Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11#include <linux/pci.h>
  12#include <linux/irq.h>
  13#include <linux/log2.h>
  14#include <linux/module.h>
  15#include <linux/moduleparam.h>
  16#include <linux/slab.h>
  17#include <linux/dmi.h>
  18#include <linux/dma-mapping.h>
  19
  20#include "xhci.h"
  21#include "xhci-trace.h"
  22#include "xhci-mtk.h"
  23#include "xhci-debugfs.h"
  24#include "xhci-dbgcap.h"
  25
  26#define DRIVER_AUTHOR "Sarah Sharp"
  27#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  28
  29#define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
  30
  31/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  32static int link_quirk;
  33module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  34MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  35
  36static unsigned int quirks;
  37module_param(quirks, uint, S_IRUGO);
  38MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
  39
  40/* TODO: copied from ehci-hcd.c - can this be refactored? */
  41/*
  42 * xhci_handshake - spin reading hc until handshake completes or fails
  43 * @ptr: address of hc register to be read
  44 * @mask: bits to look at in result of read
  45 * @done: value of those bits when handshake succeeds
  46 * @usec: timeout in microseconds
  47 *
  48 * Returns negative errno, or zero on success
  49 *
  50 * Success happens when the "mask" bits have the specified value (hardware
  51 * handshake done).  There are two failure modes:  "usec" have passed (major
  52 * hardware flakeout), or the register reads as all-ones (hardware removed).
  53 */
  54int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
  55{
  56	u32	result;
  57
  58	do {
  59		result = readl(ptr);
  60		if (result == ~(u32)0)		/* card removed */
  61			return -ENODEV;
  62		result &= mask;
  63		if (result == done)
  64			return 0;
  65		udelay(1);
  66		usec--;
  67	} while (usec > 0);
  68	return -ETIMEDOUT;
  69}
  70
  71/*
  72 * Disable interrupts and begin the xHCI halting process.
  73 */
  74void xhci_quiesce(struct xhci_hcd *xhci)
  75{
  76	u32 halted;
  77	u32 cmd;
  78	u32 mask;
  79
  80	mask = ~(XHCI_IRQS);
  81	halted = readl(&xhci->op_regs->status) & STS_HALT;
  82	if (!halted)
  83		mask &= ~CMD_RUN;
  84
  85	cmd = readl(&xhci->op_regs->command);
  86	cmd &= mask;
  87	writel(cmd, &xhci->op_regs->command);
  88}
  89
  90/*
  91 * Force HC into halt state.
  92 *
  93 * Disable any IRQs and clear the run/stop bit.
  94 * HC will complete any current and actively pipelined transactions, and
  95 * should halt within 16 ms of the run/stop bit being cleared.
  96 * Read HC Halted bit in the status register to see when the HC is finished.
  97 */
  98int xhci_halt(struct xhci_hcd *xhci)
  99{
 100	int ret;
 101	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
 102	xhci_quiesce(xhci);
 103
 104	ret = xhci_handshake(&xhci->op_regs->status,
 105			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 106	if (ret) {
 107		xhci_warn(xhci, "Host halt failed, %d\n", ret);
 108		return ret;
 109	}
 110	xhci->xhc_state |= XHCI_STATE_HALTED;
 111	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 112	return ret;
 113}
 114
 115/*
 116 * Set the run bit and wait for the host to be running.
 117 */
 118int xhci_start(struct xhci_hcd *xhci)
 119{
 120	u32 temp;
 121	int ret;
 122
 123	temp = readl(&xhci->op_regs->command);
 124	temp |= (CMD_RUN);
 125	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
 126			temp);
 127	writel(temp, &xhci->op_regs->command);
 128
 129	/*
 130	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 131	 * running.
 132	 */
 133	ret = xhci_handshake(&xhci->op_regs->status,
 134			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 135	if (ret == -ETIMEDOUT)
 136		xhci_err(xhci, "Host took too long to start, "
 137				"waited %u microseconds.\n",
 138				XHCI_MAX_HALT_USEC);
 139	if (!ret)
 140		/* clear state flags. Including dying, halted or removing */
 141		xhci->xhc_state = 0;
 142
 143	return ret;
 144}
 145
 146/*
 147 * Reset a halted HC.
 148 *
 149 * This resets pipelines, timers, counters, state machines, etc.
 150 * Transactions will be terminated immediately, and operational registers
 151 * will be set to their defaults.
 152 */
 153int xhci_reset(struct xhci_hcd *xhci)
 154{
 155	u32 command;
 156	u32 state;
 157	int ret, i;
 158
 159	state = readl(&xhci->op_regs->status);
 160
 161	if (state == ~(u32)0) {
 162		xhci_warn(xhci, "Host not accessible, reset failed.\n");
 163		return -ENODEV;
 164	}
 165
 166	if ((state & STS_HALT) == 0) {
 167		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 168		return 0;
 169	}
 170
 171	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
 172	command = readl(&xhci->op_regs->command);
 173	command |= CMD_RESET;
 174	writel(command, &xhci->op_regs->command);
 175
 176	/* Existing Intel xHCI controllers require a delay of 1 mS,
 177	 * after setting the CMD_RESET bit, and before accessing any
 178	 * HC registers. This allows the HC to complete the
 179	 * reset operation and be ready for HC register access.
 180	 * Without this delay, the subsequent HC register access,
 181	 * may result in a system hang very rarely.
 182	 */
 183	if (xhci->quirks & XHCI_INTEL_HOST)
 184		udelay(1000);
 185
 186	ret = xhci_handshake(&xhci->op_regs->command,
 187			CMD_RESET, 0, 10 * 1000 * 1000);
 188	if (ret)
 189		return ret;
 190
 191	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
 192		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
 193
 194	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 195			 "Wait for controller to be ready for doorbell rings");
 196	/*
 197	 * xHCI cannot write to any doorbells or operational registers other
 198	 * than status until the "Controller Not Ready" flag is cleared.
 199	 */
 200	ret = xhci_handshake(&xhci->op_regs->status,
 201			STS_CNR, 0, 10 * 1000 * 1000);
 202
 203	for (i = 0; i < 2; i++) {
 204		xhci->bus_state[i].port_c_suspend = 0;
 205		xhci->bus_state[i].suspended_ports = 0;
 206		xhci->bus_state[i].resuming_ports = 0;
 207	}
 208
 209	return ret;
 210}
 211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 212
 213#ifdef CONFIG_USB_PCI
 214/*
 215 * Set up MSI
 216 */
 217static int xhci_setup_msi(struct xhci_hcd *xhci)
 218{
 219	int ret;
 220	/*
 221	 * TODO:Check with MSI Soc for sysdev
 222	 */
 223	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 224
 225	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
 226	if (ret < 0) {
 227		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 228				"failed to allocate MSI entry");
 229		return ret;
 230	}
 231
 232	ret = request_irq(pdev->irq, xhci_msi_irq,
 233				0, "xhci_hcd", xhci_to_hcd(xhci));
 234	if (ret) {
 235		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 236				"disable MSI interrupt");
 237		pci_free_irq_vectors(pdev);
 238	}
 239
 240	return ret;
 241}
 242
 243/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 244 * Set up MSI-X
 245 */
 246static int xhci_setup_msix(struct xhci_hcd *xhci)
 247{
 248	int i, ret = 0;
 249	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 250	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 251
 252	/*
 253	 * calculate number of msi-x vectors supported.
 254	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
 255	 *   with max number of interrupters based on the xhci HCSPARAMS1.
 256	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
 257	 *   Add additional 1 vector to ensure always available interrupt.
 258	 */
 259	xhci->msix_count = min(num_online_cpus() + 1,
 260				HCS_MAX_INTRS(xhci->hcs_params1));
 261
 262	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
 263			PCI_IRQ_MSIX);
 264	if (ret < 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 265		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 266				"Failed to enable MSI-X");
 267		return ret;
 268	}
 269
 270	for (i = 0; i < xhci->msix_count; i++) {
 271		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
 272				"xhci_hcd", xhci_to_hcd(xhci));
 
 273		if (ret)
 274			goto disable_msix;
 275	}
 276
 277	hcd->msix_enabled = 1;
 278	return ret;
 279
 280disable_msix:
 281	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
 282	while (--i >= 0)
 283		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
 284	pci_free_irq_vectors(pdev);
 
 
 285	return ret;
 286}
 287
 288/* Free any IRQs and disable MSI-X */
 289static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 290{
 291	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 292	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 293
 294	if (xhci->quirks & XHCI_PLAT)
 295		return;
 296
 297	/* return if using legacy interrupt */
 298	if (hcd->irq > 0)
 299		return;
 300
 301	if (hcd->msix_enabled) {
 302		int i;
 303
 304		for (i = 0; i < xhci->msix_count; i++)
 305			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
 
 
 306	} else {
 307		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
 308	}
 309
 310	pci_free_irq_vectors(pdev);
 311	hcd->msix_enabled = 0;
 
 312}
 313
 314static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 315{
 316	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 317
 318	if (hcd->msix_enabled) {
 319		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 320		int i;
 321
 
 322		for (i = 0; i < xhci->msix_count; i++)
 323			synchronize_irq(pci_irq_vector(pdev, i));
 324	}
 325}
 326
 327static int xhci_try_enable_msi(struct usb_hcd *hcd)
 328{
 329	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 330	struct pci_dev  *pdev;
 331	int ret;
 332
 333	/* The xhci platform device has set up IRQs through usb_add_hcd. */
 334	if (xhci->quirks & XHCI_PLAT)
 335		return 0;
 336
 337	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 338	/*
 339	 * Some Fresco Logic host controllers advertise MSI, but fail to
 340	 * generate interrupts.  Don't even try to enable MSI.
 341	 */
 342	if (xhci->quirks & XHCI_BROKEN_MSI)
 343		goto legacy_irq;
 344
 345	/* unregister the legacy interrupt */
 346	if (hcd->irq)
 347		free_irq(hcd->irq, hcd);
 348	hcd->irq = 0;
 349
 350	ret = xhci_setup_msix(xhci);
 351	if (ret)
 352		/* fall back to msi*/
 353		ret = xhci_setup_msi(xhci);
 354
 355	if (!ret) {
 356		hcd->msi_enabled = 1;
 357		return 0;
 358	}
 359
 360	if (!pdev->irq) {
 361		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
 362		return -EINVAL;
 363	}
 364
 365 legacy_irq:
 366	if (!strlen(hcd->irq_descr))
 367		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
 368			 hcd->driver->description, hcd->self.busnum);
 369
 370	/* fall back to legacy interrupt*/
 371	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
 372			hcd->irq_descr, hcd);
 373	if (ret) {
 374		xhci_err(xhci, "request interrupt %d failed\n",
 375				pdev->irq);
 376		return ret;
 377	}
 378	hcd->irq = pdev->irq;
 379	return 0;
 380}
 381
 382#else
 383
 384static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
 385{
 386	return 0;
 387}
 388
 389static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
 390{
 391}
 392
 393static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 394{
 395}
 396
 397#endif
 398
 399static void compliance_mode_recovery(struct timer_list *t)
 400{
 401	struct xhci_hcd *xhci;
 402	struct usb_hcd *hcd;
 403	u32 temp;
 404	int i;
 405
 406	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
 407
 408	for (i = 0; i < xhci->num_usb3_ports; i++) {
 409		temp = readl(xhci->usb3_ports[i]);
 410		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
 411			/*
 412			 * Compliance Mode Detected. Letting USB Core
 413			 * handle the Warm Reset
 414			 */
 415			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 416					"Compliance mode detected->port %d",
 417					i + 1);
 418			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 419					"Attempting compliance mode recovery");
 420			hcd = xhci->shared_hcd;
 421
 422			if (hcd->state == HC_STATE_SUSPENDED)
 423				usb_hcd_resume_root_hub(hcd);
 424
 425			usb_hcd_poll_rh_status(hcd);
 426		}
 427	}
 428
 429	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
 430		mod_timer(&xhci->comp_mode_recovery_timer,
 431			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 432}
 433
 434/*
 435 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 436 * that causes ports behind that hardware to enter compliance mode sometimes.
 437 * The quirk creates a timer that polls every 2 seconds the link state of
 438 * each host controller's port and recovers it by issuing a Warm reset
 439 * if Compliance mode is detected, otherwise the port will become "dead" (no
 440 * device connections or disconnections will be detected anymore). Becasue no
 441 * status event is generated when entering compliance mode (per xhci spec),
 442 * this quirk is needed on systems that have the failing hardware installed.
 443 */
 444static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
 445{
 446	xhci->port_status_u0 = 0;
 447	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
 448		    0);
 449	xhci->comp_mode_recovery_timer.expires = jiffies +
 450			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
 451
 
 
 452	add_timer(&xhci->comp_mode_recovery_timer);
 453	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 454			"Compliance mode recovery timer initialized");
 455}
 456
 457/*
 458 * This function identifies the systems that have installed the SN65LVPE502CP
 459 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 460 * Systems:
 461 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 462 */
 463static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
 464{
 465	const char *dmi_product_name, *dmi_sys_vendor;
 466
 467	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
 468	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 469	if (!dmi_product_name || !dmi_sys_vendor)
 470		return false;
 471
 472	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
 473		return false;
 474
 475	if (strstr(dmi_product_name, "Z420") ||
 476			strstr(dmi_product_name, "Z620") ||
 477			strstr(dmi_product_name, "Z820") ||
 478			strstr(dmi_product_name, "Z1 Workstation"))
 479		return true;
 480
 481	return false;
 482}
 483
 484static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
 485{
 486	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
 487}
 488
 489
 490/*
 491 * Initialize memory for HCD and xHC (one-time init).
 492 *
 493 * Program the PAGESIZE register, initialize the device context array, create
 494 * device contexts (?), set up a command ring segment (or two?), create event
 495 * ring (one for now).
 496 */
 497static int xhci_init(struct usb_hcd *hcd)
 498{
 499	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 500	int retval = 0;
 501
 502	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
 503	spin_lock_init(&xhci->lock);
 504	if (xhci->hci_version == 0x95 && link_quirk) {
 505		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 506				"QUIRK: Not clearing Link TRB chain bits.");
 507		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 508	} else {
 509		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 510				"xHCI doesn't need link TRB QUIRK");
 511	}
 512	retval = xhci_mem_init(xhci, GFP_KERNEL);
 513	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
 514
 515	/* Initializing Compliance Mode Recovery Data If Needed */
 516	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
 517		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
 518		compliance_mode_recovery_timer_init(xhci);
 519	}
 520
 521	return retval;
 522}
 523
 524/*-------------------------------------------------------------------------*/
 525
 526
 527static int xhci_run_finished(struct xhci_hcd *xhci)
 528{
 529	if (xhci_start(xhci)) {
 530		xhci_halt(xhci);
 531		return -ENODEV;
 532	}
 533	xhci->shared_hcd->state = HC_STATE_RUNNING;
 534	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 535
 536	if (xhci->quirks & XHCI_NEC_HOST)
 537		xhci_ring_cmd_db(xhci);
 538
 539	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 540			"Finished xhci_run for USB3 roothub");
 541	return 0;
 542}
 543
 544/*
 545 * Start the HC after it was halted.
 546 *
 547 * This function is called by the USB core when the HC driver is added.
 548 * Its opposite is xhci_stop().
 549 *
 550 * xhci_init() must be called once before this function can be called.
 551 * Reset the HC, enable device slot contexts, program DCBAAP, and
 552 * set command ring pointer and event ring pointer.
 553 *
 554 * Setup MSI-X vectors and enable interrupts.
 555 */
 556int xhci_run(struct usb_hcd *hcd)
 557{
 558	u32 temp;
 559	u64 temp_64;
 560	int ret;
 561	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 562
 563	/* Start the xHCI host controller running only after the USB 2.0 roothub
 564	 * is setup.
 565	 */
 566
 567	hcd->uses_new_polling = 1;
 568	if (!usb_hcd_is_primary_hcd(hcd))
 569		return xhci_run_finished(xhci);
 570
 571	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
 572
 573	ret = xhci_try_enable_msi(hcd);
 574	if (ret)
 575		return ret;
 576
 
 
 
 
 
 
 
 
 
 
 577	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 578	temp_64 &= ~ERST_PTR_MASK;
 579	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 580			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
 581
 582	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 583			"// Set the interrupt modulation register");
 584	temp = readl(&xhci->ir_set->irq_control);
 585	temp &= ~ER_IRQ_INTERVAL_MASK;
 586	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
 
 
 
 
 587	writel(temp, &xhci->ir_set->irq_control);
 588
 589	/* Set the HCD state before we enable the irqs */
 590	temp = readl(&xhci->op_regs->command);
 591	temp |= (CMD_EIE);
 592	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 593			"// Enable interrupts, cmd = 0x%x.", temp);
 594	writel(temp, &xhci->op_regs->command);
 595
 596	temp = readl(&xhci->ir_set->irq_pending);
 597	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 598			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
 599			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
 600	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
 
 601
 602	if (xhci->quirks & XHCI_NEC_HOST) {
 603		struct xhci_command *command;
 604
 605		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
 606		if (!command)
 607			return -ENOMEM;
 608
 609		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
 610				TRB_TYPE(TRB_NEC_GET_FW));
 611		if (ret)
 612			xhci_free_command(xhci, command);
 613	}
 614	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 615			"Finished xhci_run for USB2 roothub");
 616
 617	xhci_dbc_init(xhci);
 618
 619	xhci_debugfs_init(xhci);
 620
 621	return 0;
 622}
 623EXPORT_SYMBOL_GPL(xhci_run);
 624
 625/*
 626 * Stop xHCI driver.
 627 *
 628 * This function is called by the USB core when the HC driver is removed.
 629 * Its opposite is xhci_run().
 630 *
 631 * Disable device contexts, disable IRQs, and quiesce the HC.
 632 * Reset the HC, finish any completed transactions, and cleanup memory.
 633 */
 634static void xhci_stop(struct usb_hcd *hcd)
 635{
 636	u32 temp;
 637	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 638
 639	mutex_lock(&xhci->mutex);
 640
 641	/* Only halt host and free memory after both hcds are removed */
 642	if (!usb_hcd_is_primary_hcd(hcd)) {
 643		/* usb core will free this hcd shortly, unset pointer */
 644		xhci->shared_hcd = NULL;
 645		mutex_unlock(&xhci->mutex);
 646		return;
 647	}
 648
 649	xhci_dbc_exit(xhci);
 650
 
 651	spin_lock_irq(&xhci->lock);
 652	xhci->xhc_state |= XHCI_STATE_HALTED;
 653	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 
 
 
 
 654	xhci_halt(xhci);
 655	xhci_reset(xhci);
 656	spin_unlock_irq(&xhci->lock);
 657
 658	xhci_cleanup_msix(xhci);
 659
 660	/* Deleting Compliance Mode Recovery Timer */
 661	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 662			(!(xhci_all_ports_seen_u0(xhci)))) {
 663		del_timer_sync(&xhci->comp_mode_recovery_timer);
 664		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 665				"%s: compliance mode recovery timer deleted",
 666				__func__);
 667	}
 668
 669	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 670		usb_amd_dev_put();
 671
 672	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 673			"// Disabling event ring interrupts");
 674	temp = readl(&xhci->op_regs->status);
 675	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
 676	temp = readl(&xhci->ir_set->irq_pending);
 677	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
 
 678
 679	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
 680	xhci_mem_cleanup(xhci);
 681	xhci_debugfs_exit(xhci);
 682	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 683			"xhci_stop completed - status = %x",
 684			readl(&xhci->op_regs->status));
 685	mutex_unlock(&xhci->mutex);
 686}
 687
 688/*
 689 * Shutdown HC (not bus-specific)
 690 *
 691 * This is called when the machine is rebooting or halting.  We assume that the
 692 * machine will be powered off, and the HC's internal state will be reset.
 693 * Don't bother to free memory.
 694 *
 695 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 696 */
 697static void xhci_shutdown(struct usb_hcd *hcd)
 698{
 699	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 700
 701	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
 702		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
 703
 704	spin_lock_irq(&xhci->lock);
 705	xhci_halt(xhci);
 706	/* Workaround for spurious wakeups at shutdown with HSW */
 707	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
 708		xhci_reset(xhci);
 709	spin_unlock_irq(&xhci->lock);
 710
 711	xhci_cleanup_msix(xhci);
 712
 713	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 714			"xhci_shutdown completed - status = %x",
 715			readl(&xhci->op_regs->status));
 716
 717	/* Yet another workaround for spurious wakeups at shutdown with HSW */
 718	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
 719		pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
 720}
 721
 722#ifdef CONFIG_PM
 723static void xhci_save_registers(struct xhci_hcd *xhci)
 724{
 725	xhci->s3.command = readl(&xhci->op_regs->command);
 726	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
 727	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 728	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
 729	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
 730	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
 731	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 732	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
 733	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
 734}
 735
 736static void xhci_restore_registers(struct xhci_hcd *xhci)
 737{
 738	writel(xhci->s3.command, &xhci->op_regs->command);
 739	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 740	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 741	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
 742	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
 743	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
 744	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
 745	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
 746	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
 747}
 748
 749static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 750{
 751	u64	val_64;
 752
 753	/* step 2: initialize command ring buffer */
 754	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 755	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 756		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 757				      xhci->cmd_ring->dequeue) &
 758		 (u64) ~CMD_RING_RSVD_BITS) |
 759		xhci->cmd_ring->cycle_state;
 760	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 761			"// Setting command ring address to 0x%llx",
 762			(long unsigned long) val_64);
 763	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 764}
 765
 766/*
 767 * The whole command ring must be cleared to zero when we suspend the host.
 768 *
 769 * The host doesn't save the command ring pointer in the suspend well, so we
 770 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 771 * aligned, because of the reserved bits in the command ring dequeue pointer
 772 * register.  Therefore, we can't just set the dequeue pointer back in the
 773 * middle of the ring (TRBs are 16-byte aligned).
 774 */
 775static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 776{
 777	struct xhci_ring *ring;
 778	struct xhci_segment *seg;
 779
 780	ring = xhci->cmd_ring;
 781	seg = ring->deq_seg;
 782	do {
 783		memset(seg->trbs, 0,
 784			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
 785		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
 786			cpu_to_le32(~TRB_CYCLE);
 787		seg = seg->next;
 788	} while (seg != ring->deq_seg);
 789
 790	/* Reset the software enqueue and dequeue pointers */
 791	ring->deq_seg = ring->first_seg;
 792	ring->dequeue = ring->first_seg->trbs;
 793	ring->enq_seg = ring->deq_seg;
 794	ring->enqueue = ring->dequeue;
 795
 796	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 797	/*
 798	 * Ring is now zeroed, so the HW should look for change of ownership
 799	 * when the cycle bit is set to 1.
 800	 */
 801	ring->cycle_state = 1;
 802
 803	/*
 804	 * Reset the hardware dequeue pointer.
 805	 * Yes, this will need to be re-written after resume, but we're paranoid
 806	 * and want to make sure the hardware doesn't access bogus memory
 807	 * because, say, the BIOS or an SMI started the host without changing
 808	 * the command ring pointers.
 809	 */
 810	xhci_set_cmd_ring_deq(xhci);
 811}
 812
 813static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
 814{
 815	int port_index;
 816	__le32 __iomem **port_array;
 817	unsigned long flags;
 818	u32 t1, t2;
 819
 820	spin_lock_irqsave(&xhci->lock, flags);
 821
 822	/* disable usb3 ports Wake bits */
 823	port_index = xhci->num_usb3_ports;
 824	port_array = xhci->usb3_ports;
 825	while (port_index--) {
 826		t1 = readl(port_array[port_index]);
 827		t1 = xhci_port_state_to_neutral(t1);
 828		t2 = t1 & ~PORT_WAKE_BITS;
 829		if (t1 != t2)
 830			writel(t2, port_array[port_index]);
 831	}
 832
 833	/* disable usb2 ports Wake bits */
 834	port_index = xhci->num_usb2_ports;
 835	port_array = xhci->usb2_ports;
 836	while (port_index--) {
 837		t1 = readl(port_array[port_index]);
 838		t1 = xhci_port_state_to_neutral(t1);
 839		t2 = t1 & ~PORT_WAKE_BITS;
 840		if (t1 != t2)
 841			writel(t2, port_array[port_index]);
 842	}
 843
 844	spin_unlock_irqrestore(&xhci->lock, flags);
 845}
 846
 847/*
 848 * Stop HC (not bus-specific)
 849 *
 850 * This is called when the machine transition into S3/S4 mode.
 851 *
 852 */
 853int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
 854{
 855	int			rc = 0;
 856	unsigned int		delay = XHCI_MAX_HALT_USEC;
 857	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 858	u32			command;
 859
 860	if (!hcd->state)
 861		return 0;
 862
 863	if (hcd->state != HC_STATE_SUSPENDED ||
 864			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
 865		return -EINVAL;
 866
 867	xhci_dbc_suspend(xhci);
 868
 869	/* Clear root port wake on bits if wakeup not allowed. */
 870	if (!do_wakeup)
 871		xhci_disable_port_wake_on_bits(xhci);
 872
 873	/* Don't poll the roothubs on bus suspend. */
 874	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
 875	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
 876	del_timer_sync(&hcd->rh_timer);
 877	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
 878	del_timer_sync(&xhci->shared_hcd->rh_timer);
 879
 880	if (xhci->quirks & XHCI_SUSPEND_DELAY)
 881		usleep_range(1000, 1500);
 882
 883	spin_lock_irq(&xhci->lock);
 884	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 885	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 886	/* step 1: stop endpoint */
 887	/* skipped assuming that port suspend has done */
 888
 889	/* step 2: clear Run/Stop bit */
 890	command = readl(&xhci->op_regs->command);
 891	command &= ~CMD_RUN;
 892	writel(command, &xhci->op_regs->command);
 893
 894	/* Some chips from Fresco Logic need an extraordinary delay */
 895	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
 896
 897	if (xhci_handshake(&xhci->op_regs->status,
 898		      STS_HALT, STS_HALT, delay)) {
 899		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
 900		spin_unlock_irq(&xhci->lock);
 901		return -ETIMEDOUT;
 902	}
 903	xhci_clear_command_ring(xhci);
 904
 905	/* step 3: save registers */
 906	xhci_save_registers(xhci);
 907
 908	/* step 4: set CSS flag */
 909	command = readl(&xhci->op_regs->command);
 910	command |= CMD_CSS;
 911	writel(command, &xhci->op_regs->command);
 912	if (xhci_handshake(&xhci->op_regs->status,
 913				STS_SAVE, 0, 10 * 1000)) {
 914		xhci_warn(xhci, "WARN: xHC save state timeout\n");
 915		spin_unlock_irq(&xhci->lock);
 916		return -ETIMEDOUT;
 917	}
 918	spin_unlock_irq(&xhci->lock);
 919
 920	/*
 921	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
 922	 * is about to be suspended.
 923	 */
 924	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 925			(!(xhci_all_ports_seen_u0(xhci)))) {
 926		del_timer_sync(&xhci->comp_mode_recovery_timer);
 927		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 928				"%s: compliance mode recovery timer deleted",
 929				__func__);
 930	}
 931
 932	/* step 5: remove core well power */
 933	/* synchronize irq when using MSI-X */
 934	xhci_msix_sync_irqs(xhci);
 935
 936	return rc;
 937}
 938EXPORT_SYMBOL_GPL(xhci_suspend);
 939
 940/*
 941 * start xHC (not bus-specific)
 942 *
 943 * This is called when the machine transition from S3/S4 mode.
 944 *
 945 */
 946int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
 947{
 948	u32			command, temp = 0, status;
 949	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 950	struct usb_hcd		*secondary_hcd;
 951	int			retval = 0;
 952	bool			comp_timer_running = false;
 953
 954	if (!hcd->state)
 955		return 0;
 956
 957	/* Wait a bit if either of the roothubs need to settle from the
 958	 * transition into bus suspend.
 959	 */
 960	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
 961			time_before(jiffies,
 962				xhci->bus_state[1].next_statechange))
 963		msleep(100);
 964
 965	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 966	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 967
 968	spin_lock_irq(&xhci->lock);
 969	if (xhci->quirks & XHCI_RESET_ON_RESUME)
 970		hibernated = true;
 971
 972	if (!hibernated) {
 973		/* step 1: restore register */
 974		xhci_restore_registers(xhci);
 975		/* step 2: initialize command ring buffer */
 976		xhci_set_cmd_ring_deq(xhci);
 977		/* step 3: restore state and start state*/
 978		/* step 3: set CRS flag */
 979		command = readl(&xhci->op_regs->command);
 980		command |= CMD_CRS;
 981		writel(command, &xhci->op_regs->command);
 982		if (xhci_handshake(&xhci->op_regs->status,
 983			      STS_RESTORE, 0, 10 * 1000)) {
 984			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
 985			spin_unlock_irq(&xhci->lock);
 986			return -ETIMEDOUT;
 987		}
 988		temp = readl(&xhci->op_regs->status);
 989	}
 990
 991	/* If restore operation fails, re-initialize the HC during resume */
 992	if ((temp & STS_SRE) || hibernated) {
 993
 994		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 995				!(xhci_all_ports_seen_u0(xhci))) {
 996			del_timer_sync(&xhci->comp_mode_recovery_timer);
 997			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 998				"Compliance Mode Recovery Timer deleted!");
 999		}
1000
1001		/* Let the USB core know _both_ roothubs lost power. */
1002		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1003		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1004
1005		xhci_dbg(xhci, "Stop HCD\n");
1006		xhci_halt(xhci);
1007		xhci_reset(xhci);
1008		spin_unlock_irq(&xhci->lock);
1009		xhci_cleanup_msix(xhci);
1010
1011		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1012		temp = readl(&xhci->op_regs->status);
1013		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1014		temp = readl(&xhci->ir_set->irq_pending);
1015		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
 
1016
1017		xhci_dbg(xhci, "cleaning up memory\n");
1018		xhci_mem_cleanup(xhci);
1019		xhci_debugfs_exit(xhci);
1020		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1021			    readl(&xhci->op_regs->status));
1022
1023		/* USB core calls the PCI reinit and start functions twice:
1024		 * first with the primary HCD, and then with the secondary HCD.
1025		 * If we don't do the same, the host will never be started.
1026		 */
1027		if (!usb_hcd_is_primary_hcd(hcd))
1028			secondary_hcd = hcd;
1029		else
1030			secondary_hcd = xhci->shared_hcd;
1031
1032		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1033		retval = xhci_init(hcd->primary_hcd);
1034		if (retval)
1035			return retval;
1036		comp_timer_running = true;
1037
1038		xhci_dbg(xhci, "Start the primary HCD\n");
1039		retval = xhci_run(hcd->primary_hcd);
1040		if (!retval) {
1041			xhci_dbg(xhci, "Start the secondary HCD\n");
1042			retval = xhci_run(secondary_hcd);
1043		}
1044		hcd->state = HC_STATE_SUSPENDED;
1045		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1046		goto done;
1047	}
1048
1049	/* step 4: set Run/Stop bit */
1050	command = readl(&xhci->op_regs->command);
1051	command |= CMD_RUN;
1052	writel(command, &xhci->op_regs->command);
1053	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1054		  0, 250 * 1000);
1055
1056	/* step 5: walk topology and initialize portsc,
1057	 * portpmsc and portli
1058	 */
1059	/* this is done in bus_resume */
1060
1061	/* step 6: restart each of the previously
1062	 * Running endpoints by ringing their doorbells
1063	 */
1064
1065	spin_unlock_irq(&xhci->lock);
1066
1067	xhci_dbc_resume(xhci);
1068
1069 done:
1070	if (retval == 0) {
1071		/* Resume root hubs only when have pending events. */
1072		status = readl(&xhci->op_regs->status);
1073		if (status & STS_EINT) {
1074			usb_hcd_resume_root_hub(xhci->shared_hcd);
1075			usb_hcd_resume_root_hub(hcd);
1076		}
1077	}
1078
1079	/*
1080	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1081	 * be re-initialized Always after a system resume. Ports are subject
1082	 * to suffer the Compliance Mode issue again. It doesn't matter if
1083	 * ports have entered previously to U0 before system's suspension.
1084	 */
1085	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1086		compliance_mode_recovery_timer_init(xhci);
1087
1088	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1089		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1090
1091	/* Re-enable port polling. */
1092	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1093	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1094	usb_hcd_poll_rh_status(xhci->shared_hcd);
1095	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1096	usb_hcd_poll_rh_status(hcd);
1097
1098	return retval;
1099}
1100EXPORT_SYMBOL_GPL(xhci_resume);
1101#endif	/* CONFIG_PM */
1102
1103/*-------------------------------------------------------------------------*/
1104
1105/**
1106 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1107 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1108 * value to right shift 1 for the bitmask.
1109 *
1110 * Index  = (epnum * 2) + direction - 1,
1111 * where direction = 0 for OUT, 1 for IN.
1112 * For control endpoints, the IN index is used (OUT index is unused), so
1113 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1114 */
1115unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1116{
1117	unsigned int index;
1118	if (usb_endpoint_xfer_control(desc))
1119		index = (unsigned int) (usb_endpoint_num(desc)*2);
1120	else
1121		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1122			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1123	return index;
1124}
1125
1126/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1127 * address from the XHCI endpoint index.
1128 */
1129unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1130{
1131	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1132	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1133	return direction | number;
1134}
1135
1136/* Find the flag for this endpoint (for use in the control context).  Use the
1137 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1138 * bit 1, etc.
1139 */
1140static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1141{
1142	return 1 << (xhci_get_endpoint_index(desc) + 1);
1143}
1144
1145/* Find the flag for this endpoint (for use in the control context).  Use the
1146 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1147 * bit 1, etc.
1148 */
1149static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1150{
1151	return 1 << (ep_index + 1);
1152}
1153
1154/* Compute the last valid endpoint context index.  Basically, this is the
1155 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1156 * we find the most significant bit set in the added contexts flags.
1157 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1158 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1159 */
1160unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1161{
1162	return fls(added_ctxs) - 1;
1163}
1164
1165/* Returns 1 if the arguments are OK;
1166 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1167 */
1168static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1169		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1170		const char *func) {
1171	struct xhci_hcd	*xhci;
1172	struct xhci_virt_device	*virt_dev;
1173
1174	if (!hcd || (check_ep && !ep) || !udev) {
1175		pr_debug("xHCI %s called with invalid args\n", func);
1176		return -EINVAL;
1177	}
1178	if (!udev->parent) {
1179		pr_debug("xHCI %s called for root hub\n", func);
1180		return 0;
1181	}
1182
1183	xhci = hcd_to_xhci(hcd);
1184	if (check_virt_dev) {
1185		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1186			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1187					func);
1188			return -EINVAL;
1189		}
1190
1191		virt_dev = xhci->devs[udev->slot_id];
1192		if (virt_dev->udev != udev) {
1193			xhci_dbg(xhci, "xHCI %s called with udev and "
1194					  "virt_dev does not match\n", func);
1195			return -EINVAL;
1196		}
1197	}
1198
1199	if (xhci->xhc_state & XHCI_STATE_HALTED)
1200		return -ENODEV;
1201
1202	return 1;
1203}
1204
1205static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1206		struct usb_device *udev, struct xhci_command *command,
1207		bool ctx_change, bool must_succeed);
1208
1209/*
1210 * Full speed devices may have a max packet size greater than 8 bytes, but the
1211 * USB core doesn't know that until it reads the first 8 bytes of the
1212 * descriptor.  If the usb_device's max packet size changes after that point,
1213 * we need to issue an evaluate context command and wait on it.
1214 */
1215static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1216		unsigned int ep_index, struct urb *urb)
1217{
1218	struct xhci_container_ctx *out_ctx;
1219	struct xhci_input_control_ctx *ctrl_ctx;
1220	struct xhci_ep_ctx *ep_ctx;
1221	struct xhci_command *command;
1222	int max_packet_size;
1223	int hw_max_packet_size;
1224	int ret = 0;
1225
1226	out_ctx = xhci->devs[slot_id]->out_ctx;
1227	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1228	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1229	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1230	if (hw_max_packet_size != max_packet_size) {
1231		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1232				"Max Packet Size for ep 0 changed.");
1233		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1234				"Max packet size in usb_device = %d",
1235				max_packet_size);
1236		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1237				"Max packet size in xHCI HW = %d",
1238				hw_max_packet_size);
1239		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1240				"Issuing evaluate context command.");
1241
1242		/* Set up the input context flags for the command */
1243		/* FIXME: This won't work if a non-default control endpoint
1244		 * changes max packet sizes.
1245		 */
1246
1247		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1248		if (!command)
1249			return -ENOMEM;
1250
1251		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1252		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1253		if (!ctrl_ctx) {
1254			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1255					__func__);
1256			ret = -ENOMEM;
1257			goto command_cleanup;
1258		}
1259		/* Set up the modified control endpoint 0 */
1260		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1261				xhci->devs[slot_id]->out_ctx, ep_index);
1262
1263		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1264		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1265		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1266
1267		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1268		ctrl_ctx->drop_flags = 0;
1269
 
 
 
 
 
1270		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1271				true, false);
1272
1273		/* Clean up the input context for later use by bandwidth
1274		 * functions.
1275		 */
1276		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1277command_cleanup:
1278		kfree(command->completion);
1279		kfree(command);
1280	}
1281	return ret;
1282}
1283
1284/*
1285 * non-error returns are a promise to giveback() the urb later
1286 * we drop ownership so next owner (or urb unlink) can get it
1287 */
1288static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1289{
1290	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 
1291	unsigned long flags;
1292	int ret = 0;
1293	unsigned int slot_id, ep_index;
1294	unsigned int *ep_state;
1295	struct urb_priv	*urb_priv;
1296	int num_tds;
1297
1298	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1299					true, true, __func__) <= 0)
1300		return -EINVAL;
1301
1302	slot_id = urb->dev->slot_id;
1303	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1304	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1305
1306	if (!HCD_HW_ACCESSIBLE(hcd)) {
1307		if (!in_interrupt())
1308			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1309		return -ESHUTDOWN;
 
1310	}
1311
1312	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1313		num_tds = urb->number_of_packets;
1314	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1315	    urb->transfer_buffer_length > 0 &&
1316	    urb->transfer_flags & URB_ZERO_PACKET &&
1317	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1318		num_tds = 2;
1319	else
1320		num_tds = 1;
1321
1322	urb_priv = kzalloc(sizeof(struct urb_priv) +
1323			   num_tds * sizeof(struct xhci_td), mem_flags);
1324	if (!urb_priv)
1325		return -ENOMEM;
1326
1327	urb_priv->num_tds = num_tds;
1328	urb_priv->num_tds_done = 0;
1329	urb->hcpriv = urb_priv;
 
 
1330
1331	trace_xhci_urb_enqueue(urb);
 
 
 
 
 
 
 
1332
1333	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1334		/* Check to see if the max packet size for the default control
1335		 * endpoint changed during FS device enumeration
1336		 */
1337		if (urb->dev->speed == USB_SPEED_FULL) {
1338			ret = xhci_check_maxpacket(xhci, slot_id,
1339					ep_index, urb);
1340			if (ret < 0) {
1341				xhci_urb_free_priv(urb_priv);
1342				urb->hcpriv = NULL;
1343				return ret;
1344			}
1345		}
1346	}
1347
1348	spin_lock_irqsave(&xhci->lock, flags);
1349
1350	if (xhci->xhc_state & XHCI_STATE_DYING) {
1351		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1352			 urb->ep->desc.bEndpointAddress, urb);
1353		ret = -ESHUTDOWN;
1354		goto free_priv;
1355	}
1356	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1357		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1358			  *ep_state);
1359		ret = -EINVAL;
1360		goto free_priv;
1361	}
1362	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1363		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1364		ret = -EINVAL;
1365		goto free_priv;
1366	}
1367
1368	switch (usb_endpoint_type(&urb->ep->desc)) {
1369
1370	case USB_ENDPOINT_XFER_CONTROL:
 
 
 
1371		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1372					 slot_id, ep_index);
1373		break;
1374	case USB_ENDPOINT_XFER_BULK:
1375		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1376					 slot_id, ep_index);
1377		break;
1378	case USB_ENDPOINT_XFER_INT:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1379		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1380				slot_id, ep_index);
1381		break;
1382	case USB_ENDPOINT_XFER_ISOC:
 
 
 
 
 
1383		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1384				slot_id, ep_index);
 
 
 
1385	}
1386
1387	if (ret) {
 
 
 
 
 
1388free_priv:
1389		xhci_urb_free_priv(urb_priv);
1390		urb->hcpriv = NULL;
1391	}
1392	spin_unlock_irqrestore(&xhci->lock, flags);
1393	return ret;
1394}
1395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1396/*
1397 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1398 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1399 * should pick up where it left off in the TD, unless a Set Transfer Ring
1400 * Dequeue Pointer is issued.
1401 *
1402 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1403 * the ring.  Since the ring is a contiguous structure, they can't be physically
1404 * removed.  Instead, there are two options:
1405 *
1406 *  1) If the HC is in the middle of processing the URB to be canceled, we
1407 *     simply move the ring's dequeue pointer past those TRBs using the Set
1408 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1409 *     when drivers timeout on the last submitted URB and attempt to cancel.
1410 *
1411 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1412 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1413 *     HC will need to invalidate the any TRBs it has cached after the stop
1414 *     endpoint command, as noted in the xHCI 0.95 errata.
1415 *
1416 *  3) The TD may have completed by the time the Stop Endpoint Command
1417 *     completes, so software needs to handle that case too.
1418 *
1419 * This function should protect against the TD enqueueing code ringing the
1420 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1421 * It also needs to account for multiple cancellations on happening at the same
1422 * time for the same endpoint.
1423 *
1424 * Note that this function can be called in any context, or so says
1425 * usb_hcd_unlink_urb()
1426 */
1427static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1428{
1429	unsigned long flags;
1430	int ret, i;
1431	u32 temp;
1432	struct xhci_hcd *xhci;
1433	struct urb_priv	*urb_priv;
1434	struct xhci_td *td;
1435	unsigned int ep_index;
1436	struct xhci_ring *ep_ring;
1437	struct xhci_virt_ep *ep;
1438	struct xhci_command *command;
1439	struct xhci_virt_device *vdev;
1440
1441	xhci = hcd_to_xhci(hcd);
1442	spin_lock_irqsave(&xhci->lock, flags);
1443
1444	trace_xhci_urb_dequeue(urb);
1445
1446	/* Make sure the URB hasn't completed or been unlinked already */
1447	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1448	if (ret)
1449		goto done;
1450
1451	/* give back URB now if we can't queue it for cancel */
1452	vdev = xhci->devs[urb->dev->slot_id];
1453	urb_priv = urb->hcpriv;
1454	if (!vdev || !urb_priv)
1455		goto err_giveback;
1456
1457	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1458	ep = &vdev->eps[ep_index];
1459	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1460	if (!ep || !ep_ring)
1461		goto err_giveback;
1462
1463	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1464	temp = readl(&xhci->op_regs->status);
1465	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1466		xhci_hc_died(xhci);
1467		goto done;
1468	}
1469
1470	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1471		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1472				"HC halted, freeing TD manually.");
1473		for (i = urb_priv->num_tds_done;
1474		     i < urb_priv->num_tds;
 
1475		     i++) {
1476			td = &urb_priv->td[i];
1477			if (!list_empty(&td->td_list))
1478				list_del_init(&td->td_list);
1479			if (!list_empty(&td->cancelled_td_list))
1480				list_del_init(&td->cancelled_td_list);
1481		}
1482		goto err_giveback;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1483	}
1484
1485	i = urb_priv->num_tds_done;
1486	if (i < urb_priv->num_tds)
 
1487		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1488				"Cancel URB %p, dev %s, ep 0x%x, "
1489				"starting at offset 0x%llx",
1490				urb, urb->dev->devpath,
1491				urb->ep->desc.bEndpointAddress,
1492				(unsigned long long) xhci_trb_virt_to_dma(
1493					urb_priv->td[i].start_seg,
1494					urb_priv->td[i].first_trb));
1495
1496	for (; i < urb_priv->num_tds; i++) {
1497		td = &urb_priv->td[i];
1498		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1499	}
1500
1501	/* Queue a stop endpoint command, but only if this is
1502	 * the first cancellation to be handled.
1503	 */
1504	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1505		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1506		if (!command) {
1507			ret = -ENOMEM;
1508			goto done;
1509		}
1510		ep->ep_state |= EP_STOP_CMD_PENDING;
 
1511		ep->stop_cmd_timer.expires = jiffies +
1512			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1513		add_timer(&ep->stop_cmd_timer);
1514		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1515					 ep_index, 0);
1516		xhci_ring_cmd_db(xhci);
1517	}
1518done:
1519	spin_unlock_irqrestore(&xhci->lock, flags);
1520	return ret;
1521
1522err_giveback:
1523	if (urb_priv)
1524		xhci_urb_free_priv(urb_priv);
1525	usb_hcd_unlink_urb_from_ep(hcd, urb);
1526	spin_unlock_irqrestore(&xhci->lock, flags);
1527	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1528	return ret;
1529}
1530
1531/* Drop an endpoint from a new bandwidth configuration for this device.
1532 * Only one call to this function is allowed per endpoint before
1533 * check_bandwidth() or reset_bandwidth() must be called.
1534 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1535 * add the endpoint to the schedule with possibly new parameters denoted by a
1536 * different endpoint descriptor in usb_host_endpoint.
1537 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1538 * not allowed.
1539 *
1540 * The USB core will not allow URBs to be queued to an endpoint that is being
1541 * disabled, so there's no need for mutual exclusion to protect
1542 * the xhci->devs[slot_id] structure.
1543 */
1544static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1545		struct usb_host_endpoint *ep)
1546{
1547	struct xhci_hcd *xhci;
1548	struct xhci_container_ctx *in_ctx, *out_ctx;
1549	struct xhci_input_control_ctx *ctrl_ctx;
1550	unsigned int ep_index;
1551	struct xhci_ep_ctx *ep_ctx;
1552	u32 drop_flag;
1553	u32 new_add_flags, new_drop_flags;
1554	int ret;
1555
1556	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1557	if (ret <= 0)
1558		return ret;
1559	xhci = hcd_to_xhci(hcd);
1560	if (xhci->xhc_state & XHCI_STATE_DYING)
1561		return -ENODEV;
1562
1563	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1564	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1565	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1566		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1567				__func__, drop_flag);
1568		return 0;
1569	}
1570
1571	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1572	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1573	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1574	if (!ctrl_ctx) {
1575		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1576				__func__);
1577		return 0;
1578	}
1579
1580	ep_index = xhci_get_endpoint_index(&ep->desc);
1581	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1582	/* If the HC already knows the endpoint is disabled,
1583	 * or the HCD has noted it is disabled, ignore this request
1584	 */
1585	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
 
1586	    le32_to_cpu(ctrl_ctx->drop_flags) &
1587	    xhci_get_endpoint_flag(&ep->desc)) {
1588		/* Do not warn when called after a usb_device_reset */
1589		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1590			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1591				  __func__, ep);
1592		return 0;
1593	}
1594
1595	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1596	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1597
1598	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1599	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1600
1601	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1602
1603	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1604
1605	if (xhci->quirks & XHCI_MTK_HOST)
1606		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1607
1608	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1609			(unsigned int) ep->desc.bEndpointAddress,
1610			udev->slot_id,
1611			(unsigned int) new_drop_flags,
1612			(unsigned int) new_add_flags);
1613	return 0;
1614}
1615
1616/* Add an endpoint to a new possible bandwidth configuration for this device.
1617 * Only one call to this function is allowed per endpoint before
1618 * check_bandwidth() or reset_bandwidth() must be called.
1619 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1620 * add the endpoint to the schedule with possibly new parameters denoted by a
1621 * different endpoint descriptor in usb_host_endpoint.
1622 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1623 * not allowed.
1624 *
1625 * The USB core will not allow URBs to be queued to an endpoint until the
1626 * configuration or alt setting is installed in the device, so there's no need
1627 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1628 */
1629static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1630		struct usb_host_endpoint *ep)
1631{
1632	struct xhci_hcd *xhci;
1633	struct xhci_container_ctx *in_ctx;
1634	unsigned int ep_index;
1635	struct xhci_input_control_ctx *ctrl_ctx;
1636	u32 added_ctxs;
1637	u32 new_add_flags, new_drop_flags;
1638	struct xhci_virt_device *virt_dev;
1639	int ret = 0;
1640
1641	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1642	if (ret <= 0) {
1643		/* So we won't queue a reset ep command for a root hub */
1644		ep->hcpriv = NULL;
1645		return ret;
1646	}
1647	xhci = hcd_to_xhci(hcd);
1648	if (xhci->xhc_state & XHCI_STATE_DYING)
1649		return -ENODEV;
1650
1651	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1652	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1653		/* FIXME when we have to issue an evaluate endpoint command to
1654		 * deal with ep0 max packet size changing once we get the
1655		 * descriptors
1656		 */
1657		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1658				__func__, added_ctxs);
1659		return 0;
1660	}
1661
1662	virt_dev = xhci->devs[udev->slot_id];
1663	in_ctx = virt_dev->in_ctx;
1664	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1665	if (!ctrl_ctx) {
1666		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1667				__func__);
1668		return 0;
1669	}
1670
1671	ep_index = xhci_get_endpoint_index(&ep->desc);
1672	/* If this endpoint is already in use, and the upper layers are trying
1673	 * to add it again without dropping it, reject the addition.
1674	 */
1675	if (virt_dev->eps[ep_index].ring &&
1676			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1677		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1678				"without dropping it.\n",
1679				(unsigned int) ep->desc.bEndpointAddress);
1680		return -EINVAL;
1681	}
1682
1683	/* If the HCD has already noted the endpoint is enabled,
1684	 * ignore this request.
1685	 */
1686	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1687		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1688				__func__, ep);
1689		return 0;
1690	}
1691
1692	/*
1693	 * Configuration and alternate setting changes must be done in
1694	 * process context, not interrupt context (or so documenation
1695	 * for usb_set_interface() and usb_set_configuration() claim).
1696	 */
1697	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1698		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1699				__func__, ep->desc.bEndpointAddress);
1700		return -ENOMEM;
1701	}
1702
1703	if (xhci->quirks & XHCI_MTK_HOST) {
1704		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1705		if (ret < 0) {
1706			xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1707			virt_dev->eps[ep_index].new_ring = NULL;
1708			return ret;
1709		}
1710	}
1711
1712	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1713	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1714
1715	/* If xhci_endpoint_disable() was called for this endpoint, but the
1716	 * xHC hasn't been notified yet through the check_bandwidth() call,
1717	 * this re-adds a new state for the endpoint from the new endpoint
1718	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1719	 * drop flags alone.
1720	 */
1721	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1722
1723	/* Store the usb_device pointer for later use */
1724	ep->hcpriv = udev;
1725
1726	xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1727
1728	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1729			(unsigned int) ep->desc.bEndpointAddress,
1730			udev->slot_id,
1731			(unsigned int) new_drop_flags,
1732			(unsigned int) new_add_flags);
1733	return 0;
1734}
1735
1736static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1737{
1738	struct xhci_input_control_ctx *ctrl_ctx;
1739	struct xhci_ep_ctx *ep_ctx;
1740	struct xhci_slot_ctx *slot_ctx;
1741	int i;
1742
1743	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1744	if (!ctrl_ctx) {
1745		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1746				__func__);
1747		return;
1748	}
1749
1750	/* When a device's add flag and drop flag are zero, any subsequent
1751	 * configure endpoint command will leave that endpoint's state
1752	 * untouched.  Make sure we don't leave any old state in the input
1753	 * endpoint contexts.
1754	 */
1755	ctrl_ctx->drop_flags = 0;
1756	ctrl_ctx->add_flags = 0;
1757	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1758	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1759	/* Endpoint 0 is always valid */
1760	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1761	for (i = 1; i < 31; i++) {
1762		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1763		ep_ctx->ep_info = 0;
1764		ep_ctx->ep_info2 = 0;
1765		ep_ctx->deq = 0;
1766		ep_ctx->tx_info = 0;
1767	}
1768}
1769
1770static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1771		struct usb_device *udev, u32 *cmd_status)
1772{
1773	int ret;
1774
1775	switch (*cmd_status) {
1776	case COMP_COMMAND_ABORTED:
1777	case COMP_COMMAND_RING_STOPPED:
1778		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1779		ret = -ETIME;
1780		break;
1781	case COMP_RESOURCE_ERROR:
1782		dev_warn(&udev->dev,
1783			 "Not enough host controller resources for new device state.\n");
1784		ret = -ENOMEM;
1785		/* FIXME: can we allocate more resources for the HC? */
1786		break;
1787	case COMP_BANDWIDTH_ERROR:
1788	case COMP_SECONDARY_BANDWIDTH_ERROR:
1789		dev_warn(&udev->dev,
1790			 "Not enough bandwidth for new device state.\n");
1791		ret = -ENOSPC;
1792		/* FIXME: can we go back to the old state? */
1793		break;
1794	case COMP_TRB_ERROR:
1795		/* the HCD set up something wrong */
1796		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1797				"add flag = 1, "
1798				"and endpoint is not disabled.\n");
1799		ret = -EINVAL;
1800		break;
1801	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1802		dev_warn(&udev->dev,
1803			 "ERROR: Incompatible device for endpoint configure command.\n");
1804		ret = -ENODEV;
1805		break;
1806	case COMP_SUCCESS:
1807		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1808				"Successful Endpoint Configure command");
1809		ret = 0;
1810		break;
1811	default:
1812		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1813				*cmd_status);
1814		ret = -EINVAL;
1815		break;
1816	}
1817	return ret;
1818}
1819
1820static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1821		struct usb_device *udev, u32 *cmd_status)
1822{
1823	int ret;
 
1824
1825	switch (*cmd_status) {
1826	case COMP_COMMAND_ABORTED:
1827	case COMP_COMMAND_RING_STOPPED:
1828		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1829		ret = -ETIME;
1830		break;
1831	case COMP_PARAMETER_ERROR:
1832		dev_warn(&udev->dev,
1833			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1834		ret = -EINVAL;
1835		break;
1836	case COMP_SLOT_NOT_ENABLED_ERROR:
1837		dev_warn(&udev->dev,
1838			"WARN: slot not enabled for evaluate context command.\n");
1839		ret = -EINVAL;
1840		break;
1841	case COMP_CONTEXT_STATE_ERROR:
1842		dev_warn(&udev->dev,
1843			"WARN: invalid context state for evaluate context command.\n");
 
1844		ret = -EINVAL;
1845		break;
1846	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1847		dev_warn(&udev->dev,
1848			"ERROR: Incompatible device for evaluate context command.\n");
1849		ret = -ENODEV;
1850		break;
1851	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1852		/* Max Exit Latency too large error */
1853		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1854		ret = -EINVAL;
1855		break;
1856	case COMP_SUCCESS:
1857		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1858				"Successful evaluate context command");
1859		ret = 0;
1860		break;
1861	default:
1862		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1863			*cmd_status);
1864		ret = -EINVAL;
1865		break;
1866	}
1867	return ret;
1868}
1869
1870static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1871		struct xhci_input_control_ctx *ctrl_ctx)
1872{
1873	u32 valid_add_flags;
1874	u32 valid_drop_flags;
1875
1876	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1877	 * (bit 1).  The default control endpoint is added during the Address
1878	 * Device command and is never removed until the slot is disabled.
1879	 */
1880	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1881	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1882
1883	/* Use hweight32 to count the number of ones in the add flags, or
1884	 * number of endpoints added.  Don't count endpoints that are changed
1885	 * (both added and dropped).
1886	 */
1887	return hweight32(valid_add_flags) -
1888		hweight32(valid_add_flags & valid_drop_flags);
1889}
1890
1891static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1892		struct xhci_input_control_ctx *ctrl_ctx)
1893{
1894	u32 valid_add_flags;
1895	u32 valid_drop_flags;
1896
1897	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1898	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1899
1900	return hweight32(valid_drop_flags) -
1901		hweight32(valid_add_flags & valid_drop_flags);
1902}
1903
1904/*
1905 * We need to reserve the new number of endpoints before the configure endpoint
1906 * command completes.  We can't subtract the dropped endpoints from the number
1907 * of active endpoints until the command completes because we can oversubscribe
1908 * the host in this case:
1909 *
1910 *  - the first configure endpoint command drops more endpoints than it adds
1911 *  - a second configure endpoint command that adds more endpoints is queued
1912 *  - the first configure endpoint command fails, so the config is unchanged
1913 *  - the second command may succeed, even though there isn't enough resources
1914 *
1915 * Must be called with xhci->lock held.
1916 */
1917static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1918		struct xhci_input_control_ctx *ctrl_ctx)
1919{
1920	u32 added_eps;
1921
1922	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1923	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1924		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1925				"Not enough ep ctxs: "
1926				"%u active, need to add %u, limit is %u.",
1927				xhci->num_active_eps, added_eps,
1928				xhci->limit_active_eps);
1929		return -ENOMEM;
1930	}
1931	xhci->num_active_eps += added_eps;
1932	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1933			"Adding %u ep ctxs, %u now active.", added_eps,
1934			xhci->num_active_eps);
1935	return 0;
1936}
1937
1938/*
1939 * The configure endpoint was failed by the xHC for some other reason, so we
1940 * need to revert the resources that failed configuration would have used.
1941 *
1942 * Must be called with xhci->lock held.
1943 */
1944static void xhci_free_host_resources(struct xhci_hcd *xhci,
1945		struct xhci_input_control_ctx *ctrl_ctx)
1946{
1947	u32 num_failed_eps;
1948
1949	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1950	xhci->num_active_eps -= num_failed_eps;
1951	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1952			"Removing %u failed ep ctxs, %u now active.",
1953			num_failed_eps,
1954			xhci->num_active_eps);
1955}
1956
1957/*
1958 * Now that the command has completed, clean up the active endpoint count by
1959 * subtracting out the endpoints that were dropped (but not changed).
1960 *
1961 * Must be called with xhci->lock held.
1962 */
1963static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1964		struct xhci_input_control_ctx *ctrl_ctx)
1965{
1966	u32 num_dropped_eps;
1967
1968	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1969	xhci->num_active_eps -= num_dropped_eps;
1970	if (num_dropped_eps)
1971		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1972				"Removing %u dropped ep ctxs, %u now active.",
1973				num_dropped_eps,
1974				xhci->num_active_eps);
1975}
1976
1977static unsigned int xhci_get_block_size(struct usb_device *udev)
1978{
1979	switch (udev->speed) {
1980	case USB_SPEED_LOW:
1981	case USB_SPEED_FULL:
1982		return FS_BLOCK;
1983	case USB_SPEED_HIGH:
1984		return HS_BLOCK;
1985	case USB_SPEED_SUPER:
1986	case USB_SPEED_SUPER_PLUS:
1987		return SS_BLOCK;
1988	case USB_SPEED_UNKNOWN:
1989	case USB_SPEED_WIRELESS:
1990	default:
1991		/* Should never happen */
1992		return 1;
1993	}
1994}
1995
1996static unsigned int
1997xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1998{
1999	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2000		return LS_OVERHEAD;
2001	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2002		return FS_OVERHEAD;
2003	return HS_OVERHEAD;
2004}
2005
2006/* If we are changing a LS/FS device under a HS hub,
2007 * make sure (if we are activating a new TT) that the HS bus has enough
2008 * bandwidth for this new TT.
2009 */
2010static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2011		struct xhci_virt_device *virt_dev,
2012		int old_active_eps)
2013{
2014	struct xhci_interval_bw_table *bw_table;
2015	struct xhci_tt_bw_info *tt_info;
2016
2017	/* Find the bandwidth table for the root port this TT is attached to. */
2018	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2019	tt_info = virt_dev->tt_info;
2020	/* If this TT already had active endpoints, the bandwidth for this TT
2021	 * has already been added.  Removing all periodic endpoints (and thus
2022	 * making the TT enactive) will only decrease the bandwidth used.
2023	 */
2024	if (old_active_eps)
2025		return 0;
2026	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2027		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2028			return -ENOMEM;
2029		return 0;
2030	}
2031	/* Not sure why we would have no new active endpoints...
2032	 *
2033	 * Maybe because of an Evaluate Context change for a hub update or a
2034	 * control endpoint 0 max packet size change?
2035	 * FIXME: skip the bandwidth calculation in that case.
2036	 */
2037	return 0;
2038}
2039
2040static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2041		struct xhci_virt_device *virt_dev)
2042{
2043	unsigned int bw_reserved;
2044
2045	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2046	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2047		return -ENOMEM;
2048
2049	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2050	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2051		return -ENOMEM;
2052
2053	return 0;
2054}
2055
2056/*
2057 * This algorithm is a very conservative estimate of the worst-case scheduling
2058 * scenario for any one interval.  The hardware dynamically schedules the
2059 * packets, so we can't tell which microframe could be the limiting factor in
2060 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2061 *
2062 * Obviously, we can't solve an NP complete problem to find the minimum worst
2063 * case scenario.  Instead, we come up with an estimate that is no less than
2064 * the worst case bandwidth used for any one microframe, but may be an
2065 * over-estimate.
2066 *
2067 * We walk the requirements for each endpoint by interval, starting with the
2068 * smallest interval, and place packets in the schedule where there is only one
2069 * possible way to schedule packets for that interval.  In order to simplify
2070 * this algorithm, we record the largest max packet size for each interval, and
2071 * assume all packets will be that size.
2072 *
2073 * For interval 0, we obviously must schedule all packets for each interval.
2074 * The bandwidth for interval 0 is just the amount of data to be transmitted
2075 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2076 * the number of packets).
2077 *
2078 * For interval 1, we have two possible microframes to schedule those packets
2079 * in.  For this algorithm, if we can schedule the same number of packets for
2080 * each possible scheduling opportunity (each microframe), we will do so.  The
2081 * remaining number of packets will be saved to be transmitted in the gaps in
2082 * the next interval's scheduling sequence.
2083 *
2084 * As we move those remaining packets to be scheduled with interval 2 packets,
2085 * we have to double the number of remaining packets to transmit.  This is
2086 * because the intervals are actually powers of 2, and we would be transmitting
2087 * the previous interval's packets twice in this interval.  We also have to be
2088 * sure that when we look at the largest max packet size for this interval, we
2089 * also look at the largest max packet size for the remaining packets and take
2090 * the greater of the two.
2091 *
2092 * The algorithm continues to evenly distribute packets in each scheduling
2093 * opportunity, and push the remaining packets out, until we get to the last
2094 * interval.  Then those packets and their associated overhead are just added
2095 * to the bandwidth used.
2096 */
2097static int xhci_check_bw_table(struct xhci_hcd *xhci,
2098		struct xhci_virt_device *virt_dev,
2099		int old_active_eps)
2100{
2101	unsigned int bw_reserved;
2102	unsigned int max_bandwidth;
2103	unsigned int bw_used;
2104	unsigned int block_size;
2105	struct xhci_interval_bw_table *bw_table;
2106	unsigned int packet_size = 0;
2107	unsigned int overhead = 0;
2108	unsigned int packets_transmitted = 0;
2109	unsigned int packets_remaining = 0;
2110	unsigned int i;
2111
2112	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2113		return xhci_check_ss_bw(xhci, virt_dev);
2114
2115	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2116		max_bandwidth = HS_BW_LIMIT;
2117		/* Convert percent of bus BW reserved to blocks reserved */
2118		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2119	} else {
2120		max_bandwidth = FS_BW_LIMIT;
2121		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2122	}
2123
2124	bw_table = virt_dev->bw_table;
2125	/* We need to translate the max packet size and max ESIT payloads into
2126	 * the units the hardware uses.
2127	 */
2128	block_size = xhci_get_block_size(virt_dev->udev);
2129
2130	/* If we are manipulating a LS/FS device under a HS hub, double check
2131	 * that the HS bus has enough bandwidth if we are activing a new TT.
2132	 */
2133	if (virt_dev->tt_info) {
2134		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2135				"Recalculating BW for rootport %u",
2136				virt_dev->real_port);
2137		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2138			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2139					"newly activated TT.\n");
2140			return -ENOMEM;
2141		}
2142		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2143				"Recalculating BW for TT slot %u port %u",
2144				virt_dev->tt_info->slot_id,
2145				virt_dev->tt_info->ttport);
2146	} else {
2147		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2148				"Recalculating BW for rootport %u",
2149				virt_dev->real_port);
2150	}
2151
2152	/* Add in how much bandwidth will be used for interval zero, or the
2153	 * rounded max ESIT payload + number of packets * largest overhead.
2154	 */
2155	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2156		bw_table->interval_bw[0].num_packets *
2157		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2158
2159	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2160		unsigned int bw_added;
2161		unsigned int largest_mps;
2162		unsigned int interval_overhead;
2163
2164		/*
2165		 * How many packets could we transmit in this interval?
2166		 * If packets didn't fit in the previous interval, we will need
2167		 * to transmit that many packets twice within this interval.
2168		 */
2169		packets_remaining = 2 * packets_remaining +
2170			bw_table->interval_bw[i].num_packets;
2171
2172		/* Find the largest max packet size of this or the previous
2173		 * interval.
2174		 */
2175		if (list_empty(&bw_table->interval_bw[i].endpoints))
2176			largest_mps = 0;
2177		else {
2178			struct xhci_virt_ep *virt_ep;
2179			struct list_head *ep_entry;
2180
2181			ep_entry = bw_table->interval_bw[i].endpoints.next;
2182			virt_ep = list_entry(ep_entry,
2183					struct xhci_virt_ep, bw_endpoint_list);
2184			/* Convert to blocks, rounding up */
2185			largest_mps = DIV_ROUND_UP(
2186					virt_ep->bw_info.max_packet_size,
2187					block_size);
2188		}
2189		if (largest_mps > packet_size)
2190			packet_size = largest_mps;
2191
2192		/* Use the larger overhead of this or the previous interval. */
2193		interval_overhead = xhci_get_largest_overhead(
2194				&bw_table->interval_bw[i]);
2195		if (interval_overhead > overhead)
2196			overhead = interval_overhead;
2197
2198		/* How many packets can we evenly distribute across
2199		 * (1 << (i + 1)) possible scheduling opportunities?
2200		 */
2201		packets_transmitted = packets_remaining >> (i + 1);
2202
2203		/* Add in the bandwidth used for those scheduled packets */
2204		bw_added = packets_transmitted * (overhead + packet_size);
2205
2206		/* How many packets do we have remaining to transmit? */
2207		packets_remaining = packets_remaining % (1 << (i + 1));
2208
2209		/* What largest max packet size should those packets have? */
2210		/* If we've transmitted all packets, don't carry over the
2211		 * largest packet size.
2212		 */
2213		if (packets_remaining == 0) {
2214			packet_size = 0;
2215			overhead = 0;
2216		} else if (packets_transmitted > 0) {
2217			/* Otherwise if we do have remaining packets, and we've
2218			 * scheduled some packets in this interval, take the
2219			 * largest max packet size from endpoints with this
2220			 * interval.
2221			 */
2222			packet_size = largest_mps;
2223			overhead = interval_overhead;
2224		}
2225		/* Otherwise carry over packet_size and overhead from the last
2226		 * time we had a remainder.
2227		 */
2228		bw_used += bw_added;
2229		if (bw_used > max_bandwidth) {
2230			xhci_warn(xhci, "Not enough bandwidth. "
2231					"Proposed: %u, Max: %u\n",
2232				bw_used, max_bandwidth);
2233			return -ENOMEM;
2234		}
2235	}
2236	/*
2237	 * Ok, we know we have some packets left over after even-handedly
2238	 * scheduling interval 15.  We don't know which microframes they will
2239	 * fit into, so we over-schedule and say they will be scheduled every
2240	 * microframe.
2241	 */
2242	if (packets_remaining > 0)
2243		bw_used += overhead + packet_size;
2244
2245	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2246		unsigned int port_index = virt_dev->real_port - 1;
2247
2248		/* OK, we're manipulating a HS device attached to a
2249		 * root port bandwidth domain.  Include the number of active TTs
2250		 * in the bandwidth used.
2251		 */
2252		bw_used += TT_HS_OVERHEAD *
2253			xhci->rh_bw[port_index].num_active_tts;
2254	}
2255
2256	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2257		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2258		"Available: %u " "percent",
2259		bw_used, max_bandwidth, bw_reserved,
2260		(max_bandwidth - bw_used - bw_reserved) * 100 /
2261		max_bandwidth);
2262
2263	bw_used += bw_reserved;
2264	if (bw_used > max_bandwidth) {
2265		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2266				bw_used, max_bandwidth);
2267		return -ENOMEM;
2268	}
2269
2270	bw_table->bw_used = bw_used;
2271	return 0;
2272}
2273
2274static bool xhci_is_async_ep(unsigned int ep_type)
2275{
2276	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2277					ep_type != ISOC_IN_EP &&
2278					ep_type != INT_IN_EP);
2279}
2280
2281static bool xhci_is_sync_in_ep(unsigned int ep_type)
2282{
2283	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2284}
2285
2286static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2287{
2288	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2289
2290	if (ep_bw->ep_interval == 0)
2291		return SS_OVERHEAD_BURST +
2292			(ep_bw->mult * ep_bw->num_packets *
2293					(SS_OVERHEAD + mps));
2294	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2295				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2296				1 << ep_bw->ep_interval);
2297
2298}
2299
2300static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2301		struct xhci_bw_info *ep_bw,
2302		struct xhci_interval_bw_table *bw_table,
2303		struct usb_device *udev,
2304		struct xhci_virt_ep *virt_ep,
2305		struct xhci_tt_bw_info *tt_info)
2306{
2307	struct xhci_interval_bw	*interval_bw;
2308	int normalized_interval;
2309
2310	if (xhci_is_async_ep(ep_bw->type))
2311		return;
2312
2313	if (udev->speed >= USB_SPEED_SUPER) {
2314		if (xhci_is_sync_in_ep(ep_bw->type))
2315			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2316				xhci_get_ss_bw_consumed(ep_bw);
2317		else
2318			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2319				xhci_get_ss_bw_consumed(ep_bw);
2320		return;
2321	}
2322
2323	/* SuperSpeed endpoints never get added to intervals in the table, so
2324	 * this check is only valid for HS/FS/LS devices.
2325	 */
2326	if (list_empty(&virt_ep->bw_endpoint_list))
2327		return;
2328	/* For LS/FS devices, we need to translate the interval expressed in
2329	 * microframes to frames.
2330	 */
2331	if (udev->speed == USB_SPEED_HIGH)
2332		normalized_interval = ep_bw->ep_interval;
2333	else
2334		normalized_interval = ep_bw->ep_interval - 3;
2335
2336	if (normalized_interval == 0)
2337		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2338	interval_bw = &bw_table->interval_bw[normalized_interval];
2339	interval_bw->num_packets -= ep_bw->num_packets;
2340	switch (udev->speed) {
2341	case USB_SPEED_LOW:
2342		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2343		break;
2344	case USB_SPEED_FULL:
2345		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2346		break;
2347	case USB_SPEED_HIGH:
2348		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2349		break;
2350	case USB_SPEED_SUPER:
2351	case USB_SPEED_SUPER_PLUS:
2352	case USB_SPEED_UNKNOWN:
2353	case USB_SPEED_WIRELESS:
2354		/* Should never happen because only LS/FS/HS endpoints will get
2355		 * added to the endpoint list.
2356		 */
2357		return;
2358	}
2359	if (tt_info)
2360		tt_info->active_eps -= 1;
2361	list_del_init(&virt_ep->bw_endpoint_list);
2362}
2363
2364static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2365		struct xhci_bw_info *ep_bw,
2366		struct xhci_interval_bw_table *bw_table,
2367		struct usb_device *udev,
2368		struct xhci_virt_ep *virt_ep,
2369		struct xhci_tt_bw_info *tt_info)
2370{
2371	struct xhci_interval_bw	*interval_bw;
2372	struct xhci_virt_ep *smaller_ep;
2373	int normalized_interval;
2374
2375	if (xhci_is_async_ep(ep_bw->type))
2376		return;
2377
2378	if (udev->speed == USB_SPEED_SUPER) {
2379		if (xhci_is_sync_in_ep(ep_bw->type))
2380			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2381				xhci_get_ss_bw_consumed(ep_bw);
2382		else
2383			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2384				xhci_get_ss_bw_consumed(ep_bw);
2385		return;
2386	}
2387
2388	/* For LS/FS devices, we need to translate the interval expressed in
2389	 * microframes to frames.
2390	 */
2391	if (udev->speed == USB_SPEED_HIGH)
2392		normalized_interval = ep_bw->ep_interval;
2393	else
2394		normalized_interval = ep_bw->ep_interval - 3;
2395
2396	if (normalized_interval == 0)
2397		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2398	interval_bw = &bw_table->interval_bw[normalized_interval];
2399	interval_bw->num_packets += ep_bw->num_packets;
2400	switch (udev->speed) {
2401	case USB_SPEED_LOW:
2402		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2403		break;
2404	case USB_SPEED_FULL:
2405		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2406		break;
2407	case USB_SPEED_HIGH:
2408		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2409		break;
2410	case USB_SPEED_SUPER:
2411	case USB_SPEED_SUPER_PLUS:
2412	case USB_SPEED_UNKNOWN:
2413	case USB_SPEED_WIRELESS:
2414		/* Should never happen because only LS/FS/HS endpoints will get
2415		 * added to the endpoint list.
2416		 */
2417		return;
2418	}
2419
2420	if (tt_info)
2421		tt_info->active_eps += 1;
2422	/* Insert the endpoint into the list, largest max packet size first. */
2423	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2424			bw_endpoint_list) {
2425		if (ep_bw->max_packet_size >=
2426				smaller_ep->bw_info.max_packet_size) {
2427			/* Add the new ep before the smaller endpoint */
2428			list_add_tail(&virt_ep->bw_endpoint_list,
2429					&smaller_ep->bw_endpoint_list);
2430			return;
2431		}
2432	}
2433	/* Add the new endpoint at the end of the list. */
2434	list_add_tail(&virt_ep->bw_endpoint_list,
2435			&interval_bw->endpoints);
2436}
2437
2438void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2439		struct xhci_virt_device *virt_dev,
2440		int old_active_eps)
2441{
2442	struct xhci_root_port_bw_info *rh_bw_info;
2443	if (!virt_dev->tt_info)
2444		return;
2445
2446	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2447	if (old_active_eps == 0 &&
2448				virt_dev->tt_info->active_eps != 0) {
2449		rh_bw_info->num_active_tts += 1;
2450		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2451	} else if (old_active_eps != 0 &&
2452				virt_dev->tt_info->active_eps == 0) {
2453		rh_bw_info->num_active_tts -= 1;
2454		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2455	}
2456}
2457
2458static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2459		struct xhci_virt_device *virt_dev,
2460		struct xhci_container_ctx *in_ctx)
2461{
2462	struct xhci_bw_info ep_bw_info[31];
2463	int i;
2464	struct xhci_input_control_ctx *ctrl_ctx;
2465	int old_active_eps = 0;
2466
2467	if (virt_dev->tt_info)
2468		old_active_eps = virt_dev->tt_info->active_eps;
2469
2470	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2471	if (!ctrl_ctx) {
2472		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2473				__func__);
2474		return -ENOMEM;
2475	}
2476
2477	for (i = 0; i < 31; i++) {
2478		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2479			continue;
2480
2481		/* Make a copy of the BW info in case we need to revert this */
2482		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2483				sizeof(ep_bw_info[i]));
2484		/* Drop the endpoint from the interval table if the endpoint is
2485		 * being dropped or changed.
2486		 */
2487		if (EP_IS_DROPPED(ctrl_ctx, i))
2488			xhci_drop_ep_from_interval_table(xhci,
2489					&virt_dev->eps[i].bw_info,
2490					virt_dev->bw_table,
2491					virt_dev->udev,
2492					&virt_dev->eps[i],
2493					virt_dev->tt_info);
2494	}
2495	/* Overwrite the information stored in the endpoints' bw_info */
2496	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2497	for (i = 0; i < 31; i++) {
2498		/* Add any changed or added endpoints to the interval table */
2499		if (EP_IS_ADDED(ctrl_ctx, i))
2500			xhci_add_ep_to_interval_table(xhci,
2501					&virt_dev->eps[i].bw_info,
2502					virt_dev->bw_table,
2503					virt_dev->udev,
2504					&virt_dev->eps[i],
2505					virt_dev->tt_info);
2506	}
2507
2508	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2509		/* Ok, this fits in the bandwidth we have.
2510		 * Update the number of active TTs.
2511		 */
2512		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2513		return 0;
2514	}
2515
2516	/* We don't have enough bandwidth for this, revert the stored info. */
2517	for (i = 0; i < 31; i++) {
2518		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2519			continue;
2520
2521		/* Drop the new copies of any added or changed endpoints from
2522		 * the interval table.
2523		 */
2524		if (EP_IS_ADDED(ctrl_ctx, i)) {
2525			xhci_drop_ep_from_interval_table(xhci,
2526					&virt_dev->eps[i].bw_info,
2527					virt_dev->bw_table,
2528					virt_dev->udev,
2529					&virt_dev->eps[i],
2530					virt_dev->tt_info);
2531		}
2532		/* Revert the endpoint back to its old information */
2533		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2534				sizeof(ep_bw_info[i]));
2535		/* Add any changed or dropped endpoints back into the table */
2536		if (EP_IS_DROPPED(ctrl_ctx, i))
2537			xhci_add_ep_to_interval_table(xhci,
2538					&virt_dev->eps[i].bw_info,
2539					virt_dev->bw_table,
2540					virt_dev->udev,
2541					&virt_dev->eps[i],
2542					virt_dev->tt_info);
2543	}
2544	return -ENOMEM;
2545}
2546
2547
2548/* Issue a configure endpoint command or evaluate context command
2549 * and wait for it to finish.
2550 */
2551static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2552		struct usb_device *udev,
2553		struct xhci_command *command,
2554		bool ctx_change, bool must_succeed)
2555{
2556	int ret;
2557	unsigned long flags;
2558	struct xhci_input_control_ctx *ctrl_ctx;
2559	struct xhci_virt_device *virt_dev;
2560	struct xhci_slot_ctx *slot_ctx;
2561
2562	if (!command)
2563		return -EINVAL;
2564
2565	spin_lock_irqsave(&xhci->lock, flags);
2566
2567	if (xhci->xhc_state & XHCI_STATE_DYING) {
2568		spin_unlock_irqrestore(&xhci->lock, flags);
2569		return -ESHUTDOWN;
2570	}
2571
2572	virt_dev = xhci->devs[udev->slot_id];
2573
2574	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2575	if (!ctrl_ctx) {
2576		spin_unlock_irqrestore(&xhci->lock, flags);
2577		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2578				__func__);
2579		return -ENOMEM;
2580	}
2581
2582	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2583			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2584		spin_unlock_irqrestore(&xhci->lock, flags);
2585		xhci_warn(xhci, "Not enough host resources, "
2586				"active endpoint contexts = %u\n",
2587				xhci->num_active_eps);
2588		return -ENOMEM;
2589	}
2590	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2591	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2592		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2593			xhci_free_host_resources(xhci, ctrl_ctx);
2594		spin_unlock_irqrestore(&xhci->lock, flags);
2595		xhci_warn(xhci, "Not enough bandwidth\n");
2596		return -ENOMEM;
2597	}
2598
2599	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2600	trace_xhci_configure_endpoint(slot_ctx);
2601
2602	if (!ctx_change)
2603		ret = xhci_queue_configure_endpoint(xhci, command,
2604				command->in_ctx->dma,
2605				udev->slot_id, must_succeed);
2606	else
2607		ret = xhci_queue_evaluate_context(xhci, command,
2608				command->in_ctx->dma,
2609				udev->slot_id, must_succeed);
2610	if (ret < 0) {
2611		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2612			xhci_free_host_resources(xhci, ctrl_ctx);
2613		spin_unlock_irqrestore(&xhci->lock, flags);
2614		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2615				"FIXME allocate a new ring segment");
2616		return -ENOMEM;
2617	}
2618	xhci_ring_cmd_db(xhci);
2619	spin_unlock_irqrestore(&xhci->lock, flags);
2620
2621	/* Wait for the configure endpoint command to complete */
2622	wait_for_completion(command->completion);
2623
2624	if (!ctx_change)
2625		ret = xhci_configure_endpoint_result(xhci, udev,
2626						     &command->status);
2627	else
2628		ret = xhci_evaluate_context_result(xhci, udev,
2629						   &command->status);
2630
2631	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2632		spin_lock_irqsave(&xhci->lock, flags);
2633		/* If the command failed, remove the reserved resources.
2634		 * Otherwise, clean up the estimate to include dropped eps.
2635		 */
2636		if (ret)
2637			xhci_free_host_resources(xhci, ctrl_ctx);
2638		else
2639			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2640		spin_unlock_irqrestore(&xhci->lock, flags);
2641	}
2642	return ret;
2643}
2644
2645static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2646	struct xhci_virt_device *vdev, int i)
2647{
2648	struct xhci_virt_ep *ep = &vdev->eps[i];
2649
2650	if (ep->ep_state & EP_HAS_STREAMS) {
2651		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2652				xhci_get_endpoint_address(i));
2653		xhci_free_stream_info(xhci, ep->stream_info);
2654		ep->stream_info = NULL;
2655		ep->ep_state &= ~EP_HAS_STREAMS;
2656	}
2657}
2658
2659/* Called after one or more calls to xhci_add_endpoint() or
2660 * xhci_drop_endpoint().  If this call fails, the USB core is expected
2661 * to call xhci_reset_bandwidth().
2662 *
2663 * Since we are in the middle of changing either configuration or
2664 * installing a new alt setting, the USB core won't allow URBs to be
2665 * enqueued for any endpoint on the old config or interface.  Nothing
2666 * else should be touching the xhci->devs[slot_id] structure, so we
2667 * don't need to take the xhci->lock for manipulating that.
2668 */
2669static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2670{
2671	int i;
2672	int ret = 0;
2673	struct xhci_hcd *xhci;
2674	struct xhci_virt_device	*virt_dev;
2675	struct xhci_input_control_ctx *ctrl_ctx;
2676	struct xhci_slot_ctx *slot_ctx;
2677	struct xhci_command *command;
2678
2679	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2680	if (ret <= 0)
2681		return ret;
2682	xhci = hcd_to_xhci(hcd);
2683	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2684		(xhci->xhc_state & XHCI_STATE_REMOVING))
2685		return -ENODEV;
2686
2687	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2688	virt_dev = xhci->devs[udev->slot_id];
2689
2690	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2691	if (!command)
2692		return -ENOMEM;
2693
2694	command->in_ctx = virt_dev->in_ctx;
2695
2696	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2697	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2698	if (!ctrl_ctx) {
2699		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2700				__func__);
2701		ret = -ENOMEM;
2702		goto command_cleanup;
2703	}
2704	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2705	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2706	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2707
2708	/* Don't issue the command if there's no endpoints to update. */
2709	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2710	    ctrl_ctx->drop_flags == 0) {
2711		ret = 0;
2712		goto command_cleanup;
2713	}
2714	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2715	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2716	for (i = 31; i >= 1; i--) {
2717		__le32 le32 = cpu_to_le32(BIT(i));
2718
2719		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2720		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2721			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2722			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2723			break;
2724		}
2725	}
 
 
 
2726
2727	ret = xhci_configure_endpoint(xhci, udev, command,
2728			false, false);
2729	if (ret)
2730		/* Callee should call reset_bandwidth() */
2731		goto command_cleanup;
2732
 
 
 
 
2733	/* Free any rings that were dropped, but not changed. */
2734	for (i = 1; i < 31; i++) {
2735		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2736		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2737			xhci_free_endpoint_ring(xhci, virt_dev, i);
2738			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2739		}
2740	}
2741	xhci_zero_in_ctx(xhci, virt_dev);
2742	/*
2743	 * Install any rings for completely new endpoints or changed endpoints,
2744	 * and free any old rings from changed endpoints.
2745	 */
2746	for (i = 1; i < 31; i++) {
2747		if (!virt_dev->eps[i].new_ring)
2748			continue;
2749		/* Only free the old ring if it exists.
2750		 * It may not if this is the first add of an endpoint.
2751		 */
2752		if (virt_dev->eps[i].ring) {
2753			xhci_free_endpoint_ring(xhci, virt_dev, i);
2754		}
2755		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2756		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2757		virt_dev->eps[i].new_ring = NULL;
2758	}
2759command_cleanup:
2760	kfree(command->completion);
2761	kfree(command);
2762
2763	return ret;
2764}
2765
2766static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2767{
2768	struct xhci_hcd *xhci;
2769	struct xhci_virt_device	*virt_dev;
2770	int i, ret;
2771
2772	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2773	if (ret <= 0)
2774		return;
2775	xhci = hcd_to_xhci(hcd);
2776
2777	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2778	virt_dev = xhci->devs[udev->slot_id];
2779	/* Free any rings allocated for added endpoints */
2780	for (i = 0; i < 31; i++) {
2781		if (virt_dev->eps[i].new_ring) {
2782			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2783			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2784			virt_dev->eps[i].new_ring = NULL;
2785		}
2786	}
2787	xhci_zero_in_ctx(xhci, virt_dev);
2788}
2789
2790static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2791		struct xhci_container_ctx *in_ctx,
2792		struct xhci_container_ctx *out_ctx,
2793		struct xhci_input_control_ctx *ctrl_ctx,
2794		u32 add_flags, u32 drop_flags)
2795{
2796	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2797	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2798	xhci_slot_copy(xhci, in_ctx, out_ctx);
2799	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
 
 
 
2800}
2801
2802static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2803		unsigned int slot_id, unsigned int ep_index,
2804		struct xhci_dequeue_state *deq_state)
2805{
2806	struct xhci_input_control_ctx *ctrl_ctx;
2807	struct xhci_container_ctx *in_ctx;
2808	struct xhci_ep_ctx *ep_ctx;
2809	u32 added_ctxs;
2810	dma_addr_t addr;
2811
2812	in_ctx = xhci->devs[slot_id]->in_ctx;
2813	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2814	if (!ctrl_ctx) {
2815		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2816				__func__);
2817		return;
2818	}
2819
2820	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2821			xhci->devs[slot_id]->out_ctx, ep_index);
2822	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2823	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2824			deq_state->new_deq_ptr);
2825	if (addr == 0) {
2826		xhci_warn(xhci, "WARN Cannot submit config ep after "
2827				"reset ep command\n");
2828		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2829				deq_state->new_deq_seg,
2830				deq_state->new_deq_ptr);
2831		return;
2832	}
2833	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2834
2835	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2836	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2837			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2838			added_ctxs, added_ctxs);
2839}
2840
2841void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2842			       unsigned int stream_id, struct xhci_td *td)
2843{
2844	struct xhci_dequeue_state deq_state;
 
2845	struct usb_device *udev = td->urb->dev;
2846
2847	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2848			"Cleaning up stalled endpoint ring");
 
2849	/* We need to move the HW's dequeue pointer past this TD,
2850	 * or it will attempt to resend it on the next doorbell ring.
2851	 */
2852	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2853			ep_index, stream_id, td, &deq_state);
2854
2855	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2856		return;
2857
2858	/* HW with the reset endpoint quirk will use the saved dequeue state to
2859	 * issue a configure endpoint command later.
2860	 */
2861	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2862		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2863				"Queueing new dequeue state");
2864		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2865				ep_index, &deq_state);
2866	} else {
2867		/* Better hope no one uses the input context between now and the
2868		 * reset endpoint completion!
2869		 * XXX: No idea how this hardware will react when stream rings
2870		 * are enabled.
2871		 */
2872		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2873				"Setting up input context for "
2874				"configure endpoint command");
2875		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2876				ep_index, &deq_state);
2877	}
2878}
2879
2880/*
2881 * Called after usb core issues a clear halt control message.
2882 * The host side of the halt should already be cleared by a reset endpoint
2883 * command issued when the STALL event was received.
2884 *
2885 * The reset endpoint command may only be issued to endpoints in the halted
2886 * state. For software that wishes to reset the data toggle or sequence number
2887 * of an endpoint that isn't in the halted state this function will issue a
2888 * configure endpoint command with the Drop and Add bits set for the target
2889 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
2890 */
2891
2892static void xhci_endpoint_reset(struct usb_hcd *hcd,
2893		struct usb_host_endpoint *host_ep)
2894{
2895	struct xhci_hcd *xhci;
2896	struct usb_device *udev;
2897	struct xhci_virt_device *vdev;
2898	struct xhci_virt_ep *ep;
2899	struct xhci_input_control_ctx *ctrl_ctx;
2900	struct xhci_command *stop_cmd, *cfg_cmd;
2901	unsigned int ep_index;
2902	unsigned long flags;
2903	u32 ep_flag;
2904
2905	xhci = hcd_to_xhci(hcd);
2906	if (!host_ep->hcpriv)
2907		return;
2908	udev = (struct usb_device *) host_ep->hcpriv;
2909	vdev = xhci->devs[udev->slot_id];
2910	ep_index = xhci_get_endpoint_index(&host_ep->desc);
2911	ep = &vdev->eps[ep_index];
2912
2913	/* Bail out if toggle is already being cleared by a endpoint reset */
2914	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
2915		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
2916		return;
2917	}
2918	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
2919	if (usb_endpoint_xfer_control(&host_ep->desc) ||
2920	    usb_endpoint_xfer_isoc(&host_ep->desc))
2921		return;
2922
2923	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
2924
2925	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
2926		return;
2927
2928	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
2929	if (!stop_cmd)
2930		return;
2931
2932	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
2933	if (!cfg_cmd)
2934		goto cleanup;
2935
2936	spin_lock_irqsave(&xhci->lock, flags);
2937
2938	/* block queuing new trbs and ringing ep doorbell */
2939	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
2940
2941	/*
2942	 * Make sure endpoint ring is empty before resetting the toggle/seq.
2943	 * Driver is required to synchronously cancel all transfer request.
2944	 * Stop the endpoint to force xHC to update the output context
 
 
 
2945	 */
2946
2947	if (!list_empty(&ep->ring->td_list)) {
2948		dev_err(&udev->dev, "EP not empty, refuse reset\n");
2949		spin_unlock_irqrestore(&xhci->lock, flags);
2950		goto cleanup;
2951	}
2952	xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0);
2953	xhci_ring_cmd_db(xhci);
2954	spin_unlock_irqrestore(&xhci->lock, flags);
2955
2956	wait_for_completion(stop_cmd->completion);
2957
2958	spin_lock_irqsave(&xhci->lock, flags);
2959
2960	/* config ep command clears toggle if add and drop ep flags are set */
2961	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
2962	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
2963					   ctrl_ctx, ep_flag, ep_flag);
2964	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
2965
2966	xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
2967				      udev->slot_id, false);
2968	xhci_ring_cmd_db(xhci);
2969	spin_unlock_irqrestore(&xhci->lock, flags);
2970
2971	wait_for_completion(cfg_cmd->completion);
2972
2973	ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
2974	xhci_free_command(xhci, cfg_cmd);
2975cleanup:
2976	xhci_free_command(xhci, stop_cmd);
2977}
2978
2979static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2980		struct usb_device *udev, struct usb_host_endpoint *ep,
2981		unsigned int slot_id)
2982{
2983	int ret;
2984	unsigned int ep_index;
2985	unsigned int ep_state;
2986
2987	if (!ep)
2988		return -EINVAL;
2989	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2990	if (ret <= 0)
2991		return -EINVAL;
2992	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2993		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2994				" descriptor for ep 0x%x does not support streams\n",
2995				ep->desc.bEndpointAddress);
2996		return -EINVAL;
2997	}
2998
2999	ep_index = xhci_get_endpoint_index(&ep->desc);
3000	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3001	if (ep_state & EP_HAS_STREAMS ||
3002			ep_state & EP_GETTING_STREAMS) {
3003		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3004				"already has streams set up.\n",
3005				ep->desc.bEndpointAddress);
3006		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3007				"dynamic stream context array reallocation.\n");
3008		return -EINVAL;
3009	}
3010	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3011		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3012				"endpoint 0x%x; URBs are pending.\n",
3013				ep->desc.bEndpointAddress);
3014		return -EINVAL;
3015	}
3016	return 0;
3017}
3018
3019static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3020		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3021{
3022	unsigned int max_streams;
3023
3024	/* The stream context array size must be a power of two */
3025	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3026	/*
3027	 * Find out how many primary stream array entries the host controller
3028	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3029	 * level page entries), but that's an optional feature for xHCI host
3030	 * controllers. xHCs must support at least 4 stream IDs.
3031	 */
3032	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3033	if (*num_stream_ctxs > max_streams) {
3034		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3035				max_streams);
3036		*num_stream_ctxs = max_streams;
3037		*num_streams = max_streams;
3038	}
3039}
3040
3041/* Returns an error code if one of the endpoint already has streams.
3042 * This does not change any data structures, it only checks and gathers
3043 * information.
3044 */
3045static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3046		struct usb_device *udev,
3047		struct usb_host_endpoint **eps, unsigned int num_eps,
3048		unsigned int *num_streams, u32 *changed_ep_bitmask)
3049{
3050	unsigned int max_streams;
3051	unsigned int endpoint_flag;
3052	int i;
3053	int ret;
3054
3055	for (i = 0; i < num_eps; i++) {
3056		ret = xhci_check_streams_endpoint(xhci, udev,
3057				eps[i], udev->slot_id);
3058		if (ret < 0)
3059			return ret;
3060
3061		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3062		if (max_streams < (*num_streams - 1)) {
3063			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3064					eps[i]->desc.bEndpointAddress,
3065					max_streams);
3066			*num_streams = max_streams+1;
3067		}
3068
3069		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3070		if (*changed_ep_bitmask & endpoint_flag)
3071			return -EINVAL;
3072		*changed_ep_bitmask |= endpoint_flag;
3073	}
3074	return 0;
3075}
3076
3077static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3078		struct usb_device *udev,
3079		struct usb_host_endpoint **eps, unsigned int num_eps)
3080{
3081	u32 changed_ep_bitmask = 0;
3082	unsigned int slot_id;
3083	unsigned int ep_index;
3084	unsigned int ep_state;
3085	int i;
3086
3087	slot_id = udev->slot_id;
3088	if (!xhci->devs[slot_id])
3089		return 0;
3090
3091	for (i = 0; i < num_eps; i++) {
3092		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3093		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3094		/* Are streams already being freed for the endpoint? */
3095		if (ep_state & EP_GETTING_NO_STREAMS) {
3096			xhci_warn(xhci, "WARN Can't disable streams for "
3097					"endpoint 0x%x, "
3098					"streams are being disabled already\n",
3099					eps[i]->desc.bEndpointAddress);
3100			return 0;
3101		}
3102		/* Are there actually any streams to free? */
3103		if (!(ep_state & EP_HAS_STREAMS) &&
3104				!(ep_state & EP_GETTING_STREAMS)) {
3105			xhci_warn(xhci, "WARN Can't disable streams for "
3106					"endpoint 0x%x, "
3107					"streams are already disabled!\n",
3108					eps[i]->desc.bEndpointAddress);
3109			xhci_warn(xhci, "WARN xhci_free_streams() called "
3110					"with non-streams endpoint\n");
3111			return 0;
3112		}
3113		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3114	}
3115	return changed_ep_bitmask;
3116}
3117
3118/*
3119 * The USB device drivers use this function (through the HCD interface in USB
3120 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3121 * coordinate mass storage command queueing across multiple endpoints (basically
3122 * a stream ID == a task ID).
3123 *
3124 * Setting up streams involves allocating the same size stream context array
3125 * for each endpoint and issuing a configure endpoint command for all endpoints.
3126 *
3127 * Don't allow the call to succeed if one endpoint only supports one stream
3128 * (which means it doesn't support streams at all).
3129 *
3130 * Drivers may get less stream IDs than they asked for, if the host controller
3131 * hardware or endpoints claim they can't support the number of requested
3132 * stream IDs.
3133 */
3134static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3135		struct usb_host_endpoint **eps, unsigned int num_eps,
3136		unsigned int num_streams, gfp_t mem_flags)
3137{
3138	int i, ret;
3139	struct xhci_hcd *xhci;
3140	struct xhci_virt_device *vdev;
3141	struct xhci_command *config_cmd;
3142	struct xhci_input_control_ctx *ctrl_ctx;
3143	unsigned int ep_index;
3144	unsigned int num_stream_ctxs;
3145	unsigned int max_packet;
3146	unsigned long flags;
3147	u32 changed_ep_bitmask = 0;
3148
3149	if (!eps)
3150		return -EINVAL;
3151
3152	/* Add one to the number of streams requested to account for
3153	 * stream 0 that is reserved for xHCI usage.
3154	 */
3155	num_streams += 1;
3156	xhci = hcd_to_xhci(hcd);
3157	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3158			num_streams);
3159
3160	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3161	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3162			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3163		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3164		return -ENOSYS;
3165	}
3166
3167	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3168	if (!config_cmd)
 
3169		return -ENOMEM;
3170
3171	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3172	if (!ctrl_ctx) {
3173		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3174				__func__);
3175		xhci_free_command(xhci, config_cmd);
3176		return -ENOMEM;
3177	}
3178
3179	/* Check to make sure all endpoints are not already configured for
3180	 * streams.  While we're at it, find the maximum number of streams that
3181	 * all the endpoints will support and check for duplicate endpoints.
3182	 */
3183	spin_lock_irqsave(&xhci->lock, flags);
3184	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3185			num_eps, &num_streams, &changed_ep_bitmask);
3186	if (ret < 0) {
3187		xhci_free_command(xhci, config_cmd);
3188		spin_unlock_irqrestore(&xhci->lock, flags);
3189		return ret;
3190	}
3191	if (num_streams <= 1) {
3192		xhci_warn(xhci, "WARN: endpoints can't handle "
3193				"more than one stream.\n");
3194		xhci_free_command(xhci, config_cmd);
3195		spin_unlock_irqrestore(&xhci->lock, flags);
3196		return -EINVAL;
3197	}
3198	vdev = xhci->devs[udev->slot_id];
3199	/* Mark each endpoint as being in transition, so
3200	 * xhci_urb_enqueue() will reject all URBs.
3201	 */
3202	for (i = 0; i < num_eps; i++) {
3203		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3204		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3205	}
3206	spin_unlock_irqrestore(&xhci->lock, flags);
3207
3208	/* Setup internal data structures and allocate HW data structures for
3209	 * streams (but don't install the HW structures in the input context
3210	 * until we're sure all memory allocation succeeded).
3211	 */
3212	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3213	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3214			num_stream_ctxs, num_streams);
3215
3216	for (i = 0; i < num_eps; i++) {
3217		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3218		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3219		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3220				num_stream_ctxs,
3221				num_streams,
3222				max_packet, mem_flags);
3223		if (!vdev->eps[ep_index].stream_info)
3224			goto cleanup;
3225		/* Set maxPstreams in endpoint context and update deq ptr to
3226		 * point to stream context array. FIXME
3227		 */
3228	}
3229
3230	/* Set up the input context for a configure endpoint command. */
3231	for (i = 0; i < num_eps; i++) {
3232		struct xhci_ep_ctx *ep_ctx;
3233
3234		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3235		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3236
3237		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3238				vdev->out_ctx, ep_index);
3239		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3240				vdev->eps[ep_index].stream_info);
3241	}
3242	/* Tell the HW to drop its old copy of the endpoint context info
3243	 * and add the updated copy from the input context.
3244	 */
3245	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3246			vdev->out_ctx, ctrl_ctx,
3247			changed_ep_bitmask, changed_ep_bitmask);
3248
3249	/* Issue and wait for the configure endpoint command */
3250	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3251			false, false);
3252
3253	/* xHC rejected the configure endpoint command for some reason, so we
3254	 * leave the old ring intact and free our internal streams data
3255	 * structure.
3256	 */
3257	if (ret < 0)
3258		goto cleanup;
3259
3260	spin_lock_irqsave(&xhci->lock, flags);
3261	for (i = 0; i < num_eps; i++) {
3262		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3263		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3264		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3265			 udev->slot_id, ep_index);
3266		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3267	}
3268	xhci_free_command(xhci, config_cmd);
3269	spin_unlock_irqrestore(&xhci->lock, flags);
3270
3271	/* Subtract 1 for stream 0, which drivers can't use */
3272	return num_streams - 1;
3273
3274cleanup:
3275	/* If it didn't work, free the streams! */
3276	for (i = 0; i < num_eps; i++) {
3277		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3278		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3279		vdev->eps[ep_index].stream_info = NULL;
3280		/* FIXME Unset maxPstreams in endpoint context and
3281		 * update deq ptr to point to normal string ring.
3282		 */
3283		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3284		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3285		xhci_endpoint_zero(xhci, vdev, eps[i]);
3286	}
3287	xhci_free_command(xhci, config_cmd);
3288	return -ENOMEM;
3289}
3290
3291/* Transition the endpoint from using streams to being a "normal" endpoint
3292 * without streams.
3293 *
3294 * Modify the endpoint context state, submit a configure endpoint command,
3295 * and free all endpoint rings for streams if that completes successfully.
3296 */
3297static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3298		struct usb_host_endpoint **eps, unsigned int num_eps,
3299		gfp_t mem_flags)
3300{
3301	int i, ret;
3302	struct xhci_hcd *xhci;
3303	struct xhci_virt_device *vdev;
3304	struct xhci_command *command;
3305	struct xhci_input_control_ctx *ctrl_ctx;
3306	unsigned int ep_index;
3307	unsigned long flags;
3308	u32 changed_ep_bitmask;
3309
3310	xhci = hcd_to_xhci(hcd);
3311	vdev = xhci->devs[udev->slot_id];
3312
3313	/* Set up a configure endpoint command to remove the streams rings */
3314	spin_lock_irqsave(&xhci->lock, flags);
3315	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3316			udev, eps, num_eps);
3317	if (changed_ep_bitmask == 0) {
3318		spin_unlock_irqrestore(&xhci->lock, flags);
3319		return -EINVAL;
3320	}
3321
3322	/* Use the xhci_command structure from the first endpoint.  We may have
3323	 * allocated too many, but the driver may call xhci_free_streams() for
3324	 * each endpoint it grouped into one call to xhci_alloc_streams().
3325	 */
3326	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3327	command = vdev->eps[ep_index].stream_info->free_streams_command;
3328	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3329	if (!ctrl_ctx) {
3330		spin_unlock_irqrestore(&xhci->lock, flags);
3331		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3332				__func__);
3333		return -EINVAL;
3334	}
3335
3336	for (i = 0; i < num_eps; i++) {
3337		struct xhci_ep_ctx *ep_ctx;
3338
3339		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3340		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3341		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3342			EP_GETTING_NO_STREAMS;
3343
3344		xhci_endpoint_copy(xhci, command->in_ctx,
3345				vdev->out_ctx, ep_index);
3346		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3347				&vdev->eps[ep_index]);
3348	}
3349	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3350			vdev->out_ctx, ctrl_ctx,
3351			changed_ep_bitmask, changed_ep_bitmask);
3352	spin_unlock_irqrestore(&xhci->lock, flags);
3353
3354	/* Issue and wait for the configure endpoint command,
3355	 * which must succeed.
3356	 */
3357	ret = xhci_configure_endpoint(xhci, udev, command,
3358			false, true);
3359
3360	/* xHC rejected the configure endpoint command for some reason, so we
3361	 * leave the streams rings intact.
3362	 */
3363	if (ret < 0)
3364		return ret;
3365
3366	spin_lock_irqsave(&xhci->lock, flags);
3367	for (i = 0; i < num_eps; i++) {
3368		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3369		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3370		vdev->eps[ep_index].stream_info = NULL;
3371		/* FIXME Unset maxPstreams in endpoint context and
3372		 * update deq ptr to point to normal string ring.
3373		 */
3374		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3375		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3376	}
3377	spin_unlock_irqrestore(&xhci->lock, flags);
3378
3379	return 0;
3380}
3381
3382/*
3383 * Deletes endpoint resources for endpoints that were active before a Reset
3384 * Device command, or a Disable Slot command.  The Reset Device command leaves
3385 * the control endpoint intact, whereas the Disable Slot command deletes it.
3386 *
3387 * Must be called with xhci->lock held.
3388 */
3389void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3390	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3391{
3392	int i;
3393	unsigned int num_dropped_eps = 0;
3394	unsigned int drop_flags = 0;
3395
3396	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3397		if (virt_dev->eps[i].ring) {
3398			drop_flags |= 1 << i;
3399			num_dropped_eps++;
3400		}
3401	}
3402	xhci->num_active_eps -= num_dropped_eps;
3403	if (num_dropped_eps)
3404		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3405				"Dropped %u ep ctxs, flags = 0x%x, "
3406				"%u now active.",
3407				num_dropped_eps, drop_flags,
3408				xhci->num_active_eps);
3409}
3410
3411/*
3412 * This submits a Reset Device Command, which will set the device state to 0,
3413 * set the device address to 0, and disable all the endpoints except the default
3414 * control endpoint.  The USB core should come back and call
3415 * xhci_address_device(), and then re-set up the configuration.  If this is
3416 * called because of a usb_reset_and_verify_device(), then the old alternate
3417 * settings will be re-installed through the normal bandwidth allocation
3418 * functions.
3419 *
3420 * Wait for the Reset Device command to finish.  Remove all structures
3421 * associated with the endpoints that were disabled.  Clear the input device
3422 * structure? Reset the control endpoint 0 max packet size?
3423 *
3424 * If the virt_dev to be reset does not exist or does not match the udev,
3425 * it means the device is lost, possibly due to the xHC restore error and
3426 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3427 * re-allocate the device.
3428 */
3429static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3430		struct usb_device *udev)
3431{
3432	int ret, i;
3433	unsigned long flags;
3434	struct xhci_hcd *xhci;
3435	unsigned int slot_id;
3436	struct xhci_virt_device *virt_dev;
3437	struct xhci_command *reset_device_cmd;
 
3438	struct xhci_slot_ctx *slot_ctx;
3439	int old_active_eps = 0;
3440
3441	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3442	if (ret <= 0)
3443		return ret;
3444	xhci = hcd_to_xhci(hcd);
3445	slot_id = udev->slot_id;
3446	virt_dev = xhci->devs[slot_id];
3447	if (!virt_dev) {
3448		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3449				"not exist. Re-allocate the device\n", slot_id);
3450		ret = xhci_alloc_dev(hcd, udev);
3451		if (ret == 1)
3452			return 0;
3453		else
3454			return -EINVAL;
3455	}
3456
3457	if (virt_dev->tt_info)
3458		old_active_eps = virt_dev->tt_info->active_eps;
3459
3460	if (virt_dev->udev != udev) {
3461		/* If the virt_dev and the udev does not match, this virt_dev
3462		 * may belong to another udev.
3463		 * Re-allocate the device.
3464		 */
3465		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3466				"not match the udev. Re-allocate the device\n",
3467				slot_id);
3468		ret = xhci_alloc_dev(hcd, udev);
3469		if (ret == 1)
3470			return 0;
3471		else
3472			return -EINVAL;
3473	}
3474
3475	/* If device is not setup, there is no point in resetting it */
3476	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3477	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3478						SLOT_STATE_DISABLED)
3479		return 0;
3480
3481	trace_xhci_discover_or_reset_device(slot_ctx);
3482
3483	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3484	/* Allocate the command structure that holds the struct completion.
3485	 * Assume we're in process context, since the normal device reset
3486	 * process has to wait for the device anyway.  Storage devices are
3487	 * reset as part of error handling, so use GFP_NOIO instead of
3488	 * GFP_KERNEL.
3489	 */
3490	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3491	if (!reset_device_cmd) {
3492		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3493		return -ENOMEM;
3494	}
3495
3496	/* Attempt to submit the Reset Device command to the command ring */
3497	spin_lock_irqsave(&xhci->lock, flags);
3498
3499	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3500	if (ret) {
3501		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3502		spin_unlock_irqrestore(&xhci->lock, flags);
3503		goto command_cleanup;
3504	}
3505	xhci_ring_cmd_db(xhci);
3506	spin_unlock_irqrestore(&xhci->lock, flags);
3507
3508	/* Wait for the Reset Device command to finish */
3509	wait_for_completion(reset_device_cmd->completion);
3510
3511	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3512	 * unless we tried to reset a slot ID that wasn't enabled,
3513	 * or the device wasn't in the addressed or configured state.
3514	 */
3515	ret = reset_device_cmd->status;
3516	switch (ret) {
3517	case COMP_COMMAND_ABORTED:
3518	case COMP_COMMAND_RING_STOPPED:
3519		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3520		ret = -ETIME;
3521		goto command_cleanup;
3522	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3523	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3524		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3525				slot_id,
3526				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3527		xhci_dbg(xhci, "Not freeing device rings.\n");
3528		/* Don't treat this as an error.  May change my mind later. */
3529		ret = 0;
3530		goto command_cleanup;
3531	case COMP_SUCCESS:
3532		xhci_dbg(xhci, "Successful reset device command.\n");
3533		break;
3534	default:
3535		if (xhci_is_vendor_info_code(xhci, ret))
3536			break;
3537		xhci_warn(xhci, "Unknown completion code %u for "
3538				"reset device command.\n", ret);
3539		ret = -EINVAL;
3540		goto command_cleanup;
3541	}
3542
3543	/* Free up host controller endpoint resources */
3544	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3545		spin_lock_irqsave(&xhci->lock, flags);
3546		/* Don't delete the default control endpoint resources */
3547		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3548		spin_unlock_irqrestore(&xhci->lock, flags);
3549	}
3550
3551	/* Everything but endpoint 0 is disabled, so free the rings. */
3552	for (i = 1; i < 31; i++) {
 
3553		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3554
3555		if (ep->ep_state & EP_HAS_STREAMS) {
3556			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3557					xhci_get_endpoint_address(i));
3558			xhci_free_stream_info(xhci, ep->stream_info);
3559			ep->stream_info = NULL;
3560			ep->ep_state &= ~EP_HAS_STREAMS;
3561		}
3562
3563		if (ep->ring) {
3564			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3565			xhci_free_endpoint_ring(xhci, virt_dev, i);
3566		}
3567		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3568			xhci_drop_ep_from_interval_table(xhci,
3569					&virt_dev->eps[i].bw_info,
3570					virt_dev->bw_table,
3571					udev,
3572					&virt_dev->eps[i],
3573					virt_dev->tt_info);
3574		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3575	}
3576	/* If necessary, update the number of active TTs on this root port */
3577	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
 
 
 
3578	ret = 0;
3579
3580command_cleanup:
3581	xhci_free_command(xhci, reset_device_cmd);
3582	return ret;
3583}
3584
3585/*
3586 * At this point, the struct usb_device is about to go away, the device has
3587 * disconnected, and all traffic has been stopped and the endpoints have been
3588 * disabled.  Free any HC data structures associated with that device.
3589 */
3590static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3591{
3592	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3593	struct xhci_virt_device *virt_dev;
3594	struct xhci_slot_ctx *slot_ctx;
 
3595	int i, ret;
 
 
 
 
 
3596
3597#ifndef CONFIG_USB_DEFAULT_PERSIST
3598	/*
3599	 * We called pm_runtime_get_noresume when the device was attached.
3600	 * Decrement the counter here to allow controller to runtime suspend
3601	 * if no devices remain.
3602	 */
3603	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3604		pm_runtime_put_noidle(hcd->self.controller);
3605#endif
3606
3607	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3608	/* If the host is halted due to driver unload, we still need to free the
3609	 * device.
3610	 */
3611	if (ret <= 0 && ret != -ENODEV)
 
3612		return;
 
3613
3614	virt_dev = xhci->devs[udev->slot_id];
3615	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3616	trace_xhci_free_dev(slot_ctx);
3617
3618	/* Stop any wayward timer functions (which may grab the lock) */
3619	for (i = 0; i < 31; i++) {
3620		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3621		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3622	}
3623	xhci_debugfs_remove_slot(xhci, udev->slot_id);
3624	virt_dev->udev = NULL;
3625	ret = xhci_disable_slot(xhci, udev->slot_id);
3626	if (ret)
3627		xhci_free_virt_device(xhci, udev->slot_id);
3628}
3629
3630int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3631{
3632	struct xhci_command *command;
3633	unsigned long flags;
3634	u32 state;
3635	int ret = 0;
3636
3637	command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3638	if (!command)
3639		return -ENOMEM;
3640
3641	spin_lock_irqsave(&xhci->lock, flags);
3642	/* Don't disable the slot if the host controller is dead. */
3643	state = readl(&xhci->op_regs->status);
3644	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3645			(xhci->xhc_state & XHCI_STATE_HALTED)) {
 
3646		spin_unlock_irqrestore(&xhci->lock, flags);
3647		kfree(command);
3648		return -ENODEV;
3649	}
3650
3651	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3652				slot_id);
3653	if (ret) {
3654		spin_unlock_irqrestore(&xhci->lock, flags);
3655		kfree(command);
3656		return ret;
3657	}
3658	xhci_ring_cmd_db(xhci);
3659	spin_unlock_irqrestore(&xhci->lock, flags);
3660	return ret;
 
 
 
 
3661}
3662
3663/*
3664 * Checks if we have enough host controller resources for the default control
3665 * endpoint.
3666 *
3667 * Must be called with xhci->lock held.
3668 */
3669static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3670{
3671	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3672		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3673				"Not enough ep ctxs: "
3674				"%u active, need to add 1, limit is %u.",
3675				xhci->num_active_eps, xhci->limit_active_eps);
3676		return -ENOMEM;
3677	}
3678	xhci->num_active_eps += 1;
3679	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3680			"Adding 1 ep ctx, %u now active.",
3681			xhci->num_active_eps);
3682	return 0;
3683}
3684
3685
3686/*
3687 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3688 * timed out, or allocating memory failed.  Returns 1 on success.
3689 */
3690int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3691{
3692	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3693	struct xhci_virt_device *vdev;
3694	struct xhci_slot_ctx *slot_ctx;
3695	unsigned long flags;
3696	int ret, slot_id;
3697	struct xhci_command *command;
3698
3699	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3700	if (!command)
3701		return 0;
3702
 
 
3703	spin_lock_irqsave(&xhci->lock, flags);
 
3704	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3705	if (ret) {
3706		spin_unlock_irqrestore(&xhci->lock, flags);
 
3707		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3708		xhci_free_command(xhci, command);
3709		return 0;
3710	}
3711	xhci_ring_cmd_db(xhci);
3712	spin_unlock_irqrestore(&xhci->lock, flags);
3713
3714	wait_for_completion(command->completion);
3715	slot_id = command->slot_id;
 
3716
3717	if (!slot_id || command->status != COMP_SUCCESS) {
3718		xhci_err(xhci, "Error while assigning device slot ID\n");
3719		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3720				HCS_MAX_SLOTS(
3721					readl(&xhci->cap_regs->hcs_params1)));
3722		xhci_free_command(xhci, command);
3723		return 0;
3724	}
3725
3726	xhci_free_command(xhci, command);
3727
3728	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3729		spin_lock_irqsave(&xhci->lock, flags);
3730		ret = xhci_reserve_host_control_ep_resources(xhci);
3731		if (ret) {
3732			spin_unlock_irqrestore(&xhci->lock, flags);
3733			xhci_warn(xhci, "Not enough host resources, "
3734					"active endpoint contexts = %u\n",
3735					xhci->num_active_eps);
3736			goto disable_slot;
3737		}
3738		spin_unlock_irqrestore(&xhci->lock, flags);
3739	}
3740	/* Use GFP_NOIO, since this function can be called from
3741	 * xhci_discover_or_reset_device(), which may be called as part of
3742	 * mass storage driver error handling.
3743	 */
3744	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3745		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3746		goto disable_slot;
3747	}
3748	vdev = xhci->devs[slot_id];
3749	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3750	trace_xhci_alloc_dev(slot_ctx);
3751
3752	udev->slot_id = slot_id;
3753
3754	xhci_debugfs_create_slot(xhci, slot_id);
3755
3756#ifndef CONFIG_USB_DEFAULT_PERSIST
3757	/*
3758	 * If resetting upon resume, we can't put the controller into runtime
3759	 * suspend if there is a device attached.
3760	 */
3761	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3762		pm_runtime_get_noresume(hcd->self.controller);
3763#endif
3764
 
 
3765	/* Is this a LS or FS device under a HS hub? */
3766	/* Hub or peripherial? */
3767	return 1;
3768
3769disable_slot:
3770	ret = xhci_disable_slot(xhci, udev->slot_id);
3771	if (ret)
3772		xhci_free_virt_device(xhci, udev->slot_id);
3773
 
 
 
 
3774	return 0;
3775}
3776
3777/*
3778 * Issue an Address Device command and optionally send a corresponding
3779 * SetAddress request to the device.
3780 */
3781static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3782			     enum xhci_setup_dev setup)
3783{
3784	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3785	unsigned long flags;
3786	struct xhci_virt_device *virt_dev;
3787	int ret = 0;
3788	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3789	struct xhci_slot_ctx *slot_ctx;
3790	struct xhci_input_control_ctx *ctrl_ctx;
3791	u64 temp_64;
3792	struct xhci_command *command = NULL;
3793
3794	mutex_lock(&xhci->mutex);
3795
3796	if (xhci->xhc_state) {	/* dying, removing or halted */
3797		ret = -ESHUTDOWN;
3798		goto out;
3799	}
3800
3801	if (!udev->slot_id) {
3802		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3803				"Bad Slot ID %d", udev->slot_id);
3804		ret = -EINVAL;
3805		goto out;
3806	}
3807
3808	virt_dev = xhci->devs[udev->slot_id];
3809
3810	if (WARN_ON(!virt_dev)) {
3811		/*
3812		 * In plug/unplug torture test with an NEC controller,
3813		 * a zero-dereference was observed once due to virt_dev = 0.
3814		 * Print useful debug rather than crash if it is observed again!
3815		 */
3816		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3817			udev->slot_id);
3818		ret = -EINVAL;
3819		goto out;
3820	}
3821	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3822	trace_xhci_setup_device_slot(slot_ctx);
3823
3824	if (setup == SETUP_CONTEXT_ONLY) {
 
3825		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3826		    SLOT_STATE_DEFAULT) {
3827			xhci_dbg(xhci, "Slot already in default state\n");
3828			goto out;
3829		}
3830	}
3831
3832	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3833	if (!command) {
3834		ret = -ENOMEM;
3835		goto out;
3836	}
3837
3838	command->in_ctx = virt_dev->in_ctx;
 
3839
3840	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3841	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3842	if (!ctrl_ctx) {
3843		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3844				__func__);
3845		ret = -EINVAL;
3846		goto out;
3847	}
3848	/*
3849	 * If this is the first Set Address since device plug-in or
3850	 * virt_device realloaction after a resume with an xHCI power loss,
3851	 * then set up the slot context.
3852	 */
3853	if (!slot_ctx->dev_info)
3854		xhci_setup_addressable_virt_dev(xhci, udev);
3855	/* Otherwise, update the control endpoint ring enqueue pointer. */
3856	else
3857		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3858	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3859	ctrl_ctx->drop_flags = 0;
3860
 
 
3861	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3862				le32_to_cpu(slot_ctx->dev_info) >> 27);
3863
3864	spin_lock_irqsave(&xhci->lock, flags);
3865	trace_xhci_setup_device(virt_dev);
3866	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3867					udev->slot_id, setup);
3868	if (ret) {
3869		spin_unlock_irqrestore(&xhci->lock, flags);
3870		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3871				"FIXME: allocate a command ring segment");
3872		goto out;
3873	}
3874	xhci_ring_cmd_db(xhci);
3875	spin_unlock_irqrestore(&xhci->lock, flags);
3876
3877	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3878	wait_for_completion(command->completion);
3879
3880	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3881	 * the SetAddress() "recovery interval" required by USB and aborting the
3882	 * command on a timeout.
3883	 */
3884	switch (command->status) {
3885	case COMP_COMMAND_ABORTED:
3886	case COMP_COMMAND_RING_STOPPED:
3887		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3888		ret = -ETIME;
3889		break;
3890	case COMP_CONTEXT_STATE_ERROR:
3891	case COMP_SLOT_NOT_ENABLED_ERROR:
3892		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3893			 act, udev->slot_id);
3894		ret = -EINVAL;
3895		break;
3896	case COMP_USB_TRANSACTION_ERROR:
3897		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3898
3899		mutex_unlock(&xhci->mutex);
3900		ret = xhci_disable_slot(xhci, udev->slot_id);
3901		if (!ret)
3902			xhci_alloc_dev(hcd, udev);
3903		kfree(command->completion);
3904		kfree(command);
3905		return -EPROTO;
3906	case COMP_INCOMPATIBLE_DEVICE_ERROR:
3907		dev_warn(&udev->dev,
3908			 "ERROR: Incompatible device for setup %s command\n", act);
3909		ret = -ENODEV;
3910		break;
3911	case COMP_SUCCESS:
3912		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3913			       "Successful setup %s command", act);
3914		break;
3915	default:
3916		xhci_err(xhci,
3917			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3918			 act, command->status);
 
 
3919		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3920		ret = -EINVAL;
3921		break;
3922	}
3923	if (ret)
3924		goto out;
3925	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3926	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3927			"Op regs DCBAA ptr = %#016llx", temp_64);
3928	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3929		"Slot ID %d dcbaa entry @%p = %#016llx",
3930		udev->slot_id,
3931		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3932		(unsigned long long)
3933		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3934	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3935			"Output Context DMA address = %#08llx",
3936			(unsigned long long)virt_dev->out_ctx->dma);
 
 
3937	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3938				le32_to_cpu(slot_ctx->dev_info) >> 27);
 
 
3939	/*
3940	 * USB core uses address 1 for the roothubs, so we add one to the
3941	 * address given back to us by the HC.
3942	 */
 
3943	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3944				le32_to_cpu(slot_ctx->dev_info) >> 27);
3945	/* Zero the input context control for later use */
3946	ctrl_ctx->add_flags = 0;
3947	ctrl_ctx->drop_flags = 0;
3948
3949	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3950		       "Internal device address = %d",
3951		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3952out:
3953	mutex_unlock(&xhci->mutex);
3954	if (command) {
3955		kfree(command->completion);
3956		kfree(command);
3957	}
3958	return ret;
3959}
3960
3961static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3962{
3963	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3964}
3965
3966static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3967{
3968	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3969}
3970
3971/*
3972 * Transfer the port index into real index in the HW port status
3973 * registers. Caculate offset between the port's PORTSC register
3974 * and port status base. Divide the number of per port register
3975 * to get the real index. The raw port number bases 1.
3976 */
3977int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3978{
3979	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3980	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3981	__le32 __iomem *addr;
3982	int raw_port;
3983
3984	if (hcd->speed < HCD_USB3)
3985		addr = xhci->usb2_ports[port1 - 1];
3986	else
3987		addr = xhci->usb3_ports[port1 - 1];
3988
3989	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3990	return raw_port;
3991}
3992
3993/*
3994 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3995 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3996 */
3997static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3998			struct usb_device *udev, u16 max_exit_latency)
3999{
4000	struct xhci_virt_device *virt_dev;
4001	struct xhci_command *command;
4002	struct xhci_input_control_ctx *ctrl_ctx;
4003	struct xhci_slot_ctx *slot_ctx;
4004	unsigned long flags;
4005	int ret;
4006
4007	spin_lock_irqsave(&xhci->lock, flags);
4008
4009	virt_dev = xhci->devs[udev->slot_id];
4010
4011	/*
4012	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4013	 * xHC was re-initialized. Exit latency will be set later after
4014	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4015	 */
4016
4017	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4018		spin_unlock_irqrestore(&xhci->lock, flags);
4019		return 0;
4020	}
4021
4022	/* Attempt to issue an Evaluate Context command to change the MEL. */
4023	command = xhci->lpm_command;
4024	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4025	if (!ctrl_ctx) {
4026		spin_unlock_irqrestore(&xhci->lock, flags);
4027		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4028				__func__);
4029		return -ENOMEM;
4030	}
4031
4032	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4033	spin_unlock_irqrestore(&xhci->lock, flags);
4034
4035	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4036	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4037	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4038	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4039	slot_ctx->dev_state = 0;
4040
4041	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4042			"Set up evaluate context for LPM MEL change.");
 
 
4043
4044	/* Issue and wait for the evaluate context command. */
4045	ret = xhci_configure_endpoint(xhci, udev, command,
4046			true, true);
 
 
4047
4048	if (!ret) {
4049		spin_lock_irqsave(&xhci->lock, flags);
4050		virt_dev->current_mel = max_exit_latency;
4051		spin_unlock_irqrestore(&xhci->lock, flags);
4052	}
4053	return ret;
4054}
4055
4056#ifdef CONFIG_PM
4057
4058/* BESL to HIRD Encoding array for USB2 LPM */
4059static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4060	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4061
4062/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4063static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4064					struct usb_device *udev)
4065{
4066	int u2del, besl, besl_host;
4067	int besl_device = 0;
4068	u32 field;
4069
4070	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4071	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4072
4073	if (field & USB_BESL_SUPPORT) {
4074		for (besl_host = 0; besl_host < 16; besl_host++) {
4075			if (xhci_besl_encoding[besl_host] >= u2del)
4076				break;
4077		}
4078		/* Use baseline BESL value as default */
4079		if (field & USB_BESL_BASELINE_VALID)
4080			besl_device = USB_GET_BESL_BASELINE(field);
4081		else if (field & USB_BESL_DEEP_VALID)
4082			besl_device = USB_GET_BESL_DEEP(field);
4083	} else {
4084		if (u2del <= 50)
4085			besl_host = 0;
4086		else
4087			besl_host = (u2del - 51) / 75 + 1;
4088	}
4089
4090	besl = besl_host + besl_device;
4091	if (besl > 15)
4092		besl = 15;
4093
4094	return besl;
4095}
4096
4097/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4098static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4099{
4100	u32 field;
4101	int l1;
4102	int besld = 0;
4103	int hirdm = 0;
4104
4105	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4106
4107	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4108	l1 = udev->l1_params.timeout / 256;
4109
4110	/* device has preferred BESLD */
4111	if (field & USB_BESL_DEEP_VALID) {
4112		besld = USB_GET_BESL_DEEP(field);
4113		hirdm = 1;
4114	}
4115
4116	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4117}
4118
4119static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4120			struct usb_device *udev, int enable)
4121{
4122	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4123	__le32 __iomem	**port_array;
4124	__le32 __iomem	*pm_addr, *hlpm_addr;
4125	u32		pm_val, hlpm_val, field;
4126	unsigned int	port_num;
4127	unsigned long	flags;
4128	int		hird, exit_latency;
4129	int		ret;
4130
4131	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4132			!udev->lpm_capable)
4133		return -EPERM;
4134
4135	if (!udev->parent || udev->parent->parent ||
4136			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4137		return -EPERM;
4138
4139	if (udev->usb2_hw_lpm_capable != 1)
4140		return -EPERM;
4141
4142	spin_lock_irqsave(&xhci->lock, flags);
4143
4144	port_array = xhci->usb2_ports;
4145	port_num = udev->portnum - 1;
4146	pm_addr = port_array[port_num] + PORTPMSC;
4147	pm_val = readl(pm_addr);
4148	hlpm_addr = port_array[port_num] + PORTHLPMC;
4149	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4150
4151	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4152			enable ? "enable" : "disable", port_num + 1);
4153
4154	if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4155		/* Host supports BESL timeout instead of HIRD */
4156		if (udev->usb2_hw_lpm_besl_capable) {
4157			/* if device doesn't have a preferred BESL value use a
4158			 * default one which works with mixed HIRD and BESL
4159			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4160			 */
4161			if ((field & USB_BESL_SUPPORT) &&
4162			    (field & USB_BESL_BASELINE_VALID))
4163				hird = USB_GET_BESL_BASELINE(field);
4164			else
4165				hird = udev->l1_params.besl;
4166
4167			exit_latency = xhci_besl_encoding[hird];
4168			spin_unlock_irqrestore(&xhci->lock, flags);
4169
4170			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4171			 * input context for link powermanagement evaluate
4172			 * context commands. It is protected by hcd->bandwidth
4173			 * mutex and is shared by all devices. We need to set
4174			 * the max ext latency in USB 2 BESL LPM as well, so
4175			 * use the same mutex and xhci_change_max_exit_latency()
4176			 */
4177			mutex_lock(hcd->bandwidth_mutex);
4178			ret = xhci_change_max_exit_latency(xhci, udev,
4179							   exit_latency);
4180			mutex_unlock(hcd->bandwidth_mutex);
4181
4182			if (ret < 0)
4183				return ret;
4184			spin_lock_irqsave(&xhci->lock, flags);
4185
4186			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4187			writel(hlpm_val, hlpm_addr);
4188			/* flush write */
4189			readl(hlpm_addr);
4190		} else {
4191			hird = xhci_calculate_hird_besl(xhci, udev);
4192		}
4193
4194		pm_val &= ~PORT_HIRD_MASK;
4195		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4196		writel(pm_val, pm_addr);
4197		pm_val = readl(pm_addr);
4198		pm_val |= PORT_HLE;
4199		writel(pm_val, pm_addr);
4200		/* flush write */
4201		readl(pm_addr);
4202	} else {
4203		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4204		writel(pm_val, pm_addr);
4205		/* flush write */
4206		readl(pm_addr);
4207		if (udev->usb2_hw_lpm_besl_capable) {
4208			spin_unlock_irqrestore(&xhci->lock, flags);
4209			mutex_lock(hcd->bandwidth_mutex);
4210			xhci_change_max_exit_latency(xhci, udev, 0);
4211			mutex_unlock(hcd->bandwidth_mutex);
4212			return 0;
4213		}
4214	}
4215
4216	spin_unlock_irqrestore(&xhci->lock, flags);
4217	return 0;
4218}
4219
4220/* check if a usb2 port supports a given extened capability protocol
4221 * only USB2 ports extended protocol capability values are cached.
4222 * Return 1 if capability is supported
4223 */
4224static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4225					   unsigned capability)
4226{
4227	u32 port_offset, port_count;
4228	int i;
4229
4230	for (i = 0; i < xhci->num_ext_caps; i++) {
4231		if (xhci->ext_caps[i] & capability) {
4232			/* port offsets starts at 1 */
4233			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4234			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4235			if (port >= port_offset &&
4236			    port < port_offset + port_count)
4237				return 1;
4238		}
4239	}
4240	return 0;
4241}
4242
4243static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4244{
4245	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4246	int		portnum = udev->portnum - 1;
4247
4248	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4249			!udev->lpm_capable)
4250		return 0;
4251
4252	/* we only support lpm for non-hub device connected to root hub yet */
4253	if (!udev->parent || udev->parent->parent ||
4254			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4255		return 0;
4256
4257	if (xhci->hw_lpm_support == 1 &&
4258			xhci_check_usb2_port_capability(
4259				xhci, portnum, XHCI_HLC)) {
4260		udev->usb2_hw_lpm_capable = 1;
4261		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4262		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4263		if (xhci_check_usb2_port_capability(xhci, portnum,
4264					XHCI_BLC))
4265			udev->usb2_hw_lpm_besl_capable = 1;
4266	}
4267
4268	return 0;
4269}
4270
4271/*---------------------- USB 3.0 Link PM functions ------------------------*/
4272
4273/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4274static unsigned long long xhci_service_interval_to_ns(
4275		struct usb_endpoint_descriptor *desc)
4276{
4277	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4278}
4279
4280static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4281		enum usb3_link_state state)
4282{
4283	unsigned long long sel;
4284	unsigned long long pel;
4285	unsigned int max_sel_pel;
4286	char *state_name;
4287
4288	switch (state) {
4289	case USB3_LPM_U1:
4290		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4291		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4292		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4293		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4294		state_name = "U1";
4295		break;
4296	case USB3_LPM_U2:
4297		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4298		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4299		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4300		state_name = "U2";
4301		break;
4302	default:
4303		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4304				__func__);
4305		return USB3_LPM_DISABLED;
4306	}
4307
4308	if (sel <= max_sel_pel && pel <= max_sel_pel)
4309		return USB3_LPM_DEVICE_INITIATED;
4310
4311	if (sel > max_sel_pel)
4312		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4313				"due to long SEL %llu ms\n",
4314				state_name, sel);
4315	else
4316		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4317				"due to long PEL %llu ms\n",
4318				state_name, pel);
4319	return USB3_LPM_DISABLED;
4320}
4321
4322/* The U1 timeout should be the maximum of the following values:
4323 *  - For control endpoints, U1 system exit latency (SEL) * 3
4324 *  - For bulk endpoints, U1 SEL * 5
4325 *  - For interrupt endpoints:
4326 *    - Notification EPs, U1 SEL * 3
4327 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4328 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4329 */
4330static unsigned long long xhci_calculate_intel_u1_timeout(
4331		struct usb_device *udev,
4332		struct usb_endpoint_descriptor *desc)
4333{
4334	unsigned long long timeout_ns;
4335	int ep_type;
4336	int intr_type;
4337
4338	ep_type = usb_endpoint_type(desc);
4339	switch (ep_type) {
4340	case USB_ENDPOINT_XFER_CONTROL:
4341		timeout_ns = udev->u1_params.sel * 3;
4342		break;
4343	case USB_ENDPOINT_XFER_BULK:
4344		timeout_ns = udev->u1_params.sel * 5;
4345		break;
4346	case USB_ENDPOINT_XFER_INT:
4347		intr_type = usb_endpoint_interrupt_type(desc);
4348		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4349			timeout_ns = udev->u1_params.sel * 3;
4350			break;
4351		}
4352		/* Otherwise the calculation is the same as isoc eps */
4353		/* fall through */
4354	case USB_ENDPOINT_XFER_ISOC:
4355		timeout_ns = xhci_service_interval_to_ns(desc);
4356		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4357		if (timeout_ns < udev->u1_params.sel * 2)
4358			timeout_ns = udev->u1_params.sel * 2;
4359		break;
4360	default:
4361		return 0;
4362	}
4363
4364	return timeout_ns;
4365}
4366
4367/* Returns the hub-encoded U1 timeout value. */
4368static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4369		struct usb_device *udev,
4370		struct usb_endpoint_descriptor *desc)
4371{
4372	unsigned long long timeout_ns;
4373
4374	if (xhci->quirks & XHCI_INTEL_HOST)
4375		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4376	else
4377		timeout_ns = udev->u1_params.sel;
4378
4379	/* The U1 timeout is encoded in 1us intervals.
4380	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4381	 */
4382	if (timeout_ns == USB3_LPM_DISABLED)
4383		timeout_ns = 1;
4384	else
4385		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4386
4387	/* If the necessary timeout value is bigger than what we can set in the
4388	 * USB 3.0 hub, we have to disable hub-initiated U1.
4389	 */
4390	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4391		return timeout_ns;
4392	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4393			"due to long timeout %llu ms\n", timeout_ns);
4394	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4395}
4396
4397/* The U2 timeout should be the maximum of:
4398 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4399 *  - largest bInterval of any active periodic endpoint (to avoid going
4400 *    into lower power link states between intervals).
4401 *  - the U2 Exit Latency of the device
4402 */
4403static unsigned long long xhci_calculate_intel_u2_timeout(
4404		struct usb_device *udev,
4405		struct usb_endpoint_descriptor *desc)
4406{
4407	unsigned long long timeout_ns;
4408	unsigned long long u2_del_ns;
4409
4410	timeout_ns = 10 * 1000 * 1000;
4411
4412	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4413			(xhci_service_interval_to_ns(desc) > timeout_ns))
4414		timeout_ns = xhci_service_interval_to_ns(desc);
4415
4416	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4417	if (u2_del_ns > timeout_ns)
4418		timeout_ns = u2_del_ns;
4419
4420	return timeout_ns;
4421}
4422
4423/* Returns the hub-encoded U2 timeout value. */
4424static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4425		struct usb_device *udev,
4426		struct usb_endpoint_descriptor *desc)
4427{
4428	unsigned long long timeout_ns;
4429
4430	if (xhci->quirks & XHCI_INTEL_HOST)
4431		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4432	else
4433		timeout_ns = udev->u2_params.sel;
4434
4435	/* The U2 timeout is encoded in 256us intervals */
4436	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4437	/* If the necessary timeout value is bigger than what we can set in the
4438	 * USB 3.0 hub, we have to disable hub-initiated U2.
4439	 */
4440	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4441		return timeout_ns;
4442	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4443			"due to long timeout %llu ms\n", timeout_ns);
4444	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4445}
4446
4447static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4448		struct usb_device *udev,
4449		struct usb_endpoint_descriptor *desc,
4450		enum usb3_link_state state,
4451		u16 *timeout)
4452{
4453	if (state == USB3_LPM_U1)
4454		return xhci_calculate_u1_timeout(xhci, udev, desc);
4455	else if (state == USB3_LPM_U2)
4456		return xhci_calculate_u2_timeout(xhci, udev, desc);
4457
4458	return USB3_LPM_DISABLED;
4459}
4460
4461static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4462		struct usb_device *udev,
4463		struct usb_endpoint_descriptor *desc,
4464		enum usb3_link_state state,
4465		u16 *timeout)
4466{
4467	u16 alt_timeout;
4468
4469	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4470		desc, state, timeout);
4471
4472	/* If we found we can't enable hub-initiated LPM, or
4473	 * the U1 or U2 exit latency was too high to allow
4474	 * device-initiated LPM as well, just stop searching.
4475	 */
4476	if (alt_timeout == USB3_LPM_DISABLED ||
4477			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4478		*timeout = alt_timeout;
4479		return -E2BIG;
4480	}
4481	if (alt_timeout > *timeout)
4482		*timeout = alt_timeout;
4483	return 0;
4484}
4485
4486static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4487		struct usb_device *udev,
4488		struct usb_host_interface *alt,
4489		enum usb3_link_state state,
4490		u16 *timeout)
4491{
4492	int j;
4493
4494	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4495		if (xhci_update_timeout_for_endpoint(xhci, udev,
4496					&alt->endpoint[j].desc, state, timeout))
4497			return -E2BIG;
4498		continue;
4499	}
4500	return 0;
4501}
4502
4503static int xhci_check_intel_tier_policy(struct usb_device *udev,
4504		enum usb3_link_state state)
4505{
4506	struct usb_device *parent;
4507	unsigned int num_hubs;
4508
4509	if (state == USB3_LPM_U2)
4510		return 0;
4511
4512	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4513	for (parent = udev->parent, num_hubs = 0; parent->parent;
4514			parent = parent->parent)
4515		num_hubs++;
4516
4517	if (num_hubs < 2)
4518		return 0;
4519
4520	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4521			" below second-tier hub.\n");
4522	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4523			"to decrease power consumption.\n");
4524	return -E2BIG;
4525}
4526
4527static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4528		struct usb_device *udev,
4529		enum usb3_link_state state)
4530{
4531	if (xhci->quirks & XHCI_INTEL_HOST)
4532		return xhci_check_intel_tier_policy(udev, state);
4533	else
4534		return 0;
4535}
4536
4537/* Returns the U1 or U2 timeout that should be enabled.
4538 * If the tier check or timeout setting functions return with a non-zero exit
4539 * code, that means the timeout value has been finalized and we shouldn't look
4540 * at any more endpoints.
4541 */
4542static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4543			struct usb_device *udev, enum usb3_link_state state)
4544{
4545	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4546	struct usb_host_config *config;
4547	char *state_name;
4548	int i;
4549	u16 timeout = USB3_LPM_DISABLED;
4550
4551	if (state == USB3_LPM_U1)
4552		state_name = "U1";
4553	else if (state == USB3_LPM_U2)
4554		state_name = "U2";
4555	else {
4556		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4557				state);
4558		return timeout;
4559	}
4560
4561	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4562		return timeout;
4563
4564	/* Gather some information about the currently installed configuration
4565	 * and alternate interface settings.
4566	 */
4567	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4568			state, &timeout))
4569		return timeout;
4570
4571	config = udev->actconfig;
4572	if (!config)
4573		return timeout;
4574
4575	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4576		struct usb_driver *driver;
4577		struct usb_interface *intf = config->interface[i];
4578
4579		if (!intf)
4580			continue;
4581
4582		/* Check if any currently bound drivers want hub-initiated LPM
4583		 * disabled.
4584		 */
4585		if (intf->dev.driver) {
4586			driver = to_usb_driver(intf->dev.driver);
4587			if (driver && driver->disable_hub_initiated_lpm) {
4588				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4589						"at request of driver %s\n",
4590						state_name, driver->name);
4591				return xhci_get_timeout_no_hub_lpm(udev, state);
4592			}
4593		}
4594
4595		/* Not sure how this could happen... */
4596		if (!intf->cur_altsetting)
4597			continue;
4598
4599		if (xhci_update_timeout_for_interface(xhci, udev,
4600					intf->cur_altsetting,
4601					state, &timeout))
4602			return timeout;
4603	}
4604	return timeout;
4605}
4606
4607static int calculate_max_exit_latency(struct usb_device *udev,
4608		enum usb3_link_state state_changed,
4609		u16 hub_encoded_timeout)
4610{
4611	unsigned long long u1_mel_us = 0;
4612	unsigned long long u2_mel_us = 0;
4613	unsigned long long mel_us = 0;
4614	bool disabling_u1;
4615	bool disabling_u2;
4616	bool enabling_u1;
4617	bool enabling_u2;
4618
4619	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4620			hub_encoded_timeout == USB3_LPM_DISABLED);
4621	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4622			hub_encoded_timeout == USB3_LPM_DISABLED);
4623
4624	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4625			hub_encoded_timeout != USB3_LPM_DISABLED);
4626	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4627			hub_encoded_timeout != USB3_LPM_DISABLED);
4628
4629	/* If U1 was already enabled and we're not disabling it,
4630	 * or we're going to enable U1, account for the U1 max exit latency.
4631	 */
4632	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4633			enabling_u1)
4634		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4635	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4636			enabling_u2)
4637		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4638
4639	if (u1_mel_us > u2_mel_us)
4640		mel_us = u1_mel_us;
4641	else
4642		mel_us = u2_mel_us;
4643	/* xHCI host controller max exit latency field is only 16 bits wide. */
4644	if (mel_us > MAX_EXIT) {
4645		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4646				"is too big.\n", mel_us);
4647		return -E2BIG;
4648	}
4649	return mel_us;
4650}
4651
4652/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4653static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4654			struct usb_device *udev, enum usb3_link_state state)
4655{
4656	struct xhci_hcd	*xhci;
4657	u16 hub_encoded_timeout;
4658	int mel;
4659	int ret;
4660
4661	xhci = hcd_to_xhci(hcd);
4662	/* The LPM timeout values are pretty host-controller specific, so don't
4663	 * enable hub-initiated timeouts unless the vendor has provided
4664	 * information about their timeout algorithm.
4665	 */
4666	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4667			!xhci->devs[udev->slot_id])
4668		return USB3_LPM_DISABLED;
4669
4670	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4671	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4672	if (mel < 0) {
4673		/* Max Exit Latency is too big, disable LPM. */
4674		hub_encoded_timeout = USB3_LPM_DISABLED;
4675		mel = 0;
4676	}
4677
4678	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4679	if (ret)
4680		return ret;
4681	return hub_encoded_timeout;
4682}
4683
4684static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4685			struct usb_device *udev, enum usb3_link_state state)
4686{
4687	struct xhci_hcd	*xhci;
4688	u16 mel;
4689
4690	xhci = hcd_to_xhci(hcd);
4691	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4692			!xhci->devs[udev->slot_id])
4693		return 0;
4694
4695	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4696	return xhci_change_max_exit_latency(xhci, udev, mel);
4697}
4698#else /* CONFIG_PM */
4699
4700static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4701				struct usb_device *udev, int enable)
4702{
4703	return 0;
4704}
4705
4706static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4707{
4708	return 0;
4709}
4710
4711static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4712			struct usb_device *udev, enum usb3_link_state state)
4713{
4714	return USB3_LPM_DISABLED;
4715}
4716
4717static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4718			struct usb_device *udev, enum usb3_link_state state)
4719{
4720	return 0;
4721}
4722#endif	/* CONFIG_PM */
4723
4724/*-------------------------------------------------------------------------*/
4725
4726/* Once a hub descriptor is fetched for a device, we need to update the xHC's
4727 * internal data structures for the device.
4728 */
4729static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4730			struct usb_tt *tt, gfp_t mem_flags)
4731{
4732	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4733	struct xhci_virt_device *vdev;
4734	struct xhci_command *config_cmd;
4735	struct xhci_input_control_ctx *ctrl_ctx;
4736	struct xhci_slot_ctx *slot_ctx;
4737	unsigned long flags;
4738	unsigned think_time;
4739	int ret;
4740
4741	/* Ignore root hubs */
4742	if (!hdev->parent)
4743		return 0;
4744
4745	vdev = xhci->devs[hdev->slot_id];
4746	if (!vdev) {
4747		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4748		return -EINVAL;
4749	}
4750
4751	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4752	if (!config_cmd)
4753		return -ENOMEM;
4754
4755	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4756	if (!ctrl_ctx) {
4757		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4758				__func__);
4759		xhci_free_command(xhci, config_cmd);
4760		return -ENOMEM;
4761	}
4762
4763	spin_lock_irqsave(&xhci->lock, flags);
4764	if (hdev->speed == USB_SPEED_HIGH &&
4765			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4766		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4767		xhci_free_command(xhci, config_cmd);
4768		spin_unlock_irqrestore(&xhci->lock, flags);
4769		return -ENOMEM;
4770	}
4771
4772	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4773	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4774	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4775	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4776	/*
4777	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4778	 * but it may be already set to 1 when setup an xHCI virtual
4779	 * device, so clear it anyway.
4780	 */
4781	if (tt->multi)
4782		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4783	else if (hdev->speed == USB_SPEED_FULL)
4784		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4785
4786	if (xhci->hci_version > 0x95) {
4787		xhci_dbg(xhci, "xHCI version %x needs hub "
4788				"TT think time and number of ports\n",
4789				(unsigned int) xhci->hci_version);
4790		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4791		/* Set TT think time - convert from ns to FS bit times.
4792		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4793		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4794		 *
4795		 * xHCI 1.0: this field shall be 0 if the device is not a
4796		 * High-spped hub.
4797		 */
4798		think_time = tt->think_time;
4799		if (think_time != 0)
4800			think_time = (think_time / 666) - 1;
4801		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4802			slot_ctx->tt_info |=
4803				cpu_to_le32(TT_THINK_TIME(think_time));
4804	} else {
4805		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4806				"TT think time or number of ports\n",
4807				(unsigned int) xhci->hci_version);
4808	}
4809	slot_ctx->dev_state = 0;
4810	spin_unlock_irqrestore(&xhci->lock, flags);
4811
4812	xhci_dbg(xhci, "Set up %s for hub device.\n",
4813			(xhci->hci_version > 0x95) ?
4814			"configure endpoint" : "evaluate context");
 
 
4815
4816	/* Issue and wait for the configure endpoint or
4817	 * evaluate context command.
4818	 */
4819	if (xhci->hci_version > 0x95)
4820		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4821				false, false);
4822	else
4823		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4824				true, false);
4825
 
 
 
4826	xhci_free_command(xhci, config_cmd);
4827	return ret;
4828}
4829
4830static int xhci_get_frame(struct usb_hcd *hcd)
4831{
4832	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4833	/* EHCI mods by the periodic size.  Why? */
4834	return readl(&xhci->run_regs->microframe_index) >> 3;
4835}
4836
4837int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4838{
4839	struct xhci_hcd		*xhci;
4840	/*
4841	 * TODO: Check with DWC3 clients for sysdev according to
4842	 * quirks
4843	 */
4844	struct device		*dev = hcd->self.sysdev;
4845	unsigned int		minor_rev;
4846	int			retval;
4847
4848	/* Accept arbitrarily long scatter-gather lists */
4849	hcd->self.sg_tablesize = ~0;
4850
4851	/* support to build packet from discontinuous buffers */
4852	hcd->self.no_sg_constraint = 1;
4853
4854	/* XHCI controllers don't stop the ep queue on short packets :| */
4855	hcd->self.no_stop_on_short = 1;
4856
4857	xhci = hcd_to_xhci(hcd);
4858
4859	if (usb_hcd_is_primary_hcd(hcd)) {
4860		xhci->main_hcd = hcd;
4861		/* Mark the first roothub as being USB 2.0.
4862		 * The xHCI driver will register the USB 3.0 roothub.
4863		 */
4864		hcd->speed = HCD_USB2;
4865		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4866		/*
4867		 * USB 2.0 roothub under xHCI has an integrated TT,
4868		 * (rate matching hub) as opposed to having an OHCI/UHCI
4869		 * companion controller.
4870		 */
4871		hcd->has_tt = 1;
4872	} else {
4873		/*
4874		 * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol
4875		 * minor revision instead of sbrn
4876		 */
4877		minor_rev = xhci->usb3_rhub.min_rev;
4878		if (minor_rev) {
4879			hcd->speed = HCD_USB31;
4880			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4881		}
4882		xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n",
4883			  minor_rev,
4884			  minor_rev ? "Enhanced" : "");
4885
4886		/* xHCI private pointer was set in xhci_pci_probe for the second
4887		 * registered roothub.
4888		 */
4889		return 0;
4890	}
4891
4892	mutex_init(&xhci->mutex);
4893	xhci->cap_regs = hcd->regs;
4894	xhci->op_regs = hcd->regs +
4895		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4896	xhci->run_regs = hcd->regs +
4897		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4898	/* Cache read-only capability registers */
4899	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4900	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4901	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4902	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4903	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4904	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4905	if (xhci->hci_version > 0x100)
4906		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
 
4907
4908	xhci->quirks |= quirks;
4909
4910	get_quirks(dev, xhci);
4911
4912	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4913	 * success event after a short transfer. This quirk will ignore such
4914	 * spurious event.
4915	 */
4916	if (xhci->hci_version > 0x96)
4917		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4918
4919	/* Make sure the HC is halted. */
4920	retval = xhci_halt(xhci);
4921	if (retval)
4922		return retval;
4923
4924	xhci_dbg(xhci, "Resetting HCD\n");
4925	/* Reset the internal HC memory state and registers. */
4926	retval = xhci_reset(xhci);
4927	if (retval)
4928		return retval;
4929	xhci_dbg(xhci, "Reset complete\n");
4930
4931	/*
4932	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4933	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4934	 * address memory pointers actually. So, this driver clears the AC64
4935	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4936	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4937	 */
4938	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4939		xhci->hcc_params &= ~BIT(0);
4940
4941	/* Set dma_mask and coherent_dma_mask to 64-bits,
4942	 * if xHC supports 64-bit addressing */
4943	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4944			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4945		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4946		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4947	} else {
4948		/*
4949		 * This is to avoid error in cases where a 32-bit USB
4950		 * controller is used on a 64-bit capable system.
4951		 */
4952		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4953		if (retval)
4954			return retval;
4955		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4956		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4957	}
4958
4959	xhci_dbg(xhci, "Calling HCD init\n");
4960	/* Initialize HCD and host controller data structures. */
4961	retval = xhci_init(hcd);
4962	if (retval)
4963		return retval;
4964	xhci_dbg(xhci, "Called HCD init\n");
4965
4966	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4967		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4968
4969	return 0;
4970}
4971EXPORT_SYMBOL_GPL(xhci_gen_setup);
4972
4973static const struct hc_driver xhci_hc_driver = {
4974	.description =		"xhci-hcd",
4975	.product_desc =		"xHCI Host Controller",
4976	.hcd_priv_size =	sizeof(struct xhci_hcd),
4977
4978	/*
4979	 * generic hardware linkage
4980	 */
4981	.irq =			xhci_irq,
4982	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4983
4984	/*
4985	 * basic lifecycle operations
4986	 */
4987	.reset =		NULL, /* set in xhci_init_driver() */
4988	.start =		xhci_run,
4989	.stop =			xhci_stop,
4990	.shutdown =		xhci_shutdown,
4991
4992	/*
4993	 * managing i/o requests and associated device resources
4994	 */
4995	.urb_enqueue =		xhci_urb_enqueue,
4996	.urb_dequeue =		xhci_urb_dequeue,
4997	.alloc_dev =		xhci_alloc_dev,
4998	.free_dev =		xhci_free_dev,
4999	.alloc_streams =	xhci_alloc_streams,
5000	.free_streams =		xhci_free_streams,
5001	.add_endpoint =		xhci_add_endpoint,
5002	.drop_endpoint =	xhci_drop_endpoint,
5003	.endpoint_reset =	xhci_endpoint_reset,
5004	.check_bandwidth =	xhci_check_bandwidth,
5005	.reset_bandwidth =	xhci_reset_bandwidth,
5006	.address_device =	xhci_address_device,
5007	.enable_device =	xhci_enable_device,
5008	.update_hub_device =	xhci_update_hub_device,
5009	.reset_device =		xhci_discover_or_reset_device,
5010
5011	/*
5012	 * scheduling support
5013	 */
5014	.get_frame_number =	xhci_get_frame,
5015
5016	/*
5017	 * root hub support
5018	 */
5019	.hub_control =		xhci_hub_control,
5020	.hub_status_data =	xhci_hub_status_data,
5021	.bus_suspend =		xhci_bus_suspend,
5022	.bus_resume =		xhci_bus_resume,
5023
5024	/*
5025	 * call back when device connected and addressed
5026	 */
5027	.update_device =        xhci_update_device,
5028	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5029	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5030	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5031	.find_raw_port_number =	xhci_find_raw_port_number,
5032};
5033
5034void xhci_init_driver(struct hc_driver *drv,
5035		      const struct xhci_driver_overrides *over)
5036{
5037	BUG_ON(!over);
5038
5039	/* Copy the generic table to drv then apply the overrides */
5040	*drv = xhci_hc_driver;
5041
5042	if (over) {
5043		drv->hcd_priv_size += over->extra_priv_size;
5044		if (over->reset)
5045			drv->reset = over->reset;
5046		if (over->start)
5047			drv->start = over->start;
5048	}
5049}
5050EXPORT_SYMBOL_GPL(xhci_init_driver);
5051
5052MODULE_DESCRIPTION(DRIVER_DESC);
5053MODULE_AUTHOR(DRIVER_AUTHOR);
5054MODULE_LICENSE("GPL");
5055
5056static int __init xhci_hcd_init(void)
5057{
5058	/*
5059	 * Check the compiler generated sizes of structures that must be laid
5060	 * out in specific ways for hardware access.
5061	 */
5062	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5063	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5064	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5065	/* xhci_device_control has eight fields, and also
5066	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5067	 */
5068	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5069	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5070	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5071	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5072	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5073	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5074	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5075
5076	if (usb_disabled())
5077		return -ENODEV;
5078
5079	xhci_debugfs_create_root();
5080
5081	return 0;
5082}
5083
5084/*
5085 * If an init function is provided, an exit function must also be provided
5086 * to allow module unload.
5087 */
5088static void __exit xhci_hcd_fini(void)
5089{
5090	xhci_debugfs_remove_root();
5091}
5092
5093module_init(xhci_hcd_init);
5094module_exit(xhci_hcd_fini);
v4.6
 
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/pci.h>
  24#include <linux/irq.h>
  25#include <linux/log2.h>
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
  28#include <linux/slab.h>
  29#include <linux/dmi.h>
  30#include <linux/dma-mapping.h>
  31
  32#include "xhci.h"
  33#include "xhci-trace.h"
  34#include "xhci-mtk.h"
 
 
  35
  36#define DRIVER_AUTHOR "Sarah Sharp"
  37#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  38
  39#define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
  40
  41/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  42static int link_quirk;
  43module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  44MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  45
  46static unsigned int quirks;
  47module_param(quirks, uint, S_IRUGO);
  48MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
  49
  50/* TODO: copied from ehci-hcd.c - can this be refactored? */
  51/*
  52 * xhci_handshake - spin reading hc until handshake completes or fails
  53 * @ptr: address of hc register to be read
  54 * @mask: bits to look at in result of read
  55 * @done: value of those bits when handshake succeeds
  56 * @usec: timeout in microseconds
  57 *
  58 * Returns negative errno, or zero on success
  59 *
  60 * Success happens when the "mask" bits have the specified value (hardware
  61 * handshake done).  There are two failure modes:  "usec" have passed (major
  62 * hardware flakeout), or the register reads as all-ones (hardware removed).
  63 */
  64int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
  65{
  66	u32	result;
  67
  68	do {
  69		result = readl(ptr);
  70		if (result == ~(u32)0)		/* card removed */
  71			return -ENODEV;
  72		result &= mask;
  73		if (result == done)
  74			return 0;
  75		udelay(1);
  76		usec--;
  77	} while (usec > 0);
  78	return -ETIMEDOUT;
  79}
  80
  81/*
  82 * Disable interrupts and begin the xHCI halting process.
  83 */
  84void xhci_quiesce(struct xhci_hcd *xhci)
  85{
  86	u32 halted;
  87	u32 cmd;
  88	u32 mask;
  89
  90	mask = ~(XHCI_IRQS);
  91	halted = readl(&xhci->op_regs->status) & STS_HALT;
  92	if (!halted)
  93		mask &= ~CMD_RUN;
  94
  95	cmd = readl(&xhci->op_regs->command);
  96	cmd &= mask;
  97	writel(cmd, &xhci->op_regs->command);
  98}
  99
 100/*
 101 * Force HC into halt state.
 102 *
 103 * Disable any IRQs and clear the run/stop bit.
 104 * HC will complete any current and actively pipelined transactions, and
 105 * should halt within 16 ms of the run/stop bit being cleared.
 106 * Read HC Halted bit in the status register to see when the HC is finished.
 107 */
 108int xhci_halt(struct xhci_hcd *xhci)
 109{
 110	int ret;
 111	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
 112	xhci_quiesce(xhci);
 113
 114	ret = xhci_handshake(&xhci->op_regs->status,
 115			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 116	if (!ret) {
 117		xhci->xhc_state |= XHCI_STATE_HALTED;
 118		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 119	} else
 120		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
 121				XHCI_MAX_HALT_USEC);
 122	return ret;
 123}
 124
 125/*
 126 * Set the run bit and wait for the host to be running.
 127 */
 128static int xhci_start(struct xhci_hcd *xhci)
 129{
 130	u32 temp;
 131	int ret;
 132
 133	temp = readl(&xhci->op_regs->command);
 134	temp |= (CMD_RUN);
 135	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
 136			temp);
 137	writel(temp, &xhci->op_regs->command);
 138
 139	/*
 140	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 141	 * running.
 142	 */
 143	ret = xhci_handshake(&xhci->op_regs->status,
 144			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 145	if (ret == -ETIMEDOUT)
 146		xhci_err(xhci, "Host took too long to start, "
 147				"waited %u microseconds.\n",
 148				XHCI_MAX_HALT_USEC);
 149	if (!ret)
 150		/* clear state flags. Including dying, halted or removing */
 151		xhci->xhc_state = 0;
 152
 153	return ret;
 154}
 155
 156/*
 157 * Reset a halted HC.
 158 *
 159 * This resets pipelines, timers, counters, state machines, etc.
 160 * Transactions will be terminated immediately, and operational registers
 161 * will be set to their defaults.
 162 */
 163int xhci_reset(struct xhci_hcd *xhci)
 164{
 165	u32 command;
 166	u32 state;
 167	int ret, i;
 168
 169	state = readl(&xhci->op_regs->status);
 
 
 
 
 
 
 170	if ((state & STS_HALT) == 0) {
 171		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 172		return 0;
 173	}
 174
 175	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
 176	command = readl(&xhci->op_regs->command);
 177	command |= CMD_RESET;
 178	writel(command, &xhci->op_regs->command);
 179
 180	/* Existing Intel xHCI controllers require a delay of 1 mS,
 181	 * after setting the CMD_RESET bit, and before accessing any
 182	 * HC registers. This allows the HC to complete the
 183	 * reset operation and be ready for HC register access.
 184	 * Without this delay, the subsequent HC register access,
 185	 * may result in a system hang very rarely.
 186	 */
 187	if (xhci->quirks & XHCI_INTEL_HOST)
 188		udelay(1000);
 189
 190	ret = xhci_handshake(&xhci->op_regs->command,
 191			CMD_RESET, 0, 10 * 1000 * 1000);
 192	if (ret)
 193		return ret;
 194
 
 
 
 195	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 196			 "Wait for controller to be ready for doorbell rings");
 197	/*
 198	 * xHCI cannot write to any doorbells or operational registers other
 199	 * than status until the "Controller Not Ready" flag is cleared.
 200	 */
 201	ret = xhci_handshake(&xhci->op_regs->status,
 202			STS_CNR, 0, 10 * 1000 * 1000);
 203
 204	for (i = 0; i < 2; ++i) {
 205		xhci->bus_state[i].port_c_suspend = 0;
 206		xhci->bus_state[i].suspended_ports = 0;
 207		xhci->bus_state[i].resuming_ports = 0;
 208	}
 209
 210	return ret;
 211}
 212
 213#ifdef CONFIG_PCI
 214static int xhci_free_msi(struct xhci_hcd *xhci)
 215{
 216	int i;
 217
 218	if (!xhci->msix_entries)
 219		return -EINVAL;
 220
 221	for (i = 0; i < xhci->msix_count; i++)
 222		if (xhci->msix_entries[i].vector)
 223			free_irq(xhci->msix_entries[i].vector,
 224					xhci_to_hcd(xhci));
 225	return 0;
 226}
 227
 
 228/*
 229 * Set up MSI
 230 */
 231static int xhci_setup_msi(struct xhci_hcd *xhci)
 232{
 233	int ret;
 
 
 
 234	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 235
 236	ret = pci_enable_msi(pdev);
 237	if (ret) {
 238		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 239				"failed to allocate MSI entry");
 240		return ret;
 241	}
 242
 243	ret = request_irq(pdev->irq, xhci_msi_irq,
 244				0, "xhci_hcd", xhci_to_hcd(xhci));
 245	if (ret) {
 246		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 247				"disable MSI interrupt");
 248		pci_disable_msi(pdev);
 249	}
 250
 251	return ret;
 252}
 253
 254/*
 255 * Free IRQs
 256 * free all IRQs request
 257 */
 258static void xhci_free_irq(struct xhci_hcd *xhci)
 259{
 260	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 261	int ret;
 262
 263	/* return if using legacy interrupt */
 264	if (xhci_to_hcd(xhci)->irq > 0)
 265		return;
 266
 267	ret = xhci_free_msi(xhci);
 268	if (!ret)
 269		return;
 270	if (pdev->irq > 0)
 271		free_irq(pdev->irq, xhci_to_hcd(xhci));
 272
 273	return;
 274}
 275
 276/*
 277 * Set up MSI-X
 278 */
 279static int xhci_setup_msix(struct xhci_hcd *xhci)
 280{
 281	int i, ret = 0;
 282	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 283	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 284
 285	/*
 286	 * calculate number of msi-x vectors supported.
 287	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
 288	 *   with max number of interrupters based on the xhci HCSPARAMS1.
 289	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
 290	 *   Add additional 1 vector to ensure always available interrupt.
 291	 */
 292	xhci->msix_count = min(num_online_cpus() + 1,
 293				HCS_MAX_INTRS(xhci->hcs_params1));
 294
 295	xhci->msix_entries =
 296		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
 297				GFP_KERNEL);
 298	if (!xhci->msix_entries) {
 299		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
 300		return -ENOMEM;
 301	}
 302
 303	for (i = 0; i < xhci->msix_count; i++) {
 304		xhci->msix_entries[i].entry = i;
 305		xhci->msix_entries[i].vector = 0;
 306	}
 307
 308	ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
 309	if (ret) {
 310		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 311				"Failed to enable MSI-X");
 312		goto free_entries;
 313	}
 314
 315	for (i = 0; i < xhci->msix_count; i++) {
 316		ret = request_irq(xhci->msix_entries[i].vector,
 317				xhci_msi_irq,
 318				0, "xhci_hcd", xhci_to_hcd(xhci));
 319		if (ret)
 320			goto disable_msix;
 321	}
 322
 323	hcd->msix_enabled = 1;
 324	return ret;
 325
 326disable_msix:
 327	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
 328	xhci_free_irq(xhci);
 329	pci_disable_msix(pdev);
 330free_entries:
 331	kfree(xhci->msix_entries);
 332	xhci->msix_entries = NULL;
 333	return ret;
 334}
 335
 336/* Free any IRQs and disable MSI-X */
 337static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 338{
 339	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 340	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 341
 342	if (xhci->quirks & XHCI_PLAT)
 343		return;
 344
 345	xhci_free_irq(xhci);
 
 
 
 
 
 346
 347	if (xhci->msix_entries) {
 348		pci_disable_msix(pdev);
 349		kfree(xhci->msix_entries);
 350		xhci->msix_entries = NULL;
 351	} else {
 352		pci_disable_msi(pdev);
 353	}
 354
 
 355	hcd->msix_enabled = 0;
 356	return;
 357}
 358
 359static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 360{
 361	int i;
 
 
 
 
 362
 363	if (xhci->msix_entries) {
 364		for (i = 0; i < xhci->msix_count; i++)
 365			synchronize_irq(xhci->msix_entries[i].vector);
 366	}
 367}
 368
 369static int xhci_try_enable_msi(struct usb_hcd *hcd)
 370{
 371	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 372	struct pci_dev  *pdev;
 373	int ret;
 374
 375	/* The xhci platform device has set up IRQs through usb_add_hcd. */
 376	if (xhci->quirks & XHCI_PLAT)
 377		return 0;
 378
 379	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 380	/*
 381	 * Some Fresco Logic host controllers advertise MSI, but fail to
 382	 * generate interrupts.  Don't even try to enable MSI.
 383	 */
 384	if (xhci->quirks & XHCI_BROKEN_MSI)
 385		goto legacy_irq;
 386
 387	/* unregister the legacy interrupt */
 388	if (hcd->irq)
 389		free_irq(hcd->irq, hcd);
 390	hcd->irq = 0;
 391
 392	ret = xhci_setup_msix(xhci);
 393	if (ret)
 394		/* fall back to msi*/
 395		ret = xhci_setup_msi(xhci);
 396
 397	if (!ret)
 398		/* hcd->irq is 0, we have MSI */
 399		return 0;
 
 400
 401	if (!pdev->irq) {
 402		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
 403		return -EINVAL;
 404	}
 405
 406 legacy_irq:
 407	if (!strlen(hcd->irq_descr))
 408		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
 409			 hcd->driver->description, hcd->self.busnum);
 410
 411	/* fall back to legacy interrupt*/
 412	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
 413			hcd->irq_descr, hcd);
 414	if (ret) {
 415		xhci_err(xhci, "request interrupt %d failed\n",
 416				pdev->irq);
 417		return ret;
 418	}
 419	hcd->irq = pdev->irq;
 420	return 0;
 421}
 422
 423#else
 424
 425static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
 426{
 427	return 0;
 428}
 429
 430static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
 431{
 432}
 433
 434static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 435{
 436}
 437
 438#endif
 439
 440static void compliance_mode_recovery(unsigned long arg)
 441{
 442	struct xhci_hcd *xhci;
 443	struct usb_hcd *hcd;
 444	u32 temp;
 445	int i;
 446
 447	xhci = (struct xhci_hcd *)arg;
 448
 449	for (i = 0; i < xhci->num_usb3_ports; i++) {
 450		temp = readl(xhci->usb3_ports[i]);
 451		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
 452			/*
 453			 * Compliance Mode Detected. Letting USB Core
 454			 * handle the Warm Reset
 455			 */
 456			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 457					"Compliance mode detected->port %d",
 458					i + 1);
 459			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 460					"Attempting compliance mode recovery");
 461			hcd = xhci->shared_hcd;
 462
 463			if (hcd->state == HC_STATE_SUSPENDED)
 464				usb_hcd_resume_root_hub(hcd);
 465
 466			usb_hcd_poll_rh_status(hcd);
 467		}
 468	}
 469
 470	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
 471		mod_timer(&xhci->comp_mode_recovery_timer,
 472			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 473}
 474
 475/*
 476 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 477 * that causes ports behind that hardware to enter compliance mode sometimes.
 478 * The quirk creates a timer that polls every 2 seconds the link state of
 479 * each host controller's port and recovers it by issuing a Warm reset
 480 * if Compliance mode is detected, otherwise the port will become "dead" (no
 481 * device connections or disconnections will be detected anymore). Becasue no
 482 * status event is generated when entering compliance mode (per xhci spec),
 483 * this quirk is needed on systems that have the failing hardware installed.
 484 */
 485static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
 486{
 487	xhci->port_status_u0 = 0;
 488	setup_timer(&xhci->comp_mode_recovery_timer,
 489		    compliance_mode_recovery, (unsigned long)xhci);
 490	xhci->comp_mode_recovery_timer.expires = jiffies +
 491			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
 492
 493	set_timer_slack(&xhci->comp_mode_recovery_timer,
 494			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 495	add_timer(&xhci->comp_mode_recovery_timer);
 496	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 497			"Compliance mode recovery timer initialized");
 498}
 499
 500/*
 501 * This function identifies the systems that have installed the SN65LVPE502CP
 502 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 503 * Systems:
 504 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 505 */
 506static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
 507{
 508	const char *dmi_product_name, *dmi_sys_vendor;
 509
 510	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
 511	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 512	if (!dmi_product_name || !dmi_sys_vendor)
 513		return false;
 514
 515	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
 516		return false;
 517
 518	if (strstr(dmi_product_name, "Z420") ||
 519			strstr(dmi_product_name, "Z620") ||
 520			strstr(dmi_product_name, "Z820") ||
 521			strstr(dmi_product_name, "Z1 Workstation"))
 522		return true;
 523
 524	return false;
 525}
 526
 527static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
 528{
 529	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
 530}
 531
 532
 533/*
 534 * Initialize memory for HCD and xHC (one-time init).
 535 *
 536 * Program the PAGESIZE register, initialize the device context array, create
 537 * device contexts (?), set up a command ring segment (or two?), create event
 538 * ring (one for now).
 539 */
 540int xhci_init(struct usb_hcd *hcd)
 541{
 542	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 543	int retval = 0;
 544
 545	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
 546	spin_lock_init(&xhci->lock);
 547	if (xhci->hci_version == 0x95 && link_quirk) {
 548		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 549				"QUIRK: Not clearing Link TRB chain bits.");
 550		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 551	} else {
 552		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 553				"xHCI doesn't need link TRB QUIRK");
 554	}
 555	retval = xhci_mem_init(xhci, GFP_KERNEL);
 556	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
 557
 558	/* Initializing Compliance Mode Recovery Data If Needed */
 559	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
 560		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
 561		compliance_mode_recovery_timer_init(xhci);
 562	}
 563
 564	return retval;
 565}
 566
 567/*-------------------------------------------------------------------------*/
 568
 569
 570static int xhci_run_finished(struct xhci_hcd *xhci)
 571{
 572	if (xhci_start(xhci)) {
 573		xhci_halt(xhci);
 574		return -ENODEV;
 575	}
 576	xhci->shared_hcd->state = HC_STATE_RUNNING;
 577	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 578
 579	if (xhci->quirks & XHCI_NEC_HOST)
 580		xhci_ring_cmd_db(xhci);
 581
 582	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 583			"Finished xhci_run for USB3 roothub");
 584	return 0;
 585}
 586
 587/*
 588 * Start the HC after it was halted.
 589 *
 590 * This function is called by the USB core when the HC driver is added.
 591 * Its opposite is xhci_stop().
 592 *
 593 * xhci_init() must be called once before this function can be called.
 594 * Reset the HC, enable device slot contexts, program DCBAAP, and
 595 * set command ring pointer and event ring pointer.
 596 *
 597 * Setup MSI-X vectors and enable interrupts.
 598 */
 599int xhci_run(struct usb_hcd *hcd)
 600{
 601	u32 temp;
 602	u64 temp_64;
 603	int ret;
 604	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 605
 606	/* Start the xHCI host controller running only after the USB 2.0 roothub
 607	 * is setup.
 608	 */
 609
 610	hcd->uses_new_polling = 1;
 611	if (!usb_hcd_is_primary_hcd(hcd))
 612		return xhci_run_finished(xhci);
 613
 614	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
 615
 616	ret = xhci_try_enable_msi(hcd);
 617	if (ret)
 618		return ret;
 619
 620	xhci_dbg(xhci, "Command ring memory map follows:\n");
 621	xhci_debug_ring(xhci, xhci->cmd_ring);
 622	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
 623	xhci_dbg_cmd_ptrs(xhci);
 624
 625	xhci_dbg(xhci, "ERST memory map follows:\n");
 626	xhci_dbg_erst(xhci, &xhci->erst);
 627	xhci_dbg(xhci, "Event ring:\n");
 628	xhci_debug_ring(xhci, xhci->event_ring);
 629	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
 630	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 631	temp_64 &= ~ERST_PTR_MASK;
 632	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 633			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
 634
 635	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 636			"// Set the interrupt modulation register");
 637	temp = readl(&xhci->ir_set->irq_control);
 638	temp &= ~ER_IRQ_INTERVAL_MASK;
 639	/*
 640	 * the increment interval is 8 times as much as that defined
 641	 * in xHCI spec on MTK's controller
 642	 */
 643	temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
 644	writel(temp, &xhci->ir_set->irq_control);
 645
 646	/* Set the HCD state before we enable the irqs */
 647	temp = readl(&xhci->op_regs->command);
 648	temp |= (CMD_EIE);
 649	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 650			"// Enable interrupts, cmd = 0x%x.", temp);
 651	writel(temp, &xhci->op_regs->command);
 652
 653	temp = readl(&xhci->ir_set->irq_pending);
 654	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 655			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
 656			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
 657	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
 658	xhci_print_ir_set(xhci, 0);
 659
 660	if (xhci->quirks & XHCI_NEC_HOST) {
 661		struct xhci_command *command;
 662		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
 
 663		if (!command)
 664			return -ENOMEM;
 665		xhci_queue_vendor_command(xhci, command, 0, 0, 0,
 
 666				TRB_TYPE(TRB_NEC_GET_FW));
 
 
 667	}
 668	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 669			"Finished xhci_run for USB2 roothub");
 
 
 
 
 
 670	return 0;
 671}
 672EXPORT_SYMBOL_GPL(xhci_run);
 673
 674/*
 675 * Stop xHCI driver.
 676 *
 677 * This function is called by the USB core when the HC driver is removed.
 678 * Its opposite is xhci_run().
 679 *
 680 * Disable device contexts, disable IRQs, and quiesce the HC.
 681 * Reset the HC, finish any completed transactions, and cleanup memory.
 682 */
 683void xhci_stop(struct usb_hcd *hcd)
 684{
 685	u32 temp;
 686	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 687
 688	if (xhci->xhc_state & XHCI_STATE_HALTED)
 
 
 
 
 
 
 689		return;
 
 
 
 690
 691	mutex_lock(&xhci->mutex);
 692	spin_lock_irq(&xhci->lock);
 693	xhci->xhc_state |= XHCI_STATE_HALTED;
 694	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 695
 696	/* Make sure the xHC is halted for a USB3 roothub
 697	 * (xhci_stop() could be called as part of failed init).
 698	 */
 699	xhci_halt(xhci);
 700	xhci_reset(xhci);
 701	spin_unlock_irq(&xhci->lock);
 702
 703	xhci_cleanup_msix(xhci);
 704
 705	/* Deleting Compliance Mode Recovery Timer */
 706	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 707			(!(xhci_all_ports_seen_u0(xhci)))) {
 708		del_timer_sync(&xhci->comp_mode_recovery_timer);
 709		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 710				"%s: compliance mode recovery timer deleted",
 711				__func__);
 712	}
 713
 714	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 715		usb_amd_dev_put();
 716
 717	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 718			"// Disabling event ring interrupts");
 719	temp = readl(&xhci->op_regs->status);
 720	writel(temp & ~STS_EINT, &xhci->op_regs->status);
 721	temp = readl(&xhci->ir_set->irq_pending);
 722	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
 723	xhci_print_ir_set(xhci, 0);
 724
 725	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
 726	xhci_mem_cleanup(xhci);
 
 727	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 728			"xhci_stop completed - status = %x",
 729			readl(&xhci->op_regs->status));
 730	mutex_unlock(&xhci->mutex);
 731}
 732
 733/*
 734 * Shutdown HC (not bus-specific)
 735 *
 736 * This is called when the machine is rebooting or halting.  We assume that the
 737 * machine will be powered off, and the HC's internal state will be reset.
 738 * Don't bother to free memory.
 739 *
 740 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 741 */
 742void xhci_shutdown(struct usb_hcd *hcd)
 743{
 744	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 745
 746	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
 747		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
 748
 749	spin_lock_irq(&xhci->lock);
 750	xhci_halt(xhci);
 751	/* Workaround for spurious wakeups at shutdown with HSW */
 752	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
 753		xhci_reset(xhci);
 754	spin_unlock_irq(&xhci->lock);
 755
 756	xhci_cleanup_msix(xhci);
 757
 758	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 759			"xhci_shutdown completed - status = %x",
 760			readl(&xhci->op_regs->status));
 761
 762	/* Yet another workaround for spurious wakeups at shutdown with HSW */
 763	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
 764		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
 765}
 766
 767#ifdef CONFIG_PM
 768static void xhci_save_registers(struct xhci_hcd *xhci)
 769{
 770	xhci->s3.command = readl(&xhci->op_regs->command);
 771	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
 772	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 773	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
 774	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
 775	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
 776	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 777	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
 778	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
 779}
 780
 781static void xhci_restore_registers(struct xhci_hcd *xhci)
 782{
 783	writel(xhci->s3.command, &xhci->op_regs->command);
 784	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 785	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 786	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
 787	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
 788	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
 789	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
 790	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
 791	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
 792}
 793
 794static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 795{
 796	u64	val_64;
 797
 798	/* step 2: initialize command ring buffer */
 799	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 800	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 801		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 802				      xhci->cmd_ring->dequeue) &
 803		 (u64) ~CMD_RING_RSVD_BITS) |
 804		xhci->cmd_ring->cycle_state;
 805	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 806			"// Setting command ring address to 0x%llx",
 807			(long unsigned long) val_64);
 808	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 809}
 810
 811/*
 812 * The whole command ring must be cleared to zero when we suspend the host.
 813 *
 814 * The host doesn't save the command ring pointer in the suspend well, so we
 815 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 816 * aligned, because of the reserved bits in the command ring dequeue pointer
 817 * register.  Therefore, we can't just set the dequeue pointer back in the
 818 * middle of the ring (TRBs are 16-byte aligned).
 819 */
 820static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 821{
 822	struct xhci_ring *ring;
 823	struct xhci_segment *seg;
 824
 825	ring = xhci->cmd_ring;
 826	seg = ring->deq_seg;
 827	do {
 828		memset(seg->trbs, 0,
 829			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
 830		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
 831			cpu_to_le32(~TRB_CYCLE);
 832		seg = seg->next;
 833	} while (seg != ring->deq_seg);
 834
 835	/* Reset the software enqueue and dequeue pointers */
 836	ring->deq_seg = ring->first_seg;
 837	ring->dequeue = ring->first_seg->trbs;
 838	ring->enq_seg = ring->deq_seg;
 839	ring->enqueue = ring->dequeue;
 840
 841	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 842	/*
 843	 * Ring is now zeroed, so the HW should look for change of ownership
 844	 * when the cycle bit is set to 1.
 845	 */
 846	ring->cycle_state = 1;
 847
 848	/*
 849	 * Reset the hardware dequeue pointer.
 850	 * Yes, this will need to be re-written after resume, but we're paranoid
 851	 * and want to make sure the hardware doesn't access bogus memory
 852	 * because, say, the BIOS or an SMI started the host without changing
 853	 * the command ring pointers.
 854	 */
 855	xhci_set_cmd_ring_deq(xhci);
 856}
 857
 858static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
 859{
 860	int port_index;
 861	__le32 __iomem **port_array;
 862	unsigned long flags;
 863	u32 t1, t2;
 864
 865	spin_lock_irqsave(&xhci->lock, flags);
 866
 867	/* disble usb3 ports Wake bits*/
 868	port_index = xhci->num_usb3_ports;
 869	port_array = xhci->usb3_ports;
 870	while (port_index--) {
 871		t1 = readl(port_array[port_index]);
 872		t1 = xhci_port_state_to_neutral(t1);
 873		t2 = t1 & ~PORT_WAKE_BITS;
 874		if (t1 != t2)
 875			writel(t2, port_array[port_index]);
 876	}
 877
 878	/* disble usb2 ports Wake bits*/
 879	port_index = xhci->num_usb2_ports;
 880	port_array = xhci->usb2_ports;
 881	while (port_index--) {
 882		t1 = readl(port_array[port_index]);
 883		t1 = xhci_port_state_to_neutral(t1);
 884		t2 = t1 & ~PORT_WAKE_BITS;
 885		if (t1 != t2)
 886			writel(t2, port_array[port_index]);
 887	}
 888
 889	spin_unlock_irqrestore(&xhci->lock, flags);
 890}
 891
 892/*
 893 * Stop HC (not bus-specific)
 894 *
 895 * This is called when the machine transition into S3/S4 mode.
 896 *
 897 */
 898int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
 899{
 900	int			rc = 0;
 901	unsigned int		delay = XHCI_MAX_HALT_USEC;
 902	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 903	u32			command;
 904
 905	if (!hcd->state)
 906		return 0;
 907
 908	if (hcd->state != HC_STATE_SUSPENDED ||
 909			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
 910		return -EINVAL;
 911
 
 
 912	/* Clear root port wake on bits if wakeup not allowed. */
 913	if (!do_wakeup)
 914		xhci_disable_port_wake_on_bits(xhci);
 915
 916	/* Don't poll the roothubs on bus suspend. */
 917	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
 918	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
 919	del_timer_sync(&hcd->rh_timer);
 920	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
 921	del_timer_sync(&xhci->shared_hcd->rh_timer);
 922
 
 
 
 923	spin_lock_irq(&xhci->lock);
 924	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 925	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 926	/* step 1: stop endpoint */
 927	/* skipped assuming that port suspend has done */
 928
 929	/* step 2: clear Run/Stop bit */
 930	command = readl(&xhci->op_regs->command);
 931	command &= ~CMD_RUN;
 932	writel(command, &xhci->op_regs->command);
 933
 934	/* Some chips from Fresco Logic need an extraordinary delay */
 935	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
 936
 937	if (xhci_handshake(&xhci->op_regs->status,
 938		      STS_HALT, STS_HALT, delay)) {
 939		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
 940		spin_unlock_irq(&xhci->lock);
 941		return -ETIMEDOUT;
 942	}
 943	xhci_clear_command_ring(xhci);
 944
 945	/* step 3: save registers */
 946	xhci_save_registers(xhci);
 947
 948	/* step 4: set CSS flag */
 949	command = readl(&xhci->op_regs->command);
 950	command |= CMD_CSS;
 951	writel(command, &xhci->op_regs->command);
 952	if (xhci_handshake(&xhci->op_regs->status,
 953				STS_SAVE, 0, 10 * 1000)) {
 954		xhci_warn(xhci, "WARN: xHC save state timeout\n");
 955		spin_unlock_irq(&xhci->lock);
 956		return -ETIMEDOUT;
 957	}
 958	spin_unlock_irq(&xhci->lock);
 959
 960	/*
 961	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
 962	 * is about to be suspended.
 963	 */
 964	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 965			(!(xhci_all_ports_seen_u0(xhci)))) {
 966		del_timer_sync(&xhci->comp_mode_recovery_timer);
 967		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 968				"%s: compliance mode recovery timer deleted",
 969				__func__);
 970	}
 971
 972	/* step 5: remove core well power */
 973	/* synchronize irq when using MSI-X */
 974	xhci_msix_sync_irqs(xhci);
 975
 976	return rc;
 977}
 978EXPORT_SYMBOL_GPL(xhci_suspend);
 979
 980/*
 981 * start xHC (not bus-specific)
 982 *
 983 * This is called when the machine transition from S3/S4 mode.
 984 *
 985 */
 986int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
 987{
 988	u32			command, temp = 0, status;
 989	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 990	struct usb_hcd		*secondary_hcd;
 991	int			retval = 0;
 992	bool			comp_timer_running = false;
 993
 994	if (!hcd->state)
 995		return 0;
 996
 997	/* Wait a bit if either of the roothubs need to settle from the
 998	 * transition into bus suspend.
 999	 */
1000	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1001			time_before(jiffies,
1002				xhci->bus_state[1].next_statechange))
1003		msleep(100);
1004
1005	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1006	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1007
1008	spin_lock_irq(&xhci->lock);
1009	if (xhci->quirks & XHCI_RESET_ON_RESUME)
1010		hibernated = true;
1011
1012	if (!hibernated) {
1013		/* step 1: restore register */
1014		xhci_restore_registers(xhci);
1015		/* step 2: initialize command ring buffer */
1016		xhci_set_cmd_ring_deq(xhci);
1017		/* step 3: restore state and start state*/
1018		/* step 3: set CRS flag */
1019		command = readl(&xhci->op_regs->command);
1020		command |= CMD_CRS;
1021		writel(command, &xhci->op_regs->command);
1022		if (xhci_handshake(&xhci->op_regs->status,
1023			      STS_RESTORE, 0, 10 * 1000)) {
1024			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1025			spin_unlock_irq(&xhci->lock);
1026			return -ETIMEDOUT;
1027		}
1028		temp = readl(&xhci->op_regs->status);
1029	}
1030
1031	/* If restore operation fails, re-initialize the HC during resume */
1032	if ((temp & STS_SRE) || hibernated) {
1033
1034		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1035				!(xhci_all_ports_seen_u0(xhci))) {
1036			del_timer_sync(&xhci->comp_mode_recovery_timer);
1037			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1038				"Compliance Mode Recovery Timer deleted!");
1039		}
1040
1041		/* Let the USB core know _both_ roothubs lost power. */
1042		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1043		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1044
1045		xhci_dbg(xhci, "Stop HCD\n");
1046		xhci_halt(xhci);
1047		xhci_reset(xhci);
1048		spin_unlock_irq(&xhci->lock);
1049		xhci_cleanup_msix(xhci);
1050
1051		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1052		temp = readl(&xhci->op_regs->status);
1053		writel(temp & ~STS_EINT, &xhci->op_regs->status);
1054		temp = readl(&xhci->ir_set->irq_pending);
1055		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1056		xhci_print_ir_set(xhci, 0);
1057
1058		xhci_dbg(xhci, "cleaning up memory\n");
1059		xhci_mem_cleanup(xhci);
 
1060		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1061			    readl(&xhci->op_regs->status));
1062
1063		/* USB core calls the PCI reinit and start functions twice:
1064		 * first with the primary HCD, and then with the secondary HCD.
1065		 * If we don't do the same, the host will never be started.
1066		 */
1067		if (!usb_hcd_is_primary_hcd(hcd))
1068			secondary_hcd = hcd;
1069		else
1070			secondary_hcd = xhci->shared_hcd;
1071
1072		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1073		retval = xhci_init(hcd->primary_hcd);
1074		if (retval)
1075			return retval;
1076		comp_timer_running = true;
1077
1078		xhci_dbg(xhci, "Start the primary HCD\n");
1079		retval = xhci_run(hcd->primary_hcd);
1080		if (!retval) {
1081			xhci_dbg(xhci, "Start the secondary HCD\n");
1082			retval = xhci_run(secondary_hcd);
1083		}
1084		hcd->state = HC_STATE_SUSPENDED;
1085		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1086		goto done;
1087	}
1088
1089	/* step 4: set Run/Stop bit */
1090	command = readl(&xhci->op_regs->command);
1091	command |= CMD_RUN;
1092	writel(command, &xhci->op_regs->command);
1093	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1094		  0, 250 * 1000);
1095
1096	/* step 5: walk topology and initialize portsc,
1097	 * portpmsc and portli
1098	 */
1099	/* this is done in bus_resume */
1100
1101	/* step 6: restart each of the previously
1102	 * Running endpoints by ringing their doorbells
1103	 */
1104
1105	spin_unlock_irq(&xhci->lock);
1106
 
 
1107 done:
1108	if (retval == 0) {
1109		/* Resume root hubs only when have pending events. */
1110		status = readl(&xhci->op_regs->status);
1111		if (status & STS_EINT) {
1112			usb_hcd_resume_root_hub(xhci->shared_hcd);
1113			usb_hcd_resume_root_hub(hcd);
1114		}
1115	}
1116
1117	/*
1118	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1119	 * be re-initialized Always after a system resume. Ports are subject
1120	 * to suffer the Compliance Mode issue again. It doesn't matter if
1121	 * ports have entered previously to U0 before system's suspension.
1122	 */
1123	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1124		compliance_mode_recovery_timer_init(xhci);
1125
 
 
 
1126	/* Re-enable port polling. */
1127	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1128	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1129	usb_hcd_poll_rh_status(xhci->shared_hcd);
1130	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1131	usb_hcd_poll_rh_status(hcd);
1132
1133	return retval;
1134}
1135EXPORT_SYMBOL_GPL(xhci_resume);
1136#endif	/* CONFIG_PM */
1137
1138/*-------------------------------------------------------------------------*/
1139
1140/**
1141 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1142 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1143 * value to right shift 1 for the bitmask.
1144 *
1145 * Index  = (epnum * 2) + direction - 1,
1146 * where direction = 0 for OUT, 1 for IN.
1147 * For control endpoints, the IN index is used (OUT index is unused), so
1148 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1149 */
1150unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1151{
1152	unsigned int index;
1153	if (usb_endpoint_xfer_control(desc))
1154		index = (unsigned int) (usb_endpoint_num(desc)*2);
1155	else
1156		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1157			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1158	return index;
1159}
1160
1161/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1162 * address from the XHCI endpoint index.
1163 */
1164unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1165{
1166	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1167	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1168	return direction | number;
1169}
1170
1171/* Find the flag for this endpoint (for use in the control context).  Use the
1172 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1173 * bit 1, etc.
1174 */
1175unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1176{
1177	return 1 << (xhci_get_endpoint_index(desc) + 1);
1178}
1179
1180/* Find the flag for this endpoint (for use in the control context).  Use the
1181 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1182 * bit 1, etc.
1183 */
1184unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1185{
1186	return 1 << (ep_index + 1);
1187}
1188
1189/* Compute the last valid endpoint context index.  Basically, this is the
1190 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1191 * we find the most significant bit set in the added contexts flags.
1192 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1193 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1194 */
1195unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1196{
1197	return fls(added_ctxs) - 1;
1198}
1199
1200/* Returns 1 if the arguments are OK;
1201 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1202 */
1203static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1204		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1205		const char *func) {
1206	struct xhci_hcd	*xhci;
1207	struct xhci_virt_device	*virt_dev;
1208
1209	if (!hcd || (check_ep && !ep) || !udev) {
1210		pr_debug("xHCI %s called with invalid args\n", func);
1211		return -EINVAL;
1212	}
1213	if (!udev->parent) {
1214		pr_debug("xHCI %s called for root hub\n", func);
1215		return 0;
1216	}
1217
1218	xhci = hcd_to_xhci(hcd);
1219	if (check_virt_dev) {
1220		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1221			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1222					func);
1223			return -EINVAL;
1224		}
1225
1226		virt_dev = xhci->devs[udev->slot_id];
1227		if (virt_dev->udev != udev) {
1228			xhci_dbg(xhci, "xHCI %s called with udev and "
1229					  "virt_dev does not match\n", func);
1230			return -EINVAL;
1231		}
1232	}
1233
1234	if (xhci->xhc_state & XHCI_STATE_HALTED)
1235		return -ENODEV;
1236
1237	return 1;
1238}
1239
1240static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1241		struct usb_device *udev, struct xhci_command *command,
1242		bool ctx_change, bool must_succeed);
1243
1244/*
1245 * Full speed devices may have a max packet size greater than 8 bytes, but the
1246 * USB core doesn't know that until it reads the first 8 bytes of the
1247 * descriptor.  If the usb_device's max packet size changes after that point,
1248 * we need to issue an evaluate context command and wait on it.
1249 */
1250static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1251		unsigned int ep_index, struct urb *urb)
1252{
1253	struct xhci_container_ctx *out_ctx;
1254	struct xhci_input_control_ctx *ctrl_ctx;
1255	struct xhci_ep_ctx *ep_ctx;
1256	struct xhci_command *command;
1257	int max_packet_size;
1258	int hw_max_packet_size;
1259	int ret = 0;
1260
1261	out_ctx = xhci->devs[slot_id]->out_ctx;
1262	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1263	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1264	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1265	if (hw_max_packet_size != max_packet_size) {
1266		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1267				"Max Packet Size for ep 0 changed.");
1268		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1269				"Max packet size in usb_device = %d",
1270				max_packet_size);
1271		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1272				"Max packet size in xHCI HW = %d",
1273				hw_max_packet_size);
1274		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1275				"Issuing evaluate context command.");
1276
1277		/* Set up the input context flags for the command */
1278		/* FIXME: This won't work if a non-default control endpoint
1279		 * changes max packet sizes.
1280		 */
1281
1282		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1283		if (!command)
1284			return -ENOMEM;
1285
1286		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1287		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1288		if (!ctrl_ctx) {
1289			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1290					__func__);
1291			ret = -ENOMEM;
1292			goto command_cleanup;
1293		}
1294		/* Set up the modified control endpoint 0 */
1295		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1296				xhci->devs[slot_id]->out_ctx, ep_index);
1297
1298		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1299		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1300		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1301
1302		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1303		ctrl_ctx->drop_flags = 0;
1304
1305		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1306		xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1307		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1308		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1309
1310		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1311				true, false);
1312
1313		/* Clean up the input context for later use by bandwidth
1314		 * functions.
1315		 */
1316		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1317command_cleanup:
1318		kfree(command->completion);
1319		kfree(command);
1320	}
1321	return ret;
1322}
1323
1324/*
1325 * non-error returns are a promise to giveback() the urb later
1326 * we drop ownership so next owner (or urb unlink) can get it
1327 */
1328int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1329{
1330	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1331	struct xhci_td *buffer;
1332	unsigned long flags;
1333	int ret = 0;
1334	unsigned int slot_id, ep_index;
 
1335	struct urb_priv	*urb_priv;
1336	int size, i;
1337
1338	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1339					true, true, __func__) <= 0)
1340		return -EINVAL;
1341
1342	slot_id = urb->dev->slot_id;
1343	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
 
1344
1345	if (!HCD_HW_ACCESSIBLE(hcd)) {
1346		if (!in_interrupt())
1347			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1348		ret = -ESHUTDOWN;
1349		goto exit;
1350	}
1351
1352	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1353		size = urb->number_of_packets;
1354	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1355	    urb->transfer_buffer_length > 0 &&
1356	    urb->transfer_flags & URB_ZERO_PACKET &&
1357	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1358		size = 2;
1359	else
1360		size = 1;
1361
1362	urb_priv = kzalloc(sizeof(struct urb_priv) +
1363				  size * sizeof(struct xhci_td *), mem_flags);
1364	if (!urb_priv)
1365		return -ENOMEM;
1366
1367	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1368	if (!buffer) {
1369		kfree(urb_priv);
1370		return -ENOMEM;
1371	}
1372
1373	for (i = 0; i < size; i++) {
1374		urb_priv->td[i] = buffer;
1375		buffer++;
1376	}
1377
1378	urb_priv->length = size;
1379	urb_priv->td_cnt = 0;
1380	urb->hcpriv = urb_priv;
1381
1382	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1383		/* Check to see if the max packet size for the default control
1384		 * endpoint changed during FS device enumeration
1385		 */
1386		if (urb->dev->speed == USB_SPEED_FULL) {
1387			ret = xhci_check_maxpacket(xhci, slot_id,
1388					ep_index, urb);
1389			if (ret < 0) {
1390				xhci_urb_free_priv(urb_priv);
1391				urb->hcpriv = NULL;
1392				return ret;
1393			}
1394		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1395
1396		/* We have a spinlock and interrupts disabled, so we must pass
1397		 * atomic context to this function, which may allocate memory.
1398		 */
1399		spin_lock_irqsave(&xhci->lock, flags);
1400		if (xhci->xhc_state & XHCI_STATE_DYING)
1401			goto dying;
1402		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1403				slot_id, ep_index);
1404		if (ret)
1405			goto free_priv;
1406		spin_unlock_irqrestore(&xhci->lock, flags);
1407	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1408		spin_lock_irqsave(&xhci->lock, flags);
1409		if (xhci->xhc_state & XHCI_STATE_DYING)
1410			goto dying;
1411		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1412				EP_GETTING_STREAMS) {
1413			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1414					"is transitioning to using streams.\n");
1415			ret = -EINVAL;
1416		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1417				EP_GETTING_NO_STREAMS) {
1418			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1419					"is transitioning to "
1420					"not having streams.\n");
1421			ret = -EINVAL;
1422		} else {
1423			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1424					slot_id, ep_index);
1425		}
1426		if (ret)
1427			goto free_priv;
1428		spin_unlock_irqrestore(&xhci->lock, flags);
1429	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1430		spin_lock_irqsave(&xhci->lock, flags);
1431		if (xhci->xhc_state & XHCI_STATE_DYING)
1432			goto dying;
1433		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1434				slot_id, ep_index);
1435		if (ret)
1436			goto free_priv;
1437		spin_unlock_irqrestore(&xhci->lock, flags);
1438	} else {
1439		spin_lock_irqsave(&xhci->lock, flags);
1440		if (xhci->xhc_state & XHCI_STATE_DYING)
1441			goto dying;
1442		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1443				slot_id, ep_index);
1444		if (ret)
1445			goto free_priv;
1446		spin_unlock_irqrestore(&xhci->lock, flags);
1447	}
1448exit:
1449	return ret;
1450dying:
1451	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1452			"non-responsive xHCI host.\n",
1453			urb->ep->desc.bEndpointAddress, urb);
1454	ret = -ESHUTDOWN;
1455free_priv:
1456	xhci_urb_free_priv(urb_priv);
1457	urb->hcpriv = NULL;
 
1458	spin_unlock_irqrestore(&xhci->lock, flags);
1459	return ret;
1460}
1461
1462/* Get the right ring for the given URB.
1463 * If the endpoint supports streams, boundary check the URB's stream ID.
1464 * If the endpoint doesn't support streams, return the singular endpoint ring.
1465 */
1466static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1467		struct urb *urb)
1468{
1469	unsigned int slot_id;
1470	unsigned int ep_index;
1471	unsigned int stream_id;
1472	struct xhci_virt_ep *ep;
1473
1474	slot_id = urb->dev->slot_id;
1475	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1476	stream_id = urb->stream_id;
1477	ep = &xhci->devs[slot_id]->eps[ep_index];
1478	/* Common case: no streams */
1479	if (!(ep->ep_state & EP_HAS_STREAMS))
1480		return ep->ring;
1481
1482	if (stream_id == 0) {
1483		xhci_warn(xhci,
1484				"WARN: Slot ID %u, ep index %u has streams, "
1485				"but URB has no stream ID.\n",
1486				slot_id, ep_index);
1487		return NULL;
1488	}
1489
1490	if (stream_id < ep->stream_info->num_streams)
1491		return ep->stream_info->stream_rings[stream_id];
1492
1493	xhci_warn(xhci,
1494			"WARN: Slot ID %u, ep index %u has "
1495			"stream IDs 1 to %u allocated, "
1496			"but stream ID %u is requested.\n",
1497			slot_id, ep_index,
1498			ep->stream_info->num_streams - 1,
1499			stream_id);
1500	return NULL;
1501}
1502
1503/*
1504 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1505 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1506 * should pick up where it left off in the TD, unless a Set Transfer Ring
1507 * Dequeue Pointer is issued.
1508 *
1509 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1510 * the ring.  Since the ring is a contiguous structure, they can't be physically
1511 * removed.  Instead, there are two options:
1512 *
1513 *  1) If the HC is in the middle of processing the URB to be canceled, we
1514 *     simply move the ring's dequeue pointer past those TRBs using the Set
1515 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1516 *     when drivers timeout on the last submitted URB and attempt to cancel.
1517 *
1518 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1519 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1520 *     HC will need to invalidate the any TRBs it has cached after the stop
1521 *     endpoint command, as noted in the xHCI 0.95 errata.
1522 *
1523 *  3) The TD may have completed by the time the Stop Endpoint Command
1524 *     completes, so software needs to handle that case too.
1525 *
1526 * This function should protect against the TD enqueueing code ringing the
1527 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1528 * It also needs to account for multiple cancellations on happening at the same
1529 * time for the same endpoint.
1530 *
1531 * Note that this function can be called in any context, or so says
1532 * usb_hcd_unlink_urb()
1533 */
1534int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1535{
1536	unsigned long flags;
1537	int ret, i;
1538	u32 temp;
1539	struct xhci_hcd *xhci;
1540	struct urb_priv	*urb_priv;
1541	struct xhci_td *td;
1542	unsigned int ep_index;
1543	struct xhci_ring *ep_ring;
1544	struct xhci_virt_ep *ep;
1545	struct xhci_command *command;
 
1546
1547	xhci = hcd_to_xhci(hcd);
1548	spin_lock_irqsave(&xhci->lock, flags);
 
 
 
1549	/* Make sure the URB hasn't completed or been unlinked already */
1550	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1551	if (ret || !urb->hcpriv)
1552		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1553	temp = readl(&xhci->op_regs->status);
1554	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
 
 
 
 
 
1555		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1556				"HW died, freeing TD.");
1557		urb_priv = urb->hcpriv;
1558		for (i = urb_priv->td_cnt;
1559		     i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1560		     i++) {
1561			td = urb_priv->td[i];
1562			if (!list_empty(&td->td_list))
1563				list_del_init(&td->td_list);
1564			if (!list_empty(&td->cancelled_td_list))
1565				list_del_init(&td->cancelled_td_list);
1566		}
1567
1568		usb_hcd_unlink_urb_from_ep(hcd, urb);
1569		spin_unlock_irqrestore(&xhci->lock, flags);
1570		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1571		xhci_urb_free_priv(urb_priv);
1572		return ret;
1573	}
1574	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1575			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1576		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1577				"Ep 0x%x: URB %p to be canceled on "
1578				"non-responsive xHCI host.",
1579				urb->ep->desc.bEndpointAddress, urb);
1580		/* Let the stop endpoint command watchdog timer (which set this
1581		 * state) finish cleaning up the endpoint TD lists.  We must
1582		 * have caught it in the middle of dropping a lock and giving
1583		 * back an URB.
1584		 */
1585		goto done;
1586	}
1587
1588	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1589	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1590	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1591	if (!ep_ring) {
1592		ret = -EINVAL;
1593		goto done;
1594	}
1595
1596	urb_priv = urb->hcpriv;
1597	i = urb_priv->td_cnt;
1598	if (i < urb_priv->length)
1599		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1600				"Cancel URB %p, dev %s, ep 0x%x, "
1601				"starting at offset 0x%llx",
1602				urb, urb->dev->devpath,
1603				urb->ep->desc.bEndpointAddress,
1604				(unsigned long long) xhci_trb_virt_to_dma(
1605					urb_priv->td[i]->start_seg,
1606					urb_priv->td[i]->first_trb));
1607
1608	for (; i < urb_priv->length; i++) {
1609		td = urb_priv->td[i];
1610		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1611	}
1612
1613	/* Queue a stop endpoint command, but only if this is
1614	 * the first cancellation to be handled.
1615	 */
1616	if (!(ep->ep_state & EP_HALT_PENDING)) {
1617		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1618		if (!command) {
1619			ret = -ENOMEM;
1620			goto done;
1621		}
1622		ep->ep_state |= EP_HALT_PENDING;
1623		ep->stop_cmds_pending++;
1624		ep->stop_cmd_timer.expires = jiffies +
1625			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1626		add_timer(&ep->stop_cmd_timer);
1627		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1628					 ep_index, 0);
1629		xhci_ring_cmd_db(xhci);
1630	}
1631done:
1632	spin_unlock_irqrestore(&xhci->lock, flags);
1633	return ret;
 
 
 
 
 
 
 
 
1634}
1635
1636/* Drop an endpoint from a new bandwidth configuration for this device.
1637 * Only one call to this function is allowed per endpoint before
1638 * check_bandwidth() or reset_bandwidth() must be called.
1639 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1640 * add the endpoint to the schedule with possibly new parameters denoted by a
1641 * different endpoint descriptor in usb_host_endpoint.
1642 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1643 * not allowed.
1644 *
1645 * The USB core will not allow URBs to be queued to an endpoint that is being
1646 * disabled, so there's no need for mutual exclusion to protect
1647 * the xhci->devs[slot_id] structure.
1648 */
1649int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1650		struct usb_host_endpoint *ep)
1651{
1652	struct xhci_hcd *xhci;
1653	struct xhci_container_ctx *in_ctx, *out_ctx;
1654	struct xhci_input_control_ctx *ctrl_ctx;
1655	unsigned int ep_index;
1656	struct xhci_ep_ctx *ep_ctx;
1657	u32 drop_flag;
1658	u32 new_add_flags, new_drop_flags;
1659	int ret;
1660
1661	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1662	if (ret <= 0)
1663		return ret;
1664	xhci = hcd_to_xhci(hcd);
1665	if (xhci->xhc_state & XHCI_STATE_DYING)
1666		return -ENODEV;
1667
1668	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1669	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1670	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1671		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1672				__func__, drop_flag);
1673		return 0;
1674	}
1675
1676	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1677	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1678	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1679	if (!ctrl_ctx) {
1680		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1681				__func__);
1682		return 0;
1683	}
1684
1685	ep_index = xhci_get_endpoint_index(&ep->desc);
1686	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1687	/* If the HC already knows the endpoint is disabled,
1688	 * or the HCD has noted it is disabled, ignore this request
1689	 */
1690	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1691	     cpu_to_le32(EP_STATE_DISABLED)) ||
1692	    le32_to_cpu(ctrl_ctx->drop_flags) &
1693	    xhci_get_endpoint_flag(&ep->desc)) {
1694		/* Do not warn when called after a usb_device_reset */
1695		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1696			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1697				  __func__, ep);
1698		return 0;
1699	}
1700
1701	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1702	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1703
1704	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1705	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1706
 
 
1707	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1708
1709	if (xhci->quirks & XHCI_MTK_HOST)
1710		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1711
1712	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1713			(unsigned int) ep->desc.bEndpointAddress,
1714			udev->slot_id,
1715			(unsigned int) new_drop_flags,
1716			(unsigned int) new_add_flags);
1717	return 0;
1718}
1719
1720/* Add an endpoint to a new possible bandwidth configuration for this device.
1721 * Only one call to this function is allowed per endpoint before
1722 * check_bandwidth() or reset_bandwidth() must be called.
1723 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1724 * add the endpoint to the schedule with possibly new parameters denoted by a
1725 * different endpoint descriptor in usb_host_endpoint.
1726 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1727 * not allowed.
1728 *
1729 * The USB core will not allow URBs to be queued to an endpoint until the
1730 * configuration or alt setting is installed in the device, so there's no need
1731 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1732 */
1733int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1734		struct usb_host_endpoint *ep)
1735{
1736	struct xhci_hcd *xhci;
1737	struct xhci_container_ctx *in_ctx;
1738	unsigned int ep_index;
1739	struct xhci_input_control_ctx *ctrl_ctx;
1740	u32 added_ctxs;
1741	u32 new_add_flags, new_drop_flags;
1742	struct xhci_virt_device *virt_dev;
1743	int ret = 0;
1744
1745	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1746	if (ret <= 0) {
1747		/* So we won't queue a reset ep command for a root hub */
1748		ep->hcpriv = NULL;
1749		return ret;
1750	}
1751	xhci = hcd_to_xhci(hcd);
1752	if (xhci->xhc_state & XHCI_STATE_DYING)
1753		return -ENODEV;
1754
1755	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1756	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1757		/* FIXME when we have to issue an evaluate endpoint command to
1758		 * deal with ep0 max packet size changing once we get the
1759		 * descriptors
1760		 */
1761		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1762				__func__, added_ctxs);
1763		return 0;
1764	}
1765
1766	virt_dev = xhci->devs[udev->slot_id];
1767	in_ctx = virt_dev->in_ctx;
1768	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1769	if (!ctrl_ctx) {
1770		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1771				__func__);
1772		return 0;
1773	}
1774
1775	ep_index = xhci_get_endpoint_index(&ep->desc);
1776	/* If this endpoint is already in use, and the upper layers are trying
1777	 * to add it again without dropping it, reject the addition.
1778	 */
1779	if (virt_dev->eps[ep_index].ring &&
1780			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1781		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1782				"without dropping it.\n",
1783				(unsigned int) ep->desc.bEndpointAddress);
1784		return -EINVAL;
1785	}
1786
1787	/* If the HCD has already noted the endpoint is enabled,
1788	 * ignore this request.
1789	 */
1790	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1791		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1792				__func__, ep);
1793		return 0;
1794	}
1795
1796	/*
1797	 * Configuration and alternate setting changes must be done in
1798	 * process context, not interrupt context (or so documenation
1799	 * for usb_set_interface() and usb_set_configuration() claim).
1800	 */
1801	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1802		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1803				__func__, ep->desc.bEndpointAddress);
1804		return -ENOMEM;
1805	}
1806
1807	if (xhci->quirks & XHCI_MTK_HOST) {
1808		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1809		if (ret < 0) {
1810			xhci_free_or_cache_endpoint_ring(xhci,
1811				virt_dev, ep_index);
1812			return ret;
1813		}
1814	}
1815
1816	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1817	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1818
1819	/* If xhci_endpoint_disable() was called for this endpoint, but the
1820	 * xHC hasn't been notified yet through the check_bandwidth() call,
1821	 * this re-adds a new state for the endpoint from the new endpoint
1822	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1823	 * drop flags alone.
1824	 */
1825	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1826
1827	/* Store the usb_device pointer for later use */
1828	ep->hcpriv = udev;
1829
 
 
1830	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1831			(unsigned int) ep->desc.bEndpointAddress,
1832			udev->slot_id,
1833			(unsigned int) new_drop_flags,
1834			(unsigned int) new_add_flags);
1835	return 0;
1836}
1837
1838static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1839{
1840	struct xhci_input_control_ctx *ctrl_ctx;
1841	struct xhci_ep_ctx *ep_ctx;
1842	struct xhci_slot_ctx *slot_ctx;
1843	int i;
1844
1845	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1846	if (!ctrl_ctx) {
1847		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1848				__func__);
1849		return;
1850	}
1851
1852	/* When a device's add flag and drop flag are zero, any subsequent
1853	 * configure endpoint command will leave that endpoint's state
1854	 * untouched.  Make sure we don't leave any old state in the input
1855	 * endpoint contexts.
1856	 */
1857	ctrl_ctx->drop_flags = 0;
1858	ctrl_ctx->add_flags = 0;
1859	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1860	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1861	/* Endpoint 0 is always valid */
1862	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1863	for (i = 1; i < 31; ++i) {
1864		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1865		ep_ctx->ep_info = 0;
1866		ep_ctx->ep_info2 = 0;
1867		ep_ctx->deq = 0;
1868		ep_ctx->tx_info = 0;
1869	}
1870}
1871
1872static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1873		struct usb_device *udev, u32 *cmd_status)
1874{
1875	int ret;
1876
1877	switch (*cmd_status) {
1878	case COMP_CMD_ABORT:
1879	case COMP_CMD_STOP:
1880		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1881		ret = -ETIME;
1882		break;
1883	case COMP_ENOMEM:
1884		dev_warn(&udev->dev,
1885			 "Not enough host controller resources for new device state.\n");
1886		ret = -ENOMEM;
1887		/* FIXME: can we allocate more resources for the HC? */
1888		break;
1889	case COMP_BW_ERR:
1890	case COMP_2ND_BW_ERR:
1891		dev_warn(&udev->dev,
1892			 "Not enough bandwidth for new device state.\n");
1893		ret = -ENOSPC;
1894		/* FIXME: can we go back to the old state? */
1895		break;
1896	case COMP_TRB_ERR:
1897		/* the HCD set up something wrong */
1898		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1899				"add flag = 1, "
1900				"and endpoint is not disabled.\n");
1901		ret = -EINVAL;
1902		break;
1903	case COMP_DEV_ERR:
1904		dev_warn(&udev->dev,
1905			 "ERROR: Incompatible device for endpoint configure command.\n");
1906		ret = -ENODEV;
1907		break;
1908	case COMP_SUCCESS:
1909		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1910				"Successful Endpoint Configure command");
1911		ret = 0;
1912		break;
1913	default:
1914		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1915				*cmd_status);
1916		ret = -EINVAL;
1917		break;
1918	}
1919	return ret;
1920}
1921
1922static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1923		struct usb_device *udev, u32 *cmd_status)
1924{
1925	int ret;
1926	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1927
1928	switch (*cmd_status) {
1929	case COMP_CMD_ABORT:
1930	case COMP_CMD_STOP:
1931		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1932		ret = -ETIME;
1933		break;
1934	case COMP_EINVAL:
1935		dev_warn(&udev->dev,
1936			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1937		ret = -EINVAL;
1938		break;
1939	case COMP_EBADSLT:
1940		dev_warn(&udev->dev,
1941			"WARN: slot not enabled for evaluate context command.\n");
1942		ret = -EINVAL;
1943		break;
1944	case COMP_CTX_STATE:
1945		dev_warn(&udev->dev,
1946			"WARN: invalid context state for evaluate context command.\n");
1947		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1948		ret = -EINVAL;
1949		break;
1950	case COMP_DEV_ERR:
1951		dev_warn(&udev->dev,
1952			"ERROR: Incompatible device for evaluate context command.\n");
1953		ret = -ENODEV;
1954		break;
1955	case COMP_MEL_ERR:
1956		/* Max Exit Latency too large error */
1957		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1958		ret = -EINVAL;
1959		break;
1960	case COMP_SUCCESS:
1961		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1962				"Successful evaluate context command");
1963		ret = 0;
1964		break;
1965	default:
1966		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1967			*cmd_status);
1968		ret = -EINVAL;
1969		break;
1970	}
1971	return ret;
1972}
1973
1974static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1975		struct xhci_input_control_ctx *ctrl_ctx)
1976{
1977	u32 valid_add_flags;
1978	u32 valid_drop_flags;
1979
1980	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1981	 * (bit 1).  The default control endpoint is added during the Address
1982	 * Device command and is never removed until the slot is disabled.
1983	 */
1984	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1985	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1986
1987	/* Use hweight32 to count the number of ones in the add flags, or
1988	 * number of endpoints added.  Don't count endpoints that are changed
1989	 * (both added and dropped).
1990	 */
1991	return hweight32(valid_add_flags) -
1992		hweight32(valid_add_flags & valid_drop_flags);
1993}
1994
1995static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1996		struct xhci_input_control_ctx *ctrl_ctx)
1997{
1998	u32 valid_add_flags;
1999	u32 valid_drop_flags;
2000
2001	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2002	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2003
2004	return hweight32(valid_drop_flags) -
2005		hweight32(valid_add_flags & valid_drop_flags);
2006}
2007
2008/*
2009 * We need to reserve the new number of endpoints before the configure endpoint
2010 * command completes.  We can't subtract the dropped endpoints from the number
2011 * of active endpoints until the command completes because we can oversubscribe
2012 * the host in this case:
2013 *
2014 *  - the first configure endpoint command drops more endpoints than it adds
2015 *  - a second configure endpoint command that adds more endpoints is queued
2016 *  - the first configure endpoint command fails, so the config is unchanged
2017 *  - the second command may succeed, even though there isn't enough resources
2018 *
2019 * Must be called with xhci->lock held.
2020 */
2021static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2022		struct xhci_input_control_ctx *ctrl_ctx)
2023{
2024	u32 added_eps;
2025
2026	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2027	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2028		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2029				"Not enough ep ctxs: "
2030				"%u active, need to add %u, limit is %u.",
2031				xhci->num_active_eps, added_eps,
2032				xhci->limit_active_eps);
2033		return -ENOMEM;
2034	}
2035	xhci->num_active_eps += added_eps;
2036	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2037			"Adding %u ep ctxs, %u now active.", added_eps,
2038			xhci->num_active_eps);
2039	return 0;
2040}
2041
2042/*
2043 * The configure endpoint was failed by the xHC for some other reason, so we
2044 * need to revert the resources that failed configuration would have used.
2045 *
2046 * Must be called with xhci->lock held.
2047 */
2048static void xhci_free_host_resources(struct xhci_hcd *xhci,
2049		struct xhci_input_control_ctx *ctrl_ctx)
2050{
2051	u32 num_failed_eps;
2052
2053	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2054	xhci->num_active_eps -= num_failed_eps;
2055	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2056			"Removing %u failed ep ctxs, %u now active.",
2057			num_failed_eps,
2058			xhci->num_active_eps);
2059}
2060
2061/*
2062 * Now that the command has completed, clean up the active endpoint count by
2063 * subtracting out the endpoints that were dropped (but not changed).
2064 *
2065 * Must be called with xhci->lock held.
2066 */
2067static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2068		struct xhci_input_control_ctx *ctrl_ctx)
2069{
2070	u32 num_dropped_eps;
2071
2072	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2073	xhci->num_active_eps -= num_dropped_eps;
2074	if (num_dropped_eps)
2075		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2076				"Removing %u dropped ep ctxs, %u now active.",
2077				num_dropped_eps,
2078				xhci->num_active_eps);
2079}
2080
2081static unsigned int xhci_get_block_size(struct usb_device *udev)
2082{
2083	switch (udev->speed) {
2084	case USB_SPEED_LOW:
2085	case USB_SPEED_FULL:
2086		return FS_BLOCK;
2087	case USB_SPEED_HIGH:
2088		return HS_BLOCK;
2089	case USB_SPEED_SUPER:
2090	case USB_SPEED_SUPER_PLUS:
2091		return SS_BLOCK;
2092	case USB_SPEED_UNKNOWN:
2093	case USB_SPEED_WIRELESS:
2094	default:
2095		/* Should never happen */
2096		return 1;
2097	}
2098}
2099
2100static unsigned int
2101xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2102{
2103	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2104		return LS_OVERHEAD;
2105	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2106		return FS_OVERHEAD;
2107	return HS_OVERHEAD;
2108}
2109
2110/* If we are changing a LS/FS device under a HS hub,
2111 * make sure (if we are activating a new TT) that the HS bus has enough
2112 * bandwidth for this new TT.
2113 */
2114static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2115		struct xhci_virt_device *virt_dev,
2116		int old_active_eps)
2117{
2118	struct xhci_interval_bw_table *bw_table;
2119	struct xhci_tt_bw_info *tt_info;
2120
2121	/* Find the bandwidth table for the root port this TT is attached to. */
2122	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2123	tt_info = virt_dev->tt_info;
2124	/* If this TT already had active endpoints, the bandwidth for this TT
2125	 * has already been added.  Removing all periodic endpoints (and thus
2126	 * making the TT enactive) will only decrease the bandwidth used.
2127	 */
2128	if (old_active_eps)
2129		return 0;
2130	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2131		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2132			return -ENOMEM;
2133		return 0;
2134	}
2135	/* Not sure why we would have no new active endpoints...
2136	 *
2137	 * Maybe because of an Evaluate Context change for a hub update or a
2138	 * control endpoint 0 max packet size change?
2139	 * FIXME: skip the bandwidth calculation in that case.
2140	 */
2141	return 0;
2142}
2143
2144static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2145		struct xhci_virt_device *virt_dev)
2146{
2147	unsigned int bw_reserved;
2148
2149	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2150	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2151		return -ENOMEM;
2152
2153	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2154	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2155		return -ENOMEM;
2156
2157	return 0;
2158}
2159
2160/*
2161 * This algorithm is a very conservative estimate of the worst-case scheduling
2162 * scenario for any one interval.  The hardware dynamically schedules the
2163 * packets, so we can't tell which microframe could be the limiting factor in
2164 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2165 *
2166 * Obviously, we can't solve an NP complete problem to find the minimum worst
2167 * case scenario.  Instead, we come up with an estimate that is no less than
2168 * the worst case bandwidth used for any one microframe, but may be an
2169 * over-estimate.
2170 *
2171 * We walk the requirements for each endpoint by interval, starting with the
2172 * smallest interval, and place packets in the schedule where there is only one
2173 * possible way to schedule packets for that interval.  In order to simplify
2174 * this algorithm, we record the largest max packet size for each interval, and
2175 * assume all packets will be that size.
2176 *
2177 * For interval 0, we obviously must schedule all packets for each interval.
2178 * The bandwidth for interval 0 is just the amount of data to be transmitted
2179 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2180 * the number of packets).
2181 *
2182 * For interval 1, we have two possible microframes to schedule those packets
2183 * in.  For this algorithm, if we can schedule the same number of packets for
2184 * each possible scheduling opportunity (each microframe), we will do so.  The
2185 * remaining number of packets will be saved to be transmitted in the gaps in
2186 * the next interval's scheduling sequence.
2187 *
2188 * As we move those remaining packets to be scheduled with interval 2 packets,
2189 * we have to double the number of remaining packets to transmit.  This is
2190 * because the intervals are actually powers of 2, and we would be transmitting
2191 * the previous interval's packets twice in this interval.  We also have to be
2192 * sure that when we look at the largest max packet size for this interval, we
2193 * also look at the largest max packet size for the remaining packets and take
2194 * the greater of the two.
2195 *
2196 * The algorithm continues to evenly distribute packets in each scheduling
2197 * opportunity, and push the remaining packets out, until we get to the last
2198 * interval.  Then those packets and their associated overhead are just added
2199 * to the bandwidth used.
2200 */
2201static int xhci_check_bw_table(struct xhci_hcd *xhci,
2202		struct xhci_virt_device *virt_dev,
2203		int old_active_eps)
2204{
2205	unsigned int bw_reserved;
2206	unsigned int max_bandwidth;
2207	unsigned int bw_used;
2208	unsigned int block_size;
2209	struct xhci_interval_bw_table *bw_table;
2210	unsigned int packet_size = 0;
2211	unsigned int overhead = 0;
2212	unsigned int packets_transmitted = 0;
2213	unsigned int packets_remaining = 0;
2214	unsigned int i;
2215
2216	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2217		return xhci_check_ss_bw(xhci, virt_dev);
2218
2219	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2220		max_bandwidth = HS_BW_LIMIT;
2221		/* Convert percent of bus BW reserved to blocks reserved */
2222		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2223	} else {
2224		max_bandwidth = FS_BW_LIMIT;
2225		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2226	}
2227
2228	bw_table = virt_dev->bw_table;
2229	/* We need to translate the max packet size and max ESIT payloads into
2230	 * the units the hardware uses.
2231	 */
2232	block_size = xhci_get_block_size(virt_dev->udev);
2233
2234	/* If we are manipulating a LS/FS device under a HS hub, double check
2235	 * that the HS bus has enough bandwidth if we are activing a new TT.
2236	 */
2237	if (virt_dev->tt_info) {
2238		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2239				"Recalculating BW for rootport %u",
2240				virt_dev->real_port);
2241		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2242			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2243					"newly activated TT.\n");
2244			return -ENOMEM;
2245		}
2246		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2247				"Recalculating BW for TT slot %u port %u",
2248				virt_dev->tt_info->slot_id,
2249				virt_dev->tt_info->ttport);
2250	} else {
2251		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2252				"Recalculating BW for rootport %u",
2253				virt_dev->real_port);
2254	}
2255
2256	/* Add in how much bandwidth will be used for interval zero, or the
2257	 * rounded max ESIT payload + number of packets * largest overhead.
2258	 */
2259	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2260		bw_table->interval_bw[0].num_packets *
2261		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2262
2263	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2264		unsigned int bw_added;
2265		unsigned int largest_mps;
2266		unsigned int interval_overhead;
2267
2268		/*
2269		 * How many packets could we transmit in this interval?
2270		 * If packets didn't fit in the previous interval, we will need
2271		 * to transmit that many packets twice within this interval.
2272		 */
2273		packets_remaining = 2 * packets_remaining +
2274			bw_table->interval_bw[i].num_packets;
2275
2276		/* Find the largest max packet size of this or the previous
2277		 * interval.
2278		 */
2279		if (list_empty(&bw_table->interval_bw[i].endpoints))
2280			largest_mps = 0;
2281		else {
2282			struct xhci_virt_ep *virt_ep;
2283			struct list_head *ep_entry;
2284
2285			ep_entry = bw_table->interval_bw[i].endpoints.next;
2286			virt_ep = list_entry(ep_entry,
2287					struct xhci_virt_ep, bw_endpoint_list);
2288			/* Convert to blocks, rounding up */
2289			largest_mps = DIV_ROUND_UP(
2290					virt_ep->bw_info.max_packet_size,
2291					block_size);
2292		}
2293		if (largest_mps > packet_size)
2294			packet_size = largest_mps;
2295
2296		/* Use the larger overhead of this or the previous interval. */
2297		interval_overhead = xhci_get_largest_overhead(
2298				&bw_table->interval_bw[i]);
2299		if (interval_overhead > overhead)
2300			overhead = interval_overhead;
2301
2302		/* How many packets can we evenly distribute across
2303		 * (1 << (i + 1)) possible scheduling opportunities?
2304		 */
2305		packets_transmitted = packets_remaining >> (i + 1);
2306
2307		/* Add in the bandwidth used for those scheduled packets */
2308		bw_added = packets_transmitted * (overhead + packet_size);
2309
2310		/* How many packets do we have remaining to transmit? */
2311		packets_remaining = packets_remaining % (1 << (i + 1));
2312
2313		/* What largest max packet size should those packets have? */
2314		/* If we've transmitted all packets, don't carry over the
2315		 * largest packet size.
2316		 */
2317		if (packets_remaining == 0) {
2318			packet_size = 0;
2319			overhead = 0;
2320		} else if (packets_transmitted > 0) {
2321			/* Otherwise if we do have remaining packets, and we've
2322			 * scheduled some packets in this interval, take the
2323			 * largest max packet size from endpoints with this
2324			 * interval.
2325			 */
2326			packet_size = largest_mps;
2327			overhead = interval_overhead;
2328		}
2329		/* Otherwise carry over packet_size and overhead from the last
2330		 * time we had a remainder.
2331		 */
2332		bw_used += bw_added;
2333		if (bw_used > max_bandwidth) {
2334			xhci_warn(xhci, "Not enough bandwidth. "
2335					"Proposed: %u, Max: %u\n",
2336				bw_used, max_bandwidth);
2337			return -ENOMEM;
2338		}
2339	}
2340	/*
2341	 * Ok, we know we have some packets left over after even-handedly
2342	 * scheduling interval 15.  We don't know which microframes they will
2343	 * fit into, so we over-schedule and say they will be scheduled every
2344	 * microframe.
2345	 */
2346	if (packets_remaining > 0)
2347		bw_used += overhead + packet_size;
2348
2349	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2350		unsigned int port_index = virt_dev->real_port - 1;
2351
2352		/* OK, we're manipulating a HS device attached to a
2353		 * root port bandwidth domain.  Include the number of active TTs
2354		 * in the bandwidth used.
2355		 */
2356		bw_used += TT_HS_OVERHEAD *
2357			xhci->rh_bw[port_index].num_active_tts;
2358	}
2359
2360	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2361		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2362		"Available: %u " "percent",
2363		bw_used, max_bandwidth, bw_reserved,
2364		(max_bandwidth - bw_used - bw_reserved) * 100 /
2365		max_bandwidth);
2366
2367	bw_used += bw_reserved;
2368	if (bw_used > max_bandwidth) {
2369		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2370				bw_used, max_bandwidth);
2371		return -ENOMEM;
2372	}
2373
2374	bw_table->bw_used = bw_used;
2375	return 0;
2376}
2377
2378static bool xhci_is_async_ep(unsigned int ep_type)
2379{
2380	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2381					ep_type != ISOC_IN_EP &&
2382					ep_type != INT_IN_EP);
2383}
2384
2385static bool xhci_is_sync_in_ep(unsigned int ep_type)
2386{
2387	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2388}
2389
2390static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2391{
2392	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2393
2394	if (ep_bw->ep_interval == 0)
2395		return SS_OVERHEAD_BURST +
2396			(ep_bw->mult * ep_bw->num_packets *
2397					(SS_OVERHEAD + mps));
2398	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2399				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2400				1 << ep_bw->ep_interval);
2401
2402}
2403
2404void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2405		struct xhci_bw_info *ep_bw,
2406		struct xhci_interval_bw_table *bw_table,
2407		struct usb_device *udev,
2408		struct xhci_virt_ep *virt_ep,
2409		struct xhci_tt_bw_info *tt_info)
2410{
2411	struct xhci_interval_bw	*interval_bw;
2412	int normalized_interval;
2413
2414	if (xhci_is_async_ep(ep_bw->type))
2415		return;
2416
2417	if (udev->speed >= USB_SPEED_SUPER) {
2418		if (xhci_is_sync_in_ep(ep_bw->type))
2419			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2420				xhci_get_ss_bw_consumed(ep_bw);
2421		else
2422			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2423				xhci_get_ss_bw_consumed(ep_bw);
2424		return;
2425	}
2426
2427	/* SuperSpeed endpoints never get added to intervals in the table, so
2428	 * this check is only valid for HS/FS/LS devices.
2429	 */
2430	if (list_empty(&virt_ep->bw_endpoint_list))
2431		return;
2432	/* For LS/FS devices, we need to translate the interval expressed in
2433	 * microframes to frames.
2434	 */
2435	if (udev->speed == USB_SPEED_HIGH)
2436		normalized_interval = ep_bw->ep_interval;
2437	else
2438		normalized_interval = ep_bw->ep_interval - 3;
2439
2440	if (normalized_interval == 0)
2441		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2442	interval_bw = &bw_table->interval_bw[normalized_interval];
2443	interval_bw->num_packets -= ep_bw->num_packets;
2444	switch (udev->speed) {
2445	case USB_SPEED_LOW:
2446		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2447		break;
2448	case USB_SPEED_FULL:
2449		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2450		break;
2451	case USB_SPEED_HIGH:
2452		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2453		break;
2454	case USB_SPEED_SUPER:
2455	case USB_SPEED_SUPER_PLUS:
2456	case USB_SPEED_UNKNOWN:
2457	case USB_SPEED_WIRELESS:
2458		/* Should never happen because only LS/FS/HS endpoints will get
2459		 * added to the endpoint list.
2460		 */
2461		return;
2462	}
2463	if (tt_info)
2464		tt_info->active_eps -= 1;
2465	list_del_init(&virt_ep->bw_endpoint_list);
2466}
2467
2468static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2469		struct xhci_bw_info *ep_bw,
2470		struct xhci_interval_bw_table *bw_table,
2471		struct usb_device *udev,
2472		struct xhci_virt_ep *virt_ep,
2473		struct xhci_tt_bw_info *tt_info)
2474{
2475	struct xhci_interval_bw	*interval_bw;
2476	struct xhci_virt_ep *smaller_ep;
2477	int normalized_interval;
2478
2479	if (xhci_is_async_ep(ep_bw->type))
2480		return;
2481
2482	if (udev->speed == USB_SPEED_SUPER) {
2483		if (xhci_is_sync_in_ep(ep_bw->type))
2484			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2485				xhci_get_ss_bw_consumed(ep_bw);
2486		else
2487			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2488				xhci_get_ss_bw_consumed(ep_bw);
2489		return;
2490	}
2491
2492	/* For LS/FS devices, we need to translate the interval expressed in
2493	 * microframes to frames.
2494	 */
2495	if (udev->speed == USB_SPEED_HIGH)
2496		normalized_interval = ep_bw->ep_interval;
2497	else
2498		normalized_interval = ep_bw->ep_interval - 3;
2499
2500	if (normalized_interval == 0)
2501		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2502	interval_bw = &bw_table->interval_bw[normalized_interval];
2503	interval_bw->num_packets += ep_bw->num_packets;
2504	switch (udev->speed) {
2505	case USB_SPEED_LOW:
2506		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2507		break;
2508	case USB_SPEED_FULL:
2509		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2510		break;
2511	case USB_SPEED_HIGH:
2512		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2513		break;
2514	case USB_SPEED_SUPER:
2515	case USB_SPEED_SUPER_PLUS:
2516	case USB_SPEED_UNKNOWN:
2517	case USB_SPEED_WIRELESS:
2518		/* Should never happen because only LS/FS/HS endpoints will get
2519		 * added to the endpoint list.
2520		 */
2521		return;
2522	}
2523
2524	if (tt_info)
2525		tt_info->active_eps += 1;
2526	/* Insert the endpoint into the list, largest max packet size first. */
2527	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2528			bw_endpoint_list) {
2529		if (ep_bw->max_packet_size >=
2530				smaller_ep->bw_info.max_packet_size) {
2531			/* Add the new ep before the smaller endpoint */
2532			list_add_tail(&virt_ep->bw_endpoint_list,
2533					&smaller_ep->bw_endpoint_list);
2534			return;
2535		}
2536	}
2537	/* Add the new endpoint at the end of the list. */
2538	list_add_tail(&virt_ep->bw_endpoint_list,
2539			&interval_bw->endpoints);
2540}
2541
2542void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2543		struct xhci_virt_device *virt_dev,
2544		int old_active_eps)
2545{
2546	struct xhci_root_port_bw_info *rh_bw_info;
2547	if (!virt_dev->tt_info)
2548		return;
2549
2550	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2551	if (old_active_eps == 0 &&
2552				virt_dev->tt_info->active_eps != 0) {
2553		rh_bw_info->num_active_tts += 1;
2554		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2555	} else if (old_active_eps != 0 &&
2556				virt_dev->tt_info->active_eps == 0) {
2557		rh_bw_info->num_active_tts -= 1;
2558		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2559	}
2560}
2561
2562static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2563		struct xhci_virt_device *virt_dev,
2564		struct xhci_container_ctx *in_ctx)
2565{
2566	struct xhci_bw_info ep_bw_info[31];
2567	int i;
2568	struct xhci_input_control_ctx *ctrl_ctx;
2569	int old_active_eps = 0;
2570
2571	if (virt_dev->tt_info)
2572		old_active_eps = virt_dev->tt_info->active_eps;
2573
2574	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2575	if (!ctrl_ctx) {
2576		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2577				__func__);
2578		return -ENOMEM;
2579	}
2580
2581	for (i = 0; i < 31; i++) {
2582		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2583			continue;
2584
2585		/* Make a copy of the BW info in case we need to revert this */
2586		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2587				sizeof(ep_bw_info[i]));
2588		/* Drop the endpoint from the interval table if the endpoint is
2589		 * being dropped or changed.
2590		 */
2591		if (EP_IS_DROPPED(ctrl_ctx, i))
2592			xhci_drop_ep_from_interval_table(xhci,
2593					&virt_dev->eps[i].bw_info,
2594					virt_dev->bw_table,
2595					virt_dev->udev,
2596					&virt_dev->eps[i],
2597					virt_dev->tt_info);
2598	}
2599	/* Overwrite the information stored in the endpoints' bw_info */
2600	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2601	for (i = 0; i < 31; i++) {
2602		/* Add any changed or added endpoints to the interval table */
2603		if (EP_IS_ADDED(ctrl_ctx, i))
2604			xhci_add_ep_to_interval_table(xhci,
2605					&virt_dev->eps[i].bw_info,
2606					virt_dev->bw_table,
2607					virt_dev->udev,
2608					&virt_dev->eps[i],
2609					virt_dev->tt_info);
2610	}
2611
2612	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2613		/* Ok, this fits in the bandwidth we have.
2614		 * Update the number of active TTs.
2615		 */
2616		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2617		return 0;
2618	}
2619
2620	/* We don't have enough bandwidth for this, revert the stored info. */
2621	for (i = 0; i < 31; i++) {
2622		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2623			continue;
2624
2625		/* Drop the new copies of any added or changed endpoints from
2626		 * the interval table.
2627		 */
2628		if (EP_IS_ADDED(ctrl_ctx, i)) {
2629			xhci_drop_ep_from_interval_table(xhci,
2630					&virt_dev->eps[i].bw_info,
2631					virt_dev->bw_table,
2632					virt_dev->udev,
2633					&virt_dev->eps[i],
2634					virt_dev->tt_info);
2635		}
2636		/* Revert the endpoint back to its old information */
2637		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2638				sizeof(ep_bw_info[i]));
2639		/* Add any changed or dropped endpoints back into the table */
2640		if (EP_IS_DROPPED(ctrl_ctx, i))
2641			xhci_add_ep_to_interval_table(xhci,
2642					&virt_dev->eps[i].bw_info,
2643					virt_dev->bw_table,
2644					virt_dev->udev,
2645					&virt_dev->eps[i],
2646					virt_dev->tt_info);
2647	}
2648	return -ENOMEM;
2649}
2650
2651
2652/* Issue a configure endpoint command or evaluate context command
2653 * and wait for it to finish.
2654 */
2655static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2656		struct usb_device *udev,
2657		struct xhci_command *command,
2658		bool ctx_change, bool must_succeed)
2659{
2660	int ret;
2661	unsigned long flags;
2662	struct xhci_input_control_ctx *ctrl_ctx;
2663	struct xhci_virt_device *virt_dev;
 
2664
2665	if (!command)
2666		return -EINVAL;
2667
2668	spin_lock_irqsave(&xhci->lock, flags);
 
 
 
 
 
 
2669	virt_dev = xhci->devs[udev->slot_id];
2670
2671	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2672	if (!ctrl_ctx) {
2673		spin_unlock_irqrestore(&xhci->lock, flags);
2674		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2675				__func__);
2676		return -ENOMEM;
2677	}
2678
2679	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2680			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2681		spin_unlock_irqrestore(&xhci->lock, flags);
2682		xhci_warn(xhci, "Not enough host resources, "
2683				"active endpoint contexts = %u\n",
2684				xhci->num_active_eps);
2685		return -ENOMEM;
2686	}
2687	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2688	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2689		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2690			xhci_free_host_resources(xhci, ctrl_ctx);
2691		spin_unlock_irqrestore(&xhci->lock, flags);
2692		xhci_warn(xhci, "Not enough bandwidth\n");
2693		return -ENOMEM;
2694	}
2695
 
 
 
2696	if (!ctx_change)
2697		ret = xhci_queue_configure_endpoint(xhci, command,
2698				command->in_ctx->dma,
2699				udev->slot_id, must_succeed);
2700	else
2701		ret = xhci_queue_evaluate_context(xhci, command,
2702				command->in_ctx->dma,
2703				udev->slot_id, must_succeed);
2704	if (ret < 0) {
2705		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2706			xhci_free_host_resources(xhci, ctrl_ctx);
2707		spin_unlock_irqrestore(&xhci->lock, flags);
2708		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2709				"FIXME allocate a new ring segment");
2710		return -ENOMEM;
2711	}
2712	xhci_ring_cmd_db(xhci);
2713	spin_unlock_irqrestore(&xhci->lock, flags);
2714
2715	/* Wait for the configure endpoint command to complete */
2716	wait_for_completion(command->completion);
2717
2718	if (!ctx_change)
2719		ret = xhci_configure_endpoint_result(xhci, udev,
2720						     &command->status);
2721	else
2722		ret = xhci_evaluate_context_result(xhci, udev,
2723						   &command->status);
2724
2725	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2726		spin_lock_irqsave(&xhci->lock, flags);
2727		/* If the command failed, remove the reserved resources.
2728		 * Otherwise, clean up the estimate to include dropped eps.
2729		 */
2730		if (ret)
2731			xhci_free_host_resources(xhci, ctrl_ctx);
2732		else
2733			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2734		spin_unlock_irqrestore(&xhci->lock, flags);
2735	}
2736	return ret;
2737}
2738
2739static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2740	struct xhci_virt_device *vdev, int i)
2741{
2742	struct xhci_virt_ep *ep = &vdev->eps[i];
2743
2744	if (ep->ep_state & EP_HAS_STREAMS) {
2745		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2746				xhci_get_endpoint_address(i));
2747		xhci_free_stream_info(xhci, ep->stream_info);
2748		ep->stream_info = NULL;
2749		ep->ep_state &= ~EP_HAS_STREAMS;
2750	}
2751}
2752
2753/* Called after one or more calls to xhci_add_endpoint() or
2754 * xhci_drop_endpoint().  If this call fails, the USB core is expected
2755 * to call xhci_reset_bandwidth().
2756 *
2757 * Since we are in the middle of changing either configuration or
2758 * installing a new alt setting, the USB core won't allow URBs to be
2759 * enqueued for any endpoint on the old config or interface.  Nothing
2760 * else should be touching the xhci->devs[slot_id] structure, so we
2761 * don't need to take the xhci->lock for manipulating that.
2762 */
2763int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2764{
2765	int i;
2766	int ret = 0;
2767	struct xhci_hcd *xhci;
2768	struct xhci_virt_device	*virt_dev;
2769	struct xhci_input_control_ctx *ctrl_ctx;
2770	struct xhci_slot_ctx *slot_ctx;
2771	struct xhci_command *command;
2772
2773	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2774	if (ret <= 0)
2775		return ret;
2776	xhci = hcd_to_xhci(hcd);
2777	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2778		(xhci->xhc_state & XHCI_STATE_REMOVING))
2779		return -ENODEV;
2780
2781	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2782	virt_dev = xhci->devs[udev->slot_id];
2783
2784	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2785	if (!command)
2786		return -ENOMEM;
2787
2788	command->in_ctx = virt_dev->in_ctx;
2789
2790	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2791	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2792	if (!ctrl_ctx) {
2793		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2794				__func__);
2795		ret = -ENOMEM;
2796		goto command_cleanup;
2797	}
2798	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2799	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2800	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2801
2802	/* Don't issue the command if there's no endpoints to update. */
2803	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2804	    ctrl_ctx->drop_flags == 0) {
2805		ret = 0;
2806		goto command_cleanup;
2807	}
2808	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2809	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2810	for (i = 31; i >= 1; i--) {
2811		__le32 le32 = cpu_to_le32(BIT(i));
2812
2813		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2814		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2815			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2816			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2817			break;
2818		}
2819	}
2820	xhci_dbg(xhci, "New Input Control Context:\n");
2821	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2822		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2823
2824	ret = xhci_configure_endpoint(xhci, udev, command,
2825			false, false);
2826	if (ret)
2827		/* Callee should call reset_bandwidth() */
2828		goto command_cleanup;
2829
2830	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2831	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2832		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2833
2834	/* Free any rings that were dropped, but not changed. */
2835	for (i = 1; i < 31; ++i) {
2836		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2837		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2838			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2839			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2840		}
2841	}
2842	xhci_zero_in_ctx(xhci, virt_dev);
2843	/*
2844	 * Install any rings for completely new endpoints or changed endpoints,
2845	 * and free or cache any old rings from changed endpoints.
2846	 */
2847	for (i = 1; i < 31; ++i) {
2848		if (!virt_dev->eps[i].new_ring)
2849			continue;
2850		/* Only cache or free the old ring if it exists.
2851		 * It may not if this is the first add of an endpoint.
2852		 */
2853		if (virt_dev->eps[i].ring) {
2854			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2855		}
2856		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2857		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2858		virt_dev->eps[i].new_ring = NULL;
2859	}
2860command_cleanup:
2861	kfree(command->completion);
2862	kfree(command);
2863
2864	return ret;
2865}
2866
2867void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2868{
2869	struct xhci_hcd *xhci;
2870	struct xhci_virt_device	*virt_dev;
2871	int i, ret;
2872
2873	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2874	if (ret <= 0)
2875		return;
2876	xhci = hcd_to_xhci(hcd);
2877
2878	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2879	virt_dev = xhci->devs[udev->slot_id];
2880	/* Free any rings allocated for added endpoints */
2881	for (i = 0; i < 31; ++i) {
2882		if (virt_dev->eps[i].new_ring) {
 
2883			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2884			virt_dev->eps[i].new_ring = NULL;
2885		}
2886	}
2887	xhci_zero_in_ctx(xhci, virt_dev);
2888}
2889
2890static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2891		struct xhci_container_ctx *in_ctx,
2892		struct xhci_container_ctx *out_ctx,
2893		struct xhci_input_control_ctx *ctrl_ctx,
2894		u32 add_flags, u32 drop_flags)
2895{
2896	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2897	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2898	xhci_slot_copy(xhci, in_ctx, out_ctx);
2899	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2900
2901	xhci_dbg(xhci, "Input Context:\n");
2902	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2903}
2904
2905static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2906		unsigned int slot_id, unsigned int ep_index,
2907		struct xhci_dequeue_state *deq_state)
2908{
2909	struct xhci_input_control_ctx *ctrl_ctx;
2910	struct xhci_container_ctx *in_ctx;
2911	struct xhci_ep_ctx *ep_ctx;
2912	u32 added_ctxs;
2913	dma_addr_t addr;
2914
2915	in_ctx = xhci->devs[slot_id]->in_ctx;
2916	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2917	if (!ctrl_ctx) {
2918		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2919				__func__);
2920		return;
2921	}
2922
2923	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2924			xhci->devs[slot_id]->out_ctx, ep_index);
2925	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2926	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2927			deq_state->new_deq_ptr);
2928	if (addr == 0) {
2929		xhci_warn(xhci, "WARN Cannot submit config ep after "
2930				"reset ep command\n");
2931		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2932				deq_state->new_deq_seg,
2933				deq_state->new_deq_ptr);
2934		return;
2935	}
2936	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2937
2938	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2939	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2940			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2941			added_ctxs, added_ctxs);
2942}
2943
2944void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2945			unsigned int ep_index, struct xhci_td *td)
2946{
2947	struct xhci_dequeue_state deq_state;
2948	struct xhci_virt_ep *ep;
2949	struct usb_device *udev = td->urb->dev;
2950
2951	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2952			"Cleaning up stalled endpoint ring");
2953	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2954	/* We need to move the HW's dequeue pointer past this TD,
2955	 * or it will attempt to resend it on the next doorbell ring.
2956	 */
2957	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2958			ep_index, ep->stopped_stream, td, &deq_state);
2959
2960	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2961		return;
2962
2963	/* HW with the reset endpoint quirk will use the saved dequeue state to
2964	 * issue a configure endpoint command later.
2965	 */
2966	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2967		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2968				"Queueing new dequeue state");
2969		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2970				ep_index, ep->stopped_stream, &deq_state);
2971	} else {
2972		/* Better hope no one uses the input context between now and the
2973		 * reset endpoint completion!
2974		 * XXX: No idea how this hardware will react when stream rings
2975		 * are enabled.
2976		 */
2977		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2978				"Setting up input context for "
2979				"configure endpoint command");
2980		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2981				ep_index, &deq_state);
2982	}
2983}
2984
2985/* Called when clearing halted device. The core should have sent the control
2986 * message to clear the device halt condition. The host side of the halt should
2987 * already be cleared with a reset endpoint command issued when the STALL tx
2988 * event was received.
2989 *
2990 * Context: in_interrupt
 
 
 
 
2991 */
2992
2993void xhci_endpoint_reset(struct usb_hcd *hcd,
2994		struct usb_host_endpoint *ep)
2995{
2996	struct xhci_hcd *xhci;
 
 
 
 
 
 
 
 
2997
2998	xhci = hcd_to_xhci(hcd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2999
3000	/*
3001	 * We might need to implement the config ep cmd in xhci 4.8.1 note:
3002	 * The Reset Endpoint Command may only be issued to endpoints in the
3003	 * Halted state. If software wishes reset the Data Toggle or Sequence
3004	 * Number of an endpoint that isn't in the Halted state, then software
3005	 * may issue a Configure Endpoint Command with the Drop and Add bits set
3006	 * for the target endpoint. that is in the Stopped state.
3007	 */
3008
3009	/* For now just print debug to follow the situation */
3010	xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
3011		 ep->desc.bEndpointAddress);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3012}
3013
3014static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3015		struct usb_device *udev, struct usb_host_endpoint *ep,
3016		unsigned int slot_id)
3017{
3018	int ret;
3019	unsigned int ep_index;
3020	unsigned int ep_state;
3021
3022	if (!ep)
3023		return -EINVAL;
3024	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3025	if (ret <= 0)
3026		return -EINVAL;
3027	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3028		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3029				" descriptor for ep 0x%x does not support streams\n",
3030				ep->desc.bEndpointAddress);
3031		return -EINVAL;
3032	}
3033
3034	ep_index = xhci_get_endpoint_index(&ep->desc);
3035	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3036	if (ep_state & EP_HAS_STREAMS ||
3037			ep_state & EP_GETTING_STREAMS) {
3038		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3039				"already has streams set up.\n",
3040				ep->desc.bEndpointAddress);
3041		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3042				"dynamic stream context array reallocation.\n");
3043		return -EINVAL;
3044	}
3045	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3046		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3047				"endpoint 0x%x; URBs are pending.\n",
3048				ep->desc.bEndpointAddress);
3049		return -EINVAL;
3050	}
3051	return 0;
3052}
3053
3054static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3055		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3056{
3057	unsigned int max_streams;
3058
3059	/* The stream context array size must be a power of two */
3060	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3061	/*
3062	 * Find out how many primary stream array entries the host controller
3063	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3064	 * level page entries), but that's an optional feature for xHCI host
3065	 * controllers. xHCs must support at least 4 stream IDs.
3066	 */
3067	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3068	if (*num_stream_ctxs > max_streams) {
3069		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3070				max_streams);
3071		*num_stream_ctxs = max_streams;
3072		*num_streams = max_streams;
3073	}
3074}
3075
3076/* Returns an error code if one of the endpoint already has streams.
3077 * This does not change any data structures, it only checks and gathers
3078 * information.
3079 */
3080static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3081		struct usb_device *udev,
3082		struct usb_host_endpoint **eps, unsigned int num_eps,
3083		unsigned int *num_streams, u32 *changed_ep_bitmask)
3084{
3085	unsigned int max_streams;
3086	unsigned int endpoint_flag;
3087	int i;
3088	int ret;
3089
3090	for (i = 0; i < num_eps; i++) {
3091		ret = xhci_check_streams_endpoint(xhci, udev,
3092				eps[i], udev->slot_id);
3093		if (ret < 0)
3094			return ret;
3095
3096		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3097		if (max_streams < (*num_streams - 1)) {
3098			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3099					eps[i]->desc.bEndpointAddress,
3100					max_streams);
3101			*num_streams = max_streams+1;
3102		}
3103
3104		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3105		if (*changed_ep_bitmask & endpoint_flag)
3106			return -EINVAL;
3107		*changed_ep_bitmask |= endpoint_flag;
3108	}
3109	return 0;
3110}
3111
3112static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3113		struct usb_device *udev,
3114		struct usb_host_endpoint **eps, unsigned int num_eps)
3115{
3116	u32 changed_ep_bitmask = 0;
3117	unsigned int slot_id;
3118	unsigned int ep_index;
3119	unsigned int ep_state;
3120	int i;
3121
3122	slot_id = udev->slot_id;
3123	if (!xhci->devs[slot_id])
3124		return 0;
3125
3126	for (i = 0; i < num_eps; i++) {
3127		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3128		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3129		/* Are streams already being freed for the endpoint? */
3130		if (ep_state & EP_GETTING_NO_STREAMS) {
3131			xhci_warn(xhci, "WARN Can't disable streams for "
3132					"endpoint 0x%x, "
3133					"streams are being disabled already\n",
3134					eps[i]->desc.bEndpointAddress);
3135			return 0;
3136		}
3137		/* Are there actually any streams to free? */
3138		if (!(ep_state & EP_HAS_STREAMS) &&
3139				!(ep_state & EP_GETTING_STREAMS)) {
3140			xhci_warn(xhci, "WARN Can't disable streams for "
3141					"endpoint 0x%x, "
3142					"streams are already disabled!\n",
3143					eps[i]->desc.bEndpointAddress);
3144			xhci_warn(xhci, "WARN xhci_free_streams() called "
3145					"with non-streams endpoint\n");
3146			return 0;
3147		}
3148		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3149	}
3150	return changed_ep_bitmask;
3151}
3152
3153/*
3154 * The USB device drivers use this function (through the HCD interface in USB
3155 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3156 * coordinate mass storage command queueing across multiple endpoints (basically
3157 * a stream ID == a task ID).
3158 *
3159 * Setting up streams involves allocating the same size stream context array
3160 * for each endpoint and issuing a configure endpoint command for all endpoints.
3161 *
3162 * Don't allow the call to succeed if one endpoint only supports one stream
3163 * (which means it doesn't support streams at all).
3164 *
3165 * Drivers may get less stream IDs than they asked for, if the host controller
3166 * hardware or endpoints claim they can't support the number of requested
3167 * stream IDs.
3168 */
3169int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3170		struct usb_host_endpoint **eps, unsigned int num_eps,
3171		unsigned int num_streams, gfp_t mem_flags)
3172{
3173	int i, ret;
3174	struct xhci_hcd *xhci;
3175	struct xhci_virt_device *vdev;
3176	struct xhci_command *config_cmd;
3177	struct xhci_input_control_ctx *ctrl_ctx;
3178	unsigned int ep_index;
3179	unsigned int num_stream_ctxs;
 
3180	unsigned long flags;
3181	u32 changed_ep_bitmask = 0;
3182
3183	if (!eps)
3184		return -EINVAL;
3185
3186	/* Add one to the number of streams requested to account for
3187	 * stream 0 that is reserved for xHCI usage.
3188	 */
3189	num_streams += 1;
3190	xhci = hcd_to_xhci(hcd);
3191	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3192			num_streams);
3193
3194	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3195	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3196			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3197		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3198		return -ENOSYS;
3199	}
3200
3201	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3202	if (!config_cmd) {
3203		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3204		return -ENOMEM;
3205	}
3206	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3207	if (!ctrl_ctx) {
3208		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3209				__func__);
3210		xhci_free_command(xhci, config_cmd);
3211		return -ENOMEM;
3212	}
3213
3214	/* Check to make sure all endpoints are not already configured for
3215	 * streams.  While we're at it, find the maximum number of streams that
3216	 * all the endpoints will support and check for duplicate endpoints.
3217	 */
3218	spin_lock_irqsave(&xhci->lock, flags);
3219	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3220			num_eps, &num_streams, &changed_ep_bitmask);
3221	if (ret < 0) {
3222		xhci_free_command(xhci, config_cmd);
3223		spin_unlock_irqrestore(&xhci->lock, flags);
3224		return ret;
3225	}
3226	if (num_streams <= 1) {
3227		xhci_warn(xhci, "WARN: endpoints can't handle "
3228				"more than one stream.\n");
3229		xhci_free_command(xhci, config_cmd);
3230		spin_unlock_irqrestore(&xhci->lock, flags);
3231		return -EINVAL;
3232	}
3233	vdev = xhci->devs[udev->slot_id];
3234	/* Mark each endpoint as being in transition, so
3235	 * xhci_urb_enqueue() will reject all URBs.
3236	 */
3237	for (i = 0; i < num_eps; i++) {
3238		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3239		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3240	}
3241	spin_unlock_irqrestore(&xhci->lock, flags);
3242
3243	/* Setup internal data structures and allocate HW data structures for
3244	 * streams (but don't install the HW structures in the input context
3245	 * until we're sure all memory allocation succeeded).
3246	 */
3247	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3248	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3249			num_stream_ctxs, num_streams);
3250
3251	for (i = 0; i < num_eps; i++) {
3252		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
 
3253		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3254				num_stream_ctxs,
3255				num_streams, mem_flags);
 
3256		if (!vdev->eps[ep_index].stream_info)
3257			goto cleanup;
3258		/* Set maxPstreams in endpoint context and update deq ptr to
3259		 * point to stream context array. FIXME
3260		 */
3261	}
3262
3263	/* Set up the input context for a configure endpoint command. */
3264	for (i = 0; i < num_eps; i++) {
3265		struct xhci_ep_ctx *ep_ctx;
3266
3267		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3268		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3269
3270		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3271				vdev->out_ctx, ep_index);
3272		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3273				vdev->eps[ep_index].stream_info);
3274	}
3275	/* Tell the HW to drop its old copy of the endpoint context info
3276	 * and add the updated copy from the input context.
3277	 */
3278	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3279			vdev->out_ctx, ctrl_ctx,
3280			changed_ep_bitmask, changed_ep_bitmask);
3281
3282	/* Issue and wait for the configure endpoint command */
3283	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3284			false, false);
3285
3286	/* xHC rejected the configure endpoint command for some reason, so we
3287	 * leave the old ring intact and free our internal streams data
3288	 * structure.
3289	 */
3290	if (ret < 0)
3291		goto cleanup;
3292
3293	spin_lock_irqsave(&xhci->lock, flags);
3294	for (i = 0; i < num_eps; i++) {
3295		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3296		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3297		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3298			 udev->slot_id, ep_index);
3299		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3300	}
3301	xhci_free_command(xhci, config_cmd);
3302	spin_unlock_irqrestore(&xhci->lock, flags);
3303
3304	/* Subtract 1 for stream 0, which drivers can't use */
3305	return num_streams - 1;
3306
3307cleanup:
3308	/* If it didn't work, free the streams! */
3309	for (i = 0; i < num_eps; i++) {
3310		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3311		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3312		vdev->eps[ep_index].stream_info = NULL;
3313		/* FIXME Unset maxPstreams in endpoint context and
3314		 * update deq ptr to point to normal string ring.
3315		 */
3316		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3317		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3318		xhci_endpoint_zero(xhci, vdev, eps[i]);
3319	}
3320	xhci_free_command(xhci, config_cmd);
3321	return -ENOMEM;
3322}
3323
3324/* Transition the endpoint from using streams to being a "normal" endpoint
3325 * without streams.
3326 *
3327 * Modify the endpoint context state, submit a configure endpoint command,
3328 * and free all endpoint rings for streams if that completes successfully.
3329 */
3330int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3331		struct usb_host_endpoint **eps, unsigned int num_eps,
3332		gfp_t mem_flags)
3333{
3334	int i, ret;
3335	struct xhci_hcd *xhci;
3336	struct xhci_virt_device *vdev;
3337	struct xhci_command *command;
3338	struct xhci_input_control_ctx *ctrl_ctx;
3339	unsigned int ep_index;
3340	unsigned long flags;
3341	u32 changed_ep_bitmask;
3342
3343	xhci = hcd_to_xhci(hcd);
3344	vdev = xhci->devs[udev->slot_id];
3345
3346	/* Set up a configure endpoint command to remove the streams rings */
3347	spin_lock_irqsave(&xhci->lock, flags);
3348	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3349			udev, eps, num_eps);
3350	if (changed_ep_bitmask == 0) {
3351		spin_unlock_irqrestore(&xhci->lock, flags);
3352		return -EINVAL;
3353	}
3354
3355	/* Use the xhci_command structure from the first endpoint.  We may have
3356	 * allocated too many, but the driver may call xhci_free_streams() for
3357	 * each endpoint it grouped into one call to xhci_alloc_streams().
3358	 */
3359	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3360	command = vdev->eps[ep_index].stream_info->free_streams_command;
3361	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3362	if (!ctrl_ctx) {
3363		spin_unlock_irqrestore(&xhci->lock, flags);
3364		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3365				__func__);
3366		return -EINVAL;
3367	}
3368
3369	for (i = 0; i < num_eps; i++) {
3370		struct xhci_ep_ctx *ep_ctx;
3371
3372		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3373		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3374		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3375			EP_GETTING_NO_STREAMS;
3376
3377		xhci_endpoint_copy(xhci, command->in_ctx,
3378				vdev->out_ctx, ep_index);
3379		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3380				&vdev->eps[ep_index]);
3381	}
3382	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3383			vdev->out_ctx, ctrl_ctx,
3384			changed_ep_bitmask, changed_ep_bitmask);
3385	spin_unlock_irqrestore(&xhci->lock, flags);
3386
3387	/* Issue and wait for the configure endpoint command,
3388	 * which must succeed.
3389	 */
3390	ret = xhci_configure_endpoint(xhci, udev, command,
3391			false, true);
3392
3393	/* xHC rejected the configure endpoint command for some reason, so we
3394	 * leave the streams rings intact.
3395	 */
3396	if (ret < 0)
3397		return ret;
3398
3399	spin_lock_irqsave(&xhci->lock, flags);
3400	for (i = 0; i < num_eps; i++) {
3401		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3402		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3403		vdev->eps[ep_index].stream_info = NULL;
3404		/* FIXME Unset maxPstreams in endpoint context and
3405		 * update deq ptr to point to normal string ring.
3406		 */
3407		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3408		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3409	}
3410	spin_unlock_irqrestore(&xhci->lock, flags);
3411
3412	return 0;
3413}
3414
3415/*
3416 * Deletes endpoint resources for endpoints that were active before a Reset
3417 * Device command, or a Disable Slot command.  The Reset Device command leaves
3418 * the control endpoint intact, whereas the Disable Slot command deletes it.
3419 *
3420 * Must be called with xhci->lock held.
3421 */
3422void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3423	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3424{
3425	int i;
3426	unsigned int num_dropped_eps = 0;
3427	unsigned int drop_flags = 0;
3428
3429	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3430		if (virt_dev->eps[i].ring) {
3431			drop_flags |= 1 << i;
3432			num_dropped_eps++;
3433		}
3434	}
3435	xhci->num_active_eps -= num_dropped_eps;
3436	if (num_dropped_eps)
3437		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3438				"Dropped %u ep ctxs, flags = 0x%x, "
3439				"%u now active.",
3440				num_dropped_eps, drop_flags,
3441				xhci->num_active_eps);
3442}
3443
3444/*
3445 * This submits a Reset Device Command, which will set the device state to 0,
3446 * set the device address to 0, and disable all the endpoints except the default
3447 * control endpoint.  The USB core should come back and call
3448 * xhci_address_device(), and then re-set up the configuration.  If this is
3449 * called because of a usb_reset_and_verify_device(), then the old alternate
3450 * settings will be re-installed through the normal bandwidth allocation
3451 * functions.
3452 *
3453 * Wait for the Reset Device command to finish.  Remove all structures
3454 * associated with the endpoints that were disabled.  Clear the input device
3455 * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3456 *
3457 * If the virt_dev to be reset does not exist or does not match the udev,
3458 * it means the device is lost, possibly due to the xHC restore error and
3459 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3460 * re-allocate the device.
3461 */
3462int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
 
3463{
3464	int ret, i;
3465	unsigned long flags;
3466	struct xhci_hcd *xhci;
3467	unsigned int slot_id;
3468	struct xhci_virt_device *virt_dev;
3469	struct xhci_command *reset_device_cmd;
3470	int last_freed_endpoint;
3471	struct xhci_slot_ctx *slot_ctx;
3472	int old_active_eps = 0;
3473
3474	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3475	if (ret <= 0)
3476		return ret;
3477	xhci = hcd_to_xhci(hcd);
3478	slot_id = udev->slot_id;
3479	virt_dev = xhci->devs[slot_id];
3480	if (!virt_dev) {
3481		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3482				"not exist. Re-allocate the device\n", slot_id);
3483		ret = xhci_alloc_dev(hcd, udev);
3484		if (ret == 1)
3485			return 0;
3486		else
3487			return -EINVAL;
3488	}
3489
3490	if (virt_dev->tt_info)
3491		old_active_eps = virt_dev->tt_info->active_eps;
3492
3493	if (virt_dev->udev != udev) {
3494		/* If the virt_dev and the udev does not match, this virt_dev
3495		 * may belong to another udev.
3496		 * Re-allocate the device.
3497		 */
3498		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3499				"not match the udev. Re-allocate the device\n",
3500				slot_id);
3501		ret = xhci_alloc_dev(hcd, udev);
3502		if (ret == 1)
3503			return 0;
3504		else
3505			return -EINVAL;
3506	}
3507
3508	/* If device is not setup, there is no point in resetting it */
3509	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3510	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3511						SLOT_STATE_DISABLED)
3512		return 0;
3513
 
 
3514	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3515	/* Allocate the command structure that holds the struct completion.
3516	 * Assume we're in process context, since the normal device reset
3517	 * process has to wait for the device anyway.  Storage devices are
3518	 * reset as part of error handling, so use GFP_NOIO instead of
3519	 * GFP_KERNEL.
3520	 */
3521	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3522	if (!reset_device_cmd) {
3523		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3524		return -ENOMEM;
3525	}
3526
3527	/* Attempt to submit the Reset Device command to the command ring */
3528	spin_lock_irqsave(&xhci->lock, flags);
3529
3530	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3531	if (ret) {
3532		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3533		spin_unlock_irqrestore(&xhci->lock, flags);
3534		goto command_cleanup;
3535	}
3536	xhci_ring_cmd_db(xhci);
3537	spin_unlock_irqrestore(&xhci->lock, flags);
3538
3539	/* Wait for the Reset Device command to finish */
3540	wait_for_completion(reset_device_cmd->completion);
3541
3542	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3543	 * unless we tried to reset a slot ID that wasn't enabled,
3544	 * or the device wasn't in the addressed or configured state.
3545	 */
3546	ret = reset_device_cmd->status;
3547	switch (ret) {
3548	case COMP_CMD_ABORT:
3549	case COMP_CMD_STOP:
3550		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3551		ret = -ETIME;
3552		goto command_cleanup;
3553	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3554	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3555		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3556				slot_id,
3557				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3558		xhci_dbg(xhci, "Not freeing device rings.\n");
3559		/* Don't treat this as an error.  May change my mind later. */
3560		ret = 0;
3561		goto command_cleanup;
3562	case COMP_SUCCESS:
3563		xhci_dbg(xhci, "Successful reset device command.\n");
3564		break;
3565	default:
3566		if (xhci_is_vendor_info_code(xhci, ret))
3567			break;
3568		xhci_warn(xhci, "Unknown completion code %u for "
3569				"reset device command.\n", ret);
3570		ret = -EINVAL;
3571		goto command_cleanup;
3572	}
3573
3574	/* Free up host controller endpoint resources */
3575	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3576		spin_lock_irqsave(&xhci->lock, flags);
3577		/* Don't delete the default control endpoint resources */
3578		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3579		spin_unlock_irqrestore(&xhci->lock, flags);
3580	}
3581
3582	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3583	last_freed_endpoint = 1;
3584	for (i = 1; i < 31; ++i) {
3585		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3586
3587		if (ep->ep_state & EP_HAS_STREAMS) {
3588			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3589					xhci_get_endpoint_address(i));
3590			xhci_free_stream_info(xhci, ep->stream_info);
3591			ep->stream_info = NULL;
3592			ep->ep_state &= ~EP_HAS_STREAMS;
3593		}
3594
3595		if (ep->ring) {
3596			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3597			last_freed_endpoint = i;
3598		}
3599		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3600			xhci_drop_ep_from_interval_table(xhci,
3601					&virt_dev->eps[i].bw_info,
3602					virt_dev->bw_table,
3603					udev,
3604					&virt_dev->eps[i],
3605					virt_dev->tt_info);
3606		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3607	}
3608	/* If necessary, update the number of active TTs on this root port */
3609	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3610
3611	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3612	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3613	ret = 0;
3614
3615command_cleanup:
3616	xhci_free_command(xhci, reset_device_cmd);
3617	return ret;
3618}
3619
3620/*
3621 * At this point, the struct usb_device is about to go away, the device has
3622 * disconnected, and all traffic has been stopped and the endpoints have been
3623 * disabled.  Free any HC data structures associated with that device.
3624 */
3625void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3626{
3627	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3628	struct xhci_virt_device *virt_dev;
3629	unsigned long flags;
3630	u32 state;
3631	int i, ret;
3632	struct xhci_command *command;
3633
3634	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3635	if (!command)
3636		return;
3637
3638#ifndef CONFIG_USB_DEFAULT_PERSIST
3639	/*
3640	 * We called pm_runtime_get_noresume when the device was attached.
3641	 * Decrement the counter here to allow controller to runtime suspend
3642	 * if no devices remain.
3643	 */
3644	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3645		pm_runtime_put_noidle(hcd->self.controller);
3646#endif
3647
3648	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3649	/* If the host is halted due to driver unload, we still need to free the
3650	 * device.
3651	 */
3652	if (ret <= 0 && ret != -ENODEV) {
3653		kfree(command);
3654		return;
3655	}
3656
3657	virt_dev = xhci->devs[udev->slot_id];
 
 
3658
3659	/* Stop any wayward timer functions (which may grab the lock) */
3660	for (i = 0; i < 31; ++i) {
3661		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3662		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3663	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3664
3665	spin_lock_irqsave(&xhci->lock, flags);
3666	/* Don't disable the slot if the host controller is dead. */
3667	state = readl(&xhci->op_regs->status);
3668	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3669			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3670		xhci_free_virt_device(xhci, udev->slot_id);
3671		spin_unlock_irqrestore(&xhci->lock, flags);
3672		kfree(command);
3673		return;
3674	}
3675
3676	if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3677				    udev->slot_id)) {
 
3678		spin_unlock_irqrestore(&xhci->lock, flags);
3679		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3680		return;
3681	}
3682	xhci_ring_cmd_db(xhci);
3683	spin_unlock_irqrestore(&xhci->lock, flags);
3684
3685	/*
3686	 * Event command completion handler will free any data structures
3687	 * associated with the slot.  XXX Can free sleep?
3688	 */
3689}
3690
3691/*
3692 * Checks if we have enough host controller resources for the default control
3693 * endpoint.
3694 *
3695 * Must be called with xhci->lock held.
3696 */
3697static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3698{
3699	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3700		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3701				"Not enough ep ctxs: "
3702				"%u active, need to add 1, limit is %u.",
3703				xhci->num_active_eps, xhci->limit_active_eps);
3704		return -ENOMEM;
3705	}
3706	xhci->num_active_eps += 1;
3707	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3708			"Adding 1 ep ctx, %u now active.",
3709			xhci->num_active_eps);
3710	return 0;
3711}
3712
3713
3714/*
3715 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3716 * timed out, or allocating memory failed.  Returns 1 on success.
3717 */
3718int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3719{
3720	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 
 
3721	unsigned long flags;
3722	int ret, slot_id;
3723	struct xhci_command *command;
3724
3725	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3726	if (!command)
3727		return 0;
3728
3729	/* xhci->slot_id and xhci->addr_dev are not thread-safe */
3730	mutex_lock(&xhci->mutex);
3731	spin_lock_irqsave(&xhci->lock, flags);
3732	command->completion = &xhci->addr_dev;
3733	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3734	if (ret) {
3735		spin_unlock_irqrestore(&xhci->lock, flags);
3736		mutex_unlock(&xhci->mutex);
3737		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3738		kfree(command);
3739		return 0;
3740	}
3741	xhci_ring_cmd_db(xhci);
3742	spin_unlock_irqrestore(&xhci->lock, flags);
3743
3744	wait_for_completion(command->completion);
3745	slot_id = xhci->slot_id;
3746	mutex_unlock(&xhci->mutex);
3747
3748	if (!slot_id || command->status != COMP_SUCCESS) {
3749		xhci_err(xhci, "Error while assigning device slot ID\n");
3750		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3751				HCS_MAX_SLOTS(
3752					readl(&xhci->cap_regs->hcs_params1)));
3753		kfree(command);
3754		return 0;
3755	}
3756
 
 
3757	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3758		spin_lock_irqsave(&xhci->lock, flags);
3759		ret = xhci_reserve_host_control_ep_resources(xhci);
3760		if (ret) {
3761			spin_unlock_irqrestore(&xhci->lock, flags);
3762			xhci_warn(xhci, "Not enough host resources, "
3763					"active endpoint contexts = %u\n",
3764					xhci->num_active_eps);
3765			goto disable_slot;
3766		}
3767		spin_unlock_irqrestore(&xhci->lock, flags);
3768	}
3769	/* Use GFP_NOIO, since this function can be called from
3770	 * xhci_discover_or_reset_device(), which may be called as part of
3771	 * mass storage driver error handling.
3772	 */
3773	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3774		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3775		goto disable_slot;
3776	}
 
 
 
 
3777	udev->slot_id = slot_id;
3778
 
 
3779#ifndef CONFIG_USB_DEFAULT_PERSIST
3780	/*
3781	 * If resetting upon resume, we can't put the controller into runtime
3782	 * suspend if there is a device attached.
3783	 */
3784	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3785		pm_runtime_get_noresume(hcd->self.controller);
3786#endif
3787
3788
3789	kfree(command);
3790	/* Is this a LS or FS device under a HS hub? */
3791	/* Hub or peripherial? */
3792	return 1;
3793
3794disable_slot:
3795	/* Disable slot, if we can do it without mem alloc */
3796	spin_lock_irqsave(&xhci->lock, flags);
3797	command->completion = NULL;
3798	command->status = 0;
3799	if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3800				     udev->slot_id))
3801		xhci_ring_cmd_db(xhci);
3802	spin_unlock_irqrestore(&xhci->lock, flags);
3803	return 0;
3804}
3805
3806/*
3807 * Issue an Address Device command and optionally send a corresponding
3808 * SetAddress request to the device.
3809 */
3810static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3811			     enum xhci_setup_dev setup)
3812{
3813	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3814	unsigned long flags;
3815	struct xhci_virt_device *virt_dev;
3816	int ret = 0;
3817	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3818	struct xhci_slot_ctx *slot_ctx;
3819	struct xhci_input_control_ctx *ctrl_ctx;
3820	u64 temp_64;
3821	struct xhci_command *command = NULL;
3822
3823	mutex_lock(&xhci->mutex);
3824
3825	if (xhci->xhc_state)	/* dying, removing or halted */
 
3826		goto out;
 
3827
3828	if (!udev->slot_id) {
3829		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3830				"Bad Slot ID %d", udev->slot_id);
3831		ret = -EINVAL;
3832		goto out;
3833	}
3834
3835	virt_dev = xhci->devs[udev->slot_id];
3836
3837	if (WARN_ON(!virt_dev)) {
3838		/*
3839		 * In plug/unplug torture test with an NEC controller,
3840		 * a zero-dereference was observed once due to virt_dev = 0.
3841		 * Print useful debug rather than crash if it is observed again!
3842		 */
3843		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3844			udev->slot_id);
3845		ret = -EINVAL;
3846		goto out;
3847	}
 
 
3848
3849	if (setup == SETUP_CONTEXT_ONLY) {
3850		slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3851		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3852		    SLOT_STATE_DEFAULT) {
3853			xhci_dbg(xhci, "Slot already in default state\n");
3854			goto out;
3855		}
3856	}
3857
3858	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3859	if (!command) {
3860		ret = -ENOMEM;
3861		goto out;
3862	}
3863
3864	command->in_ctx = virt_dev->in_ctx;
3865	command->completion = &xhci->addr_dev;
3866
3867	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3868	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3869	if (!ctrl_ctx) {
3870		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3871				__func__);
3872		ret = -EINVAL;
3873		goto out;
3874	}
3875	/*
3876	 * If this is the first Set Address since device plug-in or
3877	 * virt_device realloaction after a resume with an xHCI power loss,
3878	 * then set up the slot context.
3879	 */
3880	if (!slot_ctx->dev_info)
3881		xhci_setup_addressable_virt_dev(xhci, udev);
3882	/* Otherwise, update the control endpoint ring enqueue pointer. */
3883	else
3884		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3885	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3886	ctrl_ctx->drop_flags = 0;
3887
3888	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3889	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3890	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3891				le32_to_cpu(slot_ctx->dev_info) >> 27);
3892
3893	spin_lock_irqsave(&xhci->lock, flags);
 
3894	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3895					udev->slot_id, setup);
3896	if (ret) {
3897		spin_unlock_irqrestore(&xhci->lock, flags);
3898		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3899				"FIXME: allocate a command ring segment");
3900		goto out;
3901	}
3902	xhci_ring_cmd_db(xhci);
3903	spin_unlock_irqrestore(&xhci->lock, flags);
3904
3905	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3906	wait_for_completion(command->completion);
3907
3908	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3909	 * the SetAddress() "recovery interval" required by USB and aborting the
3910	 * command on a timeout.
3911	 */
3912	switch (command->status) {
3913	case COMP_CMD_ABORT:
3914	case COMP_CMD_STOP:
3915		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3916		ret = -ETIME;
3917		break;
3918	case COMP_CTX_STATE:
3919	case COMP_EBADSLT:
3920		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3921			 act, udev->slot_id);
3922		ret = -EINVAL;
3923		break;
3924	case COMP_TX_ERR:
3925		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3926		ret = -EPROTO;
3927		break;
3928	case COMP_DEV_ERR:
 
 
 
 
 
 
3929		dev_warn(&udev->dev,
3930			 "ERROR: Incompatible device for setup %s command\n", act);
3931		ret = -ENODEV;
3932		break;
3933	case COMP_SUCCESS:
3934		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3935			       "Successful setup %s command", act);
3936		break;
3937	default:
3938		xhci_err(xhci,
3939			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3940			 act, command->status);
3941		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3942		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3943		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3944		ret = -EINVAL;
3945		break;
3946	}
3947	if (ret)
3948		goto out;
3949	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3950	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3951			"Op regs DCBAA ptr = %#016llx", temp_64);
3952	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3953		"Slot ID %d dcbaa entry @%p = %#016llx",
3954		udev->slot_id,
3955		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3956		(unsigned long long)
3957		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3958	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3959			"Output Context DMA address = %#08llx",
3960			(unsigned long long)virt_dev->out_ctx->dma);
3961	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3962	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3963	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3964				le32_to_cpu(slot_ctx->dev_info) >> 27);
3965	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3966	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3967	/*
3968	 * USB core uses address 1 for the roothubs, so we add one to the
3969	 * address given back to us by the HC.
3970	 */
3971	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3972	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3973				le32_to_cpu(slot_ctx->dev_info) >> 27);
3974	/* Zero the input context control for later use */
3975	ctrl_ctx->add_flags = 0;
3976	ctrl_ctx->drop_flags = 0;
3977
3978	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3979		       "Internal device address = %d",
3980		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3981out:
3982	mutex_unlock(&xhci->mutex);
3983	kfree(command);
 
 
 
3984	return ret;
3985}
3986
3987int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3988{
3989	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3990}
3991
3992int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3993{
3994	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3995}
3996
3997/*
3998 * Transfer the port index into real index in the HW port status
3999 * registers. Caculate offset between the port's PORTSC register
4000 * and port status base. Divide the number of per port register
4001 * to get the real index. The raw port number bases 1.
4002 */
4003int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4004{
4005	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4006	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
4007	__le32 __iomem *addr;
4008	int raw_port;
4009
4010	if (hcd->speed < HCD_USB3)
4011		addr = xhci->usb2_ports[port1 - 1];
4012	else
4013		addr = xhci->usb3_ports[port1 - 1];
4014
4015	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
4016	return raw_port;
4017}
4018
4019/*
4020 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4021 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4022 */
4023static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4024			struct usb_device *udev, u16 max_exit_latency)
4025{
4026	struct xhci_virt_device *virt_dev;
4027	struct xhci_command *command;
4028	struct xhci_input_control_ctx *ctrl_ctx;
4029	struct xhci_slot_ctx *slot_ctx;
4030	unsigned long flags;
4031	int ret;
4032
4033	spin_lock_irqsave(&xhci->lock, flags);
4034
4035	virt_dev = xhci->devs[udev->slot_id];
4036
4037	/*
4038	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4039	 * xHC was re-initialized. Exit latency will be set later after
4040	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4041	 */
4042
4043	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4044		spin_unlock_irqrestore(&xhci->lock, flags);
4045		return 0;
4046	}
4047
4048	/* Attempt to issue an Evaluate Context command to change the MEL. */
4049	command = xhci->lpm_command;
4050	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4051	if (!ctrl_ctx) {
4052		spin_unlock_irqrestore(&xhci->lock, flags);
4053		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4054				__func__);
4055		return -ENOMEM;
4056	}
4057
4058	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4059	spin_unlock_irqrestore(&xhci->lock, flags);
4060
4061	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4062	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4063	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4064	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4065	slot_ctx->dev_state = 0;
4066
4067	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4068			"Set up evaluate context for LPM MEL change.");
4069	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4070	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4071
4072	/* Issue and wait for the evaluate context command. */
4073	ret = xhci_configure_endpoint(xhci, udev, command,
4074			true, true);
4075	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4076	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4077
4078	if (!ret) {
4079		spin_lock_irqsave(&xhci->lock, flags);
4080		virt_dev->current_mel = max_exit_latency;
4081		spin_unlock_irqrestore(&xhci->lock, flags);
4082	}
4083	return ret;
4084}
4085
4086#ifdef CONFIG_PM
4087
4088/* BESL to HIRD Encoding array for USB2 LPM */
4089static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4090	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4091
4092/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4093static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4094					struct usb_device *udev)
4095{
4096	int u2del, besl, besl_host;
4097	int besl_device = 0;
4098	u32 field;
4099
4100	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4101	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4102
4103	if (field & USB_BESL_SUPPORT) {
4104		for (besl_host = 0; besl_host < 16; besl_host++) {
4105			if (xhci_besl_encoding[besl_host] >= u2del)
4106				break;
4107		}
4108		/* Use baseline BESL value as default */
4109		if (field & USB_BESL_BASELINE_VALID)
4110			besl_device = USB_GET_BESL_BASELINE(field);
4111		else if (field & USB_BESL_DEEP_VALID)
4112			besl_device = USB_GET_BESL_DEEP(field);
4113	} else {
4114		if (u2del <= 50)
4115			besl_host = 0;
4116		else
4117			besl_host = (u2del - 51) / 75 + 1;
4118	}
4119
4120	besl = besl_host + besl_device;
4121	if (besl > 15)
4122		besl = 15;
4123
4124	return besl;
4125}
4126
4127/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4128static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4129{
4130	u32 field;
4131	int l1;
4132	int besld = 0;
4133	int hirdm = 0;
4134
4135	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4136
4137	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4138	l1 = udev->l1_params.timeout / 256;
4139
4140	/* device has preferred BESLD */
4141	if (field & USB_BESL_DEEP_VALID) {
4142		besld = USB_GET_BESL_DEEP(field);
4143		hirdm = 1;
4144	}
4145
4146	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4147}
4148
4149int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4150			struct usb_device *udev, int enable)
4151{
4152	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4153	__le32 __iomem	**port_array;
4154	__le32 __iomem	*pm_addr, *hlpm_addr;
4155	u32		pm_val, hlpm_val, field;
4156	unsigned int	port_num;
4157	unsigned long	flags;
4158	int		hird, exit_latency;
4159	int		ret;
4160
4161	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4162			!udev->lpm_capable)
4163		return -EPERM;
4164
4165	if (!udev->parent || udev->parent->parent ||
4166			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4167		return -EPERM;
4168
4169	if (udev->usb2_hw_lpm_capable != 1)
4170		return -EPERM;
4171
4172	spin_lock_irqsave(&xhci->lock, flags);
4173
4174	port_array = xhci->usb2_ports;
4175	port_num = udev->portnum - 1;
4176	pm_addr = port_array[port_num] + PORTPMSC;
4177	pm_val = readl(pm_addr);
4178	hlpm_addr = port_array[port_num] + PORTHLPMC;
4179	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4180
4181	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4182			enable ? "enable" : "disable", port_num + 1);
4183
4184	if (enable) {
4185		/* Host supports BESL timeout instead of HIRD */
4186		if (udev->usb2_hw_lpm_besl_capable) {
4187			/* if device doesn't have a preferred BESL value use a
4188			 * default one which works with mixed HIRD and BESL
4189			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4190			 */
4191			if ((field & USB_BESL_SUPPORT) &&
4192			    (field & USB_BESL_BASELINE_VALID))
4193				hird = USB_GET_BESL_BASELINE(field);
4194			else
4195				hird = udev->l1_params.besl;
4196
4197			exit_latency = xhci_besl_encoding[hird];
4198			spin_unlock_irqrestore(&xhci->lock, flags);
4199
4200			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4201			 * input context for link powermanagement evaluate
4202			 * context commands. It is protected by hcd->bandwidth
4203			 * mutex and is shared by all devices. We need to set
4204			 * the max ext latency in USB 2 BESL LPM as well, so
4205			 * use the same mutex and xhci_change_max_exit_latency()
4206			 */
4207			mutex_lock(hcd->bandwidth_mutex);
4208			ret = xhci_change_max_exit_latency(xhci, udev,
4209							   exit_latency);
4210			mutex_unlock(hcd->bandwidth_mutex);
4211
4212			if (ret < 0)
4213				return ret;
4214			spin_lock_irqsave(&xhci->lock, flags);
4215
4216			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4217			writel(hlpm_val, hlpm_addr);
4218			/* flush write */
4219			readl(hlpm_addr);
4220		} else {
4221			hird = xhci_calculate_hird_besl(xhci, udev);
4222		}
4223
4224		pm_val &= ~PORT_HIRD_MASK;
4225		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4226		writel(pm_val, pm_addr);
4227		pm_val = readl(pm_addr);
4228		pm_val |= PORT_HLE;
4229		writel(pm_val, pm_addr);
4230		/* flush write */
4231		readl(pm_addr);
4232	} else {
4233		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4234		writel(pm_val, pm_addr);
4235		/* flush write */
4236		readl(pm_addr);
4237		if (udev->usb2_hw_lpm_besl_capable) {
4238			spin_unlock_irqrestore(&xhci->lock, flags);
4239			mutex_lock(hcd->bandwidth_mutex);
4240			xhci_change_max_exit_latency(xhci, udev, 0);
4241			mutex_unlock(hcd->bandwidth_mutex);
4242			return 0;
4243		}
4244	}
4245
4246	spin_unlock_irqrestore(&xhci->lock, flags);
4247	return 0;
4248}
4249
4250/* check if a usb2 port supports a given extened capability protocol
4251 * only USB2 ports extended protocol capability values are cached.
4252 * Return 1 if capability is supported
4253 */
4254static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4255					   unsigned capability)
4256{
4257	u32 port_offset, port_count;
4258	int i;
4259
4260	for (i = 0; i < xhci->num_ext_caps; i++) {
4261		if (xhci->ext_caps[i] & capability) {
4262			/* port offsets starts at 1 */
4263			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4264			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4265			if (port >= port_offset &&
4266			    port < port_offset + port_count)
4267				return 1;
4268		}
4269	}
4270	return 0;
4271}
4272
4273int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4274{
4275	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4276	int		portnum = udev->portnum - 1;
4277
4278	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4279			!udev->lpm_capable)
4280		return 0;
4281
4282	/* we only support lpm for non-hub device connected to root hub yet */
4283	if (!udev->parent || udev->parent->parent ||
4284			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4285		return 0;
4286
4287	if (xhci->hw_lpm_support == 1 &&
4288			xhci_check_usb2_port_capability(
4289				xhci, portnum, XHCI_HLC)) {
4290		udev->usb2_hw_lpm_capable = 1;
4291		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4292		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4293		if (xhci_check_usb2_port_capability(xhci, portnum,
4294					XHCI_BLC))
4295			udev->usb2_hw_lpm_besl_capable = 1;
4296	}
4297
4298	return 0;
4299}
4300
4301/*---------------------- USB 3.0 Link PM functions ------------------------*/
4302
4303/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4304static unsigned long long xhci_service_interval_to_ns(
4305		struct usb_endpoint_descriptor *desc)
4306{
4307	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4308}
4309
4310static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4311		enum usb3_link_state state)
4312{
4313	unsigned long long sel;
4314	unsigned long long pel;
4315	unsigned int max_sel_pel;
4316	char *state_name;
4317
4318	switch (state) {
4319	case USB3_LPM_U1:
4320		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4321		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4322		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4323		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4324		state_name = "U1";
4325		break;
4326	case USB3_LPM_U2:
4327		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4328		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4329		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4330		state_name = "U2";
4331		break;
4332	default:
4333		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4334				__func__);
4335		return USB3_LPM_DISABLED;
4336	}
4337
4338	if (sel <= max_sel_pel && pel <= max_sel_pel)
4339		return USB3_LPM_DEVICE_INITIATED;
4340
4341	if (sel > max_sel_pel)
4342		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4343				"due to long SEL %llu ms\n",
4344				state_name, sel);
4345	else
4346		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4347				"due to long PEL %llu ms\n",
4348				state_name, pel);
4349	return USB3_LPM_DISABLED;
4350}
4351
4352/* The U1 timeout should be the maximum of the following values:
4353 *  - For control endpoints, U1 system exit latency (SEL) * 3
4354 *  - For bulk endpoints, U1 SEL * 5
4355 *  - For interrupt endpoints:
4356 *    - Notification EPs, U1 SEL * 3
4357 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4358 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4359 */
4360static unsigned long long xhci_calculate_intel_u1_timeout(
4361		struct usb_device *udev,
4362		struct usb_endpoint_descriptor *desc)
4363{
4364	unsigned long long timeout_ns;
4365	int ep_type;
4366	int intr_type;
4367
4368	ep_type = usb_endpoint_type(desc);
4369	switch (ep_type) {
4370	case USB_ENDPOINT_XFER_CONTROL:
4371		timeout_ns = udev->u1_params.sel * 3;
4372		break;
4373	case USB_ENDPOINT_XFER_BULK:
4374		timeout_ns = udev->u1_params.sel * 5;
4375		break;
4376	case USB_ENDPOINT_XFER_INT:
4377		intr_type = usb_endpoint_interrupt_type(desc);
4378		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4379			timeout_ns = udev->u1_params.sel * 3;
4380			break;
4381		}
4382		/* Otherwise the calculation is the same as isoc eps */
 
4383	case USB_ENDPOINT_XFER_ISOC:
4384		timeout_ns = xhci_service_interval_to_ns(desc);
4385		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4386		if (timeout_ns < udev->u1_params.sel * 2)
4387			timeout_ns = udev->u1_params.sel * 2;
4388		break;
4389	default:
4390		return 0;
4391	}
4392
4393	return timeout_ns;
4394}
4395
4396/* Returns the hub-encoded U1 timeout value. */
4397static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4398		struct usb_device *udev,
4399		struct usb_endpoint_descriptor *desc)
4400{
4401	unsigned long long timeout_ns;
4402
4403	if (xhci->quirks & XHCI_INTEL_HOST)
4404		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4405	else
4406		timeout_ns = udev->u1_params.sel;
4407
4408	/* The U1 timeout is encoded in 1us intervals.
4409	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4410	 */
4411	if (timeout_ns == USB3_LPM_DISABLED)
4412		timeout_ns = 1;
4413	else
4414		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4415
4416	/* If the necessary timeout value is bigger than what we can set in the
4417	 * USB 3.0 hub, we have to disable hub-initiated U1.
4418	 */
4419	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4420		return timeout_ns;
4421	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4422			"due to long timeout %llu ms\n", timeout_ns);
4423	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4424}
4425
4426/* The U2 timeout should be the maximum of:
4427 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4428 *  - largest bInterval of any active periodic endpoint (to avoid going
4429 *    into lower power link states between intervals).
4430 *  - the U2 Exit Latency of the device
4431 */
4432static unsigned long long xhci_calculate_intel_u2_timeout(
4433		struct usb_device *udev,
4434		struct usb_endpoint_descriptor *desc)
4435{
4436	unsigned long long timeout_ns;
4437	unsigned long long u2_del_ns;
4438
4439	timeout_ns = 10 * 1000 * 1000;
4440
4441	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4442			(xhci_service_interval_to_ns(desc) > timeout_ns))
4443		timeout_ns = xhci_service_interval_to_ns(desc);
4444
4445	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4446	if (u2_del_ns > timeout_ns)
4447		timeout_ns = u2_del_ns;
4448
4449	return timeout_ns;
4450}
4451
4452/* Returns the hub-encoded U2 timeout value. */
4453static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4454		struct usb_device *udev,
4455		struct usb_endpoint_descriptor *desc)
4456{
4457	unsigned long long timeout_ns;
4458
4459	if (xhci->quirks & XHCI_INTEL_HOST)
4460		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4461	else
4462		timeout_ns = udev->u2_params.sel;
4463
4464	/* The U2 timeout is encoded in 256us intervals */
4465	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4466	/* If the necessary timeout value is bigger than what we can set in the
4467	 * USB 3.0 hub, we have to disable hub-initiated U2.
4468	 */
4469	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4470		return timeout_ns;
4471	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4472			"due to long timeout %llu ms\n", timeout_ns);
4473	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4474}
4475
4476static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4477		struct usb_device *udev,
4478		struct usb_endpoint_descriptor *desc,
4479		enum usb3_link_state state,
4480		u16 *timeout)
4481{
4482	if (state == USB3_LPM_U1)
4483		return xhci_calculate_u1_timeout(xhci, udev, desc);
4484	else if (state == USB3_LPM_U2)
4485		return xhci_calculate_u2_timeout(xhci, udev, desc);
4486
4487	return USB3_LPM_DISABLED;
4488}
4489
4490static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4491		struct usb_device *udev,
4492		struct usb_endpoint_descriptor *desc,
4493		enum usb3_link_state state,
4494		u16 *timeout)
4495{
4496	u16 alt_timeout;
4497
4498	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4499		desc, state, timeout);
4500
4501	/* If we found we can't enable hub-initiated LPM, or
4502	 * the U1 or U2 exit latency was too high to allow
4503	 * device-initiated LPM as well, just stop searching.
4504	 */
4505	if (alt_timeout == USB3_LPM_DISABLED ||
4506			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4507		*timeout = alt_timeout;
4508		return -E2BIG;
4509	}
4510	if (alt_timeout > *timeout)
4511		*timeout = alt_timeout;
4512	return 0;
4513}
4514
4515static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4516		struct usb_device *udev,
4517		struct usb_host_interface *alt,
4518		enum usb3_link_state state,
4519		u16 *timeout)
4520{
4521	int j;
4522
4523	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4524		if (xhci_update_timeout_for_endpoint(xhci, udev,
4525					&alt->endpoint[j].desc, state, timeout))
4526			return -E2BIG;
4527		continue;
4528	}
4529	return 0;
4530}
4531
4532static int xhci_check_intel_tier_policy(struct usb_device *udev,
4533		enum usb3_link_state state)
4534{
4535	struct usb_device *parent;
4536	unsigned int num_hubs;
4537
4538	if (state == USB3_LPM_U2)
4539		return 0;
4540
4541	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4542	for (parent = udev->parent, num_hubs = 0; parent->parent;
4543			parent = parent->parent)
4544		num_hubs++;
4545
4546	if (num_hubs < 2)
4547		return 0;
4548
4549	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4550			" below second-tier hub.\n");
4551	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4552			"to decrease power consumption.\n");
4553	return -E2BIG;
4554}
4555
4556static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4557		struct usb_device *udev,
4558		enum usb3_link_state state)
4559{
4560	if (xhci->quirks & XHCI_INTEL_HOST)
4561		return xhci_check_intel_tier_policy(udev, state);
4562	else
4563		return 0;
4564}
4565
4566/* Returns the U1 or U2 timeout that should be enabled.
4567 * If the tier check or timeout setting functions return with a non-zero exit
4568 * code, that means the timeout value has been finalized and we shouldn't look
4569 * at any more endpoints.
4570 */
4571static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4572			struct usb_device *udev, enum usb3_link_state state)
4573{
4574	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4575	struct usb_host_config *config;
4576	char *state_name;
4577	int i;
4578	u16 timeout = USB3_LPM_DISABLED;
4579
4580	if (state == USB3_LPM_U1)
4581		state_name = "U1";
4582	else if (state == USB3_LPM_U2)
4583		state_name = "U2";
4584	else {
4585		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4586				state);
4587		return timeout;
4588	}
4589
4590	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4591		return timeout;
4592
4593	/* Gather some information about the currently installed configuration
4594	 * and alternate interface settings.
4595	 */
4596	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4597			state, &timeout))
4598		return timeout;
4599
4600	config = udev->actconfig;
4601	if (!config)
4602		return timeout;
4603
4604	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4605		struct usb_driver *driver;
4606		struct usb_interface *intf = config->interface[i];
4607
4608		if (!intf)
4609			continue;
4610
4611		/* Check if any currently bound drivers want hub-initiated LPM
4612		 * disabled.
4613		 */
4614		if (intf->dev.driver) {
4615			driver = to_usb_driver(intf->dev.driver);
4616			if (driver && driver->disable_hub_initiated_lpm) {
4617				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4618						"at request of driver %s\n",
4619						state_name, driver->name);
4620				return xhci_get_timeout_no_hub_lpm(udev, state);
4621			}
4622		}
4623
4624		/* Not sure how this could happen... */
4625		if (!intf->cur_altsetting)
4626			continue;
4627
4628		if (xhci_update_timeout_for_interface(xhci, udev,
4629					intf->cur_altsetting,
4630					state, &timeout))
4631			return timeout;
4632	}
4633	return timeout;
4634}
4635
4636static int calculate_max_exit_latency(struct usb_device *udev,
4637		enum usb3_link_state state_changed,
4638		u16 hub_encoded_timeout)
4639{
4640	unsigned long long u1_mel_us = 0;
4641	unsigned long long u2_mel_us = 0;
4642	unsigned long long mel_us = 0;
4643	bool disabling_u1;
4644	bool disabling_u2;
4645	bool enabling_u1;
4646	bool enabling_u2;
4647
4648	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4649			hub_encoded_timeout == USB3_LPM_DISABLED);
4650	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4651			hub_encoded_timeout == USB3_LPM_DISABLED);
4652
4653	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4654			hub_encoded_timeout != USB3_LPM_DISABLED);
4655	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4656			hub_encoded_timeout != USB3_LPM_DISABLED);
4657
4658	/* If U1 was already enabled and we're not disabling it,
4659	 * or we're going to enable U1, account for the U1 max exit latency.
4660	 */
4661	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4662			enabling_u1)
4663		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4664	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4665			enabling_u2)
4666		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4667
4668	if (u1_mel_us > u2_mel_us)
4669		mel_us = u1_mel_us;
4670	else
4671		mel_us = u2_mel_us;
4672	/* xHCI host controller max exit latency field is only 16 bits wide. */
4673	if (mel_us > MAX_EXIT) {
4674		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4675				"is too big.\n", mel_us);
4676		return -E2BIG;
4677	}
4678	return mel_us;
4679}
4680
4681/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4682int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4683			struct usb_device *udev, enum usb3_link_state state)
4684{
4685	struct xhci_hcd	*xhci;
4686	u16 hub_encoded_timeout;
4687	int mel;
4688	int ret;
4689
4690	xhci = hcd_to_xhci(hcd);
4691	/* The LPM timeout values are pretty host-controller specific, so don't
4692	 * enable hub-initiated timeouts unless the vendor has provided
4693	 * information about their timeout algorithm.
4694	 */
4695	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4696			!xhci->devs[udev->slot_id])
4697		return USB3_LPM_DISABLED;
4698
4699	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4700	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4701	if (mel < 0) {
4702		/* Max Exit Latency is too big, disable LPM. */
4703		hub_encoded_timeout = USB3_LPM_DISABLED;
4704		mel = 0;
4705	}
4706
4707	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4708	if (ret)
4709		return ret;
4710	return hub_encoded_timeout;
4711}
4712
4713int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4714			struct usb_device *udev, enum usb3_link_state state)
4715{
4716	struct xhci_hcd	*xhci;
4717	u16 mel;
4718
4719	xhci = hcd_to_xhci(hcd);
4720	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4721			!xhci->devs[udev->slot_id])
4722		return 0;
4723
4724	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4725	return xhci_change_max_exit_latency(xhci, udev, mel);
4726}
4727#else /* CONFIG_PM */
4728
4729int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4730				struct usb_device *udev, int enable)
4731{
4732	return 0;
4733}
4734
4735int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4736{
4737	return 0;
4738}
4739
4740int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4741			struct usb_device *udev, enum usb3_link_state state)
4742{
4743	return USB3_LPM_DISABLED;
4744}
4745
4746int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4747			struct usb_device *udev, enum usb3_link_state state)
4748{
4749	return 0;
4750}
4751#endif	/* CONFIG_PM */
4752
4753/*-------------------------------------------------------------------------*/
4754
4755/* Once a hub descriptor is fetched for a device, we need to update the xHC's
4756 * internal data structures for the device.
4757 */
4758int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4759			struct usb_tt *tt, gfp_t mem_flags)
4760{
4761	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4762	struct xhci_virt_device *vdev;
4763	struct xhci_command *config_cmd;
4764	struct xhci_input_control_ctx *ctrl_ctx;
4765	struct xhci_slot_ctx *slot_ctx;
4766	unsigned long flags;
4767	unsigned think_time;
4768	int ret;
4769
4770	/* Ignore root hubs */
4771	if (!hdev->parent)
4772		return 0;
4773
4774	vdev = xhci->devs[hdev->slot_id];
4775	if (!vdev) {
4776		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4777		return -EINVAL;
4778	}
4779	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4780	if (!config_cmd) {
4781		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4782		return -ENOMEM;
4783	}
4784	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4785	if (!ctrl_ctx) {
4786		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4787				__func__);
4788		xhci_free_command(xhci, config_cmd);
4789		return -ENOMEM;
4790	}
4791
4792	spin_lock_irqsave(&xhci->lock, flags);
4793	if (hdev->speed == USB_SPEED_HIGH &&
4794			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4795		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4796		xhci_free_command(xhci, config_cmd);
4797		spin_unlock_irqrestore(&xhci->lock, flags);
4798		return -ENOMEM;
4799	}
4800
4801	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4802	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4803	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4804	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4805	/*
4806	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4807	 * but it may be already set to 1 when setup an xHCI virtual
4808	 * device, so clear it anyway.
4809	 */
4810	if (tt->multi)
4811		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4812	else if (hdev->speed == USB_SPEED_FULL)
4813		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4814
4815	if (xhci->hci_version > 0x95) {
4816		xhci_dbg(xhci, "xHCI version %x needs hub "
4817				"TT think time and number of ports\n",
4818				(unsigned int) xhci->hci_version);
4819		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4820		/* Set TT think time - convert from ns to FS bit times.
4821		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4822		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4823		 *
4824		 * xHCI 1.0: this field shall be 0 if the device is not a
4825		 * High-spped hub.
4826		 */
4827		think_time = tt->think_time;
4828		if (think_time != 0)
4829			think_time = (think_time / 666) - 1;
4830		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4831			slot_ctx->tt_info |=
4832				cpu_to_le32(TT_THINK_TIME(think_time));
4833	} else {
4834		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4835				"TT think time or number of ports\n",
4836				(unsigned int) xhci->hci_version);
4837	}
4838	slot_ctx->dev_state = 0;
4839	spin_unlock_irqrestore(&xhci->lock, flags);
4840
4841	xhci_dbg(xhci, "Set up %s for hub device.\n",
4842			(xhci->hci_version > 0x95) ?
4843			"configure endpoint" : "evaluate context");
4844	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4845	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4846
4847	/* Issue and wait for the configure endpoint or
4848	 * evaluate context command.
4849	 */
4850	if (xhci->hci_version > 0x95)
4851		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4852				false, false);
4853	else
4854		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4855				true, false);
4856
4857	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4858	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4859
4860	xhci_free_command(xhci, config_cmd);
4861	return ret;
4862}
4863
4864int xhci_get_frame(struct usb_hcd *hcd)
4865{
4866	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4867	/* EHCI mods by the periodic size.  Why? */
4868	return readl(&xhci->run_regs->microframe_index) >> 3;
4869}
4870
4871int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4872{
4873	struct xhci_hcd		*xhci;
4874	struct device		*dev = hcd->self.controller;
 
 
 
 
 
4875	int			retval;
4876
4877	/* Accept arbitrarily long scatter-gather lists */
4878	hcd->self.sg_tablesize = ~0;
4879
4880	/* support to build packet from discontinuous buffers */
4881	hcd->self.no_sg_constraint = 1;
4882
4883	/* XHCI controllers don't stop the ep queue on short packets :| */
4884	hcd->self.no_stop_on_short = 1;
4885
4886	xhci = hcd_to_xhci(hcd);
4887
4888	if (usb_hcd_is_primary_hcd(hcd)) {
4889		xhci->main_hcd = hcd;
4890		/* Mark the first roothub as being USB 2.0.
4891		 * The xHCI driver will register the USB 3.0 roothub.
4892		 */
4893		hcd->speed = HCD_USB2;
4894		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4895		/*
4896		 * USB 2.0 roothub under xHCI has an integrated TT,
4897		 * (rate matching hub) as opposed to having an OHCI/UHCI
4898		 * companion controller.
4899		 */
4900		hcd->has_tt = 1;
4901	} else {
4902		if (xhci->sbrn == 0x31) {
4903			xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
 
 
 
 
4904			hcd->speed = HCD_USB31;
4905			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4906		}
 
 
 
 
4907		/* xHCI private pointer was set in xhci_pci_probe for the second
4908		 * registered roothub.
4909		 */
4910		return 0;
4911	}
4912
4913	mutex_init(&xhci->mutex);
4914	xhci->cap_regs = hcd->regs;
4915	xhci->op_regs = hcd->regs +
4916		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4917	xhci->run_regs = hcd->regs +
4918		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4919	/* Cache read-only capability registers */
4920	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4921	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4922	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4923	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4924	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4925	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4926	if (xhci->hci_version > 0x100)
4927		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4928	xhci_print_registers(xhci);
4929
4930	xhci->quirks = quirks;
4931
4932	get_quirks(dev, xhci);
4933
4934	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4935	 * success event after a short transfer. This quirk will ignore such
4936	 * spurious event.
4937	 */
4938	if (xhci->hci_version > 0x96)
4939		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4940
4941	/* Make sure the HC is halted. */
4942	retval = xhci_halt(xhci);
4943	if (retval)
4944		return retval;
4945
4946	xhci_dbg(xhci, "Resetting HCD\n");
4947	/* Reset the internal HC memory state and registers. */
4948	retval = xhci_reset(xhci);
4949	if (retval)
4950		return retval;
4951	xhci_dbg(xhci, "Reset complete\n");
4952
4953	/*
4954	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4955	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4956	 * address memory pointers actually. So, this driver clears the AC64
4957	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4958	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4959	 */
4960	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4961		xhci->hcc_params &= ~BIT(0);
4962
4963	/* Set dma_mask and coherent_dma_mask to 64-bits,
4964	 * if xHC supports 64-bit addressing */
4965	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4966			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4967		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4968		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4969	} else {
4970		/*
4971		 * This is to avoid error in cases where a 32-bit USB
4972		 * controller is used on a 64-bit capable system.
4973		 */
4974		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4975		if (retval)
4976			return retval;
4977		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4978		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4979	}
4980
4981	xhci_dbg(xhci, "Calling HCD init\n");
4982	/* Initialize HCD and host controller data structures. */
4983	retval = xhci_init(hcd);
4984	if (retval)
4985		return retval;
4986	xhci_dbg(xhci, "Called HCD init\n");
4987
4988	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4989		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4990
4991	return 0;
4992}
4993EXPORT_SYMBOL_GPL(xhci_gen_setup);
4994
4995static const struct hc_driver xhci_hc_driver = {
4996	.description =		"xhci-hcd",
4997	.product_desc =		"xHCI Host Controller",
4998	.hcd_priv_size =	sizeof(struct xhci_hcd),
4999
5000	/*
5001	 * generic hardware linkage
5002	 */
5003	.irq =			xhci_irq,
5004	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
5005
5006	/*
5007	 * basic lifecycle operations
5008	 */
5009	.reset =		NULL, /* set in xhci_init_driver() */
5010	.start =		xhci_run,
5011	.stop =			xhci_stop,
5012	.shutdown =		xhci_shutdown,
5013
5014	/*
5015	 * managing i/o requests and associated device resources
5016	 */
5017	.urb_enqueue =		xhci_urb_enqueue,
5018	.urb_dequeue =		xhci_urb_dequeue,
5019	.alloc_dev =		xhci_alloc_dev,
5020	.free_dev =		xhci_free_dev,
5021	.alloc_streams =	xhci_alloc_streams,
5022	.free_streams =		xhci_free_streams,
5023	.add_endpoint =		xhci_add_endpoint,
5024	.drop_endpoint =	xhci_drop_endpoint,
5025	.endpoint_reset =	xhci_endpoint_reset,
5026	.check_bandwidth =	xhci_check_bandwidth,
5027	.reset_bandwidth =	xhci_reset_bandwidth,
5028	.address_device =	xhci_address_device,
5029	.enable_device =	xhci_enable_device,
5030	.update_hub_device =	xhci_update_hub_device,
5031	.reset_device =		xhci_discover_or_reset_device,
5032
5033	/*
5034	 * scheduling support
5035	 */
5036	.get_frame_number =	xhci_get_frame,
5037
5038	/*
5039	 * root hub support
5040	 */
5041	.hub_control =		xhci_hub_control,
5042	.hub_status_data =	xhci_hub_status_data,
5043	.bus_suspend =		xhci_bus_suspend,
5044	.bus_resume =		xhci_bus_resume,
5045
5046	/*
5047	 * call back when device connected and addressed
5048	 */
5049	.update_device =        xhci_update_device,
5050	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5051	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5052	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5053	.find_raw_port_number =	xhci_find_raw_port_number,
5054};
5055
5056void xhci_init_driver(struct hc_driver *drv,
5057		      const struct xhci_driver_overrides *over)
5058{
5059	BUG_ON(!over);
5060
5061	/* Copy the generic table to drv then apply the overrides */
5062	*drv = xhci_hc_driver;
5063
5064	if (over) {
5065		drv->hcd_priv_size += over->extra_priv_size;
5066		if (over->reset)
5067			drv->reset = over->reset;
5068		if (over->start)
5069			drv->start = over->start;
5070	}
5071}
5072EXPORT_SYMBOL_GPL(xhci_init_driver);
5073
5074MODULE_DESCRIPTION(DRIVER_DESC);
5075MODULE_AUTHOR(DRIVER_AUTHOR);
5076MODULE_LICENSE("GPL");
5077
5078static int __init xhci_hcd_init(void)
5079{
5080	/*
5081	 * Check the compiler generated sizes of structures that must be laid
5082	 * out in specific ways for hardware access.
5083	 */
5084	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5085	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5086	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5087	/* xhci_device_control has eight fields, and also
5088	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5089	 */
5090	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5091	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5092	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5093	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5094	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5095	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5096	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5097
5098	if (usb_disabled())
5099		return -ENODEV;
5100
 
 
5101	return 0;
5102}
5103
5104/*
5105 * If an init function is provided, an exit function must also be provided
5106 * to allow module unload.
5107 */
5108static void __exit xhci_hcd_fini(void) { }
 
 
 
5109
5110module_init(xhci_hcd_init);
5111module_exit(xhci_hcd_fini);