Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * Common time routines among all ppc machines.
   3 *
   4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
   5 * Paul Mackerras' version and mine for PReP and Pmac.
   6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
   7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
   8 *
   9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10 * to make clock more stable (2.4.0-test5). The only thing
  11 * that this code assumes is that the timebases have been synchronized
  12 * by firmware on SMP and are never stopped (never do sleep
  13 * on SMP then, nap and doze are OK).
  14 * 
  15 * Speeded up do_gettimeofday by getting rid of references to
  16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17 *
  18 * TODO (not necessarily in this file):
  19 * - improve precision and reproducibility of timebase frequency
  20 * measurement at boot time.
  21 * - for astronomical applications: add a new function to get
  22 * non ambiguous timestamps even around leap seconds. This needs
  23 * a new timestamp format and a good name.
  24 *
  25 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
  26 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
  27 *
  28 *      This program is free software; you can redistribute it and/or
  29 *      modify it under the terms of the GNU General Public License
  30 *      as published by the Free Software Foundation; either version
  31 *      2 of the License, or (at your option) any later version.
  32 */
  33
  34#include <linux/errno.h>
  35#include <linux/export.h>
  36#include <linux/sched.h>
  37#include <linux/sched/clock.h>
  38#include <linux/kernel.h>
  39#include <linux/param.h>
  40#include <linux/string.h>
  41#include <linux/mm.h>
  42#include <linux/interrupt.h>
  43#include <linux/timex.h>
  44#include <linux/kernel_stat.h>
  45#include <linux/time.h>
  46#include <linux/clockchips.h>
  47#include <linux/init.h>
  48#include <linux/profile.h>
  49#include <linux/cpu.h>
  50#include <linux/security.h>
  51#include <linux/percpu.h>
  52#include <linux/rtc.h>
  53#include <linux/jiffies.h>
  54#include <linux/posix-timers.h>
  55#include <linux/irq.h>
  56#include <linux/delay.h>
  57#include <linux/irq_work.h>
  58#include <linux/clk-provider.h>
  59#include <linux/suspend.h>
  60#include <linux/rtc.h>
  61#include <linux/sched/cputime.h>
  62#include <linux/processor.h>
  63#include <asm/trace.h>
  64
  65#include <asm/io.h>
 
  66#include <asm/nvram.h>
  67#include <asm/cache.h>
  68#include <asm/machdep.h>
  69#include <linux/uaccess.h>
  70#include <asm/time.h>
  71#include <asm/prom.h>
  72#include <asm/irq.h>
  73#include <asm/div64.h>
  74#include <asm/smp.h>
  75#include <asm/vdso_datapage.h>
  76#include <asm/firmware.h>
  77#include <asm/asm-prototypes.h>
  78
  79/* powerpc clocksource/clockevent code */
  80
  81#include <linux/clockchips.h>
  82#include <linux/timekeeper_internal.h>
  83
  84static u64 rtc_read(struct clocksource *);
  85static struct clocksource clocksource_rtc = {
  86	.name         = "rtc",
  87	.rating       = 400,
  88	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  89	.mask         = CLOCKSOURCE_MASK(64),
  90	.read         = rtc_read,
  91};
  92
  93static u64 timebase_read(struct clocksource *);
  94static struct clocksource clocksource_timebase = {
  95	.name         = "timebase",
  96	.rating       = 400,
  97	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  98	.mask         = CLOCKSOURCE_MASK(64),
  99	.read         = timebase_read,
 100};
 101
 102#define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
 103u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
 104
 105static int decrementer_set_next_event(unsigned long evt,
 106				      struct clock_event_device *dev);
 107static int decrementer_shutdown(struct clock_event_device *evt);
 108
 109struct clock_event_device decrementer_clockevent = {
 110	.name			= "decrementer",
 111	.rating			= 200,
 112	.irq			= 0,
 113	.set_next_event		= decrementer_set_next_event,
 114	.set_state_shutdown	= decrementer_shutdown,
 115	.tick_resume		= decrementer_shutdown,
 116	.features		= CLOCK_EVT_FEAT_ONESHOT |
 117				  CLOCK_EVT_FEAT_C3STOP,
 118};
 119EXPORT_SYMBOL(decrementer_clockevent);
 120
 121DEFINE_PER_CPU(u64, decrementers_next_tb);
 122static DEFINE_PER_CPU(struct clock_event_device, decrementers);
 123
 124#define XSEC_PER_SEC (1024*1024)
 125
 126#ifdef CONFIG_PPC64
 127#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
 128#else
 129/* compute ((xsec << 12) * max) >> 32 */
 130#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
 131#endif
 132
 133unsigned long tb_ticks_per_jiffy;
 134unsigned long tb_ticks_per_usec = 100; /* sane default */
 135EXPORT_SYMBOL(tb_ticks_per_usec);
 136unsigned long tb_ticks_per_sec;
 137EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
 138
 139DEFINE_SPINLOCK(rtc_lock);
 140EXPORT_SYMBOL_GPL(rtc_lock);
 141
 142static u64 tb_to_ns_scale __read_mostly;
 143static unsigned tb_to_ns_shift __read_mostly;
 144static u64 boot_tb __read_mostly;
 145
 146extern struct timezone sys_tz;
 147static long timezone_offset;
 148
 149unsigned long ppc_proc_freq;
 150EXPORT_SYMBOL_GPL(ppc_proc_freq);
 151unsigned long ppc_tb_freq;
 152EXPORT_SYMBOL_GPL(ppc_tb_freq);
 153
 154#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 155/*
 156 * Factor for converting from cputime_t (timebase ticks) to
 157 * microseconds. This is stored as 0.64 fixed-point binary fraction.
 
 158 */
 
 
 159u64 __cputime_usec_factor;
 160EXPORT_SYMBOL(__cputime_usec_factor);
 
 
 
 
 
 
 161
 162#ifdef CONFIG_PPC_SPLPAR
 163void (*dtl_consumer)(struct dtl_entry *, u64);
 164#endif
 165
 166#ifdef CONFIG_PPC64
 167#define get_accounting(tsk)	(&get_paca()->accounting)
 168#else
 169#define get_accounting(tsk)	(&task_thread_info(tsk)->accounting)
 170#endif
 171
 172static void calc_cputime_factors(void)
 173{
 174	struct div_result res;
 175
 
 
 176	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
 177	__cputime_usec_factor = res.result_low;
 
 
 
 
 178}
 179
 180/*
 181 * Read the SPURR on systems that have it, otherwise the PURR,
 182 * or if that doesn't exist return the timebase value passed in.
 183 */
 184static unsigned long read_spurr(unsigned long tb)
 185{
 186	if (cpu_has_feature(CPU_FTR_SPURR))
 187		return mfspr(SPRN_SPURR);
 188	if (cpu_has_feature(CPU_FTR_PURR))
 189		return mfspr(SPRN_PURR);
 190	return tb;
 191}
 192
 193#ifdef CONFIG_PPC_SPLPAR
 194
 195/*
 196 * Scan the dispatch trace log and count up the stolen time.
 197 * Should be called with interrupts disabled.
 198 */
 199static u64 scan_dispatch_log(u64 stop_tb)
 200{
 201	u64 i = local_paca->dtl_ridx;
 202	struct dtl_entry *dtl = local_paca->dtl_curr;
 203	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
 204	struct lppaca *vpa = local_paca->lppaca_ptr;
 205	u64 tb_delta;
 206	u64 stolen = 0;
 207	u64 dtb;
 208
 209	if (!dtl)
 210		return 0;
 211
 212	if (i == be64_to_cpu(vpa->dtl_idx))
 213		return 0;
 214	while (i < be64_to_cpu(vpa->dtl_idx)) {
 215		dtb = be64_to_cpu(dtl->timebase);
 216		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
 217			be32_to_cpu(dtl->ready_to_enqueue_time);
 218		barrier();
 219		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
 220			/* buffer has overflowed */
 221			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
 222			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
 223			continue;
 224		}
 225		if (dtb > stop_tb)
 226			break;
 227		if (dtl_consumer)
 228			dtl_consumer(dtl, i);
 229		stolen += tb_delta;
 230		++i;
 231		++dtl;
 232		if (dtl == dtl_end)
 233			dtl = local_paca->dispatch_log;
 234	}
 235	local_paca->dtl_ridx = i;
 236	local_paca->dtl_curr = dtl;
 237	return stolen;
 238}
 239
 240/*
 241 * Accumulate stolen time by scanning the dispatch trace log.
 242 * Called on entry from user mode.
 243 */
 244void accumulate_stolen_time(void)
 245{
 246	u64 sst, ust;
 247	unsigned long save_irq_soft_mask = irq_soft_mask_return();
 248	struct cpu_accounting_data *acct = &local_paca->accounting;
 249
 250	/* We are called early in the exception entry, before
 251	 * soft/hard_enabled are sync'ed to the expected state
 252	 * for the exception. We are hard disabled but the PACA
 253	 * needs to reflect that so various debug stuff doesn't
 254	 * complain
 255	 */
 256	irq_soft_mask_set(IRQS_DISABLED);
 257
 258	sst = scan_dispatch_log(acct->starttime_user);
 259	ust = scan_dispatch_log(acct->starttime);
 260	acct->stime -= sst;
 261	acct->utime -= ust;
 262	acct->steal_time += ust + sst;
 263
 264	irq_soft_mask_set(save_irq_soft_mask);
 265}
 266
 267static inline u64 calculate_stolen_time(u64 stop_tb)
 268{
 269	if (!firmware_has_feature(FW_FEATURE_SPLPAR))
 270		return 0;
 271
 272	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
 273		return scan_dispatch_log(stop_tb);
 
 
 274
 275	return 0;
 
 
 276}
 277
 278#else /* CONFIG_PPC_SPLPAR */
 279static inline u64 calculate_stolen_time(u64 stop_tb)
 280{
 281	return 0;
 282}
 283
 284#endif /* CONFIG_PPC_SPLPAR */
 285
 286/*
 287 * Account time for a transition between system, hard irq
 288 * or soft irq state.
 289 */
 290static unsigned long vtime_delta(struct task_struct *tsk,
 291				 unsigned long *stime_scaled,
 292				 unsigned long *steal_time)
 293{
 294	unsigned long now, nowscaled, deltascaled;
 295	unsigned long stime;
 296	unsigned long utime, utime_scaled;
 297	struct cpu_accounting_data *acct = get_accounting(tsk);
 298
 299	WARN_ON_ONCE(!irqs_disabled());
 300
 301	now = mftb();
 302	nowscaled = read_spurr(now);
 303	stime = now - acct->starttime;
 304	acct->starttime = now;
 305	deltascaled = nowscaled - acct->startspurr;
 306	acct->startspurr = nowscaled;
 307
 308	*steal_time = calculate_stolen_time(now);
 309
 310	utime = acct->utime - acct->utime_sspurr;
 311	acct->utime_sspurr = acct->utime;
 
 
 312
 313	/*
 314	 * Because we don't read the SPURR on every kernel entry/exit,
 315	 * deltascaled includes both user and system SPURR ticks.
 316	 * Apportion these ticks to system SPURR ticks and user
 317	 * SPURR ticks in the same ratio as the system time (delta)
 318	 * and user time (udelta) values obtained from the timebase
 319	 * over the same interval.  The system ticks get accounted here;
 320	 * the user ticks get saved up in paca->user_time_scaled to be
 321	 * used by account_process_tick.
 322	 */
 323	*stime_scaled = stime;
 324	utime_scaled = utime;
 325	if (deltascaled != stime + utime) {
 326		if (utime) {
 327			*stime_scaled = deltascaled * stime / (stime + utime);
 328			utime_scaled = deltascaled - *stime_scaled;
 329		} else {
 330			*stime_scaled = deltascaled;
 331		}
 332	}
 333	acct->utime_scaled += utime_scaled;
 334
 335	return stime;
 336}
 337
 338void vtime_account_system(struct task_struct *tsk)
 339{
 340	unsigned long stime, stime_scaled, steal_time;
 341	struct cpu_accounting_data *acct = get_accounting(tsk);
 342
 343	stime = vtime_delta(tsk, &stime_scaled, &steal_time);
 344
 345	stime -= min(stime, steal_time);
 346	acct->steal_time += steal_time;
 347
 348	if ((tsk->flags & PF_VCPU) && !irq_count()) {
 349		acct->gtime += stime;
 350		acct->utime_scaled += stime_scaled;
 351	} else {
 352		if (hardirq_count())
 353			acct->hardirq_time += stime;
 354		else if (in_serving_softirq())
 355			acct->softirq_time += stime;
 356		else
 357			acct->stime += stime;
 358
 359		acct->stime_scaled += stime_scaled;
 360	}
 
 
 361}
 362EXPORT_SYMBOL_GPL(vtime_account_system);
 363
 364void vtime_account_idle(struct task_struct *tsk)
 365{
 366	unsigned long stime, stime_scaled, steal_time;
 367	struct cpu_accounting_data *acct = get_accounting(tsk);
 368
 369	stime = vtime_delta(tsk, &stime_scaled, &steal_time);
 370	acct->idle_time += stime + steal_time;
 371}
 372
 373/*
 374 * Account the whole cputime accumulated in the paca
 
 
 375 * Must be called with interrupts disabled.
 376 * Assumes that vtime_account_system/idle() has been called
 377 * recently (i.e. since the last entry from usermode) so that
 378 * get_paca()->user_time_scaled is up to date.
 379 */
 380void vtime_flush(struct task_struct *tsk)
 381{
 382	struct cpu_accounting_data *acct = get_accounting(tsk);
 383
 384	if (acct->utime)
 385		account_user_time(tsk, cputime_to_nsecs(acct->utime));
 386
 387	if (acct->utime_scaled)
 388		tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
 389
 390	if (acct->gtime)
 391		account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
 392
 393	if (acct->steal_time)
 394		account_steal_time(cputime_to_nsecs(acct->steal_time));
 395
 396	if (acct->idle_time)
 397		account_idle_time(cputime_to_nsecs(acct->idle_time));
 398
 399	if (acct->stime)
 400		account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
 401					  CPUTIME_SYSTEM);
 402	if (acct->stime_scaled)
 403		tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
 404
 405	if (acct->hardirq_time)
 406		account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
 407					  CPUTIME_IRQ);
 408	if (acct->softirq_time)
 409		account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
 410					  CPUTIME_SOFTIRQ);
 411
 412	acct->utime = 0;
 413	acct->utime_scaled = 0;
 414	acct->utime_sspurr = 0;
 415	acct->gtime = 0;
 416	acct->steal_time = 0;
 417	acct->idle_time = 0;
 418	acct->stime = 0;
 419	acct->stime_scaled = 0;
 420	acct->hardirq_time = 0;
 421	acct->softirq_time = 0;
 422}
 423
 424#ifdef CONFIG_PPC32
 425/*
 426 * Called from the context switch with interrupts disabled, to charge all
 427 * accumulated times to the current process, and to prepare accounting on
 428 * the next process.
 429 */
 430void arch_vtime_task_switch(struct task_struct *prev)
 431{
 432	struct cpu_accounting_data *acct = get_accounting(current);
 433
 434	acct->starttime = get_accounting(prev)->starttime;
 435	acct->startspurr = get_accounting(prev)->startspurr;
 436}
 437#endif /* CONFIG_PPC32 */
 438
 439#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 440#define calc_cputime_factors()
 441#endif
 442
 443void __delay(unsigned long loops)
 444{
 445	unsigned long start;
 446	int diff;
 447
 448	spin_begin();
 449	if (__USE_RTC()) {
 450		start = get_rtcl();
 451		do {
 452			/* the RTCL register wraps at 1000000000 */
 453			diff = get_rtcl() - start;
 454			if (diff < 0)
 455				diff += 1000000000;
 456			spin_cpu_relax();
 457		} while (diff < loops);
 458	} else {
 459		start = get_tbl();
 460		while (get_tbl() - start < loops)
 461			spin_cpu_relax();
 
 462	}
 463	spin_end();
 464}
 465EXPORT_SYMBOL(__delay);
 466
 467void udelay(unsigned long usecs)
 468{
 469	__delay(tb_ticks_per_usec * usecs);
 470}
 471EXPORT_SYMBOL(udelay);
 472
 473#ifdef CONFIG_SMP
 474unsigned long profile_pc(struct pt_regs *regs)
 475{
 476	unsigned long pc = instruction_pointer(regs);
 477
 478	if (in_lock_functions(pc))
 479		return regs->link;
 480
 481	return pc;
 482}
 483EXPORT_SYMBOL(profile_pc);
 484#endif
 485
 486#ifdef CONFIG_IRQ_WORK
 487
 488/*
 489 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 490 */
 491#ifdef CONFIG_PPC64
 492static inline unsigned long test_irq_work_pending(void)
 493{
 494	unsigned long x;
 495
 496	asm volatile("lbz %0,%1(13)"
 497		: "=r" (x)
 498		: "i" (offsetof(struct paca_struct, irq_work_pending)));
 499	return x;
 500}
 501
 502static inline void set_irq_work_pending_flag(void)
 503{
 504	asm volatile("stb %0,%1(13)" : :
 505		"r" (1),
 506		"i" (offsetof(struct paca_struct, irq_work_pending)));
 507}
 508
 509static inline void clear_irq_work_pending(void)
 510{
 511	asm volatile("stb %0,%1(13)" : :
 512		"r" (0),
 513		"i" (offsetof(struct paca_struct, irq_work_pending)));
 514}
 515
 516#else /* 32-bit */
 517
 518DEFINE_PER_CPU(u8, irq_work_pending);
 519
 520#define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
 521#define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
 522#define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
 523
 524#endif /* 32 vs 64 bit */
 525
 526void arch_irq_work_raise(void)
 527{
 528	preempt_disable();
 529	set_irq_work_pending_flag();
 530	set_dec(1);
 531	preempt_enable();
 532}
 533
 534#else  /* CONFIG_IRQ_WORK */
 535
 536#define test_irq_work_pending()	0
 537#define clear_irq_work_pending()
 538
 539#endif /* CONFIG_IRQ_WORK */
 540
 541static void __timer_interrupt(void)
 542{
 543	struct pt_regs *regs = get_irq_regs();
 544	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 545	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
 546	u64 now;
 547
 548	trace_timer_interrupt_entry(regs);
 549
 550	if (test_irq_work_pending()) {
 551		clear_irq_work_pending();
 552		irq_work_run();
 553	}
 554
 555	now = get_tb_or_rtc();
 556	if (now >= *next_tb) {
 557		*next_tb = ~(u64)0;
 558		if (evt->event_handler)
 559			evt->event_handler(evt);
 560		__this_cpu_inc(irq_stat.timer_irqs_event);
 561	} else {
 562		now = *next_tb - now;
 563		if (now <= decrementer_max)
 564			set_dec(now);
 565		/* We may have raced with new irq work */
 566		if (test_irq_work_pending())
 567			set_dec(1);
 568		__this_cpu_inc(irq_stat.timer_irqs_others);
 569	}
 570
 571#ifdef CONFIG_PPC64
 572	/* collect purr register values often, for accurate calculations */
 573	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
 574		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
 575		cu->current_tb = mfspr(SPRN_PURR);
 576	}
 577#endif
 578
 579	trace_timer_interrupt_exit(regs);
 580}
 581
 582/*
 583 * timer_interrupt - gets called when the decrementer overflows,
 584 * with interrupts disabled.
 585 */
 586void timer_interrupt(struct pt_regs * regs)
 587{
 588	struct pt_regs *old_regs;
 589	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 590
 591	/* Ensure a positive value is written to the decrementer, or else
 592	 * some CPUs will continue to take decrementer exceptions.
 593	 */
 594	set_dec(decrementer_max);
 595
 596	/* Some implementations of hotplug will get timer interrupts while
 597	 * offline, just ignore these and we also need to set
 598	 * decrementers_next_tb as MAX to make sure __check_irq_replay
 599	 * don't replay timer interrupt when return, otherwise we'll trap
 600	 * here infinitely :(
 601	 */
 602	if (!cpu_online(smp_processor_id())) {
 603		*next_tb = ~(u64)0;
 604		return;
 605	}
 606
 607	/* Conditionally hard-enable interrupts now that the DEC has been
 608	 * bumped to its maximum value
 609	 */
 610	may_hard_irq_enable();
 611
 612
 613#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
 614	if (atomic_read(&ppc_n_lost_interrupts) != 0)
 615		do_IRQ(regs);
 616#endif
 617
 618	old_regs = set_irq_regs(regs);
 619	irq_enter();
 620
 621	__timer_interrupt();
 622	irq_exit();
 623	set_irq_regs(old_regs);
 624}
 625EXPORT_SYMBOL(timer_interrupt);
 626
 627/*
 628 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
 629 * left pending on exit from a KVM guest.  We don't need to do anything
 630 * to clear them, as they are edge-triggered.
 631 */
 632void hdec_interrupt(struct pt_regs *regs)
 633{
 634}
 635
 636#ifdef CONFIG_SUSPEND
 637static void generic_suspend_disable_irqs(void)
 638{
 639	/* Disable the decrementer, so that it doesn't interfere
 640	 * with suspending.
 641	 */
 642
 643	set_dec(decrementer_max);
 644	local_irq_disable();
 645	set_dec(decrementer_max);
 646}
 647
 648static void generic_suspend_enable_irqs(void)
 649{
 650	local_irq_enable();
 651}
 652
 653/* Overrides the weak version in kernel/power/main.c */
 654void arch_suspend_disable_irqs(void)
 655{
 656	if (ppc_md.suspend_disable_irqs)
 657		ppc_md.suspend_disable_irqs();
 658	generic_suspend_disable_irqs();
 659}
 660
 661/* Overrides the weak version in kernel/power/main.c */
 662void arch_suspend_enable_irqs(void)
 663{
 664	generic_suspend_enable_irqs();
 665	if (ppc_md.suspend_enable_irqs)
 666		ppc_md.suspend_enable_irqs();
 667}
 668#endif
 669
 670unsigned long long tb_to_ns(unsigned long long ticks)
 671{
 672	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
 673}
 674EXPORT_SYMBOL_GPL(tb_to_ns);
 675
 676/*
 677 * Scheduler clock - returns current time in nanosec units.
 678 *
 679 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 680 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 681 * are 64-bit unsigned numbers.
 682 */
 683notrace unsigned long long sched_clock(void)
 684{
 685	if (__USE_RTC())
 686		return get_rtc();
 687	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 688}
 689
 690
 691#ifdef CONFIG_PPC_PSERIES
 692
 693/*
 694 * Running clock - attempts to give a view of time passing for a virtualised
 695 * kernels.
 696 * Uses the VTB register if available otherwise a next best guess.
 697 */
 698unsigned long long running_clock(void)
 699{
 700	/*
 701	 * Don't read the VTB as a host since KVM does not switch in host
 702	 * timebase into the VTB when it takes a guest off the CPU, reading the
 703	 * VTB would result in reading 'last switched out' guest VTB.
 704	 *
 705	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
 706	 * would be unsafe to rely only on the #ifdef above.
 707	 */
 708	if (firmware_has_feature(FW_FEATURE_LPAR) &&
 709	    cpu_has_feature(CPU_FTR_ARCH_207S))
 710		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 711
 712	/*
 713	 * This is a next best approximation without a VTB.
 714	 * On a host which is running bare metal there should never be any stolen
 715	 * time and on a host which doesn't do any virtualisation TB *should* equal
 716	 * VTB so it makes no difference anyway.
 717	 */
 718	return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
 719}
 720#endif
 721
 722static int __init get_freq(char *name, int cells, unsigned long *val)
 723{
 724	struct device_node *cpu;
 725	const __be32 *fp;
 726	int found = 0;
 727
 728	/* The cpu node should have timebase and clock frequency properties */
 729	cpu = of_find_node_by_type(NULL, "cpu");
 730
 731	if (cpu) {
 732		fp = of_get_property(cpu, name, NULL);
 733		if (fp) {
 734			found = 1;
 735			*val = of_read_ulong(fp, cells);
 736		}
 737
 738		of_node_put(cpu);
 739	}
 740
 741	return found;
 742}
 743
 744static void start_cpu_decrementer(void)
 745{
 746#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
 747	unsigned int tcr;
 748
 749	/* Clear any pending timer interrupts */
 750	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
 751
 752	tcr = mfspr(SPRN_TCR);
 753	/*
 754	 * The watchdog may have already been enabled by u-boot. So leave
 755	 * TRC[WP] (Watchdog Period) alone.
 756	 */
 757	tcr &= TCR_WP_MASK;	/* Clear all bits except for TCR[WP] */
 758	tcr |= TCR_DIE;		/* Enable decrementer */
 759	mtspr(SPRN_TCR, tcr);
 760#endif
 761}
 762
 763void __init generic_calibrate_decr(void)
 764{
 765	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
 766
 767	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
 768	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
 769
 770		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
 771				"(not found)\n");
 772	}
 773
 774	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
 775
 776	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
 777	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
 778
 779		printk(KERN_ERR "WARNING: Estimating processor frequency "
 780				"(not found)\n");
 781	}
 782}
 783
 784int update_persistent_clock(struct timespec now)
 785{
 786	struct rtc_time tm;
 787
 788	if (!ppc_md.set_rtc_time)
 789		return -ENODEV;
 790
 791	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
 792	tm.tm_year -= 1900;
 793	tm.tm_mon -= 1;
 794
 795	return ppc_md.set_rtc_time(&tm);
 796}
 797
 798static void __read_persistent_clock(struct timespec *ts)
 799{
 800	struct rtc_time tm;
 801	static int first = 1;
 802
 803	ts->tv_nsec = 0;
 804	/* XXX this is a litle fragile but will work okay in the short term */
 805	if (first) {
 806		first = 0;
 807		if (ppc_md.time_init)
 808			timezone_offset = ppc_md.time_init();
 809
 810		/* get_boot_time() isn't guaranteed to be safe to call late */
 811		if (ppc_md.get_boot_time) {
 812			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
 813			return;
 814		}
 815	}
 816	if (!ppc_md.get_rtc_time) {
 817		ts->tv_sec = 0;
 818		return;
 819	}
 820	ppc_md.get_rtc_time(&tm);
 821
 822	ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
 823			    tm.tm_hour, tm.tm_min, tm.tm_sec);
 824}
 825
 826void read_persistent_clock(struct timespec *ts)
 827{
 828	__read_persistent_clock(ts);
 829
 830	/* Sanitize it in case real time clock is set below EPOCH */
 831	if (ts->tv_sec < 0) {
 832		ts->tv_sec = 0;
 833		ts->tv_nsec = 0;
 834	}
 835		
 836}
 837
 838/* clocksource code */
 839static notrace u64 rtc_read(struct clocksource *cs)
 840{
 841	return (u64)get_rtc();
 842}
 843
 844static notrace u64 timebase_read(struct clocksource *cs)
 845{
 846	return (u64)get_tb();
 847}
 848
 849
 850void update_vsyscall(struct timekeeper *tk)
 851{
 852	struct timespec xt;
 853	struct clocksource *clock = tk->tkr_mono.clock;
 854	u32 mult = tk->tkr_mono.mult;
 855	u32 shift = tk->tkr_mono.shift;
 856	u64 cycle_last = tk->tkr_mono.cycle_last;
 857	u64 new_tb_to_xs, new_stamp_xsec;
 858	u64 frac_sec;
 859
 860	if (clock != &clocksource_timebase)
 861		return;
 862
 863	xt.tv_sec = tk->xtime_sec;
 864	xt.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 865
 866	/* Make userspace gettimeofday spin until we're done. */
 867	++vdso_data->tb_update_count;
 868	smp_mb();
 869
 870	/*
 871	 * This computes ((2^20 / 1e9) * mult) >> shift as a
 872	 * 0.64 fixed-point fraction.
 873	 * The computation in the else clause below won't overflow
 874	 * (as long as the timebase frequency is >= 1.049 MHz)
 875	 * but loses precision because we lose the low bits of the constant
 876	 * in the shift.  Note that 19342813113834067 ~= 2^(20+64) / 1e9.
 877	 * For a shift of 24 the error is about 0.5e-9, or about 0.5ns
 878	 * over a second.  (Shift values are usually 22, 23 or 24.)
 879	 * For high frequency clocks such as the 512MHz timebase clock
 880	 * on POWER[6789], the mult value is small (e.g. 32768000)
 881	 * and so we can shift the constant by 16 initially
 882	 * (295147905179 ~= 2^(20+64-16) / 1e9) and then do the
 883	 * remaining shifts after the multiplication, which gives a
 884	 * more accurate result (e.g. with mult = 32768000, shift = 24,
 885	 * the error is only about 1.2e-12, or 0.7ns over 10 minutes).
 886	 */
 887	if (mult <= 62500000 && clock->shift >= 16)
 888		new_tb_to_xs = ((u64) mult * 295147905179ULL) >> (clock->shift - 16);
 889	else
 890		new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
 891
 892	/*
 893	 * Compute the fractional second in units of 2^-32 seconds.
 894	 * The fractional second is tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift
 895	 * in nanoseconds, so multiplying that by 2^32 / 1e9 gives
 896	 * it in units of 2^-32 seconds.
 897	 * We assume shift <= 32 because clocks_calc_mult_shift()
 898	 * generates shift values in the range 0 - 32.
 899	 */
 900	frac_sec = tk->tkr_mono.xtime_nsec << (32 - shift);
 901	do_div(frac_sec, NSEC_PER_SEC);
 902
 903	/*
 904	 * Work out new stamp_xsec value for any legacy users of systemcfg.
 905	 * stamp_xsec is in units of 2^-20 seconds.
 906	 */
 907	new_stamp_xsec = frac_sec >> 12;
 908	new_stamp_xsec += tk->xtime_sec * XSEC_PER_SEC;
 909
 910	/*
 911	 * tb_update_count is used to allow the userspace gettimeofday code
 912	 * to assure itself that it sees a consistent view of the tb_to_xs and
 913	 * stamp_xsec variables.  It reads the tb_update_count, then reads
 914	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
 915	 * the two values of tb_update_count match and are even then the
 916	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
 917	 * loops back and reads them again until this criteria is met.
 
 
 918	 */
 919	vdso_data->tb_orig_stamp = cycle_last;
 920	vdso_data->stamp_xsec = new_stamp_xsec;
 921	vdso_data->tb_to_xs = new_tb_to_xs;
 922	vdso_data->wtom_clock_sec = tk->wall_to_monotonic.tv_sec;
 923	vdso_data->wtom_clock_nsec = tk->wall_to_monotonic.tv_nsec;
 924	vdso_data->stamp_xtime = xt;
 925	vdso_data->stamp_sec_fraction = frac_sec;
 926	smp_wmb();
 927	++(vdso_data->tb_update_count);
 928}
 929
 930void update_vsyscall_tz(void)
 931{
 932	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 933	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 934}
 935
 936static void __init clocksource_init(void)
 937{
 938	struct clocksource *clock;
 939
 940	if (__USE_RTC())
 941		clock = &clocksource_rtc;
 942	else
 943		clock = &clocksource_timebase;
 944
 945	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
 946		printk(KERN_ERR "clocksource: %s is already registered\n",
 947		       clock->name);
 948		return;
 949	}
 950
 951	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
 952	       clock->name, clock->mult, clock->shift);
 953}
 954
 955static int decrementer_set_next_event(unsigned long evt,
 956				      struct clock_event_device *dev)
 957{
 958	__this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
 959	set_dec(evt);
 960
 961	/* We may have raced with new irq work */
 962	if (test_irq_work_pending())
 963		set_dec(1);
 964
 965	return 0;
 966}
 967
 968static int decrementer_shutdown(struct clock_event_device *dev)
 969{
 970	decrementer_set_next_event(decrementer_max, dev);
 971	return 0;
 972}
 973
 974/* Interrupt handler for the timer broadcast IPI */
 975void tick_broadcast_ipi_handler(void)
 976{
 977	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 978
 979	*next_tb = get_tb_or_rtc();
 980	__timer_interrupt();
 981}
 982
 983static void register_decrementer_clockevent(int cpu)
 984{
 985	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
 986
 987	*dec = decrementer_clockevent;
 988	dec->cpumask = cpumask_of(cpu);
 989
 990	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
 991		    dec->name, dec->mult, dec->shift, cpu);
 992
 993	clockevents_register_device(dec);
 994}
 995
 996static void enable_large_decrementer(void)
 997{
 998	if (!cpu_has_feature(CPU_FTR_ARCH_300))
 999		return;
1000
1001	if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
1002		return;
1003
1004	/*
1005	 * If we're running as the hypervisor we need to enable the LD manually
1006	 * otherwise firmware should have done it for us.
1007	 */
1008	if (cpu_has_feature(CPU_FTR_HVMODE))
1009		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
1010}
1011
1012static void __init set_decrementer_max(void)
1013{
1014	struct device_node *cpu;
1015	u32 bits = 32;
1016
1017	/* Prior to ISAv3 the decrementer is always 32 bit */
1018	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1019		return;
1020
1021	cpu = of_find_node_by_type(NULL, "cpu");
1022
1023	if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
1024		if (bits > 64 || bits < 32) {
1025			pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
1026			bits = 32;
1027		}
1028
1029		/* calculate the signed maximum given this many bits */
1030		decrementer_max = (1ul << (bits - 1)) - 1;
1031	}
1032
1033	of_node_put(cpu);
1034
1035	pr_info("time_init: %u bit decrementer (max: %llx)\n",
1036		bits, decrementer_max);
1037}
1038
1039static void __init init_decrementer_clockevent(void)
1040{
1041	int cpu = smp_processor_id();
1042
1043	clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
1044
1045	decrementer_clockevent.max_delta_ns =
1046		clockevent_delta2ns(decrementer_max, &decrementer_clockevent);
1047	decrementer_clockevent.max_delta_ticks = decrementer_max;
1048	decrementer_clockevent.min_delta_ns =
1049		clockevent_delta2ns(2, &decrementer_clockevent);
1050	decrementer_clockevent.min_delta_ticks = 2;
1051
1052	register_decrementer_clockevent(cpu);
1053}
1054
1055void secondary_cpu_time_init(void)
1056{
1057	/* Enable and test the large decrementer for this cpu */
1058	enable_large_decrementer();
1059
1060	/* Start the decrementer on CPUs that have manual control
1061	 * such as BookE
1062	 */
1063	start_cpu_decrementer();
1064
1065	/* FIME: Should make unrelatred change to move snapshot_timebase
1066	 * call here ! */
1067	register_decrementer_clockevent(smp_processor_id());
1068}
1069
1070/* This function is only called on the boot processor */
1071void __init time_init(void)
1072{
1073	struct div_result res;
1074	u64 scale;
1075	unsigned shift;
1076
1077	if (__USE_RTC()) {
1078		/* 601 processor: dec counts down by 128 every 128ns */
1079		ppc_tb_freq = 1000000000;
1080	} else {
1081		/* Normal PowerPC with timebase register */
1082		ppc_md.calibrate_decr();
1083		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
1084		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
1085		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
1086		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
1087	}
1088
1089	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
1090	tb_ticks_per_sec = ppc_tb_freq;
1091	tb_ticks_per_usec = ppc_tb_freq / 1000000;
1092	calc_cputime_factors();
 
1093
1094	/*
1095	 * Compute scale factor for sched_clock.
1096	 * The calibrate_decr() function has set tb_ticks_per_sec,
1097	 * which is the timebase frequency.
1098	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1099	 * the 128-bit result as a 64.64 fixed-point number.
1100	 * We then shift that number right until it is less than 1.0,
1101	 * giving us the scale factor and shift count to use in
1102	 * sched_clock().
1103	 */
1104	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1105	scale = res.result_low;
1106	for (shift = 0; res.result_high != 0; ++shift) {
1107		scale = (scale >> 1) | (res.result_high << 63);
1108		res.result_high >>= 1;
1109	}
1110	tb_to_ns_scale = scale;
1111	tb_to_ns_shift = shift;
1112	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1113	boot_tb = get_tb_or_rtc();
1114
1115	/* If platform provided a timezone (pmac), we correct the time */
1116	if (timezone_offset) {
1117		sys_tz.tz_minuteswest = -timezone_offset / 60;
1118		sys_tz.tz_dsttime = 0;
1119	}
1120
1121	vdso_data->tb_update_count = 0;
1122	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1123
1124	/* initialise and enable the large decrementer (if we have one) */
1125	set_decrementer_max();
1126	enable_large_decrementer();
1127
1128	/* Start the decrementer on CPUs that have manual control
1129	 * such as BookE
1130	 */
1131	start_cpu_decrementer();
1132
1133	/* Register the clocksource */
1134	clocksource_init();
1135
1136	init_decrementer_clockevent();
1137	tick_setup_hrtimer_broadcast();
1138
1139#ifdef CONFIG_COMMON_CLK
1140	of_clk_init(NULL);
1141#endif
1142}
1143
1144
1145#define FEBRUARY	2
1146#define	STARTOFTIME	1970
1147#define SECDAY		86400L
1148#define SECYR		(SECDAY * 365)
1149#define	leapyear(year)		((year) % 4 == 0 && \
1150				 ((year) % 100 != 0 || (year) % 400 == 0))
1151#define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
1152#define	days_in_month(a) 	(month_days[(a) - 1])
1153
1154static int month_days[12] = {
1155	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1156};
1157
1158void to_tm(int tim, struct rtc_time * tm)
1159{
1160	register int    i;
1161	register long   hms, day;
1162
1163	day = tim / SECDAY;
1164	hms = tim % SECDAY;
1165
1166	/* Hours, minutes, seconds are easy */
1167	tm->tm_hour = hms / 3600;
1168	tm->tm_min = (hms % 3600) / 60;
1169	tm->tm_sec = (hms % 3600) % 60;
1170
1171	/* Number of years in days */
1172	for (i = STARTOFTIME; day >= days_in_year(i); i++)
1173		day -= days_in_year(i);
1174	tm->tm_year = i;
1175
1176	/* Number of months in days left */
1177	if (leapyear(tm->tm_year))
1178		days_in_month(FEBRUARY) = 29;
1179	for (i = 1; day >= days_in_month(i); i++)
1180		day -= days_in_month(i);
1181	days_in_month(FEBRUARY) = 28;
1182	tm->tm_mon = i;
1183
1184	/* Days are what is left over (+1) from all that. */
1185	tm->tm_mday = day + 1;
1186
1187	/*
1188	 * No-one uses the day of the week.
1189	 */
1190	tm->tm_wday = -1;
1191}
1192EXPORT_SYMBOL(to_tm);
1193
1194/*
1195 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1196 * result.
1197 */
1198void div128_by_32(u64 dividend_high, u64 dividend_low,
1199		  unsigned divisor, struct div_result *dr)
1200{
1201	unsigned long a, b, c, d;
1202	unsigned long w, x, y, z;
1203	u64 ra, rb, rc;
1204
1205	a = dividend_high >> 32;
1206	b = dividend_high & 0xffffffff;
1207	c = dividend_low >> 32;
1208	d = dividend_low & 0xffffffff;
1209
1210	w = a / divisor;
1211	ra = ((u64)(a - (w * divisor)) << 32) + b;
1212
1213	rb = ((u64) do_div(ra, divisor) << 32) + c;
1214	x = ra;
1215
1216	rc = ((u64) do_div(rb, divisor) << 32) + d;
1217	y = rb;
1218
1219	do_div(rc, divisor);
1220	z = rc;
1221
1222	dr->result_high = ((u64)w << 32) + x;
1223	dr->result_low  = ((u64)y << 32) + z;
1224
1225}
1226
1227/* We don't need to calibrate delay, we use the CPU timebase for that */
1228void calibrate_delay(void)
1229{
1230	/* Some generic code (such as spinlock debug) use loops_per_jiffy
1231	 * as the number of __delay(1) in a jiffy, so make it so
1232	 */
1233	loops_per_jiffy = tb_ticks_per_jiffy;
1234}
1235
1236#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
1237static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1238{
1239	ppc_md.get_rtc_time(tm);
1240	return 0;
1241}
1242
1243static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1244{
1245	if (!ppc_md.set_rtc_time)
1246		return -EOPNOTSUPP;
1247
1248	if (ppc_md.set_rtc_time(tm) < 0)
1249		return -EOPNOTSUPP;
1250
1251	return 0;
1252}
1253
1254static const struct rtc_class_ops rtc_generic_ops = {
1255	.read_time = rtc_generic_get_time,
1256	.set_time = rtc_generic_set_time,
1257};
1258
1259static int __init rtc_init(void)
1260{
1261	struct platform_device *pdev;
1262
1263	if (!ppc_md.get_rtc_time)
1264		return -ENODEV;
1265
1266	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1267					     &rtc_generic_ops,
1268					     sizeof(rtc_generic_ops));
1269
1270	return PTR_ERR_OR_ZERO(pdev);
1271}
1272
1273device_initcall(rtc_init);
1274#endif
v4.6
   1/*
   2 * Common time routines among all ppc machines.
   3 *
   4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
   5 * Paul Mackerras' version and mine for PReP and Pmac.
   6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
   7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
   8 *
   9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10 * to make clock more stable (2.4.0-test5). The only thing
  11 * that this code assumes is that the timebases have been synchronized
  12 * by firmware on SMP and are never stopped (never do sleep
  13 * on SMP then, nap and doze are OK).
  14 * 
  15 * Speeded up do_gettimeofday by getting rid of references to
  16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17 *
  18 * TODO (not necessarily in this file):
  19 * - improve precision and reproducibility of timebase frequency
  20 * measurement at boot time.
  21 * - for astronomical applications: add a new function to get
  22 * non ambiguous timestamps even around leap seconds. This needs
  23 * a new timestamp format and a good name.
  24 *
  25 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
  26 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
  27 *
  28 *      This program is free software; you can redistribute it and/or
  29 *      modify it under the terms of the GNU General Public License
  30 *      as published by the Free Software Foundation; either version
  31 *      2 of the License, or (at your option) any later version.
  32 */
  33
  34#include <linux/errno.h>
  35#include <linux/export.h>
  36#include <linux/sched.h>
 
  37#include <linux/kernel.h>
  38#include <linux/param.h>
  39#include <linux/string.h>
  40#include <linux/mm.h>
  41#include <linux/interrupt.h>
  42#include <linux/timex.h>
  43#include <linux/kernel_stat.h>
  44#include <linux/time.h>
  45#include <linux/clockchips.h>
  46#include <linux/init.h>
  47#include <linux/profile.h>
  48#include <linux/cpu.h>
  49#include <linux/security.h>
  50#include <linux/percpu.h>
  51#include <linux/rtc.h>
  52#include <linux/jiffies.h>
  53#include <linux/posix-timers.h>
  54#include <linux/irq.h>
  55#include <linux/delay.h>
  56#include <linux/irq_work.h>
  57#include <linux/clk-provider.h>
 
 
 
 
  58#include <asm/trace.h>
  59
  60#include <asm/io.h>
  61#include <asm/processor.h>
  62#include <asm/nvram.h>
  63#include <asm/cache.h>
  64#include <asm/machdep.h>
  65#include <asm/uaccess.h>
  66#include <asm/time.h>
  67#include <asm/prom.h>
  68#include <asm/irq.h>
  69#include <asm/div64.h>
  70#include <asm/smp.h>
  71#include <asm/vdso_datapage.h>
  72#include <asm/firmware.h>
  73#include <asm/cputime.h>
  74
  75/* powerpc clocksource/clockevent code */
  76
  77#include <linux/clockchips.h>
  78#include <linux/timekeeper_internal.h>
  79
  80static cycle_t rtc_read(struct clocksource *);
  81static struct clocksource clocksource_rtc = {
  82	.name         = "rtc",
  83	.rating       = 400,
  84	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  85	.mask         = CLOCKSOURCE_MASK(64),
  86	.read         = rtc_read,
  87};
  88
  89static cycle_t timebase_read(struct clocksource *);
  90static struct clocksource clocksource_timebase = {
  91	.name         = "timebase",
  92	.rating       = 400,
  93	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  94	.mask         = CLOCKSOURCE_MASK(64),
  95	.read         = timebase_read,
  96};
  97
  98#define DECREMENTER_MAX	0x7fffffff
 
  99
 100static int decrementer_set_next_event(unsigned long evt,
 101				      struct clock_event_device *dev);
 102static int decrementer_shutdown(struct clock_event_device *evt);
 103
 104struct clock_event_device decrementer_clockevent = {
 105	.name			= "decrementer",
 106	.rating			= 200,
 107	.irq			= 0,
 108	.set_next_event		= decrementer_set_next_event,
 109	.set_state_shutdown	= decrementer_shutdown,
 110	.tick_resume		= decrementer_shutdown,
 111	.features		= CLOCK_EVT_FEAT_ONESHOT |
 112				  CLOCK_EVT_FEAT_C3STOP,
 113};
 114EXPORT_SYMBOL(decrementer_clockevent);
 115
 116DEFINE_PER_CPU(u64, decrementers_next_tb);
 117static DEFINE_PER_CPU(struct clock_event_device, decrementers);
 118
 119#define XSEC_PER_SEC (1024*1024)
 120
 121#ifdef CONFIG_PPC64
 122#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
 123#else
 124/* compute ((xsec << 12) * max) >> 32 */
 125#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
 126#endif
 127
 128unsigned long tb_ticks_per_jiffy;
 129unsigned long tb_ticks_per_usec = 100; /* sane default */
 130EXPORT_SYMBOL(tb_ticks_per_usec);
 131unsigned long tb_ticks_per_sec;
 132EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
 133
 134DEFINE_SPINLOCK(rtc_lock);
 135EXPORT_SYMBOL_GPL(rtc_lock);
 136
 137static u64 tb_to_ns_scale __read_mostly;
 138static unsigned tb_to_ns_shift __read_mostly;
 139static u64 boot_tb __read_mostly;
 140
 141extern struct timezone sys_tz;
 142static long timezone_offset;
 143
 144unsigned long ppc_proc_freq;
 145EXPORT_SYMBOL_GPL(ppc_proc_freq);
 146unsigned long ppc_tb_freq;
 147EXPORT_SYMBOL_GPL(ppc_tb_freq);
 148
 149#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 150/*
 151 * Factors for converting from cputime_t (timebase ticks) to
 152 * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
 153 * These are all stored as 0.64 fixed-point binary fractions.
 154 */
 155u64 __cputime_jiffies_factor;
 156EXPORT_SYMBOL(__cputime_jiffies_factor);
 157u64 __cputime_usec_factor;
 158EXPORT_SYMBOL(__cputime_usec_factor);
 159u64 __cputime_sec_factor;
 160EXPORT_SYMBOL(__cputime_sec_factor);
 161u64 __cputime_clockt_factor;
 162EXPORT_SYMBOL(__cputime_clockt_factor);
 163DEFINE_PER_CPU(unsigned long, cputime_last_delta);
 164DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
 165
 166cputime_t cputime_one_jiffy;
 
 
 167
 168void (*dtl_consumer)(struct dtl_entry *, u64);
 
 
 
 
 169
 170static void calc_cputime_factors(void)
 171{
 172	struct div_result res;
 173
 174	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
 175	__cputime_jiffies_factor = res.result_low;
 176	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
 177	__cputime_usec_factor = res.result_low;
 178	div128_by_32(1, 0, tb_ticks_per_sec, &res);
 179	__cputime_sec_factor = res.result_low;
 180	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
 181	__cputime_clockt_factor = res.result_low;
 182}
 183
 184/*
 185 * Read the SPURR on systems that have it, otherwise the PURR,
 186 * or if that doesn't exist return the timebase value passed in.
 187 */
 188static u64 read_spurr(u64 tb)
 189{
 190	if (cpu_has_feature(CPU_FTR_SPURR))
 191		return mfspr(SPRN_SPURR);
 192	if (cpu_has_feature(CPU_FTR_PURR))
 193		return mfspr(SPRN_PURR);
 194	return tb;
 195}
 196
 197#ifdef CONFIG_PPC_SPLPAR
 198
 199/*
 200 * Scan the dispatch trace log and count up the stolen time.
 201 * Should be called with interrupts disabled.
 202 */
 203static u64 scan_dispatch_log(u64 stop_tb)
 204{
 205	u64 i = local_paca->dtl_ridx;
 206	struct dtl_entry *dtl = local_paca->dtl_curr;
 207	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
 208	struct lppaca *vpa = local_paca->lppaca_ptr;
 209	u64 tb_delta;
 210	u64 stolen = 0;
 211	u64 dtb;
 212
 213	if (!dtl)
 214		return 0;
 215
 216	if (i == be64_to_cpu(vpa->dtl_idx))
 217		return 0;
 218	while (i < be64_to_cpu(vpa->dtl_idx)) {
 219		dtb = be64_to_cpu(dtl->timebase);
 220		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
 221			be32_to_cpu(dtl->ready_to_enqueue_time);
 222		barrier();
 223		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
 224			/* buffer has overflowed */
 225			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
 226			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
 227			continue;
 228		}
 229		if (dtb > stop_tb)
 230			break;
 231		if (dtl_consumer)
 232			dtl_consumer(dtl, i);
 233		stolen += tb_delta;
 234		++i;
 235		++dtl;
 236		if (dtl == dtl_end)
 237			dtl = local_paca->dispatch_log;
 238	}
 239	local_paca->dtl_ridx = i;
 240	local_paca->dtl_curr = dtl;
 241	return stolen;
 242}
 243
 244/*
 245 * Accumulate stolen time by scanning the dispatch trace log.
 246 * Called on entry from user mode.
 247 */
 248void accumulate_stolen_time(void)
 249{
 250	u64 sst, ust;
 251
 252	u8 save_soft_enabled = local_paca->soft_enabled;
 253
 254	/* We are called early in the exception entry, before
 255	 * soft/hard_enabled are sync'ed to the expected state
 256	 * for the exception. We are hard disabled but the PACA
 257	 * needs to reflect that so various debug stuff doesn't
 258	 * complain
 259	 */
 260	local_paca->soft_enabled = 0;
 261
 262	sst = scan_dispatch_log(local_paca->starttime_user);
 263	ust = scan_dispatch_log(local_paca->starttime);
 264	local_paca->system_time -= sst;
 265	local_paca->user_time -= ust;
 266	local_paca->stolen_time += ust + sst;
 267
 268	local_paca->soft_enabled = save_soft_enabled;
 269}
 270
 271static inline u64 calculate_stolen_time(u64 stop_tb)
 272{
 273	u64 stolen = 0;
 
 274
 275	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) {
 276		stolen = scan_dispatch_log(stop_tb);
 277		get_paca()->system_time -= stolen;
 278	}
 279
 280	stolen += get_paca()->stolen_time;
 281	get_paca()->stolen_time = 0;
 282	return stolen;
 283}
 284
 285#else /* CONFIG_PPC_SPLPAR */
 286static inline u64 calculate_stolen_time(u64 stop_tb)
 287{
 288	return 0;
 289}
 290
 291#endif /* CONFIG_PPC_SPLPAR */
 292
 293/*
 294 * Account time for a transition between system, hard irq
 295 * or soft irq state.
 296 */
 297static u64 vtime_delta(struct task_struct *tsk,
 298			u64 *sys_scaled, u64 *stolen)
 299{
 300	u64 now, nowscaled, deltascaled;
 301	u64 udelta, delta, user_scaled;
 
 
 
 302
 303	WARN_ON_ONCE(!irqs_disabled());
 304
 305	now = mftb();
 306	nowscaled = read_spurr(now);
 307	get_paca()->system_time += now - get_paca()->starttime;
 308	get_paca()->starttime = now;
 309	deltascaled = nowscaled - get_paca()->startspurr;
 310	get_paca()->startspurr = nowscaled;
 311
 312	*stolen = calculate_stolen_time(now);
 313
 314	delta = get_paca()->system_time;
 315	get_paca()->system_time = 0;
 316	udelta = get_paca()->user_time - get_paca()->utime_sspurr;
 317	get_paca()->utime_sspurr = get_paca()->user_time;
 318
 319	/*
 320	 * Because we don't read the SPURR on every kernel entry/exit,
 321	 * deltascaled includes both user and system SPURR ticks.
 322	 * Apportion these ticks to system SPURR ticks and user
 323	 * SPURR ticks in the same ratio as the system time (delta)
 324	 * and user time (udelta) values obtained from the timebase
 325	 * over the same interval.  The system ticks get accounted here;
 326	 * the user ticks get saved up in paca->user_time_scaled to be
 327	 * used by account_process_tick.
 328	 */
 329	*sys_scaled = delta;
 330	user_scaled = udelta;
 331	if (deltascaled != delta + udelta) {
 332		if (udelta) {
 333			*sys_scaled = deltascaled * delta / (delta + udelta);
 334			user_scaled = deltascaled - *sys_scaled;
 335		} else {
 336			*sys_scaled = deltascaled;
 337		}
 338	}
 339	get_paca()->user_time_scaled += user_scaled;
 340
 341	return delta;
 342}
 343
 344void vtime_account_system(struct task_struct *tsk)
 345{
 346	u64 delta, sys_scaled, stolen;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 347
 348	delta = vtime_delta(tsk, &sys_scaled, &stolen);
 349	account_system_time(tsk, 0, delta, sys_scaled);
 350	if (stolen)
 351		account_steal_time(stolen);
 352}
 353EXPORT_SYMBOL_GPL(vtime_account_system);
 354
 355void vtime_account_idle(struct task_struct *tsk)
 356{
 357	u64 delta, sys_scaled, stolen;
 
 358
 359	delta = vtime_delta(tsk, &sys_scaled, &stolen);
 360	account_idle_time(delta + stolen);
 361}
 362
 363/*
 364 * Transfer the user time accumulated in the paca
 365 * by the exception entry and exit code to the generic
 366 * process user time records.
 367 * Must be called with interrupts disabled.
 368 * Assumes that vtime_account_system/idle() has been called
 369 * recently (i.e. since the last entry from usermode) so that
 370 * get_paca()->user_time_scaled is up to date.
 371 */
 372void vtime_account_user(struct task_struct *tsk)
 373{
 374	cputime_t utime, utimescaled;
 
 
 
 375
 376	utime = get_paca()->user_time;
 377	utimescaled = get_paca()->user_time_scaled;
 378	get_paca()->user_time = 0;
 379	get_paca()->user_time_scaled = 0;
 380	get_paca()->utime_sspurr = 0;
 381	account_user_time(tsk, utime, utimescaled);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 382}
 383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 384#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 385#define calc_cputime_factors()
 386#endif
 387
 388void __delay(unsigned long loops)
 389{
 390	unsigned long start;
 391	int diff;
 392
 
 393	if (__USE_RTC()) {
 394		start = get_rtcl();
 395		do {
 396			/* the RTCL register wraps at 1000000000 */
 397			diff = get_rtcl() - start;
 398			if (diff < 0)
 399				diff += 1000000000;
 
 400		} while (diff < loops);
 401	} else {
 402		start = get_tbl();
 403		while (get_tbl() - start < loops)
 404			HMT_low();
 405		HMT_medium();
 406	}
 
 407}
 408EXPORT_SYMBOL(__delay);
 409
 410void udelay(unsigned long usecs)
 411{
 412	__delay(tb_ticks_per_usec * usecs);
 413}
 414EXPORT_SYMBOL(udelay);
 415
 416#ifdef CONFIG_SMP
 417unsigned long profile_pc(struct pt_regs *regs)
 418{
 419	unsigned long pc = instruction_pointer(regs);
 420
 421	if (in_lock_functions(pc))
 422		return regs->link;
 423
 424	return pc;
 425}
 426EXPORT_SYMBOL(profile_pc);
 427#endif
 428
 429#ifdef CONFIG_IRQ_WORK
 430
 431/*
 432 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 433 */
 434#ifdef CONFIG_PPC64
 435static inline unsigned long test_irq_work_pending(void)
 436{
 437	unsigned long x;
 438
 439	asm volatile("lbz %0,%1(13)"
 440		: "=r" (x)
 441		: "i" (offsetof(struct paca_struct, irq_work_pending)));
 442	return x;
 443}
 444
 445static inline void set_irq_work_pending_flag(void)
 446{
 447	asm volatile("stb %0,%1(13)" : :
 448		"r" (1),
 449		"i" (offsetof(struct paca_struct, irq_work_pending)));
 450}
 451
 452static inline void clear_irq_work_pending(void)
 453{
 454	asm volatile("stb %0,%1(13)" : :
 455		"r" (0),
 456		"i" (offsetof(struct paca_struct, irq_work_pending)));
 457}
 458
 459#else /* 32-bit */
 460
 461DEFINE_PER_CPU(u8, irq_work_pending);
 462
 463#define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
 464#define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
 465#define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
 466
 467#endif /* 32 vs 64 bit */
 468
 469void arch_irq_work_raise(void)
 470{
 471	preempt_disable();
 472	set_irq_work_pending_flag();
 473	set_dec(1);
 474	preempt_enable();
 475}
 476
 477#else  /* CONFIG_IRQ_WORK */
 478
 479#define test_irq_work_pending()	0
 480#define clear_irq_work_pending()
 481
 482#endif /* CONFIG_IRQ_WORK */
 483
 484static void __timer_interrupt(void)
 485{
 486	struct pt_regs *regs = get_irq_regs();
 487	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 488	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
 489	u64 now;
 490
 491	trace_timer_interrupt_entry(regs);
 492
 493	if (test_irq_work_pending()) {
 494		clear_irq_work_pending();
 495		irq_work_run();
 496	}
 497
 498	now = get_tb_or_rtc();
 499	if (now >= *next_tb) {
 500		*next_tb = ~(u64)0;
 501		if (evt->event_handler)
 502			evt->event_handler(evt);
 503		__this_cpu_inc(irq_stat.timer_irqs_event);
 504	} else {
 505		now = *next_tb - now;
 506		if (now <= DECREMENTER_MAX)
 507			set_dec((int)now);
 508		/* We may have raced with new irq work */
 509		if (test_irq_work_pending())
 510			set_dec(1);
 511		__this_cpu_inc(irq_stat.timer_irqs_others);
 512	}
 513
 514#ifdef CONFIG_PPC64
 515	/* collect purr register values often, for accurate calculations */
 516	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
 517		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
 518		cu->current_tb = mfspr(SPRN_PURR);
 519	}
 520#endif
 521
 522	trace_timer_interrupt_exit(regs);
 523}
 524
 525/*
 526 * timer_interrupt - gets called when the decrementer overflows,
 527 * with interrupts disabled.
 528 */
 529void timer_interrupt(struct pt_regs * regs)
 530{
 531	struct pt_regs *old_regs;
 532	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 533
 534	/* Ensure a positive value is written to the decrementer, or else
 535	 * some CPUs will continue to take decrementer exceptions.
 536	 */
 537	set_dec(DECREMENTER_MAX);
 538
 539	/* Some implementations of hotplug will get timer interrupts while
 540	 * offline, just ignore these and we also need to set
 541	 * decrementers_next_tb as MAX to make sure __check_irq_replay
 542	 * don't replay timer interrupt when return, otherwise we'll trap
 543	 * here infinitely :(
 544	 */
 545	if (!cpu_online(smp_processor_id())) {
 546		*next_tb = ~(u64)0;
 547		return;
 548	}
 549
 550	/* Conditionally hard-enable interrupts now that the DEC has been
 551	 * bumped to its maximum value
 552	 */
 553	may_hard_irq_enable();
 554
 555
 556#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
 557	if (atomic_read(&ppc_n_lost_interrupts) != 0)
 558		do_IRQ(regs);
 559#endif
 560
 561	old_regs = set_irq_regs(regs);
 562	irq_enter();
 563
 564	__timer_interrupt();
 565	irq_exit();
 566	set_irq_regs(old_regs);
 567}
 
 568
 569/*
 570 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
 571 * left pending on exit from a KVM guest.  We don't need to do anything
 572 * to clear them, as they are edge-triggered.
 573 */
 574void hdec_interrupt(struct pt_regs *regs)
 575{
 576}
 577
 578#ifdef CONFIG_SUSPEND
 579static void generic_suspend_disable_irqs(void)
 580{
 581	/* Disable the decrementer, so that it doesn't interfere
 582	 * with suspending.
 583	 */
 584
 585	set_dec(DECREMENTER_MAX);
 586	local_irq_disable();
 587	set_dec(DECREMENTER_MAX);
 588}
 589
 590static void generic_suspend_enable_irqs(void)
 591{
 592	local_irq_enable();
 593}
 594
 595/* Overrides the weak version in kernel/power/main.c */
 596void arch_suspend_disable_irqs(void)
 597{
 598	if (ppc_md.suspend_disable_irqs)
 599		ppc_md.suspend_disable_irqs();
 600	generic_suspend_disable_irqs();
 601}
 602
 603/* Overrides the weak version in kernel/power/main.c */
 604void arch_suspend_enable_irqs(void)
 605{
 606	generic_suspend_enable_irqs();
 607	if (ppc_md.suspend_enable_irqs)
 608		ppc_md.suspend_enable_irqs();
 609}
 610#endif
 611
 612unsigned long long tb_to_ns(unsigned long long ticks)
 613{
 614	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
 615}
 616EXPORT_SYMBOL_GPL(tb_to_ns);
 617
 618/*
 619 * Scheduler clock - returns current time in nanosec units.
 620 *
 621 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 622 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 623 * are 64-bit unsigned numbers.
 624 */
 625unsigned long long sched_clock(void)
 626{
 627	if (__USE_RTC())
 628		return get_rtc();
 629	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 630}
 631
 632
 633#ifdef CONFIG_PPC_PSERIES
 634
 635/*
 636 * Running clock - attempts to give a view of time passing for a virtualised
 637 * kernels.
 638 * Uses the VTB register if available otherwise a next best guess.
 639 */
 640unsigned long long running_clock(void)
 641{
 642	/*
 643	 * Don't read the VTB as a host since KVM does not switch in host
 644	 * timebase into the VTB when it takes a guest off the CPU, reading the
 645	 * VTB would result in reading 'last switched out' guest VTB.
 646	 *
 647	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
 648	 * would be unsafe to rely only on the #ifdef above.
 649	 */
 650	if (firmware_has_feature(FW_FEATURE_LPAR) &&
 651	    cpu_has_feature(CPU_FTR_ARCH_207S))
 652		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 653
 654	/*
 655	 * This is a next best approximation without a VTB.
 656	 * On a host which is running bare metal there should never be any stolen
 657	 * time and on a host which doesn't do any virtualisation TB *should* equal
 658	 * VTB so it makes no difference anyway.
 659	 */
 660	return local_clock() - cputime_to_nsecs(kcpustat_this_cpu->cpustat[CPUTIME_STEAL]);
 661}
 662#endif
 663
 664static int __init get_freq(char *name, int cells, unsigned long *val)
 665{
 666	struct device_node *cpu;
 667	const __be32 *fp;
 668	int found = 0;
 669
 670	/* The cpu node should have timebase and clock frequency properties */
 671	cpu = of_find_node_by_type(NULL, "cpu");
 672
 673	if (cpu) {
 674		fp = of_get_property(cpu, name, NULL);
 675		if (fp) {
 676			found = 1;
 677			*val = of_read_ulong(fp, cells);
 678		}
 679
 680		of_node_put(cpu);
 681	}
 682
 683	return found;
 684}
 685
 686static void start_cpu_decrementer(void)
 687{
 688#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
 
 
 689	/* Clear any pending timer interrupts */
 690	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
 691
 692	/* Enable decrementer interrupt */
 693	mtspr(SPRN_TCR, TCR_DIE);
 694#endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
 
 
 
 
 
 
 695}
 696
 697void __init generic_calibrate_decr(void)
 698{
 699	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
 700
 701	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
 702	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
 703
 704		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
 705				"(not found)\n");
 706	}
 707
 708	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
 709
 710	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
 711	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
 712
 713		printk(KERN_ERR "WARNING: Estimating processor frequency "
 714				"(not found)\n");
 715	}
 716}
 717
 718int update_persistent_clock(struct timespec now)
 719{
 720	struct rtc_time tm;
 721
 722	if (!ppc_md.set_rtc_time)
 723		return -ENODEV;
 724
 725	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
 726	tm.tm_year -= 1900;
 727	tm.tm_mon -= 1;
 728
 729	return ppc_md.set_rtc_time(&tm);
 730}
 731
 732static void __read_persistent_clock(struct timespec *ts)
 733{
 734	struct rtc_time tm;
 735	static int first = 1;
 736
 737	ts->tv_nsec = 0;
 738	/* XXX this is a litle fragile but will work okay in the short term */
 739	if (first) {
 740		first = 0;
 741		if (ppc_md.time_init)
 742			timezone_offset = ppc_md.time_init();
 743
 744		/* get_boot_time() isn't guaranteed to be safe to call late */
 745		if (ppc_md.get_boot_time) {
 746			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
 747			return;
 748		}
 749	}
 750	if (!ppc_md.get_rtc_time) {
 751		ts->tv_sec = 0;
 752		return;
 753	}
 754	ppc_md.get_rtc_time(&tm);
 755
 756	ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
 757			    tm.tm_hour, tm.tm_min, tm.tm_sec);
 758}
 759
 760void read_persistent_clock(struct timespec *ts)
 761{
 762	__read_persistent_clock(ts);
 763
 764	/* Sanitize it in case real time clock is set below EPOCH */
 765	if (ts->tv_sec < 0) {
 766		ts->tv_sec = 0;
 767		ts->tv_nsec = 0;
 768	}
 769		
 770}
 771
 772/* clocksource code */
 773static cycle_t rtc_read(struct clocksource *cs)
 774{
 775	return (cycle_t)get_rtc();
 776}
 777
 778static cycle_t timebase_read(struct clocksource *cs)
 779{
 780	return (cycle_t)get_tb();
 781}
 782
 783void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
 784			 struct clocksource *clock, u32 mult, cycle_t cycle_last)
 785{
 
 
 
 
 
 786	u64 new_tb_to_xs, new_stamp_xsec;
 787	u32 frac_sec;
 788
 789	if (clock != &clocksource_timebase)
 790		return;
 791
 
 
 
 792	/* Make userspace gettimeofday spin until we're done. */
 793	++vdso_data->tb_update_count;
 794	smp_mb();
 795
 796	/* 19342813113834067 ~= 2^(20+64) / 1e9 */
 797	new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
 798	new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
 799	do_div(new_stamp_xsec, 1000000000);
 800	new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
 801
 802	BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
 803	/* this is tv_nsec / 1e9 as a 0.32 fraction */
 804	frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 805
 806	/*
 807	 * tb_update_count is used to allow the userspace gettimeofday code
 808	 * to assure itself that it sees a consistent view of the tb_to_xs and
 809	 * stamp_xsec variables.  It reads the tb_update_count, then reads
 810	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
 811	 * the two values of tb_update_count match and are even then the
 812	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
 813	 * loops back and reads them again until this criteria is met.
 814	 * We expect the caller to have done the first increment of
 815	 * vdso_data->tb_update_count already.
 816	 */
 817	vdso_data->tb_orig_stamp = cycle_last;
 818	vdso_data->stamp_xsec = new_stamp_xsec;
 819	vdso_data->tb_to_xs = new_tb_to_xs;
 820	vdso_data->wtom_clock_sec = wtm->tv_sec;
 821	vdso_data->wtom_clock_nsec = wtm->tv_nsec;
 822	vdso_data->stamp_xtime = *wall_time;
 823	vdso_data->stamp_sec_fraction = frac_sec;
 824	smp_wmb();
 825	++(vdso_data->tb_update_count);
 826}
 827
 828void update_vsyscall_tz(void)
 829{
 830	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 831	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 832}
 833
 834static void __init clocksource_init(void)
 835{
 836	struct clocksource *clock;
 837
 838	if (__USE_RTC())
 839		clock = &clocksource_rtc;
 840	else
 841		clock = &clocksource_timebase;
 842
 843	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
 844		printk(KERN_ERR "clocksource: %s is already registered\n",
 845		       clock->name);
 846		return;
 847	}
 848
 849	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
 850	       clock->name, clock->mult, clock->shift);
 851}
 852
 853static int decrementer_set_next_event(unsigned long evt,
 854				      struct clock_event_device *dev)
 855{
 856	__this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
 857	set_dec(evt);
 858
 859	/* We may have raced with new irq work */
 860	if (test_irq_work_pending())
 861		set_dec(1);
 862
 863	return 0;
 864}
 865
 866static int decrementer_shutdown(struct clock_event_device *dev)
 867{
 868	decrementer_set_next_event(DECREMENTER_MAX, dev);
 869	return 0;
 870}
 871
 872/* Interrupt handler for the timer broadcast IPI */
 873void tick_broadcast_ipi_handler(void)
 874{
 875	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 876
 877	*next_tb = get_tb_or_rtc();
 878	__timer_interrupt();
 879}
 880
 881static void register_decrementer_clockevent(int cpu)
 882{
 883	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
 884
 885	*dec = decrementer_clockevent;
 886	dec->cpumask = cpumask_of(cpu);
 887
 888	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
 889		    dec->name, dec->mult, dec->shift, cpu);
 890
 891	clockevents_register_device(dec);
 892}
 893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 894static void __init init_decrementer_clockevent(void)
 895{
 896	int cpu = smp_processor_id();
 897
 898	clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
 899
 900	decrementer_clockevent.max_delta_ns =
 901		clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
 
 902	decrementer_clockevent.min_delta_ns =
 903		clockevent_delta2ns(2, &decrementer_clockevent);
 
 904
 905	register_decrementer_clockevent(cpu);
 906}
 907
 908void secondary_cpu_time_init(void)
 909{
 
 
 
 910	/* Start the decrementer on CPUs that have manual control
 911	 * such as BookE
 912	 */
 913	start_cpu_decrementer();
 914
 915	/* FIME: Should make unrelatred change to move snapshot_timebase
 916	 * call here ! */
 917	register_decrementer_clockevent(smp_processor_id());
 918}
 919
 920/* This function is only called on the boot processor */
 921void __init time_init(void)
 922{
 923	struct div_result res;
 924	u64 scale;
 925	unsigned shift;
 926
 927	if (__USE_RTC()) {
 928		/* 601 processor: dec counts down by 128 every 128ns */
 929		ppc_tb_freq = 1000000000;
 930	} else {
 931		/* Normal PowerPC with timebase register */
 932		ppc_md.calibrate_decr();
 933		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
 934		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
 935		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
 936		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
 937	}
 938
 939	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
 940	tb_ticks_per_sec = ppc_tb_freq;
 941	tb_ticks_per_usec = ppc_tb_freq / 1000000;
 942	calc_cputime_factors();
 943	setup_cputime_one_jiffy();
 944
 945	/*
 946	 * Compute scale factor for sched_clock.
 947	 * The calibrate_decr() function has set tb_ticks_per_sec,
 948	 * which is the timebase frequency.
 949	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
 950	 * the 128-bit result as a 64.64 fixed-point number.
 951	 * We then shift that number right until it is less than 1.0,
 952	 * giving us the scale factor and shift count to use in
 953	 * sched_clock().
 954	 */
 955	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
 956	scale = res.result_low;
 957	for (shift = 0; res.result_high != 0; ++shift) {
 958		scale = (scale >> 1) | (res.result_high << 63);
 959		res.result_high >>= 1;
 960	}
 961	tb_to_ns_scale = scale;
 962	tb_to_ns_shift = shift;
 963	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
 964	boot_tb = get_tb_or_rtc();
 965
 966	/* If platform provided a timezone (pmac), we correct the time */
 967	if (timezone_offset) {
 968		sys_tz.tz_minuteswest = -timezone_offset / 60;
 969		sys_tz.tz_dsttime = 0;
 970	}
 971
 972	vdso_data->tb_update_count = 0;
 973	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
 974
 
 
 
 
 975	/* Start the decrementer on CPUs that have manual control
 976	 * such as BookE
 977	 */
 978	start_cpu_decrementer();
 979
 980	/* Register the clocksource */
 981	clocksource_init();
 982
 983	init_decrementer_clockevent();
 984	tick_setup_hrtimer_broadcast();
 985
 986#ifdef CONFIG_COMMON_CLK
 987	of_clk_init(NULL);
 988#endif
 989}
 990
 991
 992#define FEBRUARY	2
 993#define	STARTOFTIME	1970
 994#define SECDAY		86400L
 995#define SECYR		(SECDAY * 365)
 996#define	leapyear(year)		((year) % 4 == 0 && \
 997				 ((year) % 100 != 0 || (year) % 400 == 0))
 998#define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
 999#define	days_in_month(a) 	(month_days[(a) - 1])
1000
1001static int month_days[12] = {
1002	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1003};
1004
1005void to_tm(int tim, struct rtc_time * tm)
1006{
1007	register int    i;
1008	register long   hms, day;
1009
1010	day = tim / SECDAY;
1011	hms = tim % SECDAY;
1012
1013	/* Hours, minutes, seconds are easy */
1014	tm->tm_hour = hms / 3600;
1015	tm->tm_min = (hms % 3600) / 60;
1016	tm->tm_sec = (hms % 3600) % 60;
1017
1018	/* Number of years in days */
1019	for (i = STARTOFTIME; day >= days_in_year(i); i++)
1020		day -= days_in_year(i);
1021	tm->tm_year = i;
1022
1023	/* Number of months in days left */
1024	if (leapyear(tm->tm_year))
1025		days_in_month(FEBRUARY) = 29;
1026	for (i = 1; day >= days_in_month(i); i++)
1027		day -= days_in_month(i);
1028	days_in_month(FEBRUARY) = 28;
1029	tm->tm_mon = i;
1030
1031	/* Days are what is left over (+1) from all that. */
1032	tm->tm_mday = day + 1;
1033
1034	/*
1035	 * No-one uses the day of the week.
1036	 */
1037	tm->tm_wday = -1;
1038}
1039EXPORT_SYMBOL(to_tm);
1040
1041/*
1042 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1043 * result.
1044 */
1045void div128_by_32(u64 dividend_high, u64 dividend_low,
1046		  unsigned divisor, struct div_result *dr)
1047{
1048	unsigned long a, b, c, d;
1049	unsigned long w, x, y, z;
1050	u64 ra, rb, rc;
1051
1052	a = dividend_high >> 32;
1053	b = dividend_high & 0xffffffff;
1054	c = dividend_low >> 32;
1055	d = dividend_low & 0xffffffff;
1056
1057	w = a / divisor;
1058	ra = ((u64)(a - (w * divisor)) << 32) + b;
1059
1060	rb = ((u64) do_div(ra, divisor) << 32) + c;
1061	x = ra;
1062
1063	rc = ((u64) do_div(rb, divisor) << 32) + d;
1064	y = rb;
1065
1066	do_div(rc, divisor);
1067	z = rc;
1068
1069	dr->result_high = ((u64)w << 32) + x;
1070	dr->result_low  = ((u64)y << 32) + z;
1071
1072}
1073
1074/* We don't need to calibrate delay, we use the CPU timebase for that */
1075void calibrate_delay(void)
1076{
1077	/* Some generic code (such as spinlock debug) use loops_per_jiffy
1078	 * as the number of __delay(1) in a jiffy, so make it so
1079	 */
1080	loops_per_jiffy = tb_ticks_per_jiffy;
1081}
1082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1083static int __init rtc_init(void)
1084{
1085	struct platform_device *pdev;
1086
1087	if (!ppc_md.get_rtc_time)
1088		return -ENODEV;
1089
1090	pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
 
 
1091
1092	return PTR_ERR_OR_ZERO(pdev);
1093}
1094
1095device_initcall(rtc_init);