Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Interface for controlling IO bandwidth on a request queue
   4 *
   5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
   6 */
   7
   8#include <linux/module.h>
   9#include <linux/slab.h>
  10#include <linux/blkdev.h>
  11#include <linux/bio.h>
  12#include <linux/blktrace_api.h>
  13#include <linux/blk-cgroup.h>
  14#include "blk.h"
  15
  16/* Max dispatch from a group in 1 round */
  17static int throtl_grp_quantum = 8;
  18
  19/* Total max dispatch from all groups in one round */
  20static int throtl_quantum = 32;
  21
  22/* Throttling is performed over a slice and after that slice is renewed */
  23#define DFL_THROTL_SLICE_HD (HZ / 10)
  24#define DFL_THROTL_SLICE_SSD (HZ / 50)
  25#define MAX_THROTL_SLICE (HZ)
  26#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
  27#define MIN_THROTL_BPS (320 * 1024)
  28#define MIN_THROTL_IOPS (10)
  29#define DFL_LATENCY_TARGET (-1L)
  30#define DFL_IDLE_THRESHOLD (0)
  31#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
  32#define LATENCY_FILTERED_SSD (0)
  33/*
  34 * For HD, very small latency comes from sequential IO. Such IO is helpless to
  35 * help determine if its IO is impacted by others, hence we ignore the IO
  36 */
  37#define LATENCY_FILTERED_HD (1000L) /* 1ms */
  38
  39#define SKIP_LATENCY (((u64)1) << BLK_STAT_RES_SHIFT)
  40
  41static struct blkcg_policy blkcg_policy_throtl;
  42
  43/* A workqueue to queue throttle related work */
  44static struct workqueue_struct *kthrotld_workqueue;
  45
  46/*
  47 * To implement hierarchical throttling, throtl_grps form a tree and bios
  48 * are dispatched upwards level by level until they reach the top and get
  49 * issued.  When dispatching bios from the children and local group at each
  50 * level, if the bios are dispatched into a single bio_list, there's a risk
  51 * of a local or child group which can queue many bios at once filling up
  52 * the list starving others.
  53 *
  54 * To avoid such starvation, dispatched bios are queued separately
  55 * according to where they came from.  When they are again dispatched to
  56 * the parent, they're popped in round-robin order so that no single source
  57 * hogs the dispatch window.
  58 *
  59 * throtl_qnode is used to keep the queued bios separated by their sources.
  60 * Bios are queued to throtl_qnode which in turn is queued to
  61 * throtl_service_queue and then dispatched in round-robin order.
  62 *
  63 * It's also used to track the reference counts on blkg's.  A qnode always
  64 * belongs to a throtl_grp and gets queued on itself or the parent, so
  65 * incrementing the reference of the associated throtl_grp when a qnode is
  66 * queued and decrementing when dequeued is enough to keep the whole blkg
  67 * tree pinned while bios are in flight.
  68 */
  69struct throtl_qnode {
  70	struct list_head	node;		/* service_queue->queued[] */
  71	struct bio_list		bios;		/* queued bios */
  72	struct throtl_grp	*tg;		/* tg this qnode belongs to */
  73};
  74
  75struct throtl_service_queue {
  76	struct throtl_service_queue *parent_sq;	/* the parent service_queue */
  77
  78	/*
  79	 * Bios queued directly to this service_queue or dispatched from
  80	 * children throtl_grp's.
  81	 */
  82	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
  83	unsigned int		nr_queued[2];	/* number of queued bios */
  84
  85	/*
  86	 * RB tree of active children throtl_grp's, which are sorted by
  87	 * their ->disptime.
  88	 */
  89	struct rb_root		pending_tree;	/* RB tree of active tgs */
  90	struct rb_node		*first_pending;	/* first node in the tree */
  91	unsigned int		nr_pending;	/* # queued in the tree */
  92	unsigned long		first_pending_disptime;	/* disptime of the first tg */
  93	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
  94};
  95
  96enum tg_state_flags {
  97	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
  98	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
  99};
 100
 101#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
 102
 103enum {
 104	LIMIT_LOW,
 105	LIMIT_MAX,
 106	LIMIT_CNT,
 107};
 108
 109struct throtl_grp {
 110	/* must be the first member */
 111	struct blkg_policy_data pd;
 112
 113	/* active throtl group service_queue member */
 114	struct rb_node rb_node;
 115
 116	/* throtl_data this group belongs to */
 117	struct throtl_data *td;
 118
 119	/* this group's service queue */
 120	struct throtl_service_queue service_queue;
 121
 122	/*
 123	 * qnode_on_self is used when bios are directly queued to this
 124	 * throtl_grp so that local bios compete fairly with bios
 125	 * dispatched from children.  qnode_on_parent is used when bios are
 126	 * dispatched from this throtl_grp into its parent and will compete
 127	 * with the sibling qnode_on_parents and the parent's
 128	 * qnode_on_self.
 129	 */
 130	struct throtl_qnode qnode_on_self[2];
 131	struct throtl_qnode qnode_on_parent[2];
 132
 133	/*
 134	 * Dispatch time in jiffies. This is the estimated time when group
 135	 * will unthrottle and is ready to dispatch more bio. It is used as
 136	 * key to sort active groups in service tree.
 137	 */
 138	unsigned long disptime;
 139
 140	unsigned int flags;
 141
 142	/* are there any throtl rules between this group and td? */
 143	bool has_rules[2];
 144
 145	/* internally used bytes per second rate limits */
 146	uint64_t bps[2][LIMIT_CNT];
 147	/* user configured bps limits */
 148	uint64_t bps_conf[2][LIMIT_CNT];
 149
 150	/* internally used IOPS limits */
 151	unsigned int iops[2][LIMIT_CNT];
 152	/* user configured IOPS limits */
 153	unsigned int iops_conf[2][LIMIT_CNT];
 154
 155	/* Number of bytes disptached in current slice */
 156	uint64_t bytes_disp[2];
 157	/* Number of bio's dispatched in current slice */
 158	unsigned int io_disp[2];
 159
 160	unsigned long last_low_overflow_time[2];
 161
 162	uint64_t last_bytes_disp[2];
 163	unsigned int last_io_disp[2];
 164
 165	unsigned long last_check_time;
 166
 167	unsigned long latency_target; /* us */
 168	unsigned long latency_target_conf; /* us */
 169	/* When did we start a new slice */
 170	unsigned long slice_start[2];
 171	unsigned long slice_end[2];
 172
 173	unsigned long last_finish_time; /* ns / 1024 */
 174	unsigned long checked_last_finish_time; /* ns / 1024 */
 175	unsigned long avg_idletime; /* ns / 1024 */
 176	unsigned long idletime_threshold; /* us */
 177	unsigned long idletime_threshold_conf; /* us */
 178
 179	unsigned int bio_cnt; /* total bios */
 180	unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
 181	unsigned long bio_cnt_reset_time;
 182};
 183
 184/* We measure latency for request size from <= 4k to >= 1M */
 185#define LATENCY_BUCKET_SIZE 9
 186
 187struct latency_bucket {
 188	unsigned long total_latency; /* ns / 1024 */
 189	int samples;
 190};
 191
 192struct avg_latency_bucket {
 193	unsigned long latency; /* ns / 1024 */
 194	bool valid;
 195};
 196
 197struct throtl_data
 198{
 199	/* service tree for active throtl groups */
 200	struct throtl_service_queue service_queue;
 201
 202	struct request_queue *queue;
 203
 204	/* Total Number of queued bios on READ and WRITE lists */
 205	unsigned int nr_queued[2];
 206
 207	unsigned int throtl_slice;
 
 
 
 208
 209	/* Work for dispatching throttled bios */
 210	struct work_struct dispatch_work;
 211	unsigned int limit_index;
 212	bool limit_valid[LIMIT_CNT];
 213
 214	unsigned long low_upgrade_time;
 215	unsigned long low_downgrade_time;
 216
 217	unsigned int scale;
 218
 219	struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
 220	struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
 221	struct latency_bucket __percpu *latency_buckets[2];
 222	unsigned long last_calculate_time;
 223	unsigned long filtered_latency;
 224
 225	bool track_bio_latency;
 226};
 227
 228static void throtl_pending_timer_fn(struct timer_list *t);
 229
 230static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
 231{
 232	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
 233}
 234
 235static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
 236{
 237	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
 238}
 239
 240static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
 241{
 242	return pd_to_blkg(&tg->pd);
 243}
 244
 245/**
 246 * sq_to_tg - return the throl_grp the specified service queue belongs to
 247 * @sq: the throtl_service_queue of interest
 248 *
 249 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 250 * embedded in throtl_data, %NULL is returned.
 251 */
 252static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
 253{
 254	if (sq && sq->parent_sq)
 255		return container_of(sq, struct throtl_grp, service_queue);
 256	else
 257		return NULL;
 258}
 259
 260/**
 261 * sq_to_td - return throtl_data the specified service queue belongs to
 262 * @sq: the throtl_service_queue of interest
 263 *
 264 * A service_queue can be embedded in either a throtl_grp or throtl_data.
 265 * Determine the associated throtl_data accordingly and return it.
 266 */
 267static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
 268{
 269	struct throtl_grp *tg = sq_to_tg(sq);
 270
 271	if (tg)
 272		return tg->td;
 273	else
 274		return container_of(sq, struct throtl_data, service_queue);
 275}
 276
 277/*
 278 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
 279 * make the IO dispatch more smooth.
 280 * Scale up: linearly scale up according to lapsed time since upgrade. For
 281 *           every throtl_slice, the limit scales up 1/2 .low limit till the
 282 *           limit hits .max limit
 283 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
 284 */
 285static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
 286{
 287	/* arbitrary value to avoid too big scale */
 288	if (td->scale < 4096 && time_after_eq(jiffies,
 289	    td->low_upgrade_time + td->scale * td->throtl_slice))
 290		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
 291
 292	return low + (low >> 1) * td->scale;
 293}
 294
 295static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
 296{
 297	struct blkcg_gq *blkg = tg_to_blkg(tg);
 298	struct throtl_data *td;
 299	uint64_t ret;
 300
 301	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
 302		return U64_MAX;
 303
 304	td = tg->td;
 305	ret = tg->bps[rw][td->limit_index];
 306	if (ret == 0 && td->limit_index == LIMIT_LOW) {
 307		/* intermediate node or iops isn't 0 */
 308		if (!list_empty(&blkg->blkcg->css.children) ||
 309		    tg->iops[rw][td->limit_index])
 310			return U64_MAX;
 311		else
 312			return MIN_THROTL_BPS;
 313	}
 314
 315	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
 316	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
 317		uint64_t adjusted;
 318
 319		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
 320		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
 321	}
 322	return ret;
 323}
 324
 325static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
 326{
 327	struct blkcg_gq *blkg = tg_to_blkg(tg);
 328	struct throtl_data *td;
 329	unsigned int ret;
 330
 331	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
 332		return UINT_MAX;
 333
 334	td = tg->td;
 335	ret = tg->iops[rw][td->limit_index];
 336	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
 337		/* intermediate node or bps isn't 0 */
 338		if (!list_empty(&blkg->blkcg->css.children) ||
 339		    tg->bps[rw][td->limit_index])
 340			return UINT_MAX;
 341		else
 342			return MIN_THROTL_IOPS;
 343	}
 344
 345	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
 346	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
 347		uint64_t adjusted;
 348
 349		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
 350		if (adjusted > UINT_MAX)
 351			adjusted = UINT_MAX;
 352		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
 353	}
 354	return ret;
 355}
 356
 357#define request_bucket_index(sectors) \
 358	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
 359
 360/**
 361 * throtl_log - log debug message via blktrace
 362 * @sq: the service_queue being reported
 363 * @fmt: printf format string
 364 * @args: printf args
 365 *
 366 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 367 * throtl_grp; otherwise, just "throtl".
 
 
 
 368 */
 369#define throtl_log(sq, fmt, args...)	do {				\
 370	struct throtl_grp *__tg = sq_to_tg((sq));			\
 371	struct throtl_data *__td = sq_to_td((sq));			\
 372									\
 373	(void)__td;							\
 374	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
 375		break;							\
 376	if ((__tg)) {							\
 377		blk_add_cgroup_trace_msg(__td->queue,			\
 378			tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
 
 
 379	} else {							\
 380		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
 381	}								\
 382} while (0)
 383
 384static inline unsigned int throtl_bio_data_size(struct bio *bio)
 385{
 386	/* assume it's one sector */
 387	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
 388		return 512;
 389	return bio->bi_iter.bi_size;
 390}
 391
 392static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
 393{
 394	INIT_LIST_HEAD(&qn->node);
 395	bio_list_init(&qn->bios);
 396	qn->tg = tg;
 397}
 398
 399/**
 400 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 401 * @bio: bio being added
 402 * @qn: qnode to add bio to
 403 * @queued: the service_queue->queued[] list @qn belongs to
 404 *
 405 * Add @bio to @qn and put @qn on @queued if it's not already on.
 406 * @qn->tg's reference count is bumped when @qn is activated.  See the
 407 * comment on top of throtl_qnode definition for details.
 408 */
 409static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
 410				 struct list_head *queued)
 411{
 412	bio_list_add(&qn->bios, bio);
 413	if (list_empty(&qn->node)) {
 414		list_add_tail(&qn->node, queued);
 415		blkg_get(tg_to_blkg(qn->tg));
 416	}
 417}
 418
 419/**
 420 * throtl_peek_queued - peek the first bio on a qnode list
 421 * @queued: the qnode list to peek
 422 */
 423static struct bio *throtl_peek_queued(struct list_head *queued)
 424{
 425	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
 426	struct bio *bio;
 427
 428	if (list_empty(queued))
 429		return NULL;
 430
 431	bio = bio_list_peek(&qn->bios);
 432	WARN_ON_ONCE(!bio);
 433	return bio;
 434}
 435
 436/**
 437 * throtl_pop_queued - pop the first bio form a qnode list
 438 * @queued: the qnode list to pop a bio from
 439 * @tg_to_put: optional out argument for throtl_grp to put
 440 *
 441 * Pop the first bio from the qnode list @queued.  After popping, the first
 442 * qnode is removed from @queued if empty or moved to the end of @queued so
 443 * that the popping order is round-robin.
 444 *
 445 * When the first qnode is removed, its associated throtl_grp should be put
 446 * too.  If @tg_to_put is NULL, this function automatically puts it;
 447 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 448 * responsible for putting it.
 449 */
 450static struct bio *throtl_pop_queued(struct list_head *queued,
 451				     struct throtl_grp **tg_to_put)
 452{
 453	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
 454	struct bio *bio;
 455
 456	if (list_empty(queued))
 457		return NULL;
 458
 459	bio = bio_list_pop(&qn->bios);
 460	WARN_ON_ONCE(!bio);
 461
 462	if (bio_list_empty(&qn->bios)) {
 463		list_del_init(&qn->node);
 464		if (tg_to_put)
 465			*tg_to_put = qn->tg;
 466		else
 467			blkg_put(tg_to_blkg(qn->tg));
 468	} else {
 469		list_move_tail(&qn->node, queued);
 470	}
 471
 472	return bio;
 473}
 474
 475/* init a service_queue, assumes the caller zeroed it */
 476static void throtl_service_queue_init(struct throtl_service_queue *sq)
 477{
 478	INIT_LIST_HEAD(&sq->queued[0]);
 479	INIT_LIST_HEAD(&sq->queued[1]);
 480	sq->pending_tree = RB_ROOT;
 481	timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
 
 482}
 483
 484static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
 485{
 486	struct throtl_grp *tg;
 487	int rw;
 488
 489	tg = kzalloc_node(sizeof(*tg), gfp, node);
 490	if (!tg)
 491		return NULL;
 492
 493	throtl_service_queue_init(&tg->service_queue);
 494
 495	for (rw = READ; rw <= WRITE; rw++) {
 496		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
 497		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
 498	}
 499
 500	RB_CLEAR_NODE(&tg->rb_node);
 501	tg->bps[READ][LIMIT_MAX] = U64_MAX;
 502	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
 503	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
 504	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
 505	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
 506	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
 507	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
 508	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
 509	/* LIMIT_LOW will have default value 0 */
 510
 511	tg->latency_target = DFL_LATENCY_TARGET;
 512	tg->latency_target_conf = DFL_LATENCY_TARGET;
 513	tg->idletime_threshold = DFL_IDLE_THRESHOLD;
 514	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
 515
 516	return &tg->pd;
 517}
 518
 519static void throtl_pd_init(struct blkg_policy_data *pd)
 520{
 521	struct throtl_grp *tg = pd_to_tg(pd);
 522	struct blkcg_gq *blkg = tg_to_blkg(tg);
 523	struct throtl_data *td = blkg->q->td;
 524	struct throtl_service_queue *sq = &tg->service_queue;
 525
 526	/*
 527	 * If on the default hierarchy, we switch to properly hierarchical
 528	 * behavior where limits on a given throtl_grp are applied to the
 529	 * whole subtree rather than just the group itself.  e.g. If 16M
 530	 * read_bps limit is set on the root group, the whole system can't
 531	 * exceed 16M for the device.
 532	 *
 533	 * If not on the default hierarchy, the broken flat hierarchy
 534	 * behavior is retained where all throtl_grps are treated as if
 535	 * they're all separate root groups right below throtl_data.
 536	 * Limits of a group don't interact with limits of other groups
 537	 * regardless of the position of the group in the hierarchy.
 538	 */
 539	sq->parent_sq = &td->service_queue;
 540	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
 541		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
 542	tg->td = td;
 543}
 544
 545/*
 546 * Set has_rules[] if @tg or any of its parents have limits configured.
 547 * This doesn't require walking up to the top of the hierarchy as the
 548 * parent's has_rules[] is guaranteed to be correct.
 549 */
 550static void tg_update_has_rules(struct throtl_grp *tg)
 551{
 552	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
 553	struct throtl_data *td = tg->td;
 554	int rw;
 555
 556	for (rw = READ; rw <= WRITE; rw++)
 557		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
 558			(td->limit_valid[td->limit_index] &&
 559			 (tg_bps_limit(tg, rw) != U64_MAX ||
 560			  tg_iops_limit(tg, rw) != UINT_MAX));
 561}
 562
 563static void throtl_pd_online(struct blkg_policy_data *pd)
 564{
 565	struct throtl_grp *tg = pd_to_tg(pd);
 566	/*
 567	 * We don't want new groups to escape the limits of its ancestors.
 568	 * Update has_rules[] after a new group is brought online.
 569	 */
 570	tg_update_has_rules(tg);
 571}
 572
 573static void blk_throtl_update_limit_valid(struct throtl_data *td)
 574{
 575	struct cgroup_subsys_state *pos_css;
 576	struct blkcg_gq *blkg;
 577	bool low_valid = false;
 578
 579	rcu_read_lock();
 580	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
 581		struct throtl_grp *tg = blkg_to_tg(blkg);
 582
 583		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
 584		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
 585			low_valid = true;
 586	}
 587	rcu_read_unlock();
 588
 589	td->limit_valid[LIMIT_LOW] = low_valid;
 590}
 591
 592static void throtl_upgrade_state(struct throtl_data *td);
 593static void throtl_pd_offline(struct blkg_policy_data *pd)
 594{
 595	struct throtl_grp *tg = pd_to_tg(pd);
 596
 597	tg->bps[READ][LIMIT_LOW] = 0;
 598	tg->bps[WRITE][LIMIT_LOW] = 0;
 599	tg->iops[READ][LIMIT_LOW] = 0;
 600	tg->iops[WRITE][LIMIT_LOW] = 0;
 601
 602	blk_throtl_update_limit_valid(tg->td);
 603
 604	if (!tg->td->limit_valid[tg->td->limit_index])
 605		throtl_upgrade_state(tg->td);
 606}
 607
 608static void throtl_pd_free(struct blkg_policy_data *pd)
 609{
 610	struct throtl_grp *tg = pd_to_tg(pd);
 611
 612	del_timer_sync(&tg->service_queue.pending_timer);
 613	kfree(tg);
 614}
 615
 616static struct throtl_grp *
 617throtl_rb_first(struct throtl_service_queue *parent_sq)
 618{
 619	/* Service tree is empty */
 620	if (!parent_sq->nr_pending)
 621		return NULL;
 622
 623	if (!parent_sq->first_pending)
 624		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
 625
 626	if (parent_sq->first_pending)
 627		return rb_entry_tg(parent_sq->first_pending);
 628
 629	return NULL;
 630}
 631
 632static void rb_erase_init(struct rb_node *n, struct rb_root *root)
 633{
 634	rb_erase(n, root);
 635	RB_CLEAR_NODE(n);
 636}
 637
 638static void throtl_rb_erase(struct rb_node *n,
 639			    struct throtl_service_queue *parent_sq)
 640{
 641	if (parent_sq->first_pending == n)
 642		parent_sq->first_pending = NULL;
 643	rb_erase_init(n, &parent_sq->pending_tree);
 644	--parent_sq->nr_pending;
 645}
 646
 647static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
 648{
 649	struct throtl_grp *tg;
 650
 651	tg = throtl_rb_first(parent_sq);
 652	if (!tg)
 653		return;
 654
 655	parent_sq->first_pending_disptime = tg->disptime;
 656}
 657
 658static void tg_service_queue_add(struct throtl_grp *tg)
 659{
 660	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
 661	struct rb_node **node = &parent_sq->pending_tree.rb_node;
 662	struct rb_node *parent = NULL;
 663	struct throtl_grp *__tg;
 664	unsigned long key = tg->disptime;
 665	int left = 1;
 666
 667	while (*node != NULL) {
 668		parent = *node;
 669		__tg = rb_entry_tg(parent);
 670
 671		if (time_before(key, __tg->disptime))
 672			node = &parent->rb_left;
 673		else {
 674			node = &parent->rb_right;
 675			left = 0;
 676		}
 677	}
 678
 679	if (left)
 680		parent_sq->first_pending = &tg->rb_node;
 681
 682	rb_link_node(&tg->rb_node, parent, node);
 683	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
 684}
 685
 686static void __throtl_enqueue_tg(struct throtl_grp *tg)
 687{
 688	tg_service_queue_add(tg);
 689	tg->flags |= THROTL_TG_PENDING;
 690	tg->service_queue.parent_sq->nr_pending++;
 691}
 692
 693static void throtl_enqueue_tg(struct throtl_grp *tg)
 694{
 695	if (!(tg->flags & THROTL_TG_PENDING))
 696		__throtl_enqueue_tg(tg);
 697}
 698
 699static void __throtl_dequeue_tg(struct throtl_grp *tg)
 700{
 701	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
 702	tg->flags &= ~THROTL_TG_PENDING;
 703}
 704
 705static void throtl_dequeue_tg(struct throtl_grp *tg)
 706{
 707	if (tg->flags & THROTL_TG_PENDING)
 708		__throtl_dequeue_tg(tg);
 709}
 710
 711/* Call with queue lock held */
 712static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
 713					  unsigned long expires)
 714{
 715	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
 716
 717	/*
 718	 * Since we are adjusting the throttle limit dynamically, the sleep
 719	 * time calculated according to previous limit might be invalid. It's
 720	 * possible the cgroup sleep time is very long and no other cgroups
 721	 * have IO running so notify the limit changes. Make sure the cgroup
 722	 * doesn't sleep too long to avoid the missed notification.
 723	 */
 724	if (time_after(expires, max_expire))
 725		expires = max_expire;
 726	mod_timer(&sq->pending_timer, expires);
 727	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
 728		   expires - jiffies, jiffies);
 729}
 730
 731/**
 732 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 733 * @sq: the service_queue to schedule dispatch for
 734 * @force: force scheduling
 735 *
 736 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 737 * dispatch time of the first pending child.  Returns %true if either timer
 738 * is armed or there's no pending child left.  %false if the current
 739 * dispatch window is still open and the caller should continue
 740 * dispatching.
 741 *
 742 * If @force is %true, the dispatch timer is always scheduled and this
 743 * function is guaranteed to return %true.  This is to be used when the
 744 * caller can't dispatch itself and needs to invoke pending_timer
 745 * unconditionally.  Note that forced scheduling is likely to induce short
 746 * delay before dispatch starts even if @sq->first_pending_disptime is not
 747 * in the future and thus shouldn't be used in hot paths.
 748 */
 749static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
 750					  bool force)
 751{
 752	/* any pending children left? */
 753	if (!sq->nr_pending)
 754		return true;
 755
 756	update_min_dispatch_time(sq);
 757
 758	/* is the next dispatch time in the future? */
 759	if (force || time_after(sq->first_pending_disptime, jiffies)) {
 760		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
 761		return true;
 762	}
 763
 764	/* tell the caller to continue dispatching */
 765	return false;
 766}
 767
 768static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
 769		bool rw, unsigned long start)
 770{
 771	tg->bytes_disp[rw] = 0;
 772	tg->io_disp[rw] = 0;
 773
 774	/*
 775	 * Previous slice has expired. We must have trimmed it after last
 776	 * bio dispatch. That means since start of last slice, we never used
 777	 * that bandwidth. Do try to make use of that bandwidth while giving
 778	 * credit.
 779	 */
 780	if (time_after_eq(start, tg->slice_start[rw]))
 781		tg->slice_start[rw] = start;
 782
 783	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
 784	throtl_log(&tg->service_queue,
 785		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
 786		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 787		   tg->slice_end[rw], jiffies);
 788}
 789
 790static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
 791{
 792	tg->bytes_disp[rw] = 0;
 793	tg->io_disp[rw] = 0;
 794	tg->slice_start[rw] = jiffies;
 795	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
 796	throtl_log(&tg->service_queue,
 797		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
 798		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 799		   tg->slice_end[rw], jiffies);
 800}
 801
 802static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
 803					unsigned long jiffy_end)
 804{
 805	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
 806}
 807
 808static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
 809				       unsigned long jiffy_end)
 810{
 811	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
 812	throtl_log(&tg->service_queue,
 813		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
 814		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 815		   tg->slice_end[rw], jiffies);
 816}
 817
 818/* Determine if previously allocated or extended slice is complete or not */
 819static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
 820{
 821	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
 822		return false;
 823
 824	return 1;
 825}
 826
 827/* Trim the used slices and adjust slice start accordingly */
 828static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
 829{
 830	unsigned long nr_slices, time_elapsed, io_trim;
 831	u64 bytes_trim, tmp;
 832
 833	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
 834
 835	/*
 836	 * If bps are unlimited (-1), then time slice don't get
 837	 * renewed. Don't try to trim the slice if slice is used. A new
 838	 * slice will start when appropriate.
 839	 */
 840	if (throtl_slice_used(tg, rw))
 841		return;
 842
 843	/*
 844	 * A bio has been dispatched. Also adjust slice_end. It might happen
 845	 * that initially cgroup limit was very low resulting in high
 846	 * slice_end, but later limit was bumped up and bio was dispached
 847	 * sooner, then we need to reduce slice_end. A high bogus slice_end
 848	 * is bad because it does not allow new slice to start.
 849	 */
 850
 851	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
 852
 853	time_elapsed = jiffies - tg->slice_start[rw];
 854
 855	nr_slices = time_elapsed / tg->td->throtl_slice;
 856
 857	if (!nr_slices)
 858		return;
 859	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
 860	do_div(tmp, HZ);
 861	bytes_trim = tmp;
 862
 863	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
 864		HZ;
 865
 866	if (!bytes_trim && !io_trim)
 867		return;
 868
 869	if (tg->bytes_disp[rw] >= bytes_trim)
 870		tg->bytes_disp[rw] -= bytes_trim;
 871	else
 872		tg->bytes_disp[rw] = 0;
 873
 874	if (tg->io_disp[rw] >= io_trim)
 875		tg->io_disp[rw] -= io_trim;
 876	else
 877		tg->io_disp[rw] = 0;
 878
 879	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
 880
 881	throtl_log(&tg->service_queue,
 882		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
 883		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
 884		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
 885}
 886
 887static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
 888				  unsigned long *wait)
 889{
 890	bool rw = bio_data_dir(bio);
 891	unsigned int io_allowed;
 892	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
 893	u64 tmp;
 894
 895	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
 896
 897	/* Slice has just started. Consider one slice interval */
 898	if (!jiffy_elapsed)
 899		jiffy_elapsed_rnd = tg->td->throtl_slice;
 900
 901	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
 902
 903	/*
 904	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
 905	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
 906	 * will allow dispatch after 1 second and after that slice should
 907	 * have been trimmed.
 908	 */
 909
 910	tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
 911	do_div(tmp, HZ);
 912
 913	if (tmp > UINT_MAX)
 914		io_allowed = UINT_MAX;
 915	else
 916		io_allowed = tmp;
 917
 918	if (tg->io_disp[rw] + 1 <= io_allowed) {
 919		if (wait)
 920			*wait = 0;
 921		return true;
 922	}
 923
 924	/* Calc approx time to dispatch */
 925	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
 926
 927	if (jiffy_wait > jiffy_elapsed)
 928		jiffy_wait = jiffy_wait - jiffy_elapsed;
 929	else
 930		jiffy_wait = 1;
 931
 932	if (wait)
 933		*wait = jiffy_wait;
 934	return 0;
 935}
 936
 937static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
 938				 unsigned long *wait)
 939{
 940	bool rw = bio_data_dir(bio);
 941	u64 bytes_allowed, extra_bytes, tmp;
 942	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
 943	unsigned int bio_size = throtl_bio_data_size(bio);
 944
 945	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
 946
 947	/* Slice has just started. Consider one slice interval */
 948	if (!jiffy_elapsed)
 949		jiffy_elapsed_rnd = tg->td->throtl_slice;
 950
 951	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
 952
 953	tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
 954	do_div(tmp, HZ);
 955	bytes_allowed = tmp;
 956
 957	if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
 958		if (wait)
 959			*wait = 0;
 960		return true;
 961	}
 962
 963	/* Calc approx time to dispatch */
 964	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
 965	jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
 966
 967	if (!jiffy_wait)
 968		jiffy_wait = 1;
 969
 970	/*
 971	 * This wait time is without taking into consideration the rounding
 972	 * up we did. Add that time also.
 973	 */
 974	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
 975	if (wait)
 976		*wait = jiffy_wait;
 977	return 0;
 978}
 979
 980/*
 981 * Returns whether one can dispatch a bio or not. Also returns approx number
 982 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 983 */
 984static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
 985			    unsigned long *wait)
 986{
 987	bool rw = bio_data_dir(bio);
 988	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
 989
 990	/*
 991 	 * Currently whole state machine of group depends on first bio
 992	 * queued in the group bio list. So one should not be calling
 993	 * this function with a different bio if there are other bios
 994	 * queued.
 995	 */
 996	BUG_ON(tg->service_queue.nr_queued[rw] &&
 997	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
 998
 999	/* If tg->bps = -1, then BW is unlimited */
1000	if (tg_bps_limit(tg, rw) == U64_MAX &&
1001	    tg_iops_limit(tg, rw) == UINT_MAX) {
1002		if (wait)
1003			*wait = 0;
1004		return true;
1005	}
1006
1007	/*
1008	 * If previous slice expired, start a new one otherwise renew/extend
1009	 * existing slice to make sure it is at least throtl_slice interval
1010	 * long since now. New slice is started only for empty throttle group.
1011	 * If there is queued bio, that means there should be an active
1012	 * slice and it should be extended instead.
1013	 */
1014	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1015		throtl_start_new_slice(tg, rw);
1016	else {
1017		if (time_before(tg->slice_end[rw],
1018		    jiffies + tg->td->throtl_slice))
1019			throtl_extend_slice(tg, rw,
1020				jiffies + tg->td->throtl_slice);
1021	}
1022
1023	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
1024	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
1025		if (wait)
1026			*wait = 0;
1027		return 1;
1028	}
1029
1030	max_wait = max(bps_wait, iops_wait);
1031
1032	if (wait)
1033		*wait = max_wait;
1034
1035	if (time_before(tg->slice_end[rw], jiffies + max_wait))
1036		throtl_extend_slice(tg, rw, jiffies + max_wait);
1037
1038	return 0;
1039}
1040
1041static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1042{
1043	bool rw = bio_data_dir(bio);
1044	unsigned int bio_size = throtl_bio_data_size(bio);
1045
1046	/* Charge the bio to the group */
1047	tg->bytes_disp[rw] += bio_size;
1048	tg->io_disp[rw]++;
1049	tg->last_bytes_disp[rw] += bio_size;
1050	tg->last_io_disp[rw]++;
1051
1052	/*
1053	 * BIO_THROTTLED is used to prevent the same bio to be throttled
1054	 * more than once as a throttled bio will go through blk-throtl the
1055	 * second time when it eventually gets issued.  Set it when a bio
1056	 * is being charged to a tg.
1057	 */
1058	if (!bio_flagged(bio, BIO_THROTTLED))
1059		bio_set_flag(bio, BIO_THROTTLED);
1060}
1061
1062/**
1063 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1064 * @bio: bio to add
1065 * @qn: qnode to use
1066 * @tg: the target throtl_grp
1067 *
1068 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
1069 * tg->qnode_on_self[] is used.
1070 */
1071static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1072			      struct throtl_grp *tg)
1073{
1074	struct throtl_service_queue *sq = &tg->service_queue;
1075	bool rw = bio_data_dir(bio);
1076
1077	if (!qn)
1078		qn = &tg->qnode_on_self[rw];
1079
1080	/*
1081	 * If @tg doesn't currently have any bios queued in the same
1082	 * direction, queueing @bio can change when @tg should be
1083	 * dispatched.  Mark that @tg was empty.  This is automatically
1084	 * cleaered on the next tg_update_disptime().
1085	 */
1086	if (!sq->nr_queued[rw])
1087		tg->flags |= THROTL_TG_WAS_EMPTY;
1088
1089	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1090
1091	sq->nr_queued[rw]++;
1092	throtl_enqueue_tg(tg);
1093}
1094
1095static void tg_update_disptime(struct throtl_grp *tg)
1096{
1097	struct throtl_service_queue *sq = &tg->service_queue;
1098	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1099	struct bio *bio;
1100
1101	bio = throtl_peek_queued(&sq->queued[READ]);
1102	if (bio)
1103		tg_may_dispatch(tg, bio, &read_wait);
1104
1105	bio = throtl_peek_queued(&sq->queued[WRITE]);
1106	if (bio)
1107		tg_may_dispatch(tg, bio, &write_wait);
1108
1109	min_wait = min(read_wait, write_wait);
1110	disptime = jiffies + min_wait;
1111
1112	/* Update dispatch time */
1113	throtl_dequeue_tg(tg);
1114	tg->disptime = disptime;
1115	throtl_enqueue_tg(tg);
1116
1117	/* see throtl_add_bio_tg() */
1118	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1119}
1120
1121static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1122					struct throtl_grp *parent_tg, bool rw)
1123{
1124	if (throtl_slice_used(parent_tg, rw)) {
1125		throtl_start_new_slice_with_credit(parent_tg, rw,
1126				child_tg->slice_start[rw]);
1127	}
1128
1129}
1130
1131static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1132{
1133	struct throtl_service_queue *sq = &tg->service_queue;
1134	struct throtl_service_queue *parent_sq = sq->parent_sq;
1135	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1136	struct throtl_grp *tg_to_put = NULL;
1137	struct bio *bio;
1138
1139	/*
1140	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1141	 * from @tg may put its reference and @parent_sq might end up
1142	 * getting released prematurely.  Remember the tg to put and put it
1143	 * after @bio is transferred to @parent_sq.
1144	 */
1145	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1146	sq->nr_queued[rw]--;
1147
1148	throtl_charge_bio(tg, bio);
1149
1150	/*
1151	 * If our parent is another tg, we just need to transfer @bio to
1152	 * the parent using throtl_add_bio_tg().  If our parent is
1153	 * @td->service_queue, @bio is ready to be issued.  Put it on its
1154	 * bio_lists[] and decrease total number queued.  The caller is
1155	 * responsible for issuing these bios.
1156	 */
1157	if (parent_tg) {
1158		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1159		start_parent_slice_with_credit(tg, parent_tg, rw);
1160	} else {
1161		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1162				     &parent_sq->queued[rw]);
1163		BUG_ON(tg->td->nr_queued[rw] <= 0);
1164		tg->td->nr_queued[rw]--;
1165	}
1166
1167	throtl_trim_slice(tg, rw);
1168
1169	if (tg_to_put)
1170		blkg_put(tg_to_blkg(tg_to_put));
1171}
1172
1173static int throtl_dispatch_tg(struct throtl_grp *tg)
1174{
1175	struct throtl_service_queue *sq = &tg->service_queue;
1176	unsigned int nr_reads = 0, nr_writes = 0;
1177	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1178	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1179	struct bio *bio;
1180
1181	/* Try to dispatch 75% READS and 25% WRITES */
1182
1183	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1184	       tg_may_dispatch(tg, bio, NULL)) {
1185
1186		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1187		nr_reads++;
1188
1189		if (nr_reads >= max_nr_reads)
1190			break;
1191	}
1192
1193	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1194	       tg_may_dispatch(tg, bio, NULL)) {
1195
1196		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1197		nr_writes++;
1198
1199		if (nr_writes >= max_nr_writes)
1200			break;
1201	}
1202
1203	return nr_reads + nr_writes;
1204}
1205
1206static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1207{
1208	unsigned int nr_disp = 0;
1209
1210	while (1) {
1211		struct throtl_grp *tg = throtl_rb_first(parent_sq);
1212		struct throtl_service_queue *sq = &tg->service_queue;
1213
1214		if (!tg)
1215			break;
1216
1217		if (time_before(jiffies, tg->disptime))
1218			break;
1219
1220		throtl_dequeue_tg(tg);
1221
1222		nr_disp += throtl_dispatch_tg(tg);
1223
1224		if (sq->nr_queued[0] || sq->nr_queued[1])
1225			tg_update_disptime(tg);
1226
1227		if (nr_disp >= throtl_quantum)
1228			break;
1229	}
1230
1231	return nr_disp;
1232}
1233
1234static bool throtl_can_upgrade(struct throtl_data *td,
1235	struct throtl_grp *this_tg);
1236/**
1237 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1238 * @arg: the throtl_service_queue being serviced
1239 *
1240 * This timer is armed when a child throtl_grp with active bio's become
1241 * pending and queued on the service_queue's pending_tree and expires when
1242 * the first child throtl_grp should be dispatched.  This function
1243 * dispatches bio's from the children throtl_grps to the parent
1244 * service_queue.
1245 *
1246 * If the parent's parent is another throtl_grp, dispatching is propagated
1247 * by either arming its pending_timer or repeating dispatch directly.  If
1248 * the top-level service_tree is reached, throtl_data->dispatch_work is
1249 * kicked so that the ready bio's are issued.
1250 */
1251static void throtl_pending_timer_fn(struct timer_list *t)
1252{
1253	struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1254	struct throtl_grp *tg = sq_to_tg(sq);
1255	struct throtl_data *td = sq_to_td(sq);
1256	struct request_queue *q = td->queue;
1257	struct throtl_service_queue *parent_sq;
1258	bool dispatched;
1259	int ret;
1260
1261	spin_lock_irq(q->queue_lock);
1262	if (throtl_can_upgrade(td, NULL))
1263		throtl_upgrade_state(td);
1264
1265again:
1266	parent_sq = sq->parent_sq;
1267	dispatched = false;
1268
1269	while (true) {
1270		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1271			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
1272			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1273
1274		ret = throtl_select_dispatch(sq);
1275		if (ret) {
1276			throtl_log(sq, "bios disp=%u", ret);
1277			dispatched = true;
1278		}
1279
1280		if (throtl_schedule_next_dispatch(sq, false))
1281			break;
1282
1283		/* this dispatch windows is still open, relax and repeat */
1284		spin_unlock_irq(q->queue_lock);
1285		cpu_relax();
1286		spin_lock_irq(q->queue_lock);
1287	}
1288
1289	if (!dispatched)
1290		goto out_unlock;
1291
1292	if (parent_sq) {
1293		/* @parent_sq is another throl_grp, propagate dispatch */
1294		if (tg->flags & THROTL_TG_WAS_EMPTY) {
1295			tg_update_disptime(tg);
1296			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1297				/* window is already open, repeat dispatching */
1298				sq = parent_sq;
1299				tg = sq_to_tg(sq);
1300				goto again;
1301			}
1302		}
1303	} else {
1304		/* reached the top-level, queue issueing */
1305		queue_work(kthrotld_workqueue, &td->dispatch_work);
1306	}
1307out_unlock:
1308	spin_unlock_irq(q->queue_lock);
1309}
1310
1311/**
1312 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1313 * @work: work item being executed
1314 *
1315 * This function is queued for execution when bio's reach the bio_lists[]
1316 * of throtl_data->service_queue.  Those bio's are ready and issued by this
1317 * function.
1318 */
1319static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1320{
1321	struct throtl_data *td = container_of(work, struct throtl_data,
1322					      dispatch_work);
1323	struct throtl_service_queue *td_sq = &td->service_queue;
1324	struct request_queue *q = td->queue;
1325	struct bio_list bio_list_on_stack;
1326	struct bio *bio;
1327	struct blk_plug plug;
1328	int rw;
1329
1330	bio_list_init(&bio_list_on_stack);
1331
1332	spin_lock_irq(q->queue_lock);
1333	for (rw = READ; rw <= WRITE; rw++)
1334		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1335			bio_list_add(&bio_list_on_stack, bio);
1336	spin_unlock_irq(q->queue_lock);
1337
1338	if (!bio_list_empty(&bio_list_on_stack)) {
1339		blk_start_plug(&plug);
1340		while((bio = bio_list_pop(&bio_list_on_stack)))
1341			generic_make_request(bio);
1342		blk_finish_plug(&plug);
1343	}
1344}
1345
1346static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1347			      int off)
1348{
1349	struct throtl_grp *tg = pd_to_tg(pd);
1350	u64 v = *(u64 *)((void *)tg + off);
1351
1352	if (v == U64_MAX)
1353		return 0;
1354	return __blkg_prfill_u64(sf, pd, v);
1355}
1356
1357static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1358			       int off)
1359{
1360	struct throtl_grp *tg = pd_to_tg(pd);
1361	unsigned int v = *(unsigned int *)((void *)tg + off);
1362
1363	if (v == UINT_MAX)
1364		return 0;
1365	return __blkg_prfill_u64(sf, pd, v);
1366}
1367
1368static int tg_print_conf_u64(struct seq_file *sf, void *v)
1369{
1370	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1371			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1372	return 0;
1373}
1374
1375static int tg_print_conf_uint(struct seq_file *sf, void *v)
1376{
1377	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1378			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1379	return 0;
1380}
1381
1382static void tg_conf_updated(struct throtl_grp *tg, bool global)
1383{
1384	struct throtl_service_queue *sq = &tg->service_queue;
1385	struct cgroup_subsys_state *pos_css;
1386	struct blkcg_gq *blkg;
1387
1388	throtl_log(&tg->service_queue,
1389		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1390		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1391		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1392
1393	/*
1394	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
1395	 * considered to have rules if either the tg itself or any of its
1396	 * ancestors has rules.  This identifies groups without any
1397	 * restrictions in the whole hierarchy and allows them to bypass
1398	 * blk-throttle.
1399	 */
1400	blkg_for_each_descendant_pre(blkg, pos_css,
1401			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1402		struct throtl_grp *this_tg = blkg_to_tg(blkg);
1403		struct throtl_grp *parent_tg;
1404
1405		tg_update_has_rules(this_tg);
1406		/* ignore root/second level */
1407		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1408		    !blkg->parent->parent)
1409			continue;
1410		parent_tg = blkg_to_tg(blkg->parent);
1411		/*
1412		 * make sure all children has lower idle time threshold and
1413		 * higher latency target
1414		 */
1415		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1416				parent_tg->idletime_threshold);
1417		this_tg->latency_target = max(this_tg->latency_target,
1418				parent_tg->latency_target);
1419	}
1420
1421	/*
1422	 * We're already holding queue_lock and know @tg is valid.  Let's
1423	 * apply the new config directly.
1424	 *
1425	 * Restart the slices for both READ and WRITES. It might happen
1426	 * that a group's limit are dropped suddenly and we don't want to
1427	 * account recently dispatched IO with new low rate.
1428	 */
1429	throtl_start_new_slice(tg, 0);
1430	throtl_start_new_slice(tg, 1);
1431
1432	if (tg->flags & THROTL_TG_PENDING) {
1433		tg_update_disptime(tg);
1434		throtl_schedule_next_dispatch(sq->parent_sq, true);
1435	}
1436}
1437
1438static ssize_t tg_set_conf(struct kernfs_open_file *of,
1439			   char *buf, size_t nbytes, loff_t off, bool is_u64)
1440{
1441	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1442	struct blkg_conf_ctx ctx;
1443	struct throtl_grp *tg;
1444	int ret;
1445	u64 v;
1446
1447	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1448	if (ret)
1449		return ret;
1450
1451	ret = -EINVAL;
1452	if (sscanf(ctx.body, "%llu", &v) != 1)
1453		goto out_finish;
1454	if (!v)
1455		v = U64_MAX;
1456
1457	tg = blkg_to_tg(ctx.blkg);
1458
1459	if (is_u64)
1460		*(u64 *)((void *)tg + of_cft(of)->private) = v;
1461	else
1462		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1463
1464	tg_conf_updated(tg, false);
1465	ret = 0;
1466out_finish:
1467	blkg_conf_finish(&ctx);
1468	return ret ?: nbytes;
1469}
1470
1471static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1472			       char *buf, size_t nbytes, loff_t off)
1473{
1474	return tg_set_conf(of, buf, nbytes, off, true);
1475}
1476
1477static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1478				char *buf, size_t nbytes, loff_t off)
1479{
1480	return tg_set_conf(of, buf, nbytes, off, false);
1481}
1482
1483static struct cftype throtl_legacy_files[] = {
1484	{
1485		.name = "throttle.read_bps_device",
1486		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1487		.seq_show = tg_print_conf_u64,
1488		.write = tg_set_conf_u64,
1489	},
1490	{
1491		.name = "throttle.write_bps_device",
1492		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1493		.seq_show = tg_print_conf_u64,
1494		.write = tg_set_conf_u64,
1495	},
1496	{
1497		.name = "throttle.read_iops_device",
1498		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1499		.seq_show = tg_print_conf_uint,
1500		.write = tg_set_conf_uint,
1501	},
1502	{
1503		.name = "throttle.write_iops_device",
1504		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1505		.seq_show = tg_print_conf_uint,
1506		.write = tg_set_conf_uint,
1507	},
1508	{
1509		.name = "throttle.io_service_bytes",
1510		.private = (unsigned long)&blkcg_policy_throtl,
1511		.seq_show = blkg_print_stat_bytes,
1512	},
1513	{
1514		.name = "throttle.io_service_bytes_recursive",
1515		.private = (unsigned long)&blkcg_policy_throtl,
1516		.seq_show = blkg_print_stat_bytes_recursive,
1517	},
1518	{
1519		.name = "throttle.io_serviced",
1520		.private = (unsigned long)&blkcg_policy_throtl,
1521		.seq_show = blkg_print_stat_ios,
1522	},
1523	{
1524		.name = "throttle.io_serviced_recursive",
1525		.private = (unsigned long)&blkcg_policy_throtl,
1526		.seq_show = blkg_print_stat_ios_recursive,
1527	},
1528	{ }	/* terminate */
1529};
1530
1531static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1532			 int off)
1533{
1534	struct throtl_grp *tg = pd_to_tg(pd);
1535	const char *dname = blkg_dev_name(pd->blkg);
1536	char bufs[4][21] = { "max", "max", "max", "max" };
1537	u64 bps_dft;
1538	unsigned int iops_dft;
1539	char idle_time[26] = "";
1540	char latency_time[26] = "";
1541
1542	if (!dname)
1543		return 0;
1544
1545	if (off == LIMIT_LOW) {
1546		bps_dft = 0;
1547		iops_dft = 0;
1548	} else {
1549		bps_dft = U64_MAX;
1550		iops_dft = UINT_MAX;
1551	}
1552
1553	if (tg->bps_conf[READ][off] == bps_dft &&
1554	    tg->bps_conf[WRITE][off] == bps_dft &&
1555	    tg->iops_conf[READ][off] == iops_dft &&
1556	    tg->iops_conf[WRITE][off] == iops_dft &&
1557	    (off != LIMIT_LOW ||
1558	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1559	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1560		return 0;
1561
1562	if (tg->bps_conf[READ][off] != U64_MAX)
1563		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1564			tg->bps_conf[READ][off]);
1565	if (tg->bps_conf[WRITE][off] != U64_MAX)
1566		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1567			tg->bps_conf[WRITE][off]);
1568	if (tg->iops_conf[READ][off] != UINT_MAX)
1569		snprintf(bufs[2], sizeof(bufs[2]), "%u",
1570			tg->iops_conf[READ][off]);
1571	if (tg->iops_conf[WRITE][off] != UINT_MAX)
1572		snprintf(bufs[3], sizeof(bufs[3]), "%u",
1573			tg->iops_conf[WRITE][off]);
1574	if (off == LIMIT_LOW) {
1575		if (tg->idletime_threshold_conf == ULONG_MAX)
1576			strcpy(idle_time, " idle=max");
1577		else
1578			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1579				tg->idletime_threshold_conf);
1580
1581		if (tg->latency_target_conf == ULONG_MAX)
1582			strcpy(latency_time, " latency=max");
1583		else
1584			snprintf(latency_time, sizeof(latency_time),
1585				" latency=%lu", tg->latency_target_conf);
1586	}
1587
1588	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1589		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1590		   latency_time);
1591	return 0;
1592}
1593
1594static int tg_print_limit(struct seq_file *sf, void *v)
1595{
1596	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1597			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1598	return 0;
1599}
1600
1601static ssize_t tg_set_limit(struct kernfs_open_file *of,
1602			  char *buf, size_t nbytes, loff_t off)
1603{
1604	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1605	struct blkg_conf_ctx ctx;
1606	struct throtl_grp *tg;
1607	u64 v[4];
1608	unsigned long idle_time;
1609	unsigned long latency_time;
1610	int ret;
1611	int index = of_cft(of)->private;
1612
1613	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1614	if (ret)
1615		return ret;
1616
1617	tg = blkg_to_tg(ctx.blkg);
1618
1619	v[0] = tg->bps_conf[READ][index];
1620	v[1] = tg->bps_conf[WRITE][index];
1621	v[2] = tg->iops_conf[READ][index];
1622	v[3] = tg->iops_conf[WRITE][index];
1623
1624	idle_time = tg->idletime_threshold_conf;
1625	latency_time = tg->latency_target_conf;
1626	while (true) {
1627		char tok[27];	/* wiops=18446744073709551616 */
1628		char *p;
1629		u64 val = U64_MAX;
1630		int len;
1631
1632		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1633			break;
1634		if (tok[0] == '\0')
1635			break;
1636		ctx.body += len;
1637
1638		ret = -EINVAL;
1639		p = tok;
1640		strsep(&p, "=");
1641		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1642			goto out_finish;
1643
1644		ret = -ERANGE;
1645		if (!val)
1646			goto out_finish;
1647
1648		ret = -EINVAL;
1649		if (!strcmp(tok, "rbps"))
1650			v[0] = val;
1651		else if (!strcmp(tok, "wbps"))
1652			v[1] = val;
1653		else if (!strcmp(tok, "riops"))
1654			v[2] = min_t(u64, val, UINT_MAX);
1655		else if (!strcmp(tok, "wiops"))
1656			v[3] = min_t(u64, val, UINT_MAX);
1657		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1658			idle_time = val;
1659		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1660			latency_time = val;
1661		else
1662			goto out_finish;
1663	}
1664
1665	tg->bps_conf[READ][index] = v[0];
1666	tg->bps_conf[WRITE][index] = v[1];
1667	tg->iops_conf[READ][index] = v[2];
1668	tg->iops_conf[WRITE][index] = v[3];
1669
1670	if (index == LIMIT_MAX) {
1671		tg->bps[READ][index] = v[0];
1672		tg->bps[WRITE][index] = v[1];
1673		tg->iops[READ][index] = v[2];
1674		tg->iops[WRITE][index] = v[3];
1675	}
1676	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1677		tg->bps_conf[READ][LIMIT_MAX]);
1678	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1679		tg->bps_conf[WRITE][LIMIT_MAX]);
1680	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1681		tg->iops_conf[READ][LIMIT_MAX]);
1682	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1683		tg->iops_conf[WRITE][LIMIT_MAX]);
1684	tg->idletime_threshold_conf = idle_time;
1685	tg->latency_target_conf = latency_time;
1686
1687	/* force user to configure all settings for low limit  */
1688	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1689	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1690	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1691	    tg->latency_target_conf == DFL_LATENCY_TARGET) {
1692		tg->bps[READ][LIMIT_LOW] = 0;
1693		tg->bps[WRITE][LIMIT_LOW] = 0;
1694		tg->iops[READ][LIMIT_LOW] = 0;
1695		tg->iops[WRITE][LIMIT_LOW] = 0;
1696		tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1697		tg->latency_target = DFL_LATENCY_TARGET;
1698	} else if (index == LIMIT_LOW) {
1699		tg->idletime_threshold = tg->idletime_threshold_conf;
1700		tg->latency_target = tg->latency_target_conf;
1701	}
1702
1703	blk_throtl_update_limit_valid(tg->td);
1704	if (tg->td->limit_valid[LIMIT_LOW]) {
1705		if (index == LIMIT_LOW)
1706			tg->td->limit_index = LIMIT_LOW;
1707	} else
1708		tg->td->limit_index = LIMIT_MAX;
1709	tg_conf_updated(tg, index == LIMIT_LOW &&
1710		tg->td->limit_valid[LIMIT_LOW]);
1711	ret = 0;
1712out_finish:
1713	blkg_conf_finish(&ctx);
1714	return ret ?: nbytes;
1715}
1716
1717static struct cftype throtl_files[] = {
1718#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1719	{
1720		.name = "low",
1721		.flags = CFTYPE_NOT_ON_ROOT,
1722		.seq_show = tg_print_limit,
1723		.write = tg_set_limit,
1724		.private = LIMIT_LOW,
1725	},
1726#endif
1727	{
1728		.name = "max",
1729		.flags = CFTYPE_NOT_ON_ROOT,
1730		.seq_show = tg_print_limit,
1731		.write = tg_set_limit,
1732		.private = LIMIT_MAX,
1733	},
1734	{ }	/* terminate */
1735};
1736
1737static void throtl_shutdown_wq(struct request_queue *q)
1738{
1739	struct throtl_data *td = q->td;
1740
1741	cancel_work_sync(&td->dispatch_work);
1742}
1743
1744static struct blkcg_policy blkcg_policy_throtl = {
1745	.dfl_cftypes		= throtl_files,
1746	.legacy_cftypes		= throtl_legacy_files,
1747
1748	.pd_alloc_fn		= throtl_pd_alloc,
1749	.pd_init_fn		= throtl_pd_init,
1750	.pd_online_fn		= throtl_pd_online,
1751	.pd_offline_fn		= throtl_pd_offline,
1752	.pd_free_fn		= throtl_pd_free,
1753};
1754
1755static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1756{
1757	unsigned long rtime = jiffies, wtime = jiffies;
1758
1759	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1760		rtime = tg->last_low_overflow_time[READ];
1761	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1762		wtime = tg->last_low_overflow_time[WRITE];
1763	return min(rtime, wtime);
1764}
1765
1766/* tg should not be an intermediate node */
1767static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1768{
1769	struct throtl_service_queue *parent_sq;
1770	struct throtl_grp *parent = tg;
1771	unsigned long ret = __tg_last_low_overflow_time(tg);
1772
1773	while (true) {
1774		parent_sq = parent->service_queue.parent_sq;
1775		parent = sq_to_tg(parent_sq);
1776		if (!parent)
1777			break;
1778
1779		/*
1780		 * The parent doesn't have low limit, it always reaches low
1781		 * limit. Its overflow time is useless for children
1782		 */
1783		if (!parent->bps[READ][LIMIT_LOW] &&
1784		    !parent->iops[READ][LIMIT_LOW] &&
1785		    !parent->bps[WRITE][LIMIT_LOW] &&
1786		    !parent->iops[WRITE][LIMIT_LOW])
1787			continue;
1788		if (time_after(__tg_last_low_overflow_time(parent), ret))
1789			ret = __tg_last_low_overflow_time(parent);
1790	}
1791	return ret;
1792}
1793
1794static bool throtl_tg_is_idle(struct throtl_grp *tg)
1795{
1796	/*
1797	 * cgroup is idle if:
1798	 * - single idle is too long, longer than a fixed value (in case user
1799	 *   configure a too big threshold) or 4 times of idletime threshold
1800	 * - average think time is more than threshold
1801	 * - IO latency is largely below threshold
1802	 */
1803	unsigned long time;
1804	bool ret;
1805
1806	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1807	ret = tg->latency_target == DFL_LATENCY_TARGET ||
1808	      tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1809	      (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1810	      tg->avg_idletime > tg->idletime_threshold ||
1811	      (tg->latency_target && tg->bio_cnt &&
1812		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1813	throtl_log(&tg->service_queue,
1814		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1815		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1816		tg->bio_cnt, ret, tg->td->scale);
1817	return ret;
1818}
1819
1820static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1821{
1822	struct throtl_service_queue *sq = &tg->service_queue;
1823	bool read_limit, write_limit;
1824
1825	/*
1826	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1827	 * reaches), it's ok to upgrade to next limit
1828	 */
1829	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1830	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1831	if (!read_limit && !write_limit)
1832		return true;
1833	if (read_limit && sq->nr_queued[READ] &&
1834	    (!write_limit || sq->nr_queued[WRITE]))
1835		return true;
1836	if (write_limit && sq->nr_queued[WRITE] &&
1837	    (!read_limit || sq->nr_queued[READ]))
1838		return true;
1839
1840	if (time_after_eq(jiffies,
1841		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1842	    throtl_tg_is_idle(tg))
1843		return true;
1844	return false;
1845}
1846
1847static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1848{
1849	while (true) {
1850		if (throtl_tg_can_upgrade(tg))
1851			return true;
1852		tg = sq_to_tg(tg->service_queue.parent_sq);
1853		if (!tg || !tg_to_blkg(tg)->parent)
1854			return false;
1855	}
1856	return false;
1857}
1858
1859static bool throtl_can_upgrade(struct throtl_data *td,
1860	struct throtl_grp *this_tg)
1861{
1862	struct cgroup_subsys_state *pos_css;
1863	struct blkcg_gq *blkg;
1864
1865	if (td->limit_index != LIMIT_LOW)
1866		return false;
1867
1868	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1869		return false;
1870
1871	rcu_read_lock();
1872	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1873		struct throtl_grp *tg = blkg_to_tg(blkg);
1874
1875		if (tg == this_tg)
1876			continue;
1877		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1878			continue;
1879		if (!throtl_hierarchy_can_upgrade(tg)) {
1880			rcu_read_unlock();
1881			return false;
1882		}
1883	}
1884	rcu_read_unlock();
1885	return true;
1886}
1887
1888static void throtl_upgrade_check(struct throtl_grp *tg)
1889{
1890	unsigned long now = jiffies;
1891
1892	if (tg->td->limit_index != LIMIT_LOW)
1893		return;
1894
1895	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1896		return;
1897
1898	tg->last_check_time = now;
1899
1900	if (!time_after_eq(now,
1901	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1902		return;
1903
1904	if (throtl_can_upgrade(tg->td, NULL))
1905		throtl_upgrade_state(tg->td);
1906}
1907
1908static void throtl_upgrade_state(struct throtl_data *td)
1909{
1910	struct cgroup_subsys_state *pos_css;
1911	struct blkcg_gq *blkg;
1912
1913	throtl_log(&td->service_queue, "upgrade to max");
1914	td->limit_index = LIMIT_MAX;
1915	td->low_upgrade_time = jiffies;
1916	td->scale = 0;
1917	rcu_read_lock();
1918	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1919		struct throtl_grp *tg = blkg_to_tg(blkg);
1920		struct throtl_service_queue *sq = &tg->service_queue;
1921
1922		tg->disptime = jiffies - 1;
1923		throtl_select_dispatch(sq);
1924		throtl_schedule_next_dispatch(sq, true);
1925	}
1926	rcu_read_unlock();
1927	throtl_select_dispatch(&td->service_queue);
1928	throtl_schedule_next_dispatch(&td->service_queue, true);
1929	queue_work(kthrotld_workqueue, &td->dispatch_work);
1930}
1931
1932static void throtl_downgrade_state(struct throtl_data *td, int new)
1933{
1934	td->scale /= 2;
1935
1936	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1937	if (td->scale) {
1938		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1939		return;
1940	}
1941
1942	td->limit_index = new;
1943	td->low_downgrade_time = jiffies;
1944}
1945
1946static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1947{
1948	struct throtl_data *td = tg->td;
1949	unsigned long now = jiffies;
1950
1951	/*
1952	 * If cgroup is below low limit, consider downgrade and throttle other
1953	 * cgroups
1954	 */
1955	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1956	    time_after_eq(now, tg_last_low_overflow_time(tg) +
1957					td->throtl_slice) &&
1958	    (!throtl_tg_is_idle(tg) ||
1959	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1960		return true;
1961	return false;
1962}
1963
1964static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1965{
1966	while (true) {
1967		if (!throtl_tg_can_downgrade(tg))
1968			return false;
1969		tg = sq_to_tg(tg->service_queue.parent_sq);
1970		if (!tg || !tg_to_blkg(tg)->parent)
1971			break;
1972	}
1973	return true;
1974}
1975
1976static void throtl_downgrade_check(struct throtl_grp *tg)
1977{
1978	uint64_t bps;
1979	unsigned int iops;
1980	unsigned long elapsed_time;
1981	unsigned long now = jiffies;
1982
1983	if (tg->td->limit_index != LIMIT_MAX ||
1984	    !tg->td->limit_valid[LIMIT_LOW])
1985		return;
1986	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1987		return;
1988	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1989		return;
1990
1991	elapsed_time = now - tg->last_check_time;
1992	tg->last_check_time = now;
1993
1994	if (time_before(now, tg_last_low_overflow_time(tg) +
1995			tg->td->throtl_slice))
1996		return;
1997
1998	if (tg->bps[READ][LIMIT_LOW]) {
1999		bps = tg->last_bytes_disp[READ] * HZ;
2000		do_div(bps, elapsed_time);
2001		if (bps >= tg->bps[READ][LIMIT_LOW])
2002			tg->last_low_overflow_time[READ] = now;
2003	}
2004
2005	if (tg->bps[WRITE][LIMIT_LOW]) {
2006		bps = tg->last_bytes_disp[WRITE] * HZ;
2007		do_div(bps, elapsed_time);
2008		if (bps >= tg->bps[WRITE][LIMIT_LOW])
2009			tg->last_low_overflow_time[WRITE] = now;
2010	}
2011
2012	if (tg->iops[READ][LIMIT_LOW]) {
2013		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2014		if (iops >= tg->iops[READ][LIMIT_LOW])
2015			tg->last_low_overflow_time[READ] = now;
2016	}
2017
2018	if (tg->iops[WRITE][LIMIT_LOW]) {
2019		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2020		if (iops >= tg->iops[WRITE][LIMIT_LOW])
2021			tg->last_low_overflow_time[WRITE] = now;
2022	}
2023
2024	/*
2025	 * If cgroup is below low limit, consider downgrade and throttle other
2026	 * cgroups
2027	 */
2028	if (throtl_hierarchy_can_downgrade(tg))
2029		throtl_downgrade_state(tg->td, LIMIT_LOW);
2030
2031	tg->last_bytes_disp[READ] = 0;
2032	tg->last_bytes_disp[WRITE] = 0;
2033	tg->last_io_disp[READ] = 0;
2034	tg->last_io_disp[WRITE] = 0;
2035}
2036
2037static void blk_throtl_update_idletime(struct throtl_grp *tg)
2038{
2039	unsigned long now = ktime_get_ns() >> 10;
2040	unsigned long last_finish_time = tg->last_finish_time;
2041
2042	if (now <= last_finish_time || last_finish_time == 0 ||
2043	    last_finish_time == tg->checked_last_finish_time)
2044		return;
2045
2046	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2047	tg->checked_last_finish_time = last_finish_time;
2048}
2049
2050#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2051static void throtl_update_latency_buckets(struct throtl_data *td)
2052{
2053	struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2054	int i, cpu, rw;
2055	unsigned long last_latency[2] = { 0 };
2056	unsigned long latency[2];
2057
2058	if (!blk_queue_nonrot(td->queue))
2059		return;
2060	if (time_before(jiffies, td->last_calculate_time + HZ))
2061		return;
2062	td->last_calculate_time = jiffies;
2063
2064	memset(avg_latency, 0, sizeof(avg_latency));
2065	for (rw = READ; rw <= WRITE; rw++) {
2066		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2067			struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2068
2069			for_each_possible_cpu(cpu) {
2070				struct latency_bucket *bucket;
2071
2072				/* this isn't race free, but ok in practice */
2073				bucket = per_cpu_ptr(td->latency_buckets[rw],
2074					cpu);
2075				tmp->total_latency += bucket[i].total_latency;
2076				tmp->samples += bucket[i].samples;
2077				bucket[i].total_latency = 0;
2078				bucket[i].samples = 0;
2079			}
2080
2081			if (tmp->samples >= 32) {
2082				int samples = tmp->samples;
2083
2084				latency[rw] = tmp->total_latency;
2085
2086				tmp->total_latency = 0;
2087				tmp->samples = 0;
2088				latency[rw] /= samples;
2089				if (latency[rw] == 0)
2090					continue;
2091				avg_latency[rw][i].latency = latency[rw];
2092			}
2093		}
2094	}
2095
2096	for (rw = READ; rw <= WRITE; rw++) {
2097		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2098			if (!avg_latency[rw][i].latency) {
2099				if (td->avg_buckets[rw][i].latency < last_latency[rw])
2100					td->avg_buckets[rw][i].latency =
2101						last_latency[rw];
2102				continue;
2103			}
2104
2105			if (!td->avg_buckets[rw][i].valid)
2106				latency[rw] = avg_latency[rw][i].latency;
2107			else
2108				latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2109					avg_latency[rw][i].latency) >> 3;
2110
2111			td->avg_buckets[rw][i].latency = max(latency[rw],
2112				last_latency[rw]);
2113			td->avg_buckets[rw][i].valid = true;
2114			last_latency[rw] = td->avg_buckets[rw][i].latency;
2115		}
2116	}
2117
2118	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2119		throtl_log(&td->service_queue,
2120			"Latency bucket %d: read latency=%ld, read valid=%d, "
2121			"write latency=%ld, write valid=%d", i,
2122			td->avg_buckets[READ][i].latency,
2123			td->avg_buckets[READ][i].valid,
2124			td->avg_buckets[WRITE][i].latency,
2125			td->avg_buckets[WRITE][i].valid);
2126}
2127#else
2128static inline void throtl_update_latency_buckets(struct throtl_data *td)
2129{
2130}
2131#endif
2132
2133static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
2134{
2135#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2136	if (bio->bi_css) {
2137		if (bio->bi_cg_private)
2138			blkg_put(tg_to_blkg(bio->bi_cg_private));
2139		bio->bi_cg_private = tg;
2140		blkg_get(tg_to_blkg(tg));
2141	}
2142	blk_stat_set_issue(&bio->bi_issue_stat, bio_sectors(bio));
2143#endif
2144}
2145
2146bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
2147		    struct bio *bio)
2148{
2149	struct throtl_qnode *qn = NULL;
2150	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2151	struct throtl_service_queue *sq;
2152	bool rw = bio_data_dir(bio);
2153	bool throttled = false;
2154	struct throtl_data *td = tg->td;
2155
2156	WARN_ON_ONCE(!rcu_read_lock_held());
2157
2158	/* see throtl_charge_bio() */
2159	if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
2160		goto out;
2161
2162	spin_lock_irq(q->queue_lock);
2163
2164	throtl_update_latency_buckets(td);
2165
2166	if (unlikely(blk_queue_bypass(q)))
2167		goto out_unlock;
2168
2169	blk_throtl_assoc_bio(tg, bio);
2170	blk_throtl_update_idletime(tg);
2171
2172	sq = &tg->service_queue;
2173
2174again:
2175	while (true) {
2176		if (tg->last_low_overflow_time[rw] == 0)
2177			tg->last_low_overflow_time[rw] = jiffies;
2178		throtl_downgrade_check(tg);
2179		throtl_upgrade_check(tg);
2180		/* throtl is FIFO - if bios are already queued, should queue */
2181		if (sq->nr_queued[rw])
2182			break;
2183
2184		/* if above limits, break to queue */
2185		if (!tg_may_dispatch(tg, bio, NULL)) {
2186			tg->last_low_overflow_time[rw] = jiffies;
2187			if (throtl_can_upgrade(td, tg)) {
2188				throtl_upgrade_state(td);
2189				goto again;
2190			}
2191			break;
2192		}
2193
2194		/* within limits, let's charge and dispatch directly */
2195		throtl_charge_bio(tg, bio);
2196
2197		/*
2198		 * We need to trim slice even when bios are not being queued
2199		 * otherwise it might happen that a bio is not queued for
2200		 * a long time and slice keeps on extending and trim is not
2201		 * called for a long time. Now if limits are reduced suddenly
2202		 * we take into account all the IO dispatched so far at new
2203		 * low rate and * newly queued IO gets a really long dispatch
2204		 * time.
2205		 *
2206		 * So keep on trimming slice even if bio is not queued.
2207		 */
2208		throtl_trim_slice(tg, rw);
2209
2210		/*
2211		 * @bio passed through this layer without being throttled.
2212		 * Climb up the ladder.  If we''re already at the top, it
2213		 * can be executed directly.
2214		 */
2215		qn = &tg->qnode_on_parent[rw];
2216		sq = sq->parent_sq;
2217		tg = sq_to_tg(sq);
2218		if (!tg)
2219			goto out_unlock;
2220	}
2221
2222	/* out-of-limit, queue to @tg */
2223	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2224		   rw == READ ? 'R' : 'W',
2225		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
2226		   tg_bps_limit(tg, rw),
2227		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2228		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2229
2230	tg->last_low_overflow_time[rw] = jiffies;
2231
2232	td->nr_queued[rw]++;
2233	throtl_add_bio_tg(bio, qn, tg);
2234	throttled = true;
2235
2236	/*
2237	 * Update @tg's dispatch time and force schedule dispatch if @tg
2238	 * was empty before @bio.  The forced scheduling isn't likely to
2239	 * cause undue delay as @bio is likely to be dispatched directly if
2240	 * its @tg's disptime is not in the future.
2241	 */
2242	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2243		tg_update_disptime(tg);
2244		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2245	}
2246
2247out_unlock:
2248	spin_unlock_irq(q->queue_lock);
2249out:
2250	bio_set_flag(bio, BIO_THROTTLED);
2251
2252#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2253	if (throttled || !td->track_bio_latency)
2254		bio->bi_issue_stat.stat |= SKIP_LATENCY;
2255#endif
 
2256	return throttled;
2257}
2258
2259#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2260static void throtl_track_latency(struct throtl_data *td, sector_t size,
2261	int op, unsigned long time)
2262{
2263	struct latency_bucket *latency;
2264	int index;
2265
2266	if (!td || td->limit_index != LIMIT_LOW ||
2267	    !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2268	    !blk_queue_nonrot(td->queue))
2269		return;
2270
2271	index = request_bucket_index(size);
2272
2273	latency = get_cpu_ptr(td->latency_buckets[op]);
2274	latency[index].total_latency += time;
2275	latency[index].samples++;
2276	put_cpu_ptr(td->latency_buckets[op]);
2277}
2278
2279void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2280{
2281	struct request_queue *q = rq->q;
2282	struct throtl_data *td = q->td;
2283
2284	throtl_track_latency(td, blk_stat_size(&rq->issue_stat),
2285		req_op(rq), time_ns >> 10);
2286}
2287
2288void blk_throtl_bio_endio(struct bio *bio)
2289{
2290	struct throtl_grp *tg;
2291	u64 finish_time_ns;
2292	unsigned long finish_time;
2293	unsigned long start_time;
2294	unsigned long lat;
2295	int rw = bio_data_dir(bio);
2296
2297	tg = bio->bi_cg_private;
2298	if (!tg)
2299		return;
2300	bio->bi_cg_private = NULL;
2301
2302	finish_time_ns = ktime_get_ns();
2303	tg->last_finish_time = finish_time_ns >> 10;
2304
2305	start_time = blk_stat_time(&bio->bi_issue_stat) >> 10;
2306	finish_time = __blk_stat_time(finish_time_ns) >> 10;
2307	if (!start_time || finish_time <= start_time) {
2308		blkg_put(tg_to_blkg(tg));
2309		return;
2310	}
2311
2312	lat = finish_time - start_time;
2313	/* this is only for bio based driver */
2314	if (!(bio->bi_issue_stat.stat & SKIP_LATENCY))
2315		throtl_track_latency(tg->td, blk_stat_size(&bio->bi_issue_stat),
2316			bio_op(bio), lat);
2317
2318	if (tg->latency_target && lat >= tg->td->filtered_latency) {
2319		int bucket;
2320		unsigned int threshold;
2321
2322		bucket = request_bucket_index(
2323			blk_stat_size(&bio->bi_issue_stat));
2324		threshold = tg->td->avg_buckets[rw][bucket].latency +
2325			tg->latency_target;
2326		if (lat > threshold)
2327			tg->bad_bio_cnt++;
2328		/*
2329		 * Not race free, could get wrong count, which means cgroups
2330		 * will be throttled
2331		 */
2332		tg->bio_cnt++;
2333	}
2334
2335	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2336		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2337		tg->bio_cnt /= 2;
2338		tg->bad_bio_cnt /= 2;
2339	}
2340
2341	blkg_put(tg_to_blkg(tg));
2342}
2343#endif
2344
2345/*
2346 * Dispatch all bios from all children tg's queued on @parent_sq.  On
2347 * return, @parent_sq is guaranteed to not have any active children tg's
2348 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
2349 */
2350static void tg_drain_bios(struct throtl_service_queue *parent_sq)
2351{
2352	struct throtl_grp *tg;
2353
2354	while ((tg = throtl_rb_first(parent_sq))) {
2355		struct throtl_service_queue *sq = &tg->service_queue;
2356		struct bio *bio;
2357
2358		throtl_dequeue_tg(tg);
2359
2360		while ((bio = throtl_peek_queued(&sq->queued[READ])))
2361			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2362		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2363			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2364	}
2365}
2366
2367/**
2368 * blk_throtl_drain - drain throttled bios
2369 * @q: request_queue to drain throttled bios for
2370 *
2371 * Dispatch all currently throttled bios on @q through ->make_request_fn().
2372 */
2373void blk_throtl_drain(struct request_queue *q)
2374	__releases(q->queue_lock) __acquires(q->queue_lock)
2375{
2376	struct throtl_data *td = q->td;
2377	struct blkcg_gq *blkg;
2378	struct cgroup_subsys_state *pos_css;
2379	struct bio *bio;
2380	int rw;
2381
2382	queue_lockdep_assert_held(q);
2383	rcu_read_lock();
2384
2385	/*
2386	 * Drain each tg while doing post-order walk on the blkg tree, so
2387	 * that all bios are propagated to td->service_queue.  It'd be
2388	 * better to walk service_queue tree directly but blkg walk is
2389	 * easier.
2390	 */
2391	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2392		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2393
2394	/* finally, transfer bios from top-level tg's into the td */
2395	tg_drain_bios(&td->service_queue);
2396
2397	rcu_read_unlock();
2398	spin_unlock_irq(q->queue_lock);
2399
2400	/* all bios now should be in td->service_queue, issue them */
2401	for (rw = READ; rw <= WRITE; rw++)
2402		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
2403						NULL)))
2404			generic_make_request(bio);
2405
2406	spin_lock_irq(q->queue_lock);
2407}
2408
2409int blk_throtl_init(struct request_queue *q)
2410{
2411	struct throtl_data *td;
2412	int ret;
2413
2414	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2415	if (!td)
2416		return -ENOMEM;
2417	td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2418		LATENCY_BUCKET_SIZE, __alignof__(u64));
2419	if (!td->latency_buckets[READ]) {
2420		kfree(td);
2421		return -ENOMEM;
2422	}
2423	td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2424		LATENCY_BUCKET_SIZE, __alignof__(u64));
2425	if (!td->latency_buckets[WRITE]) {
2426		free_percpu(td->latency_buckets[READ]);
2427		kfree(td);
2428		return -ENOMEM;
2429	}
2430
2431	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2432	throtl_service_queue_init(&td->service_queue);
2433
2434	q->td = td;
2435	td->queue = q;
2436
2437	td->limit_valid[LIMIT_MAX] = true;
2438	td->limit_index = LIMIT_MAX;
2439	td->low_upgrade_time = jiffies;
2440	td->low_downgrade_time = jiffies;
2441
2442	/* activate policy */
2443	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2444	if (ret) {
2445		free_percpu(td->latency_buckets[READ]);
2446		free_percpu(td->latency_buckets[WRITE]);
2447		kfree(td);
2448	}
2449	return ret;
2450}
2451
2452void blk_throtl_exit(struct request_queue *q)
2453{
2454	BUG_ON(!q->td);
2455	throtl_shutdown_wq(q);
2456	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2457	free_percpu(q->td->latency_buckets[READ]);
2458	free_percpu(q->td->latency_buckets[WRITE]);
2459	kfree(q->td);
2460}
2461
2462void blk_throtl_register_queue(struct request_queue *q)
2463{
2464	struct throtl_data *td;
2465	int i;
2466
2467	td = q->td;
2468	BUG_ON(!td);
2469
2470	if (blk_queue_nonrot(q)) {
2471		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2472		td->filtered_latency = LATENCY_FILTERED_SSD;
2473	} else {
2474		td->throtl_slice = DFL_THROTL_SLICE_HD;
2475		td->filtered_latency = LATENCY_FILTERED_HD;
2476		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2477			td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2478			td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2479		}
2480	}
2481#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2482	/* if no low limit, use previous default */
2483	td->throtl_slice = DFL_THROTL_SLICE_HD;
2484#endif
2485
2486	td->track_bio_latency = !queue_is_rq_based(q);
2487	if (!td->track_bio_latency)
2488		blk_stat_enable_accounting(q);
2489}
2490
2491#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2492ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2493{
2494	if (!q->td)
2495		return -EINVAL;
2496	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2497}
2498
2499ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2500	const char *page, size_t count)
2501{
2502	unsigned long v;
2503	unsigned long t;
2504
2505	if (!q->td)
2506		return -EINVAL;
2507	if (kstrtoul(page, 10, &v))
2508		return -EINVAL;
2509	t = msecs_to_jiffies(v);
2510	if (t == 0 || t > MAX_THROTL_SLICE)
2511		return -EINVAL;
2512	q->td->throtl_slice = t;
2513	return count;
2514}
2515#endif
2516
2517static int __init throtl_init(void)
2518{
2519	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2520	if (!kthrotld_workqueue)
2521		panic("Failed to create kthrotld\n");
2522
2523	return blkcg_policy_register(&blkcg_policy_throtl);
2524}
2525
2526module_init(throtl_init);
v4.6
 
   1/*
   2 * Interface for controlling IO bandwidth on a request queue
   3 *
   4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
   5 */
   6
   7#include <linux/module.h>
   8#include <linux/slab.h>
   9#include <linux/blkdev.h>
  10#include <linux/bio.h>
  11#include <linux/blktrace_api.h>
  12#include <linux/blk-cgroup.h>
  13#include "blk.h"
  14
  15/* Max dispatch from a group in 1 round */
  16static int throtl_grp_quantum = 8;
  17
  18/* Total max dispatch from all groups in one round */
  19static int throtl_quantum = 32;
  20
  21/* Throttling is performed over 100ms slice and after that slice is renewed */
  22static unsigned long throtl_slice = HZ/10;	/* 100 ms */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  23
  24static struct blkcg_policy blkcg_policy_throtl;
  25
  26/* A workqueue to queue throttle related work */
  27static struct workqueue_struct *kthrotld_workqueue;
  28
  29/*
  30 * To implement hierarchical throttling, throtl_grps form a tree and bios
  31 * are dispatched upwards level by level until they reach the top and get
  32 * issued.  When dispatching bios from the children and local group at each
  33 * level, if the bios are dispatched into a single bio_list, there's a risk
  34 * of a local or child group which can queue many bios at once filling up
  35 * the list starving others.
  36 *
  37 * To avoid such starvation, dispatched bios are queued separately
  38 * according to where they came from.  When they are again dispatched to
  39 * the parent, they're popped in round-robin order so that no single source
  40 * hogs the dispatch window.
  41 *
  42 * throtl_qnode is used to keep the queued bios separated by their sources.
  43 * Bios are queued to throtl_qnode which in turn is queued to
  44 * throtl_service_queue and then dispatched in round-robin order.
  45 *
  46 * It's also used to track the reference counts on blkg's.  A qnode always
  47 * belongs to a throtl_grp and gets queued on itself or the parent, so
  48 * incrementing the reference of the associated throtl_grp when a qnode is
  49 * queued and decrementing when dequeued is enough to keep the whole blkg
  50 * tree pinned while bios are in flight.
  51 */
  52struct throtl_qnode {
  53	struct list_head	node;		/* service_queue->queued[] */
  54	struct bio_list		bios;		/* queued bios */
  55	struct throtl_grp	*tg;		/* tg this qnode belongs to */
  56};
  57
  58struct throtl_service_queue {
  59	struct throtl_service_queue *parent_sq;	/* the parent service_queue */
  60
  61	/*
  62	 * Bios queued directly to this service_queue or dispatched from
  63	 * children throtl_grp's.
  64	 */
  65	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
  66	unsigned int		nr_queued[2];	/* number of queued bios */
  67
  68	/*
  69	 * RB tree of active children throtl_grp's, which are sorted by
  70	 * their ->disptime.
  71	 */
  72	struct rb_root		pending_tree;	/* RB tree of active tgs */
  73	struct rb_node		*first_pending;	/* first node in the tree */
  74	unsigned int		nr_pending;	/* # queued in the tree */
  75	unsigned long		first_pending_disptime;	/* disptime of the first tg */
  76	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
  77};
  78
  79enum tg_state_flags {
  80	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
  81	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
  82};
  83
  84#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
  85
 
 
 
 
 
 
  86struct throtl_grp {
  87	/* must be the first member */
  88	struct blkg_policy_data pd;
  89
  90	/* active throtl group service_queue member */
  91	struct rb_node rb_node;
  92
  93	/* throtl_data this group belongs to */
  94	struct throtl_data *td;
  95
  96	/* this group's service queue */
  97	struct throtl_service_queue service_queue;
  98
  99	/*
 100	 * qnode_on_self is used when bios are directly queued to this
 101	 * throtl_grp so that local bios compete fairly with bios
 102	 * dispatched from children.  qnode_on_parent is used when bios are
 103	 * dispatched from this throtl_grp into its parent and will compete
 104	 * with the sibling qnode_on_parents and the parent's
 105	 * qnode_on_self.
 106	 */
 107	struct throtl_qnode qnode_on_self[2];
 108	struct throtl_qnode qnode_on_parent[2];
 109
 110	/*
 111	 * Dispatch time in jiffies. This is the estimated time when group
 112	 * will unthrottle and is ready to dispatch more bio. It is used as
 113	 * key to sort active groups in service tree.
 114	 */
 115	unsigned long disptime;
 116
 117	unsigned int flags;
 118
 119	/* are there any throtl rules between this group and td? */
 120	bool has_rules[2];
 121
 122	/* bytes per second rate limits */
 123	uint64_t bps[2];
 124
 125	/* IOPS limits */
 126	unsigned int iops[2];
 
 
 
 
 127
 128	/* Number of bytes disptached in current slice */
 129	uint64_t bytes_disp[2];
 130	/* Number of bio's dispatched in current slice */
 131	unsigned int io_disp[2];
 132
 
 
 
 
 
 
 
 
 
 133	/* When did we start a new slice */
 134	unsigned long slice_start[2];
 135	unsigned long slice_end[2];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 136};
 137
 138struct throtl_data
 139{
 140	/* service tree for active throtl groups */
 141	struct throtl_service_queue service_queue;
 142
 143	struct request_queue *queue;
 144
 145	/* Total Number of queued bios on READ and WRITE lists */
 146	unsigned int nr_queued[2];
 147
 148	/*
 149	 * number of total undestroyed groups
 150	 */
 151	unsigned int nr_undestroyed_grps;
 152
 153	/* Work for dispatching throttled bios */
 154	struct work_struct dispatch_work;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 155};
 156
 157static void throtl_pending_timer_fn(unsigned long arg);
 158
 159static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
 160{
 161	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
 162}
 163
 164static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
 165{
 166	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
 167}
 168
 169static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
 170{
 171	return pd_to_blkg(&tg->pd);
 172}
 173
 174/**
 175 * sq_to_tg - return the throl_grp the specified service queue belongs to
 176 * @sq: the throtl_service_queue of interest
 177 *
 178 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 179 * embedded in throtl_data, %NULL is returned.
 180 */
 181static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
 182{
 183	if (sq && sq->parent_sq)
 184		return container_of(sq, struct throtl_grp, service_queue);
 185	else
 186		return NULL;
 187}
 188
 189/**
 190 * sq_to_td - return throtl_data the specified service queue belongs to
 191 * @sq: the throtl_service_queue of interest
 192 *
 193 * A service_queue can be embeded in either a throtl_grp or throtl_data.
 194 * Determine the associated throtl_data accordingly and return it.
 195 */
 196static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
 197{
 198	struct throtl_grp *tg = sq_to_tg(sq);
 199
 200	if (tg)
 201		return tg->td;
 202	else
 203		return container_of(sq, struct throtl_data, service_queue);
 204}
 205
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 206/**
 207 * throtl_log - log debug message via blktrace
 208 * @sq: the service_queue being reported
 209 * @fmt: printf format string
 210 * @args: printf args
 211 *
 212 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 213 * throtl_grp; otherwise, just "throtl".
 214 *
 215 * TODO: this should be made a function and name formatting should happen
 216 * after testing whether blktrace is enabled.
 217 */
 218#define throtl_log(sq, fmt, args...)	do {				\
 219	struct throtl_grp *__tg = sq_to_tg((sq));			\
 220	struct throtl_data *__td = sq_to_td((sq));			\
 221									\
 222	(void)__td;							\
 
 
 223	if ((__tg)) {							\
 224		char __pbuf[128];					\
 225									\
 226		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
 227		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
 228	} else {							\
 229		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
 230	}								\
 231} while (0)
 232
 
 
 
 
 
 
 
 
 233static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
 234{
 235	INIT_LIST_HEAD(&qn->node);
 236	bio_list_init(&qn->bios);
 237	qn->tg = tg;
 238}
 239
 240/**
 241 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 242 * @bio: bio being added
 243 * @qn: qnode to add bio to
 244 * @queued: the service_queue->queued[] list @qn belongs to
 245 *
 246 * Add @bio to @qn and put @qn on @queued if it's not already on.
 247 * @qn->tg's reference count is bumped when @qn is activated.  See the
 248 * comment on top of throtl_qnode definition for details.
 249 */
 250static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
 251				 struct list_head *queued)
 252{
 253	bio_list_add(&qn->bios, bio);
 254	if (list_empty(&qn->node)) {
 255		list_add_tail(&qn->node, queued);
 256		blkg_get(tg_to_blkg(qn->tg));
 257	}
 258}
 259
 260/**
 261 * throtl_peek_queued - peek the first bio on a qnode list
 262 * @queued: the qnode list to peek
 263 */
 264static struct bio *throtl_peek_queued(struct list_head *queued)
 265{
 266	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
 267	struct bio *bio;
 268
 269	if (list_empty(queued))
 270		return NULL;
 271
 272	bio = bio_list_peek(&qn->bios);
 273	WARN_ON_ONCE(!bio);
 274	return bio;
 275}
 276
 277/**
 278 * throtl_pop_queued - pop the first bio form a qnode list
 279 * @queued: the qnode list to pop a bio from
 280 * @tg_to_put: optional out argument for throtl_grp to put
 281 *
 282 * Pop the first bio from the qnode list @queued.  After popping, the first
 283 * qnode is removed from @queued if empty or moved to the end of @queued so
 284 * that the popping order is round-robin.
 285 *
 286 * When the first qnode is removed, its associated throtl_grp should be put
 287 * too.  If @tg_to_put is NULL, this function automatically puts it;
 288 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 289 * responsible for putting it.
 290 */
 291static struct bio *throtl_pop_queued(struct list_head *queued,
 292				     struct throtl_grp **tg_to_put)
 293{
 294	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
 295	struct bio *bio;
 296
 297	if (list_empty(queued))
 298		return NULL;
 299
 300	bio = bio_list_pop(&qn->bios);
 301	WARN_ON_ONCE(!bio);
 302
 303	if (bio_list_empty(&qn->bios)) {
 304		list_del_init(&qn->node);
 305		if (tg_to_put)
 306			*tg_to_put = qn->tg;
 307		else
 308			blkg_put(tg_to_blkg(qn->tg));
 309	} else {
 310		list_move_tail(&qn->node, queued);
 311	}
 312
 313	return bio;
 314}
 315
 316/* init a service_queue, assumes the caller zeroed it */
 317static void throtl_service_queue_init(struct throtl_service_queue *sq)
 318{
 319	INIT_LIST_HEAD(&sq->queued[0]);
 320	INIT_LIST_HEAD(&sq->queued[1]);
 321	sq->pending_tree = RB_ROOT;
 322	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
 323		    (unsigned long)sq);
 324}
 325
 326static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
 327{
 328	struct throtl_grp *tg;
 329	int rw;
 330
 331	tg = kzalloc_node(sizeof(*tg), gfp, node);
 332	if (!tg)
 333		return NULL;
 334
 335	throtl_service_queue_init(&tg->service_queue);
 336
 337	for (rw = READ; rw <= WRITE; rw++) {
 338		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
 339		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
 340	}
 341
 342	RB_CLEAR_NODE(&tg->rb_node);
 343	tg->bps[READ] = -1;
 344	tg->bps[WRITE] = -1;
 345	tg->iops[READ] = -1;
 346	tg->iops[WRITE] = -1;
 
 
 
 
 
 
 
 
 
 
 347
 348	return &tg->pd;
 349}
 350
 351static void throtl_pd_init(struct blkg_policy_data *pd)
 352{
 353	struct throtl_grp *tg = pd_to_tg(pd);
 354	struct blkcg_gq *blkg = tg_to_blkg(tg);
 355	struct throtl_data *td = blkg->q->td;
 356	struct throtl_service_queue *sq = &tg->service_queue;
 357
 358	/*
 359	 * If on the default hierarchy, we switch to properly hierarchical
 360	 * behavior where limits on a given throtl_grp are applied to the
 361	 * whole subtree rather than just the group itself.  e.g. If 16M
 362	 * read_bps limit is set on the root group, the whole system can't
 363	 * exceed 16M for the device.
 364	 *
 365	 * If not on the default hierarchy, the broken flat hierarchy
 366	 * behavior is retained where all throtl_grps are treated as if
 367	 * they're all separate root groups right below throtl_data.
 368	 * Limits of a group don't interact with limits of other groups
 369	 * regardless of the position of the group in the hierarchy.
 370	 */
 371	sq->parent_sq = &td->service_queue;
 372	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
 373		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
 374	tg->td = td;
 375}
 376
 377/*
 378 * Set has_rules[] if @tg or any of its parents have limits configured.
 379 * This doesn't require walking up to the top of the hierarchy as the
 380 * parent's has_rules[] is guaranteed to be correct.
 381 */
 382static void tg_update_has_rules(struct throtl_grp *tg)
 383{
 384	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
 
 385	int rw;
 386
 387	for (rw = READ; rw <= WRITE; rw++)
 388		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
 389				    (tg->bps[rw] != -1 || tg->iops[rw] != -1);
 
 
 390}
 391
 392static void throtl_pd_online(struct blkg_policy_data *pd)
 393{
 
 394	/*
 395	 * We don't want new groups to escape the limits of its ancestors.
 396	 * Update has_rules[] after a new group is brought online.
 397	 */
 398	tg_update_has_rules(pd_to_tg(pd));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 399}
 400
 401static void throtl_pd_free(struct blkg_policy_data *pd)
 402{
 403	struct throtl_grp *tg = pd_to_tg(pd);
 404
 405	del_timer_sync(&tg->service_queue.pending_timer);
 406	kfree(tg);
 407}
 408
 409static struct throtl_grp *
 410throtl_rb_first(struct throtl_service_queue *parent_sq)
 411{
 412	/* Service tree is empty */
 413	if (!parent_sq->nr_pending)
 414		return NULL;
 415
 416	if (!parent_sq->first_pending)
 417		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
 418
 419	if (parent_sq->first_pending)
 420		return rb_entry_tg(parent_sq->first_pending);
 421
 422	return NULL;
 423}
 424
 425static void rb_erase_init(struct rb_node *n, struct rb_root *root)
 426{
 427	rb_erase(n, root);
 428	RB_CLEAR_NODE(n);
 429}
 430
 431static void throtl_rb_erase(struct rb_node *n,
 432			    struct throtl_service_queue *parent_sq)
 433{
 434	if (parent_sq->first_pending == n)
 435		parent_sq->first_pending = NULL;
 436	rb_erase_init(n, &parent_sq->pending_tree);
 437	--parent_sq->nr_pending;
 438}
 439
 440static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
 441{
 442	struct throtl_grp *tg;
 443
 444	tg = throtl_rb_first(parent_sq);
 445	if (!tg)
 446		return;
 447
 448	parent_sq->first_pending_disptime = tg->disptime;
 449}
 450
 451static void tg_service_queue_add(struct throtl_grp *tg)
 452{
 453	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
 454	struct rb_node **node = &parent_sq->pending_tree.rb_node;
 455	struct rb_node *parent = NULL;
 456	struct throtl_grp *__tg;
 457	unsigned long key = tg->disptime;
 458	int left = 1;
 459
 460	while (*node != NULL) {
 461		parent = *node;
 462		__tg = rb_entry_tg(parent);
 463
 464		if (time_before(key, __tg->disptime))
 465			node = &parent->rb_left;
 466		else {
 467			node = &parent->rb_right;
 468			left = 0;
 469		}
 470	}
 471
 472	if (left)
 473		parent_sq->first_pending = &tg->rb_node;
 474
 475	rb_link_node(&tg->rb_node, parent, node);
 476	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
 477}
 478
 479static void __throtl_enqueue_tg(struct throtl_grp *tg)
 480{
 481	tg_service_queue_add(tg);
 482	tg->flags |= THROTL_TG_PENDING;
 483	tg->service_queue.parent_sq->nr_pending++;
 484}
 485
 486static void throtl_enqueue_tg(struct throtl_grp *tg)
 487{
 488	if (!(tg->flags & THROTL_TG_PENDING))
 489		__throtl_enqueue_tg(tg);
 490}
 491
 492static void __throtl_dequeue_tg(struct throtl_grp *tg)
 493{
 494	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
 495	tg->flags &= ~THROTL_TG_PENDING;
 496}
 497
 498static void throtl_dequeue_tg(struct throtl_grp *tg)
 499{
 500	if (tg->flags & THROTL_TG_PENDING)
 501		__throtl_dequeue_tg(tg);
 502}
 503
 504/* Call with queue lock held */
 505static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
 506					  unsigned long expires)
 507{
 
 
 
 
 
 
 
 
 
 
 
 508	mod_timer(&sq->pending_timer, expires);
 509	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
 510		   expires - jiffies, jiffies);
 511}
 512
 513/**
 514 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 515 * @sq: the service_queue to schedule dispatch for
 516 * @force: force scheduling
 517 *
 518 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 519 * dispatch time of the first pending child.  Returns %true if either timer
 520 * is armed or there's no pending child left.  %false if the current
 521 * dispatch window is still open and the caller should continue
 522 * dispatching.
 523 *
 524 * If @force is %true, the dispatch timer is always scheduled and this
 525 * function is guaranteed to return %true.  This is to be used when the
 526 * caller can't dispatch itself and needs to invoke pending_timer
 527 * unconditionally.  Note that forced scheduling is likely to induce short
 528 * delay before dispatch starts even if @sq->first_pending_disptime is not
 529 * in the future and thus shouldn't be used in hot paths.
 530 */
 531static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
 532					  bool force)
 533{
 534	/* any pending children left? */
 535	if (!sq->nr_pending)
 536		return true;
 537
 538	update_min_dispatch_time(sq);
 539
 540	/* is the next dispatch time in the future? */
 541	if (force || time_after(sq->first_pending_disptime, jiffies)) {
 542		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
 543		return true;
 544	}
 545
 546	/* tell the caller to continue dispatching */
 547	return false;
 548}
 549
 550static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
 551		bool rw, unsigned long start)
 552{
 553	tg->bytes_disp[rw] = 0;
 554	tg->io_disp[rw] = 0;
 555
 556	/*
 557	 * Previous slice has expired. We must have trimmed it after last
 558	 * bio dispatch. That means since start of last slice, we never used
 559	 * that bandwidth. Do try to make use of that bandwidth while giving
 560	 * credit.
 561	 */
 562	if (time_after_eq(start, tg->slice_start[rw]))
 563		tg->slice_start[rw] = start;
 564
 565	tg->slice_end[rw] = jiffies + throtl_slice;
 566	throtl_log(&tg->service_queue,
 567		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
 568		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 569		   tg->slice_end[rw], jiffies);
 570}
 571
 572static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
 573{
 574	tg->bytes_disp[rw] = 0;
 575	tg->io_disp[rw] = 0;
 576	tg->slice_start[rw] = jiffies;
 577	tg->slice_end[rw] = jiffies + throtl_slice;
 578	throtl_log(&tg->service_queue,
 579		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
 580		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 581		   tg->slice_end[rw], jiffies);
 582}
 583
 584static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
 585					unsigned long jiffy_end)
 586{
 587	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
 588}
 589
 590static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
 591				       unsigned long jiffy_end)
 592{
 593	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
 594	throtl_log(&tg->service_queue,
 595		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
 596		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 597		   tg->slice_end[rw], jiffies);
 598}
 599
 600/* Determine if previously allocated or extended slice is complete or not */
 601static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
 602{
 603	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
 604		return false;
 605
 606	return 1;
 607}
 608
 609/* Trim the used slices and adjust slice start accordingly */
 610static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
 611{
 612	unsigned long nr_slices, time_elapsed, io_trim;
 613	u64 bytes_trim, tmp;
 614
 615	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
 616
 617	/*
 618	 * If bps are unlimited (-1), then time slice don't get
 619	 * renewed. Don't try to trim the slice if slice is used. A new
 620	 * slice will start when appropriate.
 621	 */
 622	if (throtl_slice_used(tg, rw))
 623		return;
 624
 625	/*
 626	 * A bio has been dispatched. Also adjust slice_end. It might happen
 627	 * that initially cgroup limit was very low resulting in high
 628	 * slice_end, but later limit was bumped up and bio was dispached
 629	 * sooner, then we need to reduce slice_end. A high bogus slice_end
 630	 * is bad because it does not allow new slice to start.
 631	 */
 632
 633	throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
 634
 635	time_elapsed = jiffies - tg->slice_start[rw];
 636
 637	nr_slices = time_elapsed / throtl_slice;
 638
 639	if (!nr_slices)
 640		return;
 641	tmp = tg->bps[rw] * throtl_slice * nr_slices;
 642	do_div(tmp, HZ);
 643	bytes_trim = tmp;
 644
 645	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
 
 646
 647	if (!bytes_trim && !io_trim)
 648		return;
 649
 650	if (tg->bytes_disp[rw] >= bytes_trim)
 651		tg->bytes_disp[rw] -= bytes_trim;
 652	else
 653		tg->bytes_disp[rw] = 0;
 654
 655	if (tg->io_disp[rw] >= io_trim)
 656		tg->io_disp[rw] -= io_trim;
 657	else
 658		tg->io_disp[rw] = 0;
 659
 660	tg->slice_start[rw] += nr_slices * throtl_slice;
 661
 662	throtl_log(&tg->service_queue,
 663		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
 664		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
 665		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
 666}
 667
 668static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
 669				  unsigned long *wait)
 670{
 671	bool rw = bio_data_dir(bio);
 672	unsigned int io_allowed;
 673	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
 674	u64 tmp;
 675
 676	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
 677
 678	/* Slice has just started. Consider one slice interval */
 679	if (!jiffy_elapsed)
 680		jiffy_elapsed_rnd = throtl_slice;
 681
 682	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
 683
 684	/*
 685	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
 686	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
 687	 * will allow dispatch after 1 second and after that slice should
 688	 * have been trimmed.
 689	 */
 690
 691	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
 692	do_div(tmp, HZ);
 693
 694	if (tmp > UINT_MAX)
 695		io_allowed = UINT_MAX;
 696	else
 697		io_allowed = tmp;
 698
 699	if (tg->io_disp[rw] + 1 <= io_allowed) {
 700		if (wait)
 701			*wait = 0;
 702		return true;
 703	}
 704
 705	/* Calc approx time to dispatch */
 706	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
 707
 708	if (jiffy_wait > jiffy_elapsed)
 709		jiffy_wait = jiffy_wait - jiffy_elapsed;
 710	else
 711		jiffy_wait = 1;
 712
 713	if (wait)
 714		*wait = jiffy_wait;
 715	return 0;
 716}
 717
 718static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
 719				 unsigned long *wait)
 720{
 721	bool rw = bio_data_dir(bio);
 722	u64 bytes_allowed, extra_bytes, tmp;
 723	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
 
 724
 725	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
 726
 727	/* Slice has just started. Consider one slice interval */
 728	if (!jiffy_elapsed)
 729		jiffy_elapsed_rnd = throtl_slice;
 730
 731	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
 732
 733	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
 734	do_div(tmp, HZ);
 735	bytes_allowed = tmp;
 736
 737	if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
 738		if (wait)
 739			*wait = 0;
 740		return true;
 741	}
 742
 743	/* Calc approx time to dispatch */
 744	extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
 745	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
 746
 747	if (!jiffy_wait)
 748		jiffy_wait = 1;
 749
 750	/*
 751	 * This wait time is without taking into consideration the rounding
 752	 * up we did. Add that time also.
 753	 */
 754	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
 755	if (wait)
 756		*wait = jiffy_wait;
 757	return 0;
 758}
 759
 760/*
 761 * Returns whether one can dispatch a bio or not. Also returns approx number
 762 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 763 */
 764static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
 765			    unsigned long *wait)
 766{
 767	bool rw = bio_data_dir(bio);
 768	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
 769
 770	/*
 771 	 * Currently whole state machine of group depends on first bio
 772	 * queued in the group bio list. So one should not be calling
 773	 * this function with a different bio if there are other bios
 774	 * queued.
 775	 */
 776	BUG_ON(tg->service_queue.nr_queued[rw] &&
 777	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
 778
 779	/* If tg->bps = -1, then BW is unlimited */
 780	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
 
 781		if (wait)
 782			*wait = 0;
 783		return true;
 784	}
 785
 786	/*
 787	 * If previous slice expired, start a new one otherwise renew/extend
 788	 * existing slice to make sure it is at least throtl_slice interval
 789	 * long since now.
 
 
 790	 */
 791	if (throtl_slice_used(tg, rw))
 792		throtl_start_new_slice(tg, rw);
 793	else {
 794		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
 795			throtl_extend_slice(tg, rw, jiffies + throtl_slice);
 
 
 796	}
 797
 798	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
 799	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
 800		if (wait)
 801			*wait = 0;
 802		return 1;
 803	}
 804
 805	max_wait = max(bps_wait, iops_wait);
 806
 807	if (wait)
 808		*wait = max_wait;
 809
 810	if (time_before(tg->slice_end[rw], jiffies + max_wait))
 811		throtl_extend_slice(tg, rw, jiffies + max_wait);
 812
 813	return 0;
 814}
 815
 816static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
 817{
 818	bool rw = bio_data_dir(bio);
 
 819
 820	/* Charge the bio to the group */
 821	tg->bytes_disp[rw] += bio->bi_iter.bi_size;
 822	tg->io_disp[rw]++;
 
 
 823
 824	/*
 825	 * REQ_THROTTLED is used to prevent the same bio to be throttled
 826	 * more than once as a throttled bio will go through blk-throtl the
 827	 * second time when it eventually gets issued.  Set it when a bio
 828	 * is being charged to a tg.
 829	 */
 830	if (!(bio->bi_rw & REQ_THROTTLED))
 831		bio->bi_rw |= REQ_THROTTLED;
 832}
 833
 834/**
 835 * throtl_add_bio_tg - add a bio to the specified throtl_grp
 836 * @bio: bio to add
 837 * @qn: qnode to use
 838 * @tg: the target throtl_grp
 839 *
 840 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
 841 * tg->qnode_on_self[] is used.
 842 */
 843static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
 844			      struct throtl_grp *tg)
 845{
 846	struct throtl_service_queue *sq = &tg->service_queue;
 847	bool rw = bio_data_dir(bio);
 848
 849	if (!qn)
 850		qn = &tg->qnode_on_self[rw];
 851
 852	/*
 853	 * If @tg doesn't currently have any bios queued in the same
 854	 * direction, queueing @bio can change when @tg should be
 855	 * dispatched.  Mark that @tg was empty.  This is automatically
 856	 * cleaered on the next tg_update_disptime().
 857	 */
 858	if (!sq->nr_queued[rw])
 859		tg->flags |= THROTL_TG_WAS_EMPTY;
 860
 861	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
 862
 863	sq->nr_queued[rw]++;
 864	throtl_enqueue_tg(tg);
 865}
 866
 867static void tg_update_disptime(struct throtl_grp *tg)
 868{
 869	struct throtl_service_queue *sq = &tg->service_queue;
 870	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
 871	struct bio *bio;
 872
 873	if ((bio = throtl_peek_queued(&sq->queued[READ])))
 
 874		tg_may_dispatch(tg, bio, &read_wait);
 875
 876	if ((bio = throtl_peek_queued(&sq->queued[WRITE])))
 
 877		tg_may_dispatch(tg, bio, &write_wait);
 878
 879	min_wait = min(read_wait, write_wait);
 880	disptime = jiffies + min_wait;
 881
 882	/* Update dispatch time */
 883	throtl_dequeue_tg(tg);
 884	tg->disptime = disptime;
 885	throtl_enqueue_tg(tg);
 886
 887	/* see throtl_add_bio_tg() */
 888	tg->flags &= ~THROTL_TG_WAS_EMPTY;
 889}
 890
 891static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
 892					struct throtl_grp *parent_tg, bool rw)
 893{
 894	if (throtl_slice_used(parent_tg, rw)) {
 895		throtl_start_new_slice_with_credit(parent_tg, rw,
 896				child_tg->slice_start[rw]);
 897	}
 898
 899}
 900
 901static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
 902{
 903	struct throtl_service_queue *sq = &tg->service_queue;
 904	struct throtl_service_queue *parent_sq = sq->parent_sq;
 905	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
 906	struct throtl_grp *tg_to_put = NULL;
 907	struct bio *bio;
 908
 909	/*
 910	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
 911	 * from @tg may put its reference and @parent_sq might end up
 912	 * getting released prematurely.  Remember the tg to put and put it
 913	 * after @bio is transferred to @parent_sq.
 914	 */
 915	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
 916	sq->nr_queued[rw]--;
 917
 918	throtl_charge_bio(tg, bio);
 919
 920	/*
 921	 * If our parent is another tg, we just need to transfer @bio to
 922	 * the parent using throtl_add_bio_tg().  If our parent is
 923	 * @td->service_queue, @bio is ready to be issued.  Put it on its
 924	 * bio_lists[] and decrease total number queued.  The caller is
 925	 * responsible for issuing these bios.
 926	 */
 927	if (parent_tg) {
 928		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
 929		start_parent_slice_with_credit(tg, parent_tg, rw);
 930	} else {
 931		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
 932				     &parent_sq->queued[rw]);
 933		BUG_ON(tg->td->nr_queued[rw] <= 0);
 934		tg->td->nr_queued[rw]--;
 935	}
 936
 937	throtl_trim_slice(tg, rw);
 938
 939	if (tg_to_put)
 940		blkg_put(tg_to_blkg(tg_to_put));
 941}
 942
 943static int throtl_dispatch_tg(struct throtl_grp *tg)
 944{
 945	struct throtl_service_queue *sq = &tg->service_queue;
 946	unsigned int nr_reads = 0, nr_writes = 0;
 947	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
 948	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
 949	struct bio *bio;
 950
 951	/* Try to dispatch 75% READS and 25% WRITES */
 952
 953	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
 954	       tg_may_dispatch(tg, bio, NULL)) {
 955
 956		tg_dispatch_one_bio(tg, bio_data_dir(bio));
 957		nr_reads++;
 958
 959		if (nr_reads >= max_nr_reads)
 960			break;
 961	}
 962
 963	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
 964	       tg_may_dispatch(tg, bio, NULL)) {
 965
 966		tg_dispatch_one_bio(tg, bio_data_dir(bio));
 967		nr_writes++;
 968
 969		if (nr_writes >= max_nr_writes)
 970			break;
 971	}
 972
 973	return nr_reads + nr_writes;
 974}
 975
 976static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
 977{
 978	unsigned int nr_disp = 0;
 979
 980	while (1) {
 981		struct throtl_grp *tg = throtl_rb_first(parent_sq);
 982		struct throtl_service_queue *sq = &tg->service_queue;
 983
 984		if (!tg)
 985			break;
 986
 987		if (time_before(jiffies, tg->disptime))
 988			break;
 989
 990		throtl_dequeue_tg(tg);
 991
 992		nr_disp += throtl_dispatch_tg(tg);
 993
 994		if (sq->nr_queued[0] || sq->nr_queued[1])
 995			tg_update_disptime(tg);
 996
 997		if (nr_disp >= throtl_quantum)
 998			break;
 999	}
1000
1001	return nr_disp;
1002}
1003
 
 
1004/**
1005 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1006 * @arg: the throtl_service_queue being serviced
1007 *
1008 * This timer is armed when a child throtl_grp with active bio's become
1009 * pending and queued on the service_queue's pending_tree and expires when
1010 * the first child throtl_grp should be dispatched.  This function
1011 * dispatches bio's from the children throtl_grps to the parent
1012 * service_queue.
1013 *
1014 * If the parent's parent is another throtl_grp, dispatching is propagated
1015 * by either arming its pending_timer or repeating dispatch directly.  If
1016 * the top-level service_tree is reached, throtl_data->dispatch_work is
1017 * kicked so that the ready bio's are issued.
1018 */
1019static void throtl_pending_timer_fn(unsigned long arg)
1020{
1021	struct throtl_service_queue *sq = (void *)arg;
1022	struct throtl_grp *tg = sq_to_tg(sq);
1023	struct throtl_data *td = sq_to_td(sq);
1024	struct request_queue *q = td->queue;
1025	struct throtl_service_queue *parent_sq;
1026	bool dispatched;
1027	int ret;
1028
1029	spin_lock_irq(q->queue_lock);
 
 
 
1030again:
1031	parent_sq = sq->parent_sq;
1032	dispatched = false;
1033
1034	while (true) {
1035		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1036			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
1037			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1038
1039		ret = throtl_select_dispatch(sq);
1040		if (ret) {
1041			throtl_log(sq, "bios disp=%u", ret);
1042			dispatched = true;
1043		}
1044
1045		if (throtl_schedule_next_dispatch(sq, false))
1046			break;
1047
1048		/* this dispatch windows is still open, relax and repeat */
1049		spin_unlock_irq(q->queue_lock);
1050		cpu_relax();
1051		spin_lock_irq(q->queue_lock);
1052	}
1053
1054	if (!dispatched)
1055		goto out_unlock;
1056
1057	if (parent_sq) {
1058		/* @parent_sq is another throl_grp, propagate dispatch */
1059		if (tg->flags & THROTL_TG_WAS_EMPTY) {
1060			tg_update_disptime(tg);
1061			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1062				/* window is already open, repeat dispatching */
1063				sq = parent_sq;
1064				tg = sq_to_tg(sq);
1065				goto again;
1066			}
1067		}
1068	} else {
1069		/* reached the top-level, queue issueing */
1070		queue_work(kthrotld_workqueue, &td->dispatch_work);
1071	}
1072out_unlock:
1073	spin_unlock_irq(q->queue_lock);
1074}
1075
1076/**
1077 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1078 * @work: work item being executed
1079 *
1080 * This function is queued for execution when bio's reach the bio_lists[]
1081 * of throtl_data->service_queue.  Those bio's are ready and issued by this
1082 * function.
1083 */
1084static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1085{
1086	struct throtl_data *td = container_of(work, struct throtl_data,
1087					      dispatch_work);
1088	struct throtl_service_queue *td_sq = &td->service_queue;
1089	struct request_queue *q = td->queue;
1090	struct bio_list bio_list_on_stack;
1091	struct bio *bio;
1092	struct blk_plug plug;
1093	int rw;
1094
1095	bio_list_init(&bio_list_on_stack);
1096
1097	spin_lock_irq(q->queue_lock);
1098	for (rw = READ; rw <= WRITE; rw++)
1099		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1100			bio_list_add(&bio_list_on_stack, bio);
1101	spin_unlock_irq(q->queue_lock);
1102
1103	if (!bio_list_empty(&bio_list_on_stack)) {
1104		blk_start_plug(&plug);
1105		while((bio = bio_list_pop(&bio_list_on_stack)))
1106			generic_make_request(bio);
1107		blk_finish_plug(&plug);
1108	}
1109}
1110
1111static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1112			      int off)
1113{
1114	struct throtl_grp *tg = pd_to_tg(pd);
1115	u64 v = *(u64 *)((void *)tg + off);
1116
1117	if (v == -1)
1118		return 0;
1119	return __blkg_prfill_u64(sf, pd, v);
1120}
1121
1122static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1123			       int off)
1124{
1125	struct throtl_grp *tg = pd_to_tg(pd);
1126	unsigned int v = *(unsigned int *)((void *)tg + off);
1127
1128	if (v == -1)
1129		return 0;
1130	return __blkg_prfill_u64(sf, pd, v);
1131}
1132
1133static int tg_print_conf_u64(struct seq_file *sf, void *v)
1134{
1135	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1136			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1137	return 0;
1138}
1139
1140static int tg_print_conf_uint(struct seq_file *sf, void *v)
1141{
1142	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1143			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1144	return 0;
1145}
1146
1147static void tg_conf_updated(struct throtl_grp *tg)
1148{
1149	struct throtl_service_queue *sq = &tg->service_queue;
1150	struct cgroup_subsys_state *pos_css;
1151	struct blkcg_gq *blkg;
1152
1153	throtl_log(&tg->service_queue,
1154		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1155		   tg->bps[READ], tg->bps[WRITE],
1156		   tg->iops[READ], tg->iops[WRITE]);
1157
1158	/*
1159	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
1160	 * considered to have rules if either the tg itself or any of its
1161	 * ancestors has rules.  This identifies groups without any
1162	 * restrictions in the whole hierarchy and allows them to bypass
1163	 * blk-throttle.
1164	 */
1165	blkg_for_each_descendant_pre(blkg, pos_css, tg_to_blkg(tg))
1166		tg_update_has_rules(blkg_to_tg(blkg));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1167
1168	/*
1169	 * We're already holding queue_lock and know @tg is valid.  Let's
1170	 * apply the new config directly.
1171	 *
1172	 * Restart the slices for both READ and WRITES. It might happen
1173	 * that a group's limit are dropped suddenly and we don't want to
1174	 * account recently dispatched IO with new low rate.
1175	 */
1176	throtl_start_new_slice(tg, 0);
1177	throtl_start_new_slice(tg, 1);
1178
1179	if (tg->flags & THROTL_TG_PENDING) {
1180		tg_update_disptime(tg);
1181		throtl_schedule_next_dispatch(sq->parent_sq, true);
1182	}
1183}
1184
1185static ssize_t tg_set_conf(struct kernfs_open_file *of,
1186			   char *buf, size_t nbytes, loff_t off, bool is_u64)
1187{
1188	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1189	struct blkg_conf_ctx ctx;
1190	struct throtl_grp *tg;
1191	int ret;
1192	u64 v;
1193
1194	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1195	if (ret)
1196		return ret;
1197
1198	ret = -EINVAL;
1199	if (sscanf(ctx.body, "%llu", &v) != 1)
1200		goto out_finish;
1201	if (!v)
1202		v = -1;
1203
1204	tg = blkg_to_tg(ctx.blkg);
1205
1206	if (is_u64)
1207		*(u64 *)((void *)tg + of_cft(of)->private) = v;
1208	else
1209		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1210
1211	tg_conf_updated(tg);
1212	ret = 0;
1213out_finish:
1214	blkg_conf_finish(&ctx);
1215	return ret ?: nbytes;
1216}
1217
1218static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1219			       char *buf, size_t nbytes, loff_t off)
1220{
1221	return tg_set_conf(of, buf, nbytes, off, true);
1222}
1223
1224static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1225				char *buf, size_t nbytes, loff_t off)
1226{
1227	return tg_set_conf(of, buf, nbytes, off, false);
1228}
1229
1230static struct cftype throtl_legacy_files[] = {
1231	{
1232		.name = "throttle.read_bps_device",
1233		.private = offsetof(struct throtl_grp, bps[READ]),
1234		.seq_show = tg_print_conf_u64,
1235		.write = tg_set_conf_u64,
1236	},
1237	{
1238		.name = "throttle.write_bps_device",
1239		.private = offsetof(struct throtl_grp, bps[WRITE]),
1240		.seq_show = tg_print_conf_u64,
1241		.write = tg_set_conf_u64,
1242	},
1243	{
1244		.name = "throttle.read_iops_device",
1245		.private = offsetof(struct throtl_grp, iops[READ]),
1246		.seq_show = tg_print_conf_uint,
1247		.write = tg_set_conf_uint,
1248	},
1249	{
1250		.name = "throttle.write_iops_device",
1251		.private = offsetof(struct throtl_grp, iops[WRITE]),
1252		.seq_show = tg_print_conf_uint,
1253		.write = tg_set_conf_uint,
1254	},
1255	{
1256		.name = "throttle.io_service_bytes",
1257		.private = (unsigned long)&blkcg_policy_throtl,
1258		.seq_show = blkg_print_stat_bytes,
1259	},
1260	{
 
 
 
 
 
1261		.name = "throttle.io_serviced",
1262		.private = (unsigned long)&blkcg_policy_throtl,
1263		.seq_show = blkg_print_stat_ios,
1264	},
 
 
 
 
 
1265	{ }	/* terminate */
1266};
1267
1268static u64 tg_prfill_max(struct seq_file *sf, struct blkg_policy_data *pd,
1269			 int off)
1270{
1271	struct throtl_grp *tg = pd_to_tg(pd);
1272	const char *dname = blkg_dev_name(pd->blkg);
1273	char bufs[4][21] = { "max", "max", "max", "max" };
 
 
 
 
1274
1275	if (!dname)
1276		return 0;
1277	if (tg->bps[READ] == -1 && tg->bps[WRITE] == -1 &&
1278	    tg->iops[READ] == -1 && tg->iops[WRITE] == -1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1279		return 0;
1280
1281	if (tg->bps[READ] != -1)
1282		snprintf(bufs[0], sizeof(bufs[0]), "%llu", tg->bps[READ]);
1283	if (tg->bps[WRITE] != -1)
1284		snprintf(bufs[1], sizeof(bufs[1]), "%llu", tg->bps[WRITE]);
1285	if (tg->iops[READ] != -1)
1286		snprintf(bufs[2], sizeof(bufs[2]), "%u", tg->iops[READ]);
1287	if (tg->iops[WRITE] != -1)
1288		snprintf(bufs[3], sizeof(bufs[3]), "%u", tg->iops[WRITE]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1289
1290	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s\n",
1291		   dname, bufs[0], bufs[1], bufs[2], bufs[3]);
 
1292	return 0;
1293}
1294
1295static int tg_print_max(struct seq_file *sf, void *v)
1296{
1297	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_max,
1298			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1299	return 0;
1300}
1301
1302static ssize_t tg_set_max(struct kernfs_open_file *of,
1303			  char *buf, size_t nbytes, loff_t off)
1304{
1305	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1306	struct blkg_conf_ctx ctx;
1307	struct throtl_grp *tg;
1308	u64 v[4];
 
 
1309	int ret;
 
1310
1311	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1312	if (ret)
1313		return ret;
1314
1315	tg = blkg_to_tg(ctx.blkg);
1316
1317	v[0] = tg->bps[READ];
1318	v[1] = tg->bps[WRITE];
1319	v[2] = tg->iops[READ];
1320	v[3] = tg->iops[WRITE];
1321
 
 
1322	while (true) {
1323		char tok[27];	/* wiops=18446744073709551616 */
1324		char *p;
1325		u64 val = -1;
1326		int len;
1327
1328		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1329			break;
1330		if (tok[0] == '\0')
1331			break;
1332		ctx.body += len;
1333
1334		ret = -EINVAL;
1335		p = tok;
1336		strsep(&p, "=");
1337		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1338			goto out_finish;
1339
1340		ret = -ERANGE;
1341		if (!val)
1342			goto out_finish;
1343
1344		ret = -EINVAL;
1345		if (!strcmp(tok, "rbps"))
1346			v[0] = val;
1347		else if (!strcmp(tok, "wbps"))
1348			v[1] = val;
1349		else if (!strcmp(tok, "riops"))
1350			v[2] = min_t(u64, val, UINT_MAX);
1351		else if (!strcmp(tok, "wiops"))
1352			v[3] = min_t(u64, val, UINT_MAX);
 
 
 
 
1353		else
1354			goto out_finish;
1355	}
1356
1357	tg->bps[READ] = v[0];
1358	tg->bps[WRITE] = v[1];
1359	tg->iops[READ] = v[2];
1360	tg->iops[WRITE] = v[3];
1361
1362	tg_conf_updated(tg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1363	ret = 0;
1364out_finish:
1365	blkg_conf_finish(&ctx);
1366	return ret ?: nbytes;
1367}
1368
1369static struct cftype throtl_files[] = {
 
 
 
 
 
 
 
 
 
1370	{
1371		.name = "max",
1372		.flags = CFTYPE_NOT_ON_ROOT,
1373		.seq_show = tg_print_max,
1374		.write = tg_set_max,
 
1375	},
1376	{ }	/* terminate */
1377};
1378
1379static void throtl_shutdown_wq(struct request_queue *q)
1380{
1381	struct throtl_data *td = q->td;
1382
1383	cancel_work_sync(&td->dispatch_work);
1384}
1385
1386static struct blkcg_policy blkcg_policy_throtl = {
1387	.dfl_cftypes		= throtl_files,
1388	.legacy_cftypes		= throtl_legacy_files,
1389
1390	.pd_alloc_fn		= throtl_pd_alloc,
1391	.pd_init_fn		= throtl_pd_init,
1392	.pd_online_fn		= throtl_pd_online,
 
1393	.pd_free_fn		= throtl_pd_free,
1394};
1395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1396bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
1397		    struct bio *bio)
1398{
1399	struct throtl_qnode *qn = NULL;
1400	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
1401	struct throtl_service_queue *sq;
1402	bool rw = bio_data_dir(bio);
1403	bool throttled = false;
 
1404
1405	WARN_ON_ONCE(!rcu_read_lock_held());
1406
1407	/* see throtl_charge_bio() */
1408	if ((bio->bi_rw & REQ_THROTTLED) || !tg->has_rules[rw])
1409		goto out;
1410
1411	spin_lock_irq(q->queue_lock);
1412
 
 
1413	if (unlikely(blk_queue_bypass(q)))
1414		goto out_unlock;
1415
 
 
 
1416	sq = &tg->service_queue;
1417
 
1418	while (true) {
 
 
 
 
1419		/* throtl is FIFO - if bios are already queued, should queue */
1420		if (sq->nr_queued[rw])
1421			break;
1422
1423		/* if above limits, break to queue */
1424		if (!tg_may_dispatch(tg, bio, NULL))
 
 
 
 
 
1425			break;
 
1426
1427		/* within limits, let's charge and dispatch directly */
1428		throtl_charge_bio(tg, bio);
1429
1430		/*
1431		 * We need to trim slice even when bios are not being queued
1432		 * otherwise it might happen that a bio is not queued for
1433		 * a long time and slice keeps on extending and trim is not
1434		 * called for a long time. Now if limits are reduced suddenly
1435		 * we take into account all the IO dispatched so far at new
1436		 * low rate and * newly queued IO gets a really long dispatch
1437		 * time.
1438		 *
1439		 * So keep on trimming slice even if bio is not queued.
1440		 */
1441		throtl_trim_slice(tg, rw);
1442
1443		/*
1444		 * @bio passed through this layer without being throttled.
1445		 * Climb up the ladder.  If we''re already at the top, it
1446		 * can be executed directly.
1447		 */
1448		qn = &tg->qnode_on_parent[rw];
1449		sq = sq->parent_sq;
1450		tg = sq_to_tg(sq);
1451		if (!tg)
1452			goto out_unlock;
1453	}
1454
1455	/* out-of-limit, queue to @tg */
1456	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1457		   rw == READ ? 'R' : 'W',
1458		   tg->bytes_disp[rw], bio->bi_iter.bi_size, tg->bps[rw],
1459		   tg->io_disp[rw], tg->iops[rw],
 
1460		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1461
1462	bio_associate_current(bio);
1463	tg->td->nr_queued[rw]++;
 
1464	throtl_add_bio_tg(bio, qn, tg);
1465	throttled = true;
1466
1467	/*
1468	 * Update @tg's dispatch time and force schedule dispatch if @tg
1469	 * was empty before @bio.  The forced scheduling isn't likely to
1470	 * cause undue delay as @bio is likely to be dispatched directly if
1471	 * its @tg's disptime is not in the future.
1472	 */
1473	if (tg->flags & THROTL_TG_WAS_EMPTY) {
1474		tg_update_disptime(tg);
1475		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1476	}
1477
1478out_unlock:
1479	spin_unlock_irq(q->queue_lock);
1480out:
1481	/*
1482	 * As multiple blk-throtls may stack in the same issue path, we
1483	 * don't want bios to leave with the flag set.  Clear the flag if
1484	 * being issued.
1485	 */
1486	if (!throttled)
1487		bio->bi_rw &= ~REQ_THROTTLED;
1488	return throttled;
1489}
1490
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1491/*
1492 * Dispatch all bios from all children tg's queued on @parent_sq.  On
1493 * return, @parent_sq is guaranteed to not have any active children tg's
1494 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
1495 */
1496static void tg_drain_bios(struct throtl_service_queue *parent_sq)
1497{
1498	struct throtl_grp *tg;
1499
1500	while ((tg = throtl_rb_first(parent_sq))) {
1501		struct throtl_service_queue *sq = &tg->service_queue;
1502		struct bio *bio;
1503
1504		throtl_dequeue_tg(tg);
1505
1506		while ((bio = throtl_peek_queued(&sq->queued[READ])))
1507			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1508		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1509			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1510	}
1511}
1512
1513/**
1514 * blk_throtl_drain - drain throttled bios
1515 * @q: request_queue to drain throttled bios for
1516 *
1517 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1518 */
1519void blk_throtl_drain(struct request_queue *q)
1520	__releases(q->queue_lock) __acquires(q->queue_lock)
1521{
1522	struct throtl_data *td = q->td;
1523	struct blkcg_gq *blkg;
1524	struct cgroup_subsys_state *pos_css;
1525	struct bio *bio;
1526	int rw;
1527
1528	queue_lockdep_assert_held(q);
1529	rcu_read_lock();
1530
1531	/*
1532	 * Drain each tg while doing post-order walk on the blkg tree, so
1533	 * that all bios are propagated to td->service_queue.  It'd be
1534	 * better to walk service_queue tree directly but blkg walk is
1535	 * easier.
1536	 */
1537	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
1538		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1539
1540	/* finally, transfer bios from top-level tg's into the td */
1541	tg_drain_bios(&td->service_queue);
1542
1543	rcu_read_unlock();
1544	spin_unlock_irq(q->queue_lock);
1545
1546	/* all bios now should be in td->service_queue, issue them */
1547	for (rw = READ; rw <= WRITE; rw++)
1548		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
1549						NULL)))
1550			generic_make_request(bio);
1551
1552	spin_lock_irq(q->queue_lock);
1553}
1554
1555int blk_throtl_init(struct request_queue *q)
1556{
1557	struct throtl_data *td;
1558	int ret;
1559
1560	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1561	if (!td)
1562		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
1563
1564	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1565	throtl_service_queue_init(&td->service_queue);
1566
1567	q->td = td;
1568	td->queue = q;
1569
 
 
 
 
 
1570	/* activate policy */
1571	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1572	if (ret)
 
 
1573		kfree(td);
 
1574	return ret;
1575}
1576
1577void blk_throtl_exit(struct request_queue *q)
1578{
1579	BUG_ON(!q->td);
1580	throtl_shutdown_wq(q);
1581	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
 
 
1582	kfree(q->td);
1583}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1584
1585static int __init throtl_init(void)
1586{
1587	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1588	if (!kthrotld_workqueue)
1589		panic("Failed to create kthrotld\n");
1590
1591	return blkcg_policy_register(&blkcg_policy_throtl);
1592}
1593
1594module_init(throtl_init);