Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 *  linux/mm/oom_kill.c
   3 * 
   4 *  Copyright (C)  1998,2000  Rik van Riel
   5 *	Thanks go out to Claus Fischer for some serious inspiration and
   6 *	for goading me into coding this file...
   7 *  Copyright (C)  2010  Google, Inc.
   8 *	Rewritten by David Rientjes
   9 *
  10 *  The routines in this file are used to kill a process when
  11 *  we're seriously out of memory. This gets called from __alloc_pages()
  12 *  in mm/page_alloc.c when we really run out of memory.
  13 *
  14 *  Since we won't call these routines often (on a well-configured
  15 *  machine) this file will double as a 'coding guide' and a signpost
  16 *  for newbie kernel hackers. It features several pointers to major
  17 *  kernel subsystems and hints as to where to find out what things do.
  18 */
  19
  20#include <linux/oom.h>
  21#include <linux/mm.h>
  22#include <linux/err.h>
  23#include <linux/gfp.h>
  24#include <linux/sched.h>
  25#include <linux/sched/mm.h>
  26#include <linux/sched/coredump.h>
  27#include <linux/sched/task.h>
  28#include <linux/swap.h>
  29#include <linux/timex.h>
  30#include <linux/jiffies.h>
  31#include <linux/cpuset.h>
  32#include <linux/export.h>
  33#include <linux/notifier.h>
  34#include <linux/memcontrol.h>
  35#include <linux/mempolicy.h>
  36#include <linux/security.h>
  37#include <linux/ptrace.h>
  38#include <linux/freezer.h>
  39#include <linux/ftrace.h>
  40#include <linux/ratelimit.h>
  41#include <linux/kthread.h>
  42#include <linux/init.h>
  43#include <linux/mmu_notifier.h>
  44
  45#include <asm/tlb.h>
  46#include "internal.h"
  47#include "slab.h"
  48
  49#define CREATE_TRACE_POINTS
  50#include <trace/events/oom.h>
  51
  52int sysctl_panic_on_oom;
  53int sysctl_oom_kill_allocating_task;
  54int sysctl_oom_dump_tasks = 1;
  55
  56DEFINE_MUTEX(oom_lock);
  57
  58#ifdef CONFIG_NUMA
  59/**
  60 * has_intersects_mems_allowed() - check task eligiblity for kill
  61 * @start: task struct of which task to consider
  62 * @mask: nodemask passed to page allocator for mempolicy ooms
  63 *
  64 * Task eligibility is determined by whether or not a candidate task, @tsk,
  65 * shares the same mempolicy nodes as current if it is bound by such a policy
  66 * and whether or not it has the same set of allowed cpuset nodes.
  67 */
  68static bool has_intersects_mems_allowed(struct task_struct *start,
  69					const nodemask_t *mask)
  70{
  71	struct task_struct *tsk;
  72	bool ret = false;
  73
  74	rcu_read_lock();
  75	for_each_thread(start, tsk) {
  76		if (mask) {
  77			/*
  78			 * If this is a mempolicy constrained oom, tsk's
  79			 * cpuset is irrelevant.  Only return true if its
  80			 * mempolicy intersects current, otherwise it may be
  81			 * needlessly killed.
  82			 */
  83			ret = mempolicy_nodemask_intersects(tsk, mask);
  84		} else {
  85			/*
  86			 * This is not a mempolicy constrained oom, so only
  87			 * check the mems of tsk's cpuset.
  88			 */
  89			ret = cpuset_mems_allowed_intersects(current, tsk);
  90		}
  91		if (ret)
  92			break;
  93	}
  94	rcu_read_unlock();
  95
  96	return ret;
  97}
  98#else
  99static bool has_intersects_mems_allowed(struct task_struct *tsk,
 100					const nodemask_t *mask)
 101{
 102	return true;
 103}
 104#endif /* CONFIG_NUMA */
 105
 106/*
 107 * The process p may have detached its own ->mm while exiting or through
 108 * use_mm(), but one or more of its subthreads may still have a valid
 109 * pointer.  Return p, or any of its subthreads with a valid ->mm, with
 110 * task_lock() held.
 111 */
 112struct task_struct *find_lock_task_mm(struct task_struct *p)
 113{
 114	struct task_struct *t;
 115
 116	rcu_read_lock();
 117
 118	for_each_thread(p, t) {
 119		task_lock(t);
 120		if (likely(t->mm))
 121			goto found;
 122		task_unlock(t);
 123	}
 124	t = NULL;
 125found:
 126	rcu_read_unlock();
 127
 128	return t;
 129}
 130
 131/*
 132 * order == -1 means the oom kill is required by sysrq, otherwise only
 133 * for display purposes.
 134 */
 135static inline bool is_sysrq_oom(struct oom_control *oc)
 136{
 137	return oc->order == -1;
 138}
 139
 140static inline bool is_memcg_oom(struct oom_control *oc)
 141{
 142	return oc->memcg != NULL;
 143}
 144
 145/* return true if the task is not adequate as candidate victim task. */
 146static bool oom_unkillable_task(struct task_struct *p,
 147		struct mem_cgroup *memcg, const nodemask_t *nodemask)
 148{
 149	if (is_global_init(p))
 150		return true;
 151	if (p->flags & PF_KTHREAD)
 152		return true;
 153
 154	/* When mem_cgroup_out_of_memory() and p is not member of the group */
 155	if (memcg && !task_in_mem_cgroup(p, memcg))
 156		return true;
 157
 158	/* p may not have freeable memory in nodemask */
 159	if (!has_intersects_mems_allowed(p, nodemask))
 160		return true;
 161
 162	return false;
 163}
 164
 165/*
 166 * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
 167 * than all user memory (LRU pages)
 168 */
 169static bool is_dump_unreclaim_slabs(void)
 170{
 171	unsigned long nr_lru;
 172
 173	nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
 174		 global_node_page_state(NR_INACTIVE_ANON) +
 175		 global_node_page_state(NR_ACTIVE_FILE) +
 176		 global_node_page_state(NR_INACTIVE_FILE) +
 177		 global_node_page_state(NR_ISOLATED_ANON) +
 178		 global_node_page_state(NR_ISOLATED_FILE) +
 179		 global_node_page_state(NR_UNEVICTABLE);
 180
 181	return (global_node_page_state(NR_SLAB_UNRECLAIMABLE) > nr_lru);
 182}
 183
 184/**
 185 * oom_badness - heuristic function to determine which candidate task to kill
 186 * @p: task struct of which task we should calculate
 187 * @totalpages: total present RAM allowed for page allocation
 188 * @memcg: task's memory controller, if constrained
 189 * @nodemask: nodemask passed to page allocator for mempolicy ooms
 190 *
 191 * The heuristic for determining which task to kill is made to be as simple and
 192 * predictable as possible.  The goal is to return the highest value for the
 193 * task consuming the most memory to avoid subsequent oom failures.
 194 */
 195unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
 196			  const nodemask_t *nodemask, unsigned long totalpages)
 197{
 198	long points;
 199	long adj;
 200
 201	if (oom_unkillable_task(p, memcg, nodemask))
 202		return 0;
 203
 204	p = find_lock_task_mm(p);
 205	if (!p)
 206		return 0;
 207
 208	/*
 209	 * Do not even consider tasks which are explicitly marked oom
 210	 * unkillable or have been already oom reaped or the are in
 211	 * the middle of vfork
 212	 */
 213	adj = (long)p->signal->oom_score_adj;
 214	if (adj == OOM_SCORE_ADJ_MIN ||
 215			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
 216			in_vfork(p)) {
 217		task_unlock(p);
 218		return 0;
 219	}
 220
 221	/*
 222	 * The baseline for the badness score is the proportion of RAM that each
 223	 * task's rss, pagetable and swap space use.
 224	 */
 225	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
 226		mm_pgtables_bytes(p->mm) / PAGE_SIZE;
 227	task_unlock(p);
 228
 
 
 
 
 
 
 
 229	/* Normalize to oom_score_adj units */
 230	adj *= totalpages / 1000;
 231	points += adj;
 232
 233	/*
 234	 * Never return 0 for an eligible task regardless of the root bonus and
 235	 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
 236	 */
 237	return points > 0 ? points : 1;
 238}
 239
 240enum oom_constraint {
 241	CONSTRAINT_NONE,
 242	CONSTRAINT_CPUSET,
 243	CONSTRAINT_MEMORY_POLICY,
 244	CONSTRAINT_MEMCG,
 245};
 246
 247/*
 248 * Determine the type of allocation constraint.
 249 */
 250static enum oom_constraint constrained_alloc(struct oom_control *oc)
 
 
 251{
 252	struct zone *zone;
 253	struct zoneref *z;
 254	enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
 255	bool cpuset_limited = false;
 256	int nid;
 257
 258	if (is_memcg_oom(oc)) {
 259		oc->totalpages = mem_cgroup_get_limit(oc->memcg) ?: 1;
 260		return CONSTRAINT_MEMCG;
 261	}
 262
 263	/* Default to all available memory */
 264	oc->totalpages = totalram_pages + total_swap_pages;
 265
 266	if (!IS_ENABLED(CONFIG_NUMA))
 267		return CONSTRAINT_NONE;
 268
 269	if (!oc->zonelist)
 270		return CONSTRAINT_NONE;
 271	/*
 272	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
 273	 * to kill current.We have to random task kill in this case.
 274	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
 275	 */
 276	if (oc->gfp_mask & __GFP_THISNODE)
 277		return CONSTRAINT_NONE;
 278
 279	/*
 280	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
 281	 * the page allocator means a mempolicy is in effect.  Cpuset policy
 282	 * is enforced in get_page_from_freelist().
 283	 */
 284	if (oc->nodemask &&
 285	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
 286		oc->totalpages = total_swap_pages;
 287		for_each_node_mask(nid, *oc->nodemask)
 288			oc->totalpages += node_spanned_pages(nid);
 289		return CONSTRAINT_MEMORY_POLICY;
 290	}
 291
 292	/* Check this allocation failure is caused by cpuset's wall function */
 293	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
 294			high_zoneidx, oc->nodemask)
 295		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
 296			cpuset_limited = true;
 297
 298	if (cpuset_limited) {
 299		oc->totalpages = total_swap_pages;
 300		for_each_node_mask(nid, cpuset_current_mems_allowed)
 301			oc->totalpages += node_spanned_pages(nid);
 302		return CONSTRAINT_CPUSET;
 303	}
 304	return CONSTRAINT_NONE;
 305}
 306
 307static int oom_evaluate_task(struct task_struct *task, void *arg)
 
 308{
 309	struct oom_control *oc = arg;
 310	unsigned long points;
 
 
 311
 
 
 
 312	if (oom_unkillable_task(task, NULL, oc->nodemask))
 313		goto next;
 314
 315	/*
 316	 * This task already has access to memory reserves and is being killed.
 317	 * Don't allow any other task to have access to the reserves unless
 318	 * the task has MMF_OOM_SKIP because chances that it would release
 319	 * any memory is quite low.
 320	 */
 321	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
 322		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
 323			goto next;
 324		goto abort;
 325	}
 
 
 326
 327	/*
 328	 * If task is allocating a lot of memory and has been marked to be
 329	 * killed first if it triggers an oom, then select it.
 330	 */
 331	if (oom_task_origin(task)) {
 332		points = ULONG_MAX;
 333		goto select;
 334	}
 335
 336	points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
 337	if (!points || points < oc->chosen_points)
 338		goto next;
 339
 340	/* Prefer thread group leaders for display purposes */
 341	if (points == oc->chosen_points && thread_group_leader(oc->chosen))
 342		goto next;
 343select:
 344	if (oc->chosen)
 345		put_task_struct(oc->chosen);
 346	get_task_struct(task);
 347	oc->chosen = task;
 348	oc->chosen_points = points;
 349next:
 350	return 0;
 351abort:
 352	if (oc->chosen)
 353		put_task_struct(oc->chosen);
 354	oc->chosen = (void *)-1UL;
 355	return 1;
 356}
 357
 358/*
 359 * Simple selection loop. We choose the process with the highest number of
 360 * 'points'. In case scan was aborted, oc->chosen is set to -1.
 361 */
 362static void select_bad_process(struct oom_control *oc)
 
 363{
 364	if (is_memcg_oom(oc))
 365		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
 366	else {
 367		struct task_struct *p;
 368
 369		rcu_read_lock();
 370		for_each_process(p)
 371			if (oom_evaluate_task(p, oc))
 372				break;
 373		rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 374	}
 
 
 
 375
 376	oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
 
 377}
 378
 379/**
 380 * dump_tasks - dump current memory state of all system tasks
 381 * @memcg: current's memory controller, if constrained
 382 * @nodemask: nodemask passed to page allocator for mempolicy ooms
 383 *
 384 * Dumps the current memory state of all eligible tasks.  Tasks not in the same
 385 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
 386 * are not shown.
 387 * State information includes task's pid, uid, tgid, vm size, rss,
 388 * pgtables_bytes, swapents, oom_score_adj value, and name.
 389 */
 390static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
 391{
 392	struct task_struct *p;
 393	struct task_struct *task;
 394
 395	pr_info("[ pid ]   uid  tgid total_vm      rss pgtables_bytes swapents oom_score_adj name\n");
 396	rcu_read_lock();
 397	for_each_process(p) {
 398		if (oom_unkillable_task(p, memcg, nodemask))
 399			continue;
 400
 401		task = find_lock_task_mm(p);
 402		if (!task) {
 403			/*
 404			 * This is a kthread or all of p's threads have already
 405			 * detached their mm's.  There's no need to report
 406			 * them; they can't be oom killed anyway.
 407			 */
 408			continue;
 409		}
 410
 411		pr_info("[%5d] %5d %5d %8lu %8lu %8ld %8lu         %5hd %s\n",
 412			task->pid, from_kuid(&init_user_ns, task_uid(task)),
 413			task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
 414			mm_pgtables_bytes(task->mm),
 
 415			get_mm_counter(task->mm, MM_SWAPENTS),
 416			task->signal->oom_score_adj, task->comm);
 417		task_unlock(task);
 418	}
 419	rcu_read_unlock();
 420}
 421
 422static void dump_header(struct oom_control *oc, struct task_struct *p)
 
 423{
 424	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), nodemask=%*pbl, order=%d, oom_score_adj=%hd\n",
 425		current->comm, oc->gfp_mask, &oc->gfp_mask,
 426		nodemask_pr_args(oc->nodemask), oc->order,
 427			current->signal->oom_score_adj);
 428	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
 429		pr_warn("COMPACTION is disabled!!!\n");
 430
 431	cpuset_print_current_mems_allowed();
 432	dump_stack();
 433	if (is_memcg_oom(oc))
 434		mem_cgroup_print_oom_info(oc->memcg, p);
 435	else {
 436		show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
 437		if (is_dump_unreclaim_slabs())
 438			dump_unreclaimable_slab();
 439	}
 440	if (sysctl_oom_dump_tasks)
 441		dump_tasks(oc->memcg, oc->nodemask);
 442}
 443
 444/*
 445 * Number of OOM victims in flight
 446 */
 447static atomic_t oom_victims = ATOMIC_INIT(0);
 448static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
 449
 450static bool oom_killer_disabled __read_mostly;
 451
 452#define K(x) ((x) << (PAGE_SHIFT-10))
 453
 454/*
 455 * task->mm can be NULL if the task is the exited group leader.  So to
 456 * determine whether the task is using a particular mm, we examine all the
 457 * task's threads: if one of those is using this mm then this task was also
 458 * using it.
 459 */
 460bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
 461{
 462	struct task_struct *t;
 463
 464	for_each_thread(p, t) {
 465		struct mm_struct *t_mm = READ_ONCE(t->mm);
 466		if (t_mm)
 467			return t_mm == mm;
 468	}
 469	return false;
 470}
 471
 472#ifdef CONFIG_MMU
 473/*
 474 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
 475 * victim (if that is possible) to help the OOM killer to move on.
 476 */
 477static struct task_struct *oom_reaper_th;
 478static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
 479static struct task_struct *oom_reaper_list;
 480static DEFINE_SPINLOCK(oom_reaper_lock);
 481
 482void __oom_reap_task_mm(struct mm_struct *mm)
 
 483{
 
 484	struct vm_area_struct *vma;
 
 
 
 
 
 485
 486	/*
 487	 * Tell all users of get_user/copy_from_user etc... that the content
 488	 * is no longer stable. No barriers really needed because unmapping
 489	 * should imply barriers already and the reader would hit a page fault
 490	 * if it stumbled over a reaped memory.
 491	 */
 492	set_bit(MMF_UNSTABLE, &mm->flags);
 
 
 493
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 494	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
 495		if (!can_madv_dontneed_vma(vma))
 
 
 
 
 
 
 
 496			continue;
 497
 498		/*
 499		 * Only anonymous pages have a good chance to be dropped
 500		 * without additional steps which we cannot afford as we
 501		 * are OOM already.
 502		 *
 503		 * We do not even care about fs backed pages because all
 504		 * which are reclaimable have already been reclaimed and
 505		 * we do not want to block exit_mmap by keeping mm ref
 506		 * count elevated without a good reason.
 507		 */
 508		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
 509			const unsigned long start = vma->vm_start;
 510			const unsigned long end = vma->vm_end;
 511			struct mmu_gather tlb;
 512
 513			tlb_gather_mmu(&tlb, mm, start, end);
 514			mmu_notifier_invalidate_range_start(mm, start, end);
 515			unmap_page_range(&tlb, vma, start, end, NULL);
 516			mmu_notifier_invalidate_range_end(mm, start, end);
 517			tlb_finish_mmu(&tlb, start, end);
 518		}
 519	}
 520}
 521
 522static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
 523{
 524	bool ret = true;
 525
 526	/*
 527	 * We have to make sure to not race with the victim exit path
 528	 * and cause premature new oom victim selection:
 529	 * oom_reap_task_mm		exit_mm
 530	 *   mmget_not_zero
 531	 *				  mmput
 532	 *				    atomic_dec_and_test
 533	 *				  exit_oom_victim
 534	 *				[...]
 535	 *				out_of_memory
 536	 *				  select_bad_process
 537	 *				    # no TIF_MEMDIE task selects new victim
 538	 *  unmap_page_range # frees some memory
 539	 */
 540	mutex_lock(&oom_lock);
 541
 542	if (!down_read_trylock(&mm->mmap_sem)) {
 543		ret = false;
 544		trace_skip_task_reaping(tsk->pid);
 545		goto unlock_oom;
 546	}
 547
 548	/*
 549	 * If the mm has invalidate_{start,end}() notifiers that could block,
 550	 * sleep to give the oom victim some more time.
 551	 * TODO: we really want to get rid of this ugly hack and make sure that
 552	 * notifiers cannot block for unbounded amount of time
 553	 */
 554	if (mm_has_blockable_invalidate_notifiers(mm)) {
 555		up_read(&mm->mmap_sem);
 556		schedule_timeout_idle(HZ);
 557		goto unlock_oom;
 558	}
 559
 560	/*
 561	 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
 562	 * work on the mm anymore. The check for MMF_OOM_SKIP must run
 563	 * under mmap_sem for reading because it serializes against the
 564	 * down_write();up_write() cycle in exit_mmap().
 565	 */
 566	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
 567		up_read(&mm->mmap_sem);
 568		trace_skip_task_reaping(tsk->pid);
 569		goto unlock_oom;
 570	}
 571
 572	trace_start_task_reaping(tsk->pid);
 573
 574	__oom_reap_task_mm(mm);
 575
 576	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
 577			task_pid_nr(tsk), tsk->comm,
 578			K(get_mm_counter(mm, MM_ANONPAGES)),
 579			K(get_mm_counter(mm, MM_FILEPAGES)),
 580			K(get_mm_counter(mm, MM_SHMEMPAGES)));
 581	up_read(&mm->mmap_sem);
 582
 583	trace_finish_task_reaping(tsk->pid);
 584unlock_oom:
 585	mutex_unlock(&oom_lock);
 
 
 
 
 
 
 
 
 586	return ret;
 587}
 588
 589#define MAX_OOM_REAP_RETRIES 10
 590static void oom_reap_task(struct task_struct *tsk)
 591{
 592	int attempts = 0;
 593	struct mm_struct *mm = tsk->signal->oom_mm;
 594
 595	/* Retry the down_read_trylock(mmap_sem) a few times */
 596	while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
 597		schedule_timeout_idle(HZ/10);
 598
 599	if (attempts <= MAX_OOM_REAP_RETRIES ||
 600	    test_bit(MMF_OOM_SKIP, &mm->flags))
 601		goto done;
 602
 603	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
 604		task_pid_nr(tsk), tsk->comm);
 605	debug_show_all_locks();
 606
 607done:
 608	tsk->oom_reaper_list = NULL;
 609
 610	/*
 611	 * Hide this mm from OOM killer because it has been either reaped or
 612	 * somebody can't call up_write(mmap_sem).
 613	 */
 614	set_bit(MMF_OOM_SKIP, &mm->flags);
 615
 616	/* Drop a reference taken by wake_oom_reaper */
 617	put_task_struct(tsk);
 618}
 619
 620static int oom_reaper(void *unused)
 621{
 
 
 622	while (true) {
 623		struct task_struct *tsk = NULL;
 624
 625		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
 626		spin_lock(&oom_reaper_lock);
 627		if (oom_reaper_list != NULL) {
 628			tsk = oom_reaper_list;
 629			oom_reaper_list = tsk->oom_reaper_list;
 630		}
 631		spin_unlock(&oom_reaper_lock);
 632
 633		if (tsk)
 634			oom_reap_task(tsk);
 635	}
 636
 637	return 0;
 638}
 639
 640static void wake_oom_reaper(struct task_struct *tsk)
 641{
 
 
 
 642	/* tsk is already queued? */
 643	if (tsk == oom_reaper_list || tsk->oom_reaper_list)
 644		return;
 645
 646	get_task_struct(tsk);
 647
 648	spin_lock(&oom_reaper_lock);
 649	tsk->oom_reaper_list = oom_reaper_list;
 650	oom_reaper_list = tsk;
 651	spin_unlock(&oom_reaper_lock);
 652	trace_wake_reaper(tsk->pid);
 653	wake_up(&oom_reaper_wait);
 654}
 655
 656static int __init oom_init(void)
 657{
 658	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
 
 
 
 
 
 659	return 0;
 660}
 661subsys_initcall(oom_init)
 662#else
 663static inline void wake_oom_reaper(struct task_struct *tsk)
 664{
 665}
 666#endif /* CONFIG_MMU */
 667
 668/**
 669 * mark_oom_victim - mark the given task as OOM victim
 670 * @tsk: task to mark
 671 *
 672 * Has to be called with oom_lock held and never after
 673 * oom has been disabled already.
 674 *
 675 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
 676 * under task_lock or operate on the current).
 677 */
 678static void mark_oom_victim(struct task_struct *tsk)
 679{
 680	struct mm_struct *mm = tsk->mm;
 681
 682	WARN_ON(oom_killer_disabled);
 683	/* OOM killer might race with memcg OOM */
 684	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
 685		return;
 686
 687	/* oom_mm is bound to the signal struct life time. */
 688	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
 689		mmgrab(tsk->signal->oom_mm);
 690		set_bit(MMF_OOM_VICTIM, &mm->flags);
 691	}
 692
 693	/*
 694	 * Make sure that the task is woken up from uninterruptible sleep
 695	 * if it is frozen because OOM killer wouldn't be able to free
 696	 * any memory and livelock. freezing_slow_path will tell the freezer
 697	 * that TIF_MEMDIE tasks should be ignored.
 698	 */
 699	__thaw_task(tsk);
 700	atomic_inc(&oom_victims);
 701	trace_mark_victim(tsk->pid);
 702}
 703
 704/**
 705 * exit_oom_victim - note the exit of an OOM victim
 706 */
 707void exit_oom_victim(void)
 708{
 709	clear_thread_flag(TIF_MEMDIE);
 
 710
 711	if (!atomic_dec_return(&oom_victims))
 712		wake_up_all(&oom_victims_wait);
 713}
 714
 715/**
 716 * oom_killer_enable - enable OOM killer
 717 */
 718void oom_killer_enable(void)
 719{
 720	oom_killer_disabled = false;
 721	pr_info("OOM killer enabled.\n");
 722}
 723
 724/**
 725 * oom_killer_disable - disable OOM killer
 726 * @timeout: maximum timeout to wait for oom victims in jiffies
 727 *
 728 * Forces all page allocations to fail rather than trigger OOM killer.
 729 * Will block and wait until all OOM victims are killed or the given
 730 * timeout expires.
 731 *
 732 * The function cannot be called when there are runnable user tasks because
 733 * the userspace would see unexpected allocation failures as a result. Any
 734 * new usage of this function should be consulted with MM people.
 735 *
 736 * Returns true if successful and false if the OOM killer cannot be
 737 * disabled.
 738 */
 739bool oom_killer_disable(signed long timeout)
 740{
 741	signed long ret;
 742
 743	/*
 744	 * Make sure to not race with an ongoing OOM killer. Check that the
 745	 * current is not killed (possibly due to sharing the victim's memory).
 746	 */
 747	if (mutex_lock_killable(&oom_lock))
 748		return false;
 749	oom_killer_disabled = true;
 750	mutex_unlock(&oom_lock);
 751
 752	ret = wait_event_interruptible_timeout(oom_victims_wait,
 753			!atomic_read(&oom_victims), timeout);
 754	if (ret <= 0) {
 755		oom_killer_enable();
 756		return false;
 757	}
 758	pr_info("OOM killer disabled.\n");
 759
 760	return true;
 761}
 762
 763static inline bool __task_will_free_mem(struct task_struct *task)
 
 
 
 764{
 765	struct signal_struct *sig = task->signal;
 766
 767	/*
 768	 * A coredumping process may sleep for an extended period in exit_mm(),
 769	 * so the oom killer cannot assume that the process will promptly exit
 770	 * and release memory.
 771	 */
 772	if (sig->flags & SIGNAL_GROUP_COREDUMP)
 773		return false;
 774
 775	if (sig->flags & SIGNAL_GROUP_EXIT)
 776		return true;
 777
 778	if (thread_group_empty(task) && (task->flags & PF_EXITING))
 779		return true;
 780
 781	return false;
 782}
 783
 784/*
 785 * Checks whether the given task is dying or exiting and likely to
 786 * release its address space. This means that all threads and processes
 787 * sharing the same mm have to be killed or exiting.
 788 * Caller has to make sure that task->mm is stable (hold task_lock or
 789 * it operates on the current).
 790 */
 791static bool task_will_free_mem(struct task_struct *task)
 792{
 793	struct mm_struct *mm = task->mm;
 794	struct task_struct *p;
 795	bool ret = true;
 796
 797	/*
 798	 * Skip tasks without mm because it might have passed its exit_mm and
 799	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
 800	 * on that for now. We can consider find_lock_task_mm in future.
 801	 */
 802	if (!mm)
 803		return false;
 804
 805	if (!__task_will_free_mem(task))
 806		return false;
 807
 808	/*
 809	 * This task has already been drained by the oom reaper so there are
 810	 * only small chances it will free some more
 811	 */
 812	if (test_bit(MMF_OOM_SKIP, &mm->flags))
 813		return false;
 814
 815	if (atomic_read(&mm->mm_users) <= 1)
 816		return true;
 817
 818	/*
 819	 * Make sure that all tasks which share the mm with the given tasks
 820	 * are dying as well to make sure that a) nobody pins its mm and
 821	 * b) the task is also reapable by the oom reaper.
 822	 */
 823	rcu_read_lock();
 824	for_each_process(p) {
 825		if (!process_shares_mm(p, mm))
 826			continue;
 827		if (same_thread_group(task, p))
 828			continue;
 829		ret = __task_will_free_mem(p);
 830		if (!ret)
 831			break;
 832	}
 833	rcu_read_unlock();
 834
 835	return ret;
 836}
 837
 838static void oom_kill_process(struct oom_control *oc, const char *message)
 
 
 
 
 
 
 839{
 840	struct task_struct *p = oc->chosen;
 841	unsigned int points = oc->chosen_points;
 842	struct task_struct *victim = p;
 843	struct task_struct *child;
 844	struct task_struct *t;
 845	struct mm_struct *mm;
 846	unsigned int victim_points = 0;
 847	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
 848					      DEFAULT_RATELIMIT_BURST);
 849	bool can_oom_reap = true;
 850
 851	/*
 852	 * If the task is already exiting, don't alarm the sysadmin or kill
 853	 * its children or threads, just give it access to memory reserves
 854	 * so it can die quickly
 855	 */
 856	task_lock(p);
 857	if (task_will_free_mem(p)) {
 858		mark_oom_victim(p);
 859		wake_oom_reaper(p);
 860		task_unlock(p);
 861		put_task_struct(p);
 862		return;
 863	}
 864	task_unlock(p);
 865
 866	if (__ratelimit(&oom_rs))
 867		dump_header(oc, p);
 868
 869	pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
 870		message, task_pid_nr(p), p->comm, points);
 871
 872	/*
 873	 * If any of p's children has a different mm and is eligible for kill,
 874	 * the one with the highest oom_badness() score is sacrificed for its
 875	 * parent.  This attempts to lose the minimal amount of work done while
 876	 * still freeing memory.
 877	 */
 878	read_lock(&tasklist_lock);
 879	for_each_thread(p, t) {
 880		list_for_each_entry(child, &t->children, sibling) {
 881			unsigned int child_points;
 882
 883			if (process_shares_mm(child, p->mm))
 884				continue;
 885			/*
 886			 * oom_badness() returns 0 if the thread is unkillable
 887			 */
 888			child_points = oom_badness(child,
 889				oc->memcg, oc->nodemask, oc->totalpages);
 890			if (child_points > victim_points) {
 891				put_task_struct(victim);
 892				victim = child;
 893				victim_points = child_points;
 894				get_task_struct(victim);
 895			}
 896		}
 897	}
 898	read_unlock(&tasklist_lock);
 899
 900	p = find_lock_task_mm(victim);
 901	if (!p) {
 902		put_task_struct(victim);
 903		return;
 904	} else if (victim != p) {
 905		get_task_struct(p);
 906		put_task_struct(victim);
 907		victim = p;
 908	}
 909
 910	/* Get a reference to safely compare mm after task_unlock(victim) */
 911	mm = victim->mm;
 912	mmgrab(mm);
 913
 914	/* Raise event before sending signal: task reaper must see this */
 915	count_vm_event(OOM_KILL);
 916	count_memcg_event_mm(mm, OOM_KILL);
 917
 918	/*
 919	 * We should send SIGKILL before granting access to memory reserves
 920	 * in order to prevent the OOM victim from depleting the memory
 921	 * reserves from the user space under its control.
 922	 */
 923	do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
 924	mark_oom_victim(victim);
 925	pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
 926		task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
 927		K(get_mm_counter(victim->mm, MM_ANONPAGES)),
 928		K(get_mm_counter(victim->mm, MM_FILEPAGES)),
 929		K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
 930	task_unlock(victim);
 931
 932	/*
 933	 * Kill all user processes sharing victim->mm in other thread groups, if
 934	 * any.  They don't get access to memory reserves, though, to avoid
 935	 * depletion of all memory.  This prevents mm->mmap_sem livelock when an
 936	 * oom killed thread cannot exit because it requires the semaphore and
 937	 * its contended by another thread trying to allocate memory itself.
 938	 * That thread will now get access to memory reserves since it has a
 939	 * pending fatal signal.
 940	 */
 941	rcu_read_lock();
 942	for_each_process(p) {
 943		if (!process_shares_mm(p, mm))
 944			continue;
 945		if (same_thread_group(p, victim))
 946			continue;
 947		if (is_global_init(p)) {
 
 
 
 
 
 
 948			can_oom_reap = false;
 949			set_bit(MMF_OOM_SKIP, &mm->flags);
 950			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
 951					task_pid_nr(victim), victim->comm,
 952					task_pid_nr(p), p->comm);
 953			continue;
 954		}
 955		/*
 956		 * No use_mm() user needs to read from the userspace so we are
 957		 * ok to reap it.
 958		 */
 959		if (unlikely(p->flags & PF_KTHREAD))
 960			continue;
 961		do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
 962	}
 963	rcu_read_unlock();
 964
 965	if (can_oom_reap)
 966		wake_oom_reaper(victim);
 967
 968	mmdrop(mm);
 969	put_task_struct(victim);
 970}
 971#undef K
 972
 973/*
 974 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
 975 */
 976static void check_panic_on_oom(struct oom_control *oc,
 977			       enum oom_constraint constraint)
 978{
 979	if (likely(!sysctl_panic_on_oom))
 980		return;
 981	if (sysctl_panic_on_oom != 2) {
 982		/*
 983		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
 984		 * does not panic for cpuset, mempolicy, or memcg allocation
 985		 * failures.
 986		 */
 987		if (constraint != CONSTRAINT_NONE)
 988			return;
 989	}
 990	/* Do not panic for oom kills triggered by sysrq */
 991	if (is_sysrq_oom(oc))
 992		return;
 993	dump_header(oc, NULL);
 994	panic("Out of memory: %s panic_on_oom is enabled\n",
 995		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
 996}
 997
 998static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
 999
1000int register_oom_notifier(struct notifier_block *nb)
1001{
1002	return blocking_notifier_chain_register(&oom_notify_list, nb);
1003}
1004EXPORT_SYMBOL_GPL(register_oom_notifier);
1005
1006int unregister_oom_notifier(struct notifier_block *nb)
1007{
1008	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1009}
1010EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1011
1012/**
1013 * out_of_memory - kill the "best" process when we run out of memory
1014 * @oc: pointer to struct oom_control
1015 *
1016 * If we run out of memory, we have the choice between either
1017 * killing a random task (bad), letting the system crash (worse)
1018 * OR try to be smart about which process to kill. Note that we
1019 * don't have to be perfect here, we just have to be good.
1020 */
1021bool out_of_memory(struct oom_control *oc)
1022{
 
 
1023	unsigned long freed = 0;
 
1024	enum oom_constraint constraint = CONSTRAINT_NONE;
1025
1026	if (oom_killer_disabled)
1027		return false;
1028
1029	if (!is_memcg_oom(oc)) {
1030		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1031		if (freed > 0)
1032			/* Got some memory back in the last second. */
1033			return true;
1034	}
1035
1036	/*
1037	 * If current has a pending SIGKILL or is exiting, then automatically
1038	 * select it.  The goal is to allow it to allocate so that it may
1039	 * quickly exit and free its memory.
 
 
 
1040	 */
1041	if (task_will_free_mem(current)) {
 
1042		mark_oom_victim(current);
1043		wake_oom_reaper(current);
1044		return true;
1045	}
1046
1047	/*
1048	 * The OOM killer does not compensate for IO-less reclaim.
1049	 * pagefault_out_of_memory lost its gfp context so we have to
1050	 * make sure exclude 0 mask - all other users should have at least
1051	 * ___GFP_DIRECT_RECLAIM to get here.
1052	 */
1053	if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS))
1054		return true;
1055
1056	/*
1057	 * Check if there were limitations on the allocation (only relevant for
1058	 * NUMA and memcg) that may require different handling.
1059	 */
1060	constraint = constrained_alloc(oc);
1061	if (constraint != CONSTRAINT_MEMORY_POLICY)
1062		oc->nodemask = NULL;
1063	check_panic_on_oom(oc, constraint);
1064
1065	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1066	    current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
1067	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1068		get_task_struct(current);
1069		oc->chosen = current;
1070		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1071		return true;
1072	}
1073
1074	select_bad_process(oc);
1075	/* Found nothing?!?! Either we hang forever, or we panic. */
1076	if (!oc->chosen && !is_sysrq_oom(oc) && !is_memcg_oom(oc)) {
1077		dump_header(oc, NULL);
1078		panic("Out of memory and no killable processes...\n");
1079	}
1080	if (oc->chosen && oc->chosen != (void *)-1UL) {
1081		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1082				 "Memory cgroup out of memory");
1083		/*
1084		 * Give the killed process a good chance to exit before trying
1085		 * to allocate memory again.
1086		 */
1087		schedule_timeout_killable(1);
1088	}
1089	return !!oc->chosen;
1090}
1091
1092/*
1093 * The pagefault handler calls here because it is out of memory, so kill a
1094 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1095 * killing is already in progress so do nothing.
1096 */
1097void pagefault_out_of_memory(void)
1098{
1099	struct oom_control oc = {
1100		.zonelist = NULL,
1101		.nodemask = NULL,
1102		.memcg = NULL,
1103		.gfp_mask = 0,
1104		.order = 0,
1105	};
1106
1107	if (mem_cgroup_oom_synchronize(true))
1108		return;
1109
1110	if (!mutex_trylock(&oom_lock))
1111		return;
1112	out_of_memory(&oc);
 
 
 
 
 
 
 
 
 
 
1113	mutex_unlock(&oom_lock);
1114}
v4.6
  1/*
  2 *  linux/mm/oom_kill.c
  3 * 
  4 *  Copyright (C)  1998,2000  Rik van Riel
  5 *	Thanks go out to Claus Fischer for some serious inspiration and
  6 *	for goading me into coding this file...
  7 *  Copyright (C)  2010  Google, Inc.
  8 *	Rewritten by David Rientjes
  9 *
 10 *  The routines in this file are used to kill a process when
 11 *  we're seriously out of memory. This gets called from __alloc_pages()
 12 *  in mm/page_alloc.c when we really run out of memory.
 13 *
 14 *  Since we won't call these routines often (on a well-configured
 15 *  machine) this file will double as a 'coding guide' and a signpost
 16 *  for newbie kernel hackers. It features several pointers to major
 17 *  kernel subsystems and hints as to where to find out what things do.
 18 */
 19
 20#include <linux/oom.h>
 21#include <linux/mm.h>
 22#include <linux/err.h>
 23#include <linux/gfp.h>
 24#include <linux/sched.h>
 
 
 
 25#include <linux/swap.h>
 26#include <linux/timex.h>
 27#include <linux/jiffies.h>
 28#include <linux/cpuset.h>
 29#include <linux/export.h>
 30#include <linux/notifier.h>
 31#include <linux/memcontrol.h>
 32#include <linux/mempolicy.h>
 33#include <linux/security.h>
 34#include <linux/ptrace.h>
 35#include <linux/freezer.h>
 36#include <linux/ftrace.h>
 37#include <linux/ratelimit.h>
 38#include <linux/kthread.h>
 39#include <linux/init.h>
 
 40
 41#include <asm/tlb.h>
 42#include "internal.h"
 
 43
 44#define CREATE_TRACE_POINTS
 45#include <trace/events/oom.h>
 46
 47int sysctl_panic_on_oom;
 48int sysctl_oom_kill_allocating_task;
 49int sysctl_oom_dump_tasks = 1;
 50
 51DEFINE_MUTEX(oom_lock);
 52
 53#ifdef CONFIG_NUMA
 54/**
 55 * has_intersects_mems_allowed() - check task eligiblity for kill
 56 * @start: task struct of which task to consider
 57 * @mask: nodemask passed to page allocator for mempolicy ooms
 58 *
 59 * Task eligibility is determined by whether or not a candidate task, @tsk,
 60 * shares the same mempolicy nodes as current if it is bound by such a policy
 61 * and whether or not it has the same set of allowed cpuset nodes.
 62 */
 63static bool has_intersects_mems_allowed(struct task_struct *start,
 64					const nodemask_t *mask)
 65{
 66	struct task_struct *tsk;
 67	bool ret = false;
 68
 69	rcu_read_lock();
 70	for_each_thread(start, tsk) {
 71		if (mask) {
 72			/*
 73			 * If this is a mempolicy constrained oom, tsk's
 74			 * cpuset is irrelevant.  Only return true if its
 75			 * mempolicy intersects current, otherwise it may be
 76			 * needlessly killed.
 77			 */
 78			ret = mempolicy_nodemask_intersects(tsk, mask);
 79		} else {
 80			/*
 81			 * This is not a mempolicy constrained oom, so only
 82			 * check the mems of tsk's cpuset.
 83			 */
 84			ret = cpuset_mems_allowed_intersects(current, tsk);
 85		}
 86		if (ret)
 87			break;
 88	}
 89	rcu_read_unlock();
 90
 91	return ret;
 92}
 93#else
 94static bool has_intersects_mems_allowed(struct task_struct *tsk,
 95					const nodemask_t *mask)
 96{
 97	return true;
 98}
 99#endif /* CONFIG_NUMA */
100
101/*
102 * The process p may have detached its own ->mm while exiting or through
103 * use_mm(), but one or more of its subthreads may still have a valid
104 * pointer.  Return p, or any of its subthreads with a valid ->mm, with
105 * task_lock() held.
106 */
107struct task_struct *find_lock_task_mm(struct task_struct *p)
108{
109	struct task_struct *t;
110
111	rcu_read_lock();
112
113	for_each_thread(p, t) {
114		task_lock(t);
115		if (likely(t->mm))
116			goto found;
117		task_unlock(t);
118	}
119	t = NULL;
120found:
121	rcu_read_unlock();
122
123	return t;
124}
125
126/*
127 * order == -1 means the oom kill is required by sysrq, otherwise only
128 * for display purposes.
129 */
130static inline bool is_sysrq_oom(struct oom_control *oc)
131{
132	return oc->order == -1;
133}
134
 
 
 
 
 
135/* return true if the task is not adequate as candidate victim task. */
136static bool oom_unkillable_task(struct task_struct *p,
137		struct mem_cgroup *memcg, const nodemask_t *nodemask)
138{
139	if (is_global_init(p))
140		return true;
141	if (p->flags & PF_KTHREAD)
142		return true;
143
144	/* When mem_cgroup_out_of_memory() and p is not member of the group */
145	if (memcg && !task_in_mem_cgroup(p, memcg))
146		return true;
147
148	/* p may not have freeable memory in nodemask */
149	if (!has_intersects_mems_allowed(p, nodemask))
150		return true;
151
152	return false;
153}
154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155/**
156 * oom_badness - heuristic function to determine which candidate task to kill
157 * @p: task struct of which task we should calculate
158 * @totalpages: total present RAM allowed for page allocation
 
 
159 *
160 * The heuristic for determining which task to kill is made to be as simple and
161 * predictable as possible.  The goal is to return the highest value for the
162 * task consuming the most memory to avoid subsequent oom failures.
163 */
164unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
165			  const nodemask_t *nodemask, unsigned long totalpages)
166{
167	long points;
168	long adj;
169
170	if (oom_unkillable_task(p, memcg, nodemask))
171		return 0;
172
173	p = find_lock_task_mm(p);
174	if (!p)
175		return 0;
176
 
 
 
 
 
177	adj = (long)p->signal->oom_score_adj;
178	if (adj == OOM_SCORE_ADJ_MIN) {
 
 
179		task_unlock(p);
180		return 0;
181	}
182
183	/*
184	 * The baseline for the badness score is the proportion of RAM that each
185	 * task's rss, pagetable and swap space use.
186	 */
187	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
188		atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
189	task_unlock(p);
190
191	/*
192	 * Root processes get 3% bonus, just like the __vm_enough_memory()
193	 * implementation used by LSMs.
194	 */
195	if (has_capability_noaudit(p, CAP_SYS_ADMIN))
196		points -= (points * 3) / 100;
197
198	/* Normalize to oom_score_adj units */
199	adj *= totalpages / 1000;
200	points += adj;
201
202	/*
203	 * Never return 0 for an eligible task regardless of the root bonus and
204	 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
205	 */
206	return points > 0 ? points : 1;
207}
208
 
 
 
 
 
 
 
209/*
210 * Determine the type of allocation constraint.
211 */
212#ifdef CONFIG_NUMA
213static enum oom_constraint constrained_alloc(struct oom_control *oc,
214					     unsigned long *totalpages)
215{
216	struct zone *zone;
217	struct zoneref *z;
218	enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
219	bool cpuset_limited = false;
220	int nid;
221
 
 
 
 
 
222	/* Default to all available memory */
223	*totalpages = totalram_pages + total_swap_pages;
 
 
 
224
225	if (!oc->zonelist)
226		return CONSTRAINT_NONE;
227	/*
228	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
229	 * to kill current.We have to random task kill in this case.
230	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
231	 */
232	if (oc->gfp_mask & __GFP_THISNODE)
233		return CONSTRAINT_NONE;
234
235	/*
236	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
237	 * the page allocator means a mempolicy is in effect.  Cpuset policy
238	 * is enforced in get_page_from_freelist().
239	 */
240	if (oc->nodemask &&
241	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
242		*totalpages = total_swap_pages;
243		for_each_node_mask(nid, *oc->nodemask)
244			*totalpages += node_spanned_pages(nid);
245		return CONSTRAINT_MEMORY_POLICY;
246	}
247
248	/* Check this allocation failure is caused by cpuset's wall function */
249	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
250			high_zoneidx, oc->nodemask)
251		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
252			cpuset_limited = true;
253
254	if (cpuset_limited) {
255		*totalpages = total_swap_pages;
256		for_each_node_mask(nid, cpuset_current_mems_allowed)
257			*totalpages += node_spanned_pages(nid);
258		return CONSTRAINT_CPUSET;
259	}
260	return CONSTRAINT_NONE;
261}
262#else
263static enum oom_constraint constrained_alloc(struct oom_control *oc,
264					     unsigned long *totalpages)
265{
266	*totalpages = totalram_pages + total_swap_pages;
267	return CONSTRAINT_NONE;
268}
269#endif
270
271enum oom_scan_t oom_scan_process_thread(struct oom_control *oc,
272			struct task_struct *task, unsigned long totalpages)
273{
274	if (oom_unkillable_task(task, NULL, oc->nodemask))
275		return OOM_SCAN_CONTINUE;
276
277	/*
278	 * This task already has access to memory reserves and is being killed.
279	 * Don't allow any other task to have access to the reserves.
 
 
280	 */
281	if (test_tsk_thread_flag(task, TIF_MEMDIE)) {
282		if (!is_sysrq_oom(oc))
283			return OOM_SCAN_ABORT;
 
284	}
285	if (!task->mm)
286		return OOM_SCAN_CONTINUE;
287
288	/*
289	 * If task is allocating a lot of memory and has been marked to be
290	 * killed first if it triggers an oom, then select it.
291	 */
292	if (oom_task_origin(task))
293		return OOM_SCAN_SELECT;
294
295	return OOM_SCAN_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
296}
297
298/*
299 * Simple selection loop. We chose the process with the highest
300 * number of 'points'.  Returns -1 on scan abort.
301 */
302static struct task_struct *select_bad_process(struct oom_control *oc,
303		unsigned int *ppoints, unsigned long totalpages)
304{
305	struct task_struct *g, *p;
306	struct task_struct *chosen = NULL;
307	unsigned long chosen_points = 0;
 
308
309	rcu_read_lock();
310	for_each_process_thread(g, p) {
311		unsigned int points;
312
313		switch (oom_scan_process_thread(oc, p, totalpages)) {
314		case OOM_SCAN_SELECT:
315			chosen = p;
316			chosen_points = ULONG_MAX;
317			/* fall through */
318		case OOM_SCAN_CONTINUE:
319			continue;
320		case OOM_SCAN_ABORT:
321			rcu_read_unlock();
322			return (struct task_struct *)(-1UL);
323		case OOM_SCAN_OK:
324			break;
325		};
326		points = oom_badness(p, NULL, oc->nodemask, totalpages);
327		if (!points || points < chosen_points)
328			continue;
329		/* Prefer thread group leaders for display purposes */
330		if (points == chosen_points && thread_group_leader(chosen))
331			continue;
332
333		chosen = p;
334		chosen_points = points;
335	}
336	if (chosen)
337		get_task_struct(chosen);
338	rcu_read_unlock();
339
340	*ppoints = chosen_points * 1000 / totalpages;
341	return chosen;
342}
343
344/**
345 * dump_tasks - dump current memory state of all system tasks
346 * @memcg: current's memory controller, if constrained
347 * @nodemask: nodemask passed to page allocator for mempolicy ooms
348 *
349 * Dumps the current memory state of all eligible tasks.  Tasks not in the same
350 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
351 * are not shown.
352 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
353 * swapents, oom_score_adj value, and name.
354 */
355static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
356{
357	struct task_struct *p;
358	struct task_struct *task;
359
360	pr_info("[ pid ]   uid  tgid total_vm      rss nr_ptes nr_pmds swapents oom_score_adj name\n");
361	rcu_read_lock();
362	for_each_process(p) {
363		if (oom_unkillable_task(p, memcg, nodemask))
364			continue;
365
366		task = find_lock_task_mm(p);
367		if (!task) {
368			/*
369			 * This is a kthread or all of p's threads have already
370			 * detached their mm's.  There's no need to report
371			 * them; they can't be oom killed anyway.
372			 */
373			continue;
374		}
375
376		pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu         %5hd %s\n",
377			task->pid, from_kuid(&init_user_ns, task_uid(task)),
378			task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
379			atomic_long_read(&task->mm->nr_ptes),
380			mm_nr_pmds(task->mm),
381			get_mm_counter(task->mm, MM_SWAPENTS),
382			task->signal->oom_score_adj, task->comm);
383		task_unlock(task);
384	}
385	rcu_read_unlock();
386}
387
388static void dump_header(struct oom_control *oc, struct task_struct *p,
389			struct mem_cgroup *memcg)
390{
391	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
392		current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
393		current->signal->oom_score_adj);
 
 
 
394
395	cpuset_print_current_mems_allowed();
396	dump_stack();
397	if (memcg)
398		mem_cgroup_print_oom_info(memcg, p);
399	else
400		show_mem(SHOW_MEM_FILTER_NODES);
 
 
 
401	if (sysctl_oom_dump_tasks)
402		dump_tasks(memcg, oc->nodemask);
403}
404
405/*
406 * Number of OOM victims in flight
407 */
408static atomic_t oom_victims = ATOMIC_INIT(0);
409static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
410
411bool oom_killer_disabled __read_mostly;
412
413#define K(x) ((x) << (PAGE_SHIFT-10))
414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
415#ifdef CONFIG_MMU
416/*
417 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
418 * victim (if that is possible) to help the OOM killer to move on.
419 */
420static struct task_struct *oom_reaper_th;
421static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
422static struct task_struct *oom_reaper_list;
423static DEFINE_SPINLOCK(oom_reaper_lock);
424
425
426static bool __oom_reap_task(struct task_struct *tsk)
427{
428	struct mmu_gather tlb;
429	struct vm_area_struct *vma;
430	struct mm_struct *mm;
431	struct task_struct *p;
432	struct zap_details details = {.check_swap_entries = true,
433				      .ignore_dirty = true};
434	bool ret = true;
435
436	/*
437	 * Make sure we find the associated mm_struct even when the particular
438	 * thread has already terminated and cleared its mm.
439	 * We might have race with exit path so consider our work done if there
440	 * is no mm.
441	 */
442	p = find_lock_task_mm(tsk);
443	if (!p)
444		return true;
445
446	mm = p->mm;
447	if (!atomic_inc_not_zero(&mm->mm_users)) {
448		task_unlock(p);
449		return true;
450	}
451
452	task_unlock(p);
453
454	if (!down_read_trylock(&mm->mmap_sem)) {
455		ret = false;
456		goto out;
457	}
458
459	tlb_gather_mmu(&tlb, mm, 0, -1);
460	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
461		if (is_vm_hugetlb_page(vma))
462			continue;
463
464		/*
465		 * mlocked VMAs require explicit munlocking before unmap.
466		 * Let's keep it simple here and skip such VMAs.
467		 */
468		if (vma->vm_flags & VM_LOCKED)
469			continue;
470
471		/*
472		 * Only anonymous pages have a good chance to be dropped
473		 * without additional steps which we cannot afford as we
474		 * are OOM already.
475		 *
476		 * We do not even care about fs backed pages because all
477		 * which are reclaimable have already been reclaimed and
478		 * we do not want to block exit_mmap by keeping mm ref
479		 * count elevated without a good reason.
480		 */
481		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED))
482			unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
483					 &details);
 
 
 
 
 
 
 
 
484	}
485	tlb_finish_mmu(&tlb, 0, -1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
486	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
487			task_pid_nr(tsk), tsk->comm,
488			K(get_mm_counter(mm, MM_ANONPAGES)),
489			K(get_mm_counter(mm, MM_FILEPAGES)),
490			K(get_mm_counter(mm, MM_SHMEMPAGES)));
491	up_read(&mm->mmap_sem);
492
493	/*
494	 * Clear TIF_MEMDIE because the task shouldn't be sitting on a
495	 * reasonably reclaimable memory anymore. OOM killer can continue
496	 * by selecting other victim if unmapping hasn't led to any
497	 * improvements. This also means that selecting this task doesn't
498	 * make any sense.
499	 */
500	tsk->signal->oom_score_adj = OOM_SCORE_ADJ_MIN;
501	exit_oom_victim(tsk);
502out:
503	mmput(mm);
504	return ret;
505}
506
507#define MAX_OOM_REAP_RETRIES 10
508static void oom_reap_task(struct task_struct *tsk)
509{
510	int attempts = 0;
 
511
512	/* Retry the down_read_trylock(mmap_sem) a few times */
513	while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task(tsk))
514		schedule_timeout_idle(HZ/10);
515
516	if (attempts > MAX_OOM_REAP_RETRIES) {
517		pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
518				task_pid_nr(tsk), tsk->comm);
519		debug_show_all_locks();
520	}
 
 
 
 
 
 
 
 
 
 
 
521
522	/* Drop a reference taken by wake_oom_reaper */
523	put_task_struct(tsk);
524}
525
526static int oom_reaper(void *unused)
527{
528	set_freezable();
529
530	while (true) {
531		struct task_struct *tsk = NULL;
532
533		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
534		spin_lock(&oom_reaper_lock);
535		if (oom_reaper_list != NULL) {
536			tsk = oom_reaper_list;
537			oom_reaper_list = tsk->oom_reaper_list;
538		}
539		spin_unlock(&oom_reaper_lock);
540
541		if (tsk)
542			oom_reap_task(tsk);
543	}
544
545	return 0;
546}
547
548static void wake_oom_reaper(struct task_struct *tsk)
549{
550	if (!oom_reaper_th)
551		return;
552
553	/* tsk is already queued? */
554	if (tsk == oom_reaper_list || tsk->oom_reaper_list)
555		return;
556
557	get_task_struct(tsk);
558
559	spin_lock(&oom_reaper_lock);
560	tsk->oom_reaper_list = oom_reaper_list;
561	oom_reaper_list = tsk;
562	spin_unlock(&oom_reaper_lock);
 
563	wake_up(&oom_reaper_wait);
564}
565
566static int __init oom_init(void)
567{
568	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
569	if (IS_ERR(oom_reaper_th)) {
570		pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
571				PTR_ERR(oom_reaper_th));
572		oom_reaper_th = NULL;
573	}
574	return 0;
575}
576subsys_initcall(oom_init)
577#else
578static void wake_oom_reaper(struct task_struct *tsk)
579{
580}
581#endif
582
583/**
584 * mark_oom_victim - mark the given task as OOM victim
585 * @tsk: task to mark
586 *
587 * Has to be called with oom_lock held and never after
588 * oom has been disabled already.
 
 
 
589 */
590void mark_oom_victim(struct task_struct *tsk)
591{
 
 
592	WARN_ON(oom_killer_disabled);
593	/* OOM killer might race with memcg OOM */
594	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
595		return;
 
 
 
 
 
 
 
596	/*
597	 * Make sure that the task is woken up from uninterruptible sleep
598	 * if it is frozen because OOM killer wouldn't be able to free
599	 * any memory and livelock. freezing_slow_path will tell the freezer
600	 * that TIF_MEMDIE tasks should be ignored.
601	 */
602	__thaw_task(tsk);
603	atomic_inc(&oom_victims);
 
604}
605
606/**
607 * exit_oom_victim - note the exit of an OOM victim
608 */
609void exit_oom_victim(struct task_struct *tsk)
610{
611	if (!test_and_clear_tsk_thread_flag(tsk, TIF_MEMDIE))
612		return;
613
614	if (!atomic_dec_return(&oom_victims))
615		wake_up_all(&oom_victims_wait);
616}
617
618/**
 
 
 
 
 
 
 
 
 
619 * oom_killer_disable - disable OOM killer
 
620 *
621 * Forces all page allocations to fail rather than trigger OOM killer.
622 * Will block and wait until all OOM victims are killed.
 
623 *
624 * The function cannot be called when there are runnable user tasks because
625 * the userspace would see unexpected allocation failures as a result. Any
626 * new usage of this function should be consulted with MM people.
627 *
628 * Returns true if successful and false if the OOM killer cannot be
629 * disabled.
630 */
631bool oom_killer_disable(void)
632{
 
 
633	/*
634	 * Make sure to not race with an ongoing OOM killer. Check that the
635	 * current is not killed (possibly due to sharing the victim's memory).
636	 */
637	if (mutex_lock_killable(&oom_lock))
638		return false;
639	oom_killer_disabled = true;
640	mutex_unlock(&oom_lock);
641
642	wait_event(oom_victims_wait, !atomic_read(&oom_victims));
 
 
 
 
 
 
643
644	return true;
645}
646
647/**
648 * oom_killer_enable - enable OOM killer
649 */
650void oom_killer_enable(void)
651{
652	oom_killer_disabled = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
653}
654
655/*
656 * task->mm can be NULL if the task is the exited group leader.  So to
657 * determine whether the task is using a particular mm, we examine all the
658 * task's threads: if one of those is using this mm then this task was also
659 * using it.
 
660 */
661static bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
662{
663	struct task_struct *t;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
664
665	for_each_thread(p, t) {
666		struct mm_struct *t_mm = READ_ONCE(t->mm);
667		if (t_mm)
668			return t_mm == mm;
 
 
 
 
 
 
 
 
 
 
669	}
670	return false;
 
 
671}
672
673/*
674 * Must be called while holding a reference to p, which will be released upon
675 * returning.
676 */
677void oom_kill_process(struct oom_control *oc, struct task_struct *p,
678		      unsigned int points, unsigned long totalpages,
679		      struct mem_cgroup *memcg, const char *message)
680{
 
 
681	struct task_struct *victim = p;
682	struct task_struct *child;
683	struct task_struct *t;
684	struct mm_struct *mm;
685	unsigned int victim_points = 0;
686	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
687					      DEFAULT_RATELIMIT_BURST);
688	bool can_oom_reap = true;
689
690	/*
691	 * If the task is already exiting, don't alarm the sysadmin or kill
692	 * its children or threads, just set TIF_MEMDIE so it can die quickly
 
693	 */
694	task_lock(p);
695	if (p->mm && task_will_free_mem(p)) {
696		mark_oom_victim(p);
 
697		task_unlock(p);
698		put_task_struct(p);
699		return;
700	}
701	task_unlock(p);
702
703	if (__ratelimit(&oom_rs))
704		dump_header(oc, p, memcg);
705
706	pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
707		message, task_pid_nr(p), p->comm, points);
708
709	/*
710	 * If any of p's children has a different mm and is eligible for kill,
711	 * the one with the highest oom_badness() score is sacrificed for its
712	 * parent.  This attempts to lose the minimal amount of work done while
713	 * still freeing memory.
714	 */
715	read_lock(&tasklist_lock);
716	for_each_thread(p, t) {
717		list_for_each_entry(child, &t->children, sibling) {
718			unsigned int child_points;
719
720			if (process_shares_mm(child, p->mm))
721				continue;
722			/*
723			 * oom_badness() returns 0 if the thread is unkillable
724			 */
725			child_points = oom_badness(child, memcg, oc->nodemask,
726								totalpages);
727			if (child_points > victim_points) {
728				put_task_struct(victim);
729				victim = child;
730				victim_points = child_points;
731				get_task_struct(victim);
732			}
733		}
734	}
735	read_unlock(&tasklist_lock);
736
737	p = find_lock_task_mm(victim);
738	if (!p) {
739		put_task_struct(victim);
740		return;
741	} else if (victim != p) {
742		get_task_struct(p);
743		put_task_struct(victim);
744		victim = p;
745	}
746
747	/* Get a reference to safely compare mm after task_unlock(victim) */
748	mm = victim->mm;
749	atomic_inc(&mm->mm_count);
 
 
 
 
 
750	/*
751	 * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
752	 * the OOM victim from depleting the memory reserves from the user
753	 * space under its control.
754	 */
755	do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
756	mark_oom_victim(victim);
757	pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
758		task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
759		K(get_mm_counter(victim->mm, MM_ANONPAGES)),
760		K(get_mm_counter(victim->mm, MM_FILEPAGES)),
761		K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
762	task_unlock(victim);
763
764	/*
765	 * Kill all user processes sharing victim->mm in other thread groups, if
766	 * any.  They don't get access to memory reserves, though, to avoid
767	 * depletion of all memory.  This prevents mm->mmap_sem livelock when an
768	 * oom killed thread cannot exit because it requires the semaphore and
769	 * its contended by another thread trying to allocate memory itself.
770	 * That thread will now get access to memory reserves since it has a
771	 * pending fatal signal.
772	 */
773	rcu_read_lock();
774	for_each_process(p) {
775		if (!process_shares_mm(p, mm))
776			continue;
777		if (same_thread_group(p, victim))
778			continue;
779		if (unlikely(p->flags & PF_KTHREAD) || is_global_init(p) ||
780		    p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
781			/*
782			 * We cannot use oom_reaper for the mm shared by this
783			 * process because it wouldn't get killed and so the
784			 * memory might be still used.
785			 */
786			can_oom_reap = false;
 
 
 
 
787			continue;
788		}
 
 
 
 
 
 
789		do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
790	}
791	rcu_read_unlock();
792
793	if (can_oom_reap)
794		wake_oom_reaper(victim);
795
796	mmdrop(mm);
797	put_task_struct(victim);
798}
799#undef K
800
801/*
802 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
803 */
804void check_panic_on_oom(struct oom_control *oc, enum oom_constraint constraint,
805			struct mem_cgroup *memcg)
806{
807	if (likely(!sysctl_panic_on_oom))
808		return;
809	if (sysctl_panic_on_oom != 2) {
810		/*
811		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
812		 * does not panic for cpuset, mempolicy, or memcg allocation
813		 * failures.
814		 */
815		if (constraint != CONSTRAINT_NONE)
816			return;
817	}
818	/* Do not panic for oom kills triggered by sysrq */
819	if (is_sysrq_oom(oc))
820		return;
821	dump_header(oc, NULL, memcg);
822	panic("Out of memory: %s panic_on_oom is enabled\n",
823		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
824}
825
826static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
827
828int register_oom_notifier(struct notifier_block *nb)
829{
830	return blocking_notifier_chain_register(&oom_notify_list, nb);
831}
832EXPORT_SYMBOL_GPL(register_oom_notifier);
833
834int unregister_oom_notifier(struct notifier_block *nb)
835{
836	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
837}
838EXPORT_SYMBOL_GPL(unregister_oom_notifier);
839
840/**
841 * out_of_memory - kill the "best" process when we run out of memory
842 * @oc: pointer to struct oom_control
843 *
844 * If we run out of memory, we have the choice between either
845 * killing a random task (bad), letting the system crash (worse)
846 * OR try to be smart about which process to kill. Note that we
847 * don't have to be perfect here, we just have to be good.
848 */
849bool out_of_memory(struct oom_control *oc)
850{
851	struct task_struct *p;
852	unsigned long totalpages;
853	unsigned long freed = 0;
854	unsigned int uninitialized_var(points);
855	enum oom_constraint constraint = CONSTRAINT_NONE;
856
857	if (oom_killer_disabled)
858		return false;
859
860	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
861	if (freed > 0)
862		/* Got some memory back in the last second. */
863		return true;
 
 
864
865	/*
866	 * If current has a pending SIGKILL or is exiting, then automatically
867	 * select it.  The goal is to allow it to allocate so that it may
868	 * quickly exit and free its memory.
869	 *
870	 * But don't select if current has already released its mm and cleared
871	 * TIF_MEMDIE flag at exit_mm(), otherwise an OOM livelock may occur.
872	 */
873	if (current->mm &&
874	    (fatal_signal_pending(current) || task_will_free_mem(current))) {
875		mark_oom_victim(current);
 
876		return true;
877	}
878
879	/*
 
 
 
 
 
 
 
 
 
880	 * Check if there were limitations on the allocation (only relevant for
881	 * NUMA) that may require different handling.
882	 */
883	constraint = constrained_alloc(oc, &totalpages);
884	if (constraint != CONSTRAINT_MEMORY_POLICY)
885		oc->nodemask = NULL;
886	check_panic_on_oom(oc, constraint, NULL);
887
888	if (sysctl_oom_kill_allocating_task && current->mm &&
889	    !oom_unkillable_task(current, NULL, oc->nodemask) &&
890	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
891		get_task_struct(current);
892		oom_kill_process(oc, current, 0, totalpages, NULL,
893				 "Out of memory (oom_kill_allocating_task)");
894		return true;
895	}
896
897	p = select_bad_process(oc, &points, totalpages);
898	/* Found nothing?!?! Either we hang forever, or we panic. */
899	if (!p && !is_sysrq_oom(oc)) {
900		dump_header(oc, NULL, NULL);
901		panic("Out of memory and no killable processes...\n");
902	}
903	if (p && p != (void *)-1UL) {
904		oom_kill_process(oc, p, points, totalpages, NULL,
905				 "Out of memory");
906		/*
907		 * Give the killed process a good chance to exit before trying
908		 * to allocate memory again.
909		 */
910		schedule_timeout_killable(1);
911	}
912	return true;
913}
914
915/*
916 * The pagefault handler calls here because it is out of memory, so kill a
917 * memory-hogging task.  If any populated zone has ZONE_OOM_LOCKED set, a
918 * parallel oom killing is already in progress so do nothing.
919 */
920void pagefault_out_of_memory(void)
921{
922	struct oom_control oc = {
923		.zonelist = NULL,
924		.nodemask = NULL,
 
925		.gfp_mask = 0,
926		.order = 0,
927	};
928
929	if (mem_cgroup_oom_synchronize(true))
930		return;
931
932	if (!mutex_trylock(&oom_lock))
933		return;
934
935	if (!out_of_memory(&oc)) {
936		/*
937		 * There shouldn't be any user tasks runnable while the
938		 * OOM killer is disabled, so the current task has to
939		 * be a racing OOM victim for which oom_killer_disable()
940		 * is waiting for.
941		 */
942		WARN_ON(test_thread_flag(TIF_MEMDIE));
943	}
944
945	mutex_unlock(&oom_lock);
946}