask_;
313
314 OVS_SET_MASKED(dst[0], src[0], mask[0]);
315 OVS_SET_MASKED(dst[1], src[1], mask[1]);
316 OVS_SET_MASKED(dst[2], src[2], mask[2]);
317}
318
319static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
320 const struct ovs_key_ethernet *key,
321 const struct ovs_key_ethernet *mask)
322{
323 int err;
324
325 err = skb_ensure_writable(skb, ETH_HLEN);
326 if (unlikely(err))
327 return err;
328
329 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
330
331 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
332 mask->eth_src);
333 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
334 mask->eth_dst);
335
336 skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
337
338 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
339 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
340 return 0;
341}
342
343/* pop_eth does not support VLAN packets as this action is never called
344 * for them.
345 */
346static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
347{
348 skb_pull_rcsum(skb, ETH_HLEN);
349 skb_reset_mac_header(skb);
350 skb_reset_mac_len(skb);
351
352 /* safe right before invalidate_flow_key */
353 key->mac_proto = MAC_PROTO_NONE;
354 invalidate_flow_key(key);
355 return 0;
356}
357
358static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
359 const struct ovs_action_push_eth *ethh)
360{
361 struct ethhdr *hdr;
362
363 /* Add the new Ethernet header */
364 if (skb_cow_head(skb, ETH_HLEN) < 0)
365 return -ENOMEM;
366
367 skb_push(skb, ETH_HLEN);
368 skb_reset_mac_header(skb);
369 skb_reset_mac_len(skb);
370
371 hdr = eth_hdr(skb);
372 ether_addr_copy(hdr->h_source, ethh->addresses.eth_src);
373 ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst);
374 hdr->h_proto = skb->protocol;
375
376 skb_postpush_rcsum(skb, hdr, ETH_HLEN);
377
378 /* safe right before invalidate_flow_key */
379 key->mac_proto = MAC_PROTO_ETHERNET;
380 invalidate_flow_key(key);
381 return 0;
382}
383
384static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
385 const struct nshhdr *nh)
386{
387 int err;
388
389 err = nsh_push(skb, nh);
390 if (err)
391 return err;
392
393 /* safe right before invalidate_flow_key */
394 key->mac_proto = MAC_PROTO_NONE;
395 invalidate_flow_key(key);
396 return 0;
397}
398
399static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
400{
401 int err;
402
403 err = nsh_pop(skb);
404 if (err)
405 return err;
406
407 /* safe right before invalidate_flow_key */
408 if (skb->protocol == htons(ETH_P_TEB))
409 key->mac_proto = MAC_PROTO_ETHERNET;
410 else
411 key->mac_proto = MAC_PROTO_NONE;
412 invalidate_flow_key(key);
413 return 0;
414}
415
416static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
417 __be32 addr, __be32 new_addr)
418{
419 int transport_len = skb->len - skb_transport_offset(skb);
420
421 if (nh->frag_off & htons(IP_OFFSET))
422 return;
423
424 if (nh->protocol == IPPROTO_TCP) {
425 if (likely(transport_len >= sizeof(struct tcphdr)))
426 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
427 addr, new_addr, true);
428 } else if (nh->protocol == IPPROTO_UDP) {
429 if (likely(transport_len >= sizeof(struct udphdr))) {
430 struct udphdr *uh = udp_hdr(skb);
431
432 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
433 inet_proto_csum_replace4(&uh->check, skb,
434 addr, new_addr, true);
435 if (!uh->check)
436 uh->check = CSUM_MANGLED_0;
437 }
438 }
439 }
440}
441
442static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
443 __be32 *addr, __be32 new_addr)
444{
445 update_ip_l4_checksum(skb, nh, *addr, new_addr);
446 csum_replace4(&nh->check, *addr, new_addr);
447 skb_clear_hash(skb);
448 *addr = new_addr;
449}
450
451static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
452 __be32 addr[4], const __be32 new_addr[4])
453{
454 int transport_len = skb->len - skb_transport_offset(skb);
455
456 if (l4_proto == NEXTHDR_TCP) {
457 if (likely(transport_len >= sizeof(struct tcphdr)))
458 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
459 addr, new_addr, true);
460 } else if (l4_proto == NEXTHDR_UDP) {
461 if (likely(transport_len >= sizeof(struct udphdr))) {
462 struct udphdr *uh = udp_hdr(skb);
463
464 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
465 inet_proto_csum_replace16(&uh->check, skb,
466 addr, new_addr, true);
467 if (!uh->check)
468 uh->check = CSUM_MANGLED_0;
469 }
470 }
471 } else if (l4_proto == NEXTHDR_ICMP) {
472 if (likely(transport_len >= sizeof(struct icmp6hdr)))
473 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
474 skb, addr, new_addr, true);
475 }
476}
477
478static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
479 const __be32 mask[4], __be32 masked[4])
480{
481 masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
482 masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
483 masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
484 masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
485}
486
487static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
488 __be32 addr[4], const __be32 new_addr[4],
489 bool recalculate_csum)
490{
491 if (recalculate_csum)
492 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
493
494 skb_clear_hash(skb);
495 memcpy(addr, new_addr, sizeof(__be32[4]));
496}
497
498static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
499{
500 /* Bits 21-24 are always unmasked, so this retains their values. */
501 OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
502 OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
503 OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
504}
505
506static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
507 u8 mask)
508{
509 new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
510
511 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
512 nh->ttl = new_ttl;
513}
514
515static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
516 const struct ovs_key_ipv4 *key,
517 const struct ovs_key_ipv4 *mask)
518{
519 struct iphdr *nh;
520 __be32 new_addr;
521 int err;
522
523 err = skb_ensure_writable(skb, skb_network_offset(skb) +
524 sizeof(struct iphdr));
525 if (unlikely(err))
526 return err;
527
528 nh = ip_hdr(skb);
529
530 /* Setting an IP addresses is typically only a side effect of
531 * matching on them in the current userspace implementation, so it
532 * makes sense to check if the value actually changed.
533 */
534 if (mask->ipv4_src) {
535 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
536
537 if (unlikely(new_addr != nh->saddr)) {
538 set_ip_addr(skb, nh, &nh->saddr, new_addr);
539 flow_key->ipv4.addr.src = new_addr;
540 }
541 }
542 if (mask->ipv4_dst) {
543 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
544
545 if (unlikely(new_addr != nh->daddr)) {
546 set_ip_addr(skb, nh, &nh->daddr, new_addr);
547 flow_key->ipv4.addr.dst = new_addr;
548 }
549 }
550 if (mask->ipv4_tos) {
551 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
552 flow_key->ip.tos = nh->tos;
553 }
554 if (mask->ipv4_ttl) {
555 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
556 flow_key->ip.ttl = nh->ttl;
557 }
558
559 return 0;
560}
561
562static bool is_ipv6_mask_nonzero(const __be32 addr[4])
563{
564 return !!(addr[0] | addr[1] | addr[2] | addr[3]);
565}
566
567static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
568 const struct ovs_key_ipv6 *key,
569 const struct ovs_key_ipv6 *mask)
570{
571 struct ipv6hdr *nh;
572 int err;
573
574 err = skb_ensure_writable(skb, skb_network_offset(skb) +
575 sizeof(struct ipv6hdr));
576 if (unlikely(err))
577 return err;
578
579 nh = ipv6_hdr(skb);
580
581 /* Setting an IP addresses is typically only a side effect of
582 * matching on them in the current userspace implementation, so it
583 * makes sense to check if the value actually changed.
584 */
585 if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
586 __be32 *saddr = (__be32 *)&nh->saddr;
587 __be32 masked[4];
588
589 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
590
591 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
592 set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
593 true);
594 memcpy(&flow_key->ipv6.addr.src, masked,
595 sizeof(flow_key->ipv6.addr.src));
596 }
597 }
598 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
599 unsigned int offset = 0;
600 int flags = IP6_FH_F_SKIP_RH;
601 bool recalc_csum = true;
602 __be32 *daddr = (__be32 *)&nh->daddr;
603 __be32 masked[4];
604
605 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
606
607 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
608 if (ipv6_ext_hdr(nh->nexthdr))
609 recalc_csum = (ipv6_find_hdr(skb, &offset,
610 NEXTHDR_ROUTING,
611 NULL, &flags)
612 != NEXTHDR_ROUTING);
613
614 set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
615 recalc_csum);
616 memcpy(&flow_key->ipv6.addr.dst, masked,
617 sizeof(flow_key->ipv6.addr.dst));
618 }
619 }
620 if (mask->ipv6_tclass) {
621 ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
622 flow_key->ip.tos = ipv6_get_dsfield(nh);
623 }
624 if (mask->ipv6_label) {
625 set_ipv6_fl(nh, ntohl(key->ipv6_label),
626 ntohl(mask->ipv6_label));
627 flow_key->ipv6.label =
628 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
629 }
630 if (mask->ipv6_hlimit) {
631 OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
632 mask->ipv6_hlimit);
633 flow_key->ip.ttl = nh->hop_limit;
634 }
635 return 0;
636}
637
638static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
639 const struct nlattr *a)
640{
641 struct nshhdr *nh;
642 size_t length;
643 int err;
644 u8 flags;
645 u8 ttl;
646 int i;
647
648 struct ovs_key_nsh key;
649 struct ovs_key_nsh mask;
650
651 err = nsh_key_from_nlattr(a, &key, &mask);
652 if (err)
653 return err;
654
655 /* Make sure the NSH base header is there */
656 if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
657 return -ENOMEM;
658
659 nh = nsh_hdr(skb);
660 length = nsh_hdr_len(nh);
661
662 /* Make sure the whole NSH header is there */
663 err = skb_ensure_writable(skb, skb_network_offset(skb) +
664 length);
665 if (unlikely(err))
666 return err;
667
668 nh = nsh_hdr(skb);
669 skb_postpull_rcsum(skb, nh, length);
670 flags = nsh_get_flags(nh);
671 flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
672 flow_key->nsh.base.flags = flags;
673 ttl = nsh_get_ttl(nh);
674 ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
675 flow_key->nsh.base.ttl = ttl;
676 nsh_set_flags_and_ttl(nh, flags, ttl);
677 nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
678 mask.base.path_hdr);
679 flow_key->nsh.base.path_hdr = nh->path_hdr;
680 switch (nh->mdtype) {
681 case NSH_M_TYPE1:
682 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
683 nh->md1.context[i] =
684 OVS_MASKED(nh->md1.context[i], key.context[i],
685 mask.context[i]);
686 }
687 memcpy(flow_key->nsh.context, nh->md1.context,
688 sizeof(nh->md1.context));
689 break;
690 case NSH_M_TYPE2:
691 memset(flow_key->nsh.context, 0,
692 sizeof(flow_key->nsh.context));
693 break;
694 default:
695 return -EINVAL;
696 }
697 skb_postpush_rcsum(skb, nh, length);
698 return 0;
699}
700
701/* Must follow skb_ensure_writable() since that can move the skb data. */
702static void set_tp_port(struct sk_buff *skb, __be16 *port,
703 __be16 new_port, __sum16 *check)
704{
705 inet_proto_csum_replace2(check, skb, *port, new_port, false);
706 *port = new_port;
707}
708
709static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
710 const struct ovs_key_udp *key,
711 const struct ovs_key_udp *mask)
712{
713 struct udphdr *uh;
714 __be16 src, dst;
715 int err;
716
717 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
718 sizeof(struct udphdr));
719 if (unlikely(err))
720 return err;
721
722 uh = udp_hdr(skb);
723 /* Either of the masks is non-zero, so do not bother checking them. */
724 src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
725 dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
726
727 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
728 if (likely(src != uh->source)) {
729 set_tp_port(skb, &uh->source, src, &uh->check);
730 flow_key->tp.src = src;
731 }
732 if (likely(dst != uh->dest)) {
733 set_tp_port(skb, &uh->dest, dst, &uh->check);
734 flow_key->tp.dst = dst;
735 }
736
737 if (unlikely(!uh->check))
738 uh->check = CSUM_MANGLED_0;
739 } else {
740 uh->source = src;
741 uh->dest = dst;
742 flow_key->tp.src = src;
743 flow_key->tp.dst = dst;
744 }
745
746 skb_clear_hash(skb);
747
748 return 0;
749}
750
751static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
752 const struct ovs_key_tcp *key,
753 const struct ovs_key_tcp *mask)
754{
755 struct tcphdr *th;
756 __be16 src, dst;
757 int err;
758
759 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
760 sizeof(struct tcphdr));
761 if (unlikely(err))
762 return err;
763
764 th = tcp_hdr(skb);
765 src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
766 if (likely(src != th->source)) {
767 set_tp_port(skb, &th->source, src, &th->check);
768 flow_key->tp.src = src;
769 }
770 dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
771 if (likely(dst != th->dest)) {
772 set_tp_port(skb, &th->dest, dst, &th->check);
773 flow_key->tp.dst = dst;
774 }
775 skb_clear_hash(skb);
776
777 return 0;
778}
779
780static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
781 const struct ovs_key_sctp *key,
782 const struct ovs_key_sctp *mask)
783{
784 unsigned int sctphoff = skb_transport_offset(skb);
785 struct sctphdr *sh;
786 __le32 old_correct_csum, new_csum, old_csum;
787 int err;
788
789 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
790 if (unlikely(err))
791 return err;
792
793 sh = sctp_hdr(skb);
794 old_csum = sh->checksum;
795 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
796
797 sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
798 sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
799
800 new_csum = sctp_compute_cksum(skb, sctphoff);
801
802 /* Carry any checksum errors through. */
803 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
804
805 skb_clear_hash(skb);
806 flow_key->tp.src = sh->source;
807 flow_key->tp.dst = sh->dest;
808
809 return 0;
810}
811
812static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb)
813{
814 struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
815 struct vport *vport = data->vport;
816
817 if (skb_cow_head(skb, data->l2_len) < 0) {
818 kfree_skb(skb);
819 return -ENOMEM;
820 }
821
822 __skb_dst_copy(skb, data->dst);
823 *OVS_CB(skb) = data->cb;
824 skb->inner_protocol = data->inner_protocol;
825 skb->vlan_tci = data->vlan_tci;
826 skb->vlan_proto = data->vlan_proto;
827
828 /* Reconstruct the MAC header. */
829 skb_push(skb, data->l2_len);
830 memcpy(skb->data, &data->l2_data, data->l2_len);
831 skb_postpush_rcsum(skb, skb->data, data->l2_len);
832 skb_reset_mac_header(skb);
833
834 if (eth_p_mpls(skb->protocol)) {
835 skb->inner_network_header = skb->network_header;
836 skb_set_network_header(skb, data->network_offset);
837 skb_reset_mac_len(skb);
838 }
839
840 ovs_vport_send(vport, skb, data->mac_proto);
841 return 0;
842}
843
844static unsigned int
845ovs_dst_get_mtu(const struct dst_entry *dst)
846{
847 return dst->dev->mtu;
848}
849
850static struct dst_ops ovs_dst_ops = {
851 .family = AF_UNSPEC,
852 .mtu = ovs_dst_get_mtu,
853};
854
855/* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
856 * ovs_vport_output(), which is called once per fragmented packet.
857 */
858static void prepare_frag(struct vport *vport, struct sk_buff *skb,
859 u16 orig_network_offset, u8 mac_proto)
860{
861 unsigned int hlen = skb_network_offset(skb);
862 struct ovs_frag_data *data;
863
864 data = this_cpu_ptr(&ovs_frag_data_storage);
865 data->dst = skb->_skb_refdst;
866 data->vport = vport;
867 data->cb = *OVS_CB(skb);
868 data->inner_protocol = skb->inner_protocol;
869 data->network_offset = orig_network_offset;
870 data->vlan_tci = skb->vlan_tci;
871 data->vlan_proto = skb->vlan_proto;
872 data->mac_proto = mac_proto;
873 data->l2_len = hlen;
874 memcpy(&data->l2_data, skb->data, hlen);
875
876 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
877 skb_pull(skb, hlen);
878}
879
880static void ovs_fragment(struct net *net, struct vport *vport,
881 struct sk_buff *skb, u16 mru,
882 struct sw_flow_key *key)
883{
884 u16 orig_network_offset = 0;
885
886 if (eth_p_mpls(skb->protocol)) {
887 orig_network_offset = skb_network_offset(skb);
888 skb->network_header = skb->inner_network_header;
889 }
890
891 if (skb_network_offset(skb) > MAX_L2_LEN) {
892 OVS_NLERR(1, "L2 header too long to fragment");
893 goto err;
894 }
895
896 if (key->eth.type == htons(ETH_P_IP)) {
897 struct dst_entry ovs_dst;
898 unsigned long orig_dst;
899
900 prepare_frag(vport, skb, orig_network_offset,
901 ovs_key_mac_proto(key));
902 dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
903 DST_OBSOLETE_NONE, DST_NOCOUNT);
904 ovs_dst.dev = vport->dev;
905
906 orig_dst = skb->_skb_refdst;
907 skb_dst_set_noref(skb, &ovs_dst);
908 IPCB(skb)->frag_max_size = mru;
909
910 ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
911 refdst_drop(orig_dst);
912 } else if (key->eth.type == htons(ETH_P_IPV6)) {
913 const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
914 unsigned long orig_dst;
915 struct rt6_info ovs_rt;
916
917 if (!v6ops)
918 goto err;
919
920 prepare_frag(vport, skb, orig_network_offset,
921 ovs_key_mac_proto(key));
922 memset(&ovs_rt, 0, sizeof(ovs_rt));
923 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
924 DST_OBSOLETE_NONE, DST_NOCOUNT);
925 ovs_rt.dst.dev = vport->dev;
926
927 orig_dst = skb->_skb_refdst;
928 skb_dst_set_noref(skb, &ovs_rt.dst);
929 IP6CB(skb)->frag_max_size = mru;
930
931 v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
932 refdst_drop(orig_dst);
933 } else {
934 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
935 ovs_vport_name(vport), ntohs(key->eth.type), mru,
936 vport->dev->mtu);
937 goto err;
938 }
939
940 return;
941err:
942 kfree_skb(skb);
943}
944
945static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
946 struct sw_flow_key *key)
947{
948 struct vport *vport = ovs_vport_rcu(dp, out_port);
949
950 if (likely(vport)) {
951 u16 mru = OVS_CB(skb)->mru;
952 u32 cutlen = OVS_CB(skb)->cutlen;
953
954 if (unlikely(cutlen > 0)) {
955 if (skb->len - cutlen > ovs_mac_header_len(key))
956 pskb_trim(skb, skb->len - cutlen);
957 else
958 pskb_trim(skb, ovs_mac_header_len(key));
959 }
960
961 if (likely(!mru ||
962 (skb->len <= mru + vport->dev->hard_header_len))) {
963 ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
964 } else if (mru <= vport->dev->mtu) {
965 struct net *net = read_pnet(&dp->net);
966
967 ovs_fragment(net, vport, skb, mru, key);
968 } else {
969 kfree_skb(skb);
970 }
971 } else {
972 kfree_skb(skb);
973 }
974}
975
976static int output_userspace(struct datapath *dp, struct sk_buff *skb,
977 struct sw_flow_key *key, const struct nlattr *attr,
978 const struct nlattr *actions, int actions_len,
979 uint32_t cutlen)
980{
981 struct dp_upcall_info upcall;
982 const struct nlattr *a;
983 int rem;
984
985 memset(&upcall, 0, sizeof(upcall));
986 upcall.cmd = OVS_PACKET_CMD_ACTION;
987 upcall.mru = OVS_CB(skb)->mru;
988
989 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
990 a = nla_next(a, &rem)) {
991 switch (nla_type(a)) {
992 case OVS_USERSPACE_ATTR_USERDATA:
993 upcall.userdata = a;
994 break;
995
996 case OVS_USERSPACE_ATTR_PID:
997 upcall.portid = nla_get_u32(a);
998 break;
999
1000 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
1001 /* Get out tunnel info. */
1002 struct vport *vport;
1003
1004 vport = ovs_vport_rcu(dp, nla_get_u32(a));
1005 if (vport) {
1006 int err;
1007
1008 err = dev_fill_metadata_dst(vport->dev, skb);
1009 if (!err)
1010 upcall.egress_tun_info = skb_tunnel_info(skb);
1011 }
1012
1013 break;
1014 }
1015
1016 case OVS_USERSPACE_ATTR_ACTIONS: {
1017 /* Include actions. */
1018 upcall.actions = actions;
1019 upcall.actions_len = actions_len;
1020 break;
1021 }
1022
1023 } /* End of switch. */
1024 }
1025
1026 return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
1027}
1028
1029/* When 'last' is true, sample() should always consume the 'skb'.
1030 * Otherwise, sample() should keep 'skb' intact regardless what
1031 * actions are executed within sample().
1032 */
1033static int sample(struct datapath *dp, struct sk_buff *skb,
1034 struct sw_flow_key *key, const struct nlattr *attr,
1035 bool last)
1036{
1037 struct nlattr *actions;
1038 struct nlattr *sample_arg;
1039 int rem = nla_len(attr);
1040 const struct sample_arg *arg;
1041 bool clone_flow_key;
1042
1043 /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
1044 sample_arg = nla_data(attr);
1045 arg = nla_data(sample_arg);
1046 actions = nla_next(sample_arg, &rem);
1047
1048 if ((arg->probability != U32_MAX) &&
1049 (!arg->probability || prandom_u32() > arg->probability)) {
1050 if (last)
1051 consume_skb(skb);
1052 return 0;
1053 }
1054
1055 clone_flow_key = !arg->exec;
1056 return clone_execute(dp, skb, key, 0, actions, rem, last,
1057 clone_flow_key);
1058}
1059
1060static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1061 const struct nlattr *attr)
1062{
1063 struct ovs_action_hash *hash_act = nla_data(attr);
1064 u32 hash = 0;
1065
1066 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
1067 hash = skb_get_hash(skb);
1068 hash = jhash_1word(hash, hash_act->hash_basis);
1069 if (!hash)
1070 hash = 0x1;
1071
1072 key->ovs_flow_hash = hash;
1073}
1074
1075static int execute_set_action(struct sk_buff *skb,
1076 struct sw_flow_key *flow_key,
1077 const struct nlattr *a)
1078{
1079 /* Only tunnel set execution is supported without a mask. */
1080 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1081 struct ovs_tunnel_info *tun = nla_data(a);
1082
1083 skb_dst_drop(skb);
1084 dst_hold((struct dst_entry *)tun->tun_dst);
1085 skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1086 return 0;
1087 }
1088
1089 return -EINVAL;
1090}
1091
1092/* Mask is at the midpoint of the data. */
1093#define get_mask(a, type) ((const type)nla_data(a) + 1)
1094
1095static int execute_masked_set_action(struct sk_buff *skb,
1096 struct sw_flow_key *flow_key,
1097 const struct nlattr *a)
1098{
1099 int err = 0;
1100
1101 switch (nla_type(a)) {
1102 case OVS_KEY_ATTR_PRIORITY:
1103 OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1104 *get_mask(a, u32 *));
1105 flow_key->phy.priority = skb->priority;
1106 break;
1107
1108 case OVS_KEY_ATTR_SKB_MARK:
1109 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1110 flow_key->phy.skb_mark = skb->mark;
1111 break;
1112
1113 case OVS_KEY_ATTR_TUNNEL_INFO:
1114 /* Masked data not supported for tunnel. */
1115 err = -EINVAL;
1116 break;
1117
1118 case OVS_KEY_ATTR_ETHERNET:
1119 err = set_eth_addr(skb, flow_key, nla_data(a),
1120 get_mask(a, struct ovs_key_ethernet *));
1121 break;
1122
1123 case OVS_KEY_ATTR_NSH:
1124 err = set_nsh(skb, flow_key, a);
1125 break;
1126
1127 case OVS_KEY_ATTR_IPV4:
1128 err = set_ipv4(skb, flow_key, nla_data(a),
1129 get_mask(a, struct ovs_key_ipv4 *));
1130 break;
1131
1132 case OVS_KEY_ATTR_IPV6:
1133 err = set_ipv6(skb, flow_key, nla_data(a),
1134 get_mask(a, struct ovs_key_ipv6 *));
1135 break;
1136
1137 case OVS_KEY_ATTR_TCP:
1138 err = set_tcp(skb, flow_key, nla_data(a),
1139 get_mask(a, struct ovs_key_tcp *));
1140 break;
1141
1142 case OVS_KEY_ATTR_UDP:
1143 err = set_udp(skb, flow_key, nla_data(a),
1144 get_mask(a, struct ovs_key_udp *));
1145 break;
1146
1147 case OVS_KEY_ATTR_SCTP:
1148 err = set_sctp(skb, flow_key, nla_data(a),
1149 get_mask(a, struct ovs_key_sctp *));
1150 break;
1151
1152 case OVS_KEY_ATTR_MPLS:
1153 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1154 __be32 *));
1155 break;
1156
1157 case OVS_KEY_ATTR_CT_STATE:
1158 case OVS_KEY_ATTR_CT_ZONE:
1159 case OVS_KEY_ATTR_CT_MARK:
1160 case OVS_KEY_ATTR_CT_LABELS:
1161 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1162 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1163 err = -EINVAL;
1164 break;
1165 }
1166
1167 return err;
1168}
1169
1170static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1171 struct sw_flow_key *key,
1172 const struct nlattr *a, bool last)
1173{
1174 u32 recirc_id;
1175
1176 if (!is_flow_key_valid(key)) {
1177 int err;
1178
1179 err = ovs_flow_key_update(skb, key);
1180 if (err)
1181 return err;
1182 }
1183 BUG_ON(!is_flow_key_valid(key));
1184
1185 recirc_id = nla_get_u32(a);
1186 return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1187}
1188
1189/* Execute a list of actions against 'skb'. */
1190static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1191 struct sw_flow_key *key,
1192 const struct nlattr *attr, int len)
1193{
1194 const struct nlattr *a;
1195 int rem;
1196
1197 for (a = attr, rem = len; rem > 0;
1198 a = nla_next(a, &rem)) {
1199 int err = 0;
1200
1201 switch (nla_type(a)) {
1202 case OVS_ACTION_ATTR_OUTPUT: {
1203 int port = nla_get_u32(a);
1204 struct sk_buff *clone;
1205
1206 /* Every output action needs a separate clone
1207 * of 'skb', In case the output action is the
1208 * last action, cloning can be avoided.
1209 */
1210 if (nla_is_last(a, rem)) {
1211 do_output(dp, skb, port, key);
1212 /* 'skb' has been used for output.
1213 */
1214 return 0;
1215 }
1216
1217 clone = skb_clone(skb, GFP_ATOMIC);
1218 if (clone)
1219 do_output(dp, clone, port, key);
1220 OVS_CB(skb)->cutlen = 0;
1221 break;
1222 }
1223
1224 case OVS_ACTION_ATTR_TRUNC: {
1225 struct ovs_action_trunc *trunc = nla_data(a);
1226
1227 if (skb->len > trunc->max_len)
1228 OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1229 break;
1230 }
1231
1232 case OVS_ACTION_ATTR_USERSPACE:
1233 output_userspace(dp, skb, key, a, attr,
1234 len, OVS_CB(skb)->cutlen);
1235 OVS_CB(skb)->cutlen = 0;
1236 break;
1237
1238 case OVS_ACTION_ATTR_HASH:
1239 execute_hash(skb, key, a);
1240 break;
1241
1242 case OVS_ACTION_ATTR_PUSH_MPLS:
1243 err = push_mpls(skb, key, nla_data(a));
1244 break;
1245
1246 case OVS_ACTION_ATTR_POP_MPLS:
1247 err = pop_mpls(skb, key, nla_get_be16(a));
1248 break;
1249
1250 case OVS_ACTION_ATTR_PUSH_VLAN:
1251 err = push_vlan(skb, key, nla_data(a));
1252 break;
1253
1254 case OVS_ACTION_ATTR_POP_VLAN:
1255 err = pop_vlan(skb, key);
1256 break;
1257
1258 case OVS_ACTION_ATTR_RECIRC: {
1259 bool last = nla_is_last(a, rem);
1260
1261 err = execute_recirc(dp, skb, key, a, last);
1262 if (last) {
1263 /* If this is the last action, the skb has
1264 * been consumed or freed.
1265 * Return immediately.
1266 */
1267 return err;
1268 }
1269 break;
1270 }
1271
1272 case OVS_ACTION_ATTR_SET:
1273 err = execute_set_action(skb, key, nla_data(a));
1274 break;
1275
1276 case OVS_ACTION_ATTR_SET_MASKED:
1277 case OVS_ACTION_ATTR_SET_TO_MASKED:
1278 err = execute_masked_set_action(skb, key, nla_data(a));
1279 break;
1280
1281 case OVS_ACTION_ATTR_SAMPLE: {
1282 bool last = nla_is_last(a, rem);
1283
1284 err = sample(dp, skb, key, a, last);
1285 if (last)
1286 return err;
1287
1288 break;
1289 }
1290
1291 case OVS_ACTION_ATTR_CT:
1292 if (!is_flow_key_valid(key)) {
1293 err = ovs_flow_key_update(skb, key);
1294 if (err)
1295 return err;
1296 }
1297
1298 err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1299 nla_data(a));
1300
1301 /* Hide stolen IP fragments from user space. */
1302 if (err)
1303 return err == -EINPROGRESS ? 0 : err;
1304 break;
1305
1306 case OVS_ACTION_ATTR_CT_CLEAR:
1307 err = ovs_ct_clear(skb, key);
1308 break;
1309
1310 case OVS_ACTION_ATTR_PUSH_ETH:
1311 err = push_eth(skb, key, nla_data(a));
1312 break;
1313
1314 case OVS_ACTION_ATTR_POP_ETH:
1315 err = pop_eth(skb, key);
1316 break;
1317
1318 case OVS_ACTION_ATTR_PUSH_NSH: {
1319 u8 buffer[NSH_HDR_MAX_LEN];
1320 struct nshhdr *nh = (struct nshhdr *)buffer;
1321
1322 err = nsh_hdr_from_nlattr(nla_data(a), nh,
1323 NSH_HDR_MAX_LEN);
1324 if (unlikely(err))
1325 break;
1326 err = push_nsh(skb, key, nh);
1327 break;
1328 }
1329
1330 case OVS_ACTION_ATTR_POP_NSH:
1331 err = pop_nsh(skb, key);
1332 break;
1333
1334 case OVS_ACTION_ATTR_METER:
1335 if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1336 consume_skb(skb);
1337 return 0;
1338 }
1339 }
1340
1341 if (unlikely(err)) {
1342 kfree_skb(skb);
1343 return err;
1344 }
1345 }
1346
1347 consume_skb(skb);
1348 return 0;
1349}
1350
1351/* Execute the actions on the clone of the packet. The effect of the
1352 * execution does not affect the original 'skb' nor the original 'key'.
1353 *
1354 * The execution may be deferred in case the actions can not be executed
1355 * immediately.
1356 */
1357static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1358 struct sw_flow_key *key, u32 recirc_id,
1359 const struct nlattr *actions, int len,
1360 bool last, bool clone_flow_key)
1361{
1362 struct deferred_action *da;
1363 struct sw_flow_key *clone;
1364
1365 skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1366 if (!skb) {
1367 /* Out of memory, skip this action.
1368 */
1369 return 0;
1370 }
1371
1372 /* When clone_flow_key is false, the 'key' will not be change
1373 * by the actions, then the 'key' can be used directly.
1374 * Otherwise, try to clone key from the next recursion level of
1375 * 'flow_keys'. If clone is successful, execute the actions
1376 * without deferring.
1377 */
1378 clone = clone_flow_key ? clone_key(key) : key;
1379 if (clone) {
1380 int err = 0;
1381
1382 if (actions) { /* Sample action */
1383 if (clone_flow_key)
1384 __this_cpu_inc(exec_actions_level);
1385
1386 err = do_execute_actions(dp, skb, clone,
1387 actions, len);
1388
1389 if (clone_flow_key)
1390 __this_cpu_dec(exec_actions_level);
1391 } else { /* Recirc action */
1392 clone->recirc_id = recirc_id;
1393 ovs_dp_process_packet(skb, clone);
1394 }
1395 return err;
1396 }
1397
1398 /* Out of 'flow_keys' space. Defer actions */
1399 da = add_deferred_actions(skb, key, actions, len);
1400 if (da) {
1401 if (!actions) { /* Recirc action */
1402 key = &da->pkt_key;
1403 key->recirc_id = recirc_id;
1404 }
1405 } else {
1406 /* Out of per CPU action FIFO space. Drop the 'skb' and
1407 * log an error.
1408 */
1409 kfree_skb(skb);
1410
1411 if (net_ratelimit()) {
1412 if (actions) { /* Sample action */
1413 pr_warn("%s: deferred action limit reached, drop sample action\n",
1414 ovs_dp_name(dp));
1415 } else { /* Recirc action */
1416 pr_warn("%s: deferred action limit reached, drop recirc action\n",
1417 ovs_dp_name(dp));
1418 }
1419 }
1420 }
1421 return 0;
1422}
1423
1424static void process_deferred_actions(struct datapath *dp)
1425{
1426 struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1427
1428 /* Do not touch the FIFO in case there is no deferred actions. */
1429 if (action_fifo_is_empty(fifo))
1430 return;
1431
1432 /* Finishing executing all deferred actions. */
1433 do {
1434 struct deferred_action *da = action_fifo_get(fifo);
1435 struct sk_buff *skb = da->skb;
1436 struct sw_flow_key *key = &da->pkt_key;
1437 const struct nlattr *actions = da->actions;
1438 int actions_len = da->actions_len;
1439
1440 if (actions)
1441 do_execute_actions(dp, skb, key, actions, actions_len);
1442 else
1443 ovs_dp_process_packet(skb, key);
1444 } while (!action_fifo_is_empty(fifo));
1445
1446 /* Reset FIFO for the next packet. */
1447 action_fifo_init(fifo);
1448}
1449
1450/* Execute a list of actions against 'skb'. */
1451int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1452 const struct sw_flow_actions *acts,
1453 struct sw_flow_key *key)
1454{
1455 int err, level;
1456
1457 level = __this_cpu_inc_return(exec_actions_level);
1458 if (unlikely(level > OVS_RECURSION_LIMIT)) {
1459 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1460 ovs_dp_name(dp));
1461 kfree_skb(skb);
1462 err = -ENETDOWN;
1463 goto out;
1464 }
1465
1466 OVS_CB(skb)->acts_origlen = acts->orig_len;
1467 err = do_execute_actions(dp, skb, key,
1468 acts->actions, acts->actions_len);
1469
1470 if (level == 1)
1471 process_deferred_actions(dp);
1472
1473out:
1474 __this_cpu_dec(exec_actions_level);
1475 return err;
1476}
1477
1478int action_fifos_init(void)
1479{
1480 action_fifos = alloc_percpu(struct action_fifo);
1481 if (!action_fifos)
1482 return -ENOMEM;
1483
1484 flow_keys = alloc_percpu(struct action_flow_keys);
1485 if (!flow_keys) {
1486 free_percpu(action_fifos);
1487 return -ENOMEM;
1488 }
1489
1490 return 0;
1491}
1492
1493void action_fifos_exit(void)
1494{
1495 free_percpu(action_fifos);
1496 free_percpu(flow_keys);
1497}
1/*
2 * Copyright (c) 2007-2014 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21#include <linux/skbuff.h>
22#include <linux/in.h>
23#include <linux/ip.h>
24#include <linux/openvswitch.h>
25#include <linux/netfilter_ipv6.h>
26#include <linux/sctp.h>
27#include <linux/tcp.h>
28#include <linux/udp.h>
29#include <linux/in6.h>
30#include <linux/if_arp.h>
31#include <linux/if_vlan.h>
32
33#include <net/dst.h>
34#include <net/ip.h>
35#include <net/ipv6.h>
36#include <net/ip6_fib.h>
37#include <net/checksum.h>
38#include <net/dsfield.h>
39#include <net/mpls.h>
40#include <net/sctp/checksum.h>
41
42#include "datapath.h"
43#include "flow.h"
44#include "conntrack.h"
45#include "vport.h"
46
47static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
48 struct sw_flow_key *key,
49 const struct nlattr *attr, int len);
50
51struct deferred_action {
52 struct sk_buff *skb;
53 const struct nlattr *actions;
54
55 /* Store pkt_key clone when creating deferred action. */
56 struct sw_flow_key pkt_key;
57};
58
59#define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
60struct ovs_frag_data {
61 unsigned long dst;
62 struct vport *vport;
63 struct ovs_skb_cb cb;
64 __be16 inner_protocol;
65 __u16 vlan_tci;
66 __be16 vlan_proto;
67 unsigned int l2_len;
68 u8 l2_data[MAX_L2_LEN];
69};
70
71static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
72
73#define DEFERRED_ACTION_FIFO_SIZE 10
74struct action_fifo {
75 int head;
76 int tail;
77 /* Deferred action fifo queue storage. */
78 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
79};
80
81static struct action_fifo __percpu *action_fifos;
82static DEFINE_PER_CPU(int, exec_actions_level);
83
84static void action_fifo_init(struct action_fifo *fifo)
85{
86 fifo->head = 0;
87 fifo->tail = 0;
88}
89
90static bool action_fifo_is_empty(const struct action_fifo *fifo)
91{
92 return (fifo->head == fifo->tail);
93}
94
95static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
96{
97 if (action_fifo_is_empty(fifo))
98 return NULL;
99
100 return &fifo->fifo[fifo->tail++];
101}
102
103static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
104{
105 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
106 return NULL;
107
108 return &fifo->fifo[fifo->head++];
109}
110
111/* Return true if fifo is not full */
112static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
113 const struct sw_flow_key *key,
114 const struct nlattr *attr)
115{
116 struct action_fifo *fifo;
117 struct deferred_action *da;
118
119 fifo = this_cpu_ptr(action_fifos);
120 da = action_fifo_put(fifo);
121 if (da) {
122 da->skb = skb;
123 da->actions = attr;
124 da->pkt_key = *key;
125 }
126
127 return da;
128}
129
130static void invalidate_flow_key(struct sw_flow_key *key)
131{
132 key->eth.type = htons(0);
133}
134
135static bool is_flow_key_valid(const struct sw_flow_key *key)
136{
137 return !!key->eth.type;
138}
139
140static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
141 const struct ovs_action_push_mpls *mpls)
142{
143 __be32 *new_mpls_lse;
144 struct ethhdr *hdr;
145
146 /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
147 if (skb->encapsulation)
148 return -ENOTSUPP;
149
150 if (skb_cow_head(skb, MPLS_HLEN) < 0)
151 return -ENOMEM;
152
153 skb_push(skb, MPLS_HLEN);
154 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
155 skb->mac_len);
156 skb_reset_mac_header(skb);
157
158 new_mpls_lse = (__be32 *)skb_mpls_header(skb);
159 *new_mpls_lse = mpls->mpls_lse;
160
161 skb_postpush_rcsum(skb, new_mpls_lse, MPLS_HLEN);
162
163 hdr = eth_hdr(skb);
164 hdr->h_proto = mpls->mpls_ethertype;
165
166 if (!skb->inner_protocol)
167 skb_set_inner_protocol(skb, skb->protocol);
168 skb->protocol = mpls->mpls_ethertype;
169
170 invalidate_flow_key(key);
171 return 0;
172}
173
174static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
175 const __be16 ethertype)
176{
177 struct ethhdr *hdr;
178 int err;
179
180 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
181 if (unlikely(err))
182 return err;
183
184 skb_postpull_rcsum(skb, skb_mpls_header(skb), MPLS_HLEN);
185
186 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
187 skb->mac_len);
188
189 __skb_pull(skb, MPLS_HLEN);
190 skb_reset_mac_header(skb);
191
192 /* skb_mpls_header() is used to locate the ethertype
193 * field correctly in the presence of VLAN tags.
194 */
195 hdr = (struct ethhdr *)(skb_mpls_header(skb) - ETH_HLEN);
196 hdr->h_proto = ethertype;
197 if (eth_p_mpls(skb->protocol))
198 skb->protocol = ethertype;
199
200 invalidate_flow_key(key);
201 return 0;
202}
203
204static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
205 const __be32 *mpls_lse, const __be32 *mask)
206{
207 __be32 *stack;
208 __be32 lse;
209 int err;
210
211 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
212 if (unlikely(err))
213 return err;
214
215 stack = (__be32 *)skb_mpls_header(skb);
216 lse = OVS_MASKED(*stack, *mpls_lse, *mask);
217 if (skb->ip_summed == CHECKSUM_COMPLETE) {
218 __be32 diff[] = { ~(*stack), lse };
219
220 skb->csum = ~csum_partial((char *)diff, sizeof(diff),
221 ~skb->csum);
222 }
223
224 *stack = lse;
225 flow_key->mpls.top_lse = lse;
226 return 0;
227}
228
229static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
230{
231 int err;
232
233 err = skb_vlan_pop(skb);
234 if (skb_vlan_tag_present(skb))
235 invalidate_flow_key(key);
236 else
237 key->eth.tci = 0;
238 return err;
239}
240
241static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
242 const struct ovs_action_push_vlan *vlan)
243{
244 if (skb_vlan_tag_present(skb))
245 invalidate_flow_key(key);
246 else
247 key->eth.tci = vlan->vlan_tci;
248 return skb_vlan_push(skb, vlan->vlan_tpid,
249 ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
250}
251
252/* 'src' is already properly masked. */
253static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
254{
255 u16 *dst = (u16 *)dst_;
256 const u16 *src = (const u16 *)src_;
257 const u16 *mask = (const u16 *)mask_;
258
259 OVS_SET_MASKED(dst[0], src[0], mask[0]);
260 OVS_SET_MASKED(dst[1], src[1], mask[1]);
261 OVS_SET_MASKED(dst[2], src[2], mask[2]);
262}
263
264static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
265 const struct ovs_key_ethernet *key,
266 const struct ovs_key_ethernet *mask)
267{
268 int err;
269
270 err = skb_ensure_writable(skb, ETH_HLEN);
271 if (unlikely(err))
272 return err;
273
274 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
275
276 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
277 mask->eth_src);
278 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
279 mask->eth_dst);
280
281 skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
282
283 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
284 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
285 return 0;
286}
287
288static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
289 __be32 addr, __be32 new_addr)
290{
291 int transport_len = skb->len - skb_transport_offset(skb);
292
293 if (nh->frag_off & htons(IP_OFFSET))
294 return;
295
296 if (nh->protocol == IPPROTO_TCP) {
297 if (likely(transport_len >= sizeof(struct tcphdr)))
298 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
299 addr, new_addr, true);
300 } else if (nh->protocol == IPPROTO_UDP) {
301 if (likely(transport_len >= sizeof(struct udphdr))) {
302 struct udphdr *uh = udp_hdr(skb);
303
304 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
305 inet_proto_csum_replace4(&uh->check, skb,
306 addr, new_addr, true);
307 if (!uh->check)
308 uh->check = CSUM_MANGLED_0;
309 }
310 }
311 }
312}
313
314static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
315 __be32 *addr, __be32 new_addr)
316{
317 update_ip_l4_checksum(skb, nh, *addr, new_addr);
318 csum_replace4(&nh->check, *addr, new_addr);
319 skb_clear_hash(skb);
320 *addr = new_addr;
321}
322
323static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
324 __be32 addr[4], const __be32 new_addr[4])
325{
326 int transport_len = skb->len - skb_transport_offset(skb);
327
328 if (l4_proto == NEXTHDR_TCP) {
329 if (likely(transport_len >= sizeof(struct tcphdr)))
330 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
331 addr, new_addr, true);
332 } else if (l4_proto == NEXTHDR_UDP) {
333 if (likely(transport_len >= sizeof(struct udphdr))) {
334 struct udphdr *uh = udp_hdr(skb);
335
336 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
337 inet_proto_csum_replace16(&uh->check, skb,
338 addr, new_addr, true);
339 if (!uh->check)
340 uh->check = CSUM_MANGLED_0;
341 }
342 }
343 } else if (l4_proto == NEXTHDR_ICMP) {
344 if (likely(transport_len >= sizeof(struct icmp6hdr)))
345 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
346 skb, addr, new_addr, true);
347 }
348}
349
350static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
351 const __be32 mask[4], __be32 masked[4])
352{
353 masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
354 masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
355 masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
356 masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
357}
358
359static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
360 __be32 addr[4], const __be32 new_addr[4],
361 bool recalculate_csum)
362{
363 if (recalculate_csum)
364 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
365
366 skb_clear_hash(skb);
367 memcpy(addr, new_addr, sizeof(__be32[4]));
368}
369
370static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
371{
372 /* Bits 21-24 are always unmasked, so this retains their values. */
373 OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
374 OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
375 OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
376}
377
378static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
379 u8 mask)
380{
381 new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
382
383 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
384 nh->ttl = new_ttl;
385}
386
387static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
388 const struct ovs_key_ipv4 *key,
389 const struct ovs_key_ipv4 *mask)
390{
391 struct iphdr *nh;
392 __be32 new_addr;
393 int err;
394
395 err = skb_ensure_writable(skb, skb_network_offset(skb) +
396 sizeof(struct iphdr));
397 if (unlikely(err))
398 return err;
399
400 nh = ip_hdr(skb);
401
402 /* Setting an IP addresses is typically only a side effect of
403 * matching on them in the current userspace implementation, so it
404 * makes sense to check if the value actually changed.
405 */
406 if (mask->ipv4_src) {
407 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
408
409 if (unlikely(new_addr != nh->saddr)) {
410 set_ip_addr(skb, nh, &nh->saddr, new_addr);
411 flow_key->ipv4.addr.src = new_addr;
412 }
413 }
414 if (mask->ipv4_dst) {
415 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
416
417 if (unlikely(new_addr != nh->daddr)) {
418 set_ip_addr(skb, nh, &nh->daddr, new_addr);
419 flow_key->ipv4.addr.dst = new_addr;
420 }
421 }
422 if (mask->ipv4_tos) {
423 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
424 flow_key->ip.tos = nh->tos;
425 }
426 if (mask->ipv4_ttl) {
427 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
428 flow_key->ip.ttl = nh->ttl;
429 }
430
431 return 0;
432}
433
434static bool is_ipv6_mask_nonzero(const __be32 addr[4])
435{
436 return !!(addr[0] | addr[1] | addr[2] | addr[3]);
437}
438
439static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
440 const struct ovs_key_ipv6 *key,
441 const struct ovs_key_ipv6 *mask)
442{
443 struct ipv6hdr *nh;
444 int err;
445
446 err = skb_ensure_writable(skb, skb_network_offset(skb) +
447 sizeof(struct ipv6hdr));
448 if (unlikely(err))
449 return err;
450
451 nh = ipv6_hdr(skb);
452
453 /* Setting an IP addresses is typically only a side effect of
454 * matching on them in the current userspace implementation, so it
455 * makes sense to check if the value actually changed.
456 */
457 if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
458 __be32 *saddr = (__be32 *)&nh->saddr;
459 __be32 masked[4];
460
461 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
462
463 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
464 set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
465 true);
466 memcpy(&flow_key->ipv6.addr.src, masked,
467 sizeof(flow_key->ipv6.addr.src));
468 }
469 }
470 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
471 unsigned int offset = 0;
472 int flags = IP6_FH_F_SKIP_RH;
473 bool recalc_csum = true;
474 __be32 *daddr = (__be32 *)&nh->daddr;
475 __be32 masked[4];
476
477 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
478
479 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
480 if (ipv6_ext_hdr(nh->nexthdr))
481 recalc_csum = (ipv6_find_hdr(skb, &offset,
482 NEXTHDR_ROUTING,
483 NULL, &flags)
484 != NEXTHDR_ROUTING);
485
486 set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
487 recalc_csum);
488 memcpy(&flow_key->ipv6.addr.dst, masked,
489 sizeof(flow_key->ipv6.addr.dst));
490 }
491 }
492 if (mask->ipv6_tclass) {
493 ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
494 flow_key->ip.tos = ipv6_get_dsfield(nh);
495 }
496 if (mask->ipv6_label) {
497 set_ipv6_fl(nh, ntohl(key->ipv6_label),
498 ntohl(mask->ipv6_label));
499 flow_key->ipv6.label =
500 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
501 }
502 if (mask->ipv6_hlimit) {
503 OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
504 mask->ipv6_hlimit);
505 flow_key->ip.ttl = nh->hop_limit;
506 }
507 return 0;
508}
509
510/* Must follow skb_ensure_writable() since that can move the skb data. */
511static void set_tp_port(struct sk_buff *skb, __be16 *port,
512 __be16 new_port, __sum16 *check)
513{
514 inet_proto_csum_replace2(check, skb, *port, new_port, false);
515 *port = new_port;
516}
517
518static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
519 const struct ovs_key_udp *key,
520 const struct ovs_key_udp *mask)
521{
522 struct udphdr *uh;
523 __be16 src, dst;
524 int err;
525
526 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
527 sizeof(struct udphdr));
528 if (unlikely(err))
529 return err;
530
531 uh = udp_hdr(skb);
532 /* Either of the masks is non-zero, so do not bother checking them. */
533 src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
534 dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
535
536 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
537 if (likely(src != uh->source)) {
538 set_tp_port(skb, &uh->source, src, &uh->check);
539 flow_key->tp.src = src;
540 }
541 if (likely(dst != uh->dest)) {
542 set_tp_port(skb, &uh->dest, dst, &uh->check);
543 flow_key->tp.dst = dst;
544 }
545
546 if (unlikely(!uh->check))
547 uh->check = CSUM_MANGLED_0;
548 } else {
549 uh->source = src;
550 uh->dest = dst;
551 flow_key->tp.src = src;
552 flow_key->tp.dst = dst;
553 }
554
555 skb_clear_hash(skb);
556
557 return 0;
558}
559
560static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
561 const struct ovs_key_tcp *key,
562 const struct ovs_key_tcp *mask)
563{
564 struct tcphdr *th;
565 __be16 src, dst;
566 int err;
567
568 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
569 sizeof(struct tcphdr));
570 if (unlikely(err))
571 return err;
572
573 th = tcp_hdr(skb);
574 src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
575 if (likely(src != th->source)) {
576 set_tp_port(skb, &th->source, src, &th->check);
577 flow_key->tp.src = src;
578 }
579 dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
580 if (likely(dst != th->dest)) {
581 set_tp_port(skb, &th->dest, dst, &th->check);
582 flow_key->tp.dst = dst;
583 }
584 skb_clear_hash(skb);
585
586 return 0;
587}
588
589static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
590 const struct ovs_key_sctp *key,
591 const struct ovs_key_sctp *mask)
592{
593 unsigned int sctphoff = skb_transport_offset(skb);
594 struct sctphdr *sh;
595 __le32 old_correct_csum, new_csum, old_csum;
596 int err;
597
598 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
599 if (unlikely(err))
600 return err;
601
602 sh = sctp_hdr(skb);
603 old_csum = sh->checksum;
604 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
605
606 sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
607 sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
608
609 new_csum = sctp_compute_cksum(skb, sctphoff);
610
611 /* Carry any checksum errors through. */
612 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
613
614 skb_clear_hash(skb);
615 flow_key->tp.src = sh->source;
616 flow_key->tp.dst = sh->dest;
617
618 return 0;
619}
620
621static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb)
622{
623 struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
624 struct vport *vport = data->vport;
625
626 if (skb_cow_head(skb, data->l2_len) < 0) {
627 kfree_skb(skb);
628 return -ENOMEM;
629 }
630
631 __skb_dst_copy(skb, data->dst);
632 *OVS_CB(skb) = data->cb;
633 skb->inner_protocol = data->inner_protocol;
634 skb->vlan_tci = data->vlan_tci;
635 skb->vlan_proto = data->vlan_proto;
636
637 /* Reconstruct the MAC header. */
638 skb_push(skb, data->l2_len);
639 memcpy(skb->data, &data->l2_data, data->l2_len);
640 skb_postpush_rcsum(skb, skb->data, data->l2_len);
641 skb_reset_mac_header(skb);
642
643 ovs_vport_send(vport, skb);
644 return 0;
645}
646
647static unsigned int
648ovs_dst_get_mtu(const struct dst_entry *dst)
649{
650 return dst->dev->mtu;
651}
652
653static struct dst_ops ovs_dst_ops = {
654 .family = AF_UNSPEC,
655 .mtu = ovs_dst_get_mtu,
656};
657
658/* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
659 * ovs_vport_output(), which is called once per fragmented packet.
660 */
661static void prepare_frag(struct vport *vport, struct sk_buff *skb)
662{
663 unsigned int hlen = skb_network_offset(skb);
664 struct ovs_frag_data *data;
665
666 data = this_cpu_ptr(&ovs_frag_data_storage);
667 data->dst = skb->_skb_refdst;
668 data->vport = vport;
669 data->cb = *OVS_CB(skb);
670 data->inner_protocol = skb->inner_protocol;
671 data->vlan_tci = skb->vlan_tci;
672 data->vlan_proto = skb->vlan_proto;
673 data->l2_len = hlen;
674 memcpy(&data->l2_data, skb->data, hlen);
675
676 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
677 skb_pull(skb, hlen);
678}
679
680static void ovs_fragment(struct net *net, struct vport *vport,
681 struct sk_buff *skb, u16 mru, __be16 ethertype)
682{
683 if (skb_network_offset(skb) > MAX_L2_LEN) {
684 OVS_NLERR(1, "L2 header too long to fragment");
685 goto err;
686 }
687
688 if (ethertype == htons(ETH_P_IP)) {
689 struct dst_entry ovs_dst;
690 unsigned long orig_dst;
691
692 prepare_frag(vport, skb);
693 dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
694 DST_OBSOLETE_NONE, DST_NOCOUNT);
695 ovs_dst.dev = vport->dev;
696
697 orig_dst = skb->_skb_refdst;
698 skb_dst_set_noref(skb, &ovs_dst);
699 IPCB(skb)->frag_max_size = mru;
700
701 ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
702 refdst_drop(orig_dst);
703 } else if (ethertype == htons(ETH_P_IPV6)) {
704 const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
705 unsigned long orig_dst;
706 struct rt6_info ovs_rt;
707
708 if (!v6ops) {
709 goto err;
710 }
711
712 prepare_frag(vport, skb);
713 memset(&ovs_rt, 0, sizeof(ovs_rt));
714 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
715 DST_OBSOLETE_NONE, DST_NOCOUNT);
716 ovs_rt.dst.dev = vport->dev;
717
718 orig_dst = skb->_skb_refdst;
719 skb_dst_set_noref(skb, &ovs_rt.dst);
720 IP6CB(skb)->frag_max_size = mru;
721
722 v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
723 refdst_drop(orig_dst);
724 } else {
725 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
726 ovs_vport_name(vport), ntohs(ethertype), mru,
727 vport->dev->mtu);
728 goto err;
729 }
730
731 return;
732err:
733 kfree_skb(skb);
734}
735
736static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
737 struct sw_flow_key *key)
738{
739 struct vport *vport = ovs_vport_rcu(dp, out_port);
740
741 if (likely(vport)) {
742 u16 mru = OVS_CB(skb)->mru;
743
744 if (likely(!mru || (skb->len <= mru + ETH_HLEN))) {
745 ovs_vport_send(vport, skb);
746 } else if (mru <= vport->dev->mtu) {
747 struct net *net = read_pnet(&dp->net);
748 __be16 ethertype = key->eth.type;
749
750 if (!is_flow_key_valid(key)) {
751 if (eth_p_mpls(skb->protocol))
752 ethertype = skb->inner_protocol;
753 else
754 ethertype = vlan_get_protocol(skb);
755 }
756
757 ovs_fragment(net, vport, skb, mru, ethertype);
758 } else {
759 kfree_skb(skb);
760 }
761 } else {
762 kfree_skb(skb);
763 }
764}
765
766static int output_userspace(struct datapath *dp, struct sk_buff *skb,
767 struct sw_flow_key *key, const struct nlattr *attr,
768 const struct nlattr *actions, int actions_len)
769{
770 struct dp_upcall_info upcall;
771 const struct nlattr *a;
772 int rem;
773
774 memset(&upcall, 0, sizeof(upcall));
775 upcall.cmd = OVS_PACKET_CMD_ACTION;
776 upcall.mru = OVS_CB(skb)->mru;
777
778 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
779 a = nla_next(a, &rem)) {
780 switch (nla_type(a)) {
781 case OVS_USERSPACE_ATTR_USERDATA:
782 upcall.userdata = a;
783 break;
784
785 case OVS_USERSPACE_ATTR_PID:
786 upcall.portid = nla_get_u32(a);
787 break;
788
789 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
790 /* Get out tunnel info. */
791 struct vport *vport;
792
793 vport = ovs_vport_rcu(dp, nla_get_u32(a));
794 if (vport) {
795 int err;
796
797 err = dev_fill_metadata_dst(vport->dev, skb);
798 if (!err)
799 upcall.egress_tun_info = skb_tunnel_info(skb);
800 }
801
802 break;
803 }
804
805 case OVS_USERSPACE_ATTR_ACTIONS: {
806 /* Include actions. */
807 upcall.actions = actions;
808 upcall.actions_len = actions_len;
809 break;
810 }
811
812 } /* End of switch. */
813 }
814
815 return ovs_dp_upcall(dp, skb, key, &upcall);
816}
817
818static int sample(struct datapath *dp, struct sk_buff *skb,
819 struct sw_flow_key *key, const struct nlattr *attr,
820 const struct nlattr *actions, int actions_len)
821{
822 const struct nlattr *acts_list = NULL;
823 const struct nlattr *a;
824 int rem;
825
826 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
827 a = nla_next(a, &rem)) {
828 u32 probability;
829
830 switch (nla_type(a)) {
831 case OVS_SAMPLE_ATTR_PROBABILITY:
832 probability = nla_get_u32(a);
833 if (!probability || prandom_u32() > probability)
834 return 0;
835 break;
836
837 case OVS_SAMPLE_ATTR_ACTIONS:
838 acts_list = a;
839 break;
840 }
841 }
842
843 rem = nla_len(acts_list);
844 a = nla_data(acts_list);
845
846 /* Actions list is empty, do nothing */
847 if (unlikely(!rem))
848 return 0;
849
850 /* The only known usage of sample action is having a single user-space
851 * action. Treat this usage as a special case.
852 * The output_userspace() should clone the skb to be sent to the
853 * user space. This skb will be consumed by its caller.
854 */
855 if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
856 nla_is_last(a, rem)))
857 return output_userspace(dp, skb, key, a, actions, actions_len);
858
859 skb = skb_clone(skb, GFP_ATOMIC);
860 if (!skb)
861 /* Skip the sample action when out of memory. */
862 return 0;
863
864 if (!add_deferred_actions(skb, key, a)) {
865 if (net_ratelimit())
866 pr_warn("%s: deferred actions limit reached, dropping sample action\n",
867 ovs_dp_name(dp));
868
869 kfree_skb(skb);
870 }
871 return 0;
872}
873
874static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
875 const struct nlattr *attr)
876{
877 struct ovs_action_hash *hash_act = nla_data(attr);
878 u32 hash = 0;
879
880 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
881 hash = skb_get_hash(skb);
882 hash = jhash_1word(hash, hash_act->hash_basis);
883 if (!hash)
884 hash = 0x1;
885
886 key->ovs_flow_hash = hash;
887}
888
889static int execute_set_action(struct sk_buff *skb,
890 struct sw_flow_key *flow_key,
891 const struct nlattr *a)
892{
893 /* Only tunnel set execution is supported without a mask. */
894 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
895 struct ovs_tunnel_info *tun = nla_data(a);
896
897 skb_dst_drop(skb);
898 dst_hold((struct dst_entry *)tun->tun_dst);
899 skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
900 return 0;
901 }
902
903 return -EINVAL;
904}
905
906/* Mask is at the midpoint of the data. */
907#define get_mask(a, type) ((const type)nla_data(a) + 1)
908
909static int execute_masked_set_action(struct sk_buff *skb,
910 struct sw_flow_key *flow_key,
911 const struct nlattr *a)
912{
913 int err = 0;
914
915 switch (nla_type(a)) {
916 case OVS_KEY_ATTR_PRIORITY:
917 OVS_SET_MASKED(skb->priority, nla_get_u32(a),
918 *get_mask(a, u32 *));
919 flow_key->phy.priority = skb->priority;
920 break;
921
922 case OVS_KEY_ATTR_SKB_MARK:
923 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
924 flow_key->phy.skb_mark = skb->mark;
925 break;
926
927 case OVS_KEY_ATTR_TUNNEL_INFO:
928 /* Masked data not supported for tunnel. */
929 err = -EINVAL;
930 break;
931
932 case OVS_KEY_ATTR_ETHERNET:
933 err = set_eth_addr(skb, flow_key, nla_data(a),
934 get_mask(a, struct ovs_key_ethernet *));
935 break;
936
937 case OVS_KEY_ATTR_IPV4:
938 err = set_ipv4(skb, flow_key, nla_data(a),
939 get_mask(a, struct ovs_key_ipv4 *));
940 break;
941
942 case OVS_KEY_ATTR_IPV6:
943 err = set_ipv6(skb, flow_key, nla_data(a),
944 get_mask(a, struct ovs_key_ipv6 *));
945 break;
946
947 case OVS_KEY_ATTR_TCP:
948 err = set_tcp(skb, flow_key, nla_data(a),
949 get_mask(a, struct ovs_key_tcp *));
950 break;
951
952 case OVS_KEY_ATTR_UDP:
953 err = set_udp(skb, flow_key, nla_data(a),
954 get_mask(a, struct ovs_key_udp *));
955 break;
956
957 case OVS_KEY_ATTR_SCTP:
958 err = set_sctp(skb, flow_key, nla_data(a),
959 get_mask(a, struct ovs_key_sctp *));
960 break;
961
962 case OVS_KEY_ATTR_MPLS:
963 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
964 __be32 *));
965 break;
966
967 case OVS_KEY_ATTR_CT_STATE:
968 case OVS_KEY_ATTR_CT_ZONE:
969 case OVS_KEY_ATTR_CT_MARK:
970 case OVS_KEY_ATTR_CT_LABELS:
971 err = -EINVAL;
972 break;
973 }
974
975 return err;
976}
977
978static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
979 struct sw_flow_key *key,
980 const struct nlattr *a, int rem)
981{
982 struct deferred_action *da;
983
984 if (!is_flow_key_valid(key)) {
985 int err;
986
987 err = ovs_flow_key_update(skb, key);
988 if (err)
989 return err;
990 }
991 BUG_ON(!is_flow_key_valid(key));
992
993 if (!nla_is_last(a, rem)) {
994 /* Recirc action is the not the last action
995 * of the action list, need to clone the skb.
996 */
997 skb = skb_clone(skb, GFP_ATOMIC);
998
999 /* Skip the recirc action when out of memory, but
1000 * continue on with the rest of the action list.
1001 */
1002 if (!skb)
1003 return 0;
1004 }
1005
1006 da = add_deferred_actions(skb, key, NULL);
1007 if (da) {
1008 da->pkt_key.recirc_id = nla_get_u32(a);
1009 } else {
1010 kfree_skb(skb);
1011
1012 if (net_ratelimit())
1013 pr_warn("%s: deferred action limit reached, drop recirc action\n",
1014 ovs_dp_name(dp));
1015 }
1016
1017 return 0;
1018}
1019
1020/* Execute a list of actions against 'skb'. */
1021static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1022 struct sw_flow_key *key,
1023 const struct nlattr *attr, int len)
1024{
1025 /* Every output action needs a separate clone of 'skb', but the common
1026 * case is just a single output action, so that doing a clone and
1027 * then freeing the original skbuff is wasteful. So the following code
1028 * is slightly obscure just to avoid that.
1029 */
1030 int prev_port = -1;
1031 const struct nlattr *a;
1032 int rem;
1033
1034 for (a = attr, rem = len; rem > 0;
1035 a = nla_next(a, &rem)) {
1036 int err = 0;
1037
1038 if (unlikely(prev_port != -1)) {
1039 struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC);
1040
1041 if (out_skb)
1042 do_output(dp, out_skb, prev_port, key);
1043
1044 prev_port = -1;
1045 }
1046
1047 switch (nla_type(a)) {
1048 case OVS_ACTION_ATTR_OUTPUT:
1049 prev_port = nla_get_u32(a);
1050 break;
1051
1052 case OVS_ACTION_ATTR_USERSPACE:
1053 output_userspace(dp, skb, key, a, attr, len);
1054 break;
1055
1056 case OVS_ACTION_ATTR_HASH:
1057 execute_hash(skb, key, a);
1058 break;
1059
1060 case OVS_ACTION_ATTR_PUSH_MPLS:
1061 err = push_mpls(skb, key, nla_data(a));
1062 break;
1063
1064 case OVS_ACTION_ATTR_POP_MPLS:
1065 err = pop_mpls(skb, key, nla_get_be16(a));
1066 break;
1067
1068 case OVS_ACTION_ATTR_PUSH_VLAN:
1069 err = push_vlan(skb, key, nla_data(a));
1070 break;
1071
1072 case OVS_ACTION_ATTR_POP_VLAN:
1073 err = pop_vlan(skb, key);
1074 break;
1075
1076 case OVS_ACTION_ATTR_RECIRC:
1077 err = execute_recirc(dp, skb, key, a, rem);
1078 if (nla_is_last(a, rem)) {
1079 /* If this is the last action, the skb has
1080 * been consumed or freed.
1081 * Return immediately.
1082 */
1083 return err;
1084 }
1085 break;
1086
1087 case OVS_ACTION_ATTR_SET:
1088 err = execute_set_action(skb, key, nla_data(a));
1089 break;
1090
1091 case OVS_ACTION_ATTR_SET_MASKED:
1092 case OVS_ACTION_ATTR_SET_TO_MASKED:
1093 err = execute_masked_set_action(skb, key, nla_data(a));
1094 break;
1095
1096 case OVS_ACTION_ATTR_SAMPLE:
1097 err = sample(dp, skb, key, a, attr, len);
1098 break;
1099
1100 case OVS_ACTION_ATTR_CT:
1101 if (!is_flow_key_valid(key)) {
1102 err = ovs_flow_key_update(skb, key);
1103 if (err)
1104 return err;
1105 }
1106
1107 err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1108 nla_data(a));
1109
1110 /* Hide stolen IP fragments from user space. */
1111 if (err)
1112 return err == -EINPROGRESS ? 0 : err;
1113 break;
1114 }
1115
1116 if (unlikely(err)) {
1117 kfree_skb(skb);
1118 return err;
1119 }
1120 }
1121
1122 if (prev_port != -1)
1123 do_output(dp, skb, prev_port, key);
1124 else
1125 consume_skb(skb);
1126
1127 return 0;
1128}
1129
1130static void process_deferred_actions(struct datapath *dp)
1131{
1132 struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1133
1134 /* Do not touch the FIFO in case there is no deferred actions. */
1135 if (action_fifo_is_empty(fifo))
1136 return;
1137
1138 /* Finishing executing all deferred actions. */
1139 do {
1140 struct deferred_action *da = action_fifo_get(fifo);
1141 struct sk_buff *skb = da->skb;
1142 struct sw_flow_key *key = &da->pkt_key;
1143 const struct nlattr *actions = da->actions;
1144
1145 if (actions)
1146 do_execute_actions(dp, skb, key, actions,
1147 nla_len(actions));
1148 else
1149 ovs_dp_process_packet(skb, key);
1150 } while (!action_fifo_is_empty(fifo));
1151
1152 /* Reset FIFO for the next packet. */
1153 action_fifo_init(fifo);
1154}
1155
1156/* Execute a list of actions against 'skb'. */
1157int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1158 const struct sw_flow_actions *acts,
1159 struct sw_flow_key *key)
1160{
1161 static const int ovs_recursion_limit = 5;
1162 int err, level;
1163
1164 level = __this_cpu_inc_return(exec_actions_level);
1165 if (unlikely(level > ovs_recursion_limit)) {
1166 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1167 ovs_dp_name(dp));
1168 kfree_skb(skb);
1169 err = -ENETDOWN;
1170 goto out;
1171 }
1172
1173 err = do_execute_actions(dp, skb, key,
1174 acts->actions, acts->actions_len);
1175
1176 if (level == 1)
1177 process_deferred_actions(dp);
1178
1179out:
1180 __this_cpu_dec(exec_actions_level);
1181 return err;
1182}
1183
1184int action_fifos_init(void)
1185{
1186 action_fifos = alloc_percpu(struct action_fifo);
1187 if (!action_fifos)
1188 return -ENOMEM;
1189
1190 return 0;
1191}
1192
1193void action_fifos_exit(void)
1194{
1195 free_percpu(action_fifos);
1196}