Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v4.17
   1/*
   2 * Xilinx Axi Ethernet device driver
   3 *
   4 * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
   5 * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
   6 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
   7 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
   8 * Copyright (c) 2010 - 2011 PetaLogix
   9 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
  10 *
  11 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
  12 * and Spartan6.
  13 *
  14 * TODO:
  15 *  - Add Axi Fifo support.
  16 *  - Factor out Axi DMA code into separate driver.
  17 *  - Test and fix basic multicast filtering.
  18 *  - Add support for extended multicast filtering.
  19 *  - Test basic VLAN support.
  20 *  - Add support for extended VLAN support.
  21 */
  22
  23#include <linux/delay.h>
  24#include <linux/etherdevice.h>
  25#include <linux/module.h>
  26#include <linux/netdevice.h>
  27#include <linux/of_mdio.h>
  28#include <linux/of_net.h>
  29#include <linux/of_platform.h>
  30#include <linux/of_irq.h>
  31#include <linux/of_address.h>
  32#include <linux/skbuff.h>
  33#include <linux/spinlock.h>
  34#include <linux/phy.h>
  35#include <linux/mii.h>
  36#include <linux/ethtool.h>
  37
  38#include "xilinx_axienet.h"
  39
  40/* Descriptors defines for Tx and Rx DMA - 2^n for the best performance */
  41#define TX_BD_NUM		64
  42#define RX_BD_NUM		128
  43
  44/* Must be shorter than length of ethtool_drvinfo.driver field to fit */
  45#define DRIVER_NAME		"xaxienet"
  46#define DRIVER_DESCRIPTION	"Xilinx Axi Ethernet driver"
  47#define DRIVER_VERSION		"1.00a"
  48
  49#define AXIENET_REGS_N		32
  50
  51/* Match table for of_platform binding */
  52static const struct of_device_id axienet_of_match[] = {
  53	{ .compatible = "xlnx,axi-ethernet-1.00.a", },
  54	{ .compatible = "xlnx,axi-ethernet-1.01.a", },
  55	{ .compatible = "xlnx,axi-ethernet-2.01.a", },
  56	{},
  57};
  58
  59MODULE_DEVICE_TABLE(of, axienet_of_match);
  60
  61/* Option table for setting up Axi Ethernet hardware options */
  62static struct axienet_option axienet_options[] = {
  63	/* Turn on jumbo packet support for both Rx and Tx */
  64	{
  65		.opt = XAE_OPTION_JUMBO,
  66		.reg = XAE_TC_OFFSET,
  67		.m_or = XAE_TC_JUM_MASK,
  68	}, {
  69		.opt = XAE_OPTION_JUMBO,
  70		.reg = XAE_RCW1_OFFSET,
  71		.m_or = XAE_RCW1_JUM_MASK,
  72	}, { /* Turn on VLAN packet support for both Rx and Tx */
  73		.opt = XAE_OPTION_VLAN,
  74		.reg = XAE_TC_OFFSET,
  75		.m_or = XAE_TC_VLAN_MASK,
  76	}, {
  77		.opt = XAE_OPTION_VLAN,
  78		.reg = XAE_RCW1_OFFSET,
  79		.m_or = XAE_RCW1_VLAN_MASK,
  80	}, { /* Turn on FCS stripping on receive packets */
  81		.opt = XAE_OPTION_FCS_STRIP,
  82		.reg = XAE_RCW1_OFFSET,
  83		.m_or = XAE_RCW1_FCS_MASK,
  84	}, { /* Turn on FCS insertion on transmit packets */
  85		.opt = XAE_OPTION_FCS_INSERT,
  86		.reg = XAE_TC_OFFSET,
  87		.m_or = XAE_TC_FCS_MASK,
  88	}, { /* Turn off length/type field checking on receive packets */
  89		.opt = XAE_OPTION_LENTYPE_ERR,
  90		.reg = XAE_RCW1_OFFSET,
  91		.m_or = XAE_RCW1_LT_DIS_MASK,
  92	}, { /* Turn on Rx flow control */
  93		.opt = XAE_OPTION_FLOW_CONTROL,
  94		.reg = XAE_FCC_OFFSET,
  95		.m_or = XAE_FCC_FCRX_MASK,
  96	}, { /* Turn on Tx flow control */
  97		.opt = XAE_OPTION_FLOW_CONTROL,
  98		.reg = XAE_FCC_OFFSET,
  99		.m_or = XAE_FCC_FCTX_MASK,
 100	}, { /* Turn on promiscuous frame filtering */
 101		.opt = XAE_OPTION_PROMISC,
 102		.reg = XAE_FMI_OFFSET,
 103		.m_or = XAE_FMI_PM_MASK,
 104	}, { /* Enable transmitter */
 105		.opt = XAE_OPTION_TXEN,
 106		.reg = XAE_TC_OFFSET,
 107		.m_or = XAE_TC_TX_MASK,
 108	}, { /* Enable receiver */
 109		.opt = XAE_OPTION_RXEN,
 110		.reg = XAE_RCW1_OFFSET,
 111		.m_or = XAE_RCW1_RX_MASK,
 112	},
 113	{}
 114};
 115
 116/**
 117 * axienet_dma_in32 - Memory mapped Axi DMA register read
 118 * @lp:		Pointer to axienet local structure
 119 * @reg:	Address offset from the base address of the Axi DMA core
 120 *
 121 * Return: The contents of the Axi DMA register
 122 *
 123 * This function returns the contents of the corresponding Axi DMA register.
 124 */
 125static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
 126{
 127	return in_be32(lp->dma_regs + reg);
 128}
 129
 130/**
 131 * axienet_dma_out32 - Memory mapped Axi DMA register write.
 132 * @lp:		Pointer to axienet local structure
 133 * @reg:	Address offset from the base address of the Axi DMA core
 134 * @value:	Value to be written into the Axi DMA register
 135 *
 136 * This function writes the desired value into the corresponding Axi DMA
 137 * register.
 138 */
 139static inline void axienet_dma_out32(struct axienet_local *lp,
 140				     off_t reg, u32 value)
 141{
 142	out_be32((lp->dma_regs + reg), value);
 143}
 144
 145/**
 146 * axienet_dma_bd_release - Release buffer descriptor rings
 147 * @ndev:	Pointer to the net_device structure
 148 *
 149 * This function is used to release the descriptors allocated in
 150 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
 151 * driver stop api is called.
 152 */
 153static void axienet_dma_bd_release(struct net_device *ndev)
 154{
 155	int i;
 156	struct axienet_local *lp = netdev_priv(ndev);
 157
 158	for (i = 0; i < RX_BD_NUM; i++) {
 159		dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
 160				 lp->max_frm_size, DMA_FROM_DEVICE);
 161		dev_kfree_skb((struct sk_buff *)
 162			      (lp->rx_bd_v[i].sw_id_offset));
 163	}
 164
 165	if (lp->rx_bd_v) {
 166		dma_free_coherent(ndev->dev.parent,
 167				  sizeof(*lp->rx_bd_v) * RX_BD_NUM,
 168				  lp->rx_bd_v,
 169				  lp->rx_bd_p);
 170	}
 171	if (lp->tx_bd_v) {
 172		dma_free_coherent(ndev->dev.parent,
 173				  sizeof(*lp->tx_bd_v) * TX_BD_NUM,
 174				  lp->tx_bd_v,
 175				  lp->tx_bd_p);
 176	}
 177}
 178
 179/**
 180 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
 181 * @ndev:	Pointer to the net_device structure
 182 *
 183 * Return: 0, on success -ENOMEM, on failure
 184 *
 185 * This function is called to initialize the Rx and Tx DMA descriptor
 186 * rings. This initializes the descriptors with required default values
 187 * and is called when Axi Ethernet driver reset is called.
 188 */
 189static int axienet_dma_bd_init(struct net_device *ndev)
 190{
 191	u32 cr;
 192	int i;
 193	struct sk_buff *skb;
 194	struct axienet_local *lp = netdev_priv(ndev);
 195
 196	/* Reset the indexes which are used for accessing the BDs */
 197	lp->tx_bd_ci = 0;
 198	lp->tx_bd_tail = 0;
 199	lp->rx_bd_ci = 0;
 200
 201	/* Allocate the Tx and Rx buffer descriptors. */
 202	lp->tx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
 203					  sizeof(*lp->tx_bd_v) * TX_BD_NUM,
 204					  &lp->tx_bd_p, GFP_KERNEL);
 205	if (!lp->tx_bd_v)
 206		goto out;
 207
 208	lp->rx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
 209					  sizeof(*lp->rx_bd_v) * RX_BD_NUM,
 210					  &lp->rx_bd_p, GFP_KERNEL);
 211	if (!lp->rx_bd_v)
 212		goto out;
 213
 214	for (i = 0; i < TX_BD_NUM; i++) {
 215		lp->tx_bd_v[i].next = lp->tx_bd_p +
 216				      sizeof(*lp->tx_bd_v) *
 217				      ((i + 1) % TX_BD_NUM);
 218	}
 219
 220	for (i = 0; i < RX_BD_NUM; i++) {
 221		lp->rx_bd_v[i].next = lp->rx_bd_p +
 222				      sizeof(*lp->rx_bd_v) *
 223				      ((i + 1) % RX_BD_NUM);
 224
 225		skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
 226		if (!skb)
 227			goto out;
 228
 229		lp->rx_bd_v[i].sw_id_offset = (u32) skb;
 230		lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
 231						     skb->data,
 232						     lp->max_frm_size,
 233						     DMA_FROM_DEVICE);
 234		lp->rx_bd_v[i].cntrl = lp->max_frm_size;
 235	}
 236
 237	/* Start updating the Rx channel control register */
 238	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 239	/* Update the interrupt coalesce count */
 240	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
 241	      ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
 242	/* Update the delay timer count */
 243	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
 244	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
 245	/* Enable coalesce, delay timer and error interrupts */
 246	cr |= XAXIDMA_IRQ_ALL_MASK;
 247	/* Write to the Rx channel control register */
 248	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
 249
 250	/* Start updating the Tx channel control register */
 251	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 252	/* Update the interrupt coalesce count */
 253	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
 254	      ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
 255	/* Update the delay timer count */
 256	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
 257	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
 258	/* Enable coalesce, delay timer and error interrupts */
 259	cr |= XAXIDMA_IRQ_ALL_MASK;
 260	/* Write to the Tx channel control register */
 261	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
 262
 263	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
 264	 * halted state. This will make the Rx side ready for reception.
 265	 */
 266	axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
 267	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 268	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
 269			  cr | XAXIDMA_CR_RUNSTOP_MASK);
 270	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
 271			  (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
 272
 273	/* Write to the RS (Run-stop) bit in the Tx channel control register.
 274	 * Tx channel is now ready to run. But only after we write to the
 275	 * tail pointer register that the Tx channel will start transmitting.
 276	 */
 277	axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
 278	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 279	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
 280			  cr | XAXIDMA_CR_RUNSTOP_MASK);
 281
 282	return 0;
 283out:
 284	axienet_dma_bd_release(ndev);
 285	return -ENOMEM;
 286}
 287
 288/**
 289 * axienet_set_mac_address - Write the MAC address
 290 * @ndev:	Pointer to the net_device structure
 291 * @address:	6 byte Address to be written as MAC address
 292 *
 293 * This function is called to initialize the MAC address of the Axi Ethernet
 294 * core. It writes to the UAW0 and UAW1 registers of the core.
 295 */
 296static void axienet_set_mac_address(struct net_device *ndev,
 297				    const void *address)
 298{
 299	struct axienet_local *lp = netdev_priv(ndev);
 300
 301	if (address)
 302		memcpy(ndev->dev_addr, address, ETH_ALEN);
 303	if (!is_valid_ether_addr(ndev->dev_addr))
 304		eth_hw_addr_random(ndev);
 305
 306	/* Set up unicast MAC address filter set its mac address */
 307	axienet_iow(lp, XAE_UAW0_OFFSET,
 308		    (ndev->dev_addr[0]) |
 309		    (ndev->dev_addr[1] << 8) |
 310		    (ndev->dev_addr[2] << 16) |
 311		    (ndev->dev_addr[3] << 24));
 312	axienet_iow(lp, XAE_UAW1_OFFSET,
 313		    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
 314		      ~XAE_UAW1_UNICASTADDR_MASK) |
 315		     (ndev->dev_addr[4] |
 316		     (ndev->dev_addr[5] << 8))));
 317}
 318
 319/**
 320 * netdev_set_mac_address - Write the MAC address (from outside the driver)
 321 * @ndev:	Pointer to the net_device structure
 322 * @p:		6 byte Address to be written as MAC address
 323 *
 324 * Return: 0 for all conditions. Presently, there is no failure case.
 325 *
 326 * This function is called to initialize the MAC address of the Axi Ethernet
 327 * core. It calls the core specific axienet_set_mac_address. This is the
 328 * function that goes into net_device_ops structure entry ndo_set_mac_address.
 329 */
 330static int netdev_set_mac_address(struct net_device *ndev, void *p)
 331{
 332	struct sockaddr *addr = p;
 333	axienet_set_mac_address(ndev, addr->sa_data);
 334	return 0;
 335}
 336
 337/**
 338 * axienet_set_multicast_list - Prepare the multicast table
 339 * @ndev:	Pointer to the net_device structure
 340 *
 341 * This function is called to initialize the multicast table during
 342 * initialization. The Axi Ethernet basic multicast support has a four-entry
 343 * multicast table which is initialized here. Additionally this function
 344 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
 345 * means whenever the multicast table entries need to be updated this
 346 * function gets called.
 347 */
 348static void axienet_set_multicast_list(struct net_device *ndev)
 349{
 350	int i;
 351	u32 reg, af0reg, af1reg;
 352	struct axienet_local *lp = netdev_priv(ndev);
 353
 354	if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
 355	    netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
 356		/* We must make the kernel realize we had to move into
 357		 * promiscuous mode. If it was a promiscuous mode request
 358		 * the flag is already set. If not we set it.
 359		 */
 360		ndev->flags |= IFF_PROMISC;
 361		reg = axienet_ior(lp, XAE_FMI_OFFSET);
 362		reg |= XAE_FMI_PM_MASK;
 363		axienet_iow(lp, XAE_FMI_OFFSET, reg);
 364		dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
 365	} else if (!netdev_mc_empty(ndev)) {
 366		struct netdev_hw_addr *ha;
 367
 368		i = 0;
 369		netdev_for_each_mc_addr(ha, ndev) {
 370			if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
 371				break;
 372
 373			af0reg = (ha->addr[0]);
 374			af0reg |= (ha->addr[1] << 8);
 375			af0reg |= (ha->addr[2] << 16);
 376			af0reg |= (ha->addr[3] << 24);
 377
 378			af1reg = (ha->addr[4]);
 379			af1reg |= (ha->addr[5] << 8);
 380
 381			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
 382			reg |= i;
 383
 384			axienet_iow(lp, XAE_FMI_OFFSET, reg);
 385			axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
 386			axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
 387			i++;
 388		}
 389	} else {
 390		reg = axienet_ior(lp, XAE_FMI_OFFSET);
 391		reg &= ~XAE_FMI_PM_MASK;
 392
 393		axienet_iow(lp, XAE_FMI_OFFSET, reg);
 394
 395		for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
 396			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
 397			reg |= i;
 398
 399			axienet_iow(lp, XAE_FMI_OFFSET, reg);
 400			axienet_iow(lp, XAE_AF0_OFFSET, 0);
 401			axienet_iow(lp, XAE_AF1_OFFSET, 0);
 402		}
 403
 404		dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
 405	}
 406}
 407
 408/**
 409 * axienet_setoptions - Set an Axi Ethernet option
 410 * @ndev:	Pointer to the net_device structure
 411 * @options:	Option to be enabled/disabled
 412 *
 413 * The Axi Ethernet core has multiple features which can be selectively turned
 414 * on or off. The typical options could be jumbo frame option, basic VLAN
 415 * option, promiscuous mode option etc. This function is used to set or clear
 416 * these options in the Axi Ethernet hardware. This is done through
 417 * axienet_option structure .
 418 */
 419static void axienet_setoptions(struct net_device *ndev, u32 options)
 420{
 421	int reg;
 422	struct axienet_local *lp = netdev_priv(ndev);
 423	struct axienet_option *tp = &axienet_options[0];
 424
 425	while (tp->opt) {
 426		reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
 427		if (options & tp->opt)
 428			reg |= tp->m_or;
 429		axienet_iow(lp, tp->reg, reg);
 430		tp++;
 431	}
 432
 433	lp->options |= options;
 434}
 435
 436static void __axienet_device_reset(struct axienet_local *lp, off_t offset)
 
 437{
 438	u32 timeout;
 439	/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
 440	 * process of Axi DMA takes a while to complete as all pending
 441	 * commands/transfers will be flushed or completed during this
 442	 * reset process.
 443	 */
 444	axienet_dma_out32(lp, offset, XAXIDMA_CR_RESET_MASK);
 445	timeout = DELAY_OF_ONE_MILLISEC;
 446	while (axienet_dma_in32(lp, offset) & XAXIDMA_CR_RESET_MASK) {
 447		udelay(1);
 448		if (--timeout == 0) {
 449			netdev_err(lp->ndev, "%s: DMA reset timeout!\n",
 450				   __func__);
 451			break;
 452		}
 453	}
 454}
 455
 456/**
 457 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
 458 * @ndev:	Pointer to the net_device structure
 459 *
 460 * This function is called to reset and initialize the Axi Ethernet core. This
 461 * is typically called during initialization. It does a reset of the Axi DMA
 462 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
 463 * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
 464 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
 465 * core.
 466 */
 467static void axienet_device_reset(struct net_device *ndev)
 468{
 469	u32 axienet_status;
 470	struct axienet_local *lp = netdev_priv(ndev);
 471
 472	__axienet_device_reset(lp, XAXIDMA_TX_CR_OFFSET);
 473	__axienet_device_reset(lp, XAXIDMA_RX_CR_OFFSET);
 474
 475	lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
 476	lp->options |= XAE_OPTION_VLAN;
 477	lp->options &= (~XAE_OPTION_JUMBO);
 478
 479	if ((ndev->mtu > XAE_MTU) &&
 480		(ndev->mtu <= XAE_JUMBO_MTU)) {
 481		lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
 482					XAE_TRL_SIZE;
 483
 484		if (lp->max_frm_size <= lp->rxmem)
 485			lp->options |= XAE_OPTION_JUMBO;
 486	}
 487
 488	if (axienet_dma_bd_init(ndev)) {
 489		netdev_err(ndev, "%s: descriptor allocation failed\n",
 490			   __func__);
 491	}
 492
 493	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
 494	axienet_status &= ~XAE_RCW1_RX_MASK;
 495	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
 496
 497	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
 498	if (axienet_status & XAE_INT_RXRJECT_MASK)
 499		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
 500
 501	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
 502
 503	/* Sync default options with HW but leave receiver and
 504	 * transmitter disabled.
 505	 */
 506	axienet_setoptions(ndev, lp->options &
 507			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
 508	axienet_set_mac_address(ndev, NULL);
 509	axienet_set_multicast_list(ndev);
 510	axienet_setoptions(ndev, lp->options);
 511
 512	netif_trans_update(ndev);
 513}
 514
 515/**
 516 * axienet_adjust_link - Adjust the PHY link speed/duplex.
 517 * @ndev:	Pointer to the net_device structure
 518 *
 519 * This function is called to change the speed and duplex setting after
 520 * auto negotiation is done by the PHY. This is the function that gets
 521 * registered with the PHY interface through the "of_phy_connect" call.
 522 */
 523static void axienet_adjust_link(struct net_device *ndev)
 524{
 525	u32 emmc_reg;
 526	u32 link_state;
 527	u32 setspeed = 1;
 528	struct axienet_local *lp = netdev_priv(ndev);
 529	struct phy_device *phy = ndev->phydev;
 530
 531	link_state = phy->speed | (phy->duplex << 1) | phy->link;
 532	if (lp->last_link != link_state) {
 533		if ((phy->speed == SPEED_10) || (phy->speed == SPEED_100)) {
 534			if (lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX)
 535				setspeed = 0;
 536		} else {
 537			if ((phy->speed == SPEED_1000) &&
 538			    (lp->phy_mode == PHY_INTERFACE_MODE_MII))
 539				setspeed = 0;
 540		}
 541
 542		if (setspeed == 1) {
 543			emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
 544			emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
 545
 546			switch (phy->speed) {
 547			case SPEED_1000:
 548				emmc_reg |= XAE_EMMC_LINKSPD_1000;
 549				break;
 550			case SPEED_100:
 551				emmc_reg |= XAE_EMMC_LINKSPD_100;
 552				break;
 553			case SPEED_10:
 554				emmc_reg |= XAE_EMMC_LINKSPD_10;
 555				break;
 556			default:
 557				dev_err(&ndev->dev, "Speed other than 10, 100 "
 558					"or 1Gbps is not supported\n");
 559				break;
 560			}
 561
 562			axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
 563			lp->last_link = link_state;
 564			phy_print_status(phy);
 565		} else {
 566			netdev_err(ndev,
 567				   "Error setting Axi Ethernet mac speed\n");
 568		}
 569	}
 570}
 571
 572/**
 573 * axienet_start_xmit_done - Invoked once a transmit is completed by the
 574 * Axi DMA Tx channel.
 575 * @ndev:	Pointer to the net_device structure
 576 *
 577 * This function is invoked from the Axi DMA Tx isr to notify the completion
 578 * of transmit operation. It clears fields in the corresponding Tx BDs and
 579 * unmaps the corresponding buffer so that CPU can regain ownership of the
 580 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
 581 * required.
 582 */
 583static void axienet_start_xmit_done(struct net_device *ndev)
 584{
 585	u32 size = 0;
 586	u32 packets = 0;
 587	struct axienet_local *lp = netdev_priv(ndev);
 588	struct axidma_bd *cur_p;
 589	unsigned int status = 0;
 590
 591	cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
 592	status = cur_p->status;
 593	while (status & XAXIDMA_BD_STS_COMPLETE_MASK) {
 594		dma_unmap_single(ndev->dev.parent, cur_p->phys,
 595				(cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
 596				DMA_TO_DEVICE);
 597		if (cur_p->app4)
 598			dev_kfree_skb_irq((struct sk_buff *)cur_p->app4);
 599		/*cur_p->phys = 0;*/
 600		cur_p->app0 = 0;
 601		cur_p->app1 = 0;
 602		cur_p->app2 = 0;
 603		cur_p->app4 = 0;
 604		cur_p->status = 0;
 605
 606		size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
 607		packets++;
 608
 609		++lp->tx_bd_ci;
 610		lp->tx_bd_ci %= TX_BD_NUM;
 611		cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
 612		status = cur_p->status;
 613	}
 614
 615	ndev->stats.tx_packets += packets;
 616	ndev->stats.tx_bytes += size;
 617	netif_wake_queue(ndev);
 618}
 619
 620/**
 621 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
 622 * @lp:		Pointer to the axienet_local structure
 623 * @num_frag:	The number of BDs to check for
 624 *
 625 * Return: 0, on success
 626 *	    NETDEV_TX_BUSY, if any of the descriptors are not free
 627 *
 628 * This function is invoked before BDs are allocated and transmission starts.
 629 * This function returns 0 if a BD or group of BDs can be allocated for
 630 * transmission. If the BD or any of the BDs are not free the function
 631 * returns a busy status. This is invoked from axienet_start_xmit.
 632 */
 633static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
 634					    int num_frag)
 635{
 636	struct axidma_bd *cur_p;
 637	cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % TX_BD_NUM];
 638	if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
 639		return NETDEV_TX_BUSY;
 640	return 0;
 641}
 642
 643/**
 644 * axienet_start_xmit - Starts the transmission.
 645 * @skb:	sk_buff pointer that contains data to be Txed.
 646 * @ndev:	Pointer to net_device structure.
 647 *
 648 * Return: NETDEV_TX_OK, on success
 649 *	    NETDEV_TX_BUSY, if any of the descriptors are not free
 650 *
 651 * This function is invoked from upper layers to initiate transmission. The
 652 * function uses the next available free BDs and populates their fields to
 653 * start the transmission. Additionally if checksum offloading is supported,
 654 * it populates AXI Stream Control fields with appropriate values.
 655 */
 656static int axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 657{
 658	u32 ii;
 659	u32 num_frag;
 660	u32 csum_start_off;
 661	u32 csum_index_off;
 662	skb_frag_t *frag;
 663	dma_addr_t tail_p;
 664	struct axienet_local *lp = netdev_priv(ndev);
 665	struct axidma_bd *cur_p;
 666
 667	num_frag = skb_shinfo(skb)->nr_frags;
 668	cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
 669
 670	if (axienet_check_tx_bd_space(lp, num_frag)) {
 671		if (!netif_queue_stopped(ndev))
 672			netif_stop_queue(ndev);
 673		return NETDEV_TX_BUSY;
 674	}
 675
 676	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 677		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
 678			/* Tx Full Checksum Offload Enabled */
 679			cur_p->app0 |= 2;
 680		} else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
 681			csum_start_off = skb_transport_offset(skb);
 682			csum_index_off = csum_start_off + skb->csum_offset;
 683			/* Tx Partial Checksum Offload Enabled */
 684			cur_p->app0 |= 1;
 685			cur_p->app1 = (csum_start_off << 16) | csum_index_off;
 686		}
 687	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
 688		cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
 689	}
 690
 691	cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
 692	cur_p->phys = dma_map_single(ndev->dev.parent, skb->data,
 693				     skb_headlen(skb), DMA_TO_DEVICE);
 694
 695	for (ii = 0; ii < num_frag; ii++) {
 696		++lp->tx_bd_tail;
 697		lp->tx_bd_tail %= TX_BD_NUM;
 698		cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
 699		frag = &skb_shinfo(skb)->frags[ii];
 700		cur_p->phys = dma_map_single(ndev->dev.parent,
 701					     skb_frag_address(frag),
 702					     skb_frag_size(frag),
 703					     DMA_TO_DEVICE);
 704		cur_p->cntrl = skb_frag_size(frag);
 705	}
 706
 707	cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
 708	cur_p->app4 = (unsigned long)skb;
 709
 710	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
 711	/* Start the transfer */
 712	axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
 713	++lp->tx_bd_tail;
 714	lp->tx_bd_tail %= TX_BD_NUM;
 715
 716	return NETDEV_TX_OK;
 717}
 718
 719/**
 720 * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
 721 *		  BD processing.
 722 * @ndev:	Pointer to net_device structure.
 723 *
 724 * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
 725 * does minimal processing and invokes "netif_rx" to complete further
 726 * processing.
 727 */
 728static void axienet_recv(struct net_device *ndev)
 729{
 730	u32 length;
 731	u32 csumstatus;
 732	u32 size = 0;
 733	u32 packets = 0;
 734	dma_addr_t tail_p = 0;
 735	struct axienet_local *lp = netdev_priv(ndev);
 736	struct sk_buff *skb, *new_skb;
 737	struct axidma_bd *cur_p;
 738
 739	cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
 740
 741	while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
 742		tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
 743		skb = (struct sk_buff *) (cur_p->sw_id_offset);
 744		length = cur_p->app4 & 0x0000FFFF;
 745
 746		dma_unmap_single(ndev->dev.parent, cur_p->phys,
 747				 lp->max_frm_size,
 748				 DMA_FROM_DEVICE);
 749
 750		skb_put(skb, length);
 751		skb->protocol = eth_type_trans(skb, ndev);
 752		/*skb_checksum_none_assert(skb);*/
 753		skb->ip_summed = CHECKSUM_NONE;
 754
 755		/* if we're doing Rx csum offload, set it up */
 756		if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
 757			csumstatus = (cur_p->app2 &
 758				      XAE_FULL_CSUM_STATUS_MASK) >> 3;
 759			if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
 760			    (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
 761				skb->ip_summed = CHECKSUM_UNNECESSARY;
 762			}
 763		} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
 764			   skb->protocol == htons(ETH_P_IP) &&
 765			   skb->len > 64) {
 766			skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
 767			skb->ip_summed = CHECKSUM_COMPLETE;
 768		}
 769
 770		netif_rx(skb);
 771
 772		size += length;
 773		packets++;
 774
 775		new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
 776		if (!new_skb)
 777			return;
 778
 779		cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
 780					     lp->max_frm_size,
 781					     DMA_FROM_DEVICE);
 782		cur_p->cntrl = lp->max_frm_size;
 783		cur_p->status = 0;
 784		cur_p->sw_id_offset = (u32) new_skb;
 785
 786		++lp->rx_bd_ci;
 787		lp->rx_bd_ci %= RX_BD_NUM;
 788		cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
 789	}
 790
 791	ndev->stats.rx_packets += packets;
 792	ndev->stats.rx_bytes += size;
 793
 794	if (tail_p)
 795		axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
 796}
 797
 798/**
 799 * axienet_tx_irq - Tx Done Isr.
 800 * @irq:	irq number
 801 * @_ndev:	net_device pointer
 802 *
 803 * Return: IRQ_HANDLED for all cases.
 804 *
 805 * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
 806 * to complete the BD processing.
 807 */
 808static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
 809{
 810	u32 cr;
 811	unsigned int status;
 812	struct net_device *ndev = _ndev;
 813	struct axienet_local *lp = netdev_priv(ndev);
 814
 815	status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
 816	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
 817		axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
 818		axienet_start_xmit_done(lp->ndev);
 819		goto out;
 820	}
 821	if (!(status & XAXIDMA_IRQ_ALL_MASK))
 822		dev_err(&ndev->dev, "No interrupts asserted in Tx path\n");
 823	if (status & XAXIDMA_IRQ_ERROR_MASK) {
 824		dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
 825		dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
 826			(lp->tx_bd_v[lp->tx_bd_ci]).phys);
 827
 828		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 829		/* Disable coalesce, delay timer and error interrupts */
 830		cr &= (~XAXIDMA_IRQ_ALL_MASK);
 831		/* Write to the Tx channel control register */
 832		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
 833
 834		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 835		/* Disable coalesce, delay timer and error interrupts */
 836		cr &= (~XAXIDMA_IRQ_ALL_MASK);
 837		/* Write to the Rx channel control register */
 838		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
 839
 840		tasklet_schedule(&lp->dma_err_tasklet);
 841		axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
 842	}
 843out:
 844	return IRQ_HANDLED;
 845}
 846
 847/**
 848 * axienet_rx_irq - Rx Isr.
 849 * @irq:	irq number
 850 * @_ndev:	net_device pointer
 851 *
 852 * Return: IRQ_HANDLED for all cases.
 853 *
 854 * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
 855 * processing.
 856 */
 857static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
 858{
 859	u32 cr;
 860	unsigned int status;
 861	struct net_device *ndev = _ndev;
 862	struct axienet_local *lp = netdev_priv(ndev);
 863
 864	status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
 865	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
 866		axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
 867		axienet_recv(lp->ndev);
 868		goto out;
 869	}
 870	if (!(status & XAXIDMA_IRQ_ALL_MASK))
 871		dev_err(&ndev->dev, "No interrupts asserted in Rx path\n");
 872	if (status & XAXIDMA_IRQ_ERROR_MASK) {
 873		dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
 874		dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
 875			(lp->rx_bd_v[lp->rx_bd_ci]).phys);
 876
 877		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 878		/* Disable coalesce, delay timer and error interrupts */
 879		cr &= (~XAXIDMA_IRQ_ALL_MASK);
 880		/* Finally write to the Tx channel control register */
 881		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
 882
 883		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 884		/* Disable coalesce, delay timer and error interrupts */
 885		cr &= (~XAXIDMA_IRQ_ALL_MASK);
 886		/* write to the Rx channel control register */
 887		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
 888
 889		tasklet_schedule(&lp->dma_err_tasklet);
 890		axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
 891	}
 892out:
 893	return IRQ_HANDLED;
 894}
 895
 896static void axienet_dma_err_handler(unsigned long data);
 897
 898/**
 899 * axienet_open - Driver open routine.
 900 * @ndev:	Pointer to net_device structure
 901 *
 902 * Return: 0, on success.
 903 *	    -ENODEV, if PHY cannot be connected to
 904 *	    non-zero error value on failure
 905 *
 906 * This is the driver open routine. It calls phy_start to start the PHY device.
 907 * It also allocates interrupt service routines, enables the interrupt lines
 908 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
 909 * descriptors are initialized.
 910 */
 911static int axienet_open(struct net_device *ndev)
 912{
 913	int ret, mdio_mcreg;
 914	struct axienet_local *lp = netdev_priv(ndev);
 915	struct phy_device *phydev = NULL;
 916
 917	dev_dbg(&ndev->dev, "axienet_open()\n");
 918
 919	mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
 920	ret = axienet_mdio_wait_until_ready(lp);
 921	if (ret < 0)
 922		return ret;
 923	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
 924	 * When we do an Axi Ethernet reset, it resets the complete core
 925	 * including the MDIO. If MDIO is not disabled when the reset
 926	 * process is started, MDIO will be broken afterwards.
 927	 */
 928	axienet_iow(lp, XAE_MDIO_MC_OFFSET,
 929		    (mdio_mcreg & (~XAE_MDIO_MC_MDIOEN_MASK)));
 930	axienet_device_reset(ndev);
 931	/* Enable the MDIO */
 932	axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
 933	ret = axienet_mdio_wait_until_ready(lp);
 934	if (ret < 0)
 935		return ret;
 936
 937	if (lp->phy_node) {
 938		phydev = of_phy_connect(lp->ndev, lp->phy_node,
 939					axienet_adjust_link, 0, lp->phy_mode);
 
 
 
 
 
 
 
 940
 941		if (!phydev)
 942			dev_err(lp->dev, "of_phy_connect() failed\n");
 943		else
 944			phy_start(phydev);
 945	}
 946
 947	/* Enable tasklets for Axi DMA error handling */
 948	tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler,
 949		     (unsigned long) lp);
 950
 951	/* Enable interrupts for Axi DMA Tx */
 952	ret = request_irq(lp->tx_irq, axienet_tx_irq, 0, ndev->name, ndev);
 953	if (ret)
 954		goto err_tx_irq;
 955	/* Enable interrupts for Axi DMA Rx */
 956	ret = request_irq(lp->rx_irq, axienet_rx_irq, 0, ndev->name, ndev);
 957	if (ret)
 958		goto err_rx_irq;
 959
 960	return 0;
 961
 962err_rx_irq:
 963	free_irq(lp->tx_irq, ndev);
 964err_tx_irq:
 965	if (phydev)
 966		phy_disconnect(phydev);
 
 967	tasklet_kill(&lp->dma_err_tasklet);
 968	dev_err(lp->dev, "request_irq() failed\n");
 969	return ret;
 970}
 971
 972/**
 973 * axienet_stop - Driver stop routine.
 974 * @ndev:	Pointer to net_device structure
 975 *
 976 * Return: 0, on success.
 977 *
 978 * This is the driver stop routine. It calls phy_disconnect to stop the PHY
 979 * device. It also removes the interrupt handlers and disables the interrupts.
 980 * The Axi DMA Tx/Rx BDs are released.
 981 */
 982static int axienet_stop(struct net_device *ndev)
 983{
 984	u32 cr;
 985	struct axienet_local *lp = netdev_priv(ndev);
 986
 987	dev_dbg(&ndev->dev, "axienet_close()\n");
 988
 989	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 990	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
 991			  cr & (~XAXIDMA_CR_RUNSTOP_MASK));
 992	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 993	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
 994			  cr & (~XAXIDMA_CR_RUNSTOP_MASK));
 995	axienet_setoptions(ndev, lp->options &
 996			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
 997
 998	tasklet_kill(&lp->dma_err_tasklet);
 999
1000	free_irq(lp->tx_irq, ndev);
1001	free_irq(lp->rx_irq, ndev);
1002
1003	if (ndev->phydev)
1004		phy_disconnect(ndev->phydev);
 
1005
1006	axienet_dma_bd_release(ndev);
1007	return 0;
1008}
1009
1010/**
1011 * axienet_change_mtu - Driver change mtu routine.
1012 * @ndev:	Pointer to net_device structure
1013 * @new_mtu:	New mtu value to be applied
1014 *
1015 * Return: Always returns 0 (success).
1016 *
1017 * This is the change mtu driver routine. It checks if the Axi Ethernet
1018 * hardware supports jumbo frames before changing the mtu. This can be
1019 * called only when the device is not up.
1020 */
1021static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1022{
1023	struct axienet_local *lp = netdev_priv(ndev);
1024
1025	if (netif_running(ndev))
1026		return -EBUSY;
1027
1028	if ((new_mtu + VLAN_ETH_HLEN +
1029		XAE_TRL_SIZE) > lp->rxmem)
1030		return -EINVAL;
1031
 
 
 
1032	ndev->mtu = new_mtu;
1033
1034	return 0;
1035}
1036
1037#ifdef CONFIG_NET_POLL_CONTROLLER
1038/**
1039 * axienet_poll_controller - Axi Ethernet poll mechanism.
1040 * @ndev:	Pointer to net_device structure
1041 *
1042 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1043 * to polling the ISRs and are enabled back after the polling is done.
1044 */
1045static void axienet_poll_controller(struct net_device *ndev)
1046{
1047	struct axienet_local *lp = netdev_priv(ndev);
1048	disable_irq(lp->tx_irq);
1049	disable_irq(lp->rx_irq);
1050	axienet_rx_irq(lp->tx_irq, ndev);
1051	axienet_tx_irq(lp->rx_irq, ndev);
1052	enable_irq(lp->tx_irq);
1053	enable_irq(lp->rx_irq);
1054}
1055#endif
1056
1057static const struct net_device_ops axienet_netdev_ops = {
1058	.ndo_open = axienet_open,
1059	.ndo_stop = axienet_stop,
1060	.ndo_start_xmit = axienet_start_xmit,
1061	.ndo_change_mtu	= axienet_change_mtu,
1062	.ndo_set_mac_address = netdev_set_mac_address,
1063	.ndo_validate_addr = eth_validate_addr,
1064	.ndo_set_rx_mode = axienet_set_multicast_list,
1065#ifdef CONFIG_NET_POLL_CONTROLLER
1066	.ndo_poll_controller = axienet_poll_controller,
1067#endif
1068};
1069
1070/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1071 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1072 * @ndev:	Pointer to net_device structure
1073 * @ed:		Pointer to ethtool_drvinfo structure
1074 *
1075 * This implements ethtool command for getting the driver information.
1076 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1077 */
1078static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1079					 struct ethtool_drvinfo *ed)
1080{
1081	strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1082	strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1083}
1084
1085/**
1086 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1087 *				   AxiEthernet core.
1088 * @ndev:	Pointer to net_device structure
1089 *
1090 * This implements ethtool command for getting the total register length
1091 * information.
1092 *
1093 * Return: the total regs length
1094 */
1095static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1096{
1097	return sizeof(u32) * AXIENET_REGS_N;
1098}
1099
1100/**
1101 * axienet_ethtools_get_regs - Dump the contents of all registers present
1102 *			       in AxiEthernet core.
1103 * @ndev:	Pointer to net_device structure
1104 * @regs:	Pointer to ethtool_regs structure
1105 * @ret:	Void pointer used to return the contents of the registers.
1106 *
1107 * This implements ethtool command for getting the Axi Ethernet register dump.
1108 * Issue "ethtool -d ethX" to execute this function.
1109 */
1110static void axienet_ethtools_get_regs(struct net_device *ndev,
1111				      struct ethtool_regs *regs, void *ret)
1112{
1113	u32 *data = (u32 *) ret;
1114	size_t len = sizeof(u32) * AXIENET_REGS_N;
1115	struct axienet_local *lp = netdev_priv(ndev);
1116
1117	regs->version = 0;
1118	regs->len = len;
1119
1120	memset(data, 0, len);
1121	data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1122	data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1123	data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1124	data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1125	data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1126	data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1127	data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1128	data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1129	data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1130	data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1131	data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1132	data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1133	data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1134	data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1135	data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1136	data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1137	data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1138	data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1139	data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1140	data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1141	data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1142	data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1143	data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1144	data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET);
1145	data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET);
1146	data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET);
1147	data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET);
1148	data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1149	data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1150	data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1151	data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1152	data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1153}
1154
1155/**
1156 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1157 *				     Tx and Rx paths.
1158 * @ndev:	Pointer to net_device structure
1159 * @epauseparm:	Pointer to ethtool_pauseparam structure.
1160 *
1161 * This implements ethtool command for getting axi ethernet pause frame
1162 * setting. Issue "ethtool -a ethX" to execute this function.
1163 */
1164static void
1165axienet_ethtools_get_pauseparam(struct net_device *ndev,
1166				struct ethtool_pauseparam *epauseparm)
1167{
1168	u32 regval;
1169	struct axienet_local *lp = netdev_priv(ndev);
1170	epauseparm->autoneg  = 0;
1171	regval = axienet_ior(lp, XAE_FCC_OFFSET);
1172	epauseparm->tx_pause = regval & XAE_FCC_FCTX_MASK;
1173	epauseparm->rx_pause = regval & XAE_FCC_FCRX_MASK;
1174}
1175
1176/**
1177 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1178 *				     settings.
1179 * @ndev:	Pointer to net_device structure
1180 * @epauseparm:Pointer to ethtool_pauseparam structure
1181 *
1182 * This implements ethtool command for enabling flow control on Rx and Tx
1183 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1184 * function.
1185 *
1186 * Return: 0 on success, -EFAULT if device is running
1187 */
1188static int
1189axienet_ethtools_set_pauseparam(struct net_device *ndev,
1190				struct ethtool_pauseparam *epauseparm)
1191{
1192	u32 regval = 0;
1193	struct axienet_local *lp = netdev_priv(ndev);
1194
1195	if (netif_running(ndev)) {
1196		netdev_err(ndev,
1197			   "Please stop netif before applying configuration\n");
1198		return -EFAULT;
1199	}
1200
1201	regval = axienet_ior(lp, XAE_FCC_OFFSET);
1202	if (epauseparm->tx_pause)
1203		regval |= XAE_FCC_FCTX_MASK;
1204	else
1205		regval &= ~XAE_FCC_FCTX_MASK;
1206	if (epauseparm->rx_pause)
1207		regval |= XAE_FCC_FCRX_MASK;
1208	else
1209		regval &= ~XAE_FCC_FCRX_MASK;
1210	axienet_iow(lp, XAE_FCC_OFFSET, regval);
1211
1212	return 0;
1213}
1214
1215/**
1216 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1217 * @ndev:	Pointer to net_device structure
1218 * @ecoalesce:	Pointer to ethtool_coalesce structure
1219 *
1220 * This implements ethtool command for getting the DMA interrupt coalescing
1221 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1222 * execute this function.
1223 *
1224 * Return: 0 always
1225 */
1226static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1227					 struct ethtool_coalesce *ecoalesce)
1228{
1229	u32 regval = 0;
1230	struct axienet_local *lp = netdev_priv(ndev);
1231	regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1232	ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1233					     >> XAXIDMA_COALESCE_SHIFT;
1234	regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1235	ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1236					     >> XAXIDMA_COALESCE_SHIFT;
1237	return 0;
1238}
1239
1240/**
1241 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1242 * @ndev:	Pointer to net_device structure
1243 * @ecoalesce:	Pointer to ethtool_coalesce structure
1244 *
1245 * This implements ethtool command for setting the DMA interrupt coalescing
1246 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1247 * prompt to execute this function.
1248 *
1249 * Return: 0, on success, Non-zero error value on failure.
1250 */
1251static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1252					 struct ethtool_coalesce *ecoalesce)
1253{
1254	struct axienet_local *lp = netdev_priv(ndev);
1255
1256	if (netif_running(ndev)) {
1257		netdev_err(ndev,
1258			   "Please stop netif before applying configuration\n");
1259		return -EFAULT;
1260	}
1261
1262	if ((ecoalesce->rx_coalesce_usecs) ||
1263	    (ecoalesce->rx_coalesce_usecs_irq) ||
1264	    (ecoalesce->rx_max_coalesced_frames_irq) ||
1265	    (ecoalesce->tx_coalesce_usecs) ||
1266	    (ecoalesce->tx_coalesce_usecs_irq) ||
1267	    (ecoalesce->tx_max_coalesced_frames_irq) ||
1268	    (ecoalesce->stats_block_coalesce_usecs) ||
1269	    (ecoalesce->use_adaptive_rx_coalesce) ||
1270	    (ecoalesce->use_adaptive_tx_coalesce) ||
1271	    (ecoalesce->pkt_rate_low) ||
1272	    (ecoalesce->rx_coalesce_usecs_low) ||
1273	    (ecoalesce->rx_max_coalesced_frames_low) ||
1274	    (ecoalesce->tx_coalesce_usecs_low) ||
1275	    (ecoalesce->tx_max_coalesced_frames_low) ||
1276	    (ecoalesce->pkt_rate_high) ||
1277	    (ecoalesce->rx_coalesce_usecs_high) ||
1278	    (ecoalesce->rx_max_coalesced_frames_high) ||
1279	    (ecoalesce->tx_coalesce_usecs_high) ||
1280	    (ecoalesce->tx_max_coalesced_frames_high) ||
1281	    (ecoalesce->rate_sample_interval))
1282		return -EOPNOTSUPP;
1283	if (ecoalesce->rx_max_coalesced_frames)
1284		lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1285	if (ecoalesce->tx_max_coalesced_frames)
1286		lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1287
1288	return 0;
1289}
1290
1291static const struct ethtool_ops axienet_ethtool_ops = {
 
 
1292	.get_drvinfo    = axienet_ethtools_get_drvinfo,
1293	.get_regs_len   = axienet_ethtools_get_regs_len,
1294	.get_regs       = axienet_ethtools_get_regs,
1295	.get_link       = ethtool_op_get_link,
1296	.get_pauseparam = axienet_ethtools_get_pauseparam,
1297	.set_pauseparam = axienet_ethtools_set_pauseparam,
1298	.get_coalesce   = axienet_ethtools_get_coalesce,
1299	.set_coalesce   = axienet_ethtools_set_coalesce,
1300	.get_link_ksettings = phy_ethtool_get_link_ksettings,
1301	.set_link_ksettings = phy_ethtool_set_link_ksettings,
1302};
1303
1304/**
1305 * axienet_dma_err_handler - Tasklet handler for Axi DMA Error
1306 * @data:	Data passed
1307 *
1308 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1309 * Tx/Rx BDs.
1310 */
1311static void axienet_dma_err_handler(unsigned long data)
1312{
1313	u32 axienet_status;
1314	u32 cr, i;
1315	int mdio_mcreg;
1316	struct axienet_local *lp = (struct axienet_local *) data;
1317	struct net_device *ndev = lp->ndev;
1318	struct axidma_bd *cur_p;
1319
1320	axienet_setoptions(ndev, lp->options &
1321			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1322	mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1323	axienet_mdio_wait_until_ready(lp);
1324	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
1325	 * When we do an Axi Ethernet reset, it resets the complete core
1326	 * including the MDIO. So if MDIO is not disabled when the reset
1327	 * process is started, MDIO will be broken afterwards.
1328	 */
1329	axienet_iow(lp, XAE_MDIO_MC_OFFSET, (mdio_mcreg &
1330		    ~XAE_MDIO_MC_MDIOEN_MASK));
1331
1332	__axienet_device_reset(lp, XAXIDMA_TX_CR_OFFSET);
1333	__axienet_device_reset(lp, XAXIDMA_RX_CR_OFFSET);
1334
1335	axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
1336	axienet_mdio_wait_until_ready(lp);
1337
1338	for (i = 0; i < TX_BD_NUM; i++) {
1339		cur_p = &lp->tx_bd_v[i];
1340		if (cur_p->phys)
1341			dma_unmap_single(ndev->dev.parent, cur_p->phys,
1342					 (cur_p->cntrl &
1343					  XAXIDMA_BD_CTRL_LENGTH_MASK),
1344					 DMA_TO_DEVICE);
1345		if (cur_p->app4)
1346			dev_kfree_skb_irq((struct sk_buff *) cur_p->app4);
1347		cur_p->phys = 0;
1348		cur_p->cntrl = 0;
1349		cur_p->status = 0;
1350		cur_p->app0 = 0;
1351		cur_p->app1 = 0;
1352		cur_p->app2 = 0;
1353		cur_p->app3 = 0;
1354		cur_p->app4 = 0;
1355		cur_p->sw_id_offset = 0;
1356	}
1357
1358	for (i = 0; i < RX_BD_NUM; i++) {
1359		cur_p = &lp->rx_bd_v[i];
1360		cur_p->status = 0;
1361		cur_p->app0 = 0;
1362		cur_p->app1 = 0;
1363		cur_p->app2 = 0;
1364		cur_p->app3 = 0;
1365		cur_p->app4 = 0;
1366	}
1367
1368	lp->tx_bd_ci = 0;
1369	lp->tx_bd_tail = 0;
1370	lp->rx_bd_ci = 0;
1371
1372	/* Start updating the Rx channel control register */
1373	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1374	/* Update the interrupt coalesce count */
1375	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1376	      (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1377	/* Update the delay timer count */
1378	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1379	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1380	/* Enable coalesce, delay timer and error interrupts */
1381	cr |= XAXIDMA_IRQ_ALL_MASK;
1382	/* Finally write to the Rx channel control register */
1383	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1384
1385	/* Start updating the Tx channel control register */
1386	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1387	/* Update the interrupt coalesce count */
1388	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1389	      (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1390	/* Update the delay timer count */
1391	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1392	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1393	/* Enable coalesce, delay timer and error interrupts */
1394	cr |= XAXIDMA_IRQ_ALL_MASK;
1395	/* Finally write to the Tx channel control register */
1396	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1397
1398	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
1399	 * halted state. This will make the Rx side ready for reception.
1400	 */
1401	axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1402	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1403	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1404			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1405	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1406			  (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
1407
1408	/* Write to the RS (Run-stop) bit in the Tx channel control register.
1409	 * Tx channel is now ready to run. But only after we write to the
1410	 * tail pointer register that the Tx channel will start transmitting
1411	 */
1412	axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1413	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1414	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1415			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1416
1417	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1418	axienet_status &= ~XAE_RCW1_RX_MASK;
1419	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1420
1421	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1422	if (axienet_status & XAE_INT_RXRJECT_MASK)
1423		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1424	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1425
1426	/* Sync default options with HW but leave receiver and
1427	 * transmitter disabled.
1428	 */
1429	axienet_setoptions(ndev, lp->options &
1430			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1431	axienet_set_mac_address(ndev, NULL);
1432	axienet_set_multicast_list(ndev);
1433	axienet_setoptions(ndev, lp->options);
1434}
1435
1436/**
1437 * axienet_probe - Axi Ethernet probe function.
1438 * @pdev:	Pointer to platform device structure.
1439 *
1440 * Return: 0, on success
1441 *	    Non-zero error value on failure.
1442 *
1443 * This is the probe routine for Axi Ethernet driver. This is called before
1444 * any other driver routines are invoked. It allocates and sets up the Ethernet
1445 * device. Parses through device tree and populates fields of
1446 * axienet_local. It registers the Ethernet device.
1447 */
1448static int axienet_probe(struct platform_device *pdev)
1449{
1450	int ret;
1451	struct device_node *np;
1452	struct axienet_local *lp;
1453	struct net_device *ndev;
1454	const void *mac_addr;
1455	struct resource *ethres, dmares;
1456	u32 value;
1457
1458	ndev = alloc_etherdev(sizeof(*lp));
1459	if (!ndev)
1460		return -ENOMEM;
1461
1462	platform_set_drvdata(pdev, ndev);
1463
1464	SET_NETDEV_DEV(ndev, &pdev->dev);
1465	ndev->flags &= ~IFF_MULTICAST;  /* clear multicast */
1466	ndev->features = NETIF_F_SG;
1467	ndev->netdev_ops = &axienet_netdev_ops;
1468	ndev->ethtool_ops = &axienet_ethtool_ops;
1469
1470	/* MTU range: 64 - 9000 */
1471	ndev->min_mtu = 64;
1472	ndev->max_mtu = XAE_JUMBO_MTU;
1473
1474	lp = netdev_priv(ndev);
1475	lp->ndev = ndev;
1476	lp->dev = &pdev->dev;
1477	lp->options = XAE_OPTION_DEFAULTS;
1478	/* Map device registers */
1479	ethres = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1480	lp->regs = devm_ioremap_resource(&pdev->dev, ethres);
1481	if (IS_ERR(lp->regs)) {
1482		dev_err(&pdev->dev, "could not map Axi Ethernet regs.\n");
1483		ret = PTR_ERR(lp->regs);
1484		goto free_netdev;
1485	}
1486
1487	/* Setup checksum offload, but default to off if not specified */
1488	lp->features = 0;
1489
1490	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
1491	if (!ret) {
1492		switch (value) {
1493		case 1:
1494			lp->csum_offload_on_tx_path =
1495				XAE_FEATURE_PARTIAL_TX_CSUM;
1496			lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1497			/* Can checksum TCP/UDP over IPv4. */
1498			ndev->features |= NETIF_F_IP_CSUM;
1499			break;
1500		case 2:
1501			lp->csum_offload_on_tx_path =
1502				XAE_FEATURE_FULL_TX_CSUM;
1503			lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1504			/* Can checksum TCP/UDP over IPv4. */
1505			ndev->features |= NETIF_F_IP_CSUM;
1506			break;
1507		default:
1508			lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1509		}
1510	}
1511	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
1512	if (!ret) {
1513		switch (value) {
1514		case 1:
1515			lp->csum_offload_on_rx_path =
1516				XAE_FEATURE_PARTIAL_RX_CSUM;
1517			lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1518			break;
1519		case 2:
1520			lp->csum_offload_on_rx_path =
1521				XAE_FEATURE_FULL_RX_CSUM;
1522			lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1523			break;
1524		default:
1525			lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1526		}
1527	}
1528	/* For supporting jumbo frames, the Axi Ethernet hardware must have
1529	 * a larger Rx/Tx Memory. Typically, the size must be large so that
1530	 * we can enable jumbo option and start supporting jumbo frames.
1531	 * Here we check for memory allocated for Rx/Tx in the hardware from
1532	 * the device-tree and accordingly set flags.
1533	 */
1534	of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1535
1536	/* Start with the proprietary, and broken phy_type */
1537	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
1538	if (!ret) {
1539		netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
1540		switch (value) {
1541		case XAE_PHY_TYPE_MII:
1542			lp->phy_mode = PHY_INTERFACE_MODE_MII;
1543			break;
1544		case XAE_PHY_TYPE_GMII:
1545			lp->phy_mode = PHY_INTERFACE_MODE_GMII;
1546			break;
1547		case XAE_PHY_TYPE_RGMII_2_0:
1548			lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
1549			break;
1550		case XAE_PHY_TYPE_SGMII:
1551			lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
1552			break;
1553		case XAE_PHY_TYPE_1000BASE_X:
1554			lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
1555			break;
1556		default:
1557			ret = -EINVAL;
1558			goto free_netdev;
1559		}
1560	} else {
1561		lp->phy_mode = of_get_phy_mode(pdev->dev.of_node);
1562		if (lp->phy_mode < 0) {
1563			ret = -EINVAL;
1564			goto free_netdev;
1565		}
1566	}
1567
1568	/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1569	np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
1570	if (!np) {
1571		dev_err(&pdev->dev, "could not find DMA node\n");
1572		ret = -ENODEV;
1573		goto free_netdev;
1574	}
1575	ret = of_address_to_resource(np, 0, &dmares);
1576	if (ret) {
1577		dev_err(&pdev->dev, "unable to get DMA resource\n");
1578		goto free_netdev;
1579	}
1580	lp->dma_regs = devm_ioremap_resource(&pdev->dev, &dmares);
1581	if (IS_ERR(lp->dma_regs)) {
1582		dev_err(&pdev->dev, "could not map DMA regs\n");
1583		ret = PTR_ERR(lp->dma_regs);
1584		goto free_netdev;
1585	}
1586	lp->rx_irq = irq_of_parse_and_map(np, 1);
1587	lp->tx_irq = irq_of_parse_and_map(np, 0);
1588	of_node_put(np);
1589	if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
1590		dev_err(&pdev->dev, "could not determine irqs\n");
1591		ret = -ENOMEM;
1592		goto free_netdev;
1593	}
1594
1595	/* Retrieve the MAC address */
1596	mac_addr = of_get_mac_address(pdev->dev.of_node);
1597	if (!mac_addr) {
 
1598		dev_err(&pdev->dev, "could not find MAC address\n");
1599		goto free_netdev;
1600	}
1601	axienet_set_mac_address(ndev, mac_addr);
1602
1603	lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
1604	lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
1605
1606	lp->phy_node = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1607	if (lp->phy_node) {
1608		ret = axienet_mdio_setup(lp, pdev->dev.of_node);
1609		if (ret)
1610			dev_warn(&pdev->dev, "error registering MDIO bus\n");
1611	}
1612
1613	ret = register_netdev(lp->ndev);
1614	if (ret) {
1615		dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
1616		goto free_netdev;
1617	}
1618
1619	return 0;
1620
1621free_netdev:
1622	free_netdev(ndev);
1623
1624	return ret;
1625}
1626
1627static int axienet_remove(struct platform_device *pdev)
1628{
1629	struct net_device *ndev = platform_get_drvdata(pdev);
1630	struct axienet_local *lp = netdev_priv(ndev);
1631
1632	axienet_mdio_teardown(lp);
1633	unregister_netdev(ndev);
1634
1635	of_node_put(lp->phy_node);
1636	lp->phy_node = NULL;
1637
1638	free_netdev(ndev);
1639
1640	return 0;
1641}
1642
1643static struct platform_driver axienet_driver = {
1644	.probe = axienet_probe,
1645	.remove = axienet_remove,
1646	.driver = {
1647		 .name = "xilinx_axienet",
1648		 .of_match_table = axienet_of_match,
1649	},
1650};
1651
1652module_platform_driver(axienet_driver);
1653
1654MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
1655MODULE_AUTHOR("Xilinx");
1656MODULE_LICENSE("GPL");
v4.6
   1/*
   2 * Xilinx Axi Ethernet device driver
   3 *
   4 * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
   5 * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
   6 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
   7 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
   8 * Copyright (c) 2010 - 2011 PetaLogix
   9 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
  10 *
  11 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
  12 * and Spartan6.
  13 *
  14 * TODO:
  15 *  - Add Axi Fifo support.
  16 *  - Factor out Axi DMA code into separate driver.
  17 *  - Test and fix basic multicast filtering.
  18 *  - Add support for extended multicast filtering.
  19 *  - Test basic VLAN support.
  20 *  - Add support for extended VLAN support.
  21 */
  22
  23#include <linux/delay.h>
  24#include <linux/etherdevice.h>
  25#include <linux/module.h>
  26#include <linux/netdevice.h>
  27#include <linux/of_mdio.h>
 
  28#include <linux/of_platform.h>
  29#include <linux/of_irq.h>
  30#include <linux/of_address.h>
  31#include <linux/skbuff.h>
  32#include <linux/spinlock.h>
  33#include <linux/phy.h>
  34#include <linux/mii.h>
  35#include <linux/ethtool.h>
  36
  37#include "xilinx_axienet.h"
  38
  39/* Descriptors defines for Tx and Rx DMA - 2^n for the best performance */
  40#define TX_BD_NUM		64
  41#define RX_BD_NUM		128
  42
  43/* Must be shorter than length of ethtool_drvinfo.driver field to fit */
  44#define DRIVER_NAME		"xaxienet"
  45#define DRIVER_DESCRIPTION	"Xilinx Axi Ethernet driver"
  46#define DRIVER_VERSION		"1.00a"
  47
  48#define AXIENET_REGS_N		32
  49
  50/* Match table for of_platform binding */
  51static const struct of_device_id axienet_of_match[] = {
  52	{ .compatible = "xlnx,axi-ethernet-1.00.a", },
  53	{ .compatible = "xlnx,axi-ethernet-1.01.a", },
  54	{ .compatible = "xlnx,axi-ethernet-2.01.a", },
  55	{},
  56};
  57
  58MODULE_DEVICE_TABLE(of, axienet_of_match);
  59
  60/* Option table for setting up Axi Ethernet hardware options */
  61static struct axienet_option axienet_options[] = {
  62	/* Turn on jumbo packet support for both Rx and Tx */
  63	{
  64		.opt = XAE_OPTION_JUMBO,
  65		.reg = XAE_TC_OFFSET,
  66		.m_or = XAE_TC_JUM_MASK,
  67	}, {
  68		.opt = XAE_OPTION_JUMBO,
  69		.reg = XAE_RCW1_OFFSET,
  70		.m_or = XAE_RCW1_JUM_MASK,
  71	}, { /* Turn on VLAN packet support for both Rx and Tx */
  72		.opt = XAE_OPTION_VLAN,
  73		.reg = XAE_TC_OFFSET,
  74		.m_or = XAE_TC_VLAN_MASK,
  75	}, {
  76		.opt = XAE_OPTION_VLAN,
  77		.reg = XAE_RCW1_OFFSET,
  78		.m_or = XAE_RCW1_VLAN_MASK,
  79	}, { /* Turn on FCS stripping on receive packets */
  80		.opt = XAE_OPTION_FCS_STRIP,
  81		.reg = XAE_RCW1_OFFSET,
  82		.m_or = XAE_RCW1_FCS_MASK,
  83	}, { /* Turn on FCS insertion on transmit packets */
  84		.opt = XAE_OPTION_FCS_INSERT,
  85		.reg = XAE_TC_OFFSET,
  86		.m_or = XAE_TC_FCS_MASK,
  87	}, { /* Turn off length/type field checking on receive packets */
  88		.opt = XAE_OPTION_LENTYPE_ERR,
  89		.reg = XAE_RCW1_OFFSET,
  90		.m_or = XAE_RCW1_LT_DIS_MASK,
  91	}, { /* Turn on Rx flow control */
  92		.opt = XAE_OPTION_FLOW_CONTROL,
  93		.reg = XAE_FCC_OFFSET,
  94		.m_or = XAE_FCC_FCRX_MASK,
  95	}, { /* Turn on Tx flow control */
  96		.opt = XAE_OPTION_FLOW_CONTROL,
  97		.reg = XAE_FCC_OFFSET,
  98		.m_or = XAE_FCC_FCTX_MASK,
  99	}, { /* Turn on promiscuous frame filtering */
 100		.opt = XAE_OPTION_PROMISC,
 101		.reg = XAE_FMI_OFFSET,
 102		.m_or = XAE_FMI_PM_MASK,
 103	}, { /* Enable transmitter */
 104		.opt = XAE_OPTION_TXEN,
 105		.reg = XAE_TC_OFFSET,
 106		.m_or = XAE_TC_TX_MASK,
 107	}, { /* Enable receiver */
 108		.opt = XAE_OPTION_RXEN,
 109		.reg = XAE_RCW1_OFFSET,
 110		.m_or = XAE_RCW1_RX_MASK,
 111	},
 112	{}
 113};
 114
 115/**
 116 * axienet_dma_in32 - Memory mapped Axi DMA register read
 117 * @lp:		Pointer to axienet local structure
 118 * @reg:	Address offset from the base address of the Axi DMA core
 119 *
 120 * Return: The contents of the Axi DMA register
 121 *
 122 * This function returns the contents of the corresponding Axi DMA register.
 123 */
 124static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
 125{
 126	return in_be32(lp->dma_regs + reg);
 127}
 128
 129/**
 130 * axienet_dma_out32 - Memory mapped Axi DMA register write.
 131 * @lp:		Pointer to axienet local structure
 132 * @reg:	Address offset from the base address of the Axi DMA core
 133 * @value:	Value to be written into the Axi DMA register
 134 *
 135 * This function writes the desired value into the corresponding Axi DMA
 136 * register.
 137 */
 138static inline void axienet_dma_out32(struct axienet_local *lp,
 139				     off_t reg, u32 value)
 140{
 141	out_be32((lp->dma_regs + reg), value);
 142}
 143
 144/**
 145 * axienet_dma_bd_release - Release buffer descriptor rings
 146 * @ndev:	Pointer to the net_device structure
 147 *
 148 * This function is used to release the descriptors allocated in
 149 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
 150 * driver stop api is called.
 151 */
 152static void axienet_dma_bd_release(struct net_device *ndev)
 153{
 154	int i;
 155	struct axienet_local *lp = netdev_priv(ndev);
 156
 157	for (i = 0; i < RX_BD_NUM; i++) {
 158		dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
 159				 lp->max_frm_size, DMA_FROM_DEVICE);
 160		dev_kfree_skb((struct sk_buff *)
 161			      (lp->rx_bd_v[i].sw_id_offset));
 162	}
 163
 164	if (lp->rx_bd_v) {
 165		dma_free_coherent(ndev->dev.parent,
 166				  sizeof(*lp->rx_bd_v) * RX_BD_NUM,
 167				  lp->rx_bd_v,
 168				  lp->rx_bd_p);
 169	}
 170	if (lp->tx_bd_v) {
 171		dma_free_coherent(ndev->dev.parent,
 172				  sizeof(*lp->tx_bd_v) * TX_BD_NUM,
 173				  lp->tx_bd_v,
 174				  lp->tx_bd_p);
 175	}
 176}
 177
 178/**
 179 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
 180 * @ndev:	Pointer to the net_device structure
 181 *
 182 * Return: 0, on success -ENOMEM, on failure
 183 *
 184 * This function is called to initialize the Rx and Tx DMA descriptor
 185 * rings. This initializes the descriptors with required default values
 186 * and is called when Axi Ethernet driver reset is called.
 187 */
 188static int axienet_dma_bd_init(struct net_device *ndev)
 189{
 190	u32 cr;
 191	int i;
 192	struct sk_buff *skb;
 193	struct axienet_local *lp = netdev_priv(ndev);
 194
 195	/* Reset the indexes which are used for accessing the BDs */
 196	lp->tx_bd_ci = 0;
 197	lp->tx_bd_tail = 0;
 198	lp->rx_bd_ci = 0;
 199
 200	/* Allocate the Tx and Rx buffer descriptors. */
 201	lp->tx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
 202					  sizeof(*lp->tx_bd_v) * TX_BD_NUM,
 203					  &lp->tx_bd_p, GFP_KERNEL);
 204	if (!lp->tx_bd_v)
 205		goto out;
 206
 207	lp->rx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
 208					  sizeof(*lp->rx_bd_v) * RX_BD_NUM,
 209					  &lp->rx_bd_p, GFP_KERNEL);
 210	if (!lp->rx_bd_v)
 211		goto out;
 212
 213	for (i = 0; i < TX_BD_NUM; i++) {
 214		lp->tx_bd_v[i].next = lp->tx_bd_p +
 215				      sizeof(*lp->tx_bd_v) *
 216				      ((i + 1) % TX_BD_NUM);
 217	}
 218
 219	for (i = 0; i < RX_BD_NUM; i++) {
 220		lp->rx_bd_v[i].next = lp->rx_bd_p +
 221				      sizeof(*lp->rx_bd_v) *
 222				      ((i + 1) % RX_BD_NUM);
 223
 224		skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
 225		if (!skb)
 226			goto out;
 227
 228		lp->rx_bd_v[i].sw_id_offset = (u32) skb;
 229		lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
 230						     skb->data,
 231						     lp->max_frm_size,
 232						     DMA_FROM_DEVICE);
 233		lp->rx_bd_v[i].cntrl = lp->max_frm_size;
 234	}
 235
 236	/* Start updating the Rx channel control register */
 237	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 238	/* Update the interrupt coalesce count */
 239	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
 240	      ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
 241	/* Update the delay timer count */
 242	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
 243	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
 244	/* Enable coalesce, delay timer and error interrupts */
 245	cr |= XAXIDMA_IRQ_ALL_MASK;
 246	/* Write to the Rx channel control register */
 247	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
 248
 249	/* Start updating the Tx channel control register */
 250	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 251	/* Update the interrupt coalesce count */
 252	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
 253	      ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
 254	/* Update the delay timer count */
 255	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
 256	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
 257	/* Enable coalesce, delay timer and error interrupts */
 258	cr |= XAXIDMA_IRQ_ALL_MASK;
 259	/* Write to the Tx channel control register */
 260	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
 261
 262	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
 263	 * halted state. This will make the Rx side ready for reception.
 264	 */
 265	axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
 266	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 267	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
 268			  cr | XAXIDMA_CR_RUNSTOP_MASK);
 269	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
 270			  (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
 271
 272	/* Write to the RS (Run-stop) bit in the Tx channel control register.
 273	 * Tx channel is now ready to run. But only after we write to the
 274	 * tail pointer register that the Tx channel will start transmitting.
 275	 */
 276	axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
 277	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 278	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
 279			  cr | XAXIDMA_CR_RUNSTOP_MASK);
 280
 281	return 0;
 282out:
 283	axienet_dma_bd_release(ndev);
 284	return -ENOMEM;
 285}
 286
 287/**
 288 * axienet_set_mac_address - Write the MAC address
 289 * @ndev:	Pointer to the net_device structure
 290 * @address:	6 byte Address to be written as MAC address
 291 *
 292 * This function is called to initialize the MAC address of the Axi Ethernet
 293 * core. It writes to the UAW0 and UAW1 registers of the core.
 294 */
 295static void axienet_set_mac_address(struct net_device *ndev, void *address)
 
 296{
 297	struct axienet_local *lp = netdev_priv(ndev);
 298
 299	if (address)
 300		memcpy(ndev->dev_addr, address, ETH_ALEN);
 301	if (!is_valid_ether_addr(ndev->dev_addr))
 302		eth_random_addr(ndev->dev_addr);
 303
 304	/* Set up unicast MAC address filter set its mac address */
 305	axienet_iow(lp, XAE_UAW0_OFFSET,
 306		    (ndev->dev_addr[0]) |
 307		    (ndev->dev_addr[1] << 8) |
 308		    (ndev->dev_addr[2] << 16) |
 309		    (ndev->dev_addr[3] << 24));
 310	axienet_iow(lp, XAE_UAW1_OFFSET,
 311		    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
 312		      ~XAE_UAW1_UNICASTADDR_MASK) |
 313		     (ndev->dev_addr[4] |
 314		     (ndev->dev_addr[5] << 8))));
 315}
 316
 317/**
 318 * netdev_set_mac_address - Write the MAC address (from outside the driver)
 319 * @ndev:	Pointer to the net_device structure
 320 * @p:		6 byte Address to be written as MAC address
 321 *
 322 * Return: 0 for all conditions. Presently, there is no failure case.
 323 *
 324 * This function is called to initialize the MAC address of the Axi Ethernet
 325 * core. It calls the core specific axienet_set_mac_address. This is the
 326 * function that goes into net_device_ops structure entry ndo_set_mac_address.
 327 */
 328static int netdev_set_mac_address(struct net_device *ndev, void *p)
 329{
 330	struct sockaddr *addr = p;
 331	axienet_set_mac_address(ndev, addr->sa_data);
 332	return 0;
 333}
 334
 335/**
 336 * axienet_set_multicast_list - Prepare the multicast table
 337 * @ndev:	Pointer to the net_device structure
 338 *
 339 * This function is called to initialize the multicast table during
 340 * initialization. The Axi Ethernet basic multicast support has a four-entry
 341 * multicast table which is initialized here. Additionally this function
 342 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
 343 * means whenever the multicast table entries need to be updated this
 344 * function gets called.
 345 */
 346static void axienet_set_multicast_list(struct net_device *ndev)
 347{
 348	int i;
 349	u32 reg, af0reg, af1reg;
 350	struct axienet_local *lp = netdev_priv(ndev);
 351
 352	if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
 353	    netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
 354		/* We must make the kernel realize we had to move into
 355		 * promiscuous mode. If it was a promiscuous mode request
 356		 * the flag is already set. If not we set it.
 357		 */
 358		ndev->flags |= IFF_PROMISC;
 359		reg = axienet_ior(lp, XAE_FMI_OFFSET);
 360		reg |= XAE_FMI_PM_MASK;
 361		axienet_iow(lp, XAE_FMI_OFFSET, reg);
 362		dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
 363	} else if (!netdev_mc_empty(ndev)) {
 364		struct netdev_hw_addr *ha;
 365
 366		i = 0;
 367		netdev_for_each_mc_addr(ha, ndev) {
 368			if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
 369				break;
 370
 371			af0reg = (ha->addr[0]);
 372			af0reg |= (ha->addr[1] << 8);
 373			af0reg |= (ha->addr[2] << 16);
 374			af0reg |= (ha->addr[3] << 24);
 375
 376			af1reg = (ha->addr[4]);
 377			af1reg |= (ha->addr[5] << 8);
 378
 379			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
 380			reg |= i;
 381
 382			axienet_iow(lp, XAE_FMI_OFFSET, reg);
 383			axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
 384			axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
 385			i++;
 386		}
 387	} else {
 388		reg = axienet_ior(lp, XAE_FMI_OFFSET);
 389		reg &= ~XAE_FMI_PM_MASK;
 390
 391		axienet_iow(lp, XAE_FMI_OFFSET, reg);
 392
 393		for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
 394			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
 395			reg |= i;
 396
 397			axienet_iow(lp, XAE_FMI_OFFSET, reg);
 398			axienet_iow(lp, XAE_AF0_OFFSET, 0);
 399			axienet_iow(lp, XAE_AF1_OFFSET, 0);
 400		}
 401
 402		dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
 403	}
 404}
 405
 406/**
 407 * axienet_setoptions - Set an Axi Ethernet option
 408 * @ndev:	Pointer to the net_device structure
 409 * @options:	Option to be enabled/disabled
 410 *
 411 * The Axi Ethernet core has multiple features which can be selectively turned
 412 * on or off. The typical options could be jumbo frame option, basic VLAN
 413 * option, promiscuous mode option etc. This function is used to set or clear
 414 * these options in the Axi Ethernet hardware. This is done through
 415 * axienet_option structure .
 416 */
 417static void axienet_setoptions(struct net_device *ndev, u32 options)
 418{
 419	int reg;
 420	struct axienet_local *lp = netdev_priv(ndev);
 421	struct axienet_option *tp = &axienet_options[0];
 422
 423	while (tp->opt) {
 424		reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
 425		if (options & tp->opt)
 426			reg |= tp->m_or;
 427		axienet_iow(lp, tp->reg, reg);
 428		tp++;
 429	}
 430
 431	lp->options |= options;
 432}
 433
 434static void __axienet_device_reset(struct axienet_local *lp,
 435				   struct device *dev, off_t offset)
 436{
 437	u32 timeout;
 438	/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
 439	 * process of Axi DMA takes a while to complete as all pending
 440	 * commands/transfers will be flushed or completed during this
 441	 * reset process.
 442	 */
 443	axienet_dma_out32(lp, offset, XAXIDMA_CR_RESET_MASK);
 444	timeout = DELAY_OF_ONE_MILLISEC;
 445	while (axienet_dma_in32(lp, offset) & XAXIDMA_CR_RESET_MASK) {
 446		udelay(1);
 447		if (--timeout == 0) {
 448			netdev_err(lp->ndev, "%s: DMA reset timeout!\n",
 449				   __func__);
 450			break;
 451		}
 452	}
 453}
 454
 455/**
 456 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
 457 * @ndev:	Pointer to the net_device structure
 458 *
 459 * This function is called to reset and initialize the Axi Ethernet core. This
 460 * is typically called during initialization. It does a reset of the Axi DMA
 461 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
 462 * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
 463 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
 464 * core.
 465 */
 466static void axienet_device_reset(struct net_device *ndev)
 467{
 468	u32 axienet_status;
 469	struct axienet_local *lp = netdev_priv(ndev);
 470
 471	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
 472	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
 473
 474	lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
 475	lp->options |= XAE_OPTION_VLAN;
 476	lp->options &= (~XAE_OPTION_JUMBO);
 477
 478	if ((ndev->mtu > XAE_MTU) &&
 479		(ndev->mtu <= XAE_JUMBO_MTU)) {
 480		lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
 481					XAE_TRL_SIZE;
 482
 483		if (lp->max_frm_size <= lp->rxmem)
 484			lp->options |= XAE_OPTION_JUMBO;
 485	}
 486
 487	if (axienet_dma_bd_init(ndev)) {
 488		netdev_err(ndev, "%s: descriptor allocation failed\n",
 489			   __func__);
 490	}
 491
 492	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
 493	axienet_status &= ~XAE_RCW1_RX_MASK;
 494	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
 495
 496	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
 497	if (axienet_status & XAE_INT_RXRJECT_MASK)
 498		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
 499
 500	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
 501
 502	/* Sync default options with HW but leave receiver and
 503	 * transmitter disabled.
 504	 */
 505	axienet_setoptions(ndev, lp->options &
 506			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
 507	axienet_set_mac_address(ndev, NULL);
 508	axienet_set_multicast_list(ndev);
 509	axienet_setoptions(ndev, lp->options);
 510
 511	ndev->trans_start = jiffies;
 512}
 513
 514/**
 515 * axienet_adjust_link - Adjust the PHY link speed/duplex.
 516 * @ndev:	Pointer to the net_device structure
 517 *
 518 * This function is called to change the speed and duplex setting after
 519 * auto negotiation is done by the PHY. This is the function that gets
 520 * registered with the PHY interface through the "of_phy_connect" call.
 521 */
 522static void axienet_adjust_link(struct net_device *ndev)
 523{
 524	u32 emmc_reg;
 525	u32 link_state;
 526	u32 setspeed = 1;
 527	struct axienet_local *lp = netdev_priv(ndev);
 528	struct phy_device *phy = lp->phy_dev;
 529
 530	link_state = phy->speed | (phy->duplex << 1) | phy->link;
 531	if (lp->last_link != link_state) {
 532		if ((phy->speed == SPEED_10) || (phy->speed == SPEED_100)) {
 533			if (lp->phy_type == XAE_PHY_TYPE_1000BASE_X)
 534				setspeed = 0;
 535		} else {
 536			if ((phy->speed == SPEED_1000) &&
 537			    (lp->phy_type == XAE_PHY_TYPE_MII))
 538				setspeed = 0;
 539		}
 540
 541		if (setspeed == 1) {
 542			emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
 543			emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
 544
 545			switch (phy->speed) {
 546			case SPEED_1000:
 547				emmc_reg |= XAE_EMMC_LINKSPD_1000;
 548				break;
 549			case SPEED_100:
 550				emmc_reg |= XAE_EMMC_LINKSPD_100;
 551				break;
 552			case SPEED_10:
 553				emmc_reg |= XAE_EMMC_LINKSPD_10;
 554				break;
 555			default:
 556				dev_err(&ndev->dev, "Speed other than 10, 100 "
 557					"or 1Gbps is not supported\n");
 558				break;
 559			}
 560
 561			axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
 562			lp->last_link = link_state;
 563			phy_print_status(phy);
 564		} else {
 565			netdev_err(ndev,
 566				   "Error setting Axi Ethernet mac speed\n");
 567		}
 568	}
 569}
 570
 571/**
 572 * axienet_start_xmit_done - Invoked once a transmit is completed by the
 573 * Axi DMA Tx channel.
 574 * @ndev:	Pointer to the net_device structure
 575 *
 576 * This function is invoked from the Axi DMA Tx isr to notify the completion
 577 * of transmit operation. It clears fields in the corresponding Tx BDs and
 578 * unmaps the corresponding buffer so that CPU can regain ownership of the
 579 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
 580 * required.
 581 */
 582static void axienet_start_xmit_done(struct net_device *ndev)
 583{
 584	u32 size = 0;
 585	u32 packets = 0;
 586	struct axienet_local *lp = netdev_priv(ndev);
 587	struct axidma_bd *cur_p;
 588	unsigned int status = 0;
 589
 590	cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
 591	status = cur_p->status;
 592	while (status & XAXIDMA_BD_STS_COMPLETE_MASK) {
 593		dma_unmap_single(ndev->dev.parent, cur_p->phys,
 594				(cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
 595				DMA_TO_DEVICE);
 596		if (cur_p->app4)
 597			dev_kfree_skb_irq((struct sk_buff *)cur_p->app4);
 598		/*cur_p->phys = 0;*/
 599		cur_p->app0 = 0;
 600		cur_p->app1 = 0;
 601		cur_p->app2 = 0;
 602		cur_p->app4 = 0;
 603		cur_p->status = 0;
 604
 605		size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
 606		packets++;
 607
 608		++lp->tx_bd_ci;
 609		lp->tx_bd_ci %= TX_BD_NUM;
 610		cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
 611		status = cur_p->status;
 612	}
 613
 614	ndev->stats.tx_packets += packets;
 615	ndev->stats.tx_bytes += size;
 616	netif_wake_queue(ndev);
 617}
 618
 619/**
 620 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
 621 * @lp:		Pointer to the axienet_local structure
 622 * @num_frag:	The number of BDs to check for
 623 *
 624 * Return: 0, on success
 625 *	    NETDEV_TX_BUSY, if any of the descriptors are not free
 626 *
 627 * This function is invoked before BDs are allocated and transmission starts.
 628 * This function returns 0 if a BD or group of BDs can be allocated for
 629 * transmission. If the BD or any of the BDs are not free the function
 630 * returns a busy status. This is invoked from axienet_start_xmit.
 631 */
 632static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
 633					    int num_frag)
 634{
 635	struct axidma_bd *cur_p;
 636	cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % TX_BD_NUM];
 637	if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
 638		return NETDEV_TX_BUSY;
 639	return 0;
 640}
 641
 642/**
 643 * axienet_start_xmit - Starts the transmission.
 644 * @skb:	sk_buff pointer that contains data to be Txed.
 645 * @ndev:	Pointer to net_device structure.
 646 *
 647 * Return: NETDEV_TX_OK, on success
 648 *	    NETDEV_TX_BUSY, if any of the descriptors are not free
 649 *
 650 * This function is invoked from upper layers to initiate transmission. The
 651 * function uses the next available free BDs and populates their fields to
 652 * start the transmission. Additionally if checksum offloading is supported,
 653 * it populates AXI Stream Control fields with appropriate values.
 654 */
 655static int axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 656{
 657	u32 ii;
 658	u32 num_frag;
 659	u32 csum_start_off;
 660	u32 csum_index_off;
 661	skb_frag_t *frag;
 662	dma_addr_t tail_p;
 663	struct axienet_local *lp = netdev_priv(ndev);
 664	struct axidma_bd *cur_p;
 665
 666	num_frag = skb_shinfo(skb)->nr_frags;
 667	cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
 668
 669	if (axienet_check_tx_bd_space(lp, num_frag)) {
 670		if (!netif_queue_stopped(ndev))
 671			netif_stop_queue(ndev);
 672		return NETDEV_TX_BUSY;
 673	}
 674
 675	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 676		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
 677			/* Tx Full Checksum Offload Enabled */
 678			cur_p->app0 |= 2;
 679		} else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
 680			csum_start_off = skb_transport_offset(skb);
 681			csum_index_off = csum_start_off + skb->csum_offset;
 682			/* Tx Partial Checksum Offload Enabled */
 683			cur_p->app0 |= 1;
 684			cur_p->app1 = (csum_start_off << 16) | csum_index_off;
 685		}
 686	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
 687		cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
 688	}
 689
 690	cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
 691	cur_p->phys = dma_map_single(ndev->dev.parent, skb->data,
 692				     skb_headlen(skb), DMA_TO_DEVICE);
 693
 694	for (ii = 0; ii < num_frag; ii++) {
 695		++lp->tx_bd_tail;
 696		lp->tx_bd_tail %= TX_BD_NUM;
 697		cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
 698		frag = &skb_shinfo(skb)->frags[ii];
 699		cur_p->phys = dma_map_single(ndev->dev.parent,
 700					     skb_frag_address(frag),
 701					     skb_frag_size(frag),
 702					     DMA_TO_DEVICE);
 703		cur_p->cntrl = skb_frag_size(frag);
 704	}
 705
 706	cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
 707	cur_p->app4 = (unsigned long)skb;
 708
 709	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
 710	/* Start the transfer */
 711	axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
 712	++lp->tx_bd_tail;
 713	lp->tx_bd_tail %= TX_BD_NUM;
 714
 715	return NETDEV_TX_OK;
 716}
 717
 718/**
 719 * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
 720 *		  BD processing.
 721 * @ndev:	Pointer to net_device structure.
 722 *
 723 * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
 724 * does minimal processing and invokes "netif_rx" to complete further
 725 * processing.
 726 */
 727static void axienet_recv(struct net_device *ndev)
 728{
 729	u32 length;
 730	u32 csumstatus;
 731	u32 size = 0;
 732	u32 packets = 0;
 733	dma_addr_t tail_p = 0;
 734	struct axienet_local *lp = netdev_priv(ndev);
 735	struct sk_buff *skb, *new_skb;
 736	struct axidma_bd *cur_p;
 737
 738	cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
 739
 740	while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
 741		tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
 742		skb = (struct sk_buff *) (cur_p->sw_id_offset);
 743		length = cur_p->app4 & 0x0000FFFF;
 744
 745		dma_unmap_single(ndev->dev.parent, cur_p->phys,
 746				 lp->max_frm_size,
 747				 DMA_FROM_DEVICE);
 748
 749		skb_put(skb, length);
 750		skb->protocol = eth_type_trans(skb, ndev);
 751		/*skb_checksum_none_assert(skb);*/
 752		skb->ip_summed = CHECKSUM_NONE;
 753
 754		/* if we're doing Rx csum offload, set it up */
 755		if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
 756			csumstatus = (cur_p->app2 &
 757				      XAE_FULL_CSUM_STATUS_MASK) >> 3;
 758			if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
 759			    (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
 760				skb->ip_summed = CHECKSUM_UNNECESSARY;
 761			}
 762		} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
 763			   skb->protocol == htons(ETH_P_IP) &&
 764			   skb->len > 64) {
 765			skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
 766			skb->ip_summed = CHECKSUM_COMPLETE;
 767		}
 768
 769		netif_rx(skb);
 770
 771		size += length;
 772		packets++;
 773
 774		new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
 775		if (!new_skb)
 776			return;
 777
 778		cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
 779					     lp->max_frm_size,
 780					     DMA_FROM_DEVICE);
 781		cur_p->cntrl = lp->max_frm_size;
 782		cur_p->status = 0;
 783		cur_p->sw_id_offset = (u32) new_skb;
 784
 785		++lp->rx_bd_ci;
 786		lp->rx_bd_ci %= RX_BD_NUM;
 787		cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
 788	}
 789
 790	ndev->stats.rx_packets += packets;
 791	ndev->stats.rx_bytes += size;
 792
 793	if (tail_p)
 794		axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
 795}
 796
 797/**
 798 * axienet_tx_irq - Tx Done Isr.
 799 * @irq:	irq number
 800 * @_ndev:	net_device pointer
 801 *
 802 * Return: IRQ_HANDLED for all cases.
 803 *
 804 * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
 805 * to complete the BD processing.
 806 */
 807static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
 808{
 809	u32 cr;
 810	unsigned int status;
 811	struct net_device *ndev = _ndev;
 812	struct axienet_local *lp = netdev_priv(ndev);
 813
 814	status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
 815	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
 816		axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
 817		axienet_start_xmit_done(lp->ndev);
 818		goto out;
 819	}
 820	if (!(status & XAXIDMA_IRQ_ALL_MASK))
 821		dev_err(&ndev->dev, "No interrupts asserted in Tx path");
 822	if (status & XAXIDMA_IRQ_ERROR_MASK) {
 823		dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
 824		dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
 825			(lp->tx_bd_v[lp->tx_bd_ci]).phys);
 826
 827		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 828		/* Disable coalesce, delay timer and error interrupts */
 829		cr &= (~XAXIDMA_IRQ_ALL_MASK);
 830		/* Write to the Tx channel control register */
 831		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
 832
 833		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 834		/* Disable coalesce, delay timer and error interrupts */
 835		cr &= (~XAXIDMA_IRQ_ALL_MASK);
 836		/* Write to the Rx channel control register */
 837		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
 838
 839		tasklet_schedule(&lp->dma_err_tasklet);
 840		axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
 841	}
 842out:
 843	return IRQ_HANDLED;
 844}
 845
 846/**
 847 * axienet_rx_irq - Rx Isr.
 848 * @irq:	irq number
 849 * @_ndev:	net_device pointer
 850 *
 851 * Return: IRQ_HANDLED for all cases.
 852 *
 853 * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
 854 * processing.
 855 */
 856static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
 857{
 858	u32 cr;
 859	unsigned int status;
 860	struct net_device *ndev = _ndev;
 861	struct axienet_local *lp = netdev_priv(ndev);
 862
 863	status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
 864	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
 865		axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
 866		axienet_recv(lp->ndev);
 867		goto out;
 868	}
 869	if (!(status & XAXIDMA_IRQ_ALL_MASK))
 870		dev_err(&ndev->dev, "No interrupts asserted in Rx path");
 871	if (status & XAXIDMA_IRQ_ERROR_MASK) {
 872		dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
 873		dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
 874			(lp->rx_bd_v[lp->rx_bd_ci]).phys);
 875
 876		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 877		/* Disable coalesce, delay timer and error interrupts */
 878		cr &= (~XAXIDMA_IRQ_ALL_MASK);
 879		/* Finally write to the Tx channel control register */
 880		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
 881
 882		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 883		/* Disable coalesce, delay timer and error interrupts */
 884		cr &= (~XAXIDMA_IRQ_ALL_MASK);
 885		/* write to the Rx channel control register */
 886		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
 887
 888		tasklet_schedule(&lp->dma_err_tasklet);
 889		axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
 890	}
 891out:
 892	return IRQ_HANDLED;
 893}
 894
 895static void axienet_dma_err_handler(unsigned long data);
 896
 897/**
 898 * axienet_open - Driver open routine.
 899 * @ndev:	Pointer to net_device structure
 900 *
 901 * Return: 0, on success.
 902 *	    -ENODEV, if PHY cannot be connected to
 903 *	    non-zero error value on failure
 904 *
 905 * This is the driver open routine. It calls phy_start to start the PHY device.
 906 * It also allocates interrupt service routines, enables the interrupt lines
 907 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
 908 * descriptors are initialized.
 909 */
 910static int axienet_open(struct net_device *ndev)
 911{
 912	int ret, mdio_mcreg;
 913	struct axienet_local *lp = netdev_priv(ndev);
 
 914
 915	dev_dbg(&ndev->dev, "axienet_open()\n");
 916
 917	mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
 918	ret = axienet_mdio_wait_until_ready(lp);
 919	if (ret < 0)
 920		return ret;
 921	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
 922	 * When we do an Axi Ethernet reset, it resets the complete core
 923	 * including the MDIO. If MDIO is not disabled when the reset
 924	 * process is started, MDIO will be broken afterwards.
 925	 */
 926	axienet_iow(lp, XAE_MDIO_MC_OFFSET,
 927		    (mdio_mcreg & (~XAE_MDIO_MC_MDIOEN_MASK)));
 928	axienet_device_reset(ndev);
 929	/* Enable the MDIO */
 930	axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
 931	ret = axienet_mdio_wait_until_ready(lp);
 932	if (ret < 0)
 933		return ret;
 934
 935	if (lp->phy_node) {
 936		if (lp->phy_type == XAE_PHY_TYPE_GMII) {
 937			lp->phy_dev = of_phy_connect(lp->ndev, lp->phy_node,
 938					     axienet_adjust_link, 0,
 939					     PHY_INTERFACE_MODE_GMII);
 940		} else if (lp->phy_type == XAE_PHY_TYPE_RGMII_2_0) {
 941			lp->phy_dev = of_phy_connect(lp->ndev, lp->phy_node,
 942					     axienet_adjust_link, 0,
 943					     PHY_INTERFACE_MODE_RGMII_ID);
 944		}
 945
 946		if (!lp->phy_dev)
 947			dev_err(lp->dev, "of_phy_connect() failed\n");
 948		else
 949			phy_start(lp->phy_dev);
 950	}
 951
 952	/* Enable tasklets for Axi DMA error handling */
 953	tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler,
 954		     (unsigned long) lp);
 955
 956	/* Enable interrupts for Axi DMA Tx */
 957	ret = request_irq(lp->tx_irq, axienet_tx_irq, 0, ndev->name, ndev);
 958	if (ret)
 959		goto err_tx_irq;
 960	/* Enable interrupts for Axi DMA Rx */
 961	ret = request_irq(lp->rx_irq, axienet_rx_irq, 0, ndev->name, ndev);
 962	if (ret)
 963		goto err_rx_irq;
 964
 965	return 0;
 966
 967err_rx_irq:
 968	free_irq(lp->tx_irq, ndev);
 969err_tx_irq:
 970	if (lp->phy_dev)
 971		phy_disconnect(lp->phy_dev);
 972	lp->phy_dev = NULL;
 973	tasklet_kill(&lp->dma_err_tasklet);
 974	dev_err(lp->dev, "request_irq() failed\n");
 975	return ret;
 976}
 977
 978/**
 979 * axienet_stop - Driver stop routine.
 980 * @ndev:	Pointer to net_device structure
 981 *
 982 * Return: 0, on success.
 983 *
 984 * This is the driver stop routine. It calls phy_disconnect to stop the PHY
 985 * device. It also removes the interrupt handlers and disables the interrupts.
 986 * The Axi DMA Tx/Rx BDs are released.
 987 */
 988static int axienet_stop(struct net_device *ndev)
 989{
 990	u32 cr;
 991	struct axienet_local *lp = netdev_priv(ndev);
 992
 993	dev_dbg(&ndev->dev, "axienet_close()\n");
 994
 995	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 996	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
 997			  cr & (~XAXIDMA_CR_RUNSTOP_MASK));
 998	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 999	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1000			  cr & (~XAXIDMA_CR_RUNSTOP_MASK));
1001	axienet_setoptions(ndev, lp->options &
1002			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1003
1004	tasklet_kill(&lp->dma_err_tasklet);
1005
1006	free_irq(lp->tx_irq, ndev);
1007	free_irq(lp->rx_irq, ndev);
1008
1009	if (lp->phy_dev)
1010		phy_disconnect(lp->phy_dev);
1011	lp->phy_dev = NULL;
1012
1013	axienet_dma_bd_release(ndev);
1014	return 0;
1015}
1016
1017/**
1018 * axienet_change_mtu - Driver change mtu routine.
1019 * @ndev:	Pointer to net_device structure
1020 * @new_mtu:	New mtu value to be applied
1021 *
1022 * Return: Always returns 0 (success).
1023 *
1024 * This is the change mtu driver routine. It checks if the Axi Ethernet
1025 * hardware supports jumbo frames before changing the mtu. This can be
1026 * called only when the device is not up.
1027 */
1028static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1029{
1030	struct axienet_local *lp = netdev_priv(ndev);
1031
1032	if (netif_running(ndev))
1033		return -EBUSY;
1034
1035	if ((new_mtu + VLAN_ETH_HLEN +
1036		XAE_TRL_SIZE) > lp->rxmem)
1037		return -EINVAL;
1038
1039	if ((new_mtu > XAE_JUMBO_MTU) || (new_mtu < 64))
1040		return -EINVAL;
1041
1042	ndev->mtu = new_mtu;
1043
1044	return 0;
1045}
1046
1047#ifdef CONFIG_NET_POLL_CONTROLLER
1048/**
1049 * axienet_poll_controller - Axi Ethernet poll mechanism.
1050 * @ndev:	Pointer to net_device structure
1051 *
1052 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1053 * to polling the ISRs and are enabled back after the polling is done.
1054 */
1055static void axienet_poll_controller(struct net_device *ndev)
1056{
1057	struct axienet_local *lp = netdev_priv(ndev);
1058	disable_irq(lp->tx_irq);
1059	disable_irq(lp->rx_irq);
1060	axienet_rx_irq(lp->tx_irq, ndev);
1061	axienet_tx_irq(lp->rx_irq, ndev);
1062	enable_irq(lp->tx_irq);
1063	enable_irq(lp->rx_irq);
1064}
1065#endif
1066
1067static const struct net_device_ops axienet_netdev_ops = {
1068	.ndo_open = axienet_open,
1069	.ndo_stop = axienet_stop,
1070	.ndo_start_xmit = axienet_start_xmit,
1071	.ndo_change_mtu	= axienet_change_mtu,
1072	.ndo_set_mac_address = netdev_set_mac_address,
1073	.ndo_validate_addr = eth_validate_addr,
1074	.ndo_set_rx_mode = axienet_set_multicast_list,
1075#ifdef CONFIG_NET_POLL_CONTROLLER
1076	.ndo_poll_controller = axienet_poll_controller,
1077#endif
1078};
1079
1080/**
1081 * axienet_ethtools_get_settings - Get Axi Ethernet settings related to PHY.
1082 * @ndev:	Pointer to net_device structure
1083 * @ecmd:	Pointer to ethtool_cmd structure
1084 *
1085 * This implements ethtool command for getting PHY settings. If PHY could
1086 * not be found, the function returns -ENODEV. This function calls the
1087 * relevant PHY ethtool API to get the PHY settings.
1088 * Issue "ethtool ethX" under linux prompt to execute this function.
1089 *
1090 * Return: 0 on success, -ENODEV if PHY doesn't exist
1091 */
1092static int axienet_ethtools_get_settings(struct net_device *ndev,
1093					 struct ethtool_cmd *ecmd)
1094{
1095	struct axienet_local *lp = netdev_priv(ndev);
1096	struct phy_device *phydev = lp->phy_dev;
1097	if (!phydev)
1098		return -ENODEV;
1099	return phy_ethtool_gset(phydev, ecmd);
1100}
1101
1102/**
1103 * axienet_ethtools_set_settings - Set PHY settings as passed in the argument.
1104 * @ndev:	Pointer to net_device structure
1105 * @ecmd:	Pointer to ethtool_cmd structure
1106 *
1107 * This implements ethtool command for setting various PHY settings. If PHY
1108 * could not be found, the function returns -ENODEV. This function calls the
1109 * relevant PHY ethtool API to set the PHY.
1110 * Issue e.g. "ethtool -s ethX speed 1000" under linux prompt to execute this
1111 * function.
1112 *
1113 * Return: 0 on success, -ENODEV if PHY doesn't exist
1114 */
1115static int axienet_ethtools_set_settings(struct net_device *ndev,
1116					 struct ethtool_cmd *ecmd)
1117{
1118	struct axienet_local *lp = netdev_priv(ndev);
1119	struct phy_device *phydev = lp->phy_dev;
1120	if (!phydev)
1121		return -ENODEV;
1122	return phy_ethtool_sset(phydev, ecmd);
1123}
1124
1125/**
1126 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1127 * @ndev:	Pointer to net_device structure
1128 * @ed:		Pointer to ethtool_drvinfo structure
1129 *
1130 * This implements ethtool command for getting the driver information.
1131 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1132 */
1133static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1134					 struct ethtool_drvinfo *ed)
1135{
1136	strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1137	strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1138}
1139
1140/**
1141 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1142 *				   AxiEthernet core.
1143 * @ndev:	Pointer to net_device structure
1144 *
1145 * This implements ethtool command for getting the total register length
1146 * information.
1147 *
1148 * Return: the total regs length
1149 */
1150static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1151{
1152	return sizeof(u32) * AXIENET_REGS_N;
1153}
1154
1155/**
1156 * axienet_ethtools_get_regs - Dump the contents of all registers present
1157 *			       in AxiEthernet core.
1158 * @ndev:	Pointer to net_device structure
1159 * @regs:	Pointer to ethtool_regs structure
1160 * @ret:	Void pointer used to return the contents of the registers.
1161 *
1162 * This implements ethtool command for getting the Axi Ethernet register dump.
1163 * Issue "ethtool -d ethX" to execute this function.
1164 */
1165static void axienet_ethtools_get_regs(struct net_device *ndev,
1166				      struct ethtool_regs *regs, void *ret)
1167{
1168	u32 *data = (u32 *) ret;
1169	size_t len = sizeof(u32) * AXIENET_REGS_N;
1170	struct axienet_local *lp = netdev_priv(ndev);
1171
1172	regs->version = 0;
1173	regs->len = len;
1174
1175	memset(data, 0, len);
1176	data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1177	data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1178	data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1179	data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1180	data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1181	data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1182	data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1183	data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1184	data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1185	data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1186	data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1187	data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1188	data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1189	data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1190	data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1191	data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1192	data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1193	data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1194	data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1195	data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1196	data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1197	data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1198	data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1199	data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET);
1200	data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET);
1201	data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET);
1202	data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET);
1203	data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1204	data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1205	data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1206	data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1207	data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1208}
1209
1210/**
1211 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1212 *				     Tx and Rx paths.
1213 * @ndev:	Pointer to net_device structure
1214 * @epauseparm:	Pointer to ethtool_pauseparam structure.
1215 *
1216 * This implements ethtool command for getting axi ethernet pause frame
1217 * setting. Issue "ethtool -a ethX" to execute this function.
1218 */
1219static void
1220axienet_ethtools_get_pauseparam(struct net_device *ndev,
1221				struct ethtool_pauseparam *epauseparm)
1222{
1223	u32 regval;
1224	struct axienet_local *lp = netdev_priv(ndev);
1225	epauseparm->autoneg  = 0;
1226	regval = axienet_ior(lp, XAE_FCC_OFFSET);
1227	epauseparm->tx_pause = regval & XAE_FCC_FCTX_MASK;
1228	epauseparm->rx_pause = regval & XAE_FCC_FCRX_MASK;
1229}
1230
1231/**
1232 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1233 *				     settings.
1234 * @ndev:	Pointer to net_device structure
1235 * @epauseparm:Pointer to ethtool_pauseparam structure
1236 *
1237 * This implements ethtool command for enabling flow control on Rx and Tx
1238 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1239 * function.
1240 *
1241 * Return: 0 on success, -EFAULT if device is running
1242 */
1243static int
1244axienet_ethtools_set_pauseparam(struct net_device *ndev,
1245				struct ethtool_pauseparam *epauseparm)
1246{
1247	u32 regval = 0;
1248	struct axienet_local *lp = netdev_priv(ndev);
1249
1250	if (netif_running(ndev)) {
1251		netdev_err(ndev,
1252			   "Please stop netif before applying configuration\n");
1253		return -EFAULT;
1254	}
1255
1256	regval = axienet_ior(lp, XAE_FCC_OFFSET);
1257	if (epauseparm->tx_pause)
1258		regval |= XAE_FCC_FCTX_MASK;
1259	else
1260		regval &= ~XAE_FCC_FCTX_MASK;
1261	if (epauseparm->rx_pause)
1262		regval |= XAE_FCC_FCRX_MASK;
1263	else
1264		regval &= ~XAE_FCC_FCRX_MASK;
1265	axienet_iow(lp, XAE_FCC_OFFSET, regval);
1266
1267	return 0;
1268}
1269
1270/**
1271 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1272 * @ndev:	Pointer to net_device structure
1273 * @ecoalesce:	Pointer to ethtool_coalesce structure
1274 *
1275 * This implements ethtool command for getting the DMA interrupt coalescing
1276 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1277 * execute this function.
1278 *
1279 * Return: 0 always
1280 */
1281static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1282					 struct ethtool_coalesce *ecoalesce)
1283{
1284	u32 regval = 0;
1285	struct axienet_local *lp = netdev_priv(ndev);
1286	regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1287	ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1288					     >> XAXIDMA_COALESCE_SHIFT;
1289	regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1290	ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1291					     >> XAXIDMA_COALESCE_SHIFT;
1292	return 0;
1293}
1294
1295/**
1296 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1297 * @ndev:	Pointer to net_device structure
1298 * @ecoalesce:	Pointer to ethtool_coalesce structure
1299 *
1300 * This implements ethtool command for setting the DMA interrupt coalescing
1301 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1302 * prompt to execute this function.
1303 *
1304 * Return: 0, on success, Non-zero error value on failure.
1305 */
1306static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1307					 struct ethtool_coalesce *ecoalesce)
1308{
1309	struct axienet_local *lp = netdev_priv(ndev);
1310
1311	if (netif_running(ndev)) {
1312		netdev_err(ndev,
1313			   "Please stop netif before applying configuration\n");
1314		return -EFAULT;
1315	}
1316
1317	if ((ecoalesce->rx_coalesce_usecs) ||
1318	    (ecoalesce->rx_coalesce_usecs_irq) ||
1319	    (ecoalesce->rx_max_coalesced_frames_irq) ||
1320	    (ecoalesce->tx_coalesce_usecs) ||
1321	    (ecoalesce->tx_coalesce_usecs_irq) ||
1322	    (ecoalesce->tx_max_coalesced_frames_irq) ||
1323	    (ecoalesce->stats_block_coalesce_usecs) ||
1324	    (ecoalesce->use_adaptive_rx_coalesce) ||
1325	    (ecoalesce->use_adaptive_tx_coalesce) ||
1326	    (ecoalesce->pkt_rate_low) ||
1327	    (ecoalesce->rx_coalesce_usecs_low) ||
1328	    (ecoalesce->rx_max_coalesced_frames_low) ||
1329	    (ecoalesce->tx_coalesce_usecs_low) ||
1330	    (ecoalesce->tx_max_coalesced_frames_low) ||
1331	    (ecoalesce->pkt_rate_high) ||
1332	    (ecoalesce->rx_coalesce_usecs_high) ||
1333	    (ecoalesce->rx_max_coalesced_frames_high) ||
1334	    (ecoalesce->tx_coalesce_usecs_high) ||
1335	    (ecoalesce->tx_max_coalesced_frames_high) ||
1336	    (ecoalesce->rate_sample_interval))
1337		return -EOPNOTSUPP;
1338	if (ecoalesce->rx_max_coalesced_frames)
1339		lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1340	if (ecoalesce->tx_max_coalesced_frames)
1341		lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1342
1343	return 0;
1344}
1345
1346static struct ethtool_ops axienet_ethtool_ops = {
1347	.get_settings   = axienet_ethtools_get_settings,
1348	.set_settings   = axienet_ethtools_set_settings,
1349	.get_drvinfo    = axienet_ethtools_get_drvinfo,
1350	.get_regs_len   = axienet_ethtools_get_regs_len,
1351	.get_regs       = axienet_ethtools_get_regs,
1352	.get_link       = ethtool_op_get_link,
1353	.get_pauseparam = axienet_ethtools_get_pauseparam,
1354	.set_pauseparam = axienet_ethtools_set_pauseparam,
1355	.get_coalesce   = axienet_ethtools_get_coalesce,
1356	.set_coalesce   = axienet_ethtools_set_coalesce,
 
 
1357};
1358
1359/**
1360 * axienet_dma_err_handler - Tasklet handler for Axi DMA Error
1361 * @data:	Data passed
1362 *
1363 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1364 * Tx/Rx BDs.
1365 */
1366static void axienet_dma_err_handler(unsigned long data)
1367{
1368	u32 axienet_status;
1369	u32 cr, i;
1370	int mdio_mcreg;
1371	struct axienet_local *lp = (struct axienet_local *) data;
1372	struct net_device *ndev = lp->ndev;
1373	struct axidma_bd *cur_p;
1374
1375	axienet_setoptions(ndev, lp->options &
1376			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1377	mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1378	axienet_mdio_wait_until_ready(lp);
1379	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
1380	 * When we do an Axi Ethernet reset, it resets the complete core
1381	 * including the MDIO. So if MDIO is not disabled when the reset
1382	 * process is started, MDIO will be broken afterwards.
1383	 */
1384	axienet_iow(lp, XAE_MDIO_MC_OFFSET, (mdio_mcreg &
1385		    ~XAE_MDIO_MC_MDIOEN_MASK));
1386
1387	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
1388	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
1389
1390	axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
1391	axienet_mdio_wait_until_ready(lp);
1392
1393	for (i = 0; i < TX_BD_NUM; i++) {
1394		cur_p = &lp->tx_bd_v[i];
1395		if (cur_p->phys)
1396			dma_unmap_single(ndev->dev.parent, cur_p->phys,
1397					 (cur_p->cntrl &
1398					  XAXIDMA_BD_CTRL_LENGTH_MASK),
1399					 DMA_TO_DEVICE);
1400		if (cur_p->app4)
1401			dev_kfree_skb_irq((struct sk_buff *) cur_p->app4);
1402		cur_p->phys = 0;
1403		cur_p->cntrl = 0;
1404		cur_p->status = 0;
1405		cur_p->app0 = 0;
1406		cur_p->app1 = 0;
1407		cur_p->app2 = 0;
1408		cur_p->app3 = 0;
1409		cur_p->app4 = 0;
1410		cur_p->sw_id_offset = 0;
1411	}
1412
1413	for (i = 0; i < RX_BD_NUM; i++) {
1414		cur_p = &lp->rx_bd_v[i];
1415		cur_p->status = 0;
1416		cur_p->app0 = 0;
1417		cur_p->app1 = 0;
1418		cur_p->app2 = 0;
1419		cur_p->app3 = 0;
1420		cur_p->app4 = 0;
1421	}
1422
1423	lp->tx_bd_ci = 0;
1424	lp->tx_bd_tail = 0;
1425	lp->rx_bd_ci = 0;
1426
1427	/* Start updating the Rx channel control register */
1428	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1429	/* Update the interrupt coalesce count */
1430	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1431	      (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1432	/* Update the delay timer count */
1433	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1434	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1435	/* Enable coalesce, delay timer and error interrupts */
1436	cr |= XAXIDMA_IRQ_ALL_MASK;
1437	/* Finally write to the Rx channel control register */
1438	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1439
1440	/* Start updating the Tx channel control register */
1441	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1442	/* Update the interrupt coalesce count */
1443	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1444	      (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1445	/* Update the delay timer count */
1446	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1447	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1448	/* Enable coalesce, delay timer and error interrupts */
1449	cr |= XAXIDMA_IRQ_ALL_MASK;
1450	/* Finally write to the Tx channel control register */
1451	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1452
1453	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
1454	 * halted state. This will make the Rx side ready for reception.
1455	 */
1456	axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1457	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1458	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1459			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1460	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1461			  (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
1462
1463	/* Write to the RS (Run-stop) bit in the Tx channel control register.
1464	 * Tx channel is now ready to run. But only after we write to the
1465	 * tail pointer register that the Tx channel will start transmitting
1466	 */
1467	axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1468	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1469	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1470			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1471
1472	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1473	axienet_status &= ~XAE_RCW1_RX_MASK;
1474	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1475
1476	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1477	if (axienet_status & XAE_INT_RXRJECT_MASK)
1478		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1479	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1480
1481	/* Sync default options with HW but leave receiver and
1482	 * transmitter disabled.
1483	 */
1484	axienet_setoptions(ndev, lp->options &
1485			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1486	axienet_set_mac_address(ndev, NULL);
1487	axienet_set_multicast_list(ndev);
1488	axienet_setoptions(ndev, lp->options);
1489}
1490
1491/**
1492 * axienet_probe - Axi Ethernet probe function.
1493 * @pdev:	Pointer to platform device structure.
1494 *
1495 * Return: 0, on success
1496 *	    Non-zero error value on failure.
1497 *
1498 * This is the probe routine for Axi Ethernet driver. This is called before
1499 * any other driver routines are invoked. It allocates and sets up the Ethernet
1500 * device. Parses through device tree and populates fields of
1501 * axienet_local. It registers the Ethernet device.
1502 */
1503static int axienet_probe(struct platform_device *pdev)
1504{
1505	int ret;
1506	struct device_node *np;
1507	struct axienet_local *lp;
1508	struct net_device *ndev;
1509	u8 mac_addr[6];
1510	struct resource *ethres, dmares;
1511	u32 value;
1512
1513	ndev = alloc_etherdev(sizeof(*lp));
1514	if (!ndev)
1515		return -ENOMEM;
1516
1517	platform_set_drvdata(pdev, ndev);
1518
1519	SET_NETDEV_DEV(ndev, &pdev->dev);
1520	ndev->flags &= ~IFF_MULTICAST;  /* clear multicast */
1521	ndev->features = NETIF_F_SG;
1522	ndev->netdev_ops = &axienet_netdev_ops;
1523	ndev->ethtool_ops = &axienet_ethtool_ops;
1524
 
 
 
 
1525	lp = netdev_priv(ndev);
1526	lp->ndev = ndev;
1527	lp->dev = &pdev->dev;
1528	lp->options = XAE_OPTION_DEFAULTS;
1529	/* Map device registers */
1530	ethres = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1531	lp->regs = devm_ioremap_resource(&pdev->dev, ethres);
1532	if (IS_ERR(lp->regs)) {
1533		dev_err(&pdev->dev, "could not map Axi Ethernet regs.\n");
1534		ret = PTR_ERR(lp->regs);
1535		goto free_netdev;
1536	}
1537
1538	/* Setup checksum offload, but default to off if not specified */
1539	lp->features = 0;
1540
1541	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
1542	if (!ret) {
1543		switch (value) {
1544		case 1:
1545			lp->csum_offload_on_tx_path =
1546				XAE_FEATURE_PARTIAL_TX_CSUM;
1547			lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1548			/* Can checksum TCP/UDP over IPv4. */
1549			ndev->features |= NETIF_F_IP_CSUM;
1550			break;
1551		case 2:
1552			lp->csum_offload_on_tx_path =
1553				XAE_FEATURE_FULL_TX_CSUM;
1554			lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1555			/* Can checksum TCP/UDP over IPv4. */
1556			ndev->features |= NETIF_F_IP_CSUM;
1557			break;
1558		default:
1559			lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1560		}
1561	}
1562	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
1563	if (!ret) {
1564		switch (value) {
1565		case 1:
1566			lp->csum_offload_on_rx_path =
1567				XAE_FEATURE_PARTIAL_RX_CSUM;
1568			lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1569			break;
1570		case 2:
1571			lp->csum_offload_on_rx_path =
1572				XAE_FEATURE_FULL_RX_CSUM;
1573			lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1574			break;
1575		default:
1576			lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1577		}
1578	}
1579	/* For supporting jumbo frames, the Axi Ethernet hardware must have
1580	 * a larger Rx/Tx Memory. Typically, the size must be large so that
1581	 * we can enable jumbo option and start supporting jumbo frames.
1582	 * Here we check for memory allocated for Rx/Tx in the hardware from
1583	 * the device-tree and accordingly set flags.
1584	 */
1585	of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1586	of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &lp->phy_type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1587
1588	/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1589	np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
1590	if (IS_ERR(np)) {
1591		dev_err(&pdev->dev, "could not find DMA node\n");
1592		ret = PTR_ERR(np);
1593		goto free_netdev;
1594	}
1595	ret = of_address_to_resource(np, 0, &dmares);
1596	if (ret) {
1597		dev_err(&pdev->dev, "unable to get DMA resource\n");
1598		goto free_netdev;
1599	}
1600	lp->dma_regs = devm_ioremap_resource(&pdev->dev, &dmares);
1601	if (IS_ERR(lp->dma_regs)) {
1602		dev_err(&pdev->dev, "could not map DMA regs\n");
1603		ret = PTR_ERR(lp->dma_regs);
1604		goto free_netdev;
1605	}
1606	lp->rx_irq = irq_of_parse_and_map(np, 1);
1607	lp->tx_irq = irq_of_parse_and_map(np, 0);
1608	of_node_put(np);
1609	if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
1610		dev_err(&pdev->dev, "could not determine irqs\n");
1611		ret = -ENOMEM;
1612		goto free_netdev;
1613	}
1614
1615	/* Retrieve the MAC address */
1616	ret = of_property_read_u8_array(pdev->dev.of_node,
1617					"local-mac-address", mac_addr, 6);
1618	if (ret) {
1619		dev_err(&pdev->dev, "could not find MAC address\n");
1620		goto free_netdev;
1621	}
1622	axienet_set_mac_address(ndev, (void *)mac_addr);
1623
1624	lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
1625	lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
1626
1627	lp->phy_node = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1628	if (lp->phy_node) {
1629		ret = axienet_mdio_setup(lp, pdev->dev.of_node);
1630		if (ret)
1631			dev_warn(&pdev->dev, "error registering MDIO bus\n");
1632	}
1633
1634	ret = register_netdev(lp->ndev);
1635	if (ret) {
1636		dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
1637		goto free_netdev;
1638	}
1639
1640	return 0;
1641
1642free_netdev:
1643	free_netdev(ndev);
1644
1645	return ret;
1646}
1647
1648static int axienet_remove(struct platform_device *pdev)
1649{
1650	struct net_device *ndev = platform_get_drvdata(pdev);
1651	struct axienet_local *lp = netdev_priv(ndev);
1652
1653	axienet_mdio_teardown(lp);
1654	unregister_netdev(ndev);
1655
1656	of_node_put(lp->phy_node);
1657	lp->phy_node = NULL;
1658
1659	free_netdev(ndev);
1660
1661	return 0;
1662}
1663
1664static struct platform_driver axienet_driver = {
1665	.probe = axienet_probe,
1666	.remove = axienet_remove,
1667	.driver = {
1668		 .name = "xilinx_axienet",
1669		 .of_match_table = axienet_of_match,
1670	},
1671};
1672
1673module_platform_driver(axienet_driver);
1674
1675MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
1676MODULE_AUTHOR("Xilinx");
1677MODULE_LICENSE("GPL");