Loading...
1/*
2 * linux/kernel/time/tick-broadcast.c
3 *
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
6 *
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10 *
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
13 */
14#include <linux/cpu.h>
15#include <linux/err.h>
16#include <linux/hrtimer.h>
17#include <linux/interrupt.h>
18#include <linux/percpu.h>
19#include <linux/profile.h>
20#include <linux/sched.h>
21#include <linux/smp.h>
22#include <linux/module.h>
23
24#include "tick-internal.h"
25
26/*
27 * Broadcast support for broken x86 hardware, where the local apic
28 * timer stops in C3 state.
29 */
30
31static struct tick_device tick_broadcast_device;
32static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly;
33static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly;
34static cpumask_var_t tmpmask __cpumask_var_read_mostly;
35static int tick_broadcast_forced;
36
37static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
38
39#ifdef CONFIG_TICK_ONESHOT
40static void tick_broadcast_setup_oneshot(struct clock_event_device *bc);
41static void tick_broadcast_clear_oneshot(int cpu);
42static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
43#else
44static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { BUG(); }
45static inline void tick_broadcast_clear_oneshot(int cpu) { }
46static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
47#endif
48
49/*
50 * Debugging: see timer_list.c
51 */
52struct tick_device *tick_get_broadcast_device(void)
53{
54 return &tick_broadcast_device;
55}
56
57struct cpumask *tick_get_broadcast_mask(void)
58{
59 return tick_broadcast_mask;
60}
61
62/*
63 * Start the device in periodic mode
64 */
65static void tick_broadcast_start_periodic(struct clock_event_device *bc)
66{
67 if (bc)
68 tick_setup_periodic(bc, 1);
69}
70
71/*
72 * Check, if the device can be utilized as broadcast device:
73 */
74static bool tick_check_broadcast_device(struct clock_event_device *curdev,
75 struct clock_event_device *newdev)
76{
77 if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
78 (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
79 (newdev->features & CLOCK_EVT_FEAT_C3STOP))
80 return false;
81
82 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
83 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
84 return false;
85
86 return !curdev || newdev->rating > curdev->rating;
87}
88
89/*
90 * Conditionally install/replace broadcast device
91 */
92void tick_install_broadcast_device(struct clock_event_device *dev)
93{
94 struct clock_event_device *cur = tick_broadcast_device.evtdev;
95
96 if (!tick_check_broadcast_device(cur, dev))
97 return;
98
99 if (!try_module_get(dev->owner))
100 return;
101
102 clockevents_exchange_device(cur, dev);
103 if (cur)
104 cur->event_handler = clockevents_handle_noop;
105 tick_broadcast_device.evtdev = dev;
106 if (!cpumask_empty(tick_broadcast_mask))
107 tick_broadcast_start_periodic(dev);
108 /*
109 * Inform all cpus about this. We might be in a situation
110 * where we did not switch to oneshot mode because the per cpu
111 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
112 * of a oneshot capable broadcast device. Without that
113 * notification the systems stays stuck in periodic mode
114 * forever.
115 */
116 if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
117 tick_clock_notify();
118}
119
120/*
121 * Check, if the device is the broadcast device
122 */
123int tick_is_broadcast_device(struct clock_event_device *dev)
124{
125 return (dev && tick_broadcast_device.evtdev == dev);
126}
127
128int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
129{
130 int ret = -ENODEV;
131
132 if (tick_is_broadcast_device(dev)) {
133 raw_spin_lock(&tick_broadcast_lock);
134 ret = __clockevents_update_freq(dev, freq);
135 raw_spin_unlock(&tick_broadcast_lock);
136 }
137 return ret;
138}
139
140
141static void err_broadcast(const struct cpumask *mask)
142{
143 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
144}
145
146static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
147{
148 if (!dev->broadcast)
149 dev->broadcast = tick_broadcast;
150 if (!dev->broadcast) {
151 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
152 dev->name);
153 dev->broadcast = err_broadcast;
154 }
155}
156
157/*
158 * Check, if the device is disfunctional and a place holder, which
159 * needs to be handled by the broadcast device.
160 */
161int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
162{
163 struct clock_event_device *bc = tick_broadcast_device.evtdev;
164 unsigned long flags;
165 int ret = 0;
166
167 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
168
169 /*
170 * Devices might be registered with both periodic and oneshot
171 * mode disabled. This signals, that the device needs to be
172 * operated from the broadcast device and is a placeholder for
173 * the cpu local device.
174 */
175 if (!tick_device_is_functional(dev)) {
176 dev->event_handler = tick_handle_periodic;
177 tick_device_setup_broadcast_func(dev);
178 cpumask_set_cpu(cpu, tick_broadcast_mask);
179 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
180 tick_broadcast_start_periodic(bc);
181 else
182 tick_broadcast_setup_oneshot(bc);
183 ret = 1;
184 } else {
185 /*
186 * Clear the broadcast bit for this cpu if the
187 * device is not power state affected.
188 */
189 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
190 cpumask_clear_cpu(cpu, tick_broadcast_mask);
191 else
192 tick_device_setup_broadcast_func(dev);
193
194 /*
195 * Clear the broadcast bit if the CPU is not in
196 * periodic broadcast on state.
197 */
198 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
199 cpumask_clear_cpu(cpu, tick_broadcast_mask);
200
201 switch (tick_broadcast_device.mode) {
202 case TICKDEV_MODE_ONESHOT:
203 /*
204 * If the system is in oneshot mode we can
205 * unconditionally clear the oneshot mask bit,
206 * because the CPU is running and therefore
207 * not in an idle state which causes the power
208 * state affected device to stop. Let the
209 * caller initialize the device.
210 */
211 tick_broadcast_clear_oneshot(cpu);
212 ret = 0;
213 break;
214
215 case TICKDEV_MODE_PERIODIC:
216 /*
217 * If the system is in periodic mode, check
218 * whether the broadcast device can be
219 * switched off now.
220 */
221 if (cpumask_empty(tick_broadcast_mask) && bc)
222 clockevents_shutdown(bc);
223 /*
224 * If we kept the cpu in the broadcast mask,
225 * tell the caller to leave the per cpu device
226 * in shutdown state. The periodic interrupt
227 * is delivered by the broadcast device, if
228 * the broadcast device exists and is not
229 * hrtimer based.
230 */
231 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
232 ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
233 break;
234 default:
235 break;
236 }
237 }
238 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
239 return ret;
240}
241
242#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
243int tick_receive_broadcast(void)
244{
245 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
246 struct clock_event_device *evt = td->evtdev;
247
248 if (!evt)
249 return -ENODEV;
250
251 if (!evt->event_handler)
252 return -EINVAL;
253
254 evt->event_handler(evt);
255 return 0;
256}
257#endif
258
259/*
260 * Broadcast the event to the cpus, which are set in the mask (mangled).
261 */
262static bool tick_do_broadcast(struct cpumask *mask)
263{
264 int cpu = smp_processor_id();
265 struct tick_device *td;
266 bool local = false;
267
268 /*
269 * Check, if the current cpu is in the mask
270 */
271 if (cpumask_test_cpu(cpu, mask)) {
272 struct clock_event_device *bc = tick_broadcast_device.evtdev;
273
274 cpumask_clear_cpu(cpu, mask);
275 /*
276 * We only run the local handler, if the broadcast
277 * device is not hrtimer based. Otherwise we run into
278 * a hrtimer recursion.
279 *
280 * local timer_interrupt()
281 * local_handler()
282 * expire_hrtimers()
283 * bc_handler()
284 * local_handler()
285 * expire_hrtimers()
286 */
287 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
288 }
289
290 if (!cpumask_empty(mask)) {
291 /*
292 * It might be necessary to actually check whether the devices
293 * have different broadcast functions. For now, just use the
294 * one of the first device. This works as long as we have this
295 * misfeature only on x86 (lapic)
296 */
297 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
298 td->evtdev->broadcast(mask);
299 }
300 return local;
301}
302
303/*
304 * Periodic broadcast:
305 * - invoke the broadcast handlers
306 */
307static bool tick_do_periodic_broadcast(void)
308{
309 cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
310 return tick_do_broadcast(tmpmask);
311}
312
313/*
314 * Event handler for periodic broadcast ticks
315 */
316static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
317{
318 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
319 bool bc_local;
320
321 raw_spin_lock(&tick_broadcast_lock);
322
323 /* Handle spurious interrupts gracefully */
324 if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
325 raw_spin_unlock(&tick_broadcast_lock);
326 return;
327 }
328
329 bc_local = tick_do_periodic_broadcast();
330
331 if (clockevent_state_oneshot(dev)) {
332 ktime_t next = ktime_add(dev->next_event, tick_period);
333
334 clockevents_program_event(dev, next, true);
335 }
336 raw_spin_unlock(&tick_broadcast_lock);
337
338 /*
339 * We run the handler of the local cpu after dropping
340 * tick_broadcast_lock because the handler might deadlock when
341 * trying to switch to oneshot mode.
342 */
343 if (bc_local)
344 td->evtdev->event_handler(td->evtdev);
345}
346
347/**
348 * tick_broadcast_control - Enable/disable or force broadcast mode
349 * @mode: The selected broadcast mode
350 *
351 * Called when the system enters a state where affected tick devices
352 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
353 */
354void tick_broadcast_control(enum tick_broadcast_mode mode)
355{
356 struct clock_event_device *bc, *dev;
357 struct tick_device *td;
358 int cpu, bc_stopped;
359 unsigned long flags;
360
361 /* Protects also the local clockevent device. */
362 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
363 td = this_cpu_ptr(&tick_cpu_device);
364 dev = td->evtdev;
365
366 /*
367 * Is the device not affected by the powerstate ?
368 */
369 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
370 goto out;
371
372 if (!tick_device_is_functional(dev))
373 goto out;
374
375 cpu = smp_processor_id();
376 bc = tick_broadcast_device.evtdev;
377 bc_stopped = cpumask_empty(tick_broadcast_mask);
378
379 switch (mode) {
380 case TICK_BROADCAST_FORCE:
381 tick_broadcast_forced = 1;
382 case TICK_BROADCAST_ON:
383 cpumask_set_cpu(cpu, tick_broadcast_on);
384 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
385 /*
386 * Only shutdown the cpu local device, if:
387 *
388 * - the broadcast device exists
389 * - the broadcast device is not a hrtimer based one
390 * - the broadcast device is in periodic mode to
391 * avoid a hickup during switch to oneshot mode
392 */
393 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
394 tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
395 clockevents_shutdown(dev);
396 }
397 break;
398
399 case TICK_BROADCAST_OFF:
400 if (tick_broadcast_forced)
401 break;
402 cpumask_clear_cpu(cpu, tick_broadcast_on);
403 if (!tick_device_is_functional(dev))
404 break;
405 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
406 if (tick_broadcast_device.mode ==
407 TICKDEV_MODE_PERIODIC)
408 tick_setup_periodic(dev, 0);
409 }
410 break;
411 }
412
413 if (bc) {
414 if (cpumask_empty(tick_broadcast_mask)) {
415 if (!bc_stopped)
416 clockevents_shutdown(bc);
417 } else if (bc_stopped) {
418 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
419 tick_broadcast_start_periodic(bc);
420 else
421 tick_broadcast_setup_oneshot(bc);
422 }
423 }
424out:
425 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
426}
427EXPORT_SYMBOL_GPL(tick_broadcast_control);
428
429/*
430 * Set the periodic handler depending on broadcast on/off
431 */
432void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
433{
434 if (!broadcast)
435 dev->event_handler = tick_handle_periodic;
436 else
437 dev->event_handler = tick_handle_periodic_broadcast;
438}
439
440#ifdef CONFIG_HOTPLUG_CPU
441/*
442 * Remove a CPU from broadcasting
443 */
444void tick_shutdown_broadcast(unsigned int cpu)
445{
446 struct clock_event_device *bc;
447 unsigned long flags;
448
449 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
450
451 bc = tick_broadcast_device.evtdev;
452 cpumask_clear_cpu(cpu, tick_broadcast_mask);
453 cpumask_clear_cpu(cpu, tick_broadcast_on);
454
455 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
456 if (bc && cpumask_empty(tick_broadcast_mask))
457 clockevents_shutdown(bc);
458 }
459
460 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
461}
462#endif
463
464void tick_suspend_broadcast(void)
465{
466 struct clock_event_device *bc;
467 unsigned long flags;
468
469 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
470
471 bc = tick_broadcast_device.evtdev;
472 if (bc)
473 clockevents_shutdown(bc);
474
475 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
476}
477
478/*
479 * This is called from tick_resume_local() on a resuming CPU. That's
480 * called from the core resume function, tick_unfreeze() and the magic XEN
481 * resume hackery.
482 *
483 * In none of these cases the broadcast device mode can change and the
484 * bit of the resuming CPU in the broadcast mask is safe as well.
485 */
486bool tick_resume_check_broadcast(void)
487{
488 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
489 return false;
490 else
491 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
492}
493
494void tick_resume_broadcast(void)
495{
496 struct clock_event_device *bc;
497 unsigned long flags;
498
499 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
500
501 bc = tick_broadcast_device.evtdev;
502
503 if (bc) {
504 clockevents_tick_resume(bc);
505
506 switch (tick_broadcast_device.mode) {
507 case TICKDEV_MODE_PERIODIC:
508 if (!cpumask_empty(tick_broadcast_mask))
509 tick_broadcast_start_periodic(bc);
510 break;
511 case TICKDEV_MODE_ONESHOT:
512 if (!cpumask_empty(tick_broadcast_mask))
513 tick_resume_broadcast_oneshot(bc);
514 break;
515 }
516 }
517 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
518}
519
520#ifdef CONFIG_TICK_ONESHOT
521
522static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly;
523static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly;
524static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly;
525
526/*
527 * Exposed for debugging: see timer_list.c
528 */
529struct cpumask *tick_get_broadcast_oneshot_mask(void)
530{
531 return tick_broadcast_oneshot_mask;
532}
533
534/*
535 * Called before going idle with interrupts disabled. Checks whether a
536 * broadcast event from the other core is about to happen. We detected
537 * that in tick_broadcast_oneshot_control(). The callsite can use this
538 * to avoid a deep idle transition as we are about to get the
539 * broadcast IPI right away.
540 */
541int tick_check_broadcast_expired(void)
542{
543 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
544}
545
546/*
547 * Set broadcast interrupt affinity
548 */
549static void tick_broadcast_set_affinity(struct clock_event_device *bc,
550 const struct cpumask *cpumask)
551{
552 if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
553 return;
554
555 if (cpumask_equal(bc->cpumask, cpumask))
556 return;
557
558 bc->cpumask = cpumask;
559 irq_set_affinity(bc->irq, bc->cpumask);
560}
561
562static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
563 ktime_t expires)
564{
565 if (!clockevent_state_oneshot(bc))
566 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
567
568 clockevents_program_event(bc, expires, 1);
569 tick_broadcast_set_affinity(bc, cpumask_of(cpu));
570}
571
572static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
573{
574 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
575}
576
577/*
578 * Called from irq_enter() when idle was interrupted to reenable the
579 * per cpu device.
580 */
581void tick_check_oneshot_broadcast_this_cpu(void)
582{
583 if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
584 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
585
586 /*
587 * We might be in the middle of switching over from
588 * periodic to oneshot. If the CPU has not yet
589 * switched over, leave the device alone.
590 */
591 if (td->mode == TICKDEV_MODE_ONESHOT) {
592 clockevents_switch_state(td->evtdev,
593 CLOCK_EVT_STATE_ONESHOT);
594 }
595 }
596}
597
598/*
599 * Handle oneshot mode broadcasting
600 */
601static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
602{
603 struct tick_device *td;
604 ktime_t now, next_event;
605 int cpu, next_cpu = 0;
606 bool bc_local;
607
608 raw_spin_lock(&tick_broadcast_lock);
609 dev->next_event = KTIME_MAX;
610 next_event = KTIME_MAX;
611 cpumask_clear(tmpmask);
612 now = ktime_get();
613 /* Find all expired events */
614 for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
615 /*
616 * Required for !SMP because for_each_cpu() reports
617 * unconditionally CPU0 as set on UP kernels.
618 */
619 if (!IS_ENABLED(CONFIG_SMP) &&
620 cpumask_empty(tick_broadcast_oneshot_mask))
621 break;
622
623 td = &per_cpu(tick_cpu_device, cpu);
624 if (td->evtdev->next_event <= now) {
625 cpumask_set_cpu(cpu, tmpmask);
626 /*
627 * Mark the remote cpu in the pending mask, so
628 * it can avoid reprogramming the cpu local
629 * timer in tick_broadcast_oneshot_control().
630 */
631 cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
632 } else if (td->evtdev->next_event < next_event) {
633 next_event = td->evtdev->next_event;
634 next_cpu = cpu;
635 }
636 }
637
638 /*
639 * Remove the current cpu from the pending mask. The event is
640 * delivered immediately in tick_do_broadcast() !
641 */
642 cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
643
644 /* Take care of enforced broadcast requests */
645 cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
646 cpumask_clear(tick_broadcast_force_mask);
647
648 /*
649 * Sanity check. Catch the case where we try to broadcast to
650 * offline cpus.
651 */
652 if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
653 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
654
655 /*
656 * Wakeup the cpus which have an expired event.
657 */
658 bc_local = tick_do_broadcast(tmpmask);
659
660 /*
661 * Two reasons for reprogram:
662 *
663 * - The global event did not expire any CPU local
664 * events. This happens in dyntick mode, as the maximum PIT
665 * delta is quite small.
666 *
667 * - There are pending events on sleeping CPUs which were not
668 * in the event mask
669 */
670 if (next_event != KTIME_MAX)
671 tick_broadcast_set_event(dev, next_cpu, next_event);
672
673 raw_spin_unlock(&tick_broadcast_lock);
674
675 if (bc_local) {
676 td = this_cpu_ptr(&tick_cpu_device);
677 td->evtdev->event_handler(td->evtdev);
678 }
679}
680
681static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
682{
683 if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
684 return 0;
685 if (bc->next_event == KTIME_MAX)
686 return 0;
687 return bc->bound_on == cpu ? -EBUSY : 0;
688}
689
690static void broadcast_shutdown_local(struct clock_event_device *bc,
691 struct clock_event_device *dev)
692{
693 /*
694 * For hrtimer based broadcasting we cannot shutdown the cpu
695 * local device if our own event is the first one to expire or
696 * if we own the broadcast timer.
697 */
698 if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
699 if (broadcast_needs_cpu(bc, smp_processor_id()))
700 return;
701 if (dev->next_event < bc->next_event)
702 return;
703 }
704 clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
705}
706
707int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
708{
709 struct clock_event_device *bc, *dev;
710 int cpu, ret = 0;
711 ktime_t now;
712
713 /*
714 * If there is no broadcast device, tell the caller not to go
715 * into deep idle.
716 */
717 if (!tick_broadcast_device.evtdev)
718 return -EBUSY;
719
720 dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
721
722 raw_spin_lock(&tick_broadcast_lock);
723 bc = tick_broadcast_device.evtdev;
724 cpu = smp_processor_id();
725
726 if (state == TICK_BROADCAST_ENTER) {
727 /*
728 * If the current CPU owns the hrtimer broadcast
729 * mechanism, it cannot go deep idle and we do not add
730 * the CPU to the broadcast mask. We don't have to go
731 * through the EXIT path as the local timer is not
732 * shutdown.
733 */
734 ret = broadcast_needs_cpu(bc, cpu);
735 if (ret)
736 goto out;
737
738 /*
739 * If the broadcast device is in periodic mode, we
740 * return.
741 */
742 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
743 /* If it is a hrtimer based broadcast, return busy */
744 if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
745 ret = -EBUSY;
746 goto out;
747 }
748
749 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
750 WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
751
752 /* Conditionally shut down the local timer. */
753 broadcast_shutdown_local(bc, dev);
754
755 /*
756 * We only reprogram the broadcast timer if we
757 * did not mark ourself in the force mask and
758 * if the cpu local event is earlier than the
759 * broadcast event. If the current CPU is in
760 * the force mask, then we are going to be
761 * woken by the IPI right away; we return
762 * busy, so the CPU does not try to go deep
763 * idle.
764 */
765 if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
766 ret = -EBUSY;
767 } else if (dev->next_event < bc->next_event) {
768 tick_broadcast_set_event(bc, cpu, dev->next_event);
769 /*
770 * In case of hrtimer broadcasts the
771 * programming might have moved the
772 * timer to this cpu. If yes, remove
773 * us from the broadcast mask and
774 * return busy.
775 */
776 ret = broadcast_needs_cpu(bc, cpu);
777 if (ret) {
778 cpumask_clear_cpu(cpu,
779 tick_broadcast_oneshot_mask);
780 }
781 }
782 }
783 } else {
784 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
785 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
786 /*
787 * The cpu which was handling the broadcast
788 * timer marked this cpu in the broadcast
789 * pending mask and fired the broadcast
790 * IPI. So we are going to handle the expired
791 * event anyway via the broadcast IPI
792 * handler. No need to reprogram the timer
793 * with an already expired event.
794 */
795 if (cpumask_test_and_clear_cpu(cpu,
796 tick_broadcast_pending_mask))
797 goto out;
798
799 /*
800 * Bail out if there is no next event.
801 */
802 if (dev->next_event == KTIME_MAX)
803 goto out;
804 /*
805 * If the pending bit is not set, then we are
806 * either the CPU handling the broadcast
807 * interrupt or we got woken by something else.
808 *
809 * We are not longer in the broadcast mask, so
810 * if the cpu local expiry time is already
811 * reached, we would reprogram the cpu local
812 * timer with an already expired event.
813 *
814 * This can lead to a ping-pong when we return
815 * to idle and therefor rearm the broadcast
816 * timer before the cpu local timer was able
817 * to fire. This happens because the forced
818 * reprogramming makes sure that the event
819 * will happen in the future and depending on
820 * the min_delta setting this might be far
821 * enough out that the ping-pong starts.
822 *
823 * If the cpu local next_event has expired
824 * then we know that the broadcast timer
825 * next_event has expired as well and
826 * broadcast is about to be handled. So we
827 * avoid reprogramming and enforce that the
828 * broadcast handler, which did not run yet,
829 * will invoke the cpu local handler.
830 *
831 * We cannot call the handler directly from
832 * here, because we might be in a NOHZ phase
833 * and we did not go through the irq_enter()
834 * nohz fixups.
835 */
836 now = ktime_get();
837 if (dev->next_event <= now) {
838 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
839 goto out;
840 }
841 /*
842 * We got woken by something else. Reprogram
843 * the cpu local timer device.
844 */
845 tick_program_event(dev->next_event, 1);
846 }
847 }
848out:
849 raw_spin_unlock(&tick_broadcast_lock);
850 return ret;
851}
852
853/*
854 * Reset the one shot broadcast for a cpu
855 *
856 * Called with tick_broadcast_lock held
857 */
858static void tick_broadcast_clear_oneshot(int cpu)
859{
860 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
861 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
862}
863
864static void tick_broadcast_init_next_event(struct cpumask *mask,
865 ktime_t expires)
866{
867 struct tick_device *td;
868 int cpu;
869
870 for_each_cpu(cpu, mask) {
871 td = &per_cpu(tick_cpu_device, cpu);
872 if (td->evtdev)
873 td->evtdev->next_event = expires;
874 }
875}
876
877/**
878 * tick_broadcast_setup_oneshot - setup the broadcast device
879 */
880static void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
881{
882 int cpu = smp_processor_id();
883
884 if (!bc)
885 return;
886
887 /* Set it up only once ! */
888 if (bc->event_handler != tick_handle_oneshot_broadcast) {
889 int was_periodic = clockevent_state_periodic(bc);
890
891 bc->event_handler = tick_handle_oneshot_broadcast;
892
893 /*
894 * We must be careful here. There might be other CPUs
895 * waiting for periodic broadcast. We need to set the
896 * oneshot_mask bits for those and program the
897 * broadcast device to fire.
898 */
899 cpumask_copy(tmpmask, tick_broadcast_mask);
900 cpumask_clear_cpu(cpu, tmpmask);
901 cpumask_or(tick_broadcast_oneshot_mask,
902 tick_broadcast_oneshot_mask, tmpmask);
903
904 if (was_periodic && !cpumask_empty(tmpmask)) {
905 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
906 tick_broadcast_init_next_event(tmpmask,
907 tick_next_period);
908 tick_broadcast_set_event(bc, cpu, tick_next_period);
909 } else
910 bc->next_event = KTIME_MAX;
911 } else {
912 /*
913 * The first cpu which switches to oneshot mode sets
914 * the bit for all other cpus which are in the general
915 * (periodic) broadcast mask. So the bit is set and
916 * would prevent the first broadcast enter after this
917 * to program the bc device.
918 */
919 tick_broadcast_clear_oneshot(cpu);
920 }
921}
922
923/*
924 * Select oneshot operating mode for the broadcast device
925 */
926void tick_broadcast_switch_to_oneshot(void)
927{
928 struct clock_event_device *bc;
929 unsigned long flags;
930
931 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
932
933 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
934 bc = tick_broadcast_device.evtdev;
935 if (bc)
936 tick_broadcast_setup_oneshot(bc);
937
938 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
939}
940
941#ifdef CONFIG_HOTPLUG_CPU
942void hotplug_cpu__broadcast_tick_pull(int deadcpu)
943{
944 struct clock_event_device *bc;
945 unsigned long flags;
946
947 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
948 bc = tick_broadcast_device.evtdev;
949
950 if (bc && broadcast_needs_cpu(bc, deadcpu)) {
951 /* This moves the broadcast assignment to this CPU: */
952 clockevents_program_event(bc, bc->next_event, 1);
953 }
954 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
955}
956
957/*
958 * Remove a dead CPU from broadcasting
959 */
960void tick_shutdown_broadcast_oneshot(unsigned int cpu)
961{
962 unsigned long flags;
963
964 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
965
966 /*
967 * Clear the broadcast masks for the dead cpu, but do not stop
968 * the broadcast device!
969 */
970 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
971 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
972 cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
973
974 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
975}
976#endif
977
978/*
979 * Check, whether the broadcast device is in one shot mode
980 */
981int tick_broadcast_oneshot_active(void)
982{
983 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
984}
985
986/*
987 * Check whether the broadcast device supports oneshot.
988 */
989bool tick_broadcast_oneshot_available(void)
990{
991 struct clock_event_device *bc = tick_broadcast_device.evtdev;
992
993 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
994}
995
996#else
997int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
998{
999 struct clock_event_device *bc = tick_broadcast_device.evtdev;
1000
1001 if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
1002 return -EBUSY;
1003
1004 return 0;
1005}
1006#endif
1007
1008void __init tick_broadcast_init(void)
1009{
1010 zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1011 zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1012 zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1013#ifdef CONFIG_TICK_ONESHOT
1014 zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1015 zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1016 zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1017#endif
1018}
1/*
2 * linux/kernel/time/tick-broadcast.c
3 *
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
6 *
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10 *
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
13 */
14#include <linux/cpu.h>
15#include <linux/err.h>
16#include <linux/hrtimer.h>
17#include <linux/interrupt.h>
18#include <linux/percpu.h>
19#include <linux/profile.h>
20#include <linux/sched.h>
21#include <linux/smp.h>
22#include <linux/module.h>
23
24#include "tick-internal.h"
25
26/*
27 * Broadcast support for broken x86 hardware, where the local apic
28 * timer stops in C3 state.
29 */
30
31static struct tick_device tick_broadcast_device;
32static cpumask_var_t tick_broadcast_mask;
33static cpumask_var_t tick_broadcast_on;
34static cpumask_var_t tmpmask;
35static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
36static int tick_broadcast_forced;
37
38#ifdef CONFIG_TICK_ONESHOT
39static void tick_broadcast_clear_oneshot(int cpu);
40static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
41#else
42static inline void tick_broadcast_clear_oneshot(int cpu) { }
43static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
44#endif
45
46/*
47 * Debugging: see timer_list.c
48 */
49struct tick_device *tick_get_broadcast_device(void)
50{
51 return &tick_broadcast_device;
52}
53
54struct cpumask *tick_get_broadcast_mask(void)
55{
56 return tick_broadcast_mask;
57}
58
59/*
60 * Start the device in periodic mode
61 */
62static void tick_broadcast_start_periodic(struct clock_event_device *bc)
63{
64 if (bc)
65 tick_setup_periodic(bc, 1);
66}
67
68/*
69 * Check, if the device can be utilized as broadcast device:
70 */
71static bool tick_check_broadcast_device(struct clock_event_device *curdev,
72 struct clock_event_device *newdev)
73{
74 if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
75 (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
76 (newdev->features & CLOCK_EVT_FEAT_C3STOP))
77 return false;
78
79 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
80 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
81 return false;
82
83 return !curdev || newdev->rating > curdev->rating;
84}
85
86/*
87 * Conditionally install/replace broadcast device
88 */
89void tick_install_broadcast_device(struct clock_event_device *dev)
90{
91 struct clock_event_device *cur = tick_broadcast_device.evtdev;
92
93 if (!tick_check_broadcast_device(cur, dev))
94 return;
95
96 if (!try_module_get(dev->owner))
97 return;
98
99 clockevents_exchange_device(cur, dev);
100 if (cur)
101 cur->event_handler = clockevents_handle_noop;
102 tick_broadcast_device.evtdev = dev;
103 if (!cpumask_empty(tick_broadcast_mask))
104 tick_broadcast_start_periodic(dev);
105 /*
106 * Inform all cpus about this. We might be in a situation
107 * where we did not switch to oneshot mode because the per cpu
108 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
109 * of a oneshot capable broadcast device. Without that
110 * notification the systems stays stuck in periodic mode
111 * forever.
112 */
113 if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
114 tick_clock_notify();
115}
116
117/*
118 * Check, if the device is the broadcast device
119 */
120int tick_is_broadcast_device(struct clock_event_device *dev)
121{
122 return (dev && tick_broadcast_device.evtdev == dev);
123}
124
125int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
126{
127 int ret = -ENODEV;
128
129 if (tick_is_broadcast_device(dev)) {
130 raw_spin_lock(&tick_broadcast_lock);
131 ret = __clockevents_update_freq(dev, freq);
132 raw_spin_unlock(&tick_broadcast_lock);
133 }
134 return ret;
135}
136
137
138static void err_broadcast(const struct cpumask *mask)
139{
140 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
141}
142
143static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
144{
145 if (!dev->broadcast)
146 dev->broadcast = tick_broadcast;
147 if (!dev->broadcast) {
148 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
149 dev->name);
150 dev->broadcast = err_broadcast;
151 }
152}
153
154/*
155 * Check, if the device is disfunctional and a place holder, which
156 * needs to be handled by the broadcast device.
157 */
158int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
159{
160 struct clock_event_device *bc = tick_broadcast_device.evtdev;
161 unsigned long flags;
162 int ret = 0;
163
164 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
165
166 /*
167 * Devices might be registered with both periodic and oneshot
168 * mode disabled. This signals, that the device needs to be
169 * operated from the broadcast device and is a placeholder for
170 * the cpu local device.
171 */
172 if (!tick_device_is_functional(dev)) {
173 dev->event_handler = tick_handle_periodic;
174 tick_device_setup_broadcast_func(dev);
175 cpumask_set_cpu(cpu, tick_broadcast_mask);
176 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
177 tick_broadcast_start_periodic(bc);
178 else
179 tick_broadcast_setup_oneshot(bc);
180 ret = 1;
181 } else {
182 /*
183 * Clear the broadcast bit for this cpu if the
184 * device is not power state affected.
185 */
186 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
187 cpumask_clear_cpu(cpu, tick_broadcast_mask);
188 else
189 tick_device_setup_broadcast_func(dev);
190
191 /*
192 * Clear the broadcast bit if the CPU is not in
193 * periodic broadcast on state.
194 */
195 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
196 cpumask_clear_cpu(cpu, tick_broadcast_mask);
197
198 switch (tick_broadcast_device.mode) {
199 case TICKDEV_MODE_ONESHOT:
200 /*
201 * If the system is in oneshot mode we can
202 * unconditionally clear the oneshot mask bit,
203 * because the CPU is running and therefore
204 * not in an idle state which causes the power
205 * state affected device to stop. Let the
206 * caller initialize the device.
207 */
208 tick_broadcast_clear_oneshot(cpu);
209 ret = 0;
210 break;
211
212 case TICKDEV_MODE_PERIODIC:
213 /*
214 * If the system is in periodic mode, check
215 * whether the broadcast device can be
216 * switched off now.
217 */
218 if (cpumask_empty(tick_broadcast_mask) && bc)
219 clockevents_shutdown(bc);
220 /*
221 * If we kept the cpu in the broadcast mask,
222 * tell the caller to leave the per cpu device
223 * in shutdown state. The periodic interrupt
224 * is delivered by the broadcast device, if
225 * the broadcast device exists and is not
226 * hrtimer based.
227 */
228 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
229 ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
230 break;
231 default:
232 break;
233 }
234 }
235 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
236 return ret;
237}
238
239#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
240int tick_receive_broadcast(void)
241{
242 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
243 struct clock_event_device *evt = td->evtdev;
244
245 if (!evt)
246 return -ENODEV;
247
248 if (!evt->event_handler)
249 return -EINVAL;
250
251 evt->event_handler(evt);
252 return 0;
253}
254#endif
255
256/*
257 * Broadcast the event to the cpus, which are set in the mask (mangled).
258 */
259static bool tick_do_broadcast(struct cpumask *mask)
260{
261 int cpu = smp_processor_id();
262 struct tick_device *td;
263 bool local = false;
264
265 /*
266 * Check, if the current cpu is in the mask
267 */
268 if (cpumask_test_cpu(cpu, mask)) {
269 struct clock_event_device *bc = tick_broadcast_device.evtdev;
270
271 cpumask_clear_cpu(cpu, mask);
272 /*
273 * We only run the local handler, if the broadcast
274 * device is not hrtimer based. Otherwise we run into
275 * a hrtimer recursion.
276 *
277 * local timer_interrupt()
278 * local_handler()
279 * expire_hrtimers()
280 * bc_handler()
281 * local_handler()
282 * expire_hrtimers()
283 */
284 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
285 }
286
287 if (!cpumask_empty(mask)) {
288 /*
289 * It might be necessary to actually check whether the devices
290 * have different broadcast functions. For now, just use the
291 * one of the first device. This works as long as we have this
292 * misfeature only on x86 (lapic)
293 */
294 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
295 td->evtdev->broadcast(mask);
296 }
297 return local;
298}
299
300/*
301 * Periodic broadcast:
302 * - invoke the broadcast handlers
303 */
304static bool tick_do_periodic_broadcast(void)
305{
306 cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
307 return tick_do_broadcast(tmpmask);
308}
309
310/*
311 * Event handler for periodic broadcast ticks
312 */
313static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
314{
315 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
316 bool bc_local;
317
318 raw_spin_lock(&tick_broadcast_lock);
319
320 /* Handle spurious interrupts gracefully */
321 if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
322 raw_spin_unlock(&tick_broadcast_lock);
323 return;
324 }
325
326 bc_local = tick_do_periodic_broadcast();
327
328 if (clockevent_state_oneshot(dev)) {
329 ktime_t next = ktime_add(dev->next_event, tick_period);
330
331 clockevents_program_event(dev, next, true);
332 }
333 raw_spin_unlock(&tick_broadcast_lock);
334
335 /*
336 * We run the handler of the local cpu after dropping
337 * tick_broadcast_lock because the handler might deadlock when
338 * trying to switch to oneshot mode.
339 */
340 if (bc_local)
341 td->evtdev->event_handler(td->evtdev);
342}
343
344/**
345 * tick_broadcast_control - Enable/disable or force broadcast mode
346 * @mode: The selected broadcast mode
347 *
348 * Called when the system enters a state where affected tick devices
349 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
350 *
351 * Called with interrupts disabled, so clockevents_lock is not
352 * required here because the local clock event device cannot go away
353 * under us.
354 */
355void tick_broadcast_control(enum tick_broadcast_mode mode)
356{
357 struct clock_event_device *bc, *dev;
358 struct tick_device *td;
359 int cpu, bc_stopped;
360
361 td = this_cpu_ptr(&tick_cpu_device);
362 dev = td->evtdev;
363
364 /*
365 * Is the device not affected by the powerstate ?
366 */
367 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
368 return;
369
370 if (!tick_device_is_functional(dev))
371 return;
372
373 raw_spin_lock(&tick_broadcast_lock);
374 cpu = smp_processor_id();
375 bc = tick_broadcast_device.evtdev;
376 bc_stopped = cpumask_empty(tick_broadcast_mask);
377
378 switch (mode) {
379 case TICK_BROADCAST_FORCE:
380 tick_broadcast_forced = 1;
381 case TICK_BROADCAST_ON:
382 cpumask_set_cpu(cpu, tick_broadcast_on);
383 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
384 /*
385 * Only shutdown the cpu local device, if:
386 *
387 * - the broadcast device exists
388 * - the broadcast device is not a hrtimer based one
389 * - the broadcast device is in periodic mode to
390 * avoid a hickup during switch to oneshot mode
391 */
392 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
393 tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
394 clockevents_shutdown(dev);
395 }
396 break;
397
398 case TICK_BROADCAST_OFF:
399 if (tick_broadcast_forced)
400 break;
401 cpumask_clear_cpu(cpu, tick_broadcast_on);
402 if (!tick_device_is_functional(dev))
403 break;
404 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
405 if (tick_broadcast_device.mode ==
406 TICKDEV_MODE_PERIODIC)
407 tick_setup_periodic(dev, 0);
408 }
409 break;
410 }
411
412 if (bc) {
413 if (cpumask_empty(tick_broadcast_mask)) {
414 if (!bc_stopped)
415 clockevents_shutdown(bc);
416 } else if (bc_stopped) {
417 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
418 tick_broadcast_start_periodic(bc);
419 else
420 tick_broadcast_setup_oneshot(bc);
421 }
422 }
423 raw_spin_unlock(&tick_broadcast_lock);
424}
425EXPORT_SYMBOL_GPL(tick_broadcast_control);
426
427/*
428 * Set the periodic handler depending on broadcast on/off
429 */
430void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
431{
432 if (!broadcast)
433 dev->event_handler = tick_handle_periodic;
434 else
435 dev->event_handler = tick_handle_periodic_broadcast;
436}
437
438#ifdef CONFIG_HOTPLUG_CPU
439/*
440 * Remove a CPU from broadcasting
441 */
442void tick_shutdown_broadcast(unsigned int cpu)
443{
444 struct clock_event_device *bc;
445 unsigned long flags;
446
447 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
448
449 bc = tick_broadcast_device.evtdev;
450 cpumask_clear_cpu(cpu, tick_broadcast_mask);
451 cpumask_clear_cpu(cpu, tick_broadcast_on);
452
453 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
454 if (bc && cpumask_empty(tick_broadcast_mask))
455 clockevents_shutdown(bc);
456 }
457
458 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
459}
460#endif
461
462void tick_suspend_broadcast(void)
463{
464 struct clock_event_device *bc;
465 unsigned long flags;
466
467 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
468
469 bc = tick_broadcast_device.evtdev;
470 if (bc)
471 clockevents_shutdown(bc);
472
473 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
474}
475
476/*
477 * This is called from tick_resume_local() on a resuming CPU. That's
478 * called from the core resume function, tick_unfreeze() and the magic XEN
479 * resume hackery.
480 *
481 * In none of these cases the broadcast device mode can change and the
482 * bit of the resuming CPU in the broadcast mask is safe as well.
483 */
484bool tick_resume_check_broadcast(void)
485{
486 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
487 return false;
488 else
489 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
490}
491
492void tick_resume_broadcast(void)
493{
494 struct clock_event_device *bc;
495 unsigned long flags;
496
497 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
498
499 bc = tick_broadcast_device.evtdev;
500
501 if (bc) {
502 clockevents_tick_resume(bc);
503
504 switch (tick_broadcast_device.mode) {
505 case TICKDEV_MODE_PERIODIC:
506 if (!cpumask_empty(tick_broadcast_mask))
507 tick_broadcast_start_periodic(bc);
508 break;
509 case TICKDEV_MODE_ONESHOT:
510 if (!cpumask_empty(tick_broadcast_mask))
511 tick_resume_broadcast_oneshot(bc);
512 break;
513 }
514 }
515 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
516}
517
518#ifdef CONFIG_TICK_ONESHOT
519
520static cpumask_var_t tick_broadcast_oneshot_mask;
521static cpumask_var_t tick_broadcast_pending_mask;
522static cpumask_var_t tick_broadcast_force_mask;
523
524/*
525 * Exposed for debugging: see timer_list.c
526 */
527struct cpumask *tick_get_broadcast_oneshot_mask(void)
528{
529 return tick_broadcast_oneshot_mask;
530}
531
532/*
533 * Called before going idle with interrupts disabled. Checks whether a
534 * broadcast event from the other core is about to happen. We detected
535 * that in tick_broadcast_oneshot_control(). The callsite can use this
536 * to avoid a deep idle transition as we are about to get the
537 * broadcast IPI right away.
538 */
539int tick_check_broadcast_expired(void)
540{
541 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
542}
543
544/*
545 * Set broadcast interrupt affinity
546 */
547static void tick_broadcast_set_affinity(struct clock_event_device *bc,
548 const struct cpumask *cpumask)
549{
550 if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
551 return;
552
553 if (cpumask_equal(bc->cpumask, cpumask))
554 return;
555
556 bc->cpumask = cpumask;
557 irq_set_affinity(bc->irq, bc->cpumask);
558}
559
560static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
561 ktime_t expires)
562{
563 if (!clockevent_state_oneshot(bc))
564 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
565
566 clockevents_program_event(bc, expires, 1);
567 tick_broadcast_set_affinity(bc, cpumask_of(cpu));
568}
569
570static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
571{
572 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
573}
574
575/*
576 * Called from irq_enter() when idle was interrupted to reenable the
577 * per cpu device.
578 */
579void tick_check_oneshot_broadcast_this_cpu(void)
580{
581 if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
582 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
583
584 /*
585 * We might be in the middle of switching over from
586 * periodic to oneshot. If the CPU has not yet
587 * switched over, leave the device alone.
588 */
589 if (td->mode == TICKDEV_MODE_ONESHOT) {
590 clockevents_switch_state(td->evtdev,
591 CLOCK_EVT_STATE_ONESHOT);
592 }
593 }
594}
595
596/*
597 * Handle oneshot mode broadcasting
598 */
599static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
600{
601 struct tick_device *td;
602 ktime_t now, next_event;
603 int cpu, next_cpu = 0;
604 bool bc_local;
605
606 raw_spin_lock(&tick_broadcast_lock);
607 dev->next_event.tv64 = KTIME_MAX;
608 next_event.tv64 = KTIME_MAX;
609 cpumask_clear(tmpmask);
610 now = ktime_get();
611 /* Find all expired events */
612 for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
613 td = &per_cpu(tick_cpu_device, cpu);
614 if (td->evtdev->next_event.tv64 <= now.tv64) {
615 cpumask_set_cpu(cpu, tmpmask);
616 /*
617 * Mark the remote cpu in the pending mask, so
618 * it can avoid reprogramming the cpu local
619 * timer in tick_broadcast_oneshot_control().
620 */
621 cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
622 } else if (td->evtdev->next_event.tv64 < next_event.tv64) {
623 next_event.tv64 = td->evtdev->next_event.tv64;
624 next_cpu = cpu;
625 }
626 }
627
628 /*
629 * Remove the current cpu from the pending mask. The event is
630 * delivered immediately in tick_do_broadcast() !
631 */
632 cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
633
634 /* Take care of enforced broadcast requests */
635 cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
636 cpumask_clear(tick_broadcast_force_mask);
637
638 /*
639 * Sanity check. Catch the case where we try to broadcast to
640 * offline cpus.
641 */
642 if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
643 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
644
645 /*
646 * Wakeup the cpus which have an expired event.
647 */
648 bc_local = tick_do_broadcast(tmpmask);
649
650 /*
651 * Two reasons for reprogram:
652 *
653 * - The global event did not expire any CPU local
654 * events. This happens in dyntick mode, as the maximum PIT
655 * delta is quite small.
656 *
657 * - There are pending events on sleeping CPUs which were not
658 * in the event mask
659 */
660 if (next_event.tv64 != KTIME_MAX)
661 tick_broadcast_set_event(dev, next_cpu, next_event);
662
663 raw_spin_unlock(&tick_broadcast_lock);
664
665 if (bc_local) {
666 td = this_cpu_ptr(&tick_cpu_device);
667 td->evtdev->event_handler(td->evtdev);
668 }
669}
670
671static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
672{
673 if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
674 return 0;
675 if (bc->next_event.tv64 == KTIME_MAX)
676 return 0;
677 return bc->bound_on == cpu ? -EBUSY : 0;
678}
679
680static void broadcast_shutdown_local(struct clock_event_device *bc,
681 struct clock_event_device *dev)
682{
683 /*
684 * For hrtimer based broadcasting we cannot shutdown the cpu
685 * local device if our own event is the first one to expire or
686 * if we own the broadcast timer.
687 */
688 if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
689 if (broadcast_needs_cpu(bc, smp_processor_id()))
690 return;
691 if (dev->next_event.tv64 < bc->next_event.tv64)
692 return;
693 }
694 clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
695}
696
697int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
698{
699 struct clock_event_device *bc, *dev;
700 int cpu, ret = 0;
701 ktime_t now;
702
703 /*
704 * If there is no broadcast device, tell the caller not to go
705 * into deep idle.
706 */
707 if (!tick_broadcast_device.evtdev)
708 return -EBUSY;
709
710 dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
711
712 raw_spin_lock(&tick_broadcast_lock);
713 bc = tick_broadcast_device.evtdev;
714 cpu = smp_processor_id();
715
716 if (state == TICK_BROADCAST_ENTER) {
717 /*
718 * If the current CPU owns the hrtimer broadcast
719 * mechanism, it cannot go deep idle and we do not add
720 * the CPU to the broadcast mask. We don't have to go
721 * through the EXIT path as the local timer is not
722 * shutdown.
723 */
724 ret = broadcast_needs_cpu(bc, cpu);
725 if (ret)
726 goto out;
727
728 /*
729 * If the broadcast device is in periodic mode, we
730 * return.
731 */
732 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
733 /* If it is a hrtimer based broadcast, return busy */
734 if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
735 ret = -EBUSY;
736 goto out;
737 }
738
739 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
740 WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
741
742 /* Conditionally shut down the local timer. */
743 broadcast_shutdown_local(bc, dev);
744
745 /*
746 * We only reprogram the broadcast timer if we
747 * did not mark ourself in the force mask and
748 * if the cpu local event is earlier than the
749 * broadcast event. If the current CPU is in
750 * the force mask, then we are going to be
751 * woken by the IPI right away; we return
752 * busy, so the CPU does not try to go deep
753 * idle.
754 */
755 if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
756 ret = -EBUSY;
757 } else if (dev->next_event.tv64 < bc->next_event.tv64) {
758 tick_broadcast_set_event(bc, cpu, dev->next_event);
759 /*
760 * In case of hrtimer broadcasts the
761 * programming might have moved the
762 * timer to this cpu. If yes, remove
763 * us from the broadcast mask and
764 * return busy.
765 */
766 ret = broadcast_needs_cpu(bc, cpu);
767 if (ret) {
768 cpumask_clear_cpu(cpu,
769 tick_broadcast_oneshot_mask);
770 }
771 }
772 }
773 } else {
774 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
775 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
776 /*
777 * The cpu which was handling the broadcast
778 * timer marked this cpu in the broadcast
779 * pending mask and fired the broadcast
780 * IPI. So we are going to handle the expired
781 * event anyway via the broadcast IPI
782 * handler. No need to reprogram the timer
783 * with an already expired event.
784 */
785 if (cpumask_test_and_clear_cpu(cpu,
786 tick_broadcast_pending_mask))
787 goto out;
788
789 /*
790 * Bail out if there is no next event.
791 */
792 if (dev->next_event.tv64 == KTIME_MAX)
793 goto out;
794 /*
795 * If the pending bit is not set, then we are
796 * either the CPU handling the broadcast
797 * interrupt or we got woken by something else.
798 *
799 * We are not longer in the broadcast mask, so
800 * if the cpu local expiry time is already
801 * reached, we would reprogram the cpu local
802 * timer with an already expired event.
803 *
804 * This can lead to a ping-pong when we return
805 * to idle and therefor rearm the broadcast
806 * timer before the cpu local timer was able
807 * to fire. This happens because the forced
808 * reprogramming makes sure that the event
809 * will happen in the future and depending on
810 * the min_delta setting this might be far
811 * enough out that the ping-pong starts.
812 *
813 * If the cpu local next_event has expired
814 * then we know that the broadcast timer
815 * next_event has expired as well and
816 * broadcast is about to be handled. So we
817 * avoid reprogramming and enforce that the
818 * broadcast handler, which did not run yet,
819 * will invoke the cpu local handler.
820 *
821 * We cannot call the handler directly from
822 * here, because we might be in a NOHZ phase
823 * and we did not go through the irq_enter()
824 * nohz fixups.
825 */
826 now = ktime_get();
827 if (dev->next_event.tv64 <= now.tv64) {
828 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
829 goto out;
830 }
831 /*
832 * We got woken by something else. Reprogram
833 * the cpu local timer device.
834 */
835 tick_program_event(dev->next_event, 1);
836 }
837 }
838out:
839 raw_spin_unlock(&tick_broadcast_lock);
840 return ret;
841}
842
843/*
844 * Reset the one shot broadcast for a cpu
845 *
846 * Called with tick_broadcast_lock held
847 */
848static void tick_broadcast_clear_oneshot(int cpu)
849{
850 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
851 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
852}
853
854static void tick_broadcast_init_next_event(struct cpumask *mask,
855 ktime_t expires)
856{
857 struct tick_device *td;
858 int cpu;
859
860 for_each_cpu(cpu, mask) {
861 td = &per_cpu(tick_cpu_device, cpu);
862 if (td->evtdev)
863 td->evtdev->next_event = expires;
864 }
865}
866
867/**
868 * tick_broadcast_setup_oneshot - setup the broadcast device
869 */
870void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
871{
872 int cpu = smp_processor_id();
873
874 /* Set it up only once ! */
875 if (bc->event_handler != tick_handle_oneshot_broadcast) {
876 int was_periodic = clockevent_state_periodic(bc);
877
878 bc->event_handler = tick_handle_oneshot_broadcast;
879
880 /*
881 * We must be careful here. There might be other CPUs
882 * waiting for periodic broadcast. We need to set the
883 * oneshot_mask bits for those and program the
884 * broadcast device to fire.
885 */
886 cpumask_copy(tmpmask, tick_broadcast_mask);
887 cpumask_clear_cpu(cpu, tmpmask);
888 cpumask_or(tick_broadcast_oneshot_mask,
889 tick_broadcast_oneshot_mask, tmpmask);
890
891 if (was_periodic && !cpumask_empty(tmpmask)) {
892 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
893 tick_broadcast_init_next_event(tmpmask,
894 tick_next_period);
895 tick_broadcast_set_event(bc, cpu, tick_next_period);
896 } else
897 bc->next_event.tv64 = KTIME_MAX;
898 } else {
899 /*
900 * The first cpu which switches to oneshot mode sets
901 * the bit for all other cpus which are in the general
902 * (periodic) broadcast mask. So the bit is set and
903 * would prevent the first broadcast enter after this
904 * to program the bc device.
905 */
906 tick_broadcast_clear_oneshot(cpu);
907 }
908}
909
910/*
911 * Select oneshot operating mode for the broadcast device
912 */
913void tick_broadcast_switch_to_oneshot(void)
914{
915 struct clock_event_device *bc;
916 unsigned long flags;
917
918 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
919
920 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
921 bc = tick_broadcast_device.evtdev;
922 if (bc)
923 tick_broadcast_setup_oneshot(bc);
924
925 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
926}
927
928#ifdef CONFIG_HOTPLUG_CPU
929void hotplug_cpu__broadcast_tick_pull(int deadcpu)
930{
931 struct clock_event_device *bc;
932 unsigned long flags;
933
934 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
935 bc = tick_broadcast_device.evtdev;
936
937 if (bc && broadcast_needs_cpu(bc, deadcpu)) {
938 /* This moves the broadcast assignment to this CPU: */
939 clockevents_program_event(bc, bc->next_event, 1);
940 }
941 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
942}
943
944/*
945 * Remove a dead CPU from broadcasting
946 */
947void tick_shutdown_broadcast_oneshot(unsigned int cpu)
948{
949 unsigned long flags;
950
951 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
952
953 /*
954 * Clear the broadcast masks for the dead cpu, but do not stop
955 * the broadcast device!
956 */
957 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
958 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
959 cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
960
961 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
962}
963#endif
964
965/*
966 * Check, whether the broadcast device is in one shot mode
967 */
968int tick_broadcast_oneshot_active(void)
969{
970 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
971}
972
973/*
974 * Check whether the broadcast device supports oneshot.
975 */
976bool tick_broadcast_oneshot_available(void)
977{
978 struct clock_event_device *bc = tick_broadcast_device.evtdev;
979
980 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
981}
982
983#else
984int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
985{
986 struct clock_event_device *bc = tick_broadcast_device.evtdev;
987
988 if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
989 return -EBUSY;
990
991 return 0;
992}
993#endif
994
995void __init tick_broadcast_init(void)
996{
997 zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
998 zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
999 zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1000#ifdef CONFIG_TICK_ONESHOT
1001 zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1002 zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1003 zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1004#endif
1005}