Linux Audio

Check our new training course

Loading...
v4.17
  1/*  KVM paravirtual clock driver. A clocksource implementation
  2    Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
  3
  4    This program is free software; you can redistribute it and/or modify
  5    it under the terms of the GNU General Public License as published by
  6    the Free Software Foundation; either version 2 of the License, or
  7    (at your option) any later version.
  8
  9    This program is distributed in the hope that it will be useful,
 10    but WITHOUT ANY WARRANTY; without even the implied warranty of
 11    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12    GNU General Public License for more details.
 13
 14    You should have received a copy of the GNU General Public License
 15    along with this program; if not, write to the Free Software
 16    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17*/
 18
 19#include <linux/clocksource.h>
 20#include <linux/kvm_para.h>
 21#include <asm/pvclock.h>
 22#include <asm/msr.h>
 23#include <asm/apic.h>
 24#include <linux/percpu.h>
 25#include <linux/hardirq.h>
 26#include <linux/memblock.h>
 27#include <linux/sched.h>
 28#include <linux/sched/clock.h>
 29
 30#include <asm/mem_encrypt.h>
 31#include <asm/x86_init.h>
 32#include <asm/reboot.h>
 33#include <asm/kvmclock.h>
 34
 35static int kvmclock __ro_after_init = 1;
 36static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
 37static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
 38static u64 kvm_sched_clock_offset;
 39
 40static int parse_no_kvmclock(char *arg)
 41{
 42	kvmclock = 0;
 43	return 0;
 44}
 45early_param("no-kvmclock", parse_no_kvmclock);
 46
 47/* The hypervisor will put information about time periodically here */
 48static struct pvclock_vsyscall_time_info *hv_clock;
 49static struct pvclock_wall_clock *wall_clock;
 
 
 
 
 
 50
 51/*
 52 * The wallclock is the time of day when we booted. Since then, some time may
 53 * have elapsed since the hypervisor wrote the data. So we try to account for
 54 * that with system time
 55 */
 56static void kvm_get_wallclock(struct timespec *now)
 57{
 58	struct pvclock_vcpu_time_info *vcpu_time;
 59	int low, high;
 60	int cpu;
 61
 62	low = (int)slow_virt_to_phys(wall_clock);
 63	high = ((u64)slow_virt_to_phys(wall_clock) >> 32);
 64
 65	native_write_msr(msr_kvm_wall_clock, low, high);
 66
 67	cpu = get_cpu();
 68
 69	vcpu_time = &hv_clock[cpu].pvti;
 70	pvclock_read_wallclock(wall_clock, vcpu_time, now);
 71
 72	put_cpu();
 73}
 74
 75static int kvm_set_wallclock(const struct timespec *now)
 76{
 77	return -ENODEV;
 78}
 79
 80static u64 kvm_clock_read(void)
 81{
 82	struct pvclock_vcpu_time_info *src;
 83	u64 ret;
 84	int cpu;
 85
 86	preempt_disable_notrace();
 87	cpu = smp_processor_id();
 88	src = &hv_clock[cpu].pvti;
 89	ret = pvclock_clocksource_read(src);
 90	preempt_enable_notrace();
 91	return ret;
 92}
 93
 94static u64 kvm_clock_get_cycles(struct clocksource *cs)
 95{
 96	return kvm_clock_read();
 97}
 98
 99static u64 kvm_sched_clock_read(void)
100{
101	return kvm_clock_read() - kvm_sched_clock_offset;
102}
103
104static inline void kvm_sched_clock_init(bool stable)
105{
106	if (!stable) {
107		pv_time_ops.sched_clock = kvm_clock_read;
108		clear_sched_clock_stable();
109		return;
110	}
111
112	kvm_sched_clock_offset = kvm_clock_read();
113	pv_time_ops.sched_clock = kvm_sched_clock_read;
 
114
115	printk(KERN_INFO "kvm-clock: using sched offset of %llu cycles\n",
116			kvm_sched_clock_offset);
117
118	BUILD_BUG_ON(sizeof(kvm_sched_clock_offset) >
119	         sizeof(((struct pvclock_vcpu_time_info *)NULL)->system_time));
120}
121
122/*
123 * If we don't do that, there is the possibility that the guest
124 * will calibrate under heavy load - thus, getting a lower lpj -
125 * and execute the delays themselves without load. This is wrong,
126 * because no delay loop can finish beforehand.
127 * Any heuristics is subject to fail, because ultimately, a large
128 * poll of guests can be running and trouble each other. So we preset
129 * lpj here
130 */
131static unsigned long kvm_get_tsc_khz(void)
132{
133	struct pvclock_vcpu_time_info *src;
134	int cpu;
135	unsigned long tsc_khz;
136
137	cpu = get_cpu();
138	src = &hv_clock[cpu].pvti;
139	tsc_khz = pvclock_tsc_khz(src);
140	put_cpu();
141	return tsc_khz;
142}
143
144static void kvm_get_preset_lpj(void)
145{
146	unsigned long khz;
147	u64 lpj;
148
149	khz = kvm_get_tsc_khz();
150
151	lpj = ((u64)khz * 1000);
152	do_div(lpj, HZ);
153	preset_lpj = lpj;
154}
155
156bool kvm_check_and_clear_guest_paused(void)
157{
158	bool ret = false;
159	struct pvclock_vcpu_time_info *src;
160	int cpu = smp_processor_id();
161
162	if (!hv_clock)
163		return ret;
164
165	src = &hv_clock[cpu].pvti;
166	if ((src->flags & PVCLOCK_GUEST_STOPPED) != 0) {
167		src->flags &= ~PVCLOCK_GUEST_STOPPED;
168		pvclock_touch_watchdogs();
169		ret = true;
170	}
171
172	return ret;
173}
174
175struct clocksource kvm_clock = {
176	.name = "kvm-clock",
177	.read = kvm_clock_get_cycles,
178	.rating = 400,
179	.mask = CLOCKSOURCE_MASK(64),
180	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
181};
182EXPORT_SYMBOL_GPL(kvm_clock);
183
184int kvm_register_clock(char *txt)
185{
186	int cpu = smp_processor_id();
187	int low, high, ret;
188	struct pvclock_vcpu_time_info *src;
189
190	if (!hv_clock)
191		return 0;
192
193	src = &hv_clock[cpu].pvti;
194	low = (int)slow_virt_to_phys(src) | 1;
195	high = ((u64)slow_virt_to_phys(src) >> 32);
196	ret = native_write_msr_safe(msr_kvm_system_time, low, high);
197	printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
198	       cpu, high, low, txt);
199
200	return ret;
201}
202
203static void kvm_save_sched_clock_state(void)
204{
205}
206
207static void kvm_restore_sched_clock_state(void)
208{
209	kvm_register_clock("primary cpu clock, resume");
210}
211
212#ifdef CONFIG_X86_LOCAL_APIC
213static void kvm_setup_secondary_clock(void)
214{
215	/*
216	 * Now that the first cpu already had this clocksource initialized,
217	 * we shouldn't fail.
218	 */
219	WARN_ON(kvm_register_clock("secondary cpu clock"));
220}
221#endif
222
223/*
224 * After the clock is registered, the host will keep writing to the
225 * registered memory location. If the guest happens to shutdown, this memory
226 * won't be valid. In cases like kexec, in which you install a new kernel, this
227 * means a random memory location will be kept being written. So before any
228 * kind of shutdown from our side, we unregister the clock by writing anything
229 * that does not have the 'enable' bit set in the msr
230 */
231#ifdef CONFIG_KEXEC_CORE
232static void kvm_crash_shutdown(struct pt_regs *regs)
233{
234	native_write_msr(msr_kvm_system_time, 0, 0);
235	kvm_disable_steal_time();
236	native_machine_crash_shutdown(regs);
237}
238#endif
239
240static void kvm_shutdown(void)
241{
242	native_write_msr(msr_kvm_system_time, 0, 0);
243	kvm_disable_steal_time();
244	native_machine_shutdown();
245}
246
247static phys_addr_t __init kvm_memblock_alloc(phys_addr_t size,
248					     phys_addr_t align)
249{
250	phys_addr_t mem;
251
252	mem = memblock_alloc(size, align);
253	if (!mem)
254		return 0;
255
256	if (sev_active()) {
257		if (early_set_memory_decrypted((unsigned long)__va(mem), size))
258			goto e_free;
259	}
260
261	return mem;
262e_free:
263	memblock_free(mem, size);
264	return 0;
265}
266
267static void __init kvm_memblock_free(phys_addr_t addr, phys_addr_t size)
268{
269	if (sev_active())
270		early_set_memory_encrypted((unsigned long)__va(addr), size);
271
272	memblock_free(addr, size);
273}
274
275void __init kvmclock_init(void)
276{
277	struct pvclock_vcpu_time_info *vcpu_time;
278	unsigned long mem, mem_wall_clock;
279	int size, cpu, wall_clock_size;
280	u8 flags;
281
282	size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
283
284	if (!kvm_para_available())
285		return;
286
287	if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
288		msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
289		msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
290	} else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)))
291		return;
292
293	wall_clock_size = PAGE_ALIGN(sizeof(struct pvclock_wall_clock));
294	mem_wall_clock = kvm_memblock_alloc(wall_clock_size, PAGE_SIZE);
295	if (!mem_wall_clock)
296		return;
297
298	wall_clock = __va(mem_wall_clock);
299	memset(wall_clock, 0, wall_clock_size);
300
301	mem = kvm_memblock_alloc(size, PAGE_SIZE);
302	if (!mem) {
303		kvm_memblock_free(mem_wall_clock, wall_clock_size);
304		wall_clock = NULL;
305		return;
306	}
307
308	hv_clock = __va(mem);
309	memset(hv_clock, 0, size);
310
311	if (kvm_register_clock("primary cpu clock")) {
312		hv_clock = NULL;
313		kvm_memblock_free(mem, size);
314		kvm_memblock_free(mem_wall_clock, wall_clock_size);
315		wall_clock = NULL;
316		return;
317	}
318
319	printk(KERN_INFO "kvm-clock: Using msrs %x and %x",
320		msr_kvm_system_time, msr_kvm_wall_clock);
321
322	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
323		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
324
325	cpu = get_cpu();
326	vcpu_time = &hv_clock[cpu].pvti;
327	flags = pvclock_read_flags(vcpu_time);
328
329	kvm_sched_clock_init(flags & PVCLOCK_TSC_STABLE_BIT);
330	put_cpu();
331
332	x86_platform.calibrate_tsc = kvm_get_tsc_khz;
333	x86_platform.calibrate_cpu = kvm_get_tsc_khz;
334	x86_platform.get_wallclock = kvm_get_wallclock;
335	x86_platform.set_wallclock = kvm_set_wallclock;
336#ifdef CONFIG_X86_LOCAL_APIC
337	x86_cpuinit.early_percpu_clock_init =
338		kvm_setup_secondary_clock;
339#endif
340	x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
341	x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
342	machine_ops.shutdown  = kvm_shutdown;
343#ifdef CONFIG_KEXEC_CORE
344	machine_ops.crash_shutdown  = kvm_crash_shutdown;
345#endif
346	kvm_get_preset_lpj();
347	clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
348	pv_info.name = "KVM";
349}
350
351int __init kvm_setup_vsyscall_timeinfo(void)
352{
353#ifdef CONFIG_X86_64
354	int cpu;
355	u8 flags;
356	struct pvclock_vcpu_time_info *vcpu_time;
357	unsigned int size;
358
359	if (!hv_clock)
360		return 0;
361
362	size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
363
364	cpu = get_cpu();
365
366	vcpu_time = &hv_clock[cpu].pvti;
367	flags = pvclock_read_flags(vcpu_time);
368
369	if (!(flags & PVCLOCK_TSC_STABLE_BIT)) {
370		put_cpu();
371		return 1;
372	}
373
374	pvclock_set_pvti_cpu0_va(hv_clock);
375	put_cpu();
376
377	kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK;
378#endif
379	return 0;
380}
v4.6
  1/*  KVM paravirtual clock driver. A clocksource implementation
  2    Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
  3
  4    This program is free software; you can redistribute it and/or modify
  5    it under the terms of the GNU General Public License as published by
  6    the Free Software Foundation; either version 2 of the License, or
  7    (at your option) any later version.
  8
  9    This program is distributed in the hope that it will be useful,
 10    but WITHOUT ANY WARRANTY; without even the implied warranty of
 11    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12    GNU General Public License for more details.
 13
 14    You should have received a copy of the GNU General Public License
 15    along with this program; if not, write to the Free Software
 16    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17*/
 18
 19#include <linux/clocksource.h>
 20#include <linux/kvm_para.h>
 21#include <asm/pvclock.h>
 22#include <asm/msr.h>
 23#include <asm/apic.h>
 24#include <linux/percpu.h>
 25#include <linux/hardirq.h>
 26#include <linux/memblock.h>
 27#include <linux/sched.h>
 
 28
 
 29#include <asm/x86_init.h>
 30#include <asm/reboot.h>
 
 31
 32static int kvmclock = 1;
 33static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
 34static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
 35static cycle_t kvm_sched_clock_offset;
 36
 37static int parse_no_kvmclock(char *arg)
 38{
 39	kvmclock = 0;
 40	return 0;
 41}
 42early_param("no-kvmclock", parse_no_kvmclock);
 43
 44/* The hypervisor will put information about time periodically here */
 45static struct pvclock_vsyscall_time_info *hv_clock;
 46static struct pvclock_wall_clock wall_clock;
 47
 48struct pvclock_vsyscall_time_info *pvclock_pvti_cpu0_va(void)
 49{
 50	return hv_clock;
 51}
 52
 53/*
 54 * The wallclock is the time of day when we booted. Since then, some time may
 55 * have elapsed since the hypervisor wrote the data. So we try to account for
 56 * that with system time
 57 */
 58static void kvm_get_wallclock(struct timespec *now)
 59{
 60	struct pvclock_vcpu_time_info *vcpu_time;
 61	int low, high;
 62	int cpu;
 63
 64	low = (int)__pa_symbol(&wall_clock);
 65	high = ((u64)__pa_symbol(&wall_clock) >> 32);
 66
 67	native_write_msr(msr_kvm_wall_clock, low, high);
 68
 69	cpu = get_cpu();
 70
 71	vcpu_time = &hv_clock[cpu].pvti;
 72	pvclock_read_wallclock(&wall_clock, vcpu_time, now);
 73
 74	put_cpu();
 75}
 76
 77static int kvm_set_wallclock(const struct timespec *now)
 78{
 79	return -1;
 80}
 81
 82static cycle_t kvm_clock_read(void)
 83{
 84	struct pvclock_vcpu_time_info *src;
 85	cycle_t ret;
 86	int cpu;
 87
 88	preempt_disable_notrace();
 89	cpu = smp_processor_id();
 90	src = &hv_clock[cpu].pvti;
 91	ret = pvclock_clocksource_read(src);
 92	preempt_enable_notrace();
 93	return ret;
 94}
 95
 96static cycle_t kvm_clock_get_cycles(struct clocksource *cs)
 97{
 98	return kvm_clock_read();
 99}
100
101static cycle_t kvm_sched_clock_read(void)
102{
103	return kvm_clock_read() - kvm_sched_clock_offset;
104}
105
106static inline void kvm_sched_clock_init(bool stable)
107{
108	if (!stable) {
109		pv_time_ops.sched_clock = kvm_clock_read;
 
110		return;
111	}
112
113	kvm_sched_clock_offset = kvm_clock_read();
114	pv_time_ops.sched_clock = kvm_sched_clock_read;
115	set_sched_clock_stable();
116
117	printk(KERN_INFO "kvm-clock: using sched offset of %llu cycles\n",
118			kvm_sched_clock_offset);
119
120	BUILD_BUG_ON(sizeof(kvm_sched_clock_offset) >
121	         sizeof(((struct pvclock_vcpu_time_info *)NULL)->system_time));
122}
123
124/*
125 * If we don't do that, there is the possibility that the guest
126 * will calibrate under heavy load - thus, getting a lower lpj -
127 * and execute the delays themselves without load. This is wrong,
128 * because no delay loop can finish beforehand.
129 * Any heuristics is subject to fail, because ultimately, a large
130 * poll of guests can be running and trouble each other. So we preset
131 * lpj here
132 */
133static unsigned long kvm_get_tsc_khz(void)
134{
135	struct pvclock_vcpu_time_info *src;
136	int cpu;
137	unsigned long tsc_khz;
138
139	cpu = get_cpu();
140	src = &hv_clock[cpu].pvti;
141	tsc_khz = pvclock_tsc_khz(src);
142	put_cpu();
143	return tsc_khz;
144}
145
146static void kvm_get_preset_lpj(void)
147{
148	unsigned long khz;
149	u64 lpj;
150
151	khz = kvm_get_tsc_khz();
152
153	lpj = ((u64)khz * 1000);
154	do_div(lpj, HZ);
155	preset_lpj = lpj;
156}
157
158bool kvm_check_and_clear_guest_paused(void)
159{
160	bool ret = false;
161	struct pvclock_vcpu_time_info *src;
162	int cpu = smp_processor_id();
163
164	if (!hv_clock)
165		return ret;
166
167	src = &hv_clock[cpu].pvti;
168	if ((src->flags & PVCLOCK_GUEST_STOPPED) != 0) {
169		src->flags &= ~PVCLOCK_GUEST_STOPPED;
170		pvclock_touch_watchdogs();
171		ret = true;
172	}
173
174	return ret;
175}
176
177static struct clocksource kvm_clock = {
178	.name = "kvm-clock",
179	.read = kvm_clock_get_cycles,
180	.rating = 400,
181	.mask = CLOCKSOURCE_MASK(64),
182	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
183};
 
184
185int kvm_register_clock(char *txt)
186{
187	int cpu = smp_processor_id();
188	int low, high, ret;
189	struct pvclock_vcpu_time_info *src;
190
191	if (!hv_clock)
192		return 0;
193
194	src = &hv_clock[cpu].pvti;
195	low = (int)slow_virt_to_phys(src) | 1;
196	high = ((u64)slow_virt_to_phys(src) >> 32);
197	ret = native_write_msr_safe(msr_kvm_system_time, low, high);
198	printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
199	       cpu, high, low, txt);
200
201	return ret;
202}
203
204static void kvm_save_sched_clock_state(void)
205{
206}
207
208static void kvm_restore_sched_clock_state(void)
209{
210	kvm_register_clock("primary cpu clock, resume");
211}
212
213#ifdef CONFIG_X86_LOCAL_APIC
214static void kvm_setup_secondary_clock(void)
215{
216	/*
217	 * Now that the first cpu already had this clocksource initialized,
218	 * we shouldn't fail.
219	 */
220	WARN_ON(kvm_register_clock("secondary cpu clock"));
221}
222#endif
223
224/*
225 * After the clock is registered, the host will keep writing to the
226 * registered memory location. If the guest happens to shutdown, this memory
227 * won't be valid. In cases like kexec, in which you install a new kernel, this
228 * means a random memory location will be kept being written. So before any
229 * kind of shutdown from our side, we unregister the clock by writing anything
230 * that does not have the 'enable' bit set in the msr
231 */
232#ifdef CONFIG_KEXEC_CORE
233static void kvm_crash_shutdown(struct pt_regs *regs)
234{
235	native_write_msr(msr_kvm_system_time, 0, 0);
236	kvm_disable_steal_time();
237	native_machine_crash_shutdown(regs);
238}
239#endif
240
241static void kvm_shutdown(void)
242{
243	native_write_msr(msr_kvm_system_time, 0, 0);
244	kvm_disable_steal_time();
245	native_machine_shutdown();
246}
247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
248void __init kvmclock_init(void)
249{
250	struct pvclock_vcpu_time_info *vcpu_time;
251	unsigned long mem;
252	int size, cpu;
253	u8 flags;
254
255	size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
256
257	if (!kvm_para_available())
258		return;
259
260	if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
261		msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
262		msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
263	} else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)))
264		return;
265
266	printk(KERN_INFO "kvm-clock: Using msrs %x and %x",
267		msr_kvm_system_time, msr_kvm_wall_clock);
 
 
 
 
 
268
269	mem = memblock_alloc(size, PAGE_SIZE);
270	if (!mem)
 
 
271		return;
 
 
272	hv_clock = __va(mem);
273	memset(hv_clock, 0, size);
274
275	if (kvm_register_clock("primary cpu clock")) {
276		hv_clock = NULL;
277		memblock_free(mem, size);
 
 
278		return;
279	}
280
 
 
 
281	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
282		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
283
284	cpu = get_cpu();
285	vcpu_time = &hv_clock[cpu].pvti;
286	flags = pvclock_read_flags(vcpu_time);
287
288	kvm_sched_clock_init(flags & PVCLOCK_TSC_STABLE_BIT);
289	put_cpu();
290
291	x86_platform.calibrate_tsc = kvm_get_tsc_khz;
 
292	x86_platform.get_wallclock = kvm_get_wallclock;
293	x86_platform.set_wallclock = kvm_set_wallclock;
294#ifdef CONFIG_X86_LOCAL_APIC
295	x86_cpuinit.early_percpu_clock_init =
296		kvm_setup_secondary_clock;
297#endif
298	x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
299	x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
300	machine_ops.shutdown  = kvm_shutdown;
301#ifdef CONFIG_KEXEC_CORE
302	machine_ops.crash_shutdown  = kvm_crash_shutdown;
303#endif
304	kvm_get_preset_lpj();
305	clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
306	pv_info.name = "KVM";
307}
308
309int __init kvm_setup_vsyscall_timeinfo(void)
310{
311#ifdef CONFIG_X86_64
312	int cpu;
313	u8 flags;
314	struct pvclock_vcpu_time_info *vcpu_time;
315	unsigned int size;
316
317	if (!hv_clock)
318		return 0;
319
320	size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
321
322	cpu = get_cpu();
323
324	vcpu_time = &hv_clock[cpu].pvti;
325	flags = pvclock_read_flags(vcpu_time);
326
327	if (!(flags & PVCLOCK_TSC_STABLE_BIT)) {
328		put_cpu();
329		return 1;
330	}
331
 
332	put_cpu();
333
334	kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK;
335#endif
336	return 0;
337}