Linux Audio

Check our new training course

Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Interrupt request handling routines. On the
  4 * Sparc the IRQs are basically 'cast in stone'
  5 * and you are supposed to probe the prom's device
  6 * node trees to find out who's got which IRQ.
  7 *
  8 *  Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
  9 *  Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
 10 *  Copyright (C) 1995,2002 Pete A. Zaitcev (zaitcev@yahoo.com)
 11 *  Copyright (C) 1996 Dave Redman (djhr@tadpole.co.uk)
 12 *  Copyright (C) 1998-2000 Anton Blanchard (anton@samba.org)
 13 */
 14
 15#include <linux/kernel_stat.h>
 16#include <linux/seq_file.h>
 17#include <linux/export.h>
 18
 19#include <asm/cacheflush.h>
 20#include <asm/cpudata.h>
 21#include <asm/setup.h>
 22#include <asm/pcic.h>
 23#include <asm/leon.h>
 24
 25#include "kernel.h"
 26#include "irq.h"
 27
 28/* platform specific irq setup */
 29struct sparc_config sparc_config;
 30
 31unsigned long arch_local_irq_save(void)
 32{
 33	unsigned long retval;
 34	unsigned long tmp;
 35
 36	__asm__ __volatile__(
 37		"rd	%%psr, %0\n\t"
 38		"or	%0, %2, %1\n\t"
 39		"wr	%1, 0, %%psr\n\t"
 40		"nop; nop; nop\n"
 41		: "=&r" (retval), "=r" (tmp)
 42		: "i" (PSR_PIL)
 43		: "memory");
 44
 45	return retval;
 46}
 47EXPORT_SYMBOL(arch_local_irq_save);
 48
 49void arch_local_irq_enable(void)
 50{
 51	unsigned long tmp;
 52
 53	__asm__ __volatile__(
 54		"rd	%%psr, %0\n\t"
 55		"andn	%0, %1, %0\n\t"
 56		"wr	%0, 0, %%psr\n\t"
 57		"nop; nop; nop\n"
 58		: "=&r" (tmp)
 59		: "i" (PSR_PIL)
 60		: "memory");
 61}
 62EXPORT_SYMBOL(arch_local_irq_enable);
 63
 64void arch_local_irq_restore(unsigned long old_psr)
 65{
 66	unsigned long tmp;
 67
 68	__asm__ __volatile__(
 69		"rd	%%psr, %0\n\t"
 70		"and	%2, %1, %2\n\t"
 71		"andn	%0, %1, %0\n\t"
 72		"wr	%0, %2, %%psr\n\t"
 73		"nop; nop; nop\n"
 74		: "=&r" (tmp)
 75		: "i" (PSR_PIL), "r" (old_psr)
 76		: "memory");
 77}
 78EXPORT_SYMBOL(arch_local_irq_restore);
 79
 80/*
 81 * Dave Redman (djhr@tadpole.co.uk)
 82 *
 83 * IRQ numbers.. These are no longer restricted to 15..
 84 *
 85 * this is done to enable SBUS cards and onboard IO to be masked
 86 * correctly. using the interrupt level isn't good enough.
 87 *
 88 * For example:
 89 *   A device interrupting at sbus level6 and the Floppy both come in
 90 *   at IRQ11, but enabling and disabling them requires writing to
 91 *   different bits in the SLAVIO/SEC.
 92 *
 93 * As a result of these changes sun4m machines could now support
 94 * directed CPU interrupts using the existing enable/disable irq code
 95 * with tweaks.
 96 *
 97 * Sun4d complicates things even further.  IRQ numbers are arbitrary
 98 * 32-bit values in that case.  Since this is similar to sparc64,
 99 * we adopt a virtual IRQ numbering scheme as is done there.
100 * Virutal interrupt numbers are allocated by build_irq().  So NR_IRQS
101 * just becomes a limit of how many interrupt sources we can handle in
102 * a single system.  Even fully loaded SS2000 machines top off at
103 * about 32 interrupt sources or so, therefore a NR_IRQS value of 64
104 * is more than enough.
105  *
106 * We keep a map of per-PIL enable interrupts.  These get wired
107 * up via the irq_chip->startup() method which gets invoked by
108 * the generic IRQ layer during request_irq().
109 */
110
111
112/* Table of allocated irqs. Unused entries has irq == 0 */
113static struct irq_bucket irq_table[NR_IRQS];
114/* Protect access to irq_table */
115static DEFINE_SPINLOCK(irq_table_lock);
116
117/* Map between the irq identifier used in hw to the irq_bucket. */
118struct irq_bucket *irq_map[SUN4D_MAX_IRQ];
119/* Protect access to irq_map */
120static DEFINE_SPINLOCK(irq_map_lock);
121
122/* Allocate a new irq from the irq_table */
123unsigned int irq_alloc(unsigned int real_irq, unsigned int pil)
124{
125	unsigned long flags;
126	unsigned int i;
127
128	spin_lock_irqsave(&irq_table_lock, flags);
129	for (i = 1; i < NR_IRQS; i++) {
130		if (irq_table[i].real_irq == real_irq && irq_table[i].pil == pil)
131			goto found;
132	}
133
134	for (i = 1; i < NR_IRQS; i++) {
135		if (!irq_table[i].irq)
136			break;
137	}
138
139	if (i < NR_IRQS) {
140		irq_table[i].real_irq = real_irq;
141		irq_table[i].irq = i;
142		irq_table[i].pil = pil;
143	} else {
144		printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
145		i = 0;
146	}
147found:
148	spin_unlock_irqrestore(&irq_table_lock, flags);
149
150	return i;
151}
152
153/* Based on a single pil handler_irq may need to call several
154 * interrupt handlers. Use irq_map as entry to irq_table,
155 * and let each entry in irq_table point to the next entry.
156 */
157void irq_link(unsigned int irq)
158{
159	struct irq_bucket *p;
160	unsigned long flags;
161	unsigned int pil;
162
163	BUG_ON(irq >= NR_IRQS);
164
165	spin_lock_irqsave(&irq_map_lock, flags);
166
167	p = &irq_table[irq];
168	pil = p->pil;
169	BUG_ON(pil >= SUN4D_MAX_IRQ);
170	p->next = irq_map[pil];
171	irq_map[pil] = p;
172
173	spin_unlock_irqrestore(&irq_map_lock, flags);
174}
175
176void irq_unlink(unsigned int irq)
177{
178	struct irq_bucket *p, **pnext;
179	unsigned long flags;
180
181	BUG_ON(irq >= NR_IRQS);
182
183	spin_lock_irqsave(&irq_map_lock, flags);
184
185	p = &irq_table[irq];
186	BUG_ON(p->pil >= SUN4D_MAX_IRQ);
187	pnext = &irq_map[p->pil];
188	while (*pnext != p)
189		pnext = &(*pnext)->next;
190	*pnext = p->next;
191
192	spin_unlock_irqrestore(&irq_map_lock, flags);
193}
194
195
196/* /proc/interrupts printing */
197int arch_show_interrupts(struct seq_file *p, int prec)
198{
199	int j;
200
201#ifdef CONFIG_SMP
202	seq_printf(p, "RES: ");
203	for_each_online_cpu(j)
204		seq_printf(p, "%10u ", cpu_data(j).irq_resched_count);
205	seq_printf(p, "     IPI rescheduling interrupts\n");
206	seq_printf(p, "CAL: ");
207	for_each_online_cpu(j)
208		seq_printf(p, "%10u ", cpu_data(j).irq_call_count);
209	seq_printf(p, "     IPI function call interrupts\n");
210#endif
211	seq_printf(p, "NMI: ");
212	for_each_online_cpu(j)
213		seq_printf(p, "%10u ", cpu_data(j).counter);
214	seq_printf(p, "     Non-maskable interrupts\n");
215	return 0;
216}
217
218void handler_irq(unsigned int pil, struct pt_regs *regs)
219{
220	struct pt_regs *old_regs;
221	struct irq_bucket *p;
222
223	BUG_ON(pil > 15);
224	old_regs = set_irq_regs(regs);
225	irq_enter();
226
227	p = irq_map[pil];
228	while (p) {
229		struct irq_bucket *next = p->next;
230
231		generic_handle_irq(p->irq);
232		p = next;
233	}
234	irq_exit();
235	set_irq_regs(old_regs);
236}
237
238#if defined(CONFIG_BLK_DEV_FD) || defined(CONFIG_BLK_DEV_FD_MODULE)
239static unsigned int floppy_irq;
240
241int sparc_floppy_request_irq(unsigned int irq, irq_handler_t irq_handler)
242{
243	unsigned int cpu_irq;
244	int err;
245
246
247	err = request_irq(irq, irq_handler, 0, "floppy", NULL);
248	if (err)
249		return -1;
250
251	/* Save for later use in floppy interrupt handler */
252	floppy_irq = irq;
253
254	cpu_irq = (irq & (NR_IRQS - 1));
255
256	/* Dork with trap table if we get this far. */
257#define INSTANTIATE(table) \
258	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_one = SPARC_RD_PSR_L0; \
259	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two = \
260		SPARC_BRANCH((unsigned long) floppy_hardint, \
261			     (unsigned long) &table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two);\
262	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_three = SPARC_RD_WIM_L3; \
263	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_four = SPARC_NOP;
264
265	INSTANTIATE(sparc_ttable)
266
267#if defined CONFIG_SMP
268	if (sparc_cpu_model != sparc_leon) {
269		struct tt_entry *trap_table;
270
271		trap_table = &trapbase_cpu1;
272		INSTANTIATE(trap_table)
273		trap_table = &trapbase_cpu2;
274		INSTANTIATE(trap_table)
275		trap_table = &trapbase_cpu3;
276		INSTANTIATE(trap_table)
277	}
278#endif
279#undef INSTANTIATE
280	/*
281	 * XXX Correct thing whould be to flush only I- and D-cache lines
282	 * which contain the handler in question. But as of time of the
283	 * writing we have no CPU-neutral interface to fine-grained flushes.
284	 */
285	flush_cache_all();
286	return 0;
287}
288EXPORT_SYMBOL(sparc_floppy_request_irq);
289
290/*
291 * These variables are used to access state from the assembler
292 * interrupt handler, floppy_hardint, so we cannot put these in
293 * the floppy driver image because that would not work in the
294 * modular case.
295 */
296volatile unsigned char *fdc_status;
297EXPORT_SYMBOL(fdc_status);
298
299char *pdma_vaddr;
300EXPORT_SYMBOL(pdma_vaddr);
301
302unsigned long pdma_size;
303EXPORT_SYMBOL(pdma_size);
304
305volatile int doing_pdma;
306EXPORT_SYMBOL(doing_pdma);
307
308char *pdma_base;
309EXPORT_SYMBOL(pdma_base);
310
311unsigned long pdma_areasize;
312EXPORT_SYMBOL(pdma_areasize);
313
314/* Use the generic irq support to call floppy_interrupt
315 * which was setup using request_irq() in sparc_floppy_request_irq().
316 * We only have one floppy interrupt so we do not need to check
317 * for additional handlers being wired up by irq_link()
318 */
319void sparc_floppy_irq(int irq, void *dev_id, struct pt_regs *regs)
320{
321	struct pt_regs *old_regs;
322
323	old_regs = set_irq_regs(regs);
324	irq_enter();
325	generic_handle_irq(floppy_irq);
326	irq_exit();
327	set_irq_regs(old_regs);
328}
329#endif
330
331/* djhr
332 * This could probably be made indirect too and assigned in the CPU
333 * bits of the code. That would be much nicer I think and would also
334 * fit in with the idea of being able to tune your kernel for your machine
335 * by removing unrequired machine and device support.
336 *
337 */
338
339void __init init_IRQ(void)
340{
341	switch (sparc_cpu_model) {
342	case sun4m:
343		pcic_probe();
344		if (pcic_present())
345			sun4m_pci_init_IRQ();
346		else
347			sun4m_init_IRQ();
348		break;
349
350	case sun4d:
351		sun4d_init_IRQ();
352		break;
353
354	case sparc_leon:
355		leon_init_IRQ();
356		break;
357
358	default:
359		prom_printf("Cannot initialize IRQs on this Sun machine...");
360		break;
361	}
362}
363
v4.6
 
  1/*
  2 * Interrupt request handling routines. On the
  3 * Sparc the IRQs are basically 'cast in stone'
  4 * and you are supposed to probe the prom's device
  5 * node trees to find out who's got which IRQ.
  6 *
  7 *  Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
  8 *  Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
  9 *  Copyright (C) 1995,2002 Pete A. Zaitcev (zaitcev@yahoo.com)
 10 *  Copyright (C) 1996 Dave Redman (djhr@tadpole.co.uk)
 11 *  Copyright (C) 1998-2000 Anton Blanchard (anton@samba.org)
 12 */
 13
 14#include <linux/kernel_stat.h>
 15#include <linux/seq_file.h>
 16#include <linux/export.h>
 17
 18#include <asm/cacheflush.h>
 19#include <asm/cpudata.h>
 20#include <asm/setup.h>
 21#include <asm/pcic.h>
 22#include <asm/leon.h>
 23
 24#include "kernel.h"
 25#include "irq.h"
 26
 27/* platform specific irq setup */
 28struct sparc_config sparc_config;
 29
 30unsigned long arch_local_irq_save(void)
 31{
 32	unsigned long retval;
 33	unsigned long tmp;
 34
 35	__asm__ __volatile__(
 36		"rd	%%psr, %0\n\t"
 37		"or	%0, %2, %1\n\t"
 38		"wr	%1, 0, %%psr\n\t"
 39		"nop; nop; nop\n"
 40		: "=&r" (retval), "=r" (tmp)
 41		: "i" (PSR_PIL)
 42		: "memory");
 43
 44	return retval;
 45}
 46EXPORT_SYMBOL(arch_local_irq_save);
 47
 48void arch_local_irq_enable(void)
 49{
 50	unsigned long tmp;
 51
 52	__asm__ __volatile__(
 53		"rd	%%psr, %0\n\t"
 54		"andn	%0, %1, %0\n\t"
 55		"wr	%0, 0, %%psr\n\t"
 56		"nop; nop; nop\n"
 57		: "=&r" (tmp)
 58		: "i" (PSR_PIL)
 59		: "memory");
 60}
 61EXPORT_SYMBOL(arch_local_irq_enable);
 62
 63void arch_local_irq_restore(unsigned long old_psr)
 64{
 65	unsigned long tmp;
 66
 67	__asm__ __volatile__(
 68		"rd	%%psr, %0\n\t"
 69		"and	%2, %1, %2\n\t"
 70		"andn	%0, %1, %0\n\t"
 71		"wr	%0, %2, %%psr\n\t"
 72		"nop; nop; nop\n"
 73		: "=&r" (tmp)
 74		: "i" (PSR_PIL), "r" (old_psr)
 75		: "memory");
 76}
 77EXPORT_SYMBOL(arch_local_irq_restore);
 78
 79/*
 80 * Dave Redman (djhr@tadpole.co.uk)
 81 *
 82 * IRQ numbers.. These are no longer restricted to 15..
 83 *
 84 * this is done to enable SBUS cards and onboard IO to be masked
 85 * correctly. using the interrupt level isn't good enough.
 86 *
 87 * For example:
 88 *   A device interrupting at sbus level6 and the Floppy both come in
 89 *   at IRQ11, but enabling and disabling them requires writing to
 90 *   different bits in the SLAVIO/SEC.
 91 *
 92 * As a result of these changes sun4m machines could now support
 93 * directed CPU interrupts using the existing enable/disable irq code
 94 * with tweaks.
 95 *
 96 * Sun4d complicates things even further.  IRQ numbers are arbitrary
 97 * 32-bit values in that case.  Since this is similar to sparc64,
 98 * we adopt a virtual IRQ numbering scheme as is done there.
 99 * Virutal interrupt numbers are allocated by build_irq().  So NR_IRQS
100 * just becomes a limit of how many interrupt sources we can handle in
101 * a single system.  Even fully loaded SS2000 machines top off at
102 * about 32 interrupt sources or so, therefore a NR_IRQS value of 64
103 * is more than enough.
104  *
105 * We keep a map of per-PIL enable interrupts.  These get wired
106 * up via the irq_chip->startup() method which gets invoked by
107 * the generic IRQ layer during request_irq().
108 */
109
110
111/* Table of allocated irqs. Unused entries has irq == 0 */
112static struct irq_bucket irq_table[NR_IRQS];
113/* Protect access to irq_table */
114static DEFINE_SPINLOCK(irq_table_lock);
115
116/* Map between the irq identifier used in hw to the irq_bucket. */
117struct irq_bucket *irq_map[SUN4D_MAX_IRQ];
118/* Protect access to irq_map */
119static DEFINE_SPINLOCK(irq_map_lock);
120
121/* Allocate a new irq from the irq_table */
122unsigned int irq_alloc(unsigned int real_irq, unsigned int pil)
123{
124	unsigned long flags;
125	unsigned int i;
126
127	spin_lock_irqsave(&irq_table_lock, flags);
128	for (i = 1; i < NR_IRQS; i++) {
129		if (irq_table[i].real_irq == real_irq && irq_table[i].pil == pil)
130			goto found;
131	}
132
133	for (i = 1; i < NR_IRQS; i++) {
134		if (!irq_table[i].irq)
135			break;
136	}
137
138	if (i < NR_IRQS) {
139		irq_table[i].real_irq = real_irq;
140		irq_table[i].irq = i;
141		irq_table[i].pil = pil;
142	} else {
143		printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
144		i = 0;
145	}
146found:
147	spin_unlock_irqrestore(&irq_table_lock, flags);
148
149	return i;
150}
151
152/* Based on a single pil handler_irq may need to call several
153 * interrupt handlers. Use irq_map as entry to irq_table,
154 * and let each entry in irq_table point to the next entry.
155 */
156void irq_link(unsigned int irq)
157{
158	struct irq_bucket *p;
159	unsigned long flags;
160	unsigned int pil;
161
162	BUG_ON(irq >= NR_IRQS);
163
164	spin_lock_irqsave(&irq_map_lock, flags);
165
166	p = &irq_table[irq];
167	pil = p->pil;
168	BUG_ON(pil > SUN4D_MAX_IRQ);
169	p->next = irq_map[pil];
170	irq_map[pil] = p;
171
172	spin_unlock_irqrestore(&irq_map_lock, flags);
173}
174
175void irq_unlink(unsigned int irq)
176{
177	struct irq_bucket *p, **pnext;
178	unsigned long flags;
179
180	BUG_ON(irq >= NR_IRQS);
181
182	spin_lock_irqsave(&irq_map_lock, flags);
183
184	p = &irq_table[irq];
185	BUG_ON(p->pil > SUN4D_MAX_IRQ);
186	pnext = &irq_map[p->pil];
187	while (*pnext != p)
188		pnext = &(*pnext)->next;
189	*pnext = p->next;
190
191	spin_unlock_irqrestore(&irq_map_lock, flags);
192}
193
194
195/* /proc/interrupts printing */
196int arch_show_interrupts(struct seq_file *p, int prec)
197{
198	int j;
199
200#ifdef CONFIG_SMP
201	seq_printf(p, "RES: ");
202	for_each_online_cpu(j)
203		seq_printf(p, "%10u ", cpu_data(j).irq_resched_count);
204	seq_printf(p, "     IPI rescheduling interrupts\n");
205	seq_printf(p, "CAL: ");
206	for_each_online_cpu(j)
207		seq_printf(p, "%10u ", cpu_data(j).irq_call_count);
208	seq_printf(p, "     IPI function call interrupts\n");
209#endif
210	seq_printf(p, "NMI: ");
211	for_each_online_cpu(j)
212		seq_printf(p, "%10u ", cpu_data(j).counter);
213	seq_printf(p, "     Non-maskable interrupts\n");
214	return 0;
215}
216
217void handler_irq(unsigned int pil, struct pt_regs *regs)
218{
219	struct pt_regs *old_regs;
220	struct irq_bucket *p;
221
222	BUG_ON(pil > 15);
223	old_regs = set_irq_regs(regs);
224	irq_enter();
225
226	p = irq_map[pil];
227	while (p) {
228		struct irq_bucket *next = p->next;
229
230		generic_handle_irq(p->irq);
231		p = next;
232	}
233	irq_exit();
234	set_irq_regs(old_regs);
235}
236
237#if defined(CONFIG_BLK_DEV_FD) || defined(CONFIG_BLK_DEV_FD_MODULE)
238static unsigned int floppy_irq;
239
240int sparc_floppy_request_irq(unsigned int irq, irq_handler_t irq_handler)
241{
242	unsigned int cpu_irq;
243	int err;
244
245
246	err = request_irq(irq, irq_handler, 0, "floppy", NULL);
247	if (err)
248		return -1;
249
250	/* Save for later use in floppy interrupt handler */
251	floppy_irq = irq;
252
253	cpu_irq = (irq & (NR_IRQS - 1));
254
255	/* Dork with trap table if we get this far. */
256#define INSTANTIATE(table) \
257	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_one = SPARC_RD_PSR_L0; \
258	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two = \
259		SPARC_BRANCH((unsigned long) floppy_hardint, \
260			     (unsigned long) &table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two);\
261	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_three = SPARC_RD_WIM_L3; \
262	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_four = SPARC_NOP;
263
264	INSTANTIATE(sparc_ttable)
265
266#if defined CONFIG_SMP
267	if (sparc_cpu_model != sparc_leon) {
268		struct tt_entry *trap_table;
269
270		trap_table = &trapbase_cpu1;
271		INSTANTIATE(trap_table)
272		trap_table = &trapbase_cpu2;
273		INSTANTIATE(trap_table)
274		trap_table = &trapbase_cpu3;
275		INSTANTIATE(trap_table)
276	}
277#endif
278#undef INSTANTIATE
279	/*
280	 * XXX Correct thing whould be to flush only I- and D-cache lines
281	 * which contain the handler in question. But as of time of the
282	 * writing we have no CPU-neutral interface to fine-grained flushes.
283	 */
284	flush_cache_all();
285	return 0;
286}
287EXPORT_SYMBOL(sparc_floppy_request_irq);
288
289/*
290 * These variables are used to access state from the assembler
291 * interrupt handler, floppy_hardint, so we cannot put these in
292 * the floppy driver image because that would not work in the
293 * modular case.
294 */
295volatile unsigned char *fdc_status;
296EXPORT_SYMBOL(fdc_status);
297
298char *pdma_vaddr;
299EXPORT_SYMBOL(pdma_vaddr);
300
301unsigned long pdma_size;
302EXPORT_SYMBOL(pdma_size);
303
304volatile int doing_pdma;
305EXPORT_SYMBOL(doing_pdma);
306
307char *pdma_base;
308EXPORT_SYMBOL(pdma_base);
309
310unsigned long pdma_areasize;
311EXPORT_SYMBOL(pdma_areasize);
312
313/* Use the generic irq support to call floppy_interrupt
314 * which was setup using request_irq() in sparc_floppy_request_irq().
315 * We only have one floppy interrupt so we do not need to check
316 * for additional handlers being wired up by irq_link()
317 */
318void sparc_floppy_irq(int irq, void *dev_id, struct pt_regs *regs)
319{
320	struct pt_regs *old_regs;
321
322	old_regs = set_irq_regs(regs);
323	irq_enter();
324	generic_handle_irq(floppy_irq);
325	irq_exit();
326	set_irq_regs(old_regs);
327}
328#endif
329
330/* djhr
331 * This could probably be made indirect too and assigned in the CPU
332 * bits of the code. That would be much nicer I think and would also
333 * fit in with the idea of being able to tune your kernel for your machine
334 * by removing unrequired machine and device support.
335 *
336 */
337
338void __init init_IRQ(void)
339{
340	switch (sparc_cpu_model) {
341	case sun4m:
342		pcic_probe();
343		if (pcic_present())
344			sun4m_pci_init_IRQ();
345		else
346			sun4m_init_IRQ();
347		break;
348
349	case sun4d:
350		sun4d_init_IRQ();
351		break;
352
353	case sparc_leon:
354		leon_init_IRQ();
355		break;
356
357	default:
358		prom_printf("Cannot initialize IRQs on this Sun machine...");
359		break;
360	}
361}
362