Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v4.17
  1/*
  2 *  linux/fs/hfs/dir.c
  3 *
  4 * Copyright (C) 1995-1997  Paul H. Hargrove
  5 * (C) 2003 Ardis Technologies <roman@ardistech.com>
  6 * This file may be distributed under the terms of the GNU General Public License.
  7 *
  8 * This file contains directory-related functions independent of which
  9 * scheme is being used to represent forks.
 10 *
 11 * Based on the minix file system code, (C) 1991, 1992 by Linus Torvalds
 12 */
 13
 14#include "hfs_fs.h"
 15#include "btree.h"
 16
 17/*
 18 * hfs_lookup()
 19 */
 20static struct dentry *hfs_lookup(struct inode *dir, struct dentry *dentry,
 21				 unsigned int flags)
 22{
 23	hfs_cat_rec rec;
 24	struct hfs_find_data fd;
 25	struct inode *inode = NULL;
 26	int res;
 27
 28	res = hfs_find_init(HFS_SB(dir->i_sb)->cat_tree, &fd);
 29	if (res)
 30		return ERR_PTR(res);
 31	hfs_cat_build_key(dir->i_sb, fd.search_key, dir->i_ino, &dentry->d_name);
 32	res = hfs_brec_read(&fd, &rec, sizeof(rec));
 33	if (res) {
 34		hfs_find_exit(&fd);
 35		if (res == -ENOENT) {
 36			/* No such entry */
 37			inode = NULL;
 38			goto done;
 39		}
 40		return ERR_PTR(res);
 41	}
 42	inode = hfs_iget(dir->i_sb, &fd.search_key->cat, &rec);
 43	hfs_find_exit(&fd);
 44	if (!inode)
 45		return ERR_PTR(-EACCES);
 46done:
 47	d_add(dentry, inode);
 48	return NULL;
 49}
 50
 51/*
 52 * hfs_readdir
 53 */
 54static int hfs_readdir(struct file *file, struct dir_context *ctx)
 55{
 56	struct inode *inode = file_inode(file);
 57	struct super_block *sb = inode->i_sb;
 58	int len, err;
 59	char strbuf[HFS_MAX_NAMELEN];
 60	union hfs_cat_rec entry;
 61	struct hfs_find_data fd;
 62	struct hfs_readdir_data *rd;
 63	u16 type;
 64
 65	if (ctx->pos >= inode->i_size)
 66		return 0;
 67
 68	err = hfs_find_init(HFS_SB(sb)->cat_tree, &fd);
 69	if (err)
 70		return err;
 71	hfs_cat_build_key(sb, fd.search_key, inode->i_ino, NULL);
 72	err = hfs_brec_find(&fd);
 73	if (err)
 74		goto out;
 75
 76	if (ctx->pos == 0) {
 77		/* This is completely artificial... */
 78		if (!dir_emit_dot(file, ctx))
 79			goto out;
 80		ctx->pos = 1;
 81	}
 82	if (ctx->pos == 1) {
 83		if (fd.entrylength > sizeof(entry) || fd.entrylength < 0) {
 84			err = -EIO;
 85			goto out;
 86		}
 87
 88		hfs_bnode_read(fd.bnode, &entry, fd.entryoffset, fd.entrylength);
 89		if (entry.type != HFS_CDR_THD) {
 90			pr_err("bad catalog folder thread\n");
 91			err = -EIO;
 92			goto out;
 93		}
 94		//if (fd.entrylength < HFS_MIN_THREAD_SZ) {
 95		//	pr_err("truncated catalog thread\n");
 96		//	err = -EIO;
 97		//	goto out;
 98		//}
 99		if (!dir_emit(ctx, "..", 2,
100			    be32_to_cpu(entry.thread.ParID), DT_DIR))
101			goto out;
102		ctx->pos = 2;
103	}
104	if (ctx->pos >= inode->i_size)
105		goto out;
106	err = hfs_brec_goto(&fd, ctx->pos - 1);
107	if (err)
108		goto out;
109
110	for (;;) {
111		if (be32_to_cpu(fd.key->cat.ParID) != inode->i_ino) {
112			pr_err("walked past end of dir\n");
113			err = -EIO;
114			goto out;
115		}
116
117		if (fd.entrylength > sizeof(entry) || fd.entrylength < 0) {
118			err = -EIO;
119			goto out;
120		}
121
122		hfs_bnode_read(fd.bnode, &entry, fd.entryoffset, fd.entrylength);
123		type = entry.type;
124		len = hfs_mac2asc(sb, strbuf, &fd.key->cat.CName);
125		if (type == HFS_CDR_DIR) {
126			if (fd.entrylength < sizeof(struct hfs_cat_dir)) {
127				pr_err("small dir entry\n");
128				err = -EIO;
129				goto out;
130			}
131			if (!dir_emit(ctx, strbuf, len,
132				    be32_to_cpu(entry.dir.DirID), DT_DIR))
133				break;
134		} else if (type == HFS_CDR_FIL) {
135			if (fd.entrylength < sizeof(struct hfs_cat_file)) {
136				pr_err("small file entry\n");
137				err = -EIO;
138				goto out;
139			}
140			if (!dir_emit(ctx, strbuf, len,
141				    be32_to_cpu(entry.file.FlNum), DT_REG))
142				break;
143		} else {
144			pr_err("bad catalog entry type %d\n", type);
145			err = -EIO;
146			goto out;
147		}
148		ctx->pos++;
149		if (ctx->pos >= inode->i_size)
150			goto out;
151		err = hfs_brec_goto(&fd, 1);
152		if (err)
153			goto out;
154	}
155	rd = file->private_data;
156	if (!rd) {
157		rd = kmalloc(sizeof(struct hfs_readdir_data), GFP_KERNEL);
158		if (!rd) {
159			err = -ENOMEM;
160			goto out;
161		}
162		file->private_data = rd;
163		rd->file = file;
164		spin_lock(&HFS_I(inode)->open_dir_lock);
165		list_add(&rd->list, &HFS_I(inode)->open_dir_list);
166		spin_unlock(&HFS_I(inode)->open_dir_lock);
167	}
168	/*
169	 * Can be done after the list insertion; exclusion with
170	 * hfs_delete_cat() is provided by directory lock.
171	 */
172	memcpy(&rd->key, &fd.key->cat, sizeof(struct hfs_cat_key));
173out:
174	hfs_find_exit(&fd);
175	return err;
176}
177
178static int hfs_dir_release(struct inode *inode, struct file *file)
179{
180	struct hfs_readdir_data *rd = file->private_data;
181	if (rd) {
182		spin_lock(&HFS_I(inode)->open_dir_lock);
183		list_del(&rd->list);
184		spin_unlock(&HFS_I(inode)->open_dir_lock);
185		kfree(rd);
186	}
187	return 0;
188}
189
190/*
191 * hfs_create()
192 *
193 * This is the create() entry in the inode_operations structure for
194 * regular HFS directories.  The purpose is to create a new file in
195 * a directory and return a corresponding inode, given the inode for
196 * the directory and the name (and its length) of the new file.
197 */
198static int hfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
199		      bool excl)
200{
201	struct inode *inode;
202	int res;
203
204	inode = hfs_new_inode(dir, &dentry->d_name, mode);
205	if (!inode)
206		return -ENOMEM;
207
208	res = hfs_cat_create(inode->i_ino, dir, &dentry->d_name, inode);
209	if (res) {
210		clear_nlink(inode);
211		hfs_delete_inode(inode);
212		iput(inode);
213		return res;
214	}
215	d_instantiate(dentry, inode);
216	mark_inode_dirty(inode);
217	return 0;
218}
219
220/*
221 * hfs_mkdir()
222 *
223 * This is the mkdir() entry in the inode_operations structure for
224 * regular HFS directories.  The purpose is to create a new directory
225 * in a directory, given the inode for the parent directory and the
226 * name (and its length) of the new directory.
227 */
228static int hfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
229{
230	struct inode *inode;
231	int res;
232
233	inode = hfs_new_inode(dir, &dentry->d_name, S_IFDIR | mode);
234	if (!inode)
235		return -ENOMEM;
236
237	res = hfs_cat_create(inode->i_ino, dir, &dentry->d_name, inode);
238	if (res) {
239		clear_nlink(inode);
240		hfs_delete_inode(inode);
241		iput(inode);
242		return res;
243	}
244	d_instantiate(dentry, inode);
245	mark_inode_dirty(inode);
246	return 0;
247}
248
249/*
250 * hfs_remove()
251 *
252 * This serves as both unlink() and rmdir() in the inode_operations
253 * structure for regular HFS directories.  The purpose is to delete
254 * an existing child, given the inode for the parent directory and
255 * the name (and its length) of the existing directory.
256 *
257 * HFS does not have hardlinks, so both rmdir and unlink set the
258 * link count to 0.  The only difference is the emptiness check.
259 */
260static int hfs_remove(struct inode *dir, struct dentry *dentry)
261{
262	struct inode *inode = d_inode(dentry);
263	int res;
264
265	if (S_ISDIR(inode->i_mode) && inode->i_size != 2)
266		return -ENOTEMPTY;
267	res = hfs_cat_delete(inode->i_ino, dir, &dentry->d_name);
268	if (res)
269		return res;
270	clear_nlink(inode);
271	inode->i_ctime = current_time(inode);
272	hfs_delete_inode(inode);
273	mark_inode_dirty(inode);
274	return 0;
275}
276
277/*
278 * hfs_rename()
279 *
280 * This is the rename() entry in the inode_operations structure for
281 * regular HFS directories.  The purpose is to rename an existing
282 * file or directory, given the inode for the current directory and
283 * the name (and its length) of the existing file/directory and the
284 * inode for the new directory and the name (and its length) of the
285 * new file/directory.
286 * XXX: how do you handle must_be dir?
287 */
288static int hfs_rename(struct inode *old_dir, struct dentry *old_dentry,
289		      struct inode *new_dir, struct dentry *new_dentry,
290		      unsigned int flags)
291{
292	int res;
293
294	if (flags & ~RENAME_NOREPLACE)
295		return -EINVAL;
296
297	/* Unlink destination if it already exists */
298	if (d_really_is_positive(new_dentry)) {
299		res = hfs_remove(new_dir, new_dentry);
300		if (res)
301			return res;
302	}
303
304	res = hfs_cat_move(d_inode(old_dentry)->i_ino,
305			   old_dir, &old_dentry->d_name,
306			   new_dir, &new_dentry->d_name);
307	if (!res)
308		hfs_cat_build_key(old_dir->i_sb,
309				  (btree_key *)&HFS_I(d_inode(old_dentry))->cat_key,
310				  new_dir->i_ino, &new_dentry->d_name);
311	return res;
312}
313
314const struct file_operations hfs_dir_operations = {
315	.read		= generic_read_dir,
316	.iterate_shared	= hfs_readdir,
317	.llseek		= generic_file_llseek,
318	.release	= hfs_dir_release,
319};
320
321const struct inode_operations hfs_dir_inode_operations = {
322	.create		= hfs_create,
323	.lookup		= hfs_lookup,
324	.unlink		= hfs_remove,
325	.mkdir		= hfs_mkdir,
326	.rmdir		= hfs_remove,
327	.rename		= hfs_rename,
328	.setattr	= hfs_inode_setattr,
329};
v4.6
  1/*
  2 *  linux/fs/hfs/dir.c
  3 *
  4 * Copyright (C) 1995-1997  Paul H. Hargrove
  5 * (C) 2003 Ardis Technologies <roman@ardistech.com>
  6 * This file may be distributed under the terms of the GNU General Public License.
  7 *
  8 * This file contains directory-related functions independent of which
  9 * scheme is being used to represent forks.
 10 *
 11 * Based on the minix file system code, (C) 1991, 1992 by Linus Torvalds
 12 */
 13
 14#include "hfs_fs.h"
 15#include "btree.h"
 16
 17/*
 18 * hfs_lookup()
 19 */
 20static struct dentry *hfs_lookup(struct inode *dir, struct dentry *dentry,
 21				 unsigned int flags)
 22{
 23	hfs_cat_rec rec;
 24	struct hfs_find_data fd;
 25	struct inode *inode = NULL;
 26	int res;
 27
 28	res = hfs_find_init(HFS_SB(dir->i_sb)->cat_tree, &fd);
 29	if (res)
 30		return ERR_PTR(res);
 31	hfs_cat_build_key(dir->i_sb, fd.search_key, dir->i_ino, &dentry->d_name);
 32	res = hfs_brec_read(&fd, &rec, sizeof(rec));
 33	if (res) {
 34		hfs_find_exit(&fd);
 35		if (res == -ENOENT) {
 36			/* No such entry */
 37			inode = NULL;
 38			goto done;
 39		}
 40		return ERR_PTR(res);
 41	}
 42	inode = hfs_iget(dir->i_sb, &fd.search_key->cat, &rec);
 43	hfs_find_exit(&fd);
 44	if (!inode)
 45		return ERR_PTR(-EACCES);
 46done:
 47	d_add(dentry, inode);
 48	return NULL;
 49}
 50
 51/*
 52 * hfs_readdir
 53 */
 54static int hfs_readdir(struct file *file, struct dir_context *ctx)
 55{
 56	struct inode *inode = file_inode(file);
 57	struct super_block *sb = inode->i_sb;
 58	int len, err;
 59	char strbuf[HFS_MAX_NAMELEN];
 60	union hfs_cat_rec entry;
 61	struct hfs_find_data fd;
 62	struct hfs_readdir_data *rd;
 63	u16 type;
 64
 65	if (ctx->pos >= inode->i_size)
 66		return 0;
 67
 68	err = hfs_find_init(HFS_SB(sb)->cat_tree, &fd);
 69	if (err)
 70		return err;
 71	hfs_cat_build_key(sb, fd.search_key, inode->i_ino, NULL);
 72	err = hfs_brec_find(&fd);
 73	if (err)
 74		goto out;
 75
 76	if (ctx->pos == 0) {
 77		/* This is completely artificial... */
 78		if (!dir_emit_dot(file, ctx))
 79			goto out;
 80		ctx->pos = 1;
 81	}
 82	if (ctx->pos == 1) {
 83		if (fd.entrylength > sizeof(entry) || fd.entrylength < 0) {
 84			err = -EIO;
 85			goto out;
 86		}
 87
 88		hfs_bnode_read(fd.bnode, &entry, fd.entryoffset, fd.entrylength);
 89		if (entry.type != HFS_CDR_THD) {
 90			pr_err("bad catalog folder thread\n");
 91			err = -EIO;
 92			goto out;
 93		}
 94		//if (fd.entrylength < HFS_MIN_THREAD_SZ) {
 95		//	pr_err("truncated catalog thread\n");
 96		//	err = -EIO;
 97		//	goto out;
 98		//}
 99		if (!dir_emit(ctx, "..", 2,
100			    be32_to_cpu(entry.thread.ParID), DT_DIR))
101			goto out;
102		ctx->pos = 2;
103	}
104	if (ctx->pos >= inode->i_size)
105		goto out;
106	err = hfs_brec_goto(&fd, ctx->pos - 1);
107	if (err)
108		goto out;
109
110	for (;;) {
111		if (be32_to_cpu(fd.key->cat.ParID) != inode->i_ino) {
112			pr_err("walked past end of dir\n");
113			err = -EIO;
114			goto out;
115		}
116
117		if (fd.entrylength > sizeof(entry) || fd.entrylength < 0) {
118			err = -EIO;
119			goto out;
120		}
121
122		hfs_bnode_read(fd.bnode, &entry, fd.entryoffset, fd.entrylength);
123		type = entry.type;
124		len = hfs_mac2asc(sb, strbuf, &fd.key->cat.CName);
125		if (type == HFS_CDR_DIR) {
126			if (fd.entrylength < sizeof(struct hfs_cat_dir)) {
127				pr_err("small dir entry\n");
128				err = -EIO;
129				goto out;
130			}
131			if (!dir_emit(ctx, strbuf, len,
132				    be32_to_cpu(entry.dir.DirID), DT_DIR))
133				break;
134		} else if (type == HFS_CDR_FIL) {
135			if (fd.entrylength < sizeof(struct hfs_cat_file)) {
136				pr_err("small file entry\n");
137				err = -EIO;
138				goto out;
139			}
140			if (!dir_emit(ctx, strbuf, len,
141				    be32_to_cpu(entry.file.FlNum), DT_REG))
142				break;
143		} else {
144			pr_err("bad catalog entry type %d\n", type);
145			err = -EIO;
146			goto out;
147		}
148		ctx->pos++;
149		if (ctx->pos >= inode->i_size)
150			goto out;
151		err = hfs_brec_goto(&fd, 1);
152		if (err)
153			goto out;
154	}
155	rd = file->private_data;
156	if (!rd) {
157		rd = kmalloc(sizeof(struct hfs_readdir_data), GFP_KERNEL);
158		if (!rd) {
159			err = -ENOMEM;
160			goto out;
161		}
162		file->private_data = rd;
163		rd->file = file;
 
164		list_add(&rd->list, &HFS_I(inode)->open_dir_list);
 
165	}
166	memcpy(&rd->key, &fd.key, sizeof(struct hfs_cat_key));
 
 
 
 
167out:
168	hfs_find_exit(&fd);
169	return err;
170}
171
172static int hfs_dir_release(struct inode *inode, struct file *file)
173{
174	struct hfs_readdir_data *rd = file->private_data;
175	if (rd) {
176		inode_lock(inode);
177		list_del(&rd->list);
178		inode_unlock(inode);
179		kfree(rd);
180	}
181	return 0;
182}
183
184/*
185 * hfs_create()
186 *
187 * This is the create() entry in the inode_operations structure for
188 * regular HFS directories.  The purpose is to create a new file in
189 * a directory and return a corresponding inode, given the inode for
190 * the directory and the name (and its length) of the new file.
191 */
192static int hfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
193		      bool excl)
194{
195	struct inode *inode;
196	int res;
197
198	inode = hfs_new_inode(dir, &dentry->d_name, mode);
199	if (!inode)
200		return -ENOMEM;
201
202	res = hfs_cat_create(inode->i_ino, dir, &dentry->d_name, inode);
203	if (res) {
204		clear_nlink(inode);
205		hfs_delete_inode(inode);
206		iput(inode);
207		return res;
208	}
209	d_instantiate(dentry, inode);
210	mark_inode_dirty(inode);
211	return 0;
212}
213
214/*
215 * hfs_mkdir()
216 *
217 * This is the mkdir() entry in the inode_operations structure for
218 * regular HFS directories.  The purpose is to create a new directory
219 * in a directory, given the inode for the parent directory and the
220 * name (and its length) of the new directory.
221 */
222static int hfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
223{
224	struct inode *inode;
225	int res;
226
227	inode = hfs_new_inode(dir, &dentry->d_name, S_IFDIR | mode);
228	if (!inode)
229		return -ENOMEM;
230
231	res = hfs_cat_create(inode->i_ino, dir, &dentry->d_name, inode);
232	if (res) {
233		clear_nlink(inode);
234		hfs_delete_inode(inode);
235		iput(inode);
236		return res;
237	}
238	d_instantiate(dentry, inode);
239	mark_inode_dirty(inode);
240	return 0;
241}
242
243/*
244 * hfs_remove()
245 *
246 * This serves as both unlink() and rmdir() in the inode_operations
247 * structure for regular HFS directories.  The purpose is to delete
248 * an existing child, given the inode for the parent directory and
249 * the name (and its length) of the existing directory.
250 *
251 * HFS does not have hardlinks, so both rmdir and unlink set the
252 * link count to 0.  The only difference is the emptiness check.
253 */
254static int hfs_remove(struct inode *dir, struct dentry *dentry)
255{
256	struct inode *inode = d_inode(dentry);
257	int res;
258
259	if (S_ISDIR(inode->i_mode) && inode->i_size != 2)
260		return -ENOTEMPTY;
261	res = hfs_cat_delete(inode->i_ino, dir, &dentry->d_name);
262	if (res)
263		return res;
264	clear_nlink(inode);
265	inode->i_ctime = CURRENT_TIME_SEC;
266	hfs_delete_inode(inode);
267	mark_inode_dirty(inode);
268	return 0;
269}
270
271/*
272 * hfs_rename()
273 *
274 * This is the rename() entry in the inode_operations structure for
275 * regular HFS directories.  The purpose is to rename an existing
276 * file or directory, given the inode for the current directory and
277 * the name (and its length) of the existing file/directory and the
278 * inode for the new directory and the name (and its length) of the
279 * new file/directory.
280 * XXX: how do you handle must_be dir?
281 */
282static int hfs_rename(struct inode *old_dir, struct dentry *old_dentry,
283		      struct inode *new_dir, struct dentry *new_dentry)
 
284{
285	int res;
286
 
 
 
287	/* Unlink destination if it already exists */
288	if (d_really_is_positive(new_dentry)) {
289		res = hfs_remove(new_dir, new_dentry);
290		if (res)
291			return res;
292	}
293
294	res = hfs_cat_move(d_inode(old_dentry)->i_ino,
295			   old_dir, &old_dentry->d_name,
296			   new_dir, &new_dentry->d_name);
297	if (!res)
298		hfs_cat_build_key(old_dir->i_sb,
299				  (btree_key *)&HFS_I(d_inode(old_dentry))->cat_key,
300				  new_dir->i_ino, &new_dentry->d_name);
301	return res;
302}
303
304const struct file_operations hfs_dir_operations = {
305	.read		= generic_read_dir,
306	.iterate	= hfs_readdir,
307	.llseek		= generic_file_llseek,
308	.release	= hfs_dir_release,
309};
310
311const struct inode_operations hfs_dir_inode_operations = {
312	.create		= hfs_create,
313	.lookup		= hfs_lookup,
314	.unlink		= hfs_remove,
315	.mkdir		= hfs_mkdir,
316	.rmdir		= hfs_remove,
317	.rename		= hfs_rename,
318	.setattr	= hfs_inode_setattr,
319};