Loading...
1/****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2008-2013 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10#include <linux/delay.h>
11#include <linux/moduleparam.h>
12#include <linux/atomic.h>
13#include "net_driver.h"
14#include "nic.h"
15#include "io.h"
16#include "farch_regs.h"
17#include "mcdi_pcol.h"
18
19/**************************************************************************
20 *
21 * Management-Controller-to-Driver Interface
22 *
23 **************************************************************************
24 */
25
26#define MCDI_RPC_TIMEOUT (10 * HZ)
27
28/* A reboot/assertion causes the MCDI status word to be set after the
29 * command word is set or a REBOOT event is sent. If we notice a reboot
30 * via these mechanisms then wait 250ms for the status word to be set.
31 */
32#define MCDI_STATUS_DELAY_US 100
33#define MCDI_STATUS_DELAY_COUNT 2500
34#define MCDI_STATUS_SLEEP_MS \
35 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
36
37#define SEQ_MASK \
38 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
39
40struct efx_mcdi_async_param {
41 struct list_head list;
42 unsigned int cmd;
43 size_t inlen;
44 size_t outlen;
45 bool quiet;
46 efx_mcdi_async_completer *complete;
47 unsigned long cookie;
48 /* followed by request/response buffer */
49};
50
51static void efx_mcdi_timeout_async(struct timer_list *t);
52static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
53 bool *was_attached_out);
54static bool efx_mcdi_poll_once(struct efx_nic *efx);
55static void efx_mcdi_abandon(struct efx_nic *efx);
56
57#ifdef CONFIG_SFC_MCDI_LOGGING
58static bool mcdi_logging_default;
59module_param(mcdi_logging_default, bool, 0644);
60MODULE_PARM_DESC(mcdi_logging_default,
61 "Enable MCDI logging on newly-probed functions");
62#endif
63
64int efx_mcdi_init(struct efx_nic *efx)
65{
66 struct efx_mcdi_iface *mcdi;
67 bool already_attached;
68 int rc = -ENOMEM;
69
70 efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
71 if (!efx->mcdi)
72 goto fail;
73
74 mcdi = efx_mcdi(efx);
75 mcdi->efx = efx;
76#ifdef CONFIG_SFC_MCDI_LOGGING
77 /* consuming code assumes buffer is page-sized */
78 mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL);
79 if (!mcdi->logging_buffer)
80 goto fail1;
81 mcdi->logging_enabled = mcdi_logging_default;
82#endif
83 init_waitqueue_head(&mcdi->wq);
84 init_waitqueue_head(&mcdi->proxy_rx_wq);
85 spin_lock_init(&mcdi->iface_lock);
86 mcdi->state = MCDI_STATE_QUIESCENT;
87 mcdi->mode = MCDI_MODE_POLL;
88 spin_lock_init(&mcdi->async_lock);
89 INIT_LIST_HEAD(&mcdi->async_list);
90 timer_setup(&mcdi->async_timer, efx_mcdi_timeout_async, 0);
91
92 (void) efx_mcdi_poll_reboot(efx);
93 mcdi->new_epoch = true;
94
95 /* Recover from a failed assertion before probing */
96 rc = efx_mcdi_handle_assertion(efx);
97 if (rc)
98 goto fail2;
99
100 /* Let the MC (and BMC, if this is a LOM) know that the driver
101 * is loaded. We should do this before we reset the NIC.
102 */
103 rc = efx_mcdi_drv_attach(efx, true, &already_attached);
104 if (rc) {
105 netif_err(efx, probe, efx->net_dev,
106 "Unable to register driver with MCPU\n");
107 goto fail2;
108 }
109 if (already_attached)
110 /* Not a fatal error */
111 netif_err(efx, probe, efx->net_dev,
112 "Host already registered with MCPU\n");
113
114 if (efx->mcdi->fn_flags &
115 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
116 efx->primary = efx;
117
118 return 0;
119fail2:
120#ifdef CONFIG_SFC_MCDI_LOGGING
121 free_page((unsigned long)mcdi->logging_buffer);
122fail1:
123#endif
124 kfree(efx->mcdi);
125 efx->mcdi = NULL;
126fail:
127 return rc;
128}
129
130void efx_mcdi_detach(struct efx_nic *efx)
131{
132 if (!efx->mcdi)
133 return;
134
135 BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
136
137 /* Relinquish the device (back to the BMC, if this is a LOM) */
138 efx_mcdi_drv_attach(efx, false, NULL);
139}
140
141void efx_mcdi_fini(struct efx_nic *efx)
142{
143 if (!efx->mcdi)
144 return;
145
146#ifdef CONFIG_SFC_MCDI_LOGGING
147 free_page((unsigned long)efx->mcdi->iface.logging_buffer);
148#endif
149
150 kfree(efx->mcdi);
151}
152
153static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
154 const efx_dword_t *inbuf, size_t inlen)
155{
156 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
157#ifdef CONFIG_SFC_MCDI_LOGGING
158 char *buf = mcdi->logging_buffer; /* page-sized */
159#endif
160 efx_dword_t hdr[2];
161 size_t hdr_len;
162 u32 xflags, seqno;
163
164 BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
165
166 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
167 spin_lock_bh(&mcdi->iface_lock);
168 ++mcdi->seqno;
169 spin_unlock_bh(&mcdi->iface_lock);
170
171 seqno = mcdi->seqno & SEQ_MASK;
172 xflags = 0;
173 if (mcdi->mode == MCDI_MODE_EVENTS)
174 xflags |= MCDI_HEADER_XFLAGS_EVREQ;
175
176 if (efx->type->mcdi_max_ver == 1) {
177 /* MCDI v1 */
178 EFX_POPULATE_DWORD_7(hdr[0],
179 MCDI_HEADER_RESPONSE, 0,
180 MCDI_HEADER_RESYNC, 1,
181 MCDI_HEADER_CODE, cmd,
182 MCDI_HEADER_DATALEN, inlen,
183 MCDI_HEADER_SEQ, seqno,
184 MCDI_HEADER_XFLAGS, xflags,
185 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
186 hdr_len = 4;
187 } else {
188 /* MCDI v2 */
189 BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
190 EFX_POPULATE_DWORD_7(hdr[0],
191 MCDI_HEADER_RESPONSE, 0,
192 MCDI_HEADER_RESYNC, 1,
193 MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
194 MCDI_HEADER_DATALEN, 0,
195 MCDI_HEADER_SEQ, seqno,
196 MCDI_HEADER_XFLAGS, xflags,
197 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
198 EFX_POPULATE_DWORD_2(hdr[1],
199 MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
200 MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
201 hdr_len = 8;
202 }
203
204#ifdef CONFIG_SFC_MCDI_LOGGING
205 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
206 int bytes = 0;
207 int i;
208 /* Lengths should always be a whole number of dwords, so scream
209 * if they're not.
210 */
211 WARN_ON_ONCE(hdr_len % 4);
212 WARN_ON_ONCE(inlen % 4);
213
214 /* We own the logging buffer, as only one MCDI can be in
215 * progress on a NIC at any one time. So no need for locking.
216 */
217 for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++)
218 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
219 " %08x", le32_to_cpu(hdr[i].u32[0]));
220
221 for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++)
222 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
223 " %08x", le32_to_cpu(inbuf[i].u32[0]));
224
225 netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf);
226 }
227#endif
228
229 efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
230
231 mcdi->new_epoch = false;
232}
233
234static int efx_mcdi_errno(unsigned int mcdi_err)
235{
236 switch (mcdi_err) {
237 case 0:
238 return 0;
239#define TRANSLATE_ERROR(name) \
240 case MC_CMD_ERR_ ## name: \
241 return -name;
242 TRANSLATE_ERROR(EPERM);
243 TRANSLATE_ERROR(ENOENT);
244 TRANSLATE_ERROR(EINTR);
245 TRANSLATE_ERROR(EAGAIN);
246 TRANSLATE_ERROR(EACCES);
247 TRANSLATE_ERROR(EBUSY);
248 TRANSLATE_ERROR(EINVAL);
249 TRANSLATE_ERROR(EDEADLK);
250 TRANSLATE_ERROR(ENOSYS);
251 TRANSLATE_ERROR(ETIME);
252 TRANSLATE_ERROR(EALREADY);
253 TRANSLATE_ERROR(ENOSPC);
254#undef TRANSLATE_ERROR
255 case MC_CMD_ERR_ENOTSUP:
256 return -EOPNOTSUPP;
257 case MC_CMD_ERR_ALLOC_FAIL:
258 return -ENOBUFS;
259 case MC_CMD_ERR_MAC_EXIST:
260 return -EADDRINUSE;
261 default:
262 return -EPROTO;
263 }
264}
265
266static void efx_mcdi_read_response_header(struct efx_nic *efx)
267{
268 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
269 unsigned int respseq, respcmd, error;
270#ifdef CONFIG_SFC_MCDI_LOGGING
271 char *buf = mcdi->logging_buffer; /* page-sized */
272#endif
273 efx_dword_t hdr;
274
275 efx->type->mcdi_read_response(efx, &hdr, 0, 4);
276 respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
277 respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
278 error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
279
280 if (respcmd != MC_CMD_V2_EXTN) {
281 mcdi->resp_hdr_len = 4;
282 mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
283 } else {
284 efx->type->mcdi_read_response(efx, &hdr, 4, 4);
285 mcdi->resp_hdr_len = 8;
286 mcdi->resp_data_len =
287 EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
288 }
289
290#ifdef CONFIG_SFC_MCDI_LOGGING
291 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
292 size_t hdr_len, data_len;
293 int bytes = 0;
294 int i;
295
296 WARN_ON_ONCE(mcdi->resp_hdr_len % 4);
297 hdr_len = mcdi->resp_hdr_len / 4;
298 /* MCDI_DECLARE_BUF ensures that underlying buffer is padded
299 * to dword size, and the MCDI buffer is always dword size
300 */
301 data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4);
302
303 /* We own the logging buffer, as only one MCDI can be in
304 * progress on a NIC at any one time. So no need for locking.
305 */
306 for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) {
307 efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4);
308 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
309 " %08x", le32_to_cpu(hdr.u32[0]));
310 }
311
312 for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) {
313 efx->type->mcdi_read_response(efx, &hdr,
314 mcdi->resp_hdr_len + (i * 4), 4);
315 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
316 " %08x", le32_to_cpu(hdr.u32[0]));
317 }
318
319 netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf);
320 }
321#endif
322
323 mcdi->resprc_raw = 0;
324 if (error && mcdi->resp_data_len == 0) {
325 netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
326 mcdi->resprc = -EIO;
327 } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
328 netif_err(efx, hw, efx->net_dev,
329 "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
330 respseq, mcdi->seqno);
331 mcdi->resprc = -EIO;
332 } else if (error) {
333 efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
334 mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0);
335 mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw);
336 } else {
337 mcdi->resprc = 0;
338 }
339}
340
341static bool efx_mcdi_poll_once(struct efx_nic *efx)
342{
343 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
344
345 rmb();
346 if (!efx->type->mcdi_poll_response(efx))
347 return false;
348
349 spin_lock_bh(&mcdi->iface_lock);
350 efx_mcdi_read_response_header(efx);
351 spin_unlock_bh(&mcdi->iface_lock);
352
353 return true;
354}
355
356static int efx_mcdi_poll(struct efx_nic *efx)
357{
358 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
359 unsigned long time, finish;
360 unsigned int spins;
361 int rc;
362
363 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */
364 rc = efx_mcdi_poll_reboot(efx);
365 if (rc) {
366 spin_lock_bh(&mcdi->iface_lock);
367 mcdi->resprc = rc;
368 mcdi->resp_hdr_len = 0;
369 mcdi->resp_data_len = 0;
370 spin_unlock_bh(&mcdi->iface_lock);
371 return 0;
372 }
373
374 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
375 * because generally mcdi responses are fast. After that, back off
376 * and poll once a jiffy (approximately)
377 */
378 spins = USER_TICK_USEC;
379 finish = jiffies + MCDI_RPC_TIMEOUT;
380
381 while (1) {
382 if (spins != 0) {
383 --spins;
384 udelay(1);
385 } else {
386 schedule_timeout_uninterruptible(1);
387 }
388
389 time = jiffies;
390
391 if (efx_mcdi_poll_once(efx))
392 break;
393
394 if (time_after(time, finish))
395 return -ETIMEDOUT;
396 }
397
398 /* Return rc=0 like wait_event_timeout() */
399 return 0;
400}
401
402/* Test and clear MC-rebooted flag for this port/function; reset
403 * software state as necessary.
404 */
405int efx_mcdi_poll_reboot(struct efx_nic *efx)
406{
407 if (!efx->mcdi)
408 return 0;
409
410 return efx->type->mcdi_poll_reboot(efx);
411}
412
413static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
414{
415 return cmpxchg(&mcdi->state,
416 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
417 MCDI_STATE_QUIESCENT;
418}
419
420static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
421{
422 /* Wait until the interface becomes QUIESCENT and we win the race
423 * to mark it RUNNING_SYNC.
424 */
425 wait_event(mcdi->wq,
426 cmpxchg(&mcdi->state,
427 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
428 MCDI_STATE_QUIESCENT);
429}
430
431static int efx_mcdi_await_completion(struct efx_nic *efx)
432{
433 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
434
435 if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
436 MCDI_RPC_TIMEOUT) == 0)
437 return -ETIMEDOUT;
438
439 /* Check if efx_mcdi_set_mode() switched us back to polled completions.
440 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
441 * completed the request first, then we'll just end up completing the
442 * request again, which is safe.
443 *
444 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
445 * wait_event_timeout() implicitly provides.
446 */
447 if (mcdi->mode == MCDI_MODE_POLL)
448 return efx_mcdi_poll(efx);
449
450 return 0;
451}
452
453/* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
454 * requester. Return whether this was done. Does not take any locks.
455 */
456static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
457{
458 if (cmpxchg(&mcdi->state,
459 MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
460 MCDI_STATE_RUNNING_SYNC) {
461 wake_up(&mcdi->wq);
462 return true;
463 }
464
465 return false;
466}
467
468static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
469{
470 if (mcdi->mode == MCDI_MODE_EVENTS) {
471 struct efx_mcdi_async_param *async;
472 struct efx_nic *efx = mcdi->efx;
473
474 /* Process the asynchronous request queue */
475 spin_lock_bh(&mcdi->async_lock);
476 async = list_first_entry_or_null(
477 &mcdi->async_list, struct efx_mcdi_async_param, list);
478 if (async) {
479 mcdi->state = MCDI_STATE_RUNNING_ASYNC;
480 efx_mcdi_send_request(efx, async->cmd,
481 (const efx_dword_t *)(async + 1),
482 async->inlen);
483 mod_timer(&mcdi->async_timer,
484 jiffies + MCDI_RPC_TIMEOUT);
485 }
486 spin_unlock_bh(&mcdi->async_lock);
487
488 if (async)
489 return;
490 }
491
492 mcdi->state = MCDI_STATE_QUIESCENT;
493 wake_up(&mcdi->wq);
494}
495
496/* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
497 * asynchronous completion function, and release the interface.
498 * Return whether this was done. Must be called in bh-disabled
499 * context. Will take iface_lock and async_lock.
500 */
501static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
502{
503 struct efx_nic *efx = mcdi->efx;
504 struct efx_mcdi_async_param *async;
505 size_t hdr_len, data_len, err_len;
506 efx_dword_t *outbuf;
507 MCDI_DECLARE_BUF_ERR(errbuf);
508 int rc;
509
510 if (cmpxchg(&mcdi->state,
511 MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
512 MCDI_STATE_RUNNING_ASYNC)
513 return false;
514
515 spin_lock(&mcdi->iface_lock);
516 if (timeout) {
517 /* Ensure that if the completion event arrives later,
518 * the seqno check in efx_mcdi_ev_cpl() will fail
519 */
520 ++mcdi->seqno;
521 ++mcdi->credits;
522 rc = -ETIMEDOUT;
523 hdr_len = 0;
524 data_len = 0;
525 } else {
526 rc = mcdi->resprc;
527 hdr_len = mcdi->resp_hdr_len;
528 data_len = mcdi->resp_data_len;
529 }
530 spin_unlock(&mcdi->iface_lock);
531
532 /* Stop the timer. In case the timer function is running, we
533 * must wait for it to return so that there is no possibility
534 * of it aborting the next request.
535 */
536 if (!timeout)
537 del_timer_sync(&mcdi->async_timer);
538
539 spin_lock(&mcdi->async_lock);
540 async = list_first_entry(&mcdi->async_list,
541 struct efx_mcdi_async_param, list);
542 list_del(&async->list);
543 spin_unlock(&mcdi->async_lock);
544
545 outbuf = (efx_dword_t *)(async + 1);
546 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
547 min(async->outlen, data_len));
548 if (!timeout && rc && !async->quiet) {
549 err_len = min(sizeof(errbuf), data_len);
550 efx->type->mcdi_read_response(efx, errbuf, hdr_len,
551 sizeof(errbuf));
552 efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
553 err_len, rc);
554 }
555
556 if (async->complete)
557 async->complete(efx, async->cookie, rc, outbuf,
558 min(async->outlen, data_len));
559 kfree(async);
560
561 efx_mcdi_release(mcdi);
562
563 return true;
564}
565
566static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
567 unsigned int datalen, unsigned int mcdi_err)
568{
569 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
570 bool wake = false;
571
572 spin_lock(&mcdi->iface_lock);
573
574 if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
575 if (mcdi->credits)
576 /* The request has been cancelled */
577 --mcdi->credits;
578 else
579 netif_err(efx, hw, efx->net_dev,
580 "MC response mismatch tx seq 0x%x rx "
581 "seq 0x%x\n", seqno, mcdi->seqno);
582 } else {
583 if (efx->type->mcdi_max_ver >= 2) {
584 /* MCDI v2 responses don't fit in an event */
585 efx_mcdi_read_response_header(efx);
586 } else {
587 mcdi->resprc = efx_mcdi_errno(mcdi_err);
588 mcdi->resp_hdr_len = 4;
589 mcdi->resp_data_len = datalen;
590 }
591
592 wake = true;
593 }
594
595 spin_unlock(&mcdi->iface_lock);
596
597 if (wake) {
598 if (!efx_mcdi_complete_async(mcdi, false))
599 (void) efx_mcdi_complete_sync(mcdi);
600
601 /* If the interface isn't RUNNING_ASYNC or
602 * RUNNING_SYNC then we've received a duplicate
603 * completion after we've already transitioned back to
604 * QUIESCENT. [A subsequent invocation would increment
605 * seqno, so would have failed the seqno check].
606 */
607 }
608}
609
610static void efx_mcdi_timeout_async(struct timer_list *t)
611{
612 struct efx_mcdi_iface *mcdi = from_timer(mcdi, t, async_timer);
613
614 efx_mcdi_complete_async(mcdi, true);
615}
616
617static int
618efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
619{
620 if (efx->type->mcdi_max_ver < 0 ||
621 (efx->type->mcdi_max_ver < 2 &&
622 cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
623 return -EINVAL;
624
625 if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
626 (efx->type->mcdi_max_ver < 2 &&
627 inlen > MCDI_CTL_SDU_LEN_MAX_V1))
628 return -EMSGSIZE;
629
630 return 0;
631}
632
633static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx,
634 size_t hdr_len, size_t data_len,
635 u32 *proxy_handle)
636{
637 MCDI_DECLARE_BUF_ERR(testbuf);
638 const size_t buflen = sizeof(testbuf);
639
640 if (!proxy_handle || data_len < buflen)
641 return false;
642
643 efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen);
644 if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) {
645 *proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE);
646 return true;
647 }
648
649 return false;
650}
651
652static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd,
653 size_t inlen,
654 efx_dword_t *outbuf, size_t outlen,
655 size_t *outlen_actual, bool quiet,
656 u32 *proxy_handle, int *raw_rc)
657{
658 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
659 MCDI_DECLARE_BUF_ERR(errbuf);
660 int rc;
661
662 if (mcdi->mode == MCDI_MODE_POLL)
663 rc = efx_mcdi_poll(efx);
664 else
665 rc = efx_mcdi_await_completion(efx);
666
667 if (rc != 0) {
668 netif_err(efx, hw, efx->net_dev,
669 "MC command 0x%x inlen %d mode %d timed out\n",
670 cmd, (int)inlen, mcdi->mode);
671
672 if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
673 netif_err(efx, hw, efx->net_dev,
674 "MCDI request was completed without an event\n");
675 rc = 0;
676 }
677
678 efx_mcdi_abandon(efx);
679
680 /* Close the race with efx_mcdi_ev_cpl() executing just too late
681 * and completing a request we've just cancelled, by ensuring
682 * that the seqno check therein fails.
683 */
684 spin_lock_bh(&mcdi->iface_lock);
685 ++mcdi->seqno;
686 ++mcdi->credits;
687 spin_unlock_bh(&mcdi->iface_lock);
688 }
689
690 if (proxy_handle)
691 *proxy_handle = 0;
692
693 if (rc != 0) {
694 if (outlen_actual)
695 *outlen_actual = 0;
696 } else {
697 size_t hdr_len, data_len, err_len;
698
699 /* At the very least we need a memory barrier here to ensure
700 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
701 * a spurious efx_mcdi_ev_cpl() running concurrently by
702 * acquiring the iface_lock. */
703 spin_lock_bh(&mcdi->iface_lock);
704 rc = mcdi->resprc;
705 if (raw_rc)
706 *raw_rc = mcdi->resprc_raw;
707 hdr_len = mcdi->resp_hdr_len;
708 data_len = mcdi->resp_data_len;
709 err_len = min(sizeof(errbuf), data_len);
710 spin_unlock_bh(&mcdi->iface_lock);
711
712 BUG_ON(rc > 0);
713
714 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
715 min(outlen, data_len));
716 if (outlen_actual)
717 *outlen_actual = data_len;
718
719 efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
720
721 if (cmd == MC_CMD_REBOOT && rc == -EIO) {
722 /* Don't reset if MC_CMD_REBOOT returns EIO */
723 } else if (rc == -EIO || rc == -EINTR) {
724 netif_err(efx, hw, efx->net_dev, "MC reboot detected\n");
725 netif_dbg(efx, hw, efx->net_dev, "MC rebooted during command %d rc %d\n",
726 cmd, -rc);
727 if (efx->type->mcdi_reboot_detected)
728 efx->type->mcdi_reboot_detected(efx);
729 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
730 } else if (proxy_handle && (rc == -EPROTO) &&
731 efx_mcdi_get_proxy_handle(efx, hdr_len, data_len,
732 proxy_handle)) {
733 mcdi->proxy_rx_status = 0;
734 mcdi->proxy_rx_handle = 0;
735 mcdi->state = MCDI_STATE_PROXY_WAIT;
736 } else if (rc && !quiet) {
737 efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
738 rc);
739 }
740
741 if (rc == -EIO || rc == -EINTR) {
742 msleep(MCDI_STATUS_SLEEP_MS);
743 efx_mcdi_poll_reboot(efx);
744 mcdi->new_epoch = true;
745 }
746 }
747
748 if (!proxy_handle || !*proxy_handle)
749 efx_mcdi_release(mcdi);
750 return rc;
751}
752
753static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi)
754{
755 if (mcdi->state == MCDI_STATE_PROXY_WAIT) {
756 /* Interrupt the proxy wait. */
757 mcdi->proxy_rx_status = -EINTR;
758 wake_up(&mcdi->proxy_rx_wq);
759 }
760}
761
762static void efx_mcdi_ev_proxy_response(struct efx_nic *efx,
763 u32 handle, int status)
764{
765 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
766
767 WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT);
768
769 mcdi->proxy_rx_status = efx_mcdi_errno(status);
770 /* Ensure the status is written before we update the handle, since the
771 * latter is used to check if we've finished.
772 */
773 wmb();
774 mcdi->proxy_rx_handle = handle;
775 wake_up(&mcdi->proxy_rx_wq);
776}
777
778static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet)
779{
780 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
781 int rc;
782
783 /* Wait for a proxy event, or timeout. */
784 rc = wait_event_timeout(mcdi->proxy_rx_wq,
785 mcdi->proxy_rx_handle != 0 ||
786 mcdi->proxy_rx_status == -EINTR,
787 MCDI_RPC_TIMEOUT);
788
789 if (rc <= 0) {
790 netif_dbg(efx, hw, efx->net_dev,
791 "MCDI proxy timeout %d\n", handle);
792 return -ETIMEDOUT;
793 } else if (mcdi->proxy_rx_handle != handle) {
794 netif_warn(efx, hw, efx->net_dev,
795 "MCDI proxy unexpected handle %d (expected %d)\n",
796 mcdi->proxy_rx_handle, handle);
797 return -EINVAL;
798 }
799
800 return mcdi->proxy_rx_status;
801}
802
803static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd,
804 const efx_dword_t *inbuf, size_t inlen,
805 efx_dword_t *outbuf, size_t outlen,
806 size_t *outlen_actual, bool quiet, int *raw_rc)
807{
808 u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */
809 int rc;
810
811 if (inbuf && inlen && (inbuf == outbuf)) {
812 /* The input buffer can't be aliased with the output. */
813 WARN_ON(1);
814 return -EINVAL;
815 }
816
817 rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
818 if (rc)
819 return rc;
820
821 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
822 outlen_actual, quiet, &proxy_handle, raw_rc);
823
824 if (proxy_handle) {
825 /* Handle proxy authorisation. This allows approval of MCDI
826 * operations to be delegated to the admin function, allowing
827 * fine control over (eg) multicast subscriptions.
828 */
829 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
830
831 netif_dbg(efx, hw, efx->net_dev,
832 "MCDI waiting for proxy auth %d\n",
833 proxy_handle);
834 rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet);
835
836 if (rc == 0) {
837 netif_dbg(efx, hw, efx->net_dev,
838 "MCDI proxy retry %d\n", proxy_handle);
839
840 /* We now retry the original request. */
841 mcdi->state = MCDI_STATE_RUNNING_SYNC;
842 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
843
844 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen,
845 outbuf, outlen, outlen_actual,
846 quiet, NULL, raw_rc);
847 } else {
848 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
849 "MC command 0x%x failed after proxy auth rc=%d\n",
850 cmd, rc);
851
852 if (rc == -EINTR || rc == -EIO)
853 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
854 efx_mcdi_release(mcdi);
855 }
856 }
857
858 return rc;
859}
860
861static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd,
862 const efx_dword_t *inbuf, size_t inlen,
863 efx_dword_t *outbuf, size_t outlen,
864 size_t *outlen_actual, bool quiet)
865{
866 int raw_rc = 0;
867 int rc;
868
869 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
870 outbuf, outlen, outlen_actual, true, &raw_rc);
871
872 if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
873 efx->type->is_vf) {
874 /* If the EVB port isn't available within a VF this may
875 * mean the PF is still bringing the switch up. We should
876 * retry our request shortly.
877 */
878 unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT;
879 unsigned int delay_us = 10000;
880
881 netif_dbg(efx, hw, efx->net_dev,
882 "%s: NO_EVB_PORT; will retry request\n",
883 __func__);
884
885 do {
886 usleep_range(delay_us, delay_us + 10000);
887 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
888 outbuf, outlen, outlen_actual,
889 true, &raw_rc);
890 if (delay_us < 100000)
891 delay_us <<= 1;
892 } while ((rc == -EPROTO) &&
893 (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
894 time_before(jiffies, abort_time));
895 }
896
897 if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO))
898 efx_mcdi_display_error(efx, cmd, inlen,
899 outbuf, outlen, rc);
900
901 return rc;
902}
903
904/**
905 * efx_mcdi_rpc - Issue an MCDI command and wait for completion
906 * @efx: NIC through which to issue the command
907 * @cmd: Command type number
908 * @inbuf: Command parameters
909 * @inlen: Length of command parameters, in bytes. Must be a multiple
910 * of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
911 * @outbuf: Response buffer. May be %NULL if @outlen is 0.
912 * @outlen: Length of response buffer, in bytes. If the actual
913 * response is longer than @outlen & ~3, it will be truncated
914 * to that length.
915 * @outlen_actual: Pointer through which to return the actual response
916 * length. May be %NULL if this is not needed.
917 *
918 * This function may sleep and therefore must be called in an appropriate
919 * context.
920 *
921 * Return: A negative error code, or zero if successful. The error
922 * code may come from the MCDI response or may indicate a failure
923 * to communicate with the MC. In the former case, the response
924 * will still be copied to @outbuf and *@outlen_actual will be
925 * set accordingly. In the latter case, *@outlen_actual will be
926 * set to zero.
927 */
928int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
929 const efx_dword_t *inbuf, size_t inlen,
930 efx_dword_t *outbuf, size_t outlen,
931 size_t *outlen_actual)
932{
933 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
934 outlen_actual, false);
935}
936
937/* Normally, on receiving an error code in the MCDI response,
938 * efx_mcdi_rpc will log an error message containing (among other
939 * things) the raw error code, by means of efx_mcdi_display_error.
940 * This _quiet version suppresses that; if the caller wishes to log
941 * the error conditionally on the return code, it should call this
942 * function and is then responsible for calling efx_mcdi_display_error
943 * as needed.
944 */
945int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
946 const efx_dword_t *inbuf, size_t inlen,
947 efx_dword_t *outbuf, size_t outlen,
948 size_t *outlen_actual)
949{
950 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
951 outlen_actual, true);
952}
953
954int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
955 const efx_dword_t *inbuf, size_t inlen)
956{
957 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
958 int rc;
959
960 rc = efx_mcdi_check_supported(efx, cmd, inlen);
961 if (rc)
962 return rc;
963
964 if (efx->mc_bist_for_other_fn)
965 return -ENETDOWN;
966
967 if (mcdi->mode == MCDI_MODE_FAIL)
968 return -ENETDOWN;
969
970 efx_mcdi_acquire_sync(mcdi);
971 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
972 return 0;
973}
974
975static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
976 const efx_dword_t *inbuf, size_t inlen,
977 size_t outlen,
978 efx_mcdi_async_completer *complete,
979 unsigned long cookie, bool quiet)
980{
981 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
982 struct efx_mcdi_async_param *async;
983 int rc;
984
985 rc = efx_mcdi_check_supported(efx, cmd, inlen);
986 if (rc)
987 return rc;
988
989 if (efx->mc_bist_for_other_fn)
990 return -ENETDOWN;
991
992 async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
993 GFP_ATOMIC);
994 if (!async)
995 return -ENOMEM;
996
997 async->cmd = cmd;
998 async->inlen = inlen;
999 async->outlen = outlen;
1000 async->quiet = quiet;
1001 async->complete = complete;
1002 async->cookie = cookie;
1003 memcpy(async + 1, inbuf, inlen);
1004
1005 spin_lock_bh(&mcdi->async_lock);
1006
1007 if (mcdi->mode == MCDI_MODE_EVENTS) {
1008 list_add_tail(&async->list, &mcdi->async_list);
1009
1010 /* If this is at the front of the queue, try to start it
1011 * immediately
1012 */
1013 if (mcdi->async_list.next == &async->list &&
1014 efx_mcdi_acquire_async(mcdi)) {
1015 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
1016 mod_timer(&mcdi->async_timer,
1017 jiffies + MCDI_RPC_TIMEOUT);
1018 }
1019 } else {
1020 kfree(async);
1021 rc = -ENETDOWN;
1022 }
1023
1024 spin_unlock_bh(&mcdi->async_lock);
1025
1026 return rc;
1027}
1028
1029/**
1030 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
1031 * @efx: NIC through which to issue the command
1032 * @cmd: Command type number
1033 * @inbuf: Command parameters
1034 * @inlen: Length of command parameters, in bytes
1035 * @outlen: Length to allocate for response buffer, in bytes
1036 * @complete: Function to be called on completion or cancellation.
1037 * @cookie: Arbitrary value to be passed to @complete.
1038 *
1039 * This function does not sleep and therefore may be called in atomic
1040 * context. It will fail if event queues are disabled or if MCDI
1041 * event completions have been disabled due to an error.
1042 *
1043 * If it succeeds, the @complete function will be called exactly once
1044 * in atomic context, when one of the following occurs:
1045 * (a) the completion event is received (in NAPI context)
1046 * (b) event queues are disabled (in the process that disables them)
1047 * (c) the request times-out (in timer context)
1048 */
1049int
1050efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
1051 const efx_dword_t *inbuf, size_t inlen, size_t outlen,
1052 efx_mcdi_async_completer *complete, unsigned long cookie)
1053{
1054 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1055 cookie, false);
1056}
1057
1058int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
1059 const efx_dword_t *inbuf, size_t inlen,
1060 size_t outlen, efx_mcdi_async_completer *complete,
1061 unsigned long cookie)
1062{
1063 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1064 cookie, true);
1065}
1066
1067int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
1068 efx_dword_t *outbuf, size_t outlen,
1069 size_t *outlen_actual)
1070{
1071 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1072 outlen_actual, false, NULL, NULL);
1073}
1074
1075int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
1076 efx_dword_t *outbuf, size_t outlen,
1077 size_t *outlen_actual)
1078{
1079 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1080 outlen_actual, true, NULL, NULL);
1081}
1082
1083void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
1084 size_t inlen, efx_dword_t *outbuf,
1085 size_t outlen, int rc)
1086{
1087 int code = 0, err_arg = 0;
1088
1089 if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
1090 code = MCDI_DWORD(outbuf, ERR_CODE);
1091 if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
1092 err_arg = MCDI_DWORD(outbuf, ERR_ARG);
1093 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
1094 "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
1095 cmd, inlen, rc, code, err_arg);
1096}
1097
1098/* Switch to polled MCDI completions. This can be called in various
1099 * error conditions with various locks held, so it must be lockless.
1100 * Caller is responsible for flushing asynchronous requests later.
1101 */
1102void efx_mcdi_mode_poll(struct efx_nic *efx)
1103{
1104 struct efx_mcdi_iface *mcdi;
1105
1106 if (!efx->mcdi)
1107 return;
1108
1109 mcdi = efx_mcdi(efx);
1110 /* If already in polling mode, nothing to do.
1111 * If in fail-fast state, don't switch to polled completion.
1112 * FLR recovery will do that later.
1113 */
1114 if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
1115 return;
1116
1117 /* We can switch from event completion to polled completion, because
1118 * mcdi requests are always completed in shared memory. We do this by
1119 * switching the mode to POLL'd then completing the request.
1120 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
1121 *
1122 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
1123 * which efx_mcdi_complete_sync() provides for us.
1124 */
1125 mcdi->mode = MCDI_MODE_POLL;
1126
1127 efx_mcdi_complete_sync(mcdi);
1128}
1129
1130/* Flush any running or queued asynchronous requests, after event processing
1131 * is stopped
1132 */
1133void efx_mcdi_flush_async(struct efx_nic *efx)
1134{
1135 struct efx_mcdi_async_param *async, *next;
1136 struct efx_mcdi_iface *mcdi;
1137
1138 if (!efx->mcdi)
1139 return;
1140
1141 mcdi = efx_mcdi(efx);
1142
1143 /* We must be in poll or fail mode so no more requests can be queued */
1144 BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
1145
1146 del_timer_sync(&mcdi->async_timer);
1147
1148 /* If a request is still running, make sure we give the MC
1149 * time to complete it so that the response won't overwrite our
1150 * next request.
1151 */
1152 if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
1153 efx_mcdi_poll(efx);
1154 mcdi->state = MCDI_STATE_QUIESCENT;
1155 }
1156
1157 /* Nothing else will access the async list now, so it is safe
1158 * to walk it without holding async_lock. If we hold it while
1159 * calling a completer then lockdep may warn that we have
1160 * acquired locks in the wrong order.
1161 */
1162 list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
1163 if (async->complete)
1164 async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
1165 list_del(&async->list);
1166 kfree(async);
1167 }
1168}
1169
1170void efx_mcdi_mode_event(struct efx_nic *efx)
1171{
1172 struct efx_mcdi_iface *mcdi;
1173
1174 if (!efx->mcdi)
1175 return;
1176
1177 mcdi = efx_mcdi(efx);
1178 /* If already in event completion mode, nothing to do.
1179 * If in fail-fast state, don't switch to event completion. FLR
1180 * recovery will do that later.
1181 */
1182 if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
1183 return;
1184
1185 /* We can't switch from polled to event completion in the middle of a
1186 * request, because the completion method is specified in the request.
1187 * So acquire the interface to serialise the requestors. We don't need
1188 * to acquire the iface_lock to change the mode here, but we do need a
1189 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
1190 * efx_mcdi_acquire() provides.
1191 */
1192 efx_mcdi_acquire_sync(mcdi);
1193 mcdi->mode = MCDI_MODE_EVENTS;
1194 efx_mcdi_release(mcdi);
1195}
1196
1197static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
1198{
1199 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1200
1201 /* If there is an outstanding MCDI request, it has been terminated
1202 * either by a BADASSERT or REBOOT event. If the mcdi interface is
1203 * in polled mode, then do nothing because the MC reboot handler will
1204 * set the header correctly. However, if the mcdi interface is waiting
1205 * for a CMDDONE event it won't receive it [and since all MCDI events
1206 * are sent to the same queue, we can't be racing with
1207 * efx_mcdi_ev_cpl()]
1208 *
1209 * If there is an outstanding asynchronous request, we can't
1210 * complete it now (efx_mcdi_complete() would deadlock). The
1211 * reset process will take care of this.
1212 *
1213 * There's a race here with efx_mcdi_send_request(), because
1214 * we might receive a REBOOT event *before* the request has
1215 * been copied out. In polled mode (during startup) this is
1216 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1217 * event mode, this condition is just an edge-case of
1218 * receiving a REBOOT event after posting the MCDI
1219 * request. Did the mc reboot before or after the copyout? The
1220 * best we can do always is just return failure.
1221 *
1222 * If there is an outstanding proxy response expected it is not going
1223 * to arrive. We should thus abort it.
1224 */
1225 spin_lock(&mcdi->iface_lock);
1226 efx_mcdi_proxy_abort(mcdi);
1227
1228 if (efx_mcdi_complete_sync(mcdi)) {
1229 if (mcdi->mode == MCDI_MODE_EVENTS) {
1230 mcdi->resprc = rc;
1231 mcdi->resp_hdr_len = 0;
1232 mcdi->resp_data_len = 0;
1233 ++mcdi->credits;
1234 }
1235 } else {
1236 int count;
1237
1238 /* Consume the status word since efx_mcdi_rpc_finish() won't */
1239 for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
1240 rc = efx_mcdi_poll_reboot(efx);
1241 if (rc)
1242 break;
1243 udelay(MCDI_STATUS_DELAY_US);
1244 }
1245
1246 /* On EF10, a CODE_MC_REBOOT event can be received without the
1247 * reboot detection in efx_mcdi_poll_reboot() being triggered.
1248 * If zero was returned from the final call to
1249 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
1250 * MC has definitely rebooted so prepare for the reset.
1251 */
1252 if (!rc && efx->type->mcdi_reboot_detected)
1253 efx->type->mcdi_reboot_detected(efx);
1254
1255 mcdi->new_epoch = true;
1256
1257 /* Nobody was waiting for an MCDI request, so trigger a reset */
1258 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
1259 }
1260
1261 spin_unlock(&mcdi->iface_lock);
1262}
1263
1264/* The MC is going down in to BIST mode. set the BIST flag to block
1265 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
1266 * (which doesn't actually execute a reset, it waits for the controlling
1267 * function to reset it).
1268 */
1269static void efx_mcdi_ev_bist(struct efx_nic *efx)
1270{
1271 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1272
1273 spin_lock(&mcdi->iface_lock);
1274 efx->mc_bist_for_other_fn = true;
1275 efx_mcdi_proxy_abort(mcdi);
1276
1277 if (efx_mcdi_complete_sync(mcdi)) {
1278 if (mcdi->mode == MCDI_MODE_EVENTS) {
1279 mcdi->resprc = -EIO;
1280 mcdi->resp_hdr_len = 0;
1281 mcdi->resp_data_len = 0;
1282 ++mcdi->credits;
1283 }
1284 }
1285 mcdi->new_epoch = true;
1286 efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
1287 spin_unlock(&mcdi->iface_lock);
1288}
1289
1290/* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1291 * to recover.
1292 */
1293static void efx_mcdi_abandon(struct efx_nic *efx)
1294{
1295 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1296
1297 if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
1298 return; /* it had already been done */
1299 netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
1300 efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
1301}
1302
1303/* Called from efx_farch_ev_process and efx_ef10_ev_process for MCDI events */
1304void efx_mcdi_process_event(struct efx_channel *channel,
1305 efx_qword_t *event)
1306{
1307 struct efx_nic *efx = channel->efx;
1308 int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
1309 u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
1310
1311 switch (code) {
1312 case MCDI_EVENT_CODE_BADSSERT:
1313 netif_err(efx, hw, efx->net_dev,
1314 "MC watchdog or assertion failure at 0x%x\n", data);
1315 efx_mcdi_ev_death(efx, -EINTR);
1316 break;
1317
1318 case MCDI_EVENT_CODE_PMNOTICE:
1319 netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
1320 break;
1321
1322 case MCDI_EVENT_CODE_CMDDONE:
1323 efx_mcdi_ev_cpl(efx,
1324 MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
1325 MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
1326 MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
1327 break;
1328
1329 case MCDI_EVENT_CODE_LINKCHANGE:
1330 efx_mcdi_process_link_change(efx, event);
1331 break;
1332 case MCDI_EVENT_CODE_SENSOREVT:
1333 efx_mcdi_sensor_event(efx, event);
1334 break;
1335 case MCDI_EVENT_CODE_SCHEDERR:
1336 netif_dbg(efx, hw, efx->net_dev,
1337 "MC Scheduler alert (0x%x)\n", data);
1338 break;
1339 case MCDI_EVENT_CODE_REBOOT:
1340 case MCDI_EVENT_CODE_MC_REBOOT:
1341 netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1342 efx_mcdi_ev_death(efx, -EIO);
1343 break;
1344 case MCDI_EVENT_CODE_MC_BIST:
1345 netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
1346 efx_mcdi_ev_bist(efx);
1347 break;
1348 case MCDI_EVENT_CODE_MAC_STATS_DMA:
1349 /* MAC stats are gather lazily. We can ignore this. */
1350 break;
1351 case MCDI_EVENT_CODE_FLR:
1352 if (efx->type->sriov_flr)
1353 efx->type->sriov_flr(efx,
1354 MCDI_EVENT_FIELD(*event, FLR_VF));
1355 break;
1356 case MCDI_EVENT_CODE_PTP_RX:
1357 case MCDI_EVENT_CODE_PTP_FAULT:
1358 case MCDI_EVENT_CODE_PTP_PPS:
1359 efx_ptp_event(efx, event);
1360 break;
1361 case MCDI_EVENT_CODE_PTP_TIME:
1362 efx_time_sync_event(channel, event);
1363 break;
1364 case MCDI_EVENT_CODE_TX_FLUSH:
1365 case MCDI_EVENT_CODE_RX_FLUSH:
1366 /* Two flush events will be sent: one to the same event
1367 * queue as completions, and one to event queue 0.
1368 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1369 * flag will be set, and we should ignore the event
1370 * because we want to wait for all completions.
1371 */
1372 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
1373 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
1374 if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
1375 efx_ef10_handle_drain_event(efx);
1376 break;
1377 case MCDI_EVENT_CODE_TX_ERR:
1378 case MCDI_EVENT_CODE_RX_ERR:
1379 netif_err(efx, hw, efx->net_dev,
1380 "%s DMA error (event: "EFX_QWORD_FMT")\n",
1381 code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
1382 EFX_QWORD_VAL(*event));
1383 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1384 break;
1385 case MCDI_EVENT_CODE_PROXY_RESPONSE:
1386 efx_mcdi_ev_proxy_response(efx,
1387 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE),
1388 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC));
1389 break;
1390 default:
1391 netif_err(efx, hw, efx->net_dev,
1392 "Unknown MCDI event " EFX_QWORD_FMT "\n",
1393 EFX_QWORD_VAL(*event));
1394 }
1395}
1396
1397/**************************************************************************
1398 *
1399 * Specific request functions
1400 *
1401 **************************************************************************
1402 */
1403
1404void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1405{
1406 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
1407 size_t outlength;
1408 const __le16 *ver_words;
1409 size_t offset;
1410 int rc;
1411
1412 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
1413 rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
1414 outbuf, sizeof(outbuf), &outlength);
1415 if (rc)
1416 goto fail;
1417 if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1418 rc = -EIO;
1419 goto fail;
1420 }
1421
1422 ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1423 offset = snprintf(buf, len, "%u.%u.%u.%u",
1424 le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]),
1425 le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3]));
1426
1427 /* EF10 may have multiple datapath firmware variants within a
1428 * single version. Report which variants are running.
1429 */
1430 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
1431 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1432
1433 offset += snprintf(buf + offset, len - offset, " rx%x tx%x",
1434 nic_data->rx_dpcpu_fw_id,
1435 nic_data->tx_dpcpu_fw_id);
1436
1437 /* It's theoretically possible for the string to exceed 31
1438 * characters, though in practice the first three version
1439 * components are short enough that this doesn't happen.
1440 */
1441 if (WARN_ON(offset >= len))
1442 buf[0] = 0;
1443 }
1444
1445 return;
1446
1447fail:
1448 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1449 buf[0] = 0;
1450}
1451
1452static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
1453 bool *was_attached)
1454{
1455 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1456 MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1457 size_t outlen;
1458 int rc;
1459
1460 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
1461 driver_operating ? 1 : 0);
1462 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1463 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1464
1465 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
1466 outbuf, sizeof(outbuf), &outlen);
1467 /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1468 * specified will fail with EPERM, and we have to tell the MC we don't
1469 * care what firmware we get.
1470 */
1471 if (rc == -EPERM) {
1472 netif_dbg(efx, probe, efx->net_dev,
1473 "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n");
1474 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
1475 MC_CMD_FW_DONT_CARE);
1476 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
1477 sizeof(inbuf), outbuf, sizeof(outbuf),
1478 &outlen);
1479 }
1480 if (rc) {
1481 efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf),
1482 outbuf, outlen, rc);
1483 goto fail;
1484 }
1485 if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
1486 rc = -EIO;
1487 goto fail;
1488 }
1489
1490 if (driver_operating) {
1491 if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1492 efx->mcdi->fn_flags =
1493 MCDI_DWORD(outbuf,
1494 DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1495 } else {
1496 /* Synthesise flags for Siena */
1497 efx->mcdi->fn_flags =
1498 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1499 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
1500 (efx_port_num(efx) == 0) <<
1501 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
1502 }
1503 }
1504
1505 /* We currently assume we have control of the external link
1506 * and are completely trusted by firmware. Abort probing
1507 * if that's not true for this function.
1508 */
1509
1510 if (was_attached != NULL)
1511 *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
1512 return 0;
1513
1514fail:
1515 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1516 return rc;
1517}
1518
1519int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1520 u16 *fw_subtype_list, u32 *capabilities)
1521{
1522 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1523 size_t outlen, i;
1524 int port_num = efx_port_num(efx);
1525 int rc;
1526
1527 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1528 /* we need __aligned(2) for ether_addr_copy */
1529 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
1530 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
1531
1532 rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1533 outbuf, sizeof(outbuf), &outlen);
1534 if (rc)
1535 goto fail;
1536
1537 if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1538 rc = -EIO;
1539 goto fail;
1540 }
1541
1542 if (mac_address)
1543 ether_addr_copy(mac_address,
1544 port_num ?
1545 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1546 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
1547 if (fw_subtype_list) {
1548 for (i = 0;
1549 i < MCDI_VAR_ARRAY_LEN(outlen,
1550 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1551 i++)
1552 fw_subtype_list[i] = MCDI_ARRAY_WORD(
1553 outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1554 for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1555 fw_subtype_list[i] = 0;
1556 }
1557 if (capabilities) {
1558 if (port_num)
1559 *capabilities = MCDI_DWORD(outbuf,
1560 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1561 else
1562 *capabilities = MCDI_DWORD(outbuf,
1563 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1564 }
1565
1566 return 0;
1567
1568fail:
1569 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1570 __func__, rc, (int)outlen);
1571
1572 return rc;
1573}
1574
1575int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
1576{
1577 MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1578 u32 dest = 0;
1579 int rc;
1580
1581 if (uart)
1582 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1583 if (evq)
1584 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1585
1586 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1587 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1588
1589 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1590
1591 rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1592 NULL, 0, NULL);
1593 return rc;
1594}
1595
1596int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1597{
1598 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1599 size_t outlen;
1600 int rc;
1601
1602 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1603
1604 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1605 outbuf, sizeof(outbuf), &outlen);
1606 if (rc)
1607 goto fail;
1608 if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1609 rc = -EIO;
1610 goto fail;
1611 }
1612
1613 *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1614 return 0;
1615
1616fail:
1617 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1618 __func__, rc);
1619 return rc;
1620}
1621
1622int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1623 size_t *size_out, size_t *erase_size_out,
1624 bool *protected_out)
1625{
1626 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1627 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1628 size_t outlen;
1629 int rc;
1630
1631 MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1632
1633 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1634 outbuf, sizeof(outbuf), &outlen);
1635 if (rc)
1636 goto fail;
1637 if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1638 rc = -EIO;
1639 goto fail;
1640 }
1641
1642 *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1643 *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1644 *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1645 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1646 return 0;
1647
1648fail:
1649 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1650 return rc;
1651}
1652
1653static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1654{
1655 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1656 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1657 int rc;
1658
1659 MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1660
1661 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1662 outbuf, sizeof(outbuf), NULL);
1663 if (rc)
1664 return rc;
1665
1666 switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1667 case MC_CMD_NVRAM_TEST_PASS:
1668 case MC_CMD_NVRAM_TEST_NOTSUPP:
1669 return 0;
1670 default:
1671 return -EIO;
1672 }
1673}
1674
1675int efx_mcdi_nvram_test_all(struct efx_nic *efx)
1676{
1677 u32 nvram_types;
1678 unsigned int type;
1679 int rc;
1680
1681 rc = efx_mcdi_nvram_types(efx, &nvram_types);
1682 if (rc)
1683 goto fail1;
1684
1685 type = 0;
1686 while (nvram_types != 0) {
1687 if (nvram_types & 1) {
1688 rc = efx_mcdi_nvram_test(efx, type);
1689 if (rc)
1690 goto fail2;
1691 }
1692 type++;
1693 nvram_types >>= 1;
1694 }
1695
1696 return 0;
1697
1698fail2:
1699 netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1700 __func__, type);
1701fail1:
1702 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1703 return rc;
1704}
1705
1706/* Returns 1 if an assertion was read, 0 if no assertion had fired,
1707 * negative on error.
1708 */
1709static int efx_mcdi_read_assertion(struct efx_nic *efx)
1710{
1711 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1712 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1713 unsigned int flags, index;
1714 const char *reason;
1715 size_t outlen;
1716 int retry;
1717 int rc;
1718
1719 /* Attempt to read any stored assertion state before we reboot
1720 * the mcfw out of the assertion handler. Retry twice, once
1721 * because a boot-time assertion might cause this command to fail
1722 * with EINTR. And once again because GET_ASSERTS can race with
1723 * MC_CMD_REBOOT running on the other port. */
1724 retry = 2;
1725 do {
1726 MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1727 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
1728 inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1729 outbuf, sizeof(outbuf), &outlen);
1730 if (rc == -EPERM)
1731 return 0;
1732 } while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1733
1734 if (rc) {
1735 efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
1736 MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
1737 outlen, rc);
1738 return rc;
1739 }
1740 if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1741 return -EIO;
1742
1743 /* Print out any recorded assertion state */
1744 flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1745 if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1746 return 0;
1747
1748 reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1749 ? "system-level assertion"
1750 : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1751 ? "thread-level assertion"
1752 : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1753 ? "watchdog reset"
1754 : "unknown assertion";
1755 netif_err(efx, hw, efx->net_dev,
1756 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1757 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1758 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1759
1760 /* Print out the registers */
1761 for (index = 0;
1762 index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1763 index++)
1764 netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1765 1 + index,
1766 MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1767 index));
1768
1769 return 1;
1770}
1771
1772static int efx_mcdi_exit_assertion(struct efx_nic *efx)
1773{
1774 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1775 int rc;
1776
1777 /* If the MC is running debug firmware, it might now be
1778 * waiting for a debugger to attach, but we just want it to
1779 * reboot. We set a flag that makes the command a no-op if it
1780 * has already done so.
1781 * The MCDI will thus return either 0 or -EIO.
1782 */
1783 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1784 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1785 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1786 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
1787 NULL, 0, NULL);
1788 if (rc == -EIO)
1789 rc = 0;
1790 if (rc)
1791 efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN,
1792 NULL, 0, rc);
1793 return rc;
1794}
1795
1796int efx_mcdi_handle_assertion(struct efx_nic *efx)
1797{
1798 int rc;
1799
1800 rc = efx_mcdi_read_assertion(efx);
1801 if (rc <= 0)
1802 return rc;
1803
1804 return efx_mcdi_exit_assertion(efx);
1805}
1806
1807void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1808{
1809 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1810 int rc;
1811
1812 BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1813 BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1814 BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1815
1816 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1817
1818 MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1819
1820 rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
1821 NULL, 0, NULL);
1822}
1823
1824static int efx_mcdi_reset_func(struct efx_nic *efx)
1825{
1826 MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
1827 int rc;
1828
1829 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
1830 MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
1831 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1832 rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
1833 NULL, 0, NULL);
1834 return rc;
1835}
1836
1837static int efx_mcdi_reset_mc(struct efx_nic *efx)
1838{
1839 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1840 int rc;
1841
1842 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1843 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1844 rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1845 NULL, 0, NULL);
1846 /* White is black, and up is down */
1847 if (rc == -EIO)
1848 return 0;
1849 if (rc == 0)
1850 rc = -EIO;
1851 return rc;
1852}
1853
1854enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
1855{
1856 return RESET_TYPE_RECOVER_OR_ALL;
1857}
1858
1859int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1860{
1861 int rc;
1862
1863 /* If MCDI is down, we can't handle_assertion */
1864 if (method == RESET_TYPE_MCDI_TIMEOUT) {
1865 rc = pci_reset_function(efx->pci_dev);
1866 if (rc)
1867 return rc;
1868 /* Re-enable polled MCDI completion */
1869 if (efx->mcdi) {
1870 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1871 mcdi->mode = MCDI_MODE_POLL;
1872 }
1873 return 0;
1874 }
1875
1876 /* Recover from a failed assertion pre-reset */
1877 rc = efx_mcdi_handle_assertion(efx);
1878 if (rc)
1879 return rc;
1880
1881 if (method == RESET_TYPE_DATAPATH)
1882 return 0;
1883 else if (method == RESET_TYPE_WORLD)
1884 return efx_mcdi_reset_mc(efx);
1885 else
1886 return efx_mcdi_reset_func(efx);
1887}
1888
1889static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1890 const u8 *mac, int *id_out)
1891{
1892 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1893 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1894 size_t outlen;
1895 int rc;
1896
1897 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1898 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1899 MC_CMD_FILTER_MODE_SIMPLE);
1900 ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
1901
1902 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
1903 outbuf, sizeof(outbuf), &outlen);
1904 if (rc)
1905 goto fail;
1906
1907 if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1908 rc = -EIO;
1909 goto fail;
1910 }
1911
1912 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1913
1914 return 0;
1915
1916fail:
1917 *id_out = -1;
1918 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1919 return rc;
1920
1921}
1922
1923
1924int
1925efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out)
1926{
1927 return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1928}
1929
1930
1931int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1932{
1933 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1934 size_t outlen;
1935 int rc;
1936
1937 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
1938 outbuf, sizeof(outbuf), &outlen);
1939 if (rc)
1940 goto fail;
1941
1942 if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
1943 rc = -EIO;
1944 goto fail;
1945 }
1946
1947 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
1948
1949 return 0;
1950
1951fail:
1952 *id_out = -1;
1953 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1954 return rc;
1955}
1956
1957
1958int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
1959{
1960 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
1961 int rc;
1962
1963 MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
1964
1965 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
1966 NULL, 0, NULL);
1967 return rc;
1968}
1969
1970int efx_mcdi_flush_rxqs(struct efx_nic *efx)
1971{
1972 struct efx_channel *channel;
1973 struct efx_rx_queue *rx_queue;
1974 MCDI_DECLARE_BUF(inbuf,
1975 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
1976 int rc, count;
1977
1978 BUILD_BUG_ON(EFX_MAX_CHANNELS >
1979 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
1980
1981 count = 0;
1982 efx_for_each_channel(channel, efx) {
1983 efx_for_each_channel_rx_queue(rx_queue, channel) {
1984 if (rx_queue->flush_pending) {
1985 rx_queue->flush_pending = false;
1986 atomic_dec(&efx->rxq_flush_pending);
1987 MCDI_SET_ARRAY_DWORD(
1988 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
1989 count, efx_rx_queue_index(rx_queue));
1990 count++;
1991 }
1992 }
1993 }
1994
1995 rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
1996 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
1997 WARN_ON(rc < 0);
1998
1999 return rc;
2000}
2001
2002int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
2003{
2004 int rc;
2005
2006 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
2007 return rc;
2008}
2009
2010int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled,
2011 unsigned int *flags)
2012{
2013 MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
2014 MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN);
2015 size_t outlen;
2016 int rc;
2017
2018 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
2019 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
2020 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
2021 rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
2022 outbuf, sizeof(outbuf), &outlen);
2023 if (rc)
2024 return rc;
2025
2026 if (!flags)
2027 return 0;
2028
2029 if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
2030 *flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS);
2031 else
2032 *flags = 0;
2033
2034 return 0;
2035}
2036
2037int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out,
2038 unsigned int *enabled_out)
2039{
2040 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
2041 size_t outlen;
2042 int rc;
2043
2044 rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0,
2045 outbuf, sizeof(outbuf), &outlen);
2046 if (rc)
2047 goto fail;
2048
2049 if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
2050 rc = -EIO;
2051 goto fail;
2052 }
2053
2054 if (impl_out)
2055 *impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED);
2056
2057 if (enabled_out)
2058 *enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED);
2059
2060 return 0;
2061
2062fail:
2063 /* Older firmware lacks GET_WORKAROUNDS and this isn't especially
2064 * terrifying. The call site will have to deal with it though.
2065 */
2066 netif_cond_dbg(efx, hw, efx->net_dev, rc == -ENOSYS, err,
2067 "%s: failed rc=%d\n", __func__, rc);
2068 return rc;
2069}
2070
2071#ifdef CONFIG_SFC_MTD
2072
2073#define EFX_MCDI_NVRAM_LEN_MAX 128
2074
2075static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
2076{
2077 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN);
2078 int rc;
2079
2080 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
2081
2082 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
2083
2084 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
2085 NULL, 0, NULL);
2086 return rc;
2087}
2088
2089static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
2090 loff_t offset, u8 *buffer, size_t length)
2091{
2092 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN);
2093 MCDI_DECLARE_BUF(outbuf,
2094 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2095 size_t outlen;
2096 int rc;
2097
2098 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
2099 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
2100 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
2101
2102 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
2103 outbuf, sizeof(outbuf), &outlen);
2104 if (rc)
2105 return rc;
2106
2107 memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
2108 return 0;
2109}
2110
2111static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
2112 loff_t offset, const u8 *buffer, size_t length)
2113{
2114 MCDI_DECLARE_BUF(inbuf,
2115 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2116 int rc;
2117
2118 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
2119 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
2120 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
2121 memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
2122
2123 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
2124
2125 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
2126 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
2127 NULL, 0, NULL);
2128 return rc;
2129}
2130
2131static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
2132 loff_t offset, size_t length)
2133{
2134 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
2135 int rc;
2136
2137 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
2138 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
2139 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
2140
2141 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
2142
2143 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
2144 NULL, 0, NULL);
2145 return rc;
2146}
2147
2148static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
2149{
2150 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN);
2151 int rc;
2152
2153 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
2154
2155 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0);
2156
2157 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
2158 NULL, 0, NULL);
2159 return rc;
2160}
2161
2162int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
2163 size_t len, size_t *retlen, u8 *buffer)
2164{
2165 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2166 struct efx_nic *efx = mtd->priv;
2167 loff_t offset = start;
2168 loff_t end = min_t(loff_t, start + len, mtd->size);
2169 size_t chunk;
2170 int rc = 0;
2171
2172 while (offset < end) {
2173 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2174 rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
2175 buffer, chunk);
2176 if (rc)
2177 goto out;
2178 offset += chunk;
2179 buffer += chunk;
2180 }
2181out:
2182 *retlen = offset - start;
2183 return rc;
2184}
2185
2186int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
2187{
2188 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2189 struct efx_nic *efx = mtd->priv;
2190 loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
2191 loff_t end = min_t(loff_t, start + len, mtd->size);
2192 size_t chunk = part->common.mtd.erasesize;
2193 int rc = 0;
2194
2195 if (!part->updating) {
2196 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2197 if (rc)
2198 goto out;
2199 part->updating = true;
2200 }
2201
2202 /* The MCDI interface can in fact do multiple erase blocks at once;
2203 * but erasing may be slow, so we make multiple calls here to avoid
2204 * tripping the MCDI RPC timeout. */
2205 while (offset < end) {
2206 rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
2207 chunk);
2208 if (rc)
2209 goto out;
2210 offset += chunk;
2211 }
2212out:
2213 return rc;
2214}
2215
2216int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
2217 size_t len, size_t *retlen, const u8 *buffer)
2218{
2219 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2220 struct efx_nic *efx = mtd->priv;
2221 loff_t offset = start;
2222 loff_t end = min_t(loff_t, start + len, mtd->size);
2223 size_t chunk;
2224 int rc = 0;
2225
2226 if (!part->updating) {
2227 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2228 if (rc)
2229 goto out;
2230 part->updating = true;
2231 }
2232
2233 while (offset < end) {
2234 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2235 rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
2236 buffer, chunk);
2237 if (rc)
2238 goto out;
2239 offset += chunk;
2240 buffer += chunk;
2241 }
2242out:
2243 *retlen = offset - start;
2244 return rc;
2245}
2246
2247int efx_mcdi_mtd_sync(struct mtd_info *mtd)
2248{
2249 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2250 struct efx_nic *efx = mtd->priv;
2251 int rc = 0;
2252
2253 if (part->updating) {
2254 part->updating = false;
2255 rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
2256 }
2257
2258 return rc;
2259}
2260
2261void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
2262{
2263 struct efx_mcdi_mtd_partition *mcdi_part =
2264 container_of(part, struct efx_mcdi_mtd_partition, common);
2265 struct efx_nic *efx = part->mtd.priv;
2266
2267 snprintf(part->name, sizeof(part->name), "%s %s:%02x",
2268 efx->name, part->type_name, mcdi_part->fw_subtype);
2269}
2270
2271#endif /* CONFIG_SFC_MTD */
1/****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2008-2013 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10#include <linux/delay.h>
11#include <linux/moduleparam.h>
12#include <linux/atomic.h>
13#include "net_driver.h"
14#include "nic.h"
15#include "io.h"
16#include "farch_regs.h"
17#include "mcdi_pcol.h"
18#include "phy.h"
19
20/**************************************************************************
21 *
22 * Management-Controller-to-Driver Interface
23 *
24 **************************************************************************
25 */
26
27#define MCDI_RPC_TIMEOUT (10 * HZ)
28
29/* A reboot/assertion causes the MCDI status word to be set after the
30 * command word is set or a REBOOT event is sent. If we notice a reboot
31 * via these mechanisms then wait 250ms for the status word to be set.
32 */
33#define MCDI_STATUS_DELAY_US 100
34#define MCDI_STATUS_DELAY_COUNT 2500
35#define MCDI_STATUS_SLEEP_MS \
36 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
37
38#define SEQ_MASK \
39 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
40
41struct efx_mcdi_async_param {
42 struct list_head list;
43 unsigned int cmd;
44 size_t inlen;
45 size_t outlen;
46 bool quiet;
47 efx_mcdi_async_completer *complete;
48 unsigned long cookie;
49 /* followed by request/response buffer */
50};
51
52static void efx_mcdi_timeout_async(unsigned long context);
53static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
54 bool *was_attached_out);
55static bool efx_mcdi_poll_once(struct efx_nic *efx);
56static void efx_mcdi_abandon(struct efx_nic *efx);
57
58#ifdef CONFIG_SFC_MCDI_LOGGING
59static bool mcdi_logging_default;
60module_param(mcdi_logging_default, bool, 0644);
61MODULE_PARM_DESC(mcdi_logging_default,
62 "Enable MCDI logging on newly-probed functions");
63#endif
64
65int efx_mcdi_init(struct efx_nic *efx)
66{
67 struct efx_mcdi_iface *mcdi;
68 bool already_attached;
69 int rc = -ENOMEM;
70
71 efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
72 if (!efx->mcdi)
73 goto fail;
74
75 mcdi = efx_mcdi(efx);
76 mcdi->efx = efx;
77#ifdef CONFIG_SFC_MCDI_LOGGING
78 /* consuming code assumes buffer is page-sized */
79 mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL);
80 if (!mcdi->logging_buffer)
81 goto fail1;
82 mcdi->logging_enabled = mcdi_logging_default;
83#endif
84 init_waitqueue_head(&mcdi->wq);
85 init_waitqueue_head(&mcdi->proxy_rx_wq);
86 spin_lock_init(&mcdi->iface_lock);
87 mcdi->state = MCDI_STATE_QUIESCENT;
88 mcdi->mode = MCDI_MODE_POLL;
89 spin_lock_init(&mcdi->async_lock);
90 INIT_LIST_HEAD(&mcdi->async_list);
91 setup_timer(&mcdi->async_timer, efx_mcdi_timeout_async,
92 (unsigned long)mcdi);
93
94 (void) efx_mcdi_poll_reboot(efx);
95 mcdi->new_epoch = true;
96
97 /* Recover from a failed assertion before probing */
98 rc = efx_mcdi_handle_assertion(efx);
99 if (rc)
100 goto fail2;
101
102 /* Let the MC (and BMC, if this is a LOM) know that the driver
103 * is loaded. We should do this before we reset the NIC.
104 */
105 rc = efx_mcdi_drv_attach(efx, true, &already_attached);
106 if (rc) {
107 netif_err(efx, probe, efx->net_dev,
108 "Unable to register driver with MCPU\n");
109 goto fail2;
110 }
111 if (already_attached)
112 /* Not a fatal error */
113 netif_err(efx, probe, efx->net_dev,
114 "Host already registered with MCPU\n");
115
116 if (efx->mcdi->fn_flags &
117 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
118 efx->primary = efx;
119
120 return 0;
121fail2:
122#ifdef CONFIG_SFC_MCDI_LOGGING
123 free_page((unsigned long)mcdi->logging_buffer);
124fail1:
125#endif
126 kfree(efx->mcdi);
127 efx->mcdi = NULL;
128fail:
129 return rc;
130}
131
132void efx_mcdi_fini(struct efx_nic *efx)
133{
134 if (!efx->mcdi)
135 return;
136
137 BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
138
139 /* Relinquish the device (back to the BMC, if this is a LOM) */
140 efx_mcdi_drv_attach(efx, false, NULL);
141
142#ifdef CONFIG_SFC_MCDI_LOGGING
143 free_page((unsigned long)efx->mcdi->iface.logging_buffer);
144#endif
145
146 kfree(efx->mcdi);
147}
148
149static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
150 const efx_dword_t *inbuf, size_t inlen)
151{
152 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
153#ifdef CONFIG_SFC_MCDI_LOGGING
154 char *buf = mcdi->logging_buffer; /* page-sized */
155#endif
156 efx_dword_t hdr[2];
157 size_t hdr_len;
158 u32 xflags, seqno;
159
160 BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
161
162 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
163 spin_lock_bh(&mcdi->iface_lock);
164 ++mcdi->seqno;
165 spin_unlock_bh(&mcdi->iface_lock);
166
167 seqno = mcdi->seqno & SEQ_MASK;
168 xflags = 0;
169 if (mcdi->mode == MCDI_MODE_EVENTS)
170 xflags |= MCDI_HEADER_XFLAGS_EVREQ;
171
172 if (efx->type->mcdi_max_ver == 1) {
173 /* MCDI v1 */
174 EFX_POPULATE_DWORD_7(hdr[0],
175 MCDI_HEADER_RESPONSE, 0,
176 MCDI_HEADER_RESYNC, 1,
177 MCDI_HEADER_CODE, cmd,
178 MCDI_HEADER_DATALEN, inlen,
179 MCDI_HEADER_SEQ, seqno,
180 MCDI_HEADER_XFLAGS, xflags,
181 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
182 hdr_len = 4;
183 } else {
184 /* MCDI v2 */
185 BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
186 EFX_POPULATE_DWORD_7(hdr[0],
187 MCDI_HEADER_RESPONSE, 0,
188 MCDI_HEADER_RESYNC, 1,
189 MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
190 MCDI_HEADER_DATALEN, 0,
191 MCDI_HEADER_SEQ, seqno,
192 MCDI_HEADER_XFLAGS, xflags,
193 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
194 EFX_POPULATE_DWORD_2(hdr[1],
195 MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
196 MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
197 hdr_len = 8;
198 }
199
200#ifdef CONFIG_SFC_MCDI_LOGGING
201 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
202 int bytes = 0;
203 int i;
204 /* Lengths should always be a whole number of dwords, so scream
205 * if they're not.
206 */
207 WARN_ON_ONCE(hdr_len % 4);
208 WARN_ON_ONCE(inlen % 4);
209
210 /* We own the logging buffer, as only one MCDI can be in
211 * progress on a NIC at any one time. So no need for locking.
212 */
213 for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++)
214 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
215 " %08x", le32_to_cpu(hdr[i].u32[0]));
216
217 for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++)
218 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
219 " %08x", le32_to_cpu(inbuf[i].u32[0]));
220
221 netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf);
222 }
223#endif
224
225 efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
226
227 mcdi->new_epoch = false;
228}
229
230static int efx_mcdi_errno(unsigned int mcdi_err)
231{
232 switch (mcdi_err) {
233 case 0:
234 return 0;
235#define TRANSLATE_ERROR(name) \
236 case MC_CMD_ERR_ ## name: \
237 return -name;
238 TRANSLATE_ERROR(EPERM);
239 TRANSLATE_ERROR(ENOENT);
240 TRANSLATE_ERROR(EINTR);
241 TRANSLATE_ERROR(EAGAIN);
242 TRANSLATE_ERROR(EACCES);
243 TRANSLATE_ERROR(EBUSY);
244 TRANSLATE_ERROR(EINVAL);
245 TRANSLATE_ERROR(EDEADLK);
246 TRANSLATE_ERROR(ENOSYS);
247 TRANSLATE_ERROR(ETIME);
248 TRANSLATE_ERROR(EALREADY);
249 TRANSLATE_ERROR(ENOSPC);
250#undef TRANSLATE_ERROR
251 case MC_CMD_ERR_ENOTSUP:
252 return -EOPNOTSUPP;
253 case MC_CMD_ERR_ALLOC_FAIL:
254 return -ENOBUFS;
255 case MC_CMD_ERR_MAC_EXIST:
256 return -EADDRINUSE;
257 default:
258 return -EPROTO;
259 }
260}
261
262static void efx_mcdi_read_response_header(struct efx_nic *efx)
263{
264 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
265 unsigned int respseq, respcmd, error;
266#ifdef CONFIG_SFC_MCDI_LOGGING
267 char *buf = mcdi->logging_buffer; /* page-sized */
268#endif
269 efx_dword_t hdr;
270
271 efx->type->mcdi_read_response(efx, &hdr, 0, 4);
272 respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
273 respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
274 error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
275
276 if (respcmd != MC_CMD_V2_EXTN) {
277 mcdi->resp_hdr_len = 4;
278 mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
279 } else {
280 efx->type->mcdi_read_response(efx, &hdr, 4, 4);
281 mcdi->resp_hdr_len = 8;
282 mcdi->resp_data_len =
283 EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
284 }
285
286#ifdef CONFIG_SFC_MCDI_LOGGING
287 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
288 size_t hdr_len, data_len;
289 int bytes = 0;
290 int i;
291
292 WARN_ON_ONCE(mcdi->resp_hdr_len % 4);
293 hdr_len = mcdi->resp_hdr_len / 4;
294 /* MCDI_DECLARE_BUF ensures that underlying buffer is padded
295 * to dword size, and the MCDI buffer is always dword size
296 */
297 data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4);
298
299 /* We own the logging buffer, as only one MCDI can be in
300 * progress on a NIC at any one time. So no need for locking.
301 */
302 for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) {
303 efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4);
304 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
305 " %08x", le32_to_cpu(hdr.u32[0]));
306 }
307
308 for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) {
309 efx->type->mcdi_read_response(efx, &hdr,
310 mcdi->resp_hdr_len + (i * 4), 4);
311 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
312 " %08x", le32_to_cpu(hdr.u32[0]));
313 }
314
315 netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf);
316 }
317#endif
318
319 mcdi->resprc_raw = 0;
320 if (error && mcdi->resp_data_len == 0) {
321 netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
322 mcdi->resprc = -EIO;
323 } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
324 netif_err(efx, hw, efx->net_dev,
325 "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
326 respseq, mcdi->seqno);
327 mcdi->resprc = -EIO;
328 } else if (error) {
329 efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
330 mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0);
331 mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw);
332 } else {
333 mcdi->resprc = 0;
334 }
335}
336
337static bool efx_mcdi_poll_once(struct efx_nic *efx)
338{
339 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
340
341 rmb();
342 if (!efx->type->mcdi_poll_response(efx))
343 return false;
344
345 spin_lock_bh(&mcdi->iface_lock);
346 efx_mcdi_read_response_header(efx);
347 spin_unlock_bh(&mcdi->iface_lock);
348
349 return true;
350}
351
352static int efx_mcdi_poll(struct efx_nic *efx)
353{
354 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
355 unsigned long time, finish;
356 unsigned int spins;
357 int rc;
358
359 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */
360 rc = efx_mcdi_poll_reboot(efx);
361 if (rc) {
362 spin_lock_bh(&mcdi->iface_lock);
363 mcdi->resprc = rc;
364 mcdi->resp_hdr_len = 0;
365 mcdi->resp_data_len = 0;
366 spin_unlock_bh(&mcdi->iface_lock);
367 return 0;
368 }
369
370 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
371 * because generally mcdi responses are fast. After that, back off
372 * and poll once a jiffy (approximately)
373 */
374 spins = TICK_USEC;
375 finish = jiffies + MCDI_RPC_TIMEOUT;
376
377 while (1) {
378 if (spins != 0) {
379 --spins;
380 udelay(1);
381 } else {
382 schedule_timeout_uninterruptible(1);
383 }
384
385 time = jiffies;
386
387 if (efx_mcdi_poll_once(efx))
388 break;
389
390 if (time_after(time, finish))
391 return -ETIMEDOUT;
392 }
393
394 /* Return rc=0 like wait_event_timeout() */
395 return 0;
396}
397
398/* Test and clear MC-rebooted flag for this port/function; reset
399 * software state as necessary.
400 */
401int efx_mcdi_poll_reboot(struct efx_nic *efx)
402{
403 if (!efx->mcdi)
404 return 0;
405
406 return efx->type->mcdi_poll_reboot(efx);
407}
408
409static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
410{
411 return cmpxchg(&mcdi->state,
412 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
413 MCDI_STATE_QUIESCENT;
414}
415
416static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
417{
418 /* Wait until the interface becomes QUIESCENT and we win the race
419 * to mark it RUNNING_SYNC.
420 */
421 wait_event(mcdi->wq,
422 cmpxchg(&mcdi->state,
423 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
424 MCDI_STATE_QUIESCENT);
425}
426
427static int efx_mcdi_await_completion(struct efx_nic *efx)
428{
429 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
430
431 if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
432 MCDI_RPC_TIMEOUT) == 0)
433 return -ETIMEDOUT;
434
435 /* Check if efx_mcdi_set_mode() switched us back to polled completions.
436 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
437 * completed the request first, then we'll just end up completing the
438 * request again, which is safe.
439 *
440 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
441 * wait_event_timeout() implicitly provides.
442 */
443 if (mcdi->mode == MCDI_MODE_POLL)
444 return efx_mcdi_poll(efx);
445
446 return 0;
447}
448
449/* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
450 * requester. Return whether this was done. Does not take any locks.
451 */
452static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
453{
454 if (cmpxchg(&mcdi->state,
455 MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
456 MCDI_STATE_RUNNING_SYNC) {
457 wake_up(&mcdi->wq);
458 return true;
459 }
460
461 return false;
462}
463
464static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
465{
466 if (mcdi->mode == MCDI_MODE_EVENTS) {
467 struct efx_mcdi_async_param *async;
468 struct efx_nic *efx = mcdi->efx;
469
470 /* Process the asynchronous request queue */
471 spin_lock_bh(&mcdi->async_lock);
472 async = list_first_entry_or_null(
473 &mcdi->async_list, struct efx_mcdi_async_param, list);
474 if (async) {
475 mcdi->state = MCDI_STATE_RUNNING_ASYNC;
476 efx_mcdi_send_request(efx, async->cmd,
477 (const efx_dword_t *)(async + 1),
478 async->inlen);
479 mod_timer(&mcdi->async_timer,
480 jiffies + MCDI_RPC_TIMEOUT);
481 }
482 spin_unlock_bh(&mcdi->async_lock);
483
484 if (async)
485 return;
486 }
487
488 mcdi->state = MCDI_STATE_QUIESCENT;
489 wake_up(&mcdi->wq);
490}
491
492/* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
493 * asynchronous completion function, and release the interface.
494 * Return whether this was done. Must be called in bh-disabled
495 * context. Will take iface_lock and async_lock.
496 */
497static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
498{
499 struct efx_nic *efx = mcdi->efx;
500 struct efx_mcdi_async_param *async;
501 size_t hdr_len, data_len, err_len;
502 efx_dword_t *outbuf;
503 MCDI_DECLARE_BUF_ERR(errbuf);
504 int rc;
505
506 if (cmpxchg(&mcdi->state,
507 MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
508 MCDI_STATE_RUNNING_ASYNC)
509 return false;
510
511 spin_lock(&mcdi->iface_lock);
512 if (timeout) {
513 /* Ensure that if the completion event arrives later,
514 * the seqno check in efx_mcdi_ev_cpl() will fail
515 */
516 ++mcdi->seqno;
517 ++mcdi->credits;
518 rc = -ETIMEDOUT;
519 hdr_len = 0;
520 data_len = 0;
521 } else {
522 rc = mcdi->resprc;
523 hdr_len = mcdi->resp_hdr_len;
524 data_len = mcdi->resp_data_len;
525 }
526 spin_unlock(&mcdi->iface_lock);
527
528 /* Stop the timer. In case the timer function is running, we
529 * must wait for it to return so that there is no possibility
530 * of it aborting the next request.
531 */
532 if (!timeout)
533 del_timer_sync(&mcdi->async_timer);
534
535 spin_lock(&mcdi->async_lock);
536 async = list_first_entry(&mcdi->async_list,
537 struct efx_mcdi_async_param, list);
538 list_del(&async->list);
539 spin_unlock(&mcdi->async_lock);
540
541 outbuf = (efx_dword_t *)(async + 1);
542 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
543 min(async->outlen, data_len));
544 if (!timeout && rc && !async->quiet) {
545 err_len = min(sizeof(errbuf), data_len);
546 efx->type->mcdi_read_response(efx, errbuf, hdr_len,
547 sizeof(errbuf));
548 efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
549 err_len, rc);
550 }
551 async->complete(efx, async->cookie, rc, outbuf, data_len);
552 kfree(async);
553
554 efx_mcdi_release(mcdi);
555
556 return true;
557}
558
559static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
560 unsigned int datalen, unsigned int mcdi_err)
561{
562 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
563 bool wake = false;
564
565 spin_lock(&mcdi->iface_lock);
566
567 if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
568 if (mcdi->credits)
569 /* The request has been cancelled */
570 --mcdi->credits;
571 else
572 netif_err(efx, hw, efx->net_dev,
573 "MC response mismatch tx seq 0x%x rx "
574 "seq 0x%x\n", seqno, mcdi->seqno);
575 } else {
576 if (efx->type->mcdi_max_ver >= 2) {
577 /* MCDI v2 responses don't fit in an event */
578 efx_mcdi_read_response_header(efx);
579 } else {
580 mcdi->resprc = efx_mcdi_errno(mcdi_err);
581 mcdi->resp_hdr_len = 4;
582 mcdi->resp_data_len = datalen;
583 }
584
585 wake = true;
586 }
587
588 spin_unlock(&mcdi->iface_lock);
589
590 if (wake) {
591 if (!efx_mcdi_complete_async(mcdi, false))
592 (void) efx_mcdi_complete_sync(mcdi);
593
594 /* If the interface isn't RUNNING_ASYNC or
595 * RUNNING_SYNC then we've received a duplicate
596 * completion after we've already transitioned back to
597 * QUIESCENT. [A subsequent invocation would increment
598 * seqno, so would have failed the seqno check].
599 */
600 }
601}
602
603static void efx_mcdi_timeout_async(unsigned long context)
604{
605 struct efx_mcdi_iface *mcdi = (struct efx_mcdi_iface *)context;
606
607 efx_mcdi_complete_async(mcdi, true);
608}
609
610static int
611efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
612{
613 if (efx->type->mcdi_max_ver < 0 ||
614 (efx->type->mcdi_max_ver < 2 &&
615 cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
616 return -EINVAL;
617
618 if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
619 (efx->type->mcdi_max_ver < 2 &&
620 inlen > MCDI_CTL_SDU_LEN_MAX_V1))
621 return -EMSGSIZE;
622
623 return 0;
624}
625
626static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx,
627 size_t hdr_len, size_t data_len,
628 u32 *proxy_handle)
629{
630 MCDI_DECLARE_BUF_ERR(testbuf);
631 const size_t buflen = sizeof(testbuf);
632
633 if (!proxy_handle || data_len < buflen)
634 return false;
635
636 efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen);
637 if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) {
638 *proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE);
639 return true;
640 }
641
642 return false;
643}
644
645static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd,
646 size_t inlen,
647 efx_dword_t *outbuf, size_t outlen,
648 size_t *outlen_actual, bool quiet,
649 u32 *proxy_handle, int *raw_rc)
650{
651 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
652 MCDI_DECLARE_BUF_ERR(errbuf);
653 int rc;
654
655 if (mcdi->mode == MCDI_MODE_POLL)
656 rc = efx_mcdi_poll(efx);
657 else
658 rc = efx_mcdi_await_completion(efx);
659
660 if (rc != 0) {
661 netif_err(efx, hw, efx->net_dev,
662 "MC command 0x%x inlen %d mode %d timed out\n",
663 cmd, (int)inlen, mcdi->mode);
664
665 if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
666 netif_err(efx, hw, efx->net_dev,
667 "MCDI request was completed without an event\n");
668 rc = 0;
669 }
670
671 efx_mcdi_abandon(efx);
672
673 /* Close the race with efx_mcdi_ev_cpl() executing just too late
674 * and completing a request we've just cancelled, by ensuring
675 * that the seqno check therein fails.
676 */
677 spin_lock_bh(&mcdi->iface_lock);
678 ++mcdi->seqno;
679 ++mcdi->credits;
680 spin_unlock_bh(&mcdi->iface_lock);
681 }
682
683 if (proxy_handle)
684 *proxy_handle = 0;
685
686 if (rc != 0) {
687 if (outlen_actual)
688 *outlen_actual = 0;
689 } else {
690 size_t hdr_len, data_len, err_len;
691
692 /* At the very least we need a memory barrier here to ensure
693 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
694 * a spurious efx_mcdi_ev_cpl() running concurrently by
695 * acquiring the iface_lock. */
696 spin_lock_bh(&mcdi->iface_lock);
697 rc = mcdi->resprc;
698 if (raw_rc)
699 *raw_rc = mcdi->resprc_raw;
700 hdr_len = mcdi->resp_hdr_len;
701 data_len = mcdi->resp_data_len;
702 err_len = min(sizeof(errbuf), data_len);
703 spin_unlock_bh(&mcdi->iface_lock);
704
705 BUG_ON(rc > 0);
706
707 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
708 min(outlen, data_len));
709 if (outlen_actual)
710 *outlen_actual = data_len;
711
712 efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
713
714 if (cmd == MC_CMD_REBOOT && rc == -EIO) {
715 /* Don't reset if MC_CMD_REBOOT returns EIO */
716 } else if (rc == -EIO || rc == -EINTR) {
717 netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n",
718 -rc);
719 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
720 } else if (proxy_handle && (rc == -EPROTO) &&
721 efx_mcdi_get_proxy_handle(efx, hdr_len, data_len,
722 proxy_handle)) {
723 mcdi->proxy_rx_status = 0;
724 mcdi->proxy_rx_handle = 0;
725 mcdi->state = MCDI_STATE_PROXY_WAIT;
726 } else if (rc && !quiet) {
727 efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
728 rc);
729 }
730
731 if (rc == -EIO || rc == -EINTR) {
732 msleep(MCDI_STATUS_SLEEP_MS);
733 efx_mcdi_poll_reboot(efx);
734 mcdi->new_epoch = true;
735 }
736 }
737
738 if (!proxy_handle || !*proxy_handle)
739 efx_mcdi_release(mcdi);
740 return rc;
741}
742
743static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi)
744{
745 if (mcdi->state == MCDI_STATE_PROXY_WAIT) {
746 /* Interrupt the proxy wait. */
747 mcdi->proxy_rx_status = -EINTR;
748 wake_up(&mcdi->proxy_rx_wq);
749 }
750}
751
752static void efx_mcdi_ev_proxy_response(struct efx_nic *efx,
753 u32 handle, int status)
754{
755 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
756
757 WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT);
758
759 mcdi->proxy_rx_status = efx_mcdi_errno(status);
760 /* Ensure the status is written before we update the handle, since the
761 * latter is used to check if we've finished.
762 */
763 wmb();
764 mcdi->proxy_rx_handle = handle;
765 wake_up(&mcdi->proxy_rx_wq);
766}
767
768static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet)
769{
770 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
771 int rc;
772
773 /* Wait for a proxy event, or timeout. */
774 rc = wait_event_timeout(mcdi->proxy_rx_wq,
775 mcdi->proxy_rx_handle != 0 ||
776 mcdi->proxy_rx_status == -EINTR,
777 MCDI_RPC_TIMEOUT);
778
779 if (rc <= 0) {
780 netif_dbg(efx, hw, efx->net_dev,
781 "MCDI proxy timeout %d\n", handle);
782 return -ETIMEDOUT;
783 } else if (mcdi->proxy_rx_handle != handle) {
784 netif_warn(efx, hw, efx->net_dev,
785 "MCDI proxy unexpected handle %d (expected %d)\n",
786 mcdi->proxy_rx_handle, handle);
787 return -EINVAL;
788 }
789
790 return mcdi->proxy_rx_status;
791}
792
793static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd,
794 const efx_dword_t *inbuf, size_t inlen,
795 efx_dword_t *outbuf, size_t outlen,
796 size_t *outlen_actual, bool quiet, int *raw_rc)
797{
798 u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */
799 int rc;
800
801 if (inbuf && inlen && (inbuf == outbuf)) {
802 /* The input buffer can't be aliased with the output. */
803 WARN_ON(1);
804 return -EINVAL;
805 }
806
807 rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
808 if (rc)
809 return rc;
810
811 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
812 outlen_actual, quiet, &proxy_handle, raw_rc);
813
814 if (proxy_handle) {
815 /* Handle proxy authorisation. This allows approval of MCDI
816 * operations to be delegated to the admin function, allowing
817 * fine control over (eg) multicast subscriptions.
818 */
819 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
820
821 netif_dbg(efx, hw, efx->net_dev,
822 "MCDI waiting for proxy auth %d\n",
823 proxy_handle);
824 rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet);
825
826 if (rc == 0) {
827 netif_dbg(efx, hw, efx->net_dev,
828 "MCDI proxy retry %d\n", proxy_handle);
829
830 /* We now retry the original request. */
831 mcdi->state = MCDI_STATE_RUNNING_SYNC;
832 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
833
834 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen,
835 outbuf, outlen, outlen_actual,
836 quiet, NULL, raw_rc);
837 } else {
838 netif_printk(efx, hw,
839 rc == -EPERM ? KERN_DEBUG : KERN_ERR,
840 efx->net_dev,
841 "MC command 0x%x failed after proxy auth rc=%d\n",
842 cmd, rc);
843
844 if (rc == -EINTR || rc == -EIO)
845 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
846 efx_mcdi_release(mcdi);
847 }
848 }
849
850 return rc;
851}
852
853static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd,
854 const efx_dword_t *inbuf, size_t inlen,
855 efx_dword_t *outbuf, size_t outlen,
856 size_t *outlen_actual, bool quiet)
857{
858 int raw_rc = 0;
859 int rc;
860
861 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
862 outbuf, outlen, outlen_actual, true, &raw_rc);
863
864 if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
865 efx->type->is_vf) {
866 /* If the EVB port isn't available within a VF this may
867 * mean the PF is still bringing the switch up. We should
868 * retry our request shortly.
869 */
870 unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT;
871 unsigned int delay_us = 10000;
872
873 netif_dbg(efx, hw, efx->net_dev,
874 "%s: NO_EVB_PORT; will retry request\n",
875 __func__);
876
877 do {
878 usleep_range(delay_us, delay_us + 10000);
879 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
880 outbuf, outlen, outlen_actual,
881 true, &raw_rc);
882 if (delay_us < 100000)
883 delay_us <<= 1;
884 } while ((rc == -EPROTO) &&
885 (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
886 time_before(jiffies, abort_time));
887 }
888
889 if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO))
890 efx_mcdi_display_error(efx, cmd, inlen,
891 outbuf, outlen, rc);
892
893 return rc;
894}
895
896/**
897 * efx_mcdi_rpc - Issue an MCDI command and wait for completion
898 * @efx: NIC through which to issue the command
899 * @cmd: Command type number
900 * @inbuf: Command parameters
901 * @inlen: Length of command parameters, in bytes. Must be a multiple
902 * of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
903 * @outbuf: Response buffer. May be %NULL if @outlen is 0.
904 * @outlen: Length of response buffer, in bytes. If the actual
905 * response is longer than @outlen & ~3, it will be truncated
906 * to that length.
907 * @outlen_actual: Pointer through which to return the actual response
908 * length. May be %NULL if this is not needed.
909 *
910 * This function may sleep and therefore must be called in an appropriate
911 * context.
912 *
913 * Return: A negative error code, or zero if successful. The error
914 * code may come from the MCDI response or may indicate a failure
915 * to communicate with the MC. In the former case, the response
916 * will still be copied to @outbuf and *@outlen_actual will be
917 * set accordingly. In the latter case, *@outlen_actual will be
918 * set to zero.
919 */
920int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
921 const efx_dword_t *inbuf, size_t inlen,
922 efx_dword_t *outbuf, size_t outlen,
923 size_t *outlen_actual)
924{
925 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
926 outlen_actual, false);
927}
928
929/* Normally, on receiving an error code in the MCDI response,
930 * efx_mcdi_rpc will log an error message containing (among other
931 * things) the raw error code, by means of efx_mcdi_display_error.
932 * This _quiet version suppresses that; if the caller wishes to log
933 * the error conditionally on the return code, it should call this
934 * function and is then responsible for calling efx_mcdi_display_error
935 * as needed.
936 */
937int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
938 const efx_dword_t *inbuf, size_t inlen,
939 efx_dword_t *outbuf, size_t outlen,
940 size_t *outlen_actual)
941{
942 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
943 outlen_actual, true);
944}
945
946int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
947 const efx_dword_t *inbuf, size_t inlen)
948{
949 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
950 int rc;
951
952 rc = efx_mcdi_check_supported(efx, cmd, inlen);
953 if (rc)
954 return rc;
955
956 if (efx->mc_bist_for_other_fn)
957 return -ENETDOWN;
958
959 if (mcdi->mode == MCDI_MODE_FAIL)
960 return -ENETDOWN;
961
962 efx_mcdi_acquire_sync(mcdi);
963 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
964 return 0;
965}
966
967static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
968 const efx_dword_t *inbuf, size_t inlen,
969 size_t outlen,
970 efx_mcdi_async_completer *complete,
971 unsigned long cookie, bool quiet)
972{
973 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
974 struct efx_mcdi_async_param *async;
975 int rc;
976
977 rc = efx_mcdi_check_supported(efx, cmd, inlen);
978 if (rc)
979 return rc;
980
981 if (efx->mc_bist_for_other_fn)
982 return -ENETDOWN;
983
984 async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
985 GFP_ATOMIC);
986 if (!async)
987 return -ENOMEM;
988
989 async->cmd = cmd;
990 async->inlen = inlen;
991 async->outlen = outlen;
992 async->quiet = quiet;
993 async->complete = complete;
994 async->cookie = cookie;
995 memcpy(async + 1, inbuf, inlen);
996
997 spin_lock_bh(&mcdi->async_lock);
998
999 if (mcdi->mode == MCDI_MODE_EVENTS) {
1000 list_add_tail(&async->list, &mcdi->async_list);
1001
1002 /* If this is at the front of the queue, try to start it
1003 * immediately
1004 */
1005 if (mcdi->async_list.next == &async->list &&
1006 efx_mcdi_acquire_async(mcdi)) {
1007 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
1008 mod_timer(&mcdi->async_timer,
1009 jiffies + MCDI_RPC_TIMEOUT);
1010 }
1011 } else {
1012 kfree(async);
1013 rc = -ENETDOWN;
1014 }
1015
1016 spin_unlock_bh(&mcdi->async_lock);
1017
1018 return rc;
1019}
1020
1021/**
1022 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
1023 * @efx: NIC through which to issue the command
1024 * @cmd: Command type number
1025 * @inbuf: Command parameters
1026 * @inlen: Length of command parameters, in bytes
1027 * @outlen: Length to allocate for response buffer, in bytes
1028 * @complete: Function to be called on completion or cancellation.
1029 * @cookie: Arbitrary value to be passed to @complete.
1030 *
1031 * This function does not sleep and therefore may be called in atomic
1032 * context. It will fail if event queues are disabled or if MCDI
1033 * event completions have been disabled due to an error.
1034 *
1035 * If it succeeds, the @complete function will be called exactly once
1036 * in atomic context, when one of the following occurs:
1037 * (a) the completion event is received (in NAPI context)
1038 * (b) event queues are disabled (in the process that disables them)
1039 * (c) the request times-out (in timer context)
1040 */
1041int
1042efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
1043 const efx_dword_t *inbuf, size_t inlen, size_t outlen,
1044 efx_mcdi_async_completer *complete, unsigned long cookie)
1045{
1046 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1047 cookie, false);
1048}
1049
1050int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
1051 const efx_dword_t *inbuf, size_t inlen,
1052 size_t outlen, efx_mcdi_async_completer *complete,
1053 unsigned long cookie)
1054{
1055 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1056 cookie, true);
1057}
1058
1059int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
1060 efx_dword_t *outbuf, size_t outlen,
1061 size_t *outlen_actual)
1062{
1063 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1064 outlen_actual, false, NULL, NULL);
1065}
1066
1067int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
1068 efx_dword_t *outbuf, size_t outlen,
1069 size_t *outlen_actual)
1070{
1071 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1072 outlen_actual, true, NULL, NULL);
1073}
1074
1075void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
1076 size_t inlen, efx_dword_t *outbuf,
1077 size_t outlen, int rc)
1078{
1079 int code = 0, err_arg = 0;
1080
1081 if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
1082 code = MCDI_DWORD(outbuf, ERR_CODE);
1083 if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
1084 err_arg = MCDI_DWORD(outbuf, ERR_ARG);
1085 netif_printk(efx, hw, rc == -EPERM ? KERN_DEBUG : KERN_ERR,
1086 efx->net_dev,
1087 "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
1088 cmd, inlen, rc, code, err_arg);
1089}
1090
1091/* Switch to polled MCDI completions. This can be called in various
1092 * error conditions with various locks held, so it must be lockless.
1093 * Caller is responsible for flushing asynchronous requests later.
1094 */
1095void efx_mcdi_mode_poll(struct efx_nic *efx)
1096{
1097 struct efx_mcdi_iface *mcdi;
1098
1099 if (!efx->mcdi)
1100 return;
1101
1102 mcdi = efx_mcdi(efx);
1103 /* If already in polling mode, nothing to do.
1104 * If in fail-fast state, don't switch to polled completion.
1105 * FLR recovery will do that later.
1106 */
1107 if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
1108 return;
1109
1110 /* We can switch from event completion to polled completion, because
1111 * mcdi requests are always completed in shared memory. We do this by
1112 * switching the mode to POLL'd then completing the request.
1113 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
1114 *
1115 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
1116 * which efx_mcdi_complete_sync() provides for us.
1117 */
1118 mcdi->mode = MCDI_MODE_POLL;
1119
1120 efx_mcdi_complete_sync(mcdi);
1121}
1122
1123/* Flush any running or queued asynchronous requests, after event processing
1124 * is stopped
1125 */
1126void efx_mcdi_flush_async(struct efx_nic *efx)
1127{
1128 struct efx_mcdi_async_param *async, *next;
1129 struct efx_mcdi_iface *mcdi;
1130
1131 if (!efx->mcdi)
1132 return;
1133
1134 mcdi = efx_mcdi(efx);
1135
1136 /* We must be in poll or fail mode so no more requests can be queued */
1137 BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
1138
1139 del_timer_sync(&mcdi->async_timer);
1140
1141 /* If a request is still running, make sure we give the MC
1142 * time to complete it so that the response won't overwrite our
1143 * next request.
1144 */
1145 if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
1146 efx_mcdi_poll(efx);
1147 mcdi->state = MCDI_STATE_QUIESCENT;
1148 }
1149
1150 /* Nothing else will access the async list now, so it is safe
1151 * to walk it without holding async_lock. If we hold it while
1152 * calling a completer then lockdep may warn that we have
1153 * acquired locks in the wrong order.
1154 */
1155 list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
1156 async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
1157 list_del(&async->list);
1158 kfree(async);
1159 }
1160}
1161
1162void efx_mcdi_mode_event(struct efx_nic *efx)
1163{
1164 struct efx_mcdi_iface *mcdi;
1165
1166 if (!efx->mcdi)
1167 return;
1168
1169 mcdi = efx_mcdi(efx);
1170 /* If already in event completion mode, nothing to do.
1171 * If in fail-fast state, don't switch to event completion. FLR
1172 * recovery will do that later.
1173 */
1174 if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
1175 return;
1176
1177 /* We can't switch from polled to event completion in the middle of a
1178 * request, because the completion method is specified in the request.
1179 * So acquire the interface to serialise the requestors. We don't need
1180 * to acquire the iface_lock to change the mode here, but we do need a
1181 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
1182 * efx_mcdi_acquire() provides.
1183 */
1184 efx_mcdi_acquire_sync(mcdi);
1185 mcdi->mode = MCDI_MODE_EVENTS;
1186 efx_mcdi_release(mcdi);
1187}
1188
1189static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
1190{
1191 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1192
1193 /* If there is an outstanding MCDI request, it has been terminated
1194 * either by a BADASSERT or REBOOT event. If the mcdi interface is
1195 * in polled mode, then do nothing because the MC reboot handler will
1196 * set the header correctly. However, if the mcdi interface is waiting
1197 * for a CMDDONE event it won't receive it [and since all MCDI events
1198 * are sent to the same queue, we can't be racing with
1199 * efx_mcdi_ev_cpl()]
1200 *
1201 * If there is an outstanding asynchronous request, we can't
1202 * complete it now (efx_mcdi_complete() would deadlock). The
1203 * reset process will take care of this.
1204 *
1205 * There's a race here with efx_mcdi_send_request(), because
1206 * we might receive a REBOOT event *before* the request has
1207 * been copied out. In polled mode (during startup) this is
1208 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1209 * event mode, this condition is just an edge-case of
1210 * receiving a REBOOT event after posting the MCDI
1211 * request. Did the mc reboot before or after the copyout? The
1212 * best we can do always is just return failure.
1213 *
1214 * If there is an outstanding proxy response expected it is not going
1215 * to arrive. We should thus abort it.
1216 */
1217 spin_lock(&mcdi->iface_lock);
1218 efx_mcdi_proxy_abort(mcdi);
1219
1220 if (efx_mcdi_complete_sync(mcdi)) {
1221 if (mcdi->mode == MCDI_MODE_EVENTS) {
1222 mcdi->resprc = rc;
1223 mcdi->resp_hdr_len = 0;
1224 mcdi->resp_data_len = 0;
1225 ++mcdi->credits;
1226 }
1227 } else {
1228 int count;
1229
1230 /* Consume the status word since efx_mcdi_rpc_finish() won't */
1231 for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
1232 rc = efx_mcdi_poll_reboot(efx);
1233 if (rc)
1234 break;
1235 udelay(MCDI_STATUS_DELAY_US);
1236 }
1237
1238 /* On EF10, a CODE_MC_REBOOT event can be received without the
1239 * reboot detection in efx_mcdi_poll_reboot() being triggered.
1240 * If zero was returned from the final call to
1241 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
1242 * MC has definitely rebooted so prepare for the reset.
1243 */
1244 if (!rc && efx->type->mcdi_reboot_detected)
1245 efx->type->mcdi_reboot_detected(efx);
1246
1247 mcdi->new_epoch = true;
1248
1249 /* Nobody was waiting for an MCDI request, so trigger a reset */
1250 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
1251 }
1252
1253 spin_unlock(&mcdi->iface_lock);
1254}
1255
1256/* The MC is going down in to BIST mode. set the BIST flag to block
1257 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
1258 * (which doesn't actually execute a reset, it waits for the controlling
1259 * function to reset it).
1260 */
1261static void efx_mcdi_ev_bist(struct efx_nic *efx)
1262{
1263 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1264
1265 spin_lock(&mcdi->iface_lock);
1266 efx->mc_bist_for_other_fn = true;
1267 efx_mcdi_proxy_abort(mcdi);
1268
1269 if (efx_mcdi_complete_sync(mcdi)) {
1270 if (mcdi->mode == MCDI_MODE_EVENTS) {
1271 mcdi->resprc = -EIO;
1272 mcdi->resp_hdr_len = 0;
1273 mcdi->resp_data_len = 0;
1274 ++mcdi->credits;
1275 }
1276 }
1277 mcdi->new_epoch = true;
1278 efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
1279 spin_unlock(&mcdi->iface_lock);
1280}
1281
1282/* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1283 * to recover.
1284 */
1285static void efx_mcdi_abandon(struct efx_nic *efx)
1286{
1287 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1288
1289 if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
1290 return; /* it had already been done */
1291 netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
1292 efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
1293}
1294
1295/* Called from falcon_process_eventq for MCDI events */
1296void efx_mcdi_process_event(struct efx_channel *channel,
1297 efx_qword_t *event)
1298{
1299 struct efx_nic *efx = channel->efx;
1300 int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
1301 u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
1302
1303 switch (code) {
1304 case MCDI_EVENT_CODE_BADSSERT:
1305 netif_err(efx, hw, efx->net_dev,
1306 "MC watchdog or assertion failure at 0x%x\n", data);
1307 efx_mcdi_ev_death(efx, -EINTR);
1308 break;
1309
1310 case MCDI_EVENT_CODE_PMNOTICE:
1311 netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
1312 break;
1313
1314 case MCDI_EVENT_CODE_CMDDONE:
1315 efx_mcdi_ev_cpl(efx,
1316 MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
1317 MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
1318 MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
1319 break;
1320
1321 case MCDI_EVENT_CODE_LINKCHANGE:
1322 efx_mcdi_process_link_change(efx, event);
1323 break;
1324 case MCDI_EVENT_CODE_SENSOREVT:
1325 efx_mcdi_sensor_event(efx, event);
1326 break;
1327 case MCDI_EVENT_CODE_SCHEDERR:
1328 netif_dbg(efx, hw, efx->net_dev,
1329 "MC Scheduler alert (0x%x)\n", data);
1330 break;
1331 case MCDI_EVENT_CODE_REBOOT:
1332 case MCDI_EVENT_CODE_MC_REBOOT:
1333 netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1334 efx_mcdi_ev_death(efx, -EIO);
1335 break;
1336 case MCDI_EVENT_CODE_MC_BIST:
1337 netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
1338 efx_mcdi_ev_bist(efx);
1339 break;
1340 case MCDI_EVENT_CODE_MAC_STATS_DMA:
1341 /* MAC stats are gather lazily. We can ignore this. */
1342 break;
1343 case MCDI_EVENT_CODE_FLR:
1344 if (efx->type->sriov_flr)
1345 efx->type->sriov_flr(efx,
1346 MCDI_EVENT_FIELD(*event, FLR_VF));
1347 break;
1348 case MCDI_EVENT_CODE_PTP_RX:
1349 case MCDI_EVENT_CODE_PTP_FAULT:
1350 case MCDI_EVENT_CODE_PTP_PPS:
1351 efx_ptp_event(efx, event);
1352 break;
1353 case MCDI_EVENT_CODE_PTP_TIME:
1354 efx_time_sync_event(channel, event);
1355 break;
1356 case MCDI_EVENT_CODE_TX_FLUSH:
1357 case MCDI_EVENT_CODE_RX_FLUSH:
1358 /* Two flush events will be sent: one to the same event
1359 * queue as completions, and one to event queue 0.
1360 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1361 * flag will be set, and we should ignore the event
1362 * because we want to wait for all completions.
1363 */
1364 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
1365 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
1366 if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
1367 efx_ef10_handle_drain_event(efx);
1368 break;
1369 case MCDI_EVENT_CODE_TX_ERR:
1370 case MCDI_EVENT_CODE_RX_ERR:
1371 netif_err(efx, hw, efx->net_dev,
1372 "%s DMA error (event: "EFX_QWORD_FMT")\n",
1373 code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
1374 EFX_QWORD_VAL(*event));
1375 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1376 break;
1377 case MCDI_EVENT_CODE_PROXY_RESPONSE:
1378 efx_mcdi_ev_proxy_response(efx,
1379 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE),
1380 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC));
1381 break;
1382 default:
1383 netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n",
1384 code);
1385 }
1386}
1387
1388/**************************************************************************
1389 *
1390 * Specific request functions
1391 *
1392 **************************************************************************
1393 */
1394
1395void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1396{
1397 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
1398 size_t outlength;
1399 const __le16 *ver_words;
1400 size_t offset;
1401 int rc;
1402
1403 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
1404 rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
1405 outbuf, sizeof(outbuf), &outlength);
1406 if (rc)
1407 goto fail;
1408 if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1409 rc = -EIO;
1410 goto fail;
1411 }
1412
1413 ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1414 offset = snprintf(buf, len, "%u.%u.%u.%u",
1415 le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]),
1416 le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3]));
1417
1418 /* EF10 may have multiple datapath firmware variants within a
1419 * single version. Report which variants are running.
1420 */
1421 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
1422 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1423
1424 offset += snprintf(buf + offset, len - offset, " rx%x tx%x",
1425 nic_data->rx_dpcpu_fw_id,
1426 nic_data->tx_dpcpu_fw_id);
1427
1428 /* It's theoretically possible for the string to exceed 31
1429 * characters, though in practice the first three version
1430 * components are short enough that this doesn't happen.
1431 */
1432 if (WARN_ON(offset >= len))
1433 buf[0] = 0;
1434 }
1435
1436 return;
1437
1438fail:
1439 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1440 buf[0] = 0;
1441}
1442
1443static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
1444 bool *was_attached)
1445{
1446 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1447 MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1448 size_t outlen;
1449 int rc;
1450
1451 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
1452 driver_operating ? 1 : 0);
1453 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1454 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1455
1456 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
1457 outbuf, sizeof(outbuf), &outlen);
1458 /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1459 * specified will fail with EPERM, and we have to tell the MC we don't
1460 * care what firmware we get.
1461 */
1462 if (rc == -EPERM) {
1463 netif_dbg(efx, probe, efx->net_dev,
1464 "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n");
1465 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
1466 MC_CMD_FW_DONT_CARE);
1467 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
1468 sizeof(inbuf), outbuf, sizeof(outbuf),
1469 &outlen);
1470 }
1471 if (rc) {
1472 efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf),
1473 outbuf, outlen, rc);
1474 goto fail;
1475 }
1476 if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
1477 rc = -EIO;
1478 goto fail;
1479 }
1480
1481 if (driver_operating) {
1482 if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1483 efx->mcdi->fn_flags =
1484 MCDI_DWORD(outbuf,
1485 DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1486 } else {
1487 /* Synthesise flags for Siena */
1488 efx->mcdi->fn_flags =
1489 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1490 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
1491 (efx_port_num(efx) == 0) <<
1492 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
1493 }
1494 }
1495
1496 /* We currently assume we have control of the external link
1497 * and are completely trusted by firmware. Abort probing
1498 * if that's not true for this function.
1499 */
1500
1501 if (was_attached != NULL)
1502 *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
1503 return 0;
1504
1505fail:
1506 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1507 return rc;
1508}
1509
1510int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1511 u16 *fw_subtype_list, u32 *capabilities)
1512{
1513 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1514 size_t outlen, i;
1515 int port_num = efx_port_num(efx);
1516 int rc;
1517
1518 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1519 /* we need __aligned(2) for ether_addr_copy */
1520 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
1521 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
1522
1523 rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1524 outbuf, sizeof(outbuf), &outlen);
1525 if (rc)
1526 goto fail;
1527
1528 if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1529 rc = -EIO;
1530 goto fail;
1531 }
1532
1533 if (mac_address)
1534 ether_addr_copy(mac_address,
1535 port_num ?
1536 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1537 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
1538 if (fw_subtype_list) {
1539 for (i = 0;
1540 i < MCDI_VAR_ARRAY_LEN(outlen,
1541 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1542 i++)
1543 fw_subtype_list[i] = MCDI_ARRAY_WORD(
1544 outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1545 for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1546 fw_subtype_list[i] = 0;
1547 }
1548 if (capabilities) {
1549 if (port_num)
1550 *capabilities = MCDI_DWORD(outbuf,
1551 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1552 else
1553 *capabilities = MCDI_DWORD(outbuf,
1554 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1555 }
1556
1557 return 0;
1558
1559fail:
1560 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1561 __func__, rc, (int)outlen);
1562
1563 return rc;
1564}
1565
1566int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
1567{
1568 MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1569 u32 dest = 0;
1570 int rc;
1571
1572 if (uart)
1573 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1574 if (evq)
1575 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1576
1577 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1578 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1579
1580 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1581
1582 rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1583 NULL, 0, NULL);
1584 return rc;
1585}
1586
1587int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1588{
1589 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1590 size_t outlen;
1591 int rc;
1592
1593 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1594
1595 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1596 outbuf, sizeof(outbuf), &outlen);
1597 if (rc)
1598 goto fail;
1599 if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1600 rc = -EIO;
1601 goto fail;
1602 }
1603
1604 *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1605 return 0;
1606
1607fail:
1608 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1609 __func__, rc);
1610 return rc;
1611}
1612
1613int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1614 size_t *size_out, size_t *erase_size_out,
1615 bool *protected_out)
1616{
1617 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1618 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1619 size_t outlen;
1620 int rc;
1621
1622 MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1623
1624 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1625 outbuf, sizeof(outbuf), &outlen);
1626 if (rc)
1627 goto fail;
1628 if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1629 rc = -EIO;
1630 goto fail;
1631 }
1632
1633 *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1634 *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1635 *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1636 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1637 return 0;
1638
1639fail:
1640 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1641 return rc;
1642}
1643
1644static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1645{
1646 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1647 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1648 int rc;
1649
1650 MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1651
1652 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1653 outbuf, sizeof(outbuf), NULL);
1654 if (rc)
1655 return rc;
1656
1657 switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1658 case MC_CMD_NVRAM_TEST_PASS:
1659 case MC_CMD_NVRAM_TEST_NOTSUPP:
1660 return 0;
1661 default:
1662 return -EIO;
1663 }
1664}
1665
1666int efx_mcdi_nvram_test_all(struct efx_nic *efx)
1667{
1668 u32 nvram_types;
1669 unsigned int type;
1670 int rc;
1671
1672 rc = efx_mcdi_nvram_types(efx, &nvram_types);
1673 if (rc)
1674 goto fail1;
1675
1676 type = 0;
1677 while (nvram_types != 0) {
1678 if (nvram_types & 1) {
1679 rc = efx_mcdi_nvram_test(efx, type);
1680 if (rc)
1681 goto fail2;
1682 }
1683 type++;
1684 nvram_types >>= 1;
1685 }
1686
1687 return 0;
1688
1689fail2:
1690 netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1691 __func__, type);
1692fail1:
1693 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1694 return rc;
1695}
1696
1697/* Returns 1 if an assertion was read, 0 if no assertion had fired,
1698 * negative on error.
1699 */
1700static int efx_mcdi_read_assertion(struct efx_nic *efx)
1701{
1702 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1703 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1704 unsigned int flags, index;
1705 const char *reason;
1706 size_t outlen;
1707 int retry;
1708 int rc;
1709
1710 /* Attempt to read any stored assertion state before we reboot
1711 * the mcfw out of the assertion handler. Retry twice, once
1712 * because a boot-time assertion might cause this command to fail
1713 * with EINTR. And once again because GET_ASSERTS can race with
1714 * MC_CMD_REBOOT running on the other port. */
1715 retry = 2;
1716 do {
1717 MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1718 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
1719 inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1720 outbuf, sizeof(outbuf), &outlen);
1721 if (rc == -EPERM)
1722 return 0;
1723 } while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1724
1725 if (rc) {
1726 efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
1727 MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
1728 outlen, rc);
1729 return rc;
1730 }
1731 if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1732 return -EIO;
1733
1734 /* Print out any recorded assertion state */
1735 flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1736 if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1737 return 0;
1738
1739 reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1740 ? "system-level assertion"
1741 : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1742 ? "thread-level assertion"
1743 : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1744 ? "watchdog reset"
1745 : "unknown assertion";
1746 netif_err(efx, hw, efx->net_dev,
1747 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1748 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1749 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1750
1751 /* Print out the registers */
1752 for (index = 0;
1753 index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1754 index++)
1755 netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1756 1 + index,
1757 MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1758 index));
1759
1760 return 1;
1761}
1762
1763static int efx_mcdi_exit_assertion(struct efx_nic *efx)
1764{
1765 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1766 int rc;
1767
1768 /* If the MC is running debug firmware, it might now be
1769 * waiting for a debugger to attach, but we just want it to
1770 * reboot. We set a flag that makes the command a no-op if it
1771 * has already done so.
1772 * The MCDI will thus return either 0 or -EIO.
1773 */
1774 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1775 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1776 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1777 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
1778 NULL, 0, NULL);
1779 if (rc == -EIO)
1780 rc = 0;
1781 if (rc)
1782 efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN,
1783 NULL, 0, rc);
1784 return rc;
1785}
1786
1787int efx_mcdi_handle_assertion(struct efx_nic *efx)
1788{
1789 int rc;
1790
1791 rc = efx_mcdi_read_assertion(efx);
1792 if (rc <= 0)
1793 return rc;
1794
1795 return efx_mcdi_exit_assertion(efx);
1796}
1797
1798void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1799{
1800 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1801 int rc;
1802
1803 BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1804 BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1805 BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1806
1807 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1808
1809 MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1810
1811 rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
1812 NULL, 0, NULL);
1813}
1814
1815static int efx_mcdi_reset_func(struct efx_nic *efx)
1816{
1817 MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
1818 int rc;
1819
1820 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
1821 MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
1822 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1823 rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
1824 NULL, 0, NULL);
1825 return rc;
1826}
1827
1828static int efx_mcdi_reset_mc(struct efx_nic *efx)
1829{
1830 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1831 int rc;
1832
1833 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1834 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1835 rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1836 NULL, 0, NULL);
1837 /* White is black, and up is down */
1838 if (rc == -EIO)
1839 return 0;
1840 if (rc == 0)
1841 rc = -EIO;
1842 return rc;
1843}
1844
1845enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
1846{
1847 return RESET_TYPE_RECOVER_OR_ALL;
1848}
1849
1850int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1851{
1852 int rc;
1853
1854 /* If MCDI is down, we can't handle_assertion */
1855 if (method == RESET_TYPE_MCDI_TIMEOUT) {
1856 rc = pci_reset_function(efx->pci_dev);
1857 if (rc)
1858 return rc;
1859 /* Re-enable polled MCDI completion */
1860 if (efx->mcdi) {
1861 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1862 mcdi->mode = MCDI_MODE_POLL;
1863 }
1864 return 0;
1865 }
1866
1867 /* Recover from a failed assertion pre-reset */
1868 rc = efx_mcdi_handle_assertion(efx);
1869 if (rc)
1870 return rc;
1871
1872 if (method == RESET_TYPE_DATAPATH)
1873 return 0;
1874 else if (method == RESET_TYPE_WORLD)
1875 return efx_mcdi_reset_mc(efx);
1876 else
1877 return efx_mcdi_reset_func(efx);
1878}
1879
1880static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1881 const u8 *mac, int *id_out)
1882{
1883 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1884 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1885 size_t outlen;
1886 int rc;
1887
1888 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1889 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1890 MC_CMD_FILTER_MODE_SIMPLE);
1891 ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
1892
1893 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
1894 outbuf, sizeof(outbuf), &outlen);
1895 if (rc)
1896 goto fail;
1897
1898 if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1899 rc = -EIO;
1900 goto fail;
1901 }
1902
1903 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1904
1905 return 0;
1906
1907fail:
1908 *id_out = -1;
1909 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1910 return rc;
1911
1912}
1913
1914
1915int
1916efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out)
1917{
1918 return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1919}
1920
1921
1922int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1923{
1924 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1925 size_t outlen;
1926 int rc;
1927
1928 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
1929 outbuf, sizeof(outbuf), &outlen);
1930 if (rc)
1931 goto fail;
1932
1933 if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
1934 rc = -EIO;
1935 goto fail;
1936 }
1937
1938 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
1939
1940 return 0;
1941
1942fail:
1943 *id_out = -1;
1944 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1945 return rc;
1946}
1947
1948
1949int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
1950{
1951 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
1952 int rc;
1953
1954 MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
1955
1956 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
1957 NULL, 0, NULL);
1958 return rc;
1959}
1960
1961int efx_mcdi_flush_rxqs(struct efx_nic *efx)
1962{
1963 struct efx_channel *channel;
1964 struct efx_rx_queue *rx_queue;
1965 MCDI_DECLARE_BUF(inbuf,
1966 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
1967 int rc, count;
1968
1969 BUILD_BUG_ON(EFX_MAX_CHANNELS >
1970 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
1971
1972 count = 0;
1973 efx_for_each_channel(channel, efx) {
1974 efx_for_each_channel_rx_queue(rx_queue, channel) {
1975 if (rx_queue->flush_pending) {
1976 rx_queue->flush_pending = false;
1977 atomic_dec(&efx->rxq_flush_pending);
1978 MCDI_SET_ARRAY_DWORD(
1979 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
1980 count, efx_rx_queue_index(rx_queue));
1981 count++;
1982 }
1983 }
1984 }
1985
1986 rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
1987 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
1988 WARN_ON(rc < 0);
1989
1990 return rc;
1991}
1992
1993int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
1994{
1995 int rc;
1996
1997 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
1998 return rc;
1999}
2000
2001int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled,
2002 unsigned int *flags)
2003{
2004 MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
2005 MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN);
2006 size_t outlen;
2007 int rc;
2008
2009 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
2010 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
2011 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
2012 rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
2013 outbuf, sizeof(outbuf), &outlen);
2014 if (rc)
2015 return rc;
2016
2017 if (!flags)
2018 return 0;
2019
2020 if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
2021 *flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS);
2022 else
2023 *flags = 0;
2024
2025 return 0;
2026}
2027
2028int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out,
2029 unsigned int *enabled_out)
2030{
2031 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
2032 size_t outlen;
2033 int rc;
2034
2035 rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0,
2036 outbuf, sizeof(outbuf), &outlen);
2037 if (rc)
2038 goto fail;
2039
2040 if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
2041 rc = -EIO;
2042 goto fail;
2043 }
2044
2045 if (impl_out)
2046 *impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED);
2047
2048 if (enabled_out)
2049 *enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED);
2050
2051 return 0;
2052
2053fail:
2054 /* Older firmware lacks GET_WORKAROUNDS and this isn't especially
2055 * terrifying. The call site will have to deal with it though.
2056 */
2057 netif_printk(efx, hw, rc == -ENOSYS ? KERN_DEBUG : KERN_ERR,
2058 efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2059 return rc;
2060}
2061
2062#ifdef CONFIG_SFC_MTD
2063
2064#define EFX_MCDI_NVRAM_LEN_MAX 128
2065
2066static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
2067{
2068 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN);
2069 int rc;
2070
2071 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
2072
2073 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
2074
2075 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
2076 NULL, 0, NULL);
2077 return rc;
2078}
2079
2080static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
2081 loff_t offset, u8 *buffer, size_t length)
2082{
2083 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN);
2084 MCDI_DECLARE_BUF(outbuf,
2085 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2086 size_t outlen;
2087 int rc;
2088
2089 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
2090 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
2091 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
2092
2093 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
2094 outbuf, sizeof(outbuf), &outlen);
2095 if (rc)
2096 return rc;
2097
2098 memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
2099 return 0;
2100}
2101
2102static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
2103 loff_t offset, const u8 *buffer, size_t length)
2104{
2105 MCDI_DECLARE_BUF(inbuf,
2106 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2107 int rc;
2108
2109 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
2110 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
2111 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
2112 memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
2113
2114 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
2115
2116 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
2117 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
2118 NULL, 0, NULL);
2119 return rc;
2120}
2121
2122static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
2123 loff_t offset, size_t length)
2124{
2125 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
2126 int rc;
2127
2128 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
2129 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
2130 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
2131
2132 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
2133
2134 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
2135 NULL, 0, NULL);
2136 return rc;
2137}
2138
2139static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
2140{
2141 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN);
2142 int rc;
2143
2144 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
2145
2146 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0);
2147
2148 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
2149 NULL, 0, NULL);
2150 return rc;
2151}
2152
2153int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
2154 size_t len, size_t *retlen, u8 *buffer)
2155{
2156 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2157 struct efx_nic *efx = mtd->priv;
2158 loff_t offset = start;
2159 loff_t end = min_t(loff_t, start + len, mtd->size);
2160 size_t chunk;
2161 int rc = 0;
2162
2163 while (offset < end) {
2164 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2165 rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
2166 buffer, chunk);
2167 if (rc)
2168 goto out;
2169 offset += chunk;
2170 buffer += chunk;
2171 }
2172out:
2173 *retlen = offset - start;
2174 return rc;
2175}
2176
2177int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
2178{
2179 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2180 struct efx_nic *efx = mtd->priv;
2181 loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
2182 loff_t end = min_t(loff_t, start + len, mtd->size);
2183 size_t chunk = part->common.mtd.erasesize;
2184 int rc = 0;
2185
2186 if (!part->updating) {
2187 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2188 if (rc)
2189 goto out;
2190 part->updating = true;
2191 }
2192
2193 /* The MCDI interface can in fact do multiple erase blocks at once;
2194 * but erasing may be slow, so we make multiple calls here to avoid
2195 * tripping the MCDI RPC timeout. */
2196 while (offset < end) {
2197 rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
2198 chunk);
2199 if (rc)
2200 goto out;
2201 offset += chunk;
2202 }
2203out:
2204 return rc;
2205}
2206
2207int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
2208 size_t len, size_t *retlen, const u8 *buffer)
2209{
2210 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2211 struct efx_nic *efx = mtd->priv;
2212 loff_t offset = start;
2213 loff_t end = min_t(loff_t, start + len, mtd->size);
2214 size_t chunk;
2215 int rc = 0;
2216
2217 if (!part->updating) {
2218 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2219 if (rc)
2220 goto out;
2221 part->updating = true;
2222 }
2223
2224 while (offset < end) {
2225 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2226 rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
2227 buffer, chunk);
2228 if (rc)
2229 goto out;
2230 offset += chunk;
2231 buffer += chunk;
2232 }
2233out:
2234 *retlen = offset - start;
2235 return rc;
2236}
2237
2238int efx_mcdi_mtd_sync(struct mtd_info *mtd)
2239{
2240 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2241 struct efx_nic *efx = mtd->priv;
2242 int rc = 0;
2243
2244 if (part->updating) {
2245 part->updating = false;
2246 rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
2247 }
2248
2249 return rc;
2250}
2251
2252void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
2253{
2254 struct efx_mcdi_mtd_partition *mcdi_part =
2255 container_of(part, struct efx_mcdi_mtd_partition, common);
2256 struct efx_nic *efx = part->mtd.priv;
2257
2258 snprintf(part->name, sizeof(part->name), "%s %s:%02x",
2259 efx->name, part->type_name, mcdi_part->fw_subtype);
2260}
2261
2262#endif /* CONFIG_SFC_MTD */