Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*******************************************************************************
   3
   4  Intel(R) 82576 Virtual Function Linux driver
   5  Copyright(c) 2009 - 2012 Intel Corporation.
   6
   7  This program is free software; you can redistribute it and/or modify it
   8  under the terms and conditions of the GNU General Public License,
   9  version 2, as published by the Free Software Foundation.
  10
  11  This program is distributed in the hope it will be useful, but WITHOUT
  12  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  14  more details.
  15
  16  You should have received a copy of the GNU General Public License along with
  17  this program; if not, see <http://www.gnu.org/licenses/>.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27
  28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  29
  30#include <linux/module.h>
  31#include <linux/types.h>
  32#include <linux/init.h>
  33#include <linux/pci.h>
  34#include <linux/vmalloc.h>
  35#include <linux/pagemap.h>
  36#include <linux/delay.h>
  37#include <linux/netdevice.h>
  38#include <linux/tcp.h>
  39#include <linux/ipv6.h>
  40#include <linux/slab.h>
  41#include <net/checksum.h>
  42#include <net/ip6_checksum.h>
  43#include <linux/mii.h>
  44#include <linux/ethtool.h>
  45#include <linux/if_vlan.h>
  46#include <linux/prefetch.h>
  47#include <linux/sctp.h>
  48
  49#include "igbvf.h"
  50
  51#define DRV_VERSION "2.4.0-k"
  52char igbvf_driver_name[] = "igbvf";
  53const char igbvf_driver_version[] = DRV_VERSION;
  54static const char igbvf_driver_string[] =
  55		  "Intel(R) Gigabit Virtual Function Network Driver";
  56static const char igbvf_copyright[] =
  57		  "Copyright (c) 2009 - 2012 Intel Corporation.";
  58
  59#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  60static int debug = -1;
  61module_param(debug, int, 0);
  62MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  63
  64static int igbvf_poll(struct napi_struct *napi, int budget);
  65static void igbvf_reset(struct igbvf_adapter *);
  66static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
  67static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
  68
  69static struct igbvf_info igbvf_vf_info = {
  70	.mac		= e1000_vfadapt,
  71	.flags		= 0,
  72	.pba		= 10,
  73	.init_ops	= e1000_init_function_pointers_vf,
  74};
  75
  76static struct igbvf_info igbvf_i350_vf_info = {
  77	.mac		= e1000_vfadapt_i350,
  78	.flags		= 0,
  79	.pba		= 10,
  80	.init_ops	= e1000_init_function_pointers_vf,
  81};
  82
  83static const struct igbvf_info *igbvf_info_tbl[] = {
  84	[board_vf]	= &igbvf_vf_info,
  85	[board_i350_vf]	= &igbvf_i350_vf_info,
  86};
  87
  88/**
  89 * igbvf_desc_unused - calculate if we have unused descriptors
  90 * @rx_ring: address of receive ring structure
  91 **/
  92static int igbvf_desc_unused(struct igbvf_ring *ring)
  93{
  94	if (ring->next_to_clean > ring->next_to_use)
  95		return ring->next_to_clean - ring->next_to_use - 1;
  96
  97	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
  98}
  99
 100/**
 101 * igbvf_receive_skb - helper function to handle Rx indications
 102 * @adapter: board private structure
 103 * @status: descriptor status field as written by hardware
 104 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 105 * @skb: pointer to sk_buff to be indicated to stack
 106 **/
 107static void igbvf_receive_skb(struct igbvf_adapter *adapter,
 108			      struct net_device *netdev,
 109			      struct sk_buff *skb,
 110			      u32 status, u16 vlan)
 111{
 112	u16 vid;
 113
 114	if (status & E1000_RXD_STAT_VP) {
 115		if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
 116		    (status & E1000_RXDEXT_STATERR_LB))
 117			vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
 118		else
 119			vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
 120		if (test_bit(vid, adapter->active_vlans))
 121			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
 122	}
 123
 124	napi_gro_receive(&adapter->rx_ring->napi, skb);
 125}
 126
 127static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
 128					 u32 status_err, struct sk_buff *skb)
 129{
 130	skb_checksum_none_assert(skb);
 131
 132	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
 133	if ((status_err & E1000_RXD_STAT_IXSM) ||
 134	    (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
 135		return;
 136
 137	/* TCP/UDP checksum error bit is set */
 138	if (status_err &
 139	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
 140		/* let the stack verify checksum errors */
 141		adapter->hw_csum_err++;
 142		return;
 143	}
 144
 145	/* It must be a TCP or UDP packet with a valid checksum */
 146	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
 147		skb->ip_summed = CHECKSUM_UNNECESSARY;
 148
 149	adapter->hw_csum_good++;
 150}
 151
 152/**
 153 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
 154 * @rx_ring: address of ring structure to repopulate
 155 * @cleaned_count: number of buffers to repopulate
 156 **/
 157static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
 158				   int cleaned_count)
 159{
 160	struct igbvf_adapter *adapter = rx_ring->adapter;
 161	struct net_device *netdev = adapter->netdev;
 162	struct pci_dev *pdev = adapter->pdev;
 163	union e1000_adv_rx_desc *rx_desc;
 164	struct igbvf_buffer *buffer_info;
 165	struct sk_buff *skb;
 166	unsigned int i;
 167	int bufsz;
 168
 169	i = rx_ring->next_to_use;
 170	buffer_info = &rx_ring->buffer_info[i];
 171
 172	if (adapter->rx_ps_hdr_size)
 173		bufsz = adapter->rx_ps_hdr_size;
 174	else
 175		bufsz = adapter->rx_buffer_len;
 176
 177	while (cleaned_count--) {
 178		rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
 179
 180		if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
 181			if (!buffer_info->page) {
 182				buffer_info->page = alloc_page(GFP_ATOMIC);
 183				if (!buffer_info->page) {
 184					adapter->alloc_rx_buff_failed++;
 185					goto no_buffers;
 186				}
 187				buffer_info->page_offset = 0;
 188			} else {
 189				buffer_info->page_offset ^= PAGE_SIZE / 2;
 190			}
 191			buffer_info->page_dma =
 192				dma_map_page(&pdev->dev, buffer_info->page,
 193					     buffer_info->page_offset,
 194					     PAGE_SIZE / 2,
 195					     DMA_FROM_DEVICE);
 196			if (dma_mapping_error(&pdev->dev,
 197					      buffer_info->page_dma)) {
 198				__free_page(buffer_info->page);
 199				buffer_info->page = NULL;
 200				dev_err(&pdev->dev, "RX DMA map failed\n");
 201				break;
 202			}
 203		}
 204
 205		if (!buffer_info->skb) {
 206			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
 207			if (!skb) {
 208				adapter->alloc_rx_buff_failed++;
 209				goto no_buffers;
 210			}
 211
 212			buffer_info->skb = skb;
 213			buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 214							  bufsz,
 215							  DMA_FROM_DEVICE);
 216			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 217				dev_kfree_skb(buffer_info->skb);
 218				buffer_info->skb = NULL;
 219				dev_err(&pdev->dev, "RX DMA map failed\n");
 220				goto no_buffers;
 221			}
 222		}
 223		/* Refresh the desc even if buffer_addrs didn't change because
 224		 * each write-back erases this info.
 225		 */
 226		if (adapter->rx_ps_hdr_size) {
 227			rx_desc->read.pkt_addr =
 228			     cpu_to_le64(buffer_info->page_dma);
 229			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
 230		} else {
 231			rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
 232			rx_desc->read.hdr_addr = 0;
 233		}
 234
 235		i++;
 236		if (i == rx_ring->count)
 237			i = 0;
 238		buffer_info = &rx_ring->buffer_info[i];
 239	}
 240
 241no_buffers:
 242	if (rx_ring->next_to_use != i) {
 243		rx_ring->next_to_use = i;
 244		if (i == 0)
 245			i = (rx_ring->count - 1);
 246		else
 247			i--;
 248
 249		/* Force memory writes to complete before letting h/w
 250		 * know there are new descriptors to fetch.  (Only
 251		 * applicable for weak-ordered memory model archs,
 252		 * such as IA-64).
 253		*/
 254		wmb();
 255		writel(i, adapter->hw.hw_addr + rx_ring->tail);
 256	}
 257}
 258
 259/**
 260 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
 261 * @adapter: board private structure
 262 *
 263 * the return value indicates whether actual cleaning was done, there
 264 * is no guarantee that everything was cleaned
 265 **/
 266static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
 267			       int *work_done, int work_to_do)
 268{
 269	struct igbvf_ring *rx_ring = adapter->rx_ring;
 270	struct net_device *netdev = adapter->netdev;
 271	struct pci_dev *pdev = adapter->pdev;
 272	union e1000_adv_rx_desc *rx_desc, *next_rxd;
 273	struct igbvf_buffer *buffer_info, *next_buffer;
 274	struct sk_buff *skb;
 275	bool cleaned = false;
 276	int cleaned_count = 0;
 277	unsigned int total_bytes = 0, total_packets = 0;
 278	unsigned int i;
 279	u32 length, hlen, staterr;
 280
 281	i = rx_ring->next_to_clean;
 282	rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
 283	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 284
 285	while (staterr & E1000_RXD_STAT_DD) {
 286		if (*work_done >= work_to_do)
 287			break;
 288		(*work_done)++;
 289		rmb(); /* read descriptor and rx_buffer_info after status DD */
 290
 291		buffer_info = &rx_ring->buffer_info[i];
 292
 293		/* HW will not DMA in data larger than the given buffer, even
 294		 * if it parses the (NFS, of course) header to be larger.  In
 295		 * that case, it fills the header buffer and spills the rest
 296		 * into the page.
 297		 */
 298		hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
 299		       & E1000_RXDADV_HDRBUFLEN_MASK) >>
 300		       E1000_RXDADV_HDRBUFLEN_SHIFT;
 301		if (hlen > adapter->rx_ps_hdr_size)
 302			hlen = adapter->rx_ps_hdr_size;
 303
 304		length = le16_to_cpu(rx_desc->wb.upper.length);
 305		cleaned = true;
 306		cleaned_count++;
 307
 308		skb = buffer_info->skb;
 309		prefetch(skb->data - NET_IP_ALIGN);
 310		buffer_info->skb = NULL;
 311		if (!adapter->rx_ps_hdr_size) {
 312			dma_unmap_single(&pdev->dev, buffer_info->dma,
 313					 adapter->rx_buffer_len,
 314					 DMA_FROM_DEVICE);
 315			buffer_info->dma = 0;
 316			skb_put(skb, length);
 317			goto send_up;
 318		}
 319
 320		if (!skb_shinfo(skb)->nr_frags) {
 321			dma_unmap_single(&pdev->dev, buffer_info->dma,
 322					 adapter->rx_ps_hdr_size,
 323					 DMA_FROM_DEVICE);
 324			buffer_info->dma = 0;
 325			skb_put(skb, hlen);
 326		}
 327
 328		if (length) {
 329			dma_unmap_page(&pdev->dev, buffer_info->page_dma,
 330				       PAGE_SIZE / 2,
 331				       DMA_FROM_DEVICE);
 332			buffer_info->page_dma = 0;
 333
 334			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
 335					   buffer_info->page,
 336					   buffer_info->page_offset,
 337					   length);
 338
 339			if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
 340			    (page_count(buffer_info->page) != 1))
 341				buffer_info->page = NULL;
 342			else
 343				get_page(buffer_info->page);
 344
 345			skb->len += length;
 346			skb->data_len += length;
 347			skb->truesize += PAGE_SIZE / 2;
 348		}
 349send_up:
 350		i++;
 351		if (i == rx_ring->count)
 352			i = 0;
 353		next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
 354		prefetch(next_rxd);
 355		next_buffer = &rx_ring->buffer_info[i];
 356
 357		if (!(staterr & E1000_RXD_STAT_EOP)) {
 358			buffer_info->skb = next_buffer->skb;
 359			buffer_info->dma = next_buffer->dma;
 360			next_buffer->skb = skb;
 361			next_buffer->dma = 0;
 362			goto next_desc;
 363		}
 364
 365		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
 366			dev_kfree_skb_irq(skb);
 367			goto next_desc;
 368		}
 369
 370		total_bytes += skb->len;
 371		total_packets++;
 372
 373		igbvf_rx_checksum_adv(adapter, staterr, skb);
 374
 375		skb->protocol = eth_type_trans(skb, netdev);
 376
 377		igbvf_receive_skb(adapter, netdev, skb, staterr,
 378				  rx_desc->wb.upper.vlan);
 379
 380next_desc:
 381		rx_desc->wb.upper.status_error = 0;
 382
 383		/* return some buffers to hardware, one at a time is too slow */
 384		if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
 385			igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
 386			cleaned_count = 0;
 387		}
 388
 389		/* use prefetched values */
 390		rx_desc = next_rxd;
 391		buffer_info = next_buffer;
 392
 393		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 394	}
 395
 396	rx_ring->next_to_clean = i;
 397	cleaned_count = igbvf_desc_unused(rx_ring);
 398
 399	if (cleaned_count)
 400		igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
 401
 402	adapter->total_rx_packets += total_packets;
 403	adapter->total_rx_bytes += total_bytes;
 404	netdev->stats.rx_bytes += total_bytes;
 405	netdev->stats.rx_packets += total_packets;
 406	return cleaned;
 407}
 408
 409static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
 410			    struct igbvf_buffer *buffer_info)
 411{
 412	if (buffer_info->dma) {
 413		if (buffer_info->mapped_as_page)
 414			dma_unmap_page(&adapter->pdev->dev,
 415				       buffer_info->dma,
 416				       buffer_info->length,
 417				       DMA_TO_DEVICE);
 418		else
 419			dma_unmap_single(&adapter->pdev->dev,
 420					 buffer_info->dma,
 421					 buffer_info->length,
 422					 DMA_TO_DEVICE);
 423		buffer_info->dma = 0;
 424	}
 425	if (buffer_info->skb) {
 426		dev_kfree_skb_any(buffer_info->skb);
 427		buffer_info->skb = NULL;
 428	}
 429	buffer_info->time_stamp = 0;
 430}
 431
 432/**
 433 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
 434 * @adapter: board private structure
 435 *
 436 * Return 0 on success, negative on failure
 437 **/
 438int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
 439			     struct igbvf_ring *tx_ring)
 440{
 441	struct pci_dev *pdev = adapter->pdev;
 442	int size;
 443
 444	size = sizeof(struct igbvf_buffer) * tx_ring->count;
 445	tx_ring->buffer_info = vzalloc(size);
 446	if (!tx_ring->buffer_info)
 447		goto err;
 448
 449	/* round up to nearest 4K */
 450	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
 451	tx_ring->size = ALIGN(tx_ring->size, 4096);
 452
 453	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
 454					   &tx_ring->dma, GFP_KERNEL);
 455	if (!tx_ring->desc)
 456		goto err;
 457
 458	tx_ring->adapter = adapter;
 459	tx_ring->next_to_use = 0;
 460	tx_ring->next_to_clean = 0;
 461
 462	return 0;
 463err:
 464	vfree(tx_ring->buffer_info);
 465	dev_err(&adapter->pdev->dev,
 466		"Unable to allocate memory for the transmit descriptor ring\n");
 467	return -ENOMEM;
 468}
 469
 470/**
 471 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
 472 * @adapter: board private structure
 473 *
 474 * Returns 0 on success, negative on failure
 475 **/
 476int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
 477			     struct igbvf_ring *rx_ring)
 478{
 479	struct pci_dev *pdev = adapter->pdev;
 480	int size, desc_len;
 481
 482	size = sizeof(struct igbvf_buffer) * rx_ring->count;
 483	rx_ring->buffer_info = vzalloc(size);
 484	if (!rx_ring->buffer_info)
 485		goto err;
 486
 487	desc_len = sizeof(union e1000_adv_rx_desc);
 488
 489	/* Round up to nearest 4K */
 490	rx_ring->size = rx_ring->count * desc_len;
 491	rx_ring->size = ALIGN(rx_ring->size, 4096);
 492
 493	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
 494					   &rx_ring->dma, GFP_KERNEL);
 495	if (!rx_ring->desc)
 496		goto err;
 497
 498	rx_ring->next_to_clean = 0;
 499	rx_ring->next_to_use = 0;
 500
 501	rx_ring->adapter = adapter;
 502
 503	return 0;
 504
 505err:
 506	vfree(rx_ring->buffer_info);
 507	rx_ring->buffer_info = NULL;
 508	dev_err(&adapter->pdev->dev,
 509		"Unable to allocate memory for the receive descriptor ring\n");
 510	return -ENOMEM;
 511}
 512
 513/**
 514 * igbvf_clean_tx_ring - Free Tx Buffers
 515 * @tx_ring: ring to be cleaned
 516 **/
 517static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
 518{
 519	struct igbvf_adapter *adapter = tx_ring->adapter;
 520	struct igbvf_buffer *buffer_info;
 521	unsigned long size;
 522	unsigned int i;
 523
 524	if (!tx_ring->buffer_info)
 525		return;
 526
 527	/* Free all the Tx ring sk_buffs */
 528	for (i = 0; i < tx_ring->count; i++) {
 529		buffer_info = &tx_ring->buffer_info[i];
 530		igbvf_put_txbuf(adapter, buffer_info);
 531	}
 532
 533	size = sizeof(struct igbvf_buffer) * tx_ring->count;
 534	memset(tx_ring->buffer_info, 0, size);
 535
 536	/* Zero out the descriptor ring */
 537	memset(tx_ring->desc, 0, tx_ring->size);
 538
 539	tx_ring->next_to_use = 0;
 540	tx_ring->next_to_clean = 0;
 541
 542	writel(0, adapter->hw.hw_addr + tx_ring->head);
 543	writel(0, adapter->hw.hw_addr + tx_ring->tail);
 544}
 545
 546/**
 547 * igbvf_free_tx_resources - Free Tx Resources per Queue
 548 * @tx_ring: ring to free resources from
 549 *
 550 * Free all transmit software resources
 551 **/
 552void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
 553{
 554	struct pci_dev *pdev = tx_ring->adapter->pdev;
 555
 556	igbvf_clean_tx_ring(tx_ring);
 557
 558	vfree(tx_ring->buffer_info);
 559	tx_ring->buffer_info = NULL;
 560
 561	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
 562			  tx_ring->dma);
 563
 564	tx_ring->desc = NULL;
 565}
 566
 567/**
 568 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
 569 * @adapter: board private structure
 570 **/
 571static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
 572{
 573	struct igbvf_adapter *adapter = rx_ring->adapter;
 574	struct igbvf_buffer *buffer_info;
 575	struct pci_dev *pdev = adapter->pdev;
 576	unsigned long size;
 577	unsigned int i;
 578
 579	if (!rx_ring->buffer_info)
 580		return;
 581
 582	/* Free all the Rx ring sk_buffs */
 583	for (i = 0; i < rx_ring->count; i++) {
 584		buffer_info = &rx_ring->buffer_info[i];
 585		if (buffer_info->dma) {
 586			if (adapter->rx_ps_hdr_size) {
 587				dma_unmap_single(&pdev->dev, buffer_info->dma,
 588						 adapter->rx_ps_hdr_size,
 589						 DMA_FROM_DEVICE);
 590			} else {
 591				dma_unmap_single(&pdev->dev, buffer_info->dma,
 592						 adapter->rx_buffer_len,
 593						 DMA_FROM_DEVICE);
 594			}
 595			buffer_info->dma = 0;
 596		}
 597
 598		if (buffer_info->skb) {
 599			dev_kfree_skb(buffer_info->skb);
 600			buffer_info->skb = NULL;
 601		}
 602
 603		if (buffer_info->page) {
 604			if (buffer_info->page_dma)
 605				dma_unmap_page(&pdev->dev,
 606					       buffer_info->page_dma,
 607					       PAGE_SIZE / 2,
 608					       DMA_FROM_DEVICE);
 609			put_page(buffer_info->page);
 610			buffer_info->page = NULL;
 611			buffer_info->page_dma = 0;
 612			buffer_info->page_offset = 0;
 613		}
 614	}
 615
 616	size = sizeof(struct igbvf_buffer) * rx_ring->count;
 617	memset(rx_ring->buffer_info, 0, size);
 618
 619	/* Zero out the descriptor ring */
 620	memset(rx_ring->desc, 0, rx_ring->size);
 621
 622	rx_ring->next_to_clean = 0;
 623	rx_ring->next_to_use = 0;
 624
 625	writel(0, adapter->hw.hw_addr + rx_ring->head);
 626	writel(0, adapter->hw.hw_addr + rx_ring->tail);
 627}
 628
 629/**
 630 * igbvf_free_rx_resources - Free Rx Resources
 631 * @rx_ring: ring to clean the resources from
 632 *
 633 * Free all receive software resources
 634 **/
 635
 636void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
 637{
 638	struct pci_dev *pdev = rx_ring->adapter->pdev;
 639
 640	igbvf_clean_rx_ring(rx_ring);
 641
 642	vfree(rx_ring->buffer_info);
 643	rx_ring->buffer_info = NULL;
 644
 645	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
 646			  rx_ring->dma);
 647	rx_ring->desc = NULL;
 648}
 649
 650/**
 651 * igbvf_update_itr - update the dynamic ITR value based on statistics
 652 * @adapter: pointer to adapter
 653 * @itr_setting: current adapter->itr
 654 * @packets: the number of packets during this measurement interval
 655 * @bytes: the number of bytes during this measurement interval
 656 *
 657 * Stores a new ITR value based on packets and byte counts during the last
 658 * interrupt.  The advantage of per interrupt computation is faster updates
 659 * and more accurate ITR for the current traffic pattern.  Constants in this
 660 * function were computed based on theoretical maximum wire speed and thresholds
 661 * were set based on testing data as well as attempting to minimize response
 662 * time while increasing bulk throughput.
 663 **/
 664static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
 665					   enum latency_range itr_setting,
 666					   int packets, int bytes)
 667{
 668	enum latency_range retval = itr_setting;
 669
 670	if (packets == 0)
 671		goto update_itr_done;
 672
 673	switch (itr_setting) {
 674	case lowest_latency:
 675		/* handle TSO and jumbo frames */
 676		if (bytes/packets > 8000)
 677			retval = bulk_latency;
 678		else if ((packets < 5) && (bytes > 512))
 679			retval = low_latency;
 680		break;
 681	case low_latency:  /* 50 usec aka 20000 ints/s */
 682		if (bytes > 10000) {
 683			/* this if handles the TSO accounting */
 684			if (bytes/packets > 8000)
 685				retval = bulk_latency;
 686			else if ((packets < 10) || ((bytes/packets) > 1200))
 687				retval = bulk_latency;
 688			else if ((packets > 35))
 689				retval = lowest_latency;
 690		} else if (bytes/packets > 2000) {
 691			retval = bulk_latency;
 692		} else if (packets <= 2 && bytes < 512) {
 693			retval = lowest_latency;
 694		}
 695		break;
 696	case bulk_latency: /* 250 usec aka 4000 ints/s */
 697		if (bytes > 25000) {
 698			if (packets > 35)
 699				retval = low_latency;
 700		} else if (bytes < 6000) {
 701			retval = low_latency;
 702		}
 703		break;
 704	default:
 705		break;
 706	}
 707
 708update_itr_done:
 709	return retval;
 710}
 711
 712static int igbvf_range_to_itr(enum latency_range current_range)
 713{
 714	int new_itr;
 715
 716	switch (current_range) {
 717	/* counts and packets in update_itr are dependent on these numbers */
 718	case lowest_latency:
 719		new_itr = IGBVF_70K_ITR;
 720		break;
 721	case low_latency:
 722		new_itr = IGBVF_20K_ITR;
 723		break;
 724	case bulk_latency:
 725		new_itr = IGBVF_4K_ITR;
 726		break;
 727	default:
 728		new_itr = IGBVF_START_ITR;
 729		break;
 730	}
 731	return new_itr;
 732}
 733
 734static void igbvf_set_itr(struct igbvf_adapter *adapter)
 735{
 736	u32 new_itr;
 737
 738	adapter->tx_ring->itr_range =
 739			igbvf_update_itr(adapter,
 740					 adapter->tx_ring->itr_val,
 741					 adapter->total_tx_packets,
 742					 adapter->total_tx_bytes);
 743
 744	/* conservative mode (itr 3) eliminates the lowest_latency setting */
 745	if (adapter->requested_itr == 3 &&
 746	    adapter->tx_ring->itr_range == lowest_latency)
 747		adapter->tx_ring->itr_range = low_latency;
 748
 749	new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
 750
 751	if (new_itr != adapter->tx_ring->itr_val) {
 752		u32 current_itr = adapter->tx_ring->itr_val;
 753		/* this attempts to bias the interrupt rate towards Bulk
 754		 * by adding intermediate steps when interrupt rate is
 755		 * increasing
 756		 */
 757		new_itr = new_itr > current_itr ?
 758			  min(current_itr + (new_itr >> 2), new_itr) :
 759			  new_itr;
 760		adapter->tx_ring->itr_val = new_itr;
 761
 762		adapter->tx_ring->set_itr = 1;
 763	}
 764
 765	adapter->rx_ring->itr_range =
 766			igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
 767					 adapter->total_rx_packets,
 768					 adapter->total_rx_bytes);
 769	if (adapter->requested_itr == 3 &&
 770	    adapter->rx_ring->itr_range == lowest_latency)
 771		adapter->rx_ring->itr_range = low_latency;
 772
 773	new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
 774
 775	if (new_itr != adapter->rx_ring->itr_val) {
 776		u32 current_itr = adapter->rx_ring->itr_val;
 777
 778		new_itr = new_itr > current_itr ?
 779			  min(current_itr + (new_itr >> 2), new_itr) :
 780			  new_itr;
 781		adapter->rx_ring->itr_val = new_itr;
 782
 783		adapter->rx_ring->set_itr = 1;
 784	}
 785}
 786
 787/**
 788 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
 789 * @adapter: board private structure
 790 *
 791 * returns true if ring is completely cleaned
 792 **/
 793static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
 794{
 795	struct igbvf_adapter *adapter = tx_ring->adapter;
 796	struct net_device *netdev = adapter->netdev;
 797	struct igbvf_buffer *buffer_info;
 798	struct sk_buff *skb;
 799	union e1000_adv_tx_desc *tx_desc, *eop_desc;
 800	unsigned int total_bytes = 0, total_packets = 0;
 801	unsigned int i, count = 0;
 802	bool cleaned = false;
 803
 804	i = tx_ring->next_to_clean;
 805	buffer_info = &tx_ring->buffer_info[i];
 806	eop_desc = buffer_info->next_to_watch;
 807
 808	do {
 809		/* if next_to_watch is not set then there is no work pending */
 810		if (!eop_desc)
 811			break;
 812
 813		/* prevent any other reads prior to eop_desc */
 814		smp_rmb();
 815
 816		/* if DD is not set pending work has not been completed */
 817		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
 818			break;
 819
 820		/* clear next_to_watch to prevent false hangs */
 821		buffer_info->next_to_watch = NULL;
 822
 823		for (cleaned = false; !cleaned; count++) {
 824			tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
 825			cleaned = (tx_desc == eop_desc);
 826			skb = buffer_info->skb;
 827
 828			if (skb) {
 829				unsigned int segs, bytecount;
 830
 831				/* gso_segs is currently only valid for tcp */
 832				segs = skb_shinfo(skb)->gso_segs ?: 1;
 833				/* multiply data chunks by size of headers */
 834				bytecount = ((segs - 1) * skb_headlen(skb)) +
 835					    skb->len;
 836				total_packets += segs;
 837				total_bytes += bytecount;
 838			}
 839
 840			igbvf_put_txbuf(adapter, buffer_info);
 841			tx_desc->wb.status = 0;
 842
 843			i++;
 844			if (i == tx_ring->count)
 845				i = 0;
 846
 847			buffer_info = &tx_ring->buffer_info[i];
 848		}
 849
 850		eop_desc = buffer_info->next_to_watch;
 851	} while (count < tx_ring->count);
 852
 853	tx_ring->next_to_clean = i;
 854
 855	if (unlikely(count && netif_carrier_ok(netdev) &&
 856	    igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
 857		/* Make sure that anybody stopping the queue after this
 858		 * sees the new next_to_clean.
 859		 */
 860		smp_mb();
 861		if (netif_queue_stopped(netdev) &&
 862		    !(test_bit(__IGBVF_DOWN, &adapter->state))) {
 863			netif_wake_queue(netdev);
 864			++adapter->restart_queue;
 865		}
 866	}
 867
 868	netdev->stats.tx_bytes += total_bytes;
 869	netdev->stats.tx_packets += total_packets;
 870	return count < tx_ring->count;
 871}
 872
 873static irqreturn_t igbvf_msix_other(int irq, void *data)
 874{
 875	struct net_device *netdev = data;
 876	struct igbvf_adapter *adapter = netdev_priv(netdev);
 877	struct e1000_hw *hw = &adapter->hw;
 878
 879	adapter->int_counter1++;
 880
 881	hw->mac.get_link_status = 1;
 882	if (!test_bit(__IGBVF_DOWN, &adapter->state))
 883		mod_timer(&adapter->watchdog_timer, jiffies + 1);
 884
 885	ew32(EIMS, adapter->eims_other);
 886
 887	return IRQ_HANDLED;
 888}
 889
 890static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
 891{
 892	struct net_device *netdev = data;
 893	struct igbvf_adapter *adapter = netdev_priv(netdev);
 894	struct e1000_hw *hw = &adapter->hw;
 895	struct igbvf_ring *tx_ring = adapter->tx_ring;
 896
 897	if (tx_ring->set_itr) {
 898		writel(tx_ring->itr_val,
 899		       adapter->hw.hw_addr + tx_ring->itr_register);
 900		adapter->tx_ring->set_itr = 0;
 901	}
 902
 903	adapter->total_tx_bytes = 0;
 904	adapter->total_tx_packets = 0;
 905
 906	/* auto mask will automatically re-enable the interrupt when we write
 907	 * EICS
 908	 */
 909	if (!igbvf_clean_tx_irq(tx_ring))
 910		/* Ring was not completely cleaned, so fire another interrupt */
 911		ew32(EICS, tx_ring->eims_value);
 912	else
 913		ew32(EIMS, tx_ring->eims_value);
 914
 915	return IRQ_HANDLED;
 916}
 917
 918static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
 919{
 920	struct net_device *netdev = data;
 921	struct igbvf_adapter *adapter = netdev_priv(netdev);
 922
 923	adapter->int_counter0++;
 924
 925	/* Write the ITR value calculated at the end of the
 926	 * previous interrupt.
 927	 */
 928	if (adapter->rx_ring->set_itr) {
 929		writel(adapter->rx_ring->itr_val,
 930		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
 931		adapter->rx_ring->set_itr = 0;
 932	}
 933
 934	if (napi_schedule_prep(&adapter->rx_ring->napi)) {
 935		adapter->total_rx_bytes = 0;
 936		adapter->total_rx_packets = 0;
 937		__napi_schedule(&adapter->rx_ring->napi);
 938	}
 939
 940	return IRQ_HANDLED;
 941}
 942
 943#define IGBVF_NO_QUEUE -1
 944
 945static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
 946				int tx_queue, int msix_vector)
 947{
 948	struct e1000_hw *hw = &adapter->hw;
 949	u32 ivar, index;
 950
 951	/* 82576 uses a table-based method for assigning vectors.
 952	 * Each queue has a single entry in the table to which we write
 953	 * a vector number along with a "valid" bit.  Sadly, the layout
 954	 * of the table is somewhat counterintuitive.
 955	 */
 956	if (rx_queue > IGBVF_NO_QUEUE) {
 957		index = (rx_queue >> 1);
 958		ivar = array_er32(IVAR0, index);
 959		if (rx_queue & 0x1) {
 960			/* vector goes into third byte of register */
 961			ivar = ivar & 0xFF00FFFF;
 962			ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
 963		} else {
 964			/* vector goes into low byte of register */
 965			ivar = ivar & 0xFFFFFF00;
 966			ivar |= msix_vector | E1000_IVAR_VALID;
 967		}
 968		adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
 969		array_ew32(IVAR0, index, ivar);
 970	}
 971	if (tx_queue > IGBVF_NO_QUEUE) {
 972		index = (tx_queue >> 1);
 973		ivar = array_er32(IVAR0, index);
 974		if (tx_queue & 0x1) {
 975			/* vector goes into high byte of register */
 976			ivar = ivar & 0x00FFFFFF;
 977			ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
 978		} else {
 979			/* vector goes into second byte of register */
 980			ivar = ivar & 0xFFFF00FF;
 981			ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
 982		}
 983		adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
 984		array_ew32(IVAR0, index, ivar);
 985	}
 986}
 987
 988/**
 989 * igbvf_configure_msix - Configure MSI-X hardware
 990 * @adapter: board private structure
 991 *
 992 * igbvf_configure_msix sets up the hardware to properly
 993 * generate MSI-X interrupts.
 994 **/
 995static void igbvf_configure_msix(struct igbvf_adapter *adapter)
 996{
 997	u32 tmp;
 998	struct e1000_hw *hw = &adapter->hw;
 999	struct igbvf_ring *tx_ring = adapter->tx_ring;
1000	struct igbvf_ring *rx_ring = adapter->rx_ring;
1001	int vector = 0;
1002
1003	adapter->eims_enable_mask = 0;
1004
1005	igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
1006	adapter->eims_enable_mask |= tx_ring->eims_value;
1007	writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
1008	igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
1009	adapter->eims_enable_mask |= rx_ring->eims_value;
1010	writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
1011
1012	/* set vector for other causes, i.e. link changes */
1013
1014	tmp = (vector++ | E1000_IVAR_VALID);
1015
1016	ew32(IVAR_MISC, tmp);
1017
1018	adapter->eims_enable_mask = GENMASK(vector - 1, 0);
1019	adapter->eims_other = BIT(vector - 1);
1020	e1e_flush();
1021}
1022
1023static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1024{
1025	if (adapter->msix_entries) {
1026		pci_disable_msix(adapter->pdev);
1027		kfree(adapter->msix_entries);
1028		adapter->msix_entries = NULL;
1029	}
1030}
1031
1032/**
1033 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1034 * @adapter: board private structure
1035 *
1036 * Attempt to configure interrupts using the best available
1037 * capabilities of the hardware and kernel.
1038 **/
1039static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1040{
1041	int err = -ENOMEM;
1042	int i;
1043
1044	/* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1045	adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1046					GFP_KERNEL);
1047	if (adapter->msix_entries) {
1048		for (i = 0; i < 3; i++)
1049			adapter->msix_entries[i].entry = i;
1050
1051		err = pci_enable_msix_range(adapter->pdev,
1052					    adapter->msix_entries, 3, 3);
1053	}
1054
1055	if (err < 0) {
1056		/* MSI-X failed */
1057		dev_err(&adapter->pdev->dev,
1058			"Failed to initialize MSI-X interrupts.\n");
1059		igbvf_reset_interrupt_capability(adapter);
1060	}
1061}
1062
1063/**
1064 * igbvf_request_msix - Initialize MSI-X interrupts
1065 * @adapter: board private structure
1066 *
1067 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1068 * kernel.
1069 **/
1070static int igbvf_request_msix(struct igbvf_adapter *adapter)
1071{
1072	struct net_device *netdev = adapter->netdev;
1073	int err = 0, vector = 0;
1074
1075	if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1076		sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1077		sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1078	} else {
1079		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1080		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1081	}
1082
1083	err = request_irq(adapter->msix_entries[vector].vector,
1084			  igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1085			  netdev);
1086	if (err)
1087		goto out;
1088
1089	adapter->tx_ring->itr_register = E1000_EITR(vector);
1090	adapter->tx_ring->itr_val = adapter->current_itr;
1091	vector++;
1092
1093	err = request_irq(adapter->msix_entries[vector].vector,
1094			  igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1095			  netdev);
1096	if (err)
1097		goto out;
1098
1099	adapter->rx_ring->itr_register = E1000_EITR(vector);
1100	adapter->rx_ring->itr_val = adapter->current_itr;
1101	vector++;
1102
1103	err = request_irq(adapter->msix_entries[vector].vector,
1104			  igbvf_msix_other, 0, netdev->name, netdev);
1105	if (err)
1106		goto out;
1107
1108	igbvf_configure_msix(adapter);
1109	return 0;
1110out:
1111	return err;
1112}
1113
1114/**
1115 * igbvf_alloc_queues - Allocate memory for all rings
1116 * @adapter: board private structure to initialize
1117 **/
1118static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1119{
1120	struct net_device *netdev = adapter->netdev;
1121
1122	adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1123	if (!adapter->tx_ring)
1124		return -ENOMEM;
1125
1126	adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1127	if (!adapter->rx_ring) {
1128		kfree(adapter->tx_ring);
1129		return -ENOMEM;
1130	}
1131
1132	netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1133
1134	return 0;
1135}
1136
1137/**
1138 * igbvf_request_irq - initialize interrupts
1139 * @adapter: board private structure
1140 *
1141 * Attempts to configure interrupts using the best available
1142 * capabilities of the hardware and kernel.
1143 **/
1144static int igbvf_request_irq(struct igbvf_adapter *adapter)
1145{
1146	int err = -1;
1147
1148	/* igbvf supports msi-x only */
1149	if (adapter->msix_entries)
1150		err = igbvf_request_msix(adapter);
1151
1152	if (!err)
1153		return err;
1154
1155	dev_err(&adapter->pdev->dev,
1156		"Unable to allocate interrupt, Error: %d\n", err);
1157
1158	return err;
1159}
1160
1161static void igbvf_free_irq(struct igbvf_adapter *adapter)
1162{
1163	struct net_device *netdev = adapter->netdev;
1164	int vector;
1165
1166	if (adapter->msix_entries) {
1167		for (vector = 0; vector < 3; vector++)
1168			free_irq(adapter->msix_entries[vector].vector, netdev);
1169	}
1170}
1171
1172/**
1173 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1174 * @adapter: board private structure
1175 **/
1176static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1177{
1178	struct e1000_hw *hw = &adapter->hw;
1179
1180	ew32(EIMC, ~0);
1181
1182	if (adapter->msix_entries)
1183		ew32(EIAC, 0);
1184}
1185
1186/**
1187 * igbvf_irq_enable - Enable default interrupt generation settings
1188 * @adapter: board private structure
1189 **/
1190static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1191{
1192	struct e1000_hw *hw = &adapter->hw;
1193
1194	ew32(EIAC, adapter->eims_enable_mask);
1195	ew32(EIAM, adapter->eims_enable_mask);
1196	ew32(EIMS, adapter->eims_enable_mask);
1197}
1198
1199/**
1200 * igbvf_poll - NAPI Rx polling callback
1201 * @napi: struct associated with this polling callback
1202 * @budget: amount of packets driver is allowed to process this poll
1203 **/
1204static int igbvf_poll(struct napi_struct *napi, int budget)
1205{
1206	struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1207	struct igbvf_adapter *adapter = rx_ring->adapter;
1208	struct e1000_hw *hw = &adapter->hw;
1209	int work_done = 0;
1210
1211	igbvf_clean_rx_irq(adapter, &work_done, budget);
1212
1213	/* If not enough Rx work done, exit the polling mode */
1214	if (work_done < budget) {
1215		napi_complete_done(napi, work_done);
1216
1217		if (adapter->requested_itr & 3)
1218			igbvf_set_itr(adapter);
1219
1220		if (!test_bit(__IGBVF_DOWN, &adapter->state))
1221			ew32(EIMS, adapter->rx_ring->eims_value);
1222	}
1223
1224	return work_done;
1225}
1226
1227/**
1228 * igbvf_set_rlpml - set receive large packet maximum length
1229 * @adapter: board private structure
1230 *
1231 * Configure the maximum size of packets that will be received
1232 */
1233static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1234{
1235	int max_frame_size;
1236	struct e1000_hw *hw = &adapter->hw;
1237
1238	max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1239
1240	spin_lock_bh(&hw->mbx_lock);
1241
1242	e1000_rlpml_set_vf(hw, max_frame_size);
1243
1244	spin_unlock_bh(&hw->mbx_lock);
1245}
1246
1247static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1248				 __be16 proto, u16 vid)
1249{
1250	struct igbvf_adapter *adapter = netdev_priv(netdev);
1251	struct e1000_hw *hw = &adapter->hw;
1252
1253	spin_lock_bh(&hw->mbx_lock);
1254
1255	if (hw->mac.ops.set_vfta(hw, vid, true)) {
1256		dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1257		spin_unlock_bh(&hw->mbx_lock);
1258		return -EINVAL;
1259	}
1260
1261	spin_unlock_bh(&hw->mbx_lock);
1262
1263	set_bit(vid, adapter->active_vlans);
1264	return 0;
1265}
1266
1267static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1268				  __be16 proto, u16 vid)
1269{
1270	struct igbvf_adapter *adapter = netdev_priv(netdev);
1271	struct e1000_hw *hw = &adapter->hw;
1272
1273	spin_lock_bh(&hw->mbx_lock);
1274
1275	if (hw->mac.ops.set_vfta(hw, vid, false)) {
1276		dev_err(&adapter->pdev->dev,
1277			"Failed to remove vlan id %d\n", vid);
1278		spin_unlock_bh(&hw->mbx_lock);
1279		return -EINVAL;
1280	}
1281
1282	spin_unlock_bh(&hw->mbx_lock);
1283
1284	clear_bit(vid, adapter->active_vlans);
1285	return 0;
1286}
1287
1288static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1289{
1290	u16 vid;
1291
1292	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1293		igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1294}
1295
1296/**
1297 * igbvf_configure_tx - Configure Transmit Unit after Reset
1298 * @adapter: board private structure
1299 *
1300 * Configure the Tx unit of the MAC after a reset.
1301 **/
1302static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1303{
1304	struct e1000_hw *hw = &adapter->hw;
1305	struct igbvf_ring *tx_ring = adapter->tx_ring;
1306	u64 tdba;
1307	u32 txdctl, dca_txctrl;
1308
1309	/* disable transmits */
1310	txdctl = er32(TXDCTL(0));
1311	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1312	e1e_flush();
1313	msleep(10);
1314
1315	/* Setup the HW Tx Head and Tail descriptor pointers */
1316	ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1317	tdba = tx_ring->dma;
1318	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1319	ew32(TDBAH(0), (tdba >> 32));
1320	ew32(TDH(0), 0);
1321	ew32(TDT(0), 0);
1322	tx_ring->head = E1000_TDH(0);
1323	tx_ring->tail = E1000_TDT(0);
1324
1325	/* Turn off Relaxed Ordering on head write-backs.  The writebacks
1326	 * MUST be delivered in order or it will completely screw up
1327	 * our bookkeeping.
1328	 */
1329	dca_txctrl = er32(DCA_TXCTRL(0));
1330	dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1331	ew32(DCA_TXCTRL(0), dca_txctrl);
1332
1333	/* enable transmits */
1334	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1335	ew32(TXDCTL(0), txdctl);
1336
1337	/* Setup Transmit Descriptor Settings for eop descriptor */
1338	adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1339
1340	/* enable Report Status bit */
1341	adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1342}
1343
1344/**
1345 * igbvf_setup_srrctl - configure the receive control registers
1346 * @adapter: Board private structure
1347 **/
1348static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1349{
1350	struct e1000_hw *hw = &adapter->hw;
1351	u32 srrctl = 0;
1352
1353	srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1354		    E1000_SRRCTL_BSIZEHDR_MASK |
1355		    E1000_SRRCTL_BSIZEPKT_MASK);
1356
1357	/* Enable queue drop to avoid head of line blocking */
1358	srrctl |= E1000_SRRCTL_DROP_EN;
1359
1360	/* Setup buffer sizes */
1361	srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1362		  E1000_SRRCTL_BSIZEPKT_SHIFT;
1363
1364	if (adapter->rx_buffer_len < 2048) {
1365		adapter->rx_ps_hdr_size = 0;
1366		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1367	} else {
1368		adapter->rx_ps_hdr_size = 128;
1369		srrctl |= adapter->rx_ps_hdr_size <<
1370			  E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1371		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1372	}
1373
1374	ew32(SRRCTL(0), srrctl);
1375}
1376
1377/**
1378 * igbvf_configure_rx - Configure Receive Unit after Reset
1379 * @adapter: board private structure
1380 *
1381 * Configure the Rx unit of the MAC after a reset.
1382 **/
1383static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1384{
1385	struct e1000_hw *hw = &adapter->hw;
1386	struct igbvf_ring *rx_ring = adapter->rx_ring;
1387	u64 rdba;
1388	u32 rxdctl;
1389
1390	/* disable receives */
1391	rxdctl = er32(RXDCTL(0));
1392	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1393	e1e_flush();
1394	msleep(10);
1395
 
 
1396	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1397	 * the Base and Length of the Rx Descriptor Ring
1398	 */
1399	rdba = rx_ring->dma;
1400	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1401	ew32(RDBAH(0), (rdba >> 32));
1402	ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1403	rx_ring->head = E1000_RDH(0);
1404	rx_ring->tail = E1000_RDT(0);
1405	ew32(RDH(0), 0);
1406	ew32(RDT(0), 0);
1407
1408	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1409	rxdctl &= 0xFFF00000;
1410	rxdctl |= IGBVF_RX_PTHRESH;
1411	rxdctl |= IGBVF_RX_HTHRESH << 8;
1412	rxdctl |= IGBVF_RX_WTHRESH << 16;
1413
1414	igbvf_set_rlpml(adapter);
1415
1416	/* enable receives */
1417	ew32(RXDCTL(0), rxdctl);
1418}
1419
1420/**
1421 * igbvf_set_multi - Multicast and Promiscuous mode set
1422 * @netdev: network interface device structure
1423 *
1424 * The set_multi entry point is called whenever the multicast address
1425 * list or the network interface flags are updated.  This routine is
1426 * responsible for configuring the hardware for proper multicast,
1427 * promiscuous mode, and all-multi behavior.
1428 **/
1429static void igbvf_set_multi(struct net_device *netdev)
1430{
1431	struct igbvf_adapter *adapter = netdev_priv(netdev);
1432	struct e1000_hw *hw = &adapter->hw;
1433	struct netdev_hw_addr *ha;
1434	u8  *mta_list = NULL;
1435	int i;
1436
1437	if (!netdev_mc_empty(netdev)) {
1438		mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1439					 GFP_ATOMIC);
1440		if (!mta_list)
1441			return;
1442	}
1443
1444	/* prepare a packed array of only addresses. */
1445	i = 0;
1446	netdev_for_each_mc_addr(ha, netdev)
1447		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1448
1449	spin_lock_bh(&hw->mbx_lock);
1450
1451	hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1452
1453	spin_unlock_bh(&hw->mbx_lock);
1454	kfree(mta_list);
1455}
1456
1457/**
1458 * igbvf_set_uni - Configure unicast MAC filters
1459 * @netdev: network interface device structure
1460 *
1461 * This routine is responsible for configuring the hardware for proper
1462 * unicast filters.
1463 **/
1464static int igbvf_set_uni(struct net_device *netdev)
1465{
1466	struct igbvf_adapter *adapter = netdev_priv(netdev);
1467	struct e1000_hw *hw = &adapter->hw;
1468
1469	if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1470		pr_err("Too many unicast filters - No Space\n");
1471		return -ENOSPC;
1472	}
1473
1474	spin_lock_bh(&hw->mbx_lock);
1475
1476	/* Clear all unicast MAC filters */
1477	hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1478
1479	spin_unlock_bh(&hw->mbx_lock);
1480
1481	if (!netdev_uc_empty(netdev)) {
1482		struct netdev_hw_addr *ha;
1483
1484		/* Add MAC filters one by one */
1485		netdev_for_each_uc_addr(ha, netdev) {
1486			spin_lock_bh(&hw->mbx_lock);
1487
1488			hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1489						ha->addr);
1490
1491			spin_unlock_bh(&hw->mbx_lock);
1492			udelay(200);
1493		}
1494	}
1495
1496	return 0;
1497}
1498
1499static void igbvf_set_rx_mode(struct net_device *netdev)
1500{
1501	igbvf_set_multi(netdev);
1502	igbvf_set_uni(netdev);
1503}
1504
1505/**
1506 * igbvf_configure - configure the hardware for Rx and Tx
1507 * @adapter: private board structure
1508 **/
1509static void igbvf_configure(struct igbvf_adapter *adapter)
1510{
1511	igbvf_set_rx_mode(adapter->netdev);
1512
1513	igbvf_restore_vlan(adapter);
1514
1515	igbvf_configure_tx(adapter);
1516	igbvf_setup_srrctl(adapter);
1517	igbvf_configure_rx(adapter);
1518	igbvf_alloc_rx_buffers(adapter->rx_ring,
1519			       igbvf_desc_unused(adapter->rx_ring));
1520}
1521
1522/* igbvf_reset - bring the hardware into a known good state
1523 * @adapter: private board structure
1524 *
1525 * This function boots the hardware and enables some settings that
1526 * require a configuration cycle of the hardware - those cannot be
1527 * set/changed during runtime. After reset the device needs to be
1528 * properly configured for Rx, Tx etc.
1529 */
1530static void igbvf_reset(struct igbvf_adapter *adapter)
1531{
1532	struct e1000_mac_info *mac = &adapter->hw.mac;
1533	struct net_device *netdev = adapter->netdev;
1534	struct e1000_hw *hw = &adapter->hw;
1535
1536	spin_lock_bh(&hw->mbx_lock);
1537
1538	/* Allow time for pending master requests to run */
1539	if (mac->ops.reset_hw(hw))
1540		dev_err(&adapter->pdev->dev, "PF still resetting\n");
1541
1542	mac->ops.init_hw(hw);
1543
1544	spin_unlock_bh(&hw->mbx_lock);
1545
1546	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1547		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1548		       netdev->addr_len);
1549		memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1550		       netdev->addr_len);
1551	}
1552
1553	adapter->last_reset = jiffies;
1554}
1555
1556int igbvf_up(struct igbvf_adapter *adapter)
1557{
1558	struct e1000_hw *hw = &adapter->hw;
1559
1560	/* hardware has been reset, we need to reload some things */
1561	igbvf_configure(adapter);
1562
1563	clear_bit(__IGBVF_DOWN, &adapter->state);
1564
1565	napi_enable(&adapter->rx_ring->napi);
1566	if (adapter->msix_entries)
1567		igbvf_configure_msix(adapter);
1568
1569	/* Clear any pending interrupts. */
1570	er32(EICR);
1571	igbvf_irq_enable(adapter);
1572
1573	/* start the watchdog */
1574	hw->mac.get_link_status = 1;
1575	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1576
1577	return 0;
1578}
1579
1580void igbvf_down(struct igbvf_adapter *adapter)
1581{
1582	struct net_device *netdev = adapter->netdev;
1583	struct e1000_hw *hw = &adapter->hw;
1584	u32 rxdctl, txdctl;
1585
1586	/* signal that we're down so the interrupt handler does not
1587	 * reschedule our watchdog timer
1588	 */
1589	set_bit(__IGBVF_DOWN, &adapter->state);
1590
1591	/* disable receives in the hardware */
1592	rxdctl = er32(RXDCTL(0));
1593	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1594
1595	netif_carrier_off(netdev);
1596	netif_stop_queue(netdev);
1597
1598	/* disable transmits in the hardware */
1599	txdctl = er32(TXDCTL(0));
1600	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1601
1602	/* flush both disables and wait for them to finish */
1603	e1e_flush();
1604	msleep(10);
1605
1606	napi_disable(&adapter->rx_ring->napi);
1607
1608	igbvf_irq_disable(adapter);
1609
1610	del_timer_sync(&adapter->watchdog_timer);
1611
1612	/* record the stats before reset*/
1613	igbvf_update_stats(adapter);
1614
1615	adapter->link_speed = 0;
1616	adapter->link_duplex = 0;
1617
1618	igbvf_reset(adapter);
1619	igbvf_clean_tx_ring(adapter->tx_ring);
1620	igbvf_clean_rx_ring(adapter->rx_ring);
1621}
1622
1623void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1624{
1625	might_sleep();
1626	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1627		usleep_range(1000, 2000);
1628	igbvf_down(adapter);
1629	igbvf_up(adapter);
1630	clear_bit(__IGBVF_RESETTING, &adapter->state);
1631}
1632
1633/**
1634 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1635 * @adapter: board private structure to initialize
1636 *
1637 * igbvf_sw_init initializes the Adapter private data structure.
1638 * Fields are initialized based on PCI device information and
1639 * OS network device settings (MTU size).
1640 **/
1641static int igbvf_sw_init(struct igbvf_adapter *adapter)
1642{
1643	struct net_device *netdev = adapter->netdev;
1644	s32 rc;
1645
1646	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1647	adapter->rx_ps_hdr_size = 0;
1648	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1649	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1650
1651	adapter->tx_int_delay = 8;
1652	adapter->tx_abs_int_delay = 32;
1653	adapter->rx_int_delay = 0;
1654	adapter->rx_abs_int_delay = 8;
1655	adapter->requested_itr = 3;
1656	adapter->current_itr = IGBVF_START_ITR;
1657
1658	/* Set various function pointers */
1659	adapter->ei->init_ops(&adapter->hw);
1660
1661	rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1662	if (rc)
1663		return rc;
1664
1665	rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1666	if (rc)
1667		return rc;
1668
1669	igbvf_set_interrupt_capability(adapter);
1670
1671	if (igbvf_alloc_queues(adapter))
1672		return -ENOMEM;
1673
1674	spin_lock_init(&adapter->tx_queue_lock);
1675
1676	/* Explicitly disable IRQ since the NIC can be in any state. */
1677	igbvf_irq_disable(adapter);
1678
1679	spin_lock_init(&adapter->stats_lock);
1680	spin_lock_init(&adapter->hw.mbx_lock);
1681
1682	set_bit(__IGBVF_DOWN, &adapter->state);
1683	return 0;
1684}
1685
1686static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1687{
1688	struct e1000_hw *hw = &adapter->hw;
1689
1690	adapter->stats.last_gprc = er32(VFGPRC);
1691	adapter->stats.last_gorc = er32(VFGORC);
1692	adapter->stats.last_gptc = er32(VFGPTC);
1693	adapter->stats.last_gotc = er32(VFGOTC);
1694	adapter->stats.last_mprc = er32(VFMPRC);
1695	adapter->stats.last_gotlbc = er32(VFGOTLBC);
1696	adapter->stats.last_gptlbc = er32(VFGPTLBC);
1697	adapter->stats.last_gorlbc = er32(VFGORLBC);
1698	adapter->stats.last_gprlbc = er32(VFGPRLBC);
1699
1700	adapter->stats.base_gprc = er32(VFGPRC);
1701	adapter->stats.base_gorc = er32(VFGORC);
1702	adapter->stats.base_gptc = er32(VFGPTC);
1703	adapter->stats.base_gotc = er32(VFGOTC);
1704	adapter->stats.base_mprc = er32(VFMPRC);
1705	adapter->stats.base_gotlbc = er32(VFGOTLBC);
1706	adapter->stats.base_gptlbc = er32(VFGPTLBC);
1707	adapter->stats.base_gorlbc = er32(VFGORLBC);
1708	adapter->stats.base_gprlbc = er32(VFGPRLBC);
1709}
1710
1711/**
1712 * igbvf_open - Called when a network interface is made active
1713 * @netdev: network interface device structure
1714 *
1715 * Returns 0 on success, negative value on failure
1716 *
1717 * The open entry point is called when a network interface is made
1718 * active by the system (IFF_UP).  At this point all resources needed
1719 * for transmit and receive operations are allocated, the interrupt
1720 * handler is registered with the OS, the watchdog timer is started,
1721 * and the stack is notified that the interface is ready.
1722 **/
1723static int igbvf_open(struct net_device *netdev)
1724{
1725	struct igbvf_adapter *adapter = netdev_priv(netdev);
1726	struct e1000_hw *hw = &adapter->hw;
1727	int err;
1728
1729	/* disallow open during test */
1730	if (test_bit(__IGBVF_TESTING, &adapter->state))
1731		return -EBUSY;
1732
1733	/* allocate transmit descriptors */
1734	err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1735	if (err)
1736		goto err_setup_tx;
1737
1738	/* allocate receive descriptors */
1739	err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1740	if (err)
1741		goto err_setup_rx;
1742
1743	/* before we allocate an interrupt, we must be ready to handle it.
1744	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1745	 * as soon as we call pci_request_irq, so we have to setup our
1746	 * clean_rx handler before we do so.
1747	 */
1748	igbvf_configure(adapter);
1749
1750	err = igbvf_request_irq(adapter);
1751	if (err)
1752		goto err_req_irq;
1753
1754	/* From here on the code is the same as igbvf_up() */
1755	clear_bit(__IGBVF_DOWN, &adapter->state);
1756
1757	napi_enable(&adapter->rx_ring->napi);
1758
1759	/* clear any pending interrupts */
1760	er32(EICR);
1761
1762	igbvf_irq_enable(adapter);
1763
1764	/* start the watchdog */
1765	hw->mac.get_link_status = 1;
1766	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1767
1768	return 0;
1769
1770err_req_irq:
1771	igbvf_free_rx_resources(adapter->rx_ring);
1772err_setup_rx:
1773	igbvf_free_tx_resources(adapter->tx_ring);
1774err_setup_tx:
1775	igbvf_reset(adapter);
1776
1777	return err;
1778}
1779
1780/**
1781 * igbvf_close - Disables a network interface
1782 * @netdev: network interface device structure
1783 *
1784 * Returns 0, this is not allowed to fail
1785 *
1786 * The close entry point is called when an interface is de-activated
1787 * by the OS.  The hardware is still under the drivers control, but
1788 * needs to be disabled.  A global MAC reset is issued to stop the
1789 * hardware, and all transmit and receive resources are freed.
1790 **/
1791static int igbvf_close(struct net_device *netdev)
1792{
1793	struct igbvf_adapter *adapter = netdev_priv(netdev);
1794
1795	WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1796	igbvf_down(adapter);
1797
1798	igbvf_free_irq(adapter);
1799
1800	igbvf_free_tx_resources(adapter->tx_ring);
1801	igbvf_free_rx_resources(adapter->rx_ring);
1802
1803	return 0;
1804}
1805
1806/**
1807 * igbvf_set_mac - Change the Ethernet Address of the NIC
1808 * @netdev: network interface device structure
1809 * @p: pointer to an address structure
1810 *
1811 * Returns 0 on success, negative on failure
1812 **/
1813static int igbvf_set_mac(struct net_device *netdev, void *p)
1814{
1815	struct igbvf_adapter *adapter = netdev_priv(netdev);
1816	struct e1000_hw *hw = &adapter->hw;
1817	struct sockaddr *addr = p;
1818
1819	if (!is_valid_ether_addr(addr->sa_data))
1820		return -EADDRNOTAVAIL;
1821
1822	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1823
1824	spin_lock_bh(&hw->mbx_lock);
1825
1826	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1827
1828	spin_unlock_bh(&hw->mbx_lock);
1829
1830	if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1831		return -EADDRNOTAVAIL;
1832
1833	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1834
1835	return 0;
1836}
1837
1838#define UPDATE_VF_COUNTER(reg, name) \
1839{ \
1840	u32 current_counter = er32(reg); \
1841	if (current_counter < adapter->stats.last_##name) \
1842		adapter->stats.name += 0x100000000LL; \
1843	adapter->stats.last_##name = current_counter; \
1844	adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1845	adapter->stats.name |= current_counter; \
1846}
1847
1848/**
1849 * igbvf_update_stats - Update the board statistics counters
1850 * @adapter: board private structure
1851**/
1852void igbvf_update_stats(struct igbvf_adapter *adapter)
1853{
1854	struct e1000_hw *hw = &adapter->hw;
1855	struct pci_dev *pdev = adapter->pdev;
1856
1857	/* Prevent stats update while adapter is being reset, link is down
1858	 * or if the pci connection is down.
1859	 */
1860	if (adapter->link_speed == 0)
1861		return;
1862
1863	if (test_bit(__IGBVF_RESETTING, &adapter->state))
1864		return;
1865
1866	if (pci_channel_offline(pdev))
1867		return;
1868
1869	UPDATE_VF_COUNTER(VFGPRC, gprc);
1870	UPDATE_VF_COUNTER(VFGORC, gorc);
1871	UPDATE_VF_COUNTER(VFGPTC, gptc);
1872	UPDATE_VF_COUNTER(VFGOTC, gotc);
1873	UPDATE_VF_COUNTER(VFMPRC, mprc);
1874	UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1875	UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1876	UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1877	UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1878
1879	/* Fill out the OS statistics structure */
1880	adapter->netdev->stats.multicast = adapter->stats.mprc;
1881}
1882
1883static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1884{
1885	dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1886		 adapter->link_speed,
1887		 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1888}
1889
1890static bool igbvf_has_link(struct igbvf_adapter *adapter)
1891{
1892	struct e1000_hw *hw = &adapter->hw;
1893	s32 ret_val = E1000_SUCCESS;
1894	bool link_active;
1895
1896	/* If interface is down, stay link down */
1897	if (test_bit(__IGBVF_DOWN, &adapter->state))
1898		return false;
1899
1900	spin_lock_bh(&hw->mbx_lock);
1901
1902	ret_val = hw->mac.ops.check_for_link(hw);
1903
1904	spin_unlock_bh(&hw->mbx_lock);
1905
1906	link_active = !hw->mac.get_link_status;
1907
1908	/* if check for link returns error we will need to reset */
1909	if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1910		schedule_work(&adapter->reset_task);
1911
1912	return link_active;
1913}
1914
1915/**
1916 * igbvf_watchdog - Timer Call-back
1917 * @data: pointer to adapter cast into an unsigned long
1918 **/
1919static void igbvf_watchdog(struct timer_list *t)
1920{
1921	struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1922
1923	/* Do the rest outside of interrupt context */
1924	schedule_work(&adapter->watchdog_task);
1925}
1926
1927static void igbvf_watchdog_task(struct work_struct *work)
1928{
1929	struct igbvf_adapter *adapter = container_of(work,
1930						     struct igbvf_adapter,
1931						     watchdog_task);
1932	struct net_device *netdev = adapter->netdev;
1933	struct e1000_mac_info *mac = &adapter->hw.mac;
1934	struct igbvf_ring *tx_ring = adapter->tx_ring;
1935	struct e1000_hw *hw = &adapter->hw;
1936	u32 link;
1937	int tx_pending = 0;
1938
1939	link = igbvf_has_link(adapter);
1940
1941	if (link) {
1942		if (!netif_carrier_ok(netdev)) {
1943			mac->ops.get_link_up_info(&adapter->hw,
1944						  &adapter->link_speed,
1945						  &adapter->link_duplex);
1946			igbvf_print_link_info(adapter);
1947
1948			netif_carrier_on(netdev);
1949			netif_wake_queue(netdev);
1950		}
1951	} else {
1952		if (netif_carrier_ok(netdev)) {
1953			adapter->link_speed = 0;
1954			adapter->link_duplex = 0;
1955			dev_info(&adapter->pdev->dev, "Link is Down\n");
1956			netif_carrier_off(netdev);
1957			netif_stop_queue(netdev);
1958		}
1959	}
1960
1961	if (netif_carrier_ok(netdev)) {
1962		igbvf_update_stats(adapter);
1963	} else {
1964		tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1965			      tx_ring->count);
1966		if (tx_pending) {
1967			/* We've lost link, so the controller stops DMA,
1968			 * but we've got queued Tx work that's never going
1969			 * to get done, so reset controller to flush Tx.
1970			 * (Do the reset outside of interrupt context).
1971			 */
1972			adapter->tx_timeout_count++;
1973			schedule_work(&adapter->reset_task);
1974		}
1975	}
1976
1977	/* Cause software interrupt to ensure Rx ring is cleaned */
1978	ew32(EICS, adapter->rx_ring->eims_value);
1979
1980	/* Reset the timer */
1981	if (!test_bit(__IGBVF_DOWN, &adapter->state))
1982		mod_timer(&adapter->watchdog_timer,
1983			  round_jiffies(jiffies + (2 * HZ)));
1984}
1985
1986#define IGBVF_TX_FLAGS_CSUM		0x00000001
1987#define IGBVF_TX_FLAGS_VLAN		0x00000002
1988#define IGBVF_TX_FLAGS_TSO		0x00000004
1989#define IGBVF_TX_FLAGS_IPV4		0x00000008
1990#define IGBVF_TX_FLAGS_VLAN_MASK	0xffff0000
1991#define IGBVF_TX_FLAGS_VLAN_SHIFT	16
1992
1993static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1994			      u32 type_tucmd, u32 mss_l4len_idx)
1995{
1996	struct e1000_adv_tx_context_desc *context_desc;
1997	struct igbvf_buffer *buffer_info;
1998	u16 i = tx_ring->next_to_use;
1999
2000	context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
2001	buffer_info = &tx_ring->buffer_info[i];
2002
2003	i++;
2004	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2005
2006	/* set bits to identify this as an advanced context descriptor */
2007	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
2008
2009	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
2010	context_desc->seqnum_seed	= 0;
2011	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
2012	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
2013
2014	buffer_info->time_stamp = jiffies;
2015	buffer_info->dma = 0;
2016}
2017
2018static int igbvf_tso(struct igbvf_ring *tx_ring,
2019		     struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
 
 
2020{
2021	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
2022	union {
2023		struct iphdr *v4;
2024		struct ipv6hdr *v6;
2025		unsigned char *hdr;
2026	} ip;
2027	union {
2028		struct tcphdr *tcp;
2029		unsigned char *hdr;
2030	} l4;
2031	u32 paylen, l4_offset;
2032	int err;
2033
2034	if (skb->ip_summed != CHECKSUM_PARTIAL)
2035		return 0;
2036
2037	if (!skb_is_gso(skb))
2038		return 0;
2039
2040	err = skb_cow_head(skb, 0);
2041	if (err < 0)
 
2042		return err;
 
2043
2044	ip.hdr = skb_network_header(skb);
2045	l4.hdr = skb_checksum_start(skb);
2046
2047	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2048	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2049
2050	/* initialize outer IP header fields */
2051	if (ip.v4->version == 4) {
2052		unsigned char *csum_start = skb_checksum_start(skb);
2053		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
 
 
 
 
 
 
 
 
2054
2055		/* IP header will have to cancel out any data that
2056		 * is not a part of the outer IP header
2057		 */
2058		ip.v4->check = csum_fold(csum_partial(trans_start,
2059						      csum_start - trans_start,
2060						      0));
2061		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2062
2063		ip.v4->tot_len = 0;
2064	} else {
2065		ip.v6->payload_len = 0;
2066	}
 
 
 
 
 
 
2067
2068	/* determine offset of inner transport header */
2069	l4_offset = l4.hdr - skb->data;
2070
2071	/* compute length of segmentation header */
2072	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
 
2073
2074	/* remove payload length from inner checksum */
2075	paylen = skb->len - l4_offset;
2076	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
2077
2078	/* MSS L4LEN IDX */
2079	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2080	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2081
2082	/* VLAN MACLEN IPLEN */
2083	vlan_macip_lens = l4.hdr - ip.hdr;
2084	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2085	vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
 
 
 
 
2086
2087	igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2088
2089	return 1;
2090}
2091
2092static inline bool igbvf_ipv6_csum_is_sctp(struct sk_buff *skb)
2093{
2094	unsigned int offset = 0;
2095
2096	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
2097
2098	return offset == skb_checksum_start_offset(skb);
2099}
2100
2101static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2102			  u32 tx_flags, __be16 protocol)
2103{
2104	u32 vlan_macip_lens = 0;
2105	u32 type_tucmd = 0;
2106
2107	if (skb->ip_summed != CHECKSUM_PARTIAL) {
2108csum_failed:
2109		if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2110			return false;
2111		goto no_csum;
2112	}
2113
2114	switch (skb->csum_offset) {
2115	case offsetof(struct tcphdr, check):
2116		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2117		/* fall through */
2118	case offsetof(struct udphdr, check):
2119		break;
2120	case offsetof(struct sctphdr, checksum):
2121		/* validate that this is actually an SCTP request */
2122		if (((protocol == htons(ETH_P_IP)) &&
2123		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
2124		    ((protocol == htons(ETH_P_IPV6)) &&
2125		     igbvf_ipv6_csum_is_sctp(skb))) {
2126			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2127			break;
2128		}
2129	default:
2130		skb_checksum_help(skb);
2131		goto csum_failed;
2132	}
2133
2134	vlan_macip_lens = skb_checksum_start_offset(skb) -
2135			  skb_network_offset(skb);
2136no_csum:
2137	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2138	vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2139
2140	igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2141	return true;
2142}
2143
2144static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2145{
2146	struct igbvf_adapter *adapter = netdev_priv(netdev);
2147
2148	/* there is enough descriptors then we don't need to worry  */
2149	if (igbvf_desc_unused(adapter->tx_ring) >= size)
2150		return 0;
2151
2152	netif_stop_queue(netdev);
2153
2154	/* Herbert's original patch had:
2155	 *  smp_mb__after_netif_stop_queue();
2156	 * but since that doesn't exist yet, just open code it.
2157	 */
2158	smp_mb();
2159
2160	/* We need to check again just in case room has been made available */
2161	if (igbvf_desc_unused(adapter->tx_ring) < size)
2162		return -EBUSY;
2163
2164	netif_wake_queue(netdev);
2165
2166	++adapter->restart_queue;
2167	return 0;
2168}
2169
2170#define IGBVF_MAX_TXD_PWR	16
2171#define IGBVF_MAX_DATA_PER_TXD	(1u << IGBVF_MAX_TXD_PWR)
2172
2173static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2174				   struct igbvf_ring *tx_ring,
2175				   struct sk_buff *skb)
2176{
2177	struct igbvf_buffer *buffer_info;
2178	struct pci_dev *pdev = adapter->pdev;
2179	unsigned int len = skb_headlen(skb);
2180	unsigned int count = 0, i;
2181	unsigned int f;
2182
2183	i = tx_ring->next_to_use;
2184
2185	buffer_info = &tx_ring->buffer_info[i];
2186	BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2187	buffer_info->length = len;
2188	/* set time_stamp *before* dma to help avoid a possible race */
2189	buffer_info->time_stamp = jiffies;
2190	buffer_info->mapped_as_page = false;
2191	buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2192					  DMA_TO_DEVICE);
2193	if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2194		goto dma_error;
2195
2196	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2197		const struct skb_frag_struct *frag;
2198
2199		count++;
2200		i++;
2201		if (i == tx_ring->count)
2202			i = 0;
2203
2204		frag = &skb_shinfo(skb)->frags[f];
2205		len = skb_frag_size(frag);
2206
2207		buffer_info = &tx_ring->buffer_info[i];
2208		BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2209		buffer_info->length = len;
2210		buffer_info->time_stamp = jiffies;
2211		buffer_info->mapped_as_page = true;
2212		buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2213						    DMA_TO_DEVICE);
2214		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2215			goto dma_error;
2216	}
2217
2218	tx_ring->buffer_info[i].skb = skb;
2219
2220	return ++count;
2221
2222dma_error:
2223	dev_err(&pdev->dev, "TX DMA map failed\n");
2224
2225	/* clear timestamp and dma mappings for failed buffer_info mapping */
2226	buffer_info->dma = 0;
2227	buffer_info->time_stamp = 0;
2228	buffer_info->length = 0;
2229	buffer_info->mapped_as_page = false;
2230	if (count)
2231		count--;
2232
2233	/* clear timestamp and dma mappings for remaining portion of packet */
2234	while (count--) {
2235		if (i == 0)
2236			i += tx_ring->count;
2237		i--;
2238		buffer_info = &tx_ring->buffer_info[i];
2239		igbvf_put_txbuf(adapter, buffer_info);
2240	}
2241
2242	return 0;
2243}
2244
2245static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2246				      struct igbvf_ring *tx_ring,
2247				      int tx_flags, int count,
2248				      unsigned int first, u32 paylen,
2249				      u8 hdr_len)
2250{
2251	union e1000_adv_tx_desc *tx_desc = NULL;
2252	struct igbvf_buffer *buffer_info;
2253	u32 olinfo_status = 0, cmd_type_len;
2254	unsigned int i;
2255
2256	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2257			E1000_ADVTXD_DCMD_DEXT);
2258
2259	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2260		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2261
2262	if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2263		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2264
2265		/* insert tcp checksum */
2266		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2267
2268		/* insert ip checksum */
2269		if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2270			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2271
2272	} else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2273		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2274	}
2275
2276	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2277
2278	i = tx_ring->next_to_use;
2279	while (count--) {
2280		buffer_info = &tx_ring->buffer_info[i];
2281		tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2282		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2283		tx_desc->read.cmd_type_len =
2284			 cpu_to_le32(cmd_type_len | buffer_info->length);
2285		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2286		i++;
2287		if (i == tx_ring->count)
2288			i = 0;
2289	}
2290
2291	tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2292	/* Force memory writes to complete before letting h/w
2293	 * know there are new descriptors to fetch.  (Only
2294	 * applicable for weak-ordered memory model archs,
2295	 * such as IA-64).
2296	 */
2297	wmb();
2298
2299	tx_ring->buffer_info[first].next_to_watch = tx_desc;
2300	tx_ring->next_to_use = i;
2301	writel(i, adapter->hw.hw_addr + tx_ring->tail);
2302	/* we need this if more than one processor can write to our tail
2303	 * at a time, it synchronizes IO on IA64/Altix systems
2304	 */
2305	mmiowb();
2306}
2307
2308static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2309					     struct net_device *netdev,
2310					     struct igbvf_ring *tx_ring)
2311{
2312	struct igbvf_adapter *adapter = netdev_priv(netdev);
2313	unsigned int first, tx_flags = 0;
2314	u8 hdr_len = 0;
2315	int count = 0;
2316	int tso = 0;
2317	__be16 protocol = vlan_get_protocol(skb);
2318
2319	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2320		dev_kfree_skb_any(skb);
2321		return NETDEV_TX_OK;
2322	}
2323
2324	if (skb->len <= 0) {
2325		dev_kfree_skb_any(skb);
2326		return NETDEV_TX_OK;
2327	}
2328
2329	/* need: count + 4 desc gap to keep tail from touching
2330	 *       + 2 desc gap to keep tail from touching head,
2331	 *       + 1 desc for skb->data,
2332	 *       + 1 desc for context descriptor,
2333	 * head, otherwise try next time
2334	 */
2335	if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2336		/* this is a hard error */
2337		return NETDEV_TX_BUSY;
2338	}
2339
2340	if (skb_vlan_tag_present(skb)) {
2341		tx_flags |= IGBVF_TX_FLAGS_VLAN;
2342		tx_flags |= (skb_vlan_tag_get(skb) <<
2343			     IGBVF_TX_FLAGS_VLAN_SHIFT);
2344	}
2345
2346	if (protocol == htons(ETH_P_IP))
2347		tx_flags |= IGBVF_TX_FLAGS_IPV4;
2348
2349	first = tx_ring->next_to_use;
2350
2351	tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
 
2352	if (unlikely(tso < 0)) {
2353		dev_kfree_skb_any(skb);
2354		return NETDEV_TX_OK;
2355	}
2356
2357	if (tso)
2358		tx_flags |= IGBVF_TX_FLAGS_TSO;
2359	else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2360		 (skb->ip_summed == CHECKSUM_PARTIAL))
2361		tx_flags |= IGBVF_TX_FLAGS_CSUM;
2362
2363	/* count reflects descriptors mapped, if 0 then mapping error
2364	 * has occurred and we need to rewind the descriptor queue
2365	 */
2366	count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2367
2368	if (count) {
2369		igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2370				   first, skb->len, hdr_len);
2371		/* Make sure there is space in the ring for the next send. */
2372		igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2373	} else {
2374		dev_kfree_skb_any(skb);
2375		tx_ring->buffer_info[first].time_stamp = 0;
2376		tx_ring->next_to_use = first;
2377	}
2378
2379	return NETDEV_TX_OK;
2380}
2381
2382static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2383				    struct net_device *netdev)
2384{
2385	struct igbvf_adapter *adapter = netdev_priv(netdev);
2386	struct igbvf_ring *tx_ring;
2387
2388	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2389		dev_kfree_skb_any(skb);
2390		return NETDEV_TX_OK;
2391	}
2392
2393	tx_ring = &adapter->tx_ring[0];
2394
2395	return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2396}
2397
2398/**
2399 * igbvf_tx_timeout - Respond to a Tx Hang
2400 * @netdev: network interface device structure
2401 **/
2402static void igbvf_tx_timeout(struct net_device *netdev)
2403{
2404	struct igbvf_adapter *adapter = netdev_priv(netdev);
2405
2406	/* Do the reset outside of interrupt context */
2407	adapter->tx_timeout_count++;
2408	schedule_work(&adapter->reset_task);
2409}
2410
2411static void igbvf_reset_task(struct work_struct *work)
2412{
2413	struct igbvf_adapter *adapter;
2414
2415	adapter = container_of(work, struct igbvf_adapter, reset_task);
2416
2417	igbvf_reinit_locked(adapter);
2418}
2419
2420/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2421 * igbvf_change_mtu - Change the Maximum Transfer Unit
2422 * @netdev: network interface device structure
2423 * @new_mtu: new value for maximum frame size
2424 *
2425 * Returns 0 on success, negative on failure
2426 **/
2427static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2428{
2429	struct igbvf_adapter *adapter = netdev_priv(netdev);
2430	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2431
 
 
 
 
 
 
 
 
 
 
2432	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2433		usleep_range(1000, 2000);
2434	/* igbvf_down has a dependency on max_frame_size */
2435	adapter->max_frame_size = max_frame;
2436	if (netif_running(netdev))
2437		igbvf_down(adapter);
2438
2439	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2440	 * means we reserve 2 more, this pushes us to allocate from the next
2441	 * larger slab size.
2442	 * i.e. RXBUFFER_2048 --> size-4096 slab
2443	 * However with the new *_jumbo_rx* routines, jumbo receives will use
2444	 * fragmented skbs
2445	 */
2446
2447	if (max_frame <= 1024)
2448		adapter->rx_buffer_len = 1024;
2449	else if (max_frame <= 2048)
2450		adapter->rx_buffer_len = 2048;
2451	else
2452#if (PAGE_SIZE / 2) > 16384
2453		adapter->rx_buffer_len = 16384;
2454#else
2455		adapter->rx_buffer_len = PAGE_SIZE / 2;
2456#endif
2457
2458	/* adjust allocation if LPE protects us, and we aren't using SBP */
2459	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2460	    (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2461		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2462					 ETH_FCS_LEN;
2463
2464	dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2465		 netdev->mtu, new_mtu);
2466	netdev->mtu = new_mtu;
2467
2468	if (netif_running(netdev))
2469		igbvf_up(adapter);
2470	else
2471		igbvf_reset(adapter);
2472
2473	clear_bit(__IGBVF_RESETTING, &adapter->state);
2474
2475	return 0;
2476}
2477
2478static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2479{
2480	switch (cmd) {
2481	default:
2482		return -EOPNOTSUPP;
2483	}
2484}
2485
2486static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2487{
2488	struct net_device *netdev = pci_get_drvdata(pdev);
2489	struct igbvf_adapter *adapter = netdev_priv(netdev);
2490#ifdef CONFIG_PM
2491	int retval = 0;
2492#endif
2493
2494	netif_device_detach(netdev);
2495
2496	if (netif_running(netdev)) {
2497		WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2498		igbvf_down(adapter);
2499		igbvf_free_irq(adapter);
2500	}
2501
2502#ifdef CONFIG_PM
2503	retval = pci_save_state(pdev);
2504	if (retval)
2505		return retval;
2506#endif
2507
2508	pci_disable_device(pdev);
2509
2510	return 0;
2511}
2512
2513#ifdef CONFIG_PM
2514static int igbvf_resume(struct pci_dev *pdev)
2515{
2516	struct net_device *netdev = pci_get_drvdata(pdev);
2517	struct igbvf_adapter *adapter = netdev_priv(netdev);
2518	u32 err;
2519
2520	pci_restore_state(pdev);
2521	err = pci_enable_device_mem(pdev);
2522	if (err) {
2523		dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2524		return err;
2525	}
2526
2527	pci_set_master(pdev);
2528
2529	if (netif_running(netdev)) {
2530		err = igbvf_request_irq(adapter);
2531		if (err)
2532			return err;
2533	}
2534
2535	igbvf_reset(adapter);
2536
2537	if (netif_running(netdev))
2538		igbvf_up(adapter);
2539
2540	netif_device_attach(netdev);
2541
2542	return 0;
2543}
2544#endif
2545
2546static void igbvf_shutdown(struct pci_dev *pdev)
2547{
2548	igbvf_suspend(pdev, PMSG_SUSPEND);
2549}
2550
2551#ifdef CONFIG_NET_POLL_CONTROLLER
2552/* Polling 'interrupt' - used by things like netconsole to send skbs
2553 * without having to re-enable interrupts. It's not called while
2554 * the interrupt routine is executing.
2555 */
2556static void igbvf_netpoll(struct net_device *netdev)
2557{
2558	struct igbvf_adapter *adapter = netdev_priv(netdev);
2559
2560	disable_irq(adapter->pdev->irq);
2561
2562	igbvf_clean_tx_irq(adapter->tx_ring);
2563
2564	enable_irq(adapter->pdev->irq);
2565}
2566#endif
2567
2568/**
2569 * igbvf_io_error_detected - called when PCI error is detected
2570 * @pdev: Pointer to PCI device
2571 * @state: The current pci connection state
2572 *
2573 * This function is called after a PCI bus error affecting
2574 * this device has been detected.
2575 */
2576static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2577						pci_channel_state_t state)
2578{
2579	struct net_device *netdev = pci_get_drvdata(pdev);
2580	struct igbvf_adapter *adapter = netdev_priv(netdev);
2581
2582	netif_device_detach(netdev);
2583
2584	if (state == pci_channel_io_perm_failure)
2585		return PCI_ERS_RESULT_DISCONNECT;
2586
2587	if (netif_running(netdev))
2588		igbvf_down(adapter);
2589	pci_disable_device(pdev);
2590
2591	/* Request a slot slot reset. */
2592	return PCI_ERS_RESULT_NEED_RESET;
2593}
2594
2595/**
2596 * igbvf_io_slot_reset - called after the pci bus has been reset.
2597 * @pdev: Pointer to PCI device
2598 *
2599 * Restart the card from scratch, as if from a cold-boot. Implementation
2600 * resembles the first-half of the igbvf_resume routine.
2601 */
2602static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2603{
2604	struct net_device *netdev = pci_get_drvdata(pdev);
2605	struct igbvf_adapter *adapter = netdev_priv(netdev);
2606
2607	if (pci_enable_device_mem(pdev)) {
2608		dev_err(&pdev->dev,
2609			"Cannot re-enable PCI device after reset.\n");
2610		return PCI_ERS_RESULT_DISCONNECT;
2611	}
2612	pci_set_master(pdev);
2613
2614	igbvf_reset(adapter);
2615
2616	return PCI_ERS_RESULT_RECOVERED;
2617}
2618
2619/**
2620 * igbvf_io_resume - called when traffic can start flowing again.
2621 * @pdev: Pointer to PCI device
2622 *
2623 * This callback is called when the error recovery driver tells us that
2624 * its OK to resume normal operation. Implementation resembles the
2625 * second-half of the igbvf_resume routine.
2626 */
2627static void igbvf_io_resume(struct pci_dev *pdev)
2628{
2629	struct net_device *netdev = pci_get_drvdata(pdev);
2630	struct igbvf_adapter *adapter = netdev_priv(netdev);
2631
2632	if (netif_running(netdev)) {
2633		if (igbvf_up(adapter)) {
2634			dev_err(&pdev->dev,
2635				"can't bring device back up after reset\n");
2636			return;
2637		}
2638	}
2639
2640	netif_device_attach(netdev);
2641}
2642
2643static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2644{
2645	struct e1000_hw *hw = &adapter->hw;
2646	struct net_device *netdev = adapter->netdev;
2647	struct pci_dev *pdev = adapter->pdev;
2648
2649	if (hw->mac.type == e1000_vfadapt_i350)
2650		dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2651	else
2652		dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2653	dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2654}
2655
2656static int igbvf_set_features(struct net_device *netdev,
2657			      netdev_features_t features)
2658{
2659	struct igbvf_adapter *adapter = netdev_priv(netdev);
2660
2661	if (features & NETIF_F_RXCSUM)
2662		adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2663	else
2664		adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2665
2666	return 0;
2667}
2668
2669#define IGBVF_MAX_MAC_HDR_LEN		127
2670#define IGBVF_MAX_NETWORK_HDR_LEN	511
2671
2672static netdev_features_t
2673igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2674		     netdev_features_t features)
2675{
2676	unsigned int network_hdr_len, mac_hdr_len;
2677
2678	/* Make certain the headers can be described by a context descriptor */
2679	mac_hdr_len = skb_network_header(skb) - skb->data;
2680	if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2681		return features & ~(NETIF_F_HW_CSUM |
2682				    NETIF_F_SCTP_CRC |
2683				    NETIF_F_HW_VLAN_CTAG_TX |
2684				    NETIF_F_TSO |
2685				    NETIF_F_TSO6);
2686
2687	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2688	if (unlikely(network_hdr_len >  IGBVF_MAX_NETWORK_HDR_LEN))
2689		return features & ~(NETIF_F_HW_CSUM |
2690				    NETIF_F_SCTP_CRC |
2691				    NETIF_F_TSO |
2692				    NETIF_F_TSO6);
2693
2694	/* We can only support IPV4 TSO in tunnels if we can mangle the
2695	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2696	 */
2697	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2698		features &= ~NETIF_F_TSO;
2699
2700	return features;
2701}
2702
2703static const struct net_device_ops igbvf_netdev_ops = {
2704	.ndo_open		= igbvf_open,
2705	.ndo_stop		= igbvf_close,
2706	.ndo_start_xmit		= igbvf_xmit_frame,
2707	.ndo_set_rx_mode	= igbvf_set_rx_mode,
 
2708	.ndo_set_mac_address	= igbvf_set_mac,
2709	.ndo_change_mtu		= igbvf_change_mtu,
2710	.ndo_do_ioctl		= igbvf_ioctl,
2711	.ndo_tx_timeout		= igbvf_tx_timeout,
2712	.ndo_vlan_rx_add_vid	= igbvf_vlan_rx_add_vid,
2713	.ndo_vlan_rx_kill_vid	= igbvf_vlan_rx_kill_vid,
2714#ifdef CONFIG_NET_POLL_CONTROLLER
2715	.ndo_poll_controller	= igbvf_netpoll,
2716#endif
2717	.ndo_set_features	= igbvf_set_features,
2718	.ndo_features_check	= igbvf_features_check,
2719};
2720
2721/**
2722 * igbvf_probe - Device Initialization Routine
2723 * @pdev: PCI device information struct
2724 * @ent: entry in igbvf_pci_tbl
2725 *
2726 * Returns 0 on success, negative on failure
2727 *
2728 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2729 * The OS initialization, configuring of the adapter private structure,
2730 * and a hardware reset occur.
2731 **/
2732static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2733{
2734	struct net_device *netdev;
2735	struct igbvf_adapter *adapter;
2736	struct e1000_hw *hw;
2737	const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2738
2739	static int cards_found;
2740	int err, pci_using_dac;
2741
2742	err = pci_enable_device_mem(pdev);
2743	if (err)
2744		return err;
2745
2746	pci_using_dac = 0;
2747	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2748	if (!err) {
2749		pci_using_dac = 1;
2750	} else {
2751		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2752		if (err) {
2753			dev_err(&pdev->dev,
2754				"No usable DMA configuration, aborting\n");
2755			goto err_dma;
2756		}
2757	}
2758
2759	err = pci_request_regions(pdev, igbvf_driver_name);
2760	if (err)
2761		goto err_pci_reg;
2762
2763	pci_set_master(pdev);
2764
2765	err = -ENOMEM;
2766	netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2767	if (!netdev)
2768		goto err_alloc_etherdev;
2769
2770	SET_NETDEV_DEV(netdev, &pdev->dev);
2771
2772	pci_set_drvdata(pdev, netdev);
2773	adapter = netdev_priv(netdev);
2774	hw = &adapter->hw;
2775	adapter->netdev = netdev;
2776	adapter->pdev = pdev;
2777	adapter->ei = ei;
2778	adapter->pba = ei->pba;
2779	adapter->flags = ei->flags;
2780	adapter->hw.back = adapter;
2781	adapter->hw.mac.type = ei->mac;
2782	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2783
2784	/* PCI config space info */
2785
2786	hw->vendor_id = pdev->vendor;
2787	hw->device_id = pdev->device;
2788	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2789	hw->subsystem_device_id = pdev->subsystem_device;
2790	hw->revision_id = pdev->revision;
2791
2792	err = -EIO;
2793	adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2794				      pci_resource_len(pdev, 0));
2795
2796	if (!adapter->hw.hw_addr)
2797		goto err_ioremap;
2798
2799	if (ei->get_variants) {
2800		err = ei->get_variants(adapter);
2801		if (err)
2802			goto err_get_variants;
2803	}
2804
2805	/* setup adapter struct */
2806	err = igbvf_sw_init(adapter);
2807	if (err)
2808		goto err_sw_init;
2809
2810	/* construct the net_device struct */
2811	netdev->netdev_ops = &igbvf_netdev_ops;
2812
2813	igbvf_set_ethtool_ops(netdev);
2814	netdev->watchdog_timeo = 5 * HZ;
2815	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2816
2817	adapter->bd_number = cards_found++;
2818
2819	netdev->hw_features = NETIF_F_SG |
2820			      NETIF_F_TSO |
2821			      NETIF_F_TSO6 |
2822			      NETIF_F_RXCSUM |
2823			      NETIF_F_HW_CSUM |
2824			      NETIF_F_SCTP_CRC;
2825
2826#define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2827				    NETIF_F_GSO_GRE_CSUM | \
2828				    NETIF_F_GSO_IPXIP4 | \
2829				    NETIF_F_GSO_IPXIP6 | \
2830				    NETIF_F_GSO_UDP_TUNNEL | \
2831				    NETIF_F_GSO_UDP_TUNNEL_CSUM)
2832
2833	netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2834	netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2835			       IGBVF_GSO_PARTIAL_FEATURES;
2836
2837	netdev->features = netdev->hw_features;
2838
2839	if (pci_using_dac)
2840		netdev->features |= NETIF_F_HIGHDMA;
2841
2842	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2843	netdev->mpls_features |= NETIF_F_HW_CSUM;
2844	netdev->hw_enc_features |= netdev->vlan_features;
2845
2846	/* set this bit last since it cannot be part of vlan_features */
2847	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2848			    NETIF_F_HW_VLAN_CTAG_RX |
2849			    NETIF_F_HW_VLAN_CTAG_TX;
2850
2851	/* MTU range: 68 - 9216 */
2852	netdev->min_mtu = ETH_MIN_MTU;
2853	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2854
2855	spin_lock_bh(&hw->mbx_lock);
 
2856
2857	/*reset the controller to put the device in a known good state */
2858	err = hw->mac.ops.reset_hw(hw);
2859	if (err) {
2860		dev_info(&pdev->dev,
2861			 "PF still in reset state. Is the PF interface up?\n");
2862	} else {
2863		err = hw->mac.ops.read_mac_addr(hw);
2864		if (err)
2865			dev_info(&pdev->dev, "Error reading MAC address.\n");
2866		else if (is_zero_ether_addr(adapter->hw.mac.addr))
2867			dev_info(&pdev->dev,
2868				 "MAC address not assigned by administrator.\n");
2869		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2870		       netdev->addr_len);
2871	}
2872
2873	spin_unlock_bh(&hw->mbx_lock);
2874
2875	if (!is_valid_ether_addr(netdev->dev_addr)) {
2876		dev_info(&pdev->dev, "Assigning random MAC address.\n");
2877		eth_hw_addr_random(netdev);
2878		memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2879		       netdev->addr_len);
2880	}
2881
2882	timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
 
2883
2884	INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2885	INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2886
2887	/* ring size defaults */
2888	adapter->rx_ring->count = 1024;
2889	adapter->tx_ring->count = 1024;
2890
2891	/* reset the hardware with the new settings */
2892	igbvf_reset(adapter);
2893
2894	/* set hardware-specific flags */
2895	if (adapter->hw.mac.type == e1000_vfadapt_i350)
2896		adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2897
2898	strcpy(netdev->name, "eth%d");
2899	err = register_netdev(netdev);
2900	if (err)
2901		goto err_hw_init;
2902
2903	/* tell the stack to leave us alone until igbvf_open() is called */
2904	netif_carrier_off(netdev);
2905	netif_stop_queue(netdev);
2906
2907	igbvf_print_device_info(adapter);
2908
2909	igbvf_initialize_last_counter_stats(adapter);
2910
2911	return 0;
2912
2913err_hw_init:
2914	kfree(adapter->tx_ring);
2915	kfree(adapter->rx_ring);
2916err_sw_init:
2917	igbvf_reset_interrupt_capability(adapter);
2918err_get_variants:
2919	iounmap(adapter->hw.hw_addr);
2920err_ioremap:
2921	free_netdev(netdev);
2922err_alloc_etherdev:
2923	pci_release_regions(pdev);
2924err_pci_reg:
2925err_dma:
2926	pci_disable_device(pdev);
2927	return err;
2928}
2929
2930/**
2931 * igbvf_remove - Device Removal Routine
2932 * @pdev: PCI device information struct
2933 *
2934 * igbvf_remove is called by the PCI subsystem to alert the driver
2935 * that it should release a PCI device.  The could be caused by a
2936 * Hot-Plug event, or because the driver is going to be removed from
2937 * memory.
2938 **/
2939static void igbvf_remove(struct pci_dev *pdev)
2940{
2941	struct net_device *netdev = pci_get_drvdata(pdev);
2942	struct igbvf_adapter *adapter = netdev_priv(netdev);
2943	struct e1000_hw *hw = &adapter->hw;
2944
2945	/* The watchdog timer may be rescheduled, so explicitly
2946	 * disable it from being rescheduled.
2947	 */
2948	set_bit(__IGBVF_DOWN, &adapter->state);
2949	del_timer_sync(&adapter->watchdog_timer);
2950
2951	cancel_work_sync(&adapter->reset_task);
2952	cancel_work_sync(&adapter->watchdog_task);
2953
2954	unregister_netdev(netdev);
2955
2956	igbvf_reset_interrupt_capability(adapter);
2957
2958	/* it is important to delete the NAPI struct prior to freeing the
2959	 * Rx ring so that you do not end up with null pointer refs
2960	 */
2961	netif_napi_del(&adapter->rx_ring->napi);
2962	kfree(adapter->tx_ring);
2963	kfree(adapter->rx_ring);
2964
2965	iounmap(hw->hw_addr);
2966	if (hw->flash_address)
2967		iounmap(hw->flash_address);
2968	pci_release_regions(pdev);
2969
2970	free_netdev(netdev);
2971
2972	pci_disable_device(pdev);
2973}
2974
2975/* PCI Error Recovery (ERS) */
2976static const struct pci_error_handlers igbvf_err_handler = {
2977	.error_detected = igbvf_io_error_detected,
2978	.slot_reset = igbvf_io_slot_reset,
2979	.resume = igbvf_io_resume,
2980};
2981
2982static const struct pci_device_id igbvf_pci_tbl[] = {
2983	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2984	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2985	{ } /* terminate list */
2986};
2987MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2988
2989/* PCI Device API Driver */
2990static struct pci_driver igbvf_driver = {
2991	.name		= igbvf_driver_name,
2992	.id_table	= igbvf_pci_tbl,
2993	.probe		= igbvf_probe,
2994	.remove		= igbvf_remove,
2995#ifdef CONFIG_PM
2996	/* Power Management Hooks */
2997	.suspend	= igbvf_suspend,
2998	.resume		= igbvf_resume,
2999#endif
3000	.shutdown	= igbvf_shutdown,
3001	.err_handler	= &igbvf_err_handler
3002};
3003
3004/**
3005 * igbvf_init_module - Driver Registration Routine
3006 *
3007 * igbvf_init_module is the first routine called when the driver is
3008 * loaded. All it does is register with the PCI subsystem.
3009 **/
3010static int __init igbvf_init_module(void)
3011{
3012	int ret;
3013
3014	pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
3015	pr_info("%s\n", igbvf_copyright);
3016
3017	ret = pci_register_driver(&igbvf_driver);
3018
3019	return ret;
3020}
3021module_init(igbvf_init_module);
3022
3023/**
3024 * igbvf_exit_module - Driver Exit Cleanup Routine
3025 *
3026 * igbvf_exit_module is called just before the driver is removed
3027 * from memory.
3028 **/
3029static void __exit igbvf_exit_module(void)
3030{
3031	pci_unregister_driver(&igbvf_driver);
3032}
3033module_exit(igbvf_exit_module);
3034
3035MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
3036MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
3037MODULE_LICENSE("GPL");
3038MODULE_VERSION(DRV_VERSION);
3039
3040/* netdev.c */
v4.6
 
   1/*******************************************************************************
   2
   3  Intel(R) 82576 Virtual Function Linux driver
   4  Copyright(c) 2009 - 2012 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, see <http://www.gnu.org/licenses/>.
  17
  18  The full GNU General Public License is included in this distribution in
  19  the file called "COPYING".
  20
  21  Contact Information:
  22  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  23  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  24
  25*******************************************************************************/
  26
  27#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  28
  29#include <linux/module.h>
  30#include <linux/types.h>
  31#include <linux/init.h>
  32#include <linux/pci.h>
  33#include <linux/vmalloc.h>
  34#include <linux/pagemap.h>
  35#include <linux/delay.h>
  36#include <linux/netdevice.h>
  37#include <linux/tcp.h>
  38#include <linux/ipv6.h>
  39#include <linux/slab.h>
  40#include <net/checksum.h>
  41#include <net/ip6_checksum.h>
  42#include <linux/mii.h>
  43#include <linux/ethtool.h>
  44#include <linux/if_vlan.h>
  45#include <linux/prefetch.h>
  46#include <linux/sctp.h>
  47
  48#include "igbvf.h"
  49
  50#define DRV_VERSION "2.0.2-k"
  51char igbvf_driver_name[] = "igbvf";
  52const char igbvf_driver_version[] = DRV_VERSION;
  53static const char igbvf_driver_string[] =
  54		  "Intel(R) Gigabit Virtual Function Network Driver";
  55static const char igbvf_copyright[] =
  56		  "Copyright (c) 2009 - 2012 Intel Corporation.";
  57
  58#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  59static int debug = -1;
  60module_param(debug, int, 0);
  61MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  62
  63static int igbvf_poll(struct napi_struct *napi, int budget);
  64static void igbvf_reset(struct igbvf_adapter *);
  65static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
  66static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
  67
  68static struct igbvf_info igbvf_vf_info = {
  69	.mac		= e1000_vfadapt,
  70	.flags		= 0,
  71	.pba		= 10,
  72	.init_ops	= e1000_init_function_pointers_vf,
  73};
  74
  75static struct igbvf_info igbvf_i350_vf_info = {
  76	.mac		= e1000_vfadapt_i350,
  77	.flags		= 0,
  78	.pba		= 10,
  79	.init_ops	= e1000_init_function_pointers_vf,
  80};
  81
  82static const struct igbvf_info *igbvf_info_tbl[] = {
  83	[board_vf]	= &igbvf_vf_info,
  84	[board_i350_vf]	= &igbvf_i350_vf_info,
  85};
  86
  87/**
  88 * igbvf_desc_unused - calculate if we have unused descriptors
  89 * @rx_ring: address of receive ring structure
  90 **/
  91static int igbvf_desc_unused(struct igbvf_ring *ring)
  92{
  93	if (ring->next_to_clean > ring->next_to_use)
  94		return ring->next_to_clean - ring->next_to_use - 1;
  95
  96	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
  97}
  98
  99/**
 100 * igbvf_receive_skb - helper function to handle Rx indications
 101 * @adapter: board private structure
 102 * @status: descriptor status field as written by hardware
 103 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 104 * @skb: pointer to sk_buff to be indicated to stack
 105 **/
 106static void igbvf_receive_skb(struct igbvf_adapter *adapter,
 107			      struct net_device *netdev,
 108			      struct sk_buff *skb,
 109			      u32 status, u16 vlan)
 110{
 111	u16 vid;
 112
 113	if (status & E1000_RXD_STAT_VP) {
 114		if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
 115		    (status & E1000_RXDEXT_STATERR_LB))
 116			vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
 117		else
 118			vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
 119		if (test_bit(vid, adapter->active_vlans))
 120			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
 121	}
 122
 123	napi_gro_receive(&adapter->rx_ring->napi, skb);
 124}
 125
 126static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
 127					 u32 status_err, struct sk_buff *skb)
 128{
 129	skb_checksum_none_assert(skb);
 130
 131	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
 132	if ((status_err & E1000_RXD_STAT_IXSM) ||
 133	    (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
 134		return;
 135
 136	/* TCP/UDP checksum error bit is set */
 137	if (status_err &
 138	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
 139		/* let the stack verify checksum errors */
 140		adapter->hw_csum_err++;
 141		return;
 142	}
 143
 144	/* It must be a TCP or UDP packet with a valid checksum */
 145	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
 146		skb->ip_summed = CHECKSUM_UNNECESSARY;
 147
 148	adapter->hw_csum_good++;
 149}
 150
 151/**
 152 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
 153 * @rx_ring: address of ring structure to repopulate
 154 * @cleaned_count: number of buffers to repopulate
 155 **/
 156static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
 157				   int cleaned_count)
 158{
 159	struct igbvf_adapter *adapter = rx_ring->adapter;
 160	struct net_device *netdev = adapter->netdev;
 161	struct pci_dev *pdev = adapter->pdev;
 162	union e1000_adv_rx_desc *rx_desc;
 163	struct igbvf_buffer *buffer_info;
 164	struct sk_buff *skb;
 165	unsigned int i;
 166	int bufsz;
 167
 168	i = rx_ring->next_to_use;
 169	buffer_info = &rx_ring->buffer_info[i];
 170
 171	if (adapter->rx_ps_hdr_size)
 172		bufsz = adapter->rx_ps_hdr_size;
 173	else
 174		bufsz = adapter->rx_buffer_len;
 175
 176	while (cleaned_count--) {
 177		rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
 178
 179		if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
 180			if (!buffer_info->page) {
 181				buffer_info->page = alloc_page(GFP_ATOMIC);
 182				if (!buffer_info->page) {
 183					adapter->alloc_rx_buff_failed++;
 184					goto no_buffers;
 185				}
 186				buffer_info->page_offset = 0;
 187			} else {
 188				buffer_info->page_offset ^= PAGE_SIZE / 2;
 189			}
 190			buffer_info->page_dma =
 191				dma_map_page(&pdev->dev, buffer_info->page,
 192					     buffer_info->page_offset,
 193					     PAGE_SIZE / 2,
 194					     DMA_FROM_DEVICE);
 195			if (dma_mapping_error(&pdev->dev,
 196					      buffer_info->page_dma)) {
 197				__free_page(buffer_info->page);
 198				buffer_info->page = NULL;
 199				dev_err(&pdev->dev, "RX DMA map failed\n");
 200				break;
 201			}
 202		}
 203
 204		if (!buffer_info->skb) {
 205			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
 206			if (!skb) {
 207				adapter->alloc_rx_buff_failed++;
 208				goto no_buffers;
 209			}
 210
 211			buffer_info->skb = skb;
 212			buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 213							  bufsz,
 214							  DMA_FROM_DEVICE);
 215			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 216				dev_kfree_skb(buffer_info->skb);
 217				buffer_info->skb = NULL;
 218				dev_err(&pdev->dev, "RX DMA map failed\n");
 219				goto no_buffers;
 220			}
 221		}
 222		/* Refresh the desc even if buffer_addrs didn't change because
 223		 * each write-back erases this info.
 224		 */
 225		if (adapter->rx_ps_hdr_size) {
 226			rx_desc->read.pkt_addr =
 227			     cpu_to_le64(buffer_info->page_dma);
 228			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
 229		} else {
 230			rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
 231			rx_desc->read.hdr_addr = 0;
 232		}
 233
 234		i++;
 235		if (i == rx_ring->count)
 236			i = 0;
 237		buffer_info = &rx_ring->buffer_info[i];
 238	}
 239
 240no_buffers:
 241	if (rx_ring->next_to_use != i) {
 242		rx_ring->next_to_use = i;
 243		if (i == 0)
 244			i = (rx_ring->count - 1);
 245		else
 246			i--;
 247
 248		/* Force memory writes to complete before letting h/w
 249		 * know there are new descriptors to fetch.  (Only
 250		 * applicable for weak-ordered memory model archs,
 251		 * such as IA-64).
 252		*/
 253		wmb();
 254		writel(i, adapter->hw.hw_addr + rx_ring->tail);
 255	}
 256}
 257
 258/**
 259 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
 260 * @adapter: board private structure
 261 *
 262 * the return value indicates whether actual cleaning was done, there
 263 * is no guarantee that everything was cleaned
 264 **/
 265static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
 266			       int *work_done, int work_to_do)
 267{
 268	struct igbvf_ring *rx_ring = adapter->rx_ring;
 269	struct net_device *netdev = adapter->netdev;
 270	struct pci_dev *pdev = adapter->pdev;
 271	union e1000_adv_rx_desc *rx_desc, *next_rxd;
 272	struct igbvf_buffer *buffer_info, *next_buffer;
 273	struct sk_buff *skb;
 274	bool cleaned = false;
 275	int cleaned_count = 0;
 276	unsigned int total_bytes = 0, total_packets = 0;
 277	unsigned int i;
 278	u32 length, hlen, staterr;
 279
 280	i = rx_ring->next_to_clean;
 281	rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
 282	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 283
 284	while (staterr & E1000_RXD_STAT_DD) {
 285		if (*work_done >= work_to_do)
 286			break;
 287		(*work_done)++;
 288		rmb(); /* read descriptor and rx_buffer_info after status DD */
 289
 290		buffer_info = &rx_ring->buffer_info[i];
 291
 292		/* HW will not DMA in data larger than the given buffer, even
 293		 * if it parses the (NFS, of course) header to be larger.  In
 294		 * that case, it fills the header buffer and spills the rest
 295		 * into the page.
 296		 */
 297		hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
 298		       & E1000_RXDADV_HDRBUFLEN_MASK) >>
 299		       E1000_RXDADV_HDRBUFLEN_SHIFT;
 300		if (hlen > adapter->rx_ps_hdr_size)
 301			hlen = adapter->rx_ps_hdr_size;
 302
 303		length = le16_to_cpu(rx_desc->wb.upper.length);
 304		cleaned = true;
 305		cleaned_count++;
 306
 307		skb = buffer_info->skb;
 308		prefetch(skb->data - NET_IP_ALIGN);
 309		buffer_info->skb = NULL;
 310		if (!adapter->rx_ps_hdr_size) {
 311			dma_unmap_single(&pdev->dev, buffer_info->dma,
 312					 adapter->rx_buffer_len,
 313					 DMA_FROM_DEVICE);
 314			buffer_info->dma = 0;
 315			skb_put(skb, length);
 316			goto send_up;
 317		}
 318
 319		if (!skb_shinfo(skb)->nr_frags) {
 320			dma_unmap_single(&pdev->dev, buffer_info->dma,
 321					 adapter->rx_ps_hdr_size,
 322					 DMA_FROM_DEVICE);
 323			buffer_info->dma = 0;
 324			skb_put(skb, hlen);
 325		}
 326
 327		if (length) {
 328			dma_unmap_page(&pdev->dev, buffer_info->page_dma,
 329				       PAGE_SIZE / 2,
 330				       DMA_FROM_DEVICE);
 331			buffer_info->page_dma = 0;
 332
 333			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
 334					   buffer_info->page,
 335					   buffer_info->page_offset,
 336					   length);
 337
 338			if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
 339			    (page_count(buffer_info->page) != 1))
 340				buffer_info->page = NULL;
 341			else
 342				get_page(buffer_info->page);
 343
 344			skb->len += length;
 345			skb->data_len += length;
 346			skb->truesize += PAGE_SIZE / 2;
 347		}
 348send_up:
 349		i++;
 350		if (i == rx_ring->count)
 351			i = 0;
 352		next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
 353		prefetch(next_rxd);
 354		next_buffer = &rx_ring->buffer_info[i];
 355
 356		if (!(staterr & E1000_RXD_STAT_EOP)) {
 357			buffer_info->skb = next_buffer->skb;
 358			buffer_info->dma = next_buffer->dma;
 359			next_buffer->skb = skb;
 360			next_buffer->dma = 0;
 361			goto next_desc;
 362		}
 363
 364		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
 365			dev_kfree_skb_irq(skb);
 366			goto next_desc;
 367		}
 368
 369		total_bytes += skb->len;
 370		total_packets++;
 371
 372		igbvf_rx_checksum_adv(adapter, staterr, skb);
 373
 374		skb->protocol = eth_type_trans(skb, netdev);
 375
 376		igbvf_receive_skb(adapter, netdev, skb, staterr,
 377				  rx_desc->wb.upper.vlan);
 378
 379next_desc:
 380		rx_desc->wb.upper.status_error = 0;
 381
 382		/* return some buffers to hardware, one at a time is too slow */
 383		if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
 384			igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
 385			cleaned_count = 0;
 386		}
 387
 388		/* use prefetched values */
 389		rx_desc = next_rxd;
 390		buffer_info = next_buffer;
 391
 392		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 393	}
 394
 395	rx_ring->next_to_clean = i;
 396	cleaned_count = igbvf_desc_unused(rx_ring);
 397
 398	if (cleaned_count)
 399		igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
 400
 401	adapter->total_rx_packets += total_packets;
 402	adapter->total_rx_bytes += total_bytes;
 403	adapter->net_stats.rx_bytes += total_bytes;
 404	adapter->net_stats.rx_packets += total_packets;
 405	return cleaned;
 406}
 407
 408static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
 409			    struct igbvf_buffer *buffer_info)
 410{
 411	if (buffer_info->dma) {
 412		if (buffer_info->mapped_as_page)
 413			dma_unmap_page(&adapter->pdev->dev,
 414				       buffer_info->dma,
 415				       buffer_info->length,
 416				       DMA_TO_DEVICE);
 417		else
 418			dma_unmap_single(&adapter->pdev->dev,
 419					 buffer_info->dma,
 420					 buffer_info->length,
 421					 DMA_TO_DEVICE);
 422		buffer_info->dma = 0;
 423	}
 424	if (buffer_info->skb) {
 425		dev_kfree_skb_any(buffer_info->skb);
 426		buffer_info->skb = NULL;
 427	}
 428	buffer_info->time_stamp = 0;
 429}
 430
 431/**
 432 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
 433 * @adapter: board private structure
 434 *
 435 * Return 0 on success, negative on failure
 436 **/
 437int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
 438			     struct igbvf_ring *tx_ring)
 439{
 440	struct pci_dev *pdev = adapter->pdev;
 441	int size;
 442
 443	size = sizeof(struct igbvf_buffer) * tx_ring->count;
 444	tx_ring->buffer_info = vzalloc(size);
 445	if (!tx_ring->buffer_info)
 446		goto err;
 447
 448	/* round up to nearest 4K */
 449	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
 450	tx_ring->size = ALIGN(tx_ring->size, 4096);
 451
 452	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
 453					   &tx_ring->dma, GFP_KERNEL);
 454	if (!tx_ring->desc)
 455		goto err;
 456
 457	tx_ring->adapter = adapter;
 458	tx_ring->next_to_use = 0;
 459	tx_ring->next_to_clean = 0;
 460
 461	return 0;
 462err:
 463	vfree(tx_ring->buffer_info);
 464	dev_err(&adapter->pdev->dev,
 465		"Unable to allocate memory for the transmit descriptor ring\n");
 466	return -ENOMEM;
 467}
 468
 469/**
 470 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
 471 * @adapter: board private structure
 472 *
 473 * Returns 0 on success, negative on failure
 474 **/
 475int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
 476			     struct igbvf_ring *rx_ring)
 477{
 478	struct pci_dev *pdev = adapter->pdev;
 479	int size, desc_len;
 480
 481	size = sizeof(struct igbvf_buffer) * rx_ring->count;
 482	rx_ring->buffer_info = vzalloc(size);
 483	if (!rx_ring->buffer_info)
 484		goto err;
 485
 486	desc_len = sizeof(union e1000_adv_rx_desc);
 487
 488	/* Round up to nearest 4K */
 489	rx_ring->size = rx_ring->count * desc_len;
 490	rx_ring->size = ALIGN(rx_ring->size, 4096);
 491
 492	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
 493					   &rx_ring->dma, GFP_KERNEL);
 494	if (!rx_ring->desc)
 495		goto err;
 496
 497	rx_ring->next_to_clean = 0;
 498	rx_ring->next_to_use = 0;
 499
 500	rx_ring->adapter = adapter;
 501
 502	return 0;
 503
 504err:
 505	vfree(rx_ring->buffer_info);
 506	rx_ring->buffer_info = NULL;
 507	dev_err(&adapter->pdev->dev,
 508		"Unable to allocate memory for the receive descriptor ring\n");
 509	return -ENOMEM;
 510}
 511
 512/**
 513 * igbvf_clean_tx_ring - Free Tx Buffers
 514 * @tx_ring: ring to be cleaned
 515 **/
 516static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
 517{
 518	struct igbvf_adapter *adapter = tx_ring->adapter;
 519	struct igbvf_buffer *buffer_info;
 520	unsigned long size;
 521	unsigned int i;
 522
 523	if (!tx_ring->buffer_info)
 524		return;
 525
 526	/* Free all the Tx ring sk_buffs */
 527	for (i = 0; i < tx_ring->count; i++) {
 528		buffer_info = &tx_ring->buffer_info[i];
 529		igbvf_put_txbuf(adapter, buffer_info);
 530	}
 531
 532	size = sizeof(struct igbvf_buffer) * tx_ring->count;
 533	memset(tx_ring->buffer_info, 0, size);
 534
 535	/* Zero out the descriptor ring */
 536	memset(tx_ring->desc, 0, tx_ring->size);
 537
 538	tx_ring->next_to_use = 0;
 539	tx_ring->next_to_clean = 0;
 540
 541	writel(0, adapter->hw.hw_addr + tx_ring->head);
 542	writel(0, adapter->hw.hw_addr + tx_ring->tail);
 543}
 544
 545/**
 546 * igbvf_free_tx_resources - Free Tx Resources per Queue
 547 * @tx_ring: ring to free resources from
 548 *
 549 * Free all transmit software resources
 550 **/
 551void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
 552{
 553	struct pci_dev *pdev = tx_ring->adapter->pdev;
 554
 555	igbvf_clean_tx_ring(tx_ring);
 556
 557	vfree(tx_ring->buffer_info);
 558	tx_ring->buffer_info = NULL;
 559
 560	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
 561			  tx_ring->dma);
 562
 563	tx_ring->desc = NULL;
 564}
 565
 566/**
 567 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
 568 * @adapter: board private structure
 569 **/
 570static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
 571{
 572	struct igbvf_adapter *adapter = rx_ring->adapter;
 573	struct igbvf_buffer *buffer_info;
 574	struct pci_dev *pdev = adapter->pdev;
 575	unsigned long size;
 576	unsigned int i;
 577
 578	if (!rx_ring->buffer_info)
 579		return;
 580
 581	/* Free all the Rx ring sk_buffs */
 582	for (i = 0; i < rx_ring->count; i++) {
 583		buffer_info = &rx_ring->buffer_info[i];
 584		if (buffer_info->dma) {
 585			if (adapter->rx_ps_hdr_size) {
 586				dma_unmap_single(&pdev->dev, buffer_info->dma,
 587						 adapter->rx_ps_hdr_size,
 588						 DMA_FROM_DEVICE);
 589			} else {
 590				dma_unmap_single(&pdev->dev, buffer_info->dma,
 591						 adapter->rx_buffer_len,
 592						 DMA_FROM_DEVICE);
 593			}
 594			buffer_info->dma = 0;
 595		}
 596
 597		if (buffer_info->skb) {
 598			dev_kfree_skb(buffer_info->skb);
 599			buffer_info->skb = NULL;
 600		}
 601
 602		if (buffer_info->page) {
 603			if (buffer_info->page_dma)
 604				dma_unmap_page(&pdev->dev,
 605					       buffer_info->page_dma,
 606					       PAGE_SIZE / 2,
 607					       DMA_FROM_DEVICE);
 608			put_page(buffer_info->page);
 609			buffer_info->page = NULL;
 610			buffer_info->page_dma = 0;
 611			buffer_info->page_offset = 0;
 612		}
 613	}
 614
 615	size = sizeof(struct igbvf_buffer) * rx_ring->count;
 616	memset(rx_ring->buffer_info, 0, size);
 617
 618	/* Zero out the descriptor ring */
 619	memset(rx_ring->desc, 0, rx_ring->size);
 620
 621	rx_ring->next_to_clean = 0;
 622	rx_ring->next_to_use = 0;
 623
 624	writel(0, adapter->hw.hw_addr + rx_ring->head);
 625	writel(0, adapter->hw.hw_addr + rx_ring->tail);
 626}
 627
 628/**
 629 * igbvf_free_rx_resources - Free Rx Resources
 630 * @rx_ring: ring to clean the resources from
 631 *
 632 * Free all receive software resources
 633 **/
 634
 635void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
 636{
 637	struct pci_dev *pdev = rx_ring->adapter->pdev;
 638
 639	igbvf_clean_rx_ring(rx_ring);
 640
 641	vfree(rx_ring->buffer_info);
 642	rx_ring->buffer_info = NULL;
 643
 644	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
 645			  rx_ring->dma);
 646	rx_ring->desc = NULL;
 647}
 648
 649/**
 650 * igbvf_update_itr - update the dynamic ITR value based on statistics
 651 * @adapter: pointer to adapter
 652 * @itr_setting: current adapter->itr
 653 * @packets: the number of packets during this measurement interval
 654 * @bytes: the number of bytes during this measurement interval
 655 *
 656 * Stores a new ITR value based on packets and byte counts during the last
 657 * interrupt.  The advantage of per interrupt computation is faster updates
 658 * and more accurate ITR for the current traffic pattern.  Constants in this
 659 * function were computed based on theoretical maximum wire speed and thresholds
 660 * were set based on testing data as well as attempting to minimize response
 661 * time while increasing bulk throughput.
 662 **/
 663static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
 664					   enum latency_range itr_setting,
 665					   int packets, int bytes)
 666{
 667	enum latency_range retval = itr_setting;
 668
 669	if (packets == 0)
 670		goto update_itr_done;
 671
 672	switch (itr_setting) {
 673	case lowest_latency:
 674		/* handle TSO and jumbo frames */
 675		if (bytes/packets > 8000)
 676			retval = bulk_latency;
 677		else if ((packets < 5) && (bytes > 512))
 678			retval = low_latency;
 679		break;
 680	case low_latency:  /* 50 usec aka 20000 ints/s */
 681		if (bytes > 10000) {
 682			/* this if handles the TSO accounting */
 683			if (bytes/packets > 8000)
 684				retval = bulk_latency;
 685			else if ((packets < 10) || ((bytes/packets) > 1200))
 686				retval = bulk_latency;
 687			else if ((packets > 35))
 688				retval = lowest_latency;
 689		} else if (bytes/packets > 2000) {
 690			retval = bulk_latency;
 691		} else if (packets <= 2 && bytes < 512) {
 692			retval = lowest_latency;
 693		}
 694		break;
 695	case bulk_latency: /* 250 usec aka 4000 ints/s */
 696		if (bytes > 25000) {
 697			if (packets > 35)
 698				retval = low_latency;
 699		} else if (bytes < 6000) {
 700			retval = low_latency;
 701		}
 702		break;
 703	default:
 704		break;
 705	}
 706
 707update_itr_done:
 708	return retval;
 709}
 710
 711static int igbvf_range_to_itr(enum latency_range current_range)
 712{
 713	int new_itr;
 714
 715	switch (current_range) {
 716	/* counts and packets in update_itr are dependent on these numbers */
 717	case lowest_latency:
 718		new_itr = IGBVF_70K_ITR;
 719		break;
 720	case low_latency:
 721		new_itr = IGBVF_20K_ITR;
 722		break;
 723	case bulk_latency:
 724		new_itr = IGBVF_4K_ITR;
 725		break;
 726	default:
 727		new_itr = IGBVF_START_ITR;
 728		break;
 729	}
 730	return new_itr;
 731}
 732
 733static void igbvf_set_itr(struct igbvf_adapter *adapter)
 734{
 735	u32 new_itr;
 736
 737	adapter->tx_ring->itr_range =
 738			igbvf_update_itr(adapter,
 739					 adapter->tx_ring->itr_val,
 740					 adapter->total_tx_packets,
 741					 adapter->total_tx_bytes);
 742
 743	/* conservative mode (itr 3) eliminates the lowest_latency setting */
 744	if (adapter->requested_itr == 3 &&
 745	    adapter->tx_ring->itr_range == lowest_latency)
 746		adapter->tx_ring->itr_range = low_latency;
 747
 748	new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
 749
 750	if (new_itr != adapter->tx_ring->itr_val) {
 751		u32 current_itr = adapter->tx_ring->itr_val;
 752		/* this attempts to bias the interrupt rate towards Bulk
 753		 * by adding intermediate steps when interrupt rate is
 754		 * increasing
 755		 */
 756		new_itr = new_itr > current_itr ?
 757			  min(current_itr + (new_itr >> 2), new_itr) :
 758			  new_itr;
 759		adapter->tx_ring->itr_val = new_itr;
 760
 761		adapter->tx_ring->set_itr = 1;
 762	}
 763
 764	adapter->rx_ring->itr_range =
 765			igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
 766					 adapter->total_rx_packets,
 767					 adapter->total_rx_bytes);
 768	if (adapter->requested_itr == 3 &&
 769	    adapter->rx_ring->itr_range == lowest_latency)
 770		adapter->rx_ring->itr_range = low_latency;
 771
 772	new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
 773
 774	if (new_itr != adapter->rx_ring->itr_val) {
 775		u32 current_itr = adapter->rx_ring->itr_val;
 776
 777		new_itr = new_itr > current_itr ?
 778			  min(current_itr + (new_itr >> 2), new_itr) :
 779			  new_itr;
 780		adapter->rx_ring->itr_val = new_itr;
 781
 782		adapter->rx_ring->set_itr = 1;
 783	}
 784}
 785
 786/**
 787 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
 788 * @adapter: board private structure
 789 *
 790 * returns true if ring is completely cleaned
 791 **/
 792static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
 793{
 794	struct igbvf_adapter *adapter = tx_ring->adapter;
 795	struct net_device *netdev = adapter->netdev;
 796	struct igbvf_buffer *buffer_info;
 797	struct sk_buff *skb;
 798	union e1000_adv_tx_desc *tx_desc, *eop_desc;
 799	unsigned int total_bytes = 0, total_packets = 0;
 800	unsigned int i, count = 0;
 801	bool cleaned = false;
 802
 803	i = tx_ring->next_to_clean;
 804	buffer_info = &tx_ring->buffer_info[i];
 805	eop_desc = buffer_info->next_to_watch;
 806
 807	do {
 808		/* if next_to_watch is not set then there is no work pending */
 809		if (!eop_desc)
 810			break;
 811
 812		/* prevent any other reads prior to eop_desc */
 813		read_barrier_depends();
 814
 815		/* if DD is not set pending work has not been completed */
 816		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
 817			break;
 818
 819		/* clear next_to_watch to prevent false hangs */
 820		buffer_info->next_to_watch = NULL;
 821
 822		for (cleaned = false; !cleaned; count++) {
 823			tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
 824			cleaned = (tx_desc == eop_desc);
 825			skb = buffer_info->skb;
 826
 827			if (skb) {
 828				unsigned int segs, bytecount;
 829
 830				/* gso_segs is currently only valid for tcp */
 831				segs = skb_shinfo(skb)->gso_segs ?: 1;
 832				/* multiply data chunks by size of headers */
 833				bytecount = ((segs - 1) * skb_headlen(skb)) +
 834					    skb->len;
 835				total_packets += segs;
 836				total_bytes += bytecount;
 837			}
 838
 839			igbvf_put_txbuf(adapter, buffer_info);
 840			tx_desc->wb.status = 0;
 841
 842			i++;
 843			if (i == tx_ring->count)
 844				i = 0;
 845
 846			buffer_info = &tx_ring->buffer_info[i];
 847		}
 848
 849		eop_desc = buffer_info->next_to_watch;
 850	} while (count < tx_ring->count);
 851
 852	tx_ring->next_to_clean = i;
 853
 854	if (unlikely(count && netif_carrier_ok(netdev) &&
 855	    igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
 856		/* Make sure that anybody stopping the queue after this
 857		 * sees the new next_to_clean.
 858		 */
 859		smp_mb();
 860		if (netif_queue_stopped(netdev) &&
 861		    !(test_bit(__IGBVF_DOWN, &adapter->state))) {
 862			netif_wake_queue(netdev);
 863			++adapter->restart_queue;
 864		}
 865	}
 866
 867	adapter->net_stats.tx_bytes += total_bytes;
 868	adapter->net_stats.tx_packets += total_packets;
 869	return count < tx_ring->count;
 870}
 871
 872static irqreturn_t igbvf_msix_other(int irq, void *data)
 873{
 874	struct net_device *netdev = data;
 875	struct igbvf_adapter *adapter = netdev_priv(netdev);
 876	struct e1000_hw *hw = &adapter->hw;
 877
 878	adapter->int_counter1++;
 879
 880	hw->mac.get_link_status = 1;
 881	if (!test_bit(__IGBVF_DOWN, &adapter->state))
 882		mod_timer(&adapter->watchdog_timer, jiffies + 1);
 883
 884	ew32(EIMS, adapter->eims_other);
 885
 886	return IRQ_HANDLED;
 887}
 888
 889static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
 890{
 891	struct net_device *netdev = data;
 892	struct igbvf_adapter *adapter = netdev_priv(netdev);
 893	struct e1000_hw *hw = &adapter->hw;
 894	struct igbvf_ring *tx_ring = adapter->tx_ring;
 895
 896	if (tx_ring->set_itr) {
 897		writel(tx_ring->itr_val,
 898		       adapter->hw.hw_addr + tx_ring->itr_register);
 899		adapter->tx_ring->set_itr = 0;
 900	}
 901
 902	adapter->total_tx_bytes = 0;
 903	adapter->total_tx_packets = 0;
 904
 905	/* auto mask will automatically re-enable the interrupt when we write
 906	 * EICS
 907	 */
 908	if (!igbvf_clean_tx_irq(tx_ring))
 909		/* Ring was not completely cleaned, so fire another interrupt */
 910		ew32(EICS, tx_ring->eims_value);
 911	else
 912		ew32(EIMS, tx_ring->eims_value);
 913
 914	return IRQ_HANDLED;
 915}
 916
 917static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
 918{
 919	struct net_device *netdev = data;
 920	struct igbvf_adapter *adapter = netdev_priv(netdev);
 921
 922	adapter->int_counter0++;
 923
 924	/* Write the ITR value calculated at the end of the
 925	 * previous interrupt.
 926	 */
 927	if (adapter->rx_ring->set_itr) {
 928		writel(adapter->rx_ring->itr_val,
 929		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
 930		adapter->rx_ring->set_itr = 0;
 931	}
 932
 933	if (napi_schedule_prep(&adapter->rx_ring->napi)) {
 934		adapter->total_rx_bytes = 0;
 935		adapter->total_rx_packets = 0;
 936		__napi_schedule(&adapter->rx_ring->napi);
 937	}
 938
 939	return IRQ_HANDLED;
 940}
 941
 942#define IGBVF_NO_QUEUE -1
 943
 944static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
 945				int tx_queue, int msix_vector)
 946{
 947	struct e1000_hw *hw = &adapter->hw;
 948	u32 ivar, index;
 949
 950	/* 82576 uses a table-based method for assigning vectors.
 951	 * Each queue has a single entry in the table to which we write
 952	 * a vector number along with a "valid" bit.  Sadly, the layout
 953	 * of the table is somewhat counterintuitive.
 954	 */
 955	if (rx_queue > IGBVF_NO_QUEUE) {
 956		index = (rx_queue >> 1);
 957		ivar = array_er32(IVAR0, index);
 958		if (rx_queue & 0x1) {
 959			/* vector goes into third byte of register */
 960			ivar = ivar & 0xFF00FFFF;
 961			ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
 962		} else {
 963			/* vector goes into low byte of register */
 964			ivar = ivar & 0xFFFFFF00;
 965			ivar |= msix_vector | E1000_IVAR_VALID;
 966		}
 967		adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
 968		array_ew32(IVAR0, index, ivar);
 969	}
 970	if (tx_queue > IGBVF_NO_QUEUE) {
 971		index = (tx_queue >> 1);
 972		ivar = array_er32(IVAR0, index);
 973		if (tx_queue & 0x1) {
 974			/* vector goes into high byte of register */
 975			ivar = ivar & 0x00FFFFFF;
 976			ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
 977		} else {
 978			/* vector goes into second byte of register */
 979			ivar = ivar & 0xFFFF00FF;
 980			ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
 981		}
 982		adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
 983		array_ew32(IVAR0, index, ivar);
 984	}
 985}
 986
 987/**
 988 * igbvf_configure_msix - Configure MSI-X hardware
 989 * @adapter: board private structure
 990 *
 991 * igbvf_configure_msix sets up the hardware to properly
 992 * generate MSI-X interrupts.
 993 **/
 994static void igbvf_configure_msix(struct igbvf_adapter *adapter)
 995{
 996	u32 tmp;
 997	struct e1000_hw *hw = &adapter->hw;
 998	struct igbvf_ring *tx_ring = adapter->tx_ring;
 999	struct igbvf_ring *rx_ring = adapter->rx_ring;
1000	int vector = 0;
1001
1002	adapter->eims_enable_mask = 0;
1003
1004	igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
1005	adapter->eims_enable_mask |= tx_ring->eims_value;
1006	writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
1007	igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
1008	adapter->eims_enable_mask |= rx_ring->eims_value;
1009	writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
1010
1011	/* set vector for other causes, i.e. link changes */
1012
1013	tmp = (vector++ | E1000_IVAR_VALID);
1014
1015	ew32(IVAR_MISC, tmp);
1016
1017	adapter->eims_enable_mask = (1 << (vector)) - 1;
1018	adapter->eims_other = 1 << (vector - 1);
1019	e1e_flush();
1020}
1021
1022static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1023{
1024	if (adapter->msix_entries) {
1025		pci_disable_msix(adapter->pdev);
1026		kfree(adapter->msix_entries);
1027		adapter->msix_entries = NULL;
1028	}
1029}
1030
1031/**
1032 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1033 * @adapter: board private structure
1034 *
1035 * Attempt to configure interrupts using the best available
1036 * capabilities of the hardware and kernel.
1037 **/
1038static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1039{
1040	int err = -ENOMEM;
1041	int i;
1042
1043	/* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1044	adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1045					GFP_KERNEL);
1046	if (adapter->msix_entries) {
1047		for (i = 0; i < 3; i++)
1048			adapter->msix_entries[i].entry = i;
1049
1050		err = pci_enable_msix_range(adapter->pdev,
1051					    adapter->msix_entries, 3, 3);
1052	}
1053
1054	if (err < 0) {
1055		/* MSI-X failed */
1056		dev_err(&adapter->pdev->dev,
1057			"Failed to initialize MSI-X interrupts.\n");
1058		igbvf_reset_interrupt_capability(adapter);
1059	}
1060}
1061
1062/**
1063 * igbvf_request_msix - Initialize MSI-X interrupts
1064 * @adapter: board private structure
1065 *
1066 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1067 * kernel.
1068 **/
1069static int igbvf_request_msix(struct igbvf_adapter *adapter)
1070{
1071	struct net_device *netdev = adapter->netdev;
1072	int err = 0, vector = 0;
1073
1074	if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1075		sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1076		sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1077	} else {
1078		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1079		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1080	}
1081
1082	err = request_irq(adapter->msix_entries[vector].vector,
1083			  igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1084			  netdev);
1085	if (err)
1086		goto out;
1087
1088	adapter->tx_ring->itr_register = E1000_EITR(vector);
1089	adapter->tx_ring->itr_val = adapter->current_itr;
1090	vector++;
1091
1092	err = request_irq(adapter->msix_entries[vector].vector,
1093			  igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1094			  netdev);
1095	if (err)
1096		goto out;
1097
1098	adapter->rx_ring->itr_register = E1000_EITR(vector);
1099	adapter->rx_ring->itr_val = adapter->current_itr;
1100	vector++;
1101
1102	err = request_irq(adapter->msix_entries[vector].vector,
1103			  igbvf_msix_other, 0, netdev->name, netdev);
1104	if (err)
1105		goto out;
1106
1107	igbvf_configure_msix(adapter);
1108	return 0;
1109out:
1110	return err;
1111}
1112
1113/**
1114 * igbvf_alloc_queues - Allocate memory for all rings
1115 * @adapter: board private structure to initialize
1116 **/
1117static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1118{
1119	struct net_device *netdev = adapter->netdev;
1120
1121	adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1122	if (!adapter->tx_ring)
1123		return -ENOMEM;
1124
1125	adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1126	if (!adapter->rx_ring) {
1127		kfree(adapter->tx_ring);
1128		return -ENOMEM;
1129	}
1130
1131	netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1132
1133	return 0;
1134}
1135
1136/**
1137 * igbvf_request_irq - initialize interrupts
1138 * @adapter: board private structure
1139 *
1140 * Attempts to configure interrupts using the best available
1141 * capabilities of the hardware and kernel.
1142 **/
1143static int igbvf_request_irq(struct igbvf_adapter *adapter)
1144{
1145	int err = -1;
1146
1147	/* igbvf supports msi-x only */
1148	if (adapter->msix_entries)
1149		err = igbvf_request_msix(adapter);
1150
1151	if (!err)
1152		return err;
1153
1154	dev_err(&adapter->pdev->dev,
1155		"Unable to allocate interrupt, Error: %d\n", err);
1156
1157	return err;
1158}
1159
1160static void igbvf_free_irq(struct igbvf_adapter *adapter)
1161{
1162	struct net_device *netdev = adapter->netdev;
1163	int vector;
1164
1165	if (adapter->msix_entries) {
1166		for (vector = 0; vector < 3; vector++)
1167			free_irq(adapter->msix_entries[vector].vector, netdev);
1168	}
1169}
1170
1171/**
1172 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1173 * @adapter: board private structure
1174 **/
1175static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1176{
1177	struct e1000_hw *hw = &adapter->hw;
1178
1179	ew32(EIMC, ~0);
1180
1181	if (adapter->msix_entries)
1182		ew32(EIAC, 0);
1183}
1184
1185/**
1186 * igbvf_irq_enable - Enable default interrupt generation settings
1187 * @adapter: board private structure
1188 **/
1189static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1190{
1191	struct e1000_hw *hw = &adapter->hw;
1192
1193	ew32(EIAC, adapter->eims_enable_mask);
1194	ew32(EIAM, adapter->eims_enable_mask);
1195	ew32(EIMS, adapter->eims_enable_mask);
1196}
1197
1198/**
1199 * igbvf_poll - NAPI Rx polling callback
1200 * @napi: struct associated with this polling callback
1201 * @budget: amount of packets driver is allowed to process this poll
1202 **/
1203static int igbvf_poll(struct napi_struct *napi, int budget)
1204{
1205	struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1206	struct igbvf_adapter *adapter = rx_ring->adapter;
1207	struct e1000_hw *hw = &adapter->hw;
1208	int work_done = 0;
1209
1210	igbvf_clean_rx_irq(adapter, &work_done, budget);
1211
1212	/* If not enough Rx work done, exit the polling mode */
1213	if (work_done < budget) {
1214		napi_complete_done(napi, work_done);
1215
1216		if (adapter->requested_itr & 3)
1217			igbvf_set_itr(adapter);
1218
1219		if (!test_bit(__IGBVF_DOWN, &adapter->state))
1220			ew32(EIMS, adapter->rx_ring->eims_value);
1221	}
1222
1223	return work_done;
1224}
1225
1226/**
1227 * igbvf_set_rlpml - set receive large packet maximum length
1228 * @adapter: board private structure
1229 *
1230 * Configure the maximum size of packets that will be received
1231 */
1232static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1233{
1234	int max_frame_size;
1235	struct e1000_hw *hw = &adapter->hw;
1236
1237	max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
 
 
 
1238	e1000_rlpml_set_vf(hw, max_frame_size);
 
 
1239}
1240
1241static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1242				 __be16 proto, u16 vid)
1243{
1244	struct igbvf_adapter *adapter = netdev_priv(netdev);
1245	struct e1000_hw *hw = &adapter->hw;
1246
 
 
1247	if (hw->mac.ops.set_vfta(hw, vid, true)) {
1248		dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
 
1249		return -EINVAL;
1250	}
 
 
 
1251	set_bit(vid, adapter->active_vlans);
1252	return 0;
1253}
1254
1255static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1256				  __be16 proto, u16 vid)
1257{
1258	struct igbvf_adapter *adapter = netdev_priv(netdev);
1259	struct e1000_hw *hw = &adapter->hw;
1260
 
 
1261	if (hw->mac.ops.set_vfta(hw, vid, false)) {
1262		dev_err(&adapter->pdev->dev,
1263			"Failed to remove vlan id %d\n", vid);
 
1264		return -EINVAL;
1265	}
 
 
 
1266	clear_bit(vid, adapter->active_vlans);
1267	return 0;
1268}
1269
1270static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1271{
1272	u16 vid;
1273
1274	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1275		igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1276}
1277
1278/**
1279 * igbvf_configure_tx - Configure Transmit Unit after Reset
1280 * @adapter: board private structure
1281 *
1282 * Configure the Tx unit of the MAC after a reset.
1283 **/
1284static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1285{
1286	struct e1000_hw *hw = &adapter->hw;
1287	struct igbvf_ring *tx_ring = adapter->tx_ring;
1288	u64 tdba;
1289	u32 txdctl, dca_txctrl;
1290
1291	/* disable transmits */
1292	txdctl = er32(TXDCTL(0));
1293	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1294	e1e_flush();
1295	msleep(10);
1296
1297	/* Setup the HW Tx Head and Tail descriptor pointers */
1298	ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1299	tdba = tx_ring->dma;
1300	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1301	ew32(TDBAH(0), (tdba >> 32));
1302	ew32(TDH(0), 0);
1303	ew32(TDT(0), 0);
1304	tx_ring->head = E1000_TDH(0);
1305	tx_ring->tail = E1000_TDT(0);
1306
1307	/* Turn off Relaxed Ordering on head write-backs.  The writebacks
1308	 * MUST be delivered in order or it will completely screw up
1309	 * our bookkeeping.
1310	 */
1311	dca_txctrl = er32(DCA_TXCTRL(0));
1312	dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1313	ew32(DCA_TXCTRL(0), dca_txctrl);
1314
1315	/* enable transmits */
1316	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1317	ew32(TXDCTL(0), txdctl);
1318
1319	/* Setup Transmit Descriptor Settings for eop descriptor */
1320	adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1321
1322	/* enable Report Status bit */
1323	adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1324}
1325
1326/**
1327 * igbvf_setup_srrctl - configure the receive control registers
1328 * @adapter: Board private structure
1329 **/
1330static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1331{
1332	struct e1000_hw *hw = &adapter->hw;
1333	u32 srrctl = 0;
1334
1335	srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1336		    E1000_SRRCTL_BSIZEHDR_MASK |
1337		    E1000_SRRCTL_BSIZEPKT_MASK);
1338
1339	/* Enable queue drop to avoid head of line blocking */
1340	srrctl |= E1000_SRRCTL_DROP_EN;
1341
1342	/* Setup buffer sizes */
1343	srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1344		  E1000_SRRCTL_BSIZEPKT_SHIFT;
1345
1346	if (adapter->rx_buffer_len < 2048) {
1347		adapter->rx_ps_hdr_size = 0;
1348		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1349	} else {
1350		adapter->rx_ps_hdr_size = 128;
1351		srrctl |= adapter->rx_ps_hdr_size <<
1352			  E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1353		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1354	}
1355
1356	ew32(SRRCTL(0), srrctl);
1357}
1358
1359/**
1360 * igbvf_configure_rx - Configure Receive Unit after Reset
1361 * @adapter: board private structure
1362 *
1363 * Configure the Rx unit of the MAC after a reset.
1364 **/
1365static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1366{
1367	struct e1000_hw *hw = &adapter->hw;
1368	struct igbvf_ring *rx_ring = adapter->rx_ring;
1369	u64 rdba;
1370	u32 rdlen, rxdctl;
1371
1372	/* disable receives */
1373	rxdctl = er32(RXDCTL(0));
1374	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1375	e1e_flush();
1376	msleep(10);
1377
1378	rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1379
1380	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1381	 * the Base and Length of the Rx Descriptor Ring
1382	 */
1383	rdba = rx_ring->dma;
1384	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1385	ew32(RDBAH(0), (rdba >> 32));
1386	ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1387	rx_ring->head = E1000_RDH(0);
1388	rx_ring->tail = E1000_RDT(0);
1389	ew32(RDH(0), 0);
1390	ew32(RDT(0), 0);
1391
1392	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1393	rxdctl &= 0xFFF00000;
1394	rxdctl |= IGBVF_RX_PTHRESH;
1395	rxdctl |= IGBVF_RX_HTHRESH << 8;
1396	rxdctl |= IGBVF_RX_WTHRESH << 16;
1397
1398	igbvf_set_rlpml(adapter);
1399
1400	/* enable receives */
1401	ew32(RXDCTL(0), rxdctl);
1402}
1403
1404/**
1405 * igbvf_set_multi - Multicast and Promiscuous mode set
1406 * @netdev: network interface device structure
1407 *
1408 * The set_multi entry point is called whenever the multicast address
1409 * list or the network interface flags are updated.  This routine is
1410 * responsible for configuring the hardware for proper multicast,
1411 * promiscuous mode, and all-multi behavior.
1412 **/
1413static void igbvf_set_multi(struct net_device *netdev)
1414{
1415	struct igbvf_adapter *adapter = netdev_priv(netdev);
1416	struct e1000_hw *hw = &adapter->hw;
1417	struct netdev_hw_addr *ha;
1418	u8  *mta_list = NULL;
1419	int i;
1420
1421	if (!netdev_mc_empty(netdev)) {
1422		mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1423					 GFP_ATOMIC);
1424		if (!mta_list)
1425			return;
1426	}
1427
1428	/* prepare a packed array of only addresses. */
1429	i = 0;
1430	netdev_for_each_mc_addr(ha, netdev)
1431		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1432
 
 
1433	hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
 
 
1434	kfree(mta_list);
1435}
1436
1437/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1438 * igbvf_configure - configure the hardware for Rx and Tx
1439 * @adapter: private board structure
1440 **/
1441static void igbvf_configure(struct igbvf_adapter *adapter)
1442{
1443	igbvf_set_multi(adapter->netdev);
1444
1445	igbvf_restore_vlan(adapter);
1446
1447	igbvf_configure_tx(adapter);
1448	igbvf_setup_srrctl(adapter);
1449	igbvf_configure_rx(adapter);
1450	igbvf_alloc_rx_buffers(adapter->rx_ring,
1451			       igbvf_desc_unused(adapter->rx_ring));
1452}
1453
1454/* igbvf_reset - bring the hardware into a known good state
1455 * @adapter: private board structure
1456 *
1457 * This function boots the hardware and enables some settings that
1458 * require a configuration cycle of the hardware - those cannot be
1459 * set/changed during runtime. After reset the device needs to be
1460 * properly configured for Rx, Tx etc.
1461 */
1462static void igbvf_reset(struct igbvf_adapter *adapter)
1463{
1464	struct e1000_mac_info *mac = &adapter->hw.mac;
1465	struct net_device *netdev = adapter->netdev;
1466	struct e1000_hw *hw = &adapter->hw;
1467
 
 
1468	/* Allow time for pending master requests to run */
1469	if (mac->ops.reset_hw(hw))
1470		dev_err(&adapter->pdev->dev, "PF still resetting\n");
1471
1472	mac->ops.init_hw(hw);
1473
 
 
1474	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1475		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1476		       netdev->addr_len);
1477		memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1478		       netdev->addr_len);
1479	}
1480
1481	adapter->last_reset = jiffies;
1482}
1483
1484int igbvf_up(struct igbvf_adapter *adapter)
1485{
1486	struct e1000_hw *hw = &adapter->hw;
1487
1488	/* hardware has been reset, we need to reload some things */
1489	igbvf_configure(adapter);
1490
1491	clear_bit(__IGBVF_DOWN, &adapter->state);
1492
1493	napi_enable(&adapter->rx_ring->napi);
1494	if (adapter->msix_entries)
1495		igbvf_configure_msix(adapter);
1496
1497	/* Clear any pending interrupts. */
1498	er32(EICR);
1499	igbvf_irq_enable(adapter);
1500
1501	/* start the watchdog */
1502	hw->mac.get_link_status = 1;
1503	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1504
1505	return 0;
1506}
1507
1508void igbvf_down(struct igbvf_adapter *adapter)
1509{
1510	struct net_device *netdev = adapter->netdev;
1511	struct e1000_hw *hw = &adapter->hw;
1512	u32 rxdctl, txdctl;
1513
1514	/* signal that we're down so the interrupt handler does not
1515	 * reschedule our watchdog timer
1516	 */
1517	set_bit(__IGBVF_DOWN, &adapter->state);
1518
1519	/* disable receives in the hardware */
1520	rxdctl = er32(RXDCTL(0));
1521	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1522
1523	netif_carrier_off(netdev);
1524	netif_stop_queue(netdev);
1525
1526	/* disable transmits in the hardware */
1527	txdctl = er32(TXDCTL(0));
1528	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1529
1530	/* flush both disables and wait for them to finish */
1531	e1e_flush();
1532	msleep(10);
1533
1534	napi_disable(&adapter->rx_ring->napi);
1535
1536	igbvf_irq_disable(adapter);
1537
1538	del_timer_sync(&adapter->watchdog_timer);
1539
1540	/* record the stats before reset*/
1541	igbvf_update_stats(adapter);
1542
1543	adapter->link_speed = 0;
1544	adapter->link_duplex = 0;
1545
1546	igbvf_reset(adapter);
1547	igbvf_clean_tx_ring(adapter->tx_ring);
1548	igbvf_clean_rx_ring(adapter->rx_ring);
1549}
1550
1551void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1552{
1553	might_sleep();
1554	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1555		usleep_range(1000, 2000);
1556	igbvf_down(adapter);
1557	igbvf_up(adapter);
1558	clear_bit(__IGBVF_RESETTING, &adapter->state);
1559}
1560
1561/**
1562 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1563 * @adapter: board private structure to initialize
1564 *
1565 * igbvf_sw_init initializes the Adapter private data structure.
1566 * Fields are initialized based on PCI device information and
1567 * OS network device settings (MTU size).
1568 **/
1569static int igbvf_sw_init(struct igbvf_adapter *adapter)
1570{
1571	struct net_device *netdev = adapter->netdev;
1572	s32 rc;
1573
1574	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1575	adapter->rx_ps_hdr_size = 0;
1576	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1577	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1578
1579	adapter->tx_int_delay = 8;
1580	adapter->tx_abs_int_delay = 32;
1581	adapter->rx_int_delay = 0;
1582	adapter->rx_abs_int_delay = 8;
1583	adapter->requested_itr = 3;
1584	adapter->current_itr = IGBVF_START_ITR;
1585
1586	/* Set various function pointers */
1587	adapter->ei->init_ops(&adapter->hw);
1588
1589	rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1590	if (rc)
1591		return rc;
1592
1593	rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1594	if (rc)
1595		return rc;
1596
1597	igbvf_set_interrupt_capability(adapter);
1598
1599	if (igbvf_alloc_queues(adapter))
1600		return -ENOMEM;
1601
1602	spin_lock_init(&adapter->tx_queue_lock);
1603
1604	/* Explicitly disable IRQ since the NIC can be in any state. */
1605	igbvf_irq_disable(adapter);
1606
1607	spin_lock_init(&adapter->stats_lock);
 
1608
1609	set_bit(__IGBVF_DOWN, &adapter->state);
1610	return 0;
1611}
1612
1613static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1614{
1615	struct e1000_hw *hw = &adapter->hw;
1616
1617	adapter->stats.last_gprc = er32(VFGPRC);
1618	adapter->stats.last_gorc = er32(VFGORC);
1619	adapter->stats.last_gptc = er32(VFGPTC);
1620	adapter->stats.last_gotc = er32(VFGOTC);
1621	adapter->stats.last_mprc = er32(VFMPRC);
1622	adapter->stats.last_gotlbc = er32(VFGOTLBC);
1623	adapter->stats.last_gptlbc = er32(VFGPTLBC);
1624	adapter->stats.last_gorlbc = er32(VFGORLBC);
1625	adapter->stats.last_gprlbc = er32(VFGPRLBC);
1626
1627	adapter->stats.base_gprc = er32(VFGPRC);
1628	adapter->stats.base_gorc = er32(VFGORC);
1629	adapter->stats.base_gptc = er32(VFGPTC);
1630	adapter->stats.base_gotc = er32(VFGOTC);
1631	adapter->stats.base_mprc = er32(VFMPRC);
1632	adapter->stats.base_gotlbc = er32(VFGOTLBC);
1633	adapter->stats.base_gptlbc = er32(VFGPTLBC);
1634	adapter->stats.base_gorlbc = er32(VFGORLBC);
1635	adapter->stats.base_gprlbc = er32(VFGPRLBC);
1636}
1637
1638/**
1639 * igbvf_open - Called when a network interface is made active
1640 * @netdev: network interface device structure
1641 *
1642 * Returns 0 on success, negative value on failure
1643 *
1644 * The open entry point is called when a network interface is made
1645 * active by the system (IFF_UP).  At this point all resources needed
1646 * for transmit and receive operations are allocated, the interrupt
1647 * handler is registered with the OS, the watchdog timer is started,
1648 * and the stack is notified that the interface is ready.
1649 **/
1650static int igbvf_open(struct net_device *netdev)
1651{
1652	struct igbvf_adapter *adapter = netdev_priv(netdev);
1653	struct e1000_hw *hw = &adapter->hw;
1654	int err;
1655
1656	/* disallow open during test */
1657	if (test_bit(__IGBVF_TESTING, &adapter->state))
1658		return -EBUSY;
1659
1660	/* allocate transmit descriptors */
1661	err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1662	if (err)
1663		goto err_setup_tx;
1664
1665	/* allocate receive descriptors */
1666	err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1667	if (err)
1668		goto err_setup_rx;
1669
1670	/* before we allocate an interrupt, we must be ready to handle it.
1671	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1672	 * as soon as we call pci_request_irq, so we have to setup our
1673	 * clean_rx handler before we do so.
1674	 */
1675	igbvf_configure(adapter);
1676
1677	err = igbvf_request_irq(adapter);
1678	if (err)
1679		goto err_req_irq;
1680
1681	/* From here on the code is the same as igbvf_up() */
1682	clear_bit(__IGBVF_DOWN, &adapter->state);
1683
1684	napi_enable(&adapter->rx_ring->napi);
1685
1686	/* clear any pending interrupts */
1687	er32(EICR);
1688
1689	igbvf_irq_enable(adapter);
1690
1691	/* start the watchdog */
1692	hw->mac.get_link_status = 1;
1693	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1694
1695	return 0;
1696
1697err_req_irq:
1698	igbvf_free_rx_resources(adapter->rx_ring);
1699err_setup_rx:
1700	igbvf_free_tx_resources(adapter->tx_ring);
1701err_setup_tx:
1702	igbvf_reset(adapter);
1703
1704	return err;
1705}
1706
1707/**
1708 * igbvf_close - Disables a network interface
1709 * @netdev: network interface device structure
1710 *
1711 * Returns 0, this is not allowed to fail
1712 *
1713 * The close entry point is called when an interface is de-activated
1714 * by the OS.  The hardware is still under the drivers control, but
1715 * needs to be disabled.  A global MAC reset is issued to stop the
1716 * hardware, and all transmit and receive resources are freed.
1717 **/
1718static int igbvf_close(struct net_device *netdev)
1719{
1720	struct igbvf_adapter *adapter = netdev_priv(netdev);
1721
1722	WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1723	igbvf_down(adapter);
1724
1725	igbvf_free_irq(adapter);
1726
1727	igbvf_free_tx_resources(adapter->tx_ring);
1728	igbvf_free_rx_resources(adapter->rx_ring);
1729
1730	return 0;
1731}
1732
1733/**
1734 * igbvf_set_mac - Change the Ethernet Address of the NIC
1735 * @netdev: network interface device structure
1736 * @p: pointer to an address structure
1737 *
1738 * Returns 0 on success, negative on failure
1739 **/
1740static int igbvf_set_mac(struct net_device *netdev, void *p)
1741{
1742	struct igbvf_adapter *adapter = netdev_priv(netdev);
1743	struct e1000_hw *hw = &adapter->hw;
1744	struct sockaddr *addr = p;
1745
1746	if (!is_valid_ether_addr(addr->sa_data))
1747		return -EADDRNOTAVAIL;
1748
1749	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1750
 
 
1751	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1752
 
 
1753	if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1754		return -EADDRNOTAVAIL;
1755
1756	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1757
1758	return 0;
1759}
1760
1761#define UPDATE_VF_COUNTER(reg, name) \
1762{ \
1763	u32 current_counter = er32(reg); \
1764	if (current_counter < adapter->stats.last_##name) \
1765		adapter->stats.name += 0x100000000LL; \
1766	adapter->stats.last_##name = current_counter; \
1767	adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1768	adapter->stats.name |= current_counter; \
1769}
1770
1771/**
1772 * igbvf_update_stats - Update the board statistics counters
1773 * @adapter: board private structure
1774**/
1775void igbvf_update_stats(struct igbvf_adapter *adapter)
1776{
1777	struct e1000_hw *hw = &adapter->hw;
1778	struct pci_dev *pdev = adapter->pdev;
1779
1780	/* Prevent stats update while adapter is being reset, link is down
1781	 * or if the pci connection is down.
1782	 */
1783	if (adapter->link_speed == 0)
1784		return;
1785
1786	if (test_bit(__IGBVF_RESETTING, &adapter->state))
1787		return;
1788
1789	if (pci_channel_offline(pdev))
1790		return;
1791
1792	UPDATE_VF_COUNTER(VFGPRC, gprc);
1793	UPDATE_VF_COUNTER(VFGORC, gorc);
1794	UPDATE_VF_COUNTER(VFGPTC, gptc);
1795	UPDATE_VF_COUNTER(VFGOTC, gotc);
1796	UPDATE_VF_COUNTER(VFMPRC, mprc);
1797	UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1798	UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1799	UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1800	UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1801
1802	/* Fill out the OS statistics structure */
1803	adapter->net_stats.multicast = adapter->stats.mprc;
1804}
1805
1806static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1807{
1808	dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1809		 adapter->link_speed,
1810		 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1811}
1812
1813static bool igbvf_has_link(struct igbvf_adapter *adapter)
1814{
1815	struct e1000_hw *hw = &adapter->hw;
1816	s32 ret_val = E1000_SUCCESS;
1817	bool link_active;
1818
1819	/* If interface is down, stay link down */
1820	if (test_bit(__IGBVF_DOWN, &adapter->state))
1821		return false;
1822
 
 
1823	ret_val = hw->mac.ops.check_for_link(hw);
 
 
 
1824	link_active = !hw->mac.get_link_status;
1825
1826	/* if check for link returns error we will need to reset */
1827	if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1828		schedule_work(&adapter->reset_task);
1829
1830	return link_active;
1831}
1832
1833/**
1834 * igbvf_watchdog - Timer Call-back
1835 * @data: pointer to adapter cast into an unsigned long
1836 **/
1837static void igbvf_watchdog(unsigned long data)
1838{
1839	struct igbvf_adapter *adapter = (struct igbvf_adapter *)data;
1840
1841	/* Do the rest outside of interrupt context */
1842	schedule_work(&adapter->watchdog_task);
1843}
1844
1845static void igbvf_watchdog_task(struct work_struct *work)
1846{
1847	struct igbvf_adapter *adapter = container_of(work,
1848						     struct igbvf_adapter,
1849						     watchdog_task);
1850	struct net_device *netdev = adapter->netdev;
1851	struct e1000_mac_info *mac = &adapter->hw.mac;
1852	struct igbvf_ring *tx_ring = adapter->tx_ring;
1853	struct e1000_hw *hw = &adapter->hw;
1854	u32 link;
1855	int tx_pending = 0;
1856
1857	link = igbvf_has_link(adapter);
1858
1859	if (link) {
1860		if (!netif_carrier_ok(netdev)) {
1861			mac->ops.get_link_up_info(&adapter->hw,
1862						  &adapter->link_speed,
1863						  &adapter->link_duplex);
1864			igbvf_print_link_info(adapter);
1865
1866			netif_carrier_on(netdev);
1867			netif_wake_queue(netdev);
1868		}
1869	} else {
1870		if (netif_carrier_ok(netdev)) {
1871			adapter->link_speed = 0;
1872			adapter->link_duplex = 0;
1873			dev_info(&adapter->pdev->dev, "Link is Down\n");
1874			netif_carrier_off(netdev);
1875			netif_stop_queue(netdev);
1876		}
1877	}
1878
1879	if (netif_carrier_ok(netdev)) {
1880		igbvf_update_stats(adapter);
1881	} else {
1882		tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1883			      tx_ring->count);
1884		if (tx_pending) {
1885			/* We've lost link, so the controller stops DMA,
1886			 * but we've got queued Tx work that's never going
1887			 * to get done, so reset controller to flush Tx.
1888			 * (Do the reset outside of interrupt context).
1889			 */
1890			adapter->tx_timeout_count++;
1891			schedule_work(&adapter->reset_task);
1892		}
1893	}
1894
1895	/* Cause software interrupt to ensure Rx ring is cleaned */
1896	ew32(EICS, adapter->rx_ring->eims_value);
1897
1898	/* Reset the timer */
1899	if (!test_bit(__IGBVF_DOWN, &adapter->state))
1900		mod_timer(&adapter->watchdog_timer,
1901			  round_jiffies(jiffies + (2 * HZ)));
1902}
1903
1904#define IGBVF_TX_FLAGS_CSUM		0x00000001
1905#define IGBVF_TX_FLAGS_VLAN		0x00000002
1906#define IGBVF_TX_FLAGS_TSO		0x00000004
1907#define IGBVF_TX_FLAGS_IPV4		0x00000008
1908#define IGBVF_TX_FLAGS_VLAN_MASK	0xffff0000
1909#define IGBVF_TX_FLAGS_VLAN_SHIFT	16
1910
1911static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1912			      u32 type_tucmd, u32 mss_l4len_idx)
1913{
1914	struct e1000_adv_tx_context_desc *context_desc;
1915	struct igbvf_buffer *buffer_info;
1916	u16 i = tx_ring->next_to_use;
1917
1918	context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1919	buffer_info = &tx_ring->buffer_info[i];
1920
1921	i++;
1922	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1923
1924	/* set bits to identify this as an advanced context descriptor */
1925	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1926
1927	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
1928	context_desc->seqnum_seed	= 0;
1929	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
1930	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
1931
1932	buffer_info->time_stamp = jiffies;
1933	buffer_info->dma = 0;
1934}
1935
1936static int igbvf_tso(struct igbvf_adapter *adapter,
1937		     struct igbvf_ring *tx_ring,
1938		     struct sk_buff *skb, u32 tx_flags, u8 *hdr_len,
1939		     __be16 protocol)
1940{
1941	struct e1000_adv_tx_context_desc *context_desc;
1942	struct igbvf_buffer *buffer_info;
1943	u32 info = 0, tu_cmd = 0;
1944	u32 mss_l4len_idx, l4len;
1945	unsigned int i;
 
 
 
 
 
 
1946	int err;
1947
1948	*hdr_len = 0;
 
 
 
 
1949
1950	err = skb_cow_head(skb, 0);
1951	if (err < 0) {
1952		dev_err(&adapter->pdev->dev, "igbvf_tso returning an error\n");
1953		return err;
1954	}
1955
1956	l4len = tcp_hdrlen(skb);
1957	*hdr_len += l4len;
1958
1959	if (protocol == htons(ETH_P_IP)) {
1960		struct iphdr *iph = ip_hdr(skb);
1961
1962		iph->tot_len = 0;
1963		iph->check = 0;
1964		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1965							 iph->daddr, 0,
1966							 IPPROTO_TCP,
1967							 0);
1968	} else if (skb_is_gso_v6(skb)) {
1969		ipv6_hdr(skb)->payload_len = 0;
1970		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1971						       &ipv6_hdr(skb)->daddr,
1972						       0, IPPROTO_TCP, 0);
1973	}
1974
1975	i = tx_ring->next_to_use;
 
 
 
 
 
 
1976
1977	buffer_info = &tx_ring->buffer_info[i];
1978	context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1979	/* VLAN MACLEN IPLEN */
1980	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1981		info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1982	info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1983	*hdr_len += skb_network_offset(skb);
1984	info |= (skb_transport_header(skb) - skb_network_header(skb));
1985	*hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1986	context_desc->vlan_macip_lens = cpu_to_le32(info);
1987
1988	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1989	tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1990
1991	if (protocol == htons(ETH_P_IP))
1992		tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1993	tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1994
1995	context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
 
 
1996
1997	/* MSS L4LEN IDX */
1998	mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1999	mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2000
2001	context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2002	context_desc->seqnum_seed = 0;
2003
2004	buffer_info->time_stamp = jiffies;
2005	buffer_info->dma = 0;
2006	i++;
2007	if (i == tx_ring->count)
2008		i = 0;
2009
2010	tx_ring->next_to_use = i;
2011
2012	return true;
2013}
2014
2015static inline bool igbvf_ipv6_csum_is_sctp(struct sk_buff *skb)
2016{
2017	unsigned int offset = 0;
2018
2019	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
2020
2021	return offset == skb_checksum_start_offset(skb);
2022}
2023
2024static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2025			  u32 tx_flags, __be16 protocol)
2026{
2027	u32 vlan_macip_lens = 0;
2028	u32 type_tucmd = 0;
2029
2030	if (skb->ip_summed != CHECKSUM_PARTIAL) {
2031csum_failed:
2032		if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2033			return false;
2034		goto no_csum;
2035	}
2036
2037	switch (skb->csum_offset) {
2038	case offsetof(struct tcphdr, check):
2039		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2040		/* fall through */
2041	case offsetof(struct udphdr, check):
2042		break;
2043	case offsetof(struct sctphdr, checksum):
2044		/* validate that this is actually an SCTP request */
2045		if (((protocol == htons(ETH_P_IP)) &&
2046		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
2047		    ((protocol == htons(ETH_P_IPV6)) &&
2048		     igbvf_ipv6_csum_is_sctp(skb))) {
2049			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2050			break;
2051		}
2052	default:
2053		skb_checksum_help(skb);
2054		goto csum_failed;
2055	}
2056
2057	vlan_macip_lens = skb_checksum_start_offset(skb) -
2058			  skb_network_offset(skb);
2059no_csum:
2060	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2061	vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2062
2063	igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2064	return true;
2065}
2066
2067static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2068{
2069	struct igbvf_adapter *adapter = netdev_priv(netdev);
2070
2071	/* there is enough descriptors then we don't need to worry  */
2072	if (igbvf_desc_unused(adapter->tx_ring) >= size)
2073		return 0;
2074
2075	netif_stop_queue(netdev);
2076
2077	/* Herbert's original patch had:
2078	 *  smp_mb__after_netif_stop_queue();
2079	 * but since that doesn't exist yet, just open code it.
2080	 */
2081	smp_mb();
2082
2083	/* We need to check again just in case room has been made available */
2084	if (igbvf_desc_unused(adapter->tx_ring) < size)
2085		return -EBUSY;
2086
2087	netif_wake_queue(netdev);
2088
2089	++adapter->restart_queue;
2090	return 0;
2091}
2092
2093#define IGBVF_MAX_TXD_PWR	16
2094#define IGBVF_MAX_DATA_PER_TXD	(1 << IGBVF_MAX_TXD_PWR)
2095
2096static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2097				   struct igbvf_ring *tx_ring,
2098				   struct sk_buff *skb)
2099{
2100	struct igbvf_buffer *buffer_info;
2101	struct pci_dev *pdev = adapter->pdev;
2102	unsigned int len = skb_headlen(skb);
2103	unsigned int count = 0, i;
2104	unsigned int f;
2105
2106	i = tx_ring->next_to_use;
2107
2108	buffer_info = &tx_ring->buffer_info[i];
2109	BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2110	buffer_info->length = len;
2111	/* set time_stamp *before* dma to help avoid a possible race */
2112	buffer_info->time_stamp = jiffies;
2113	buffer_info->mapped_as_page = false;
2114	buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2115					  DMA_TO_DEVICE);
2116	if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2117		goto dma_error;
2118
2119	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2120		const struct skb_frag_struct *frag;
2121
2122		count++;
2123		i++;
2124		if (i == tx_ring->count)
2125			i = 0;
2126
2127		frag = &skb_shinfo(skb)->frags[f];
2128		len = skb_frag_size(frag);
2129
2130		buffer_info = &tx_ring->buffer_info[i];
2131		BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2132		buffer_info->length = len;
2133		buffer_info->time_stamp = jiffies;
2134		buffer_info->mapped_as_page = true;
2135		buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2136						    DMA_TO_DEVICE);
2137		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2138			goto dma_error;
2139	}
2140
2141	tx_ring->buffer_info[i].skb = skb;
2142
2143	return ++count;
2144
2145dma_error:
2146	dev_err(&pdev->dev, "TX DMA map failed\n");
2147
2148	/* clear timestamp and dma mappings for failed buffer_info mapping */
2149	buffer_info->dma = 0;
2150	buffer_info->time_stamp = 0;
2151	buffer_info->length = 0;
2152	buffer_info->mapped_as_page = false;
2153	if (count)
2154		count--;
2155
2156	/* clear timestamp and dma mappings for remaining portion of packet */
2157	while (count--) {
2158		if (i == 0)
2159			i += tx_ring->count;
2160		i--;
2161		buffer_info = &tx_ring->buffer_info[i];
2162		igbvf_put_txbuf(adapter, buffer_info);
2163	}
2164
2165	return 0;
2166}
2167
2168static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2169				      struct igbvf_ring *tx_ring,
2170				      int tx_flags, int count,
2171				      unsigned int first, u32 paylen,
2172				      u8 hdr_len)
2173{
2174	union e1000_adv_tx_desc *tx_desc = NULL;
2175	struct igbvf_buffer *buffer_info;
2176	u32 olinfo_status = 0, cmd_type_len;
2177	unsigned int i;
2178
2179	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2180			E1000_ADVTXD_DCMD_DEXT);
2181
2182	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2183		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2184
2185	if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2186		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2187
2188		/* insert tcp checksum */
2189		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2190
2191		/* insert ip checksum */
2192		if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2193			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2194
2195	} else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2196		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2197	}
2198
2199	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2200
2201	i = tx_ring->next_to_use;
2202	while (count--) {
2203		buffer_info = &tx_ring->buffer_info[i];
2204		tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2205		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2206		tx_desc->read.cmd_type_len =
2207			 cpu_to_le32(cmd_type_len | buffer_info->length);
2208		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2209		i++;
2210		if (i == tx_ring->count)
2211			i = 0;
2212	}
2213
2214	tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2215	/* Force memory writes to complete before letting h/w
2216	 * know there are new descriptors to fetch.  (Only
2217	 * applicable for weak-ordered memory model archs,
2218	 * such as IA-64).
2219	 */
2220	wmb();
2221
2222	tx_ring->buffer_info[first].next_to_watch = tx_desc;
2223	tx_ring->next_to_use = i;
2224	writel(i, adapter->hw.hw_addr + tx_ring->tail);
2225	/* we need this if more than one processor can write to our tail
2226	 * at a time, it synchronizes IO on IA64/Altix systems
2227	 */
2228	mmiowb();
2229}
2230
2231static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2232					     struct net_device *netdev,
2233					     struct igbvf_ring *tx_ring)
2234{
2235	struct igbvf_adapter *adapter = netdev_priv(netdev);
2236	unsigned int first, tx_flags = 0;
2237	u8 hdr_len = 0;
2238	int count = 0;
2239	int tso = 0;
2240	__be16 protocol = vlan_get_protocol(skb);
2241
2242	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2243		dev_kfree_skb_any(skb);
2244		return NETDEV_TX_OK;
2245	}
2246
2247	if (skb->len <= 0) {
2248		dev_kfree_skb_any(skb);
2249		return NETDEV_TX_OK;
2250	}
2251
2252	/* need: count + 4 desc gap to keep tail from touching
2253	 *       + 2 desc gap to keep tail from touching head,
2254	 *       + 1 desc for skb->data,
2255	 *       + 1 desc for context descriptor,
2256	 * head, otherwise try next time
2257	 */
2258	if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2259		/* this is a hard error */
2260		return NETDEV_TX_BUSY;
2261	}
2262
2263	if (skb_vlan_tag_present(skb)) {
2264		tx_flags |= IGBVF_TX_FLAGS_VLAN;
2265		tx_flags |= (skb_vlan_tag_get(skb) <<
2266			     IGBVF_TX_FLAGS_VLAN_SHIFT);
2267	}
2268
2269	if (protocol == htons(ETH_P_IP))
2270		tx_flags |= IGBVF_TX_FLAGS_IPV4;
2271
2272	first = tx_ring->next_to_use;
2273
2274	tso = skb_is_gso(skb) ?
2275		igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len, protocol) : 0;
2276	if (unlikely(tso < 0)) {
2277		dev_kfree_skb_any(skb);
2278		return NETDEV_TX_OK;
2279	}
2280
2281	if (tso)
2282		tx_flags |= IGBVF_TX_FLAGS_TSO;
2283	else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2284		 (skb->ip_summed == CHECKSUM_PARTIAL))
2285		tx_flags |= IGBVF_TX_FLAGS_CSUM;
2286
2287	/* count reflects descriptors mapped, if 0 then mapping error
2288	 * has occurred and we need to rewind the descriptor queue
2289	 */
2290	count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2291
2292	if (count) {
2293		igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2294				   first, skb->len, hdr_len);
2295		/* Make sure there is space in the ring for the next send. */
2296		igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2297	} else {
2298		dev_kfree_skb_any(skb);
2299		tx_ring->buffer_info[first].time_stamp = 0;
2300		tx_ring->next_to_use = first;
2301	}
2302
2303	return NETDEV_TX_OK;
2304}
2305
2306static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2307				    struct net_device *netdev)
2308{
2309	struct igbvf_adapter *adapter = netdev_priv(netdev);
2310	struct igbvf_ring *tx_ring;
2311
2312	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2313		dev_kfree_skb_any(skb);
2314		return NETDEV_TX_OK;
2315	}
2316
2317	tx_ring = &adapter->tx_ring[0];
2318
2319	return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2320}
2321
2322/**
2323 * igbvf_tx_timeout - Respond to a Tx Hang
2324 * @netdev: network interface device structure
2325 **/
2326static void igbvf_tx_timeout(struct net_device *netdev)
2327{
2328	struct igbvf_adapter *adapter = netdev_priv(netdev);
2329
2330	/* Do the reset outside of interrupt context */
2331	adapter->tx_timeout_count++;
2332	schedule_work(&adapter->reset_task);
2333}
2334
2335static void igbvf_reset_task(struct work_struct *work)
2336{
2337	struct igbvf_adapter *adapter;
2338
2339	adapter = container_of(work, struct igbvf_adapter, reset_task);
2340
2341	igbvf_reinit_locked(adapter);
2342}
2343
2344/**
2345 * igbvf_get_stats - Get System Network Statistics
2346 * @netdev: network interface device structure
2347 *
2348 * Returns the address of the device statistics structure.
2349 * The statistics are actually updated from the timer callback.
2350 **/
2351static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2352{
2353	struct igbvf_adapter *adapter = netdev_priv(netdev);
2354
2355	/* only return the current stats */
2356	return &adapter->net_stats;
2357}
2358
2359/**
2360 * igbvf_change_mtu - Change the Maximum Transfer Unit
2361 * @netdev: network interface device structure
2362 * @new_mtu: new value for maximum frame size
2363 *
2364 * Returns 0 on success, negative on failure
2365 **/
2366static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2367{
2368	struct igbvf_adapter *adapter = netdev_priv(netdev);
2369	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2370
2371	if (new_mtu < 68 || new_mtu > INT_MAX - ETH_HLEN - ETH_FCS_LEN ||
2372	    max_frame > MAX_JUMBO_FRAME_SIZE)
2373		return -EINVAL;
2374
2375#define MAX_STD_JUMBO_FRAME_SIZE 9234
2376	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2377		dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2378		return -EINVAL;
2379	}
2380
2381	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2382		usleep_range(1000, 2000);
2383	/* igbvf_down has a dependency on max_frame_size */
2384	adapter->max_frame_size = max_frame;
2385	if (netif_running(netdev))
2386		igbvf_down(adapter);
2387
2388	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2389	 * means we reserve 2 more, this pushes us to allocate from the next
2390	 * larger slab size.
2391	 * i.e. RXBUFFER_2048 --> size-4096 slab
2392	 * However with the new *_jumbo_rx* routines, jumbo receives will use
2393	 * fragmented skbs
2394	 */
2395
2396	if (max_frame <= 1024)
2397		adapter->rx_buffer_len = 1024;
2398	else if (max_frame <= 2048)
2399		adapter->rx_buffer_len = 2048;
2400	else
2401#if (PAGE_SIZE / 2) > 16384
2402		adapter->rx_buffer_len = 16384;
2403#else
2404		adapter->rx_buffer_len = PAGE_SIZE / 2;
2405#endif
2406
2407	/* adjust allocation if LPE protects us, and we aren't using SBP */
2408	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2409	    (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2410		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2411					 ETH_FCS_LEN;
2412
2413	dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2414		 netdev->mtu, new_mtu);
2415	netdev->mtu = new_mtu;
2416
2417	if (netif_running(netdev))
2418		igbvf_up(adapter);
2419	else
2420		igbvf_reset(adapter);
2421
2422	clear_bit(__IGBVF_RESETTING, &adapter->state);
2423
2424	return 0;
2425}
2426
2427static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2428{
2429	switch (cmd) {
2430	default:
2431		return -EOPNOTSUPP;
2432	}
2433}
2434
2435static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2436{
2437	struct net_device *netdev = pci_get_drvdata(pdev);
2438	struct igbvf_adapter *adapter = netdev_priv(netdev);
2439#ifdef CONFIG_PM
2440	int retval = 0;
2441#endif
2442
2443	netif_device_detach(netdev);
2444
2445	if (netif_running(netdev)) {
2446		WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2447		igbvf_down(adapter);
2448		igbvf_free_irq(adapter);
2449	}
2450
2451#ifdef CONFIG_PM
2452	retval = pci_save_state(pdev);
2453	if (retval)
2454		return retval;
2455#endif
2456
2457	pci_disable_device(pdev);
2458
2459	return 0;
2460}
2461
2462#ifdef CONFIG_PM
2463static int igbvf_resume(struct pci_dev *pdev)
2464{
2465	struct net_device *netdev = pci_get_drvdata(pdev);
2466	struct igbvf_adapter *adapter = netdev_priv(netdev);
2467	u32 err;
2468
2469	pci_restore_state(pdev);
2470	err = pci_enable_device_mem(pdev);
2471	if (err) {
2472		dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2473		return err;
2474	}
2475
2476	pci_set_master(pdev);
2477
2478	if (netif_running(netdev)) {
2479		err = igbvf_request_irq(adapter);
2480		if (err)
2481			return err;
2482	}
2483
2484	igbvf_reset(adapter);
2485
2486	if (netif_running(netdev))
2487		igbvf_up(adapter);
2488
2489	netif_device_attach(netdev);
2490
2491	return 0;
2492}
2493#endif
2494
2495static void igbvf_shutdown(struct pci_dev *pdev)
2496{
2497	igbvf_suspend(pdev, PMSG_SUSPEND);
2498}
2499
2500#ifdef CONFIG_NET_POLL_CONTROLLER
2501/* Polling 'interrupt' - used by things like netconsole to send skbs
2502 * without having to re-enable interrupts. It's not called while
2503 * the interrupt routine is executing.
2504 */
2505static void igbvf_netpoll(struct net_device *netdev)
2506{
2507	struct igbvf_adapter *adapter = netdev_priv(netdev);
2508
2509	disable_irq(adapter->pdev->irq);
2510
2511	igbvf_clean_tx_irq(adapter->tx_ring);
2512
2513	enable_irq(adapter->pdev->irq);
2514}
2515#endif
2516
2517/**
2518 * igbvf_io_error_detected - called when PCI error is detected
2519 * @pdev: Pointer to PCI device
2520 * @state: The current pci connection state
2521 *
2522 * This function is called after a PCI bus error affecting
2523 * this device has been detected.
2524 */
2525static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2526						pci_channel_state_t state)
2527{
2528	struct net_device *netdev = pci_get_drvdata(pdev);
2529	struct igbvf_adapter *adapter = netdev_priv(netdev);
2530
2531	netif_device_detach(netdev);
2532
2533	if (state == pci_channel_io_perm_failure)
2534		return PCI_ERS_RESULT_DISCONNECT;
2535
2536	if (netif_running(netdev))
2537		igbvf_down(adapter);
2538	pci_disable_device(pdev);
2539
2540	/* Request a slot slot reset. */
2541	return PCI_ERS_RESULT_NEED_RESET;
2542}
2543
2544/**
2545 * igbvf_io_slot_reset - called after the pci bus has been reset.
2546 * @pdev: Pointer to PCI device
2547 *
2548 * Restart the card from scratch, as if from a cold-boot. Implementation
2549 * resembles the first-half of the igbvf_resume routine.
2550 */
2551static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2552{
2553	struct net_device *netdev = pci_get_drvdata(pdev);
2554	struct igbvf_adapter *adapter = netdev_priv(netdev);
2555
2556	if (pci_enable_device_mem(pdev)) {
2557		dev_err(&pdev->dev,
2558			"Cannot re-enable PCI device after reset.\n");
2559		return PCI_ERS_RESULT_DISCONNECT;
2560	}
2561	pci_set_master(pdev);
2562
2563	igbvf_reset(adapter);
2564
2565	return PCI_ERS_RESULT_RECOVERED;
2566}
2567
2568/**
2569 * igbvf_io_resume - called when traffic can start flowing again.
2570 * @pdev: Pointer to PCI device
2571 *
2572 * This callback is called when the error recovery driver tells us that
2573 * its OK to resume normal operation. Implementation resembles the
2574 * second-half of the igbvf_resume routine.
2575 */
2576static void igbvf_io_resume(struct pci_dev *pdev)
2577{
2578	struct net_device *netdev = pci_get_drvdata(pdev);
2579	struct igbvf_adapter *adapter = netdev_priv(netdev);
2580
2581	if (netif_running(netdev)) {
2582		if (igbvf_up(adapter)) {
2583			dev_err(&pdev->dev,
2584				"can't bring device back up after reset\n");
2585			return;
2586		}
2587	}
2588
2589	netif_device_attach(netdev);
2590}
2591
2592static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2593{
2594	struct e1000_hw *hw = &adapter->hw;
2595	struct net_device *netdev = adapter->netdev;
2596	struct pci_dev *pdev = adapter->pdev;
2597
2598	if (hw->mac.type == e1000_vfadapt_i350)
2599		dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2600	else
2601		dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2602	dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2603}
2604
2605static int igbvf_set_features(struct net_device *netdev,
2606			      netdev_features_t features)
2607{
2608	struct igbvf_adapter *adapter = netdev_priv(netdev);
2609
2610	if (features & NETIF_F_RXCSUM)
2611		adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2612	else
2613		adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2614
2615	return 0;
2616}
2617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2618static const struct net_device_ops igbvf_netdev_ops = {
2619	.ndo_open		= igbvf_open,
2620	.ndo_stop		= igbvf_close,
2621	.ndo_start_xmit		= igbvf_xmit_frame,
2622	.ndo_get_stats		= igbvf_get_stats,
2623	.ndo_set_rx_mode	= igbvf_set_multi,
2624	.ndo_set_mac_address	= igbvf_set_mac,
2625	.ndo_change_mtu		= igbvf_change_mtu,
2626	.ndo_do_ioctl		= igbvf_ioctl,
2627	.ndo_tx_timeout		= igbvf_tx_timeout,
2628	.ndo_vlan_rx_add_vid	= igbvf_vlan_rx_add_vid,
2629	.ndo_vlan_rx_kill_vid	= igbvf_vlan_rx_kill_vid,
2630#ifdef CONFIG_NET_POLL_CONTROLLER
2631	.ndo_poll_controller	= igbvf_netpoll,
2632#endif
2633	.ndo_set_features	= igbvf_set_features,
2634	.ndo_features_check	= passthru_features_check,
2635};
2636
2637/**
2638 * igbvf_probe - Device Initialization Routine
2639 * @pdev: PCI device information struct
2640 * @ent: entry in igbvf_pci_tbl
2641 *
2642 * Returns 0 on success, negative on failure
2643 *
2644 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2645 * The OS initialization, configuring of the adapter private structure,
2646 * and a hardware reset occur.
2647 **/
2648static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2649{
2650	struct net_device *netdev;
2651	struct igbvf_adapter *adapter;
2652	struct e1000_hw *hw;
2653	const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2654
2655	static int cards_found;
2656	int err, pci_using_dac;
2657
2658	err = pci_enable_device_mem(pdev);
2659	if (err)
2660		return err;
2661
2662	pci_using_dac = 0;
2663	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2664	if (!err) {
2665		pci_using_dac = 1;
2666	} else {
2667		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2668		if (err) {
2669			dev_err(&pdev->dev,
2670				"No usable DMA configuration, aborting\n");
2671			goto err_dma;
2672		}
2673	}
2674
2675	err = pci_request_regions(pdev, igbvf_driver_name);
2676	if (err)
2677		goto err_pci_reg;
2678
2679	pci_set_master(pdev);
2680
2681	err = -ENOMEM;
2682	netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2683	if (!netdev)
2684		goto err_alloc_etherdev;
2685
2686	SET_NETDEV_DEV(netdev, &pdev->dev);
2687
2688	pci_set_drvdata(pdev, netdev);
2689	adapter = netdev_priv(netdev);
2690	hw = &adapter->hw;
2691	adapter->netdev = netdev;
2692	adapter->pdev = pdev;
2693	adapter->ei = ei;
2694	adapter->pba = ei->pba;
2695	adapter->flags = ei->flags;
2696	adapter->hw.back = adapter;
2697	adapter->hw.mac.type = ei->mac;
2698	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2699
2700	/* PCI config space info */
2701
2702	hw->vendor_id = pdev->vendor;
2703	hw->device_id = pdev->device;
2704	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2705	hw->subsystem_device_id = pdev->subsystem_device;
2706	hw->revision_id = pdev->revision;
2707
2708	err = -EIO;
2709	adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2710				      pci_resource_len(pdev, 0));
2711
2712	if (!adapter->hw.hw_addr)
2713		goto err_ioremap;
2714
2715	if (ei->get_variants) {
2716		err = ei->get_variants(adapter);
2717		if (err)
2718			goto err_get_variants;
2719	}
2720
2721	/* setup adapter struct */
2722	err = igbvf_sw_init(adapter);
2723	if (err)
2724		goto err_sw_init;
2725
2726	/* construct the net_device struct */
2727	netdev->netdev_ops = &igbvf_netdev_ops;
2728
2729	igbvf_set_ethtool_ops(netdev);
2730	netdev->watchdog_timeo = 5 * HZ;
2731	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2732
2733	adapter->bd_number = cards_found++;
2734
2735	netdev->hw_features = NETIF_F_SG |
2736			      NETIF_F_TSO |
2737			      NETIF_F_TSO6 |
2738			      NETIF_F_RXCSUM |
2739			      NETIF_F_HW_CSUM |
2740			      NETIF_F_SCTP_CRC;
2741
2742	netdev->features = netdev->hw_features |
2743			   NETIF_F_HW_VLAN_CTAG_TX |
2744			   NETIF_F_HW_VLAN_CTAG_RX |
2745			   NETIF_F_HW_VLAN_CTAG_FILTER;
 
 
 
 
 
 
 
 
2746
2747	if (pci_using_dac)
2748		netdev->features |= NETIF_F_HIGHDMA;
2749
2750	netdev->vlan_features |= NETIF_F_SG |
2751				 NETIF_F_TSO |
2752				 NETIF_F_TSO6 |
2753				 NETIF_F_HW_CSUM |
2754				 NETIF_F_SCTP_CRC;
 
 
 
 
 
 
 
2755
2756	netdev->mpls_features |= NETIF_F_HW_CSUM;
2757	netdev->hw_enc_features |= NETIF_F_HW_CSUM;
2758
2759	/*reset the controller to put the device in a known good state */
2760	err = hw->mac.ops.reset_hw(hw);
2761	if (err) {
2762		dev_info(&pdev->dev,
2763			 "PF still in reset state. Is the PF interface up?\n");
2764	} else {
2765		err = hw->mac.ops.read_mac_addr(hw);
2766		if (err)
2767			dev_info(&pdev->dev, "Error reading MAC address.\n");
2768		else if (is_zero_ether_addr(adapter->hw.mac.addr))
2769			dev_info(&pdev->dev,
2770				 "MAC address not assigned by administrator.\n");
2771		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2772		       netdev->addr_len);
2773	}
2774
 
 
2775	if (!is_valid_ether_addr(netdev->dev_addr)) {
2776		dev_info(&pdev->dev, "Assigning random MAC address.\n");
2777		eth_hw_addr_random(netdev);
2778		memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2779		       netdev->addr_len);
2780	}
2781
2782	setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2783		    (unsigned long)adapter);
2784
2785	INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2786	INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2787
2788	/* ring size defaults */
2789	adapter->rx_ring->count = 1024;
2790	adapter->tx_ring->count = 1024;
2791
2792	/* reset the hardware with the new settings */
2793	igbvf_reset(adapter);
2794
2795	/* set hardware-specific flags */
2796	if (adapter->hw.mac.type == e1000_vfadapt_i350)
2797		adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2798
2799	strcpy(netdev->name, "eth%d");
2800	err = register_netdev(netdev);
2801	if (err)
2802		goto err_hw_init;
2803
2804	/* tell the stack to leave us alone until igbvf_open() is called */
2805	netif_carrier_off(netdev);
2806	netif_stop_queue(netdev);
2807
2808	igbvf_print_device_info(adapter);
2809
2810	igbvf_initialize_last_counter_stats(adapter);
2811
2812	return 0;
2813
2814err_hw_init:
2815	kfree(adapter->tx_ring);
2816	kfree(adapter->rx_ring);
2817err_sw_init:
2818	igbvf_reset_interrupt_capability(adapter);
2819err_get_variants:
2820	iounmap(adapter->hw.hw_addr);
2821err_ioremap:
2822	free_netdev(netdev);
2823err_alloc_etherdev:
2824	pci_release_regions(pdev);
2825err_pci_reg:
2826err_dma:
2827	pci_disable_device(pdev);
2828	return err;
2829}
2830
2831/**
2832 * igbvf_remove - Device Removal Routine
2833 * @pdev: PCI device information struct
2834 *
2835 * igbvf_remove is called by the PCI subsystem to alert the driver
2836 * that it should release a PCI device.  The could be caused by a
2837 * Hot-Plug event, or because the driver is going to be removed from
2838 * memory.
2839 **/
2840static void igbvf_remove(struct pci_dev *pdev)
2841{
2842	struct net_device *netdev = pci_get_drvdata(pdev);
2843	struct igbvf_adapter *adapter = netdev_priv(netdev);
2844	struct e1000_hw *hw = &adapter->hw;
2845
2846	/* The watchdog timer may be rescheduled, so explicitly
2847	 * disable it from being rescheduled.
2848	 */
2849	set_bit(__IGBVF_DOWN, &adapter->state);
2850	del_timer_sync(&adapter->watchdog_timer);
2851
2852	cancel_work_sync(&adapter->reset_task);
2853	cancel_work_sync(&adapter->watchdog_task);
2854
2855	unregister_netdev(netdev);
2856
2857	igbvf_reset_interrupt_capability(adapter);
2858
2859	/* it is important to delete the NAPI struct prior to freeing the
2860	 * Rx ring so that you do not end up with null pointer refs
2861	 */
2862	netif_napi_del(&adapter->rx_ring->napi);
2863	kfree(adapter->tx_ring);
2864	kfree(adapter->rx_ring);
2865
2866	iounmap(hw->hw_addr);
2867	if (hw->flash_address)
2868		iounmap(hw->flash_address);
2869	pci_release_regions(pdev);
2870
2871	free_netdev(netdev);
2872
2873	pci_disable_device(pdev);
2874}
2875
2876/* PCI Error Recovery (ERS) */
2877static const struct pci_error_handlers igbvf_err_handler = {
2878	.error_detected = igbvf_io_error_detected,
2879	.slot_reset = igbvf_io_slot_reset,
2880	.resume = igbvf_io_resume,
2881};
2882
2883static const struct pci_device_id igbvf_pci_tbl[] = {
2884	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2885	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2886	{ } /* terminate list */
2887};
2888MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2889
2890/* PCI Device API Driver */
2891static struct pci_driver igbvf_driver = {
2892	.name		= igbvf_driver_name,
2893	.id_table	= igbvf_pci_tbl,
2894	.probe		= igbvf_probe,
2895	.remove		= igbvf_remove,
2896#ifdef CONFIG_PM
2897	/* Power Management Hooks */
2898	.suspend	= igbvf_suspend,
2899	.resume		= igbvf_resume,
2900#endif
2901	.shutdown	= igbvf_shutdown,
2902	.err_handler	= &igbvf_err_handler
2903};
2904
2905/**
2906 * igbvf_init_module - Driver Registration Routine
2907 *
2908 * igbvf_init_module is the first routine called when the driver is
2909 * loaded. All it does is register with the PCI subsystem.
2910 **/
2911static int __init igbvf_init_module(void)
2912{
2913	int ret;
2914
2915	pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2916	pr_info("%s\n", igbvf_copyright);
2917
2918	ret = pci_register_driver(&igbvf_driver);
2919
2920	return ret;
2921}
2922module_init(igbvf_init_module);
2923
2924/**
2925 * igbvf_exit_module - Driver Exit Cleanup Routine
2926 *
2927 * igbvf_exit_module is called just before the driver is removed
2928 * from memory.
2929 **/
2930static void __exit igbvf_exit_module(void)
2931{
2932	pci_unregister_driver(&igbvf_driver);
2933}
2934module_exit(igbvf_exit_module);
2935
2936MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2937MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2938MODULE_LICENSE("GPL");
2939MODULE_VERSION(DRV_VERSION);
2940
2941/* netdev.c */