Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 *  linux/kernel/panic.c
  3 *
  4 *  Copyright (C) 1991, 1992  Linus Torvalds
  5 */
  6
  7/*
  8 * This function is used through-out the kernel (including mm and fs)
  9 * to indicate a major problem.
 10 */
 11#include <linux/debug_locks.h>
 12#include <linux/sched/debug.h>
 13#include <linux/interrupt.h>
 14#include <linux/kmsg_dump.h>
 15#include <linux/kallsyms.h>
 16#include <linux/notifier.h>
 17#include <linux/module.h>
 18#include <linux/random.h>
 19#include <linux/ftrace.h>
 20#include <linux/reboot.h>
 21#include <linux/delay.h>
 22#include <linux/kexec.h>
 23#include <linux/sched.h>
 24#include <linux/sysrq.h>
 25#include <linux/init.h>
 26#include <linux/nmi.h>
 27#include <linux/console.h>
 28#include <linux/bug.h>
 29#include <linux/ratelimit.h>
 30#include <linux/debugfs.h>
 31#include <asm/sections.h>
 32
 33#define PANIC_TIMER_STEP 100
 34#define PANIC_BLINK_SPD 18
 35
 36int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
 37static unsigned long tainted_mask =
 38	IS_ENABLED(CONFIG_GCC_PLUGIN_RANDSTRUCT) ? (1 << TAINT_RANDSTRUCT) : 0;
 39static int pause_on_oops;
 40static int pause_on_oops_flag;
 41static DEFINE_SPINLOCK(pause_on_oops_lock);
 42bool crash_kexec_post_notifiers;
 43int panic_on_warn __read_mostly;
 44
 45int panic_timeout = CONFIG_PANIC_TIMEOUT;
 46EXPORT_SYMBOL_GPL(panic_timeout);
 47
 48ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
 49
 50EXPORT_SYMBOL(panic_notifier_list);
 51
 52static long no_blink(int state)
 53{
 54	return 0;
 55}
 56
 57/* Returns how long it waited in ms */
 58long (*panic_blink)(int state);
 59EXPORT_SYMBOL(panic_blink);
 60
 61/*
 62 * Stop ourself in panic -- architecture code may override this
 63 */
 64void __weak panic_smp_self_stop(void)
 65{
 66	while (1)
 67		cpu_relax();
 68}
 69
 70/*
 71 * Stop ourselves in NMI context if another CPU has already panicked. Arch code
 72 * may override this to prepare for crash dumping, e.g. save regs info.
 73 */
 74void __weak nmi_panic_self_stop(struct pt_regs *regs)
 75{
 76	panic_smp_self_stop();
 77}
 78
 79/*
 80 * Stop other CPUs in panic.  Architecture dependent code may override this
 81 * with more suitable version.  For example, if the architecture supports
 82 * crash dump, it should save registers of each stopped CPU and disable
 83 * per-CPU features such as virtualization extensions.
 84 */
 85void __weak crash_smp_send_stop(void)
 86{
 87	static int cpus_stopped;
 88
 89	/*
 90	 * This function can be called twice in panic path, but obviously
 91	 * we execute this only once.
 92	 */
 93	if (cpus_stopped)
 94		return;
 95
 96	/*
 97	 * Note smp_send_stop is the usual smp shutdown function, which
 98	 * unfortunately means it may not be hardened to work in a panic
 99	 * situation.
100	 */
101	smp_send_stop();
102	cpus_stopped = 1;
103}
104
105atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
106
107/*
108 * A variant of panic() called from NMI context. We return if we've already
109 * panicked on this CPU. If another CPU already panicked, loop in
110 * nmi_panic_self_stop() which can provide architecture dependent code such
111 * as saving register state for crash dump.
112 */
113void nmi_panic(struct pt_regs *regs, const char *msg)
114{
115	int old_cpu, cpu;
116
117	cpu = raw_smp_processor_id();
118	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu);
119
120	if (old_cpu == PANIC_CPU_INVALID)
121		panic("%s", msg);
122	else if (old_cpu != cpu)
123		nmi_panic_self_stop(regs);
124}
125EXPORT_SYMBOL(nmi_panic);
126
127/**
128 *	panic - halt the system
129 *	@fmt: The text string to print
130 *
131 *	Display a message, then perform cleanups.
132 *
133 *	This function never returns.
134 */
135void panic(const char *fmt, ...)
136{
137	static char buf[1024];
138	va_list args;
139	long i, i_next = 0;
140	int state = 0;
141	int old_cpu, this_cpu;
142	bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers;
143
144	/*
145	 * Disable local interrupts. This will prevent panic_smp_self_stop
146	 * from deadlocking the first cpu that invokes the panic, since
147	 * there is nothing to prevent an interrupt handler (that runs
148	 * after setting panic_cpu) from invoking panic() again.
149	 */
150	local_irq_disable();
151
152	/*
153	 * It's possible to come here directly from a panic-assertion and
154	 * not have preempt disabled. Some functions called from here want
155	 * preempt to be disabled. No point enabling it later though...
156	 *
157	 * Only one CPU is allowed to execute the panic code from here. For
158	 * multiple parallel invocations of panic, all other CPUs either
159	 * stop themself or will wait until they are stopped by the 1st CPU
160	 * with smp_send_stop().
161	 *
162	 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which
163	 * comes here, so go ahead.
164	 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
165	 * panic_cpu to this CPU.  In this case, this is also the 1st CPU.
166	 */
167	this_cpu = raw_smp_processor_id();
168	old_cpu  = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
169
170	if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu)
171		panic_smp_self_stop();
172
173	console_verbose();
174	bust_spinlocks(1);
175	va_start(args, fmt);
176	vsnprintf(buf, sizeof(buf), fmt, args);
177	va_end(args);
178	pr_emerg("Kernel panic - not syncing: %s\n", buf);
179#ifdef CONFIG_DEBUG_BUGVERBOSE
180	/*
181	 * Avoid nested stack-dumping if a panic occurs during oops processing
182	 */
183	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
184		dump_stack();
185#endif
186
187	/*
188	 * If we have crashed and we have a crash kernel loaded let it handle
189	 * everything else.
190	 * If we want to run this after calling panic_notifiers, pass
191	 * the "crash_kexec_post_notifiers" option to the kernel.
192	 *
193	 * Bypass the panic_cpu check and call __crash_kexec directly.
194	 */
195	if (!_crash_kexec_post_notifiers) {
196		printk_safe_flush_on_panic();
197		__crash_kexec(NULL);
198
199		/*
200		 * Note smp_send_stop is the usual smp shutdown function, which
201		 * unfortunately means it may not be hardened to work in a
202		 * panic situation.
203		 */
204		smp_send_stop();
205	} else {
206		/*
207		 * If we want to do crash dump after notifier calls and
208		 * kmsg_dump, we will need architecture dependent extra
209		 * works in addition to stopping other CPUs.
210		 */
211		crash_smp_send_stop();
212	}
213
214	/*
215	 * Run any panic handlers, including those that might need to
216	 * add information to the kmsg dump output.
217	 */
218	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
219
220	/* Call flush even twice. It tries harder with a single online CPU */
221	printk_safe_flush_on_panic();
222	kmsg_dump(KMSG_DUMP_PANIC);
223
224	/*
225	 * If you doubt kdump always works fine in any situation,
226	 * "crash_kexec_post_notifiers" offers you a chance to run
227	 * panic_notifiers and dumping kmsg before kdump.
228	 * Note: since some panic_notifiers can make crashed kernel
229	 * more unstable, it can increase risks of the kdump failure too.
230	 *
231	 * Bypass the panic_cpu check and call __crash_kexec directly.
232	 */
233	if (_crash_kexec_post_notifiers)
234		__crash_kexec(NULL);
235
236	bust_spinlocks(0);
237
238	/*
239	 * We may have ended up stopping the CPU holding the lock (in
240	 * smp_send_stop()) while still having some valuable data in the console
241	 * buffer.  Try to acquire the lock then release it regardless of the
242	 * result.  The release will also print the buffers out.  Locks debug
243	 * should be disabled to avoid reporting bad unlock balance when
244	 * panic() is not being callled from OOPS.
245	 */
246	debug_locks_off();
247	console_flush_on_panic();
248
249	if (!panic_blink)
250		panic_blink = no_blink;
251
252	if (panic_timeout > 0) {
253		/*
254		 * Delay timeout seconds before rebooting the machine.
255		 * We can't use the "normal" timers since we just panicked.
256		 */
257		pr_emerg("Rebooting in %d seconds..\n", panic_timeout);
258
259		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
260			touch_nmi_watchdog();
261			if (i >= i_next) {
262				i += panic_blink(state ^= 1);
263				i_next = i + 3600 / PANIC_BLINK_SPD;
264			}
265			mdelay(PANIC_TIMER_STEP);
266		}
267	}
268	if (panic_timeout != 0) {
269		/*
270		 * This will not be a clean reboot, with everything
271		 * shutting down.  But if there is a chance of
272		 * rebooting the system it will be rebooted.
273		 */
274		emergency_restart();
275	}
276#ifdef __sparc__
277	{
278		extern int stop_a_enabled;
279		/* Make sure the user can actually press Stop-A (L1-A) */
280		stop_a_enabled = 1;
281		pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n"
282			 "twice on console to return to the boot prom\n");
283	}
284#endif
285#if defined(CONFIG_S390)
286	{
287		unsigned long caller;
288
289		caller = (unsigned long)__builtin_return_address(0);
290		disabled_wait(caller);
291	}
292#endif
293	pr_emerg("---[ end Kernel panic - not syncing: %s ]---\n", buf);
294	local_irq_enable();
295	for (i = 0; ; i += PANIC_TIMER_STEP) {
296		touch_softlockup_watchdog();
297		if (i >= i_next) {
298			i += panic_blink(state ^= 1);
299			i_next = i + 3600 / PANIC_BLINK_SPD;
300		}
301		mdelay(PANIC_TIMER_STEP);
302	}
303}
304
305EXPORT_SYMBOL(panic);
306
307/*
308 * TAINT_FORCED_RMMOD could be a per-module flag but the module
309 * is being removed anyway.
310 */
311const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = {
312	[ TAINT_PROPRIETARY_MODULE ]	= { 'P', 'G', true },
313	[ TAINT_FORCED_MODULE ]		= { 'F', ' ', true },
314	[ TAINT_CPU_OUT_OF_SPEC ]	= { 'S', ' ', false },
315	[ TAINT_FORCED_RMMOD ]		= { 'R', ' ', false },
316	[ TAINT_MACHINE_CHECK ]		= { 'M', ' ', false },
317	[ TAINT_BAD_PAGE ]		= { 'B', ' ', false },
318	[ TAINT_USER ]			= { 'U', ' ', false },
319	[ TAINT_DIE ]			= { 'D', ' ', false },
320	[ TAINT_OVERRIDDEN_ACPI_TABLE ]	= { 'A', ' ', false },
321	[ TAINT_WARN ]			= { 'W', ' ', false },
322	[ TAINT_CRAP ]			= { 'C', ' ', true },
323	[ TAINT_FIRMWARE_WORKAROUND ]	= { 'I', ' ', false },
324	[ TAINT_OOT_MODULE ]		= { 'O', ' ', true },
325	[ TAINT_UNSIGNED_MODULE ]	= { 'E', ' ', true },
326	[ TAINT_SOFTLOCKUP ]		= { 'L', ' ', false },
327	[ TAINT_LIVEPATCH ]		= { 'K', ' ', true },
328	[ TAINT_AUX ]			= { 'X', ' ', true },
329	[ TAINT_RANDSTRUCT ]		= { 'T', ' ', true },
 
330};
331
332/**
333 * print_tainted - return a string to represent the kernel taint state.
334 *
335 * For individual taint flag meanings, see Documentation/sysctl/kernel.txt
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
336 *
337 * The string is overwritten by the next call to print_tainted(),
338 * but is always NULL terminated.
339 */
340const char *print_tainted(void)
341{
342	static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")];
343
344	BUILD_BUG_ON(ARRAY_SIZE(taint_flags) != TAINT_FLAGS_COUNT);
345
346	if (tainted_mask) {
347		char *s;
348		int i;
349
350		s = buf + sprintf(buf, "Tainted: ");
351		for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
352			const struct taint_flag *t = &taint_flags[i];
353			*s++ = test_bit(i, &tainted_mask) ?
354					t->c_true : t->c_false;
355		}
356		*s = 0;
357	} else
358		snprintf(buf, sizeof(buf), "Not tainted");
359
360	return buf;
361}
362
363int test_taint(unsigned flag)
364{
365	return test_bit(flag, &tainted_mask);
366}
367EXPORT_SYMBOL(test_taint);
368
369unsigned long get_taint(void)
370{
371	return tainted_mask;
372}
373
374/**
375 * add_taint: add a taint flag if not already set.
376 * @flag: one of the TAINT_* constants.
377 * @lockdep_ok: whether lock debugging is still OK.
378 *
379 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
380 * some notewortht-but-not-corrupting cases, it can be set to true.
381 */
382void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
383{
384	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
385		pr_warn("Disabling lock debugging due to kernel taint\n");
386
387	set_bit(flag, &tainted_mask);
388}
389EXPORT_SYMBOL(add_taint);
390
391static void spin_msec(int msecs)
392{
393	int i;
394
395	for (i = 0; i < msecs; i++) {
396		touch_nmi_watchdog();
397		mdelay(1);
398	}
399}
400
401/*
402 * It just happens that oops_enter() and oops_exit() are identically
403 * implemented...
404 */
405static void do_oops_enter_exit(void)
406{
407	unsigned long flags;
408	static int spin_counter;
409
410	if (!pause_on_oops)
411		return;
412
413	spin_lock_irqsave(&pause_on_oops_lock, flags);
414	if (pause_on_oops_flag == 0) {
415		/* This CPU may now print the oops message */
416		pause_on_oops_flag = 1;
417	} else {
418		/* We need to stall this CPU */
419		if (!spin_counter) {
420			/* This CPU gets to do the counting */
421			spin_counter = pause_on_oops;
422			do {
423				spin_unlock(&pause_on_oops_lock);
424				spin_msec(MSEC_PER_SEC);
425				spin_lock(&pause_on_oops_lock);
426			} while (--spin_counter);
427			pause_on_oops_flag = 0;
428		} else {
429			/* This CPU waits for a different one */
430			while (spin_counter) {
431				spin_unlock(&pause_on_oops_lock);
432				spin_msec(1);
433				spin_lock(&pause_on_oops_lock);
434			}
435		}
436	}
437	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
438}
439
440/*
441 * Return true if the calling CPU is allowed to print oops-related info.
442 * This is a bit racy..
443 */
444int oops_may_print(void)
445{
446	return pause_on_oops_flag == 0;
447}
448
449/*
450 * Called when the architecture enters its oops handler, before it prints
451 * anything.  If this is the first CPU to oops, and it's oopsing the first
452 * time then let it proceed.
453 *
454 * This is all enabled by the pause_on_oops kernel boot option.  We do all
455 * this to ensure that oopses don't scroll off the screen.  It has the
456 * side-effect of preventing later-oopsing CPUs from mucking up the display,
457 * too.
458 *
459 * It turns out that the CPU which is allowed to print ends up pausing for
460 * the right duration, whereas all the other CPUs pause for twice as long:
461 * once in oops_enter(), once in oops_exit().
462 */
463void oops_enter(void)
464{
465	tracing_off();
466	/* can't trust the integrity of the kernel anymore: */
467	debug_locks_off();
468	do_oops_enter_exit();
469}
470
471/*
472 * 64-bit random ID for oopses:
473 */
474static u64 oops_id;
475
476static int init_oops_id(void)
477{
478	if (!oops_id)
479		get_random_bytes(&oops_id, sizeof(oops_id));
480	else
481		oops_id++;
482
483	return 0;
484}
485late_initcall(init_oops_id);
486
487void print_oops_end_marker(void)
488{
489	init_oops_id();
490	pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id);
491}
492
493/*
494 * Called when the architecture exits its oops handler, after printing
495 * everything.
496 */
497void oops_exit(void)
498{
499	do_oops_enter_exit();
500	print_oops_end_marker();
501	kmsg_dump(KMSG_DUMP_OOPS);
502}
503
504struct warn_args {
505	const char *fmt;
506	va_list args;
507};
508
509void __warn(const char *file, int line, void *caller, unsigned taint,
510	    struct pt_regs *regs, struct warn_args *args)
511{
512	disable_trace_on_warning();
513
514	if (args)
515		pr_warn(CUT_HERE);
516
517	if (file)
518		pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
519			raw_smp_processor_id(), current->pid, file, line,
520			caller);
521	else
522		pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
523			raw_smp_processor_id(), current->pid, caller);
524
525	if (args)
526		vprintk(args->fmt, args->args);
527
528	if (panic_on_warn) {
529		/*
530		 * This thread may hit another WARN() in the panic path.
531		 * Resetting this prevents additional WARN() from panicking the
532		 * system on this thread.  Other threads are blocked by the
533		 * panic_mutex in panic().
534		 */
535		panic_on_warn = 0;
536		panic("panic_on_warn set ...\n");
537	}
538
539	print_modules();
540
541	if (regs)
542		show_regs(regs);
543	else
544		dump_stack();
545
546	print_irqtrace_events(current);
547
548	print_oops_end_marker();
549
550	/* Just a warning, don't kill lockdep. */
551	add_taint(taint, LOCKDEP_STILL_OK);
552}
553
554#ifdef WANT_WARN_ON_SLOWPATH
555void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...)
556{
557	struct warn_args args;
558
559	args.fmt = fmt;
560	va_start(args.args, fmt);
561	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL,
562	       &args);
563	va_end(args.args);
564}
565EXPORT_SYMBOL(warn_slowpath_fmt);
566
567void warn_slowpath_fmt_taint(const char *file, int line,
568			     unsigned taint, const char *fmt, ...)
569{
570	struct warn_args args;
571
572	args.fmt = fmt;
573	va_start(args.args, fmt);
574	__warn(file, line, __builtin_return_address(0), taint, NULL, &args);
575	va_end(args.args);
576}
577EXPORT_SYMBOL(warn_slowpath_fmt_taint);
578
579void warn_slowpath_null(const char *file, int line)
580{
581	pr_warn(CUT_HERE);
582	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, NULL);
583}
584EXPORT_SYMBOL(warn_slowpath_null);
585#else
586void __warn_printk(const char *fmt, ...)
587{
588	va_list args;
589
590	pr_warn(CUT_HERE);
591
592	va_start(args, fmt);
593	vprintk(fmt, args);
594	va_end(args);
595}
596EXPORT_SYMBOL(__warn_printk);
597#endif
598
599#ifdef CONFIG_BUG
600
601/* Support resetting WARN*_ONCE state */
602
603static int clear_warn_once_set(void *data, u64 val)
604{
605	generic_bug_clear_once();
606	memset(__start_once, 0, __end_once - __start_once);
607	return 0;
608}
609
610DEFINE_SIMPLE_ATTRIBUTE(clear_warn_once_fops,
611			NULL,
612			clear_warn_once_set,
613			"%lld\n");
614
615static __init int register_warn_debugfs(void)
616{
617	/* Don't care about failure */
618	debugfs_create_file("clear_warn_once", 0200, NULL,
619			    NULL, &clear_warn_once_fops);
620	return 0;
621}
622
623device_initcall(register_warn_debugfs);
624#endif
625
626#ifdef CONFIG_CC_STACKPROTECTOR
627
628/*
629 * Called when gcc's -fstack-protector feature is used, and
630 * gcc detects corruption of the on-stack canary value
631 */
632__visible void __stack_chk_fail(void)
633{
634	panic("stack-protector: Kernel stack is corrupted in: %pB\n",
635		__builtin_return_address(0));
636}
637EXPORT_SYMBOL(__stack_chk_fail);
638
639#endif
640
641#ifdef CONFIG_ARCH_HAS_REFCOUNT
642void refcount_error_report(struct pt_regs *regs, const char *err)
643{
644	WARN_RATELIMIT(1, "refcount_t %s at %pB in %s[%d], uid/euid: %u/%u\n",
645		err, (void *)instruction_pointer(regs),
646		current->comm, task_pid_nr(current),
647		from_kuid_munged(&init_user_ns, current_uid()),
648		from_kuid_munged(&init_user_ns, current_euid()));
649}
650#endif
651
652core_param(panic, panic_timeout, int, 0644);
653core_param(pause_on_oops, pause_on_oops, int, 0644);
654core_param(panic_on_warn, panic_on_warn, int, 0644);
655core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644);
 
 
 
 
 
 
656
657static int __init oops_setup(char *s)
658{
659	if (!s)
660		return -EINVAL;
661	if (!strcmp(s, "panic"))
662		panic_on_oops = 1;
663	return 0;
664}
665early_param("oops", oops_setup);
v4.6
  1/*
  2 *  linux/kernel/panic.c
  3 *
  4 *  Copyright (C) 1991, 1992  Linus Torvalds
  5 */
  6
  7/*
  8 * This function is used through-out the kernel (including mm and fs)
  9 * to indicate a major problem.
 10 */
 11#include <linux/debug_locks.h>
 
 12#include <linux/interrupt.h>
 13#include <linux/kmsg_dump.h>
 14#include <linux/kallsyms.h>
 15#include <linux/notifier.h>
 16#include <linux/module.h>
 17#include <linux/random.h>
 18#include <linux/ftrace.h>
 19#include <linux/reboot.h>
 20#include <linux/delay.h>
 21#include <linux/kexec.h>
 22#include <linux/sched.h>
 23#include <linux/sysrq.h>
 24#include <linux/init.h>
 25#include <linux/nmi.h>
 26#include <linux/console.h>
 27#include <linux/bug.h>
 
 
 
 28
 29#define PANIC_TIMER_STEP 100
 30#define PANIC_BLINK_SPD 18
 31
 32int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
 33static unsigned long tainted_mask;
 
 34static int pause_on_oops;
 35static int pause_on_oops_flag;
 36static DEFINE_SPINLOCK(pause_on_oops_lock);
 37bool crash_kexec_post_notifiers;
 38int panic_on_warn __read_mostly;
 39
 40int panic_timeout = CONFIG_PANIC_TIMEOUT;
 41EXPORT_SYMBOL_GPL(panic_timeout);
 42
 43ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
 44
 45EXPORT_SYMBOL(panic_notifier_list);
 46
 47static long no_blink(int state)
 48{
 49	return 0;
 50}
 51
 52/* Returns how long it waited in ms */
 53long (*panic_blink)(int state);
 54EXPORT_SYMBOL(panic_blink);
 55
 56/*
 57 * Stop ourself in panic -- architecture code may override this
 58 */
 59void __weak panic_smp_self_stop(void)
 60{
 61	while (1)
 62		cpu_relax();
 63}
 64
 65/*
 66 * Stop ourselves in NMI context if another CPU has already panicked. Arch code
 67 * may override this to prepare for crash dumping, e.g. save regs info.
 68 */
 69void __weak nmi_panic_self_stop(struct pt_regs *regs)
 70{
 71	panic_smp_self_stop();
 72}
 73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 74atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
 75
 76/*
 77 * A variant of panic() called from NMI context. We return if we've already
 78 * panicked on this CPU. If another CPU already panicked, loop in
 79 * nmi_panic_self_stop() which can provide architecture dependent code such
 80 * as saving register state for crash dump.
 81 */
 82void nmi_panic(struct pt_regs *regs, const char *msg)
 83{
 84	int old_cpu, cpu;
 85
 86	cpu = raw_smp_processor_id();
 87	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu);
 88
 89	if (old_cpu == PANIC_CPU_INVALID)
 90		panic("%s", msg);
 91	else if (old_cpu != cpu)
 92		nmi_panic_self_stop(regs);
 93}
 94EXPORT_SYMBOL(nmi_panic);
 95
 96/**
 97 *	panic - halt the system
 98 *	@fmt: The text string to print
 99 *
100 *	Display a message, then perform cleanups.
101 *
102 *	This function never returns.
103 */
104void panic(const char *fmt, ...)
105{
106	static char buf[1024];
107	va_list args;
108	long i, i_next = 0;
109	int state = 0;
110	int old_cpu, this_cpu;
 
111
112	/*
113	 * Disable local interrupts. This will prevent panic_smp_self_stop
114	 * from deadlocking the first cpu that invokes the panic, since
115	 * there is nothing to prevent an interrupt handler (that runs
116	 * after setting panic_cpu) from invoking panic() again.
117	 */
118	local_irq_disable();
119
120	/*
121	 * It's possible to come here directly from a panic-assertion and
122	 * not have preempt disabled. Some functions called from here want
123	 * preempt to be disabled. No point enabling it later though...
124	 *
125	 * Only one CPU is allowed to execute the panic code from here. For
126	 * multiple parallel invocations of panic, all other CPUs either
127	 * stop themself or will wait until they are stopped by the 1st CPU
128	 * with smp_send_stop().
129	 *
130	 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which
131	 * comes here, so go ahead.
132	 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
133	 * panic_cpu to this CPU.  In this case, this is also the 1st CPU.
134	 */
135	this_cpu = raw_smp_processor_id();
136	old_cpu  = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
137
138	if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu)
139		panic_smp_self_stop();
140
141	console_verbose();
142	bust_spinlocks(1);
143	va_start(args, fmt);
144	vsnprintf(buf, sizeof(buf), fmt, args);
145	va_end(args);
146	pr_emerg("Kernel panic - not syncing: %s\n", buf);
147#ifdef CONFIG_DEBUG_BUGVERBOSE
148	/*
149	 * Avoid nested stack-dumping if a panic occurs during oops processing
150	 */
151	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
152		dump_stack();
153#endif
154
155	/*
156	 * If we have crashed and we have a crash kernel loaded let it handle
157	 * everything else.
158	 * If we want to run this after calling panic_notifiers, pass
159	 * the "crash_kexec_post_notifiers" option to the kernel.
160	 *
161	 * Bypass the panic_cpu check and call __crash_kexec directly.
162	 */
163	if (!crash_kexec_post_notifiers)
 
164		__crash_kexec(NULL);
165
166	/*
167	 * Note smp_send_stop is the usual smp shutdown function, which
168	 * unfortunately means it may not be hardened to work in a panic
169	 * situation.
170	 */
171	smp_send_stop();
 
 
 
 
 
 
 
 
172
173	/*
174	 * Run any panic handlers, including those that might need to
175	 * add information to the kmsg dump output.
176	 */
177	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
178
 
 
179	kmsg_dump(KMSG_DUMP_PANIC);
180
181	/*
182	 * If you doubt kdump always works fine in any situation,
183	 * "crash_kexec_post_notifiers" offers you a chance to run
184	 * panic_notifiers and dumping kmsg before kdump.
185	 * Note: since some panic_notifiers can make crashed kernel
186	 * more unstable, it can increase risks of the kdump failure too.
187	 *
188	 * Bypass the panic_cpu check and call __crash_kexec directly.
189	 */
190	if (crash_kexec_post_notifiers)
191		__crash_kexec(NULL);
192
193	bust_spinlocks(0);
194
195	/*
196	 * We may have ended up stopping the CPU holding the lock (in
197	 * smp_send_stop()) while still having some valuable data in the console
198	 * buffer.  Try to acquire the lock then release it regardless of the
199	 * result.  The release will also print the buffers out.  Locks debug
200	 * should be disabled to avoid reporting bad unlock balance when
201	 * panic() is not being callled from OOPS.
202	 */
203	debug_locks_off();
204	console_flush_on_panic();
205
206	if (!panic_blink)
207		panic_blink = no_blink;
208
209	if (panic_timeout > 0) {
210		/*
211		 * Delay timeout seconds before rebooting the machine.
212		 * We can't use the "normal" timers since we just panicked.
213		 */
214		pr_emerg("Rebooting in %d seconds..", panic_timeout);
215
216		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
217			touch_nmi_watchdog();
218			if (i >= i_next) {
219				i += panic_blink(state ^= 1);
220				i_next = i + 3600 / PANIC_BLINK_SPD;
221			}
222			mdelay(PANIC_TIMER_STEP);
223		}
224	}
225	if (panic_timeout != 0) {
226		/*
227		 * This will not be a clean reboot, with everything
228		 * shutting down.  But if there is a chance of
229		 * rebooting the system it will be rebooted.
230		 */
231		emergency_restart();
232	}
233#ifdef __sparc__
234	{
235		extern int stop_a_enabled;
236		/* Make sure the user can actually press Stop-A (L1-A) */
237		stop_a_enabled = 1;
238		pr_emerg("Press Stop-A (L1-A) to return to the boot prom\n");
 
239	}
240#endif
241#if defined(CONFIG_S390)
242	{
243		unsigned long caller;
244
245		caller = (unsigned long)__builtin_return_address(0);
246		disabled_wait(caller);
247	}
248#endif
249	pr_emerg("---[ end Kernel panic - not syncing: %s\n", buf);
250	local_irq_enable();
251	for (i = 0; ; i += PANIC_TIMER_STEP) {
252		touch_softlockup_watchdog();
253		if (i >= i_next) {
254			i += panic_blink(state ^= 1);
255			i_next = i + 3600 / PANIC_BLINK_SPD;
256		}
257		mdelay(PANIC_TIMER_STEP);
258	}
259}
260
261EXPORT_SYMBOL(panic);
262
263
264struct tnt {
265	u8	bit;
266	char	true;
267	char	false;
268};
269
270static const struct tnt tnts[] = {
271	{ TAINT_PROPRIETARY_MODULE,	'P', 'G' },
272	{ TAINT_FORCED_MODULE,		'F', ' ' },
273	{ TAINT_CPU_OUT_OF_SPEC,	'S', ' ' },
274	{ TAINT_FORCED_RMMOD,		'R', ' ' },
275	{ TAINT_MACHINE_CHECK,		'M', ' ' },
276	{ TAINT_BAD_PAGE,		'B', ' ' },
277	{ TAINT_USER,			'U', ' ' },
278	{ TAINT_DIE,			'D', ' ' },
279	{ TAINT_OVERRIDDEN_ACPI_TABLE,	'A', ' ' },
280	{ TAINT_WARN,			'W', ' ' },
281	{ TAINT_CRAP,			'C', ' ' },
282	{ TAINT_FIRMWARE_WORKAROUND,	'I', ' ' },
283	{ TAINT_OOT_MODULE,		'O', ' ' },
284	{ TAINT_UNSIGNED_MODULE,	'E', ' ' },
285	{ TAINT_SOFTLOCKUP,		'L', ' ' },
286	{ TAINT_LIVEPATCH,		'K', ' ' },
287};
288
289/**
290 *	print_tainted - return a string to represent the kernel taint state.
291 *
292 *  'P' - Proprietary module has been loaded.
293 *  'F' - Module has been forcibly loaded.
294 *  'S' - SMP with CPUs not designed for SMP.
295 *  'R' - User forced a module unload.
296 *  'M' - System experienced a machine check exception.
297 *  'B' - System has hit bad_page.
298 *  'U' - Userspace-defined naughtiness.
299 *  'D' - Kernel has oopsed before
300 *  'A' - ACPI table overridden.
301 *  'W' - Taint on warning.
302 *  'C' - modules from drivers/staging are loaded.
303 *  'I' - Working around severe firmware bug.
304 *  'O' - Out-of-tree module has been loaded.
305 *  'E' - Unsigned module has been loaded.
306 *  'L' - A soft lockup has previously occurred.
307 *  'K' - Kernel has been live patched.
308 *
309 *	The string is overwritten by the next call to print_tainted().
 
310 */
311const char *print_tainted(void)
312{
313	static char buf[ARRAY_SIZE(tnts) + sizeof("Tainted: ")];
 
 
314
315	if (tainted_mask) {
316		char *s;
317		int i;
318
319		s = buf + sprintf(buf, "Tainted: ");
320		for (i = 0; i < ARRAY_SIZE(tnts); i++) {
321			const struct tnt *t = &tnts[i];
322			*s++ = test_bit(t->bit, &tainted_mask) ?
323					t->true : t->false;
324		}
325		*s = 0;
326	} else
327		snprintf(buf, sizeof(buf), "Not tainted");
328
329	return buf;
330}
331
332int test_taint(unsigned flag)
333{
334	return test_bit(flag, &tainted_mask);
335}
336EXPORT_SYMBOL(test_taint);
337
338unsigned long get_taint(void)
339{
340	return tainted_mask;
341}
342
343/**
344 * add_taint: add a taint flag if not already set.
345 * @flag: one of the TAINT_* constants.
346 * @lockdep_ok: whether lock debugging is still OK.
347 *
348 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
349 * some notewortht-but-not-corrupting cases, it can be set to true.
350 */
351void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
352{
353	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
354		pr_warn("Disabling lock debugging due to kernel taint\n");
355
356	set_bit(flag, &tainted_mask);
357}
358EXPORT_SYMBOL(add_taint);
359
360static void spin_msec(int msecs)
361{
362	int i;
363
364	for (i = 0; i < msecs; i++) {
365		touch_nmi_watchdog();
366		mdelay(1);
367	}
368}
369
370/*
371 * It just happens that oops_enter() and oops_exit() are identically
372 * implemented...
373 */
374static void do_oops_enter_exit(void)
375{
376	unsigned long flags;
377	static int spin_counter;
378
379	if (!pause_on_oops)
380		return;
381
382	spin_lock_irqsave(&pause_on_oops_lock, flags);
383	if (pause_on_oops_flag == 0) {
384		/* This CPU may now print the oops message */
385		pause_on_oops_flag = 1;
386	} else {
387		/* We need to stall this CPU */
388		if (!spin_counter) {
389			/* This CPU gets to do the counting */
390			spin_counter = pause_on_oops;
391			do {
392				spin_unlock(&pause_on_oops_lock);
393				spin_msec(MSEC_PER_SEC);
394				spin_lock(&pause_on_oops_lock);
395			} while (--spin_counter);
396			pause_on_oops_flag = 0;
397		} else {
398			/* This CPU waits for a different one */
399			while (spin_counter) {
400				spin_unlock(&pause_on_oops_lock);
401				spin_msec(1);
402				spin_lock(&pause_on_oops_lock);
403			}
404		}
405	}
406	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
407}
408
409/*
410 * Return true if the calling CPU is allowed to print oops-related info.
411 * This is a bit racy..
412 */
413int oops_may_print(void)
414{
415	return pause_on_oops_flag == 0;
416}
417
418/*
419 * Called when the architecture enters its oops handler, before it prints
420 * anything.  If this is the first CPU to oops, and it's oopsing the first
421 * time then let it proceed.
422 *
423 * This is all enabled by the pause_on_oops kernel boot option.  We do all
424 * this to ensure that oopses don't scroll off the screen.  It has the
425 * side-effect of preventing later-oopsing CPUs from mucking up the display,
426 * too.
427 *
428 * It turns out that the CPU which is allowed to print ends up pausing for
429 * the right duration, whereas all the other CPUs pause for twice as long:
430 * once in oops_enter(), once in oops_exit().
431 */
432void oops_enter(void)
433{
434	tracing_off();
435	/* can't trust the integrity of the kernel anymore: */
436	debug_locks_off();
437	do_oops_enter_exit();
438}
439
440/*
441 * 64-bit random ID for oopses:
442 */
443static u64 oops_id;
444
445static int init_oops_id(void)
446{
447	if (!oops_id)
448		get_random_bytes(&oops_id, sizeof(oops_id));
449	else
450		oops_id++;
451
452	return 0;
453}
454late_initcall(init_oops_id);
455
456void print_oops_end_marker(void)
457{
458	init_oops_id();
459	pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id);
460}
461
462/*
463 * Called when the architecture exits its oops handler, after printing
464 * everything.
465 */
466void oops_exit(void)
467{
468	do_oops_enter_exit();
469	print_oops_end_marker();
470	kmsg_dump(KMSG_DUMP_OOPS);
471}
472
473struct warn_args {
474	const char *fmt;
475	va_list args;
476};
477
478void __warn(const char *file, int line, void *caller, unsigned taint,
479	    struct pt_regs *regs, struct warn_args *args)
480{
481	disable_trace_on_warning();
482
483	pr_warn("------------[ cut here ]------------\n");
 
484
485	if (file)
486		pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
487			raw_smp_processor_id(), current->pid, file, line,
488			caller);
489	else
490		pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
491			raw_smp_processor_id(), current->pid, caller);
492
493	if (args)
494		vprintk(args->fmt, args->args);
495
496	if (panic_on_warn) {
497		/*
498		 * This thread may hit another WARN() in the panic path.
499		 * Resetting this prevents additional WARN() from panicking the
500		 * system on this thread.  Other threads are blocked by the
501		 * panic_mutex in panic().
502		 */
503		panic_on_warn = 0;
504		panic("panic_on_warn set ...\n");
505	}
506
507	print_modules();
508
509	if (regs)
510		show_regs(regs);
511	else
512		dump_stack();
513
 
 
514	print_oops_end_marker();
515
516	/* Just a warning, don't kill lockdep. */
517	add_taint(taint, LOCKDEP_STILL_OK);
518}
519
520#ifdef WANT_WARN_ON_SLOWPATH
521void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...)
522{
523	struct warn_args args;
524
525	args.fmt = fmt;
526	va_start(args.args, fmt);
527	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL,
528	       &args);
529	va_end(args.args);
530}
531EXPORT_SYMBOL(warn_slowpath_fmt);
532
533void warn_slowpath_fmt_taint(const char *file, int line,
534			     unsigned taint, const char *fmt, ...)
535{
536	struct warn_args args;
537
538	args.fmt = fmt;
539	va_start(args.args, fmt);
540	__warn(file, line, __builtin_return_address(0), taint, NULL, &args);
541	va_end(args.args);
542}
543EXPORT_SYMBOL(warn_slowpath_fmt_taint);
544
545void warn_slowpath_null(const char *file, int line)
546{
 
547	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, NULL);
548}
549EXPORT_SYMBOL(warn_slowpath_null);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
550#endif
551
552#ifdef CONFIG_CC_STACKPROTECTOR
553
554/*
555 * Called when gcc's -fstack-protector feature is used, and
556 * gcc detects corruption of the on-stack canary value
557 */
558__visible void __stack_chk_fail(void)
559{
560	panic("stack-protector: Kernel stack is corrupted in: %p\n",
561		__builtin_return_address(0));
562}
563EXPORT_SYMBOL(__stack_chk_fail);
564
565#endif
566
 
 
 
 
 
 
 
 
 
 
 
567core_param(panic, panic_timeout, int, 0644);
568core_param(pause_on_oops, pause_on_oops, int, 0644);
569core_param(panic_on_warn, panic_on_warn, int, 0644);
570
571static int __init setup_crash_kexec_post_notifiers(char *s)
572{
573	crash_kexec_post_notifiers = true;
574	return 0;
575}
576early_param("crash_kexec_post_notifiers", setup_crash_kexec_post_notifiers);
577
578static int __init oops_setup(char *s)
579{
580	if (!s)
581		return -EINVAL;
582	if (!strcmp(s, "panic"))
583		panic_on_oops = 1;
584	return 0;
585}
586early_param("oops", oops_setup);