Linux Audio

Check our new training course

Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
  4 * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
  5 *
  6 * This file contains the interrupt descriptor management code. Detailed
  7 * information is available in Documentation/core-api/genericirq.rst
 
  8 *
  9 */
 10#include <linux/irq.h>
 11#include <linux/slab.h>
 12#include <linux/export.h>
 13#include <linux/interrupt.h>
 14#include <linux/kernel_stat.h>
 15#include <linux/radix-tree.h>
 16#include <linux/bitmap.h>
 17#include <linux/irqdomain.h>
 18#include <linux/sysfs.h>
 19
 20#include "internals.h"
 21
 22/*
 23 * lockdep: we want to handle all irq_desc locks as a single lock-class:
 24 */
 25static struct lock_class_key irq_desc_lock_class;
 26
 27#if defined(CONFIG_SMP)
 28static int __init irq_affinity_setup(char *str)
 29{
 30	alloc_bootmem_cpumask_var(&irq_default_affinity);
 31	cpulist_parse(str, irq_default_affinity);
 32	/*
 33	 * Set at least the boot cpu. We don't want to end up with
 34	 * bugreports caused by random comandline masks
 35	 */
 36	cpumask_set_cpu(smp_processor_id(), irq_default_affinity);
 37	return 1;
 38}
 39__setup("irqaffinity=", irq_affinity_setup);
 40
 41static void __init init_irq_default_affinity(void)
 42{
 43	if (!cpumask_available(irq_default_affinity))
 
 44		zalloc_cpumask_var(&irq_default_affinity, GFP_NOWAIT);
 
 45	if (cpumask_empty(irq_default_affinity))
 46		cpumask_setall(irq_default_affinity);
 47}
 48#else
 49static void __init init_irq_default_affinity(void)
 50{
 51}
 52#endif
 53
 54#ifdef CONFIG_SMP
 55static int alloc_masks(struct irq_desc *desc, int node)
 56{
 57	if (!zalloc_cpumask_var_node(&desc->irq_common_data.affinity,
 58				     GFP_KERNEL, node))
 59		return -ENOMEM;
 60
 61#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
 62	if (!zalloc_cpumask_var_node(&desc->irq_common_data.effective_affinity,
 63				     GFP_KERNEL, node)) {
 64		free_cpumask_var(desc->irq_common_data.affinity);
 65		return -ENOMEM;
 66	}
 67#endif
 68
 69#ifdef CONFIG_GENERIC_PENDING_IRQ
 70	if (!zalloc_cpumask_var_node(&desc->pending_mask, GFP_KERNEL, node)) {
 71#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
 72		free_cpumask_var(desc->irq_common_data.effective_affinity);
 73#endif
 74		free_cpumask_var(desc->irq_common_data.affinity);
 75		return -ENOMEM;
 76	}
 77#endif
 78	return 0;
 79}
 80
 81static void desc_smp_init(struct irq_desc *desc, int node,
 82			  const struct cpumask *affinity)
 83{
 84	if (!affinity)
 85		affinity = irq_default_affinity;
 86	cpumask_copy(desc->irq_common_data.affinity, affinity);
 87
 88#ifdef CONFIG_GENERIC_PENDING_IRQ
 89	cpumask_clear(desc->pending_mask);
 90#endif
 91#ifdef CONFIG_NUMA
 92	desc->irq_common_data.node = node;
 93#endif
 94}
 95
 96#else
 97static inline int
 98alloc_masks(struct irq_desc *desc, int node) { return 0; }
 99static inline void
100desc_smp_init(struct irq_desc *desc, int node, const struct cpumask *affinity) { }
101#endif
102
103static void desc_set_defaults(unsigned int irq, struct irq_desc *desc, int node,
104			      const struct cpumask *affinity, struct module *owner)
105{
106	int cpu;
107
108	desc->irq_common_data.handler_data = NULL;
109	desc->irq_common_data.msi_desc = NULL;
110
111	desc->irq_data.common = &desc->irq_common_data;
112	desc->irq_data.irq = irq;
113	desc->irq_data.chip = &no_irq_chip;
114	desc->irq_data.chip_data = NULL;
115	irq_settings_clr_and_set(desc, ~0, _IRQ_DEFAULT_INIT_FLAGS);
116	irqd_set(&desc->irq_data, IRQD_IRQ_DISABLED);
117	irqd_set(&desc->irq_data, IRQD_IRQ_MASKED);
118	desc->handle_irq = handle_bad_irq;
119	desc->depth = 1;
120	desc->irq_count = 0;
121	desc->irqs_unhandled = 0;
122	desc->name = NULL;
123	desc->owner = owner;
124	for_each_possible_cpu(cpu)
125		*per_cpu_ptr(desc->kstat_irqs, cpu) = 0;
126	desc_smp_init(desc, node, affinity);
127}
128
129int nr_irqs = NR_IRQS;
130EXPORT_SYMBOL_GPL(nr_irqs);
131
132static DEFINE_MUTEX(sparse_irq_lock);
133static DECLARE_BITMAP(allocated_irqs, IRQ_BITMAP_BITS);
134
135#ifdef CONFIG_SPARSE_IRQ
136
137static void irq_kobj_release(struct kobject *kobj);
138
139#ifdef CONFIG_SYSFS
140static struct kobject *irq_kobj_base;
141
142#define IRQ_ATTR_RO(_name) \
143static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
144
145static ssize_t per_cpu_count_show(struct kobject *kobj,
146				  struct kobj_attribute *attr, char *buf)
147{
148	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
149	int cpu, irq = desc->irq_data.irq;
150	ssize_t ret = 0;
151	char *p = "";
152
153	for_each_possible_cpu(cpu) {
154		unsigned int c = kstat_irqs_cpu(irq, cpu);
155
156		ret += scnprintf(buf + ret, PAGE_SIZE - ret, "%s%u", p, c);
157		p = ",";
158	}
159
160	ret += scnprintf(buf + ret, PAGE_SIZE - ret, "\n");
161	return ret;
162}
163IRQ_ATTR_RO(per_cpu_count);
164
165static ssize_t chip_name_show(struct kobject *kobj,
166			      struct kobj_attribute *attr, char *buf)
167{
168	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
169	ssize_t ret = 0;
170
171	raw_spin_lock_irq(&desc->lock);
172	if (desc->irq_data.chip && desc->irq_data.chip->name) {
173		ret = scnprintf(buf, PAGE_SIZE, "%s\n",
174				desc->irq_data.chip->name);
175	}
176	raw_spin_unlock_irq(&desc->lock);
177
178	return ret;
179}
180IRQ_ATTR_RO(chip_name);
181
182static ssize_t hwirq_show(struct kobject *kobj,
183			  struct kobj_attribute *attr, char *buf)
184{
185	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
186	ssize_t ret = 0;
187
188	raw_spin_lock_irq(&desc->lock);
189	if (desc->irq_data.domain)
190		ret = sprintf(buf, "%d\n", (int)desc->irq_data.hwirq);
191	raw_spin_unlock_irq(&desc->lock);
192
193	return ret;
194}
195IRQ_ATTR_RO(hwirq);
196
197static ssize_t type_show(struct kobject *kobj,
198			 struct kobj_attribute *attr, char *buf)
199{
200	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
201	ssize_t ret = 0;
202
203	raw_spin_lock_irq(&desc->lock);
204	ret = sprintf(buf, "%s\n",
205		      irqd_is_level_type(&desc->irq_data) ? "level" : "edge");
206	raw_spin_unlock_irq(&desc->lock);
207
208	return ret;
209
210}
211IRQ_ATTR_RO(type);
212
213static ssize_t wakeup_show(struct kobject *kobj,
214			   struct kobj_attribute *attr, char *buf)
215{
216	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
217	ssize_t ret = 0;
218
219	raw_spin_lock_irq(&desc->lock);
220	ret = sprintf(buf, "%s\n",
221		      irqd_is_wakeup_set(&desc->irq_data) ? "enabled" : "disabled");
222	raw_spin_unlock_irq(&desc->lock);
223
224	return ret;
225
226}
227IRQ_ATTR_RO(wakeup);
228
229static ssize_t name_show(struct kobject *kobj,
230			 struct kobj_attribute *attr, char *buf)
231{
232	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
233	ssize_t ret = 0;
234
235	raw_spin_lock_irq(&desc->lock);
236	if (desc->name)
237		ret = scnprintf(buf, PAGE_SIZE, "%s\n", desc->name);
238	raw_spin_unlock_irq(&desc->lock);
239
240	return ret;
241}
242IRQ_ATTR_RO(name);
243
244static ssize_t actions_show(struct kobject *kobj,
245			    struct kobj_attribute *attr, char *buf)
246{
247	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
248	struct irqaction *action;
249	ssize_t ret = 0;
250	char *p = "";
251
252	raw_spin_lock_irq(&desc->lock);
253	for (action = desc->action; action != NULL; action = action->next) {
254		ret += scnprintf(buf + ret, PAGE_SIZE - ret, "%s%s",
255				 p, action->name);
256		p = ",";
257	}
258	raw_spin_unlock_irq(&desc->lock);
259
260	if (ret)
261		ret += scnprintf(buf + ret, PAGE_SIZE - ret, "\n");
262
263	return ret;
264}
265IRQ_ATTR_RO(actions);
266
267static struct attribute *irq_attrs[] = {
268	&per_cpu_count_attr.attr,
269	&chip_name_attr.attr,
270	&hwirq_attr.attr,
271	&type_attr.attr,
272	&wakeup_attr.attr,
273	&name_attr.attr,
274	&actions_attr.attr,
275	NULL
276};
277
278static struct kobj_type irq_kobj_type = {
279	.release	= irq_kobj_release,
280	.sysfs_ops	= &kobj_sysfs_ops,
281	.default_attrs	= irq_attrs,
282};
283
284static void irq_sysfs_add(int irq, struct irq_desc *desc)
285{
286	if (irq_kobj_base) {
287		/*
288		 * Continue even in case of failure as this is nothing
289		 * crucial.
290		 */
291		if (kobject_add(&desc->kobj, irq_kobj_base, "%d", irq))
292			pr_warn("Failed to add kobject for irq %d\n", irq);
293	}
294}
295
296static int __init irq_sysfs_init(void)
297{
298	struct irq_desc *desc;
299	int irq;
300
301	/* Prevent concurrent irq alloc/free */
302	irq_lock_sparse();
303
304	irq_kobj_base = kobject_create_and_add("irq", kernel_kobj);
305	if (!irq_kobj_base) {
306		irq_unlock_sparse();
307		return -ENOMEM;
308	}
309
310	/* Add the already allocated interrupts */
311	for_each_irq_desc(irq, desc)
312		irq_sysfs_add(irq, desc);
313	irq_unlock_sparse();
314
315	return 0;
316}
317postcore_initcall(irq_sysfs_init);
318
319#else /* !CONFIG_SYSFS */
320
321static struct kobj_type irq_kobj_type = {
322	.release	= irq_kobj_release,
323};
324
325static void irq_sysfs_add(int irq, struct irq_desc *desc) {}
326
327#endif /* CONFIG_SYSFS */
328
329static RADIX_TREE(irq_desc_tree, GFP_KERNEL);
330
331static void irq_insert_desc(unsigned int irq, struct irq_desc *desc)
332{
333	radix_tree_insert(&irq_desc_tree, irq, desc);
334}
335
336struct irq_desc *irq_to_desc(unsigned int irq)
337{
338	return radix_tree_lookup(&irq_desc_tree, irq);
339}
340EXPORT_SYMBOL(irq_to_desc);
341
342static void delete_irq_desc(unsigned int irq)
343{
344	radix_tree_delete(&irq_desc_tree, irq);
345}
346
347#ifdef CONFIG_SMP
348static void free_masks(struct irq_desc *desc)
349{
350#ifdef CONFIG_GENERIC_PENDING_IRQ
351	free_cpumask_var(desc->pending_mask);
352#endif
353	free_cpumask_var(desc->irq_common_data.affinity);
354#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
355	free_cpumask_var(desc->irq_common_data.effective_affinity);
356#endif
357}
358#else
359static inline void free_masks(struct irq_desc *desc) { }
360#endif
361
362void irq_lock_sparse(void)
363{
364	mutex_lock(&sparse_irq_lock);
365}
366
367void irq_unlock_sparse(void)
368{
369	mutex_unlock(&sparse_irq_lock);
370}
371
372static struct irq_desc *alloc_desc(int irq, int node, unsigned int flags,
373				   const struct cpumask *affinity,
374				   struct module *owner)
375{
376	struct irq_desc *desc;
 
377
378	desc = kzalloc_node(sizeof(*desc), GFP_KERNEL, node);
379	if (!desc)
380		return NULL;
381	/* allocate based on nr_cpu_ids */
382	desc->kstat_irqs = alloc_percpu(unsigned int);
383	if (!desc->kstat_irqs)
384		goto err_desc;
385
386	if (alloc_masks(desc, node))
387		goto err_kstat;
388
389	raw_spin_lock_init(&desc->lock);
390	lockdep_set_class(&desc->lock, &irq_desc_lock_class);
391	mutex_init(&desc->request_mutex);
392	init_rcu_head(&desc->rcu);
393
394	desc_set_defaults(irq, desc, node, affinity, owner);
395	irqd_set(&desc->irq_data, flags);
396	kobject_init(&desc->kobj, &irq_kobj_type);
397
398	return desc;
399
400err_kstat:
401	free_percpu(desc->kstat_irqs);
402err_desc:
403	kfree(desc);
404	return NULL;
405}
406
407static void irq_kobj_release(struct kobject *kobj)
408{
409	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
410
411	free_masks(desc);
412	free_percpu(desc->kstat_irqs);
413	kfree(desc);
414}
415
416static void delayed_free_desc(struct rcu_head *rhp)
417{
418	struct irq_desc *desc = container_of(rhp, struct irq_desc, rcu);
419
420	kobject_put(&desc->kobj);
421}
422
423static void free_desc(unsigned int irq)
424{
425	struct irq_desc *desc = irq_to_desc(irq);
426
427	irq_remove_debugfs_entry(desc);
428	unregister_irq_proc(irq, desc);
429
430	/*
431	 * sparse_irq_lock protects also show_interrupts() and
432	 * kstat_irq_usr(). Once we deleted the descriptor from the
433	 * sparse tree we can free it. Access in proc will fail to
434	 * lookup the descriptor.
435	 *
436	 * The sysfs entry must be serialized against a concurrent
437	 * irq_sysfs_init() as well.
438	 */
439	kobject_del(&desc->kobj);
440	delete_irq_desc(irq);
 
441
442	/*
443	 * We free the descriptor, masks and stat fields via RCU. That
444	 * allows demultiplex interrupts to do rcu based management of
445	 * the child interrupts.
446	 */
447	call_rcu(&desc->rcu, delayed_free_desc);
448}
449
450static int alloc_descs(unsigned int start, unsigned int cnt, int node,
451		       const struct cpumask *affinity, struct module *owner)
452{
453	const struct cpumask *mask = NULL;
454	struct irq_desc *desc;
455	unsigned int flags;
456	int i;
457
458	/* Validate affinity mask(s) */
459	if (affinity) {
460		for (i = 0, mask = affinity; i < cnt; i++, mask++) {
461			if (cpumask_empty(mask))
462				return -EINVAL;
463		}
464	}
465
466	flags = affinity ? IRQD_AFFINITY_MANAGED | IRQD_MANAGED_SHUTDOWN : 0;
467	mask = NULL;
468
469	for (i = 0; i < cnt; i++) {
470		if (affinity) {
471			node = cpu_to_node(cpumask_first(affinity));
472			mask = affinity;
473			affinity++;
474		}
475		desc = alloc_desc(start + i, node, flags, mask, owner);
476		if (!desc)
477			goto err;
 
478		irq_insert_desc(start + i, desc);
479		irq_sysfs_add(start + i, desc);
480		irq_add_debugfs_entry(start + i, desc);
481	}
482	bitmap_set(allocated_irqs, start, cnt);
483	return start;
484
485err:
486	for (i--; i >= 0; i--)
487		free_desc(start + i);
 
 
 
 
488	return -ENOMEM;
489}
490
491static int irq_expand_nr_irqs(unsigned int nr)
492{
493	if (nr > IRQ_BITMAP_BITS)
494		return -ENOMEM;
495	nr_irqs = nr;
496	return 0;
497}
498
499int __init early_irq_init(void)
500{
501	int i, initcnt, node = first_online_node;
502	struct irq_desc *desc;
503
504	init_irq_default_affinity();
505
506	/* Let arch update nr_irqs and return the nr of preallocated irqs */
507	initcnt = arch_probe_nr_irqs();
508	printk(KERN_INFO "NR_IRQS: %d, nr_irqs: %d, preallocated irqs: %d\n",
509	       NR_IRQS, nr_irqs, initcnt);
510
511	if (WARN_ON(nr_irqs > IRQ_BITMAP_BITS))
512		nr_irqs = IRQ_BITMAP_BITS;
513
514	if (WARN_ON(initcnt > IRQ_BITMAP_BITS))
515		initcnt = IRQ_BITMAP_BITS;
516
517	if (initcnt > nr_irqs)
518		nr_irqs = initcnt;
519
520	for (i = 0; i < initcnt; i++) {
521		desc = alloc_desc(i, node, 0, NULL, NULL);
522		set_bit(i, allocated_irqs);
523		irq_insert_desc(i, desc);
524	}
525	return arch_early_irq_init();
526}
527
528#else /* !CONFIG_SPARSE_IRQ */
529
530struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
531	[0 ... NR_IRQS-1] = {
532		.handle_irq	= handle_bad_irq,
533		.depth		= 1,
534		.lock		= __RAW_SPIN_LOCK_UNLOCKED(irq_desc->lock),
535	}
536};
537
538int __init early_irq_init(void)
539{
540	int count, i, node = first_online_node;
541	struct irq_desc *desc;
542
543	init_irq_default_affinity();
544
545	printk(KERN_INFO "NR_IRQS: %d\n", NR_IRQS);
546
547	desc = irq_desc;
548	count = ARRAY_SIZE(irq_desc);
549
550	for (i = 0; i < count; i++) {
551		desc[i].kstat_irqs = alloc_percpu(unsigned int);
552		alloc_masks(&desc[i], node);
553		raw_spin_lock_init(&desc[i].lock);
554		lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
555		desc_set_defaults(i, &desc[i], node, NULL, NULL);
556	}
557	return arch_early_irq_init();
558}
559
560struct irq_desc *irq_to_desc(unsigned int irq)
561{
562	return (irq < NR_IRQS) ? irq_desc + irq : NULL;
563}
564EXPORT_SYMBOL(irq_to_desc);
565
566static void free_desc(unsigned int irq)
567{
568	struct irq_desc *desc = irq_to_desc(irq);
569	unsigned long flags;
570
571	raw_spin_lock_irqsave(&desc->lock, flags);
572	desc_set_defaults(irq, desc, irq_desc_get_node(desc), NULL, NULL);
573	raw_spin_unlock_irqrestore(&desc->lock, flags);
574}
575
576static inline int alloc_descs(unsigned int start, unsigned int cnt, int node,
577			      const struct cpumask *affinity,
578			      struct module *owner)
579{
580	u32 i;
581
582	for (i = 0; i < cnt; i++) {
583		struct irq_desc *desc = irq_to_desc(start + i);
584
585		desc->owner = owner;
586	}
587	bitmap_set(allocated_irqs, start, cnt);
588	return start;
589}
590
591static int irq_expand_nr_irqs(unsigned int nr)
592{
593	return -ENOMEM;
594}
595
596void irq_mark_irq(unsigned int irq)
597{
598	mutex_lock(&sparse_irq_lock);
599	bitmap_set(allocated_irqs, irq, 1);
600	mutex_unlock(&sparse_irq_lock);
601}
602
603#ifdef CONFIG_GENERIC_IRQ_LEGACY
604void irq_init_desc(unsigned int irq)
605{
606	free_desc(irq);
607}
608#endif
609
610#endif /* !CONFIG_SPARSE_IRQ */
611
612/**
613 * generic_handle_irq - Invoke the handler for a particular irq
614 * @irq:	The irq number to handle
615 *
616 */
617int generic_handle_irq(unsigned int irq)
618{
619	struct irq_desc *desc = irq_to_desc(irq);
620
621	if (!desc)
622		return -EINVAL;
623	generic_handle_irq_desc(desc);
624	return 0;
625}
626EXPORT_SYMBOL_GPL(generic_handle_irq);
627
628#ifdef CONFIG_HANDLE_DOMAIN_IRQ
629/**
630 * __handle_domain_irq - Invoke the handler for a HW irq belonging to a domain
631 * @domain:	The domain where to perform the lookup
632 * @hwirq:	The HW irq number to convert to a logical one
633 * @lookup:	Whether to perform the domain lookup or not
634 * @regs:	Register file coming from the low-level handling code
635 *
636 * Returns:	0 on success, or -EINVAL if conversion has failed
637 */
638int __handle_domain_irq(struct irq_domain *domain, unsigned int hwirq,
639			bool lookup, struct pt_regs *regs)
640{
641	struct pt_regs *old_regs = set_irq_regs(regs);
642	unsigned int irq = hwirq;
643	int ret = 0;
644
645	irq_enter();
646
647#ifdef CONFIG_IRQ_DOMAIN
648	if (lookup)
649		irq = irq_find_mapping(domain, hwirq);
650#endif
651
652	/*
653	 * Some hardware gives randomly wrong interrupts.  Rather
654	 * than crashing, do something sensible.
655	 */
656	if (unlikely(!irq || irq >= nr_irqs)) {
657		ack_bad_irq(irq);
658		ret = -EINVAL;
659	} else {
660		generic_handle_irq(irq);
661	}
662
663	irq_exit();
664	set_irq_regs(old_regs);
665	return ret;
666}
667#endif
668
669/* Dynamic interrupt handling */
670
671/**
672 * irq_free_descs - free irq descriptors
673 * @from:	Start of descriptor range
674 * @cnt:	Number of consecutive irqs to free
675 */
676void irq_free_descs(unsigned int from, unsigned int cnt)
677{
678	int i;
679
680	if (from >= nr_irqs || (from + cnt) > nr_irqs)
681		return;
682
683	mutex_lock(&sparse_irq_lock);
684	for (i = 0; i < cnt; i++)
685		free_desc(from + i);
686
 
687	bitmap_clear(allocated_irqs, from, cnt);
688	mutex_unlock(&sparse_irq_lock);
689}
690EXPORT_SYMBOL_GPL(irq_free_descs);
691
692/**
693 * irq_alloc_descs - allocate and initialize a range of irq descriptors
694 * @irq:	Allocate for specific irq number if irq >= 0
695 * @from:	Start the search from this irq number
696 * @cnt:	Number of consecutive irqs to allocate.
697 * @node:	Preferred node on which the irq descriptor should be allocated
698 * @owner:	Owning module (can be NULL)
699 * @affinity:	Optional pointer to an affinity mask array of size @cnt which
700 *		hints where the irq descriptors should be allocated and which
701 *		default affinities to use
702 *
703 * Returns the first irq number or error code
704 */
705int __ref
706__irq_alloc_descs(int irq, unsigned int from, unsigned int cnt, int node,
707		  struct module *owner, const struct cpumask *affinity)
708{
709	int start, ret;
710
711	if (!cnt)
712		return -EINVAL;
713
714	if (irq >= 0) {
715		if (from > irq)
716			return -EINVAL;
717		from = irq;
718	} else {
719		/*
720		 * For interrupts which are freely allocated the
721		 * architecture can force a lower bound to the @from
722		 * argument. x86 uses this to exclude the GSI space.
723		 */
724		from = arch_dynirq_lower_bound(from);
725	}
726
727	mutex_lock(&sparse_irq_lock);
728
729	start = bitmap_find_next_zero_area(allocated_irqs, IRQ_BITMAP_BITS,
730					   from, cnt, 0);
731	ret = -EEXIST;
732	if (irq >=0 && start != irq)
733		goto unlock;
734
735	if (start + cnt > nr_irqs) {
736		ret = irq_expand_nr_irqs(start + cnt);
737		if (ret)
738			goto unlock;
739	}
740	ret = alloc_descs(start, cnt, node, affinity, owner);
741unlock:
 
 
 
 
742	mutex_unlock(&sparse_irq_lock);
743	return ret;
744}
745EXPORT_SYMBOL_GPL(__irq_alloc_descs);
746
747#ifdef CONFIG_GENERIC_IRQ_LEGACY_ALLOC_HWIRQ
748/**
749 * irq_alloc_hwirqs - Allocate an irq descriptor and initialize the hardware
750 * @cnt:	number of interrupts to allocate
751 * @node:	node on which to allocate
752 *
753 * Returns an interrupt number > 0 or 0, if the allocation fails.
754 */
755unsigned int irq_alloc_hwirqs(int cnt, int node)
756{
757	int i, irq = __irq_alloc_descs(-1, 0, cnt, node, NULL, NULL);
758
759	if (irq < 0)
760		return 0;
761
762	for (i = irq; cnt > 0; i++, cnt--) {
763		if (arch_setup_hwirq(i, node))
764			goto err;
765		irq_clear_status_flags(i, _IRQ_NOREQUEST);
766	}
767	return irq;
768
769err:
770	for (i--; i >= irq; i--) {
771		irq_set_status_flags(i, _IRQ_NOREQUEST | _IRQ_NOPROBE);
772		arch_teardown_hwirq(i);
773	}
774	irq_free_descs(irq, cnt);
775	return 0;
776}
777EXPORT_SYMBOL_GPL(irq_alloc_hwirqs);
778
779/**
780 * irq_free_hwirqs - Free irq descriptor and cleanup the hardware
781 * @from:	Free from irq number
782 * @cnt:	number of interrupts to free
783 *
784 */
785void irq_free_hwirqs(unsigned int from, int cnt)
786{
787	int i, j;
788
789	for (i = from, j = cnt; j > 0; i++, j--) {
790		irq_set_status_flags(i, _IRQ_NOREQUEST | _IRQ_NOPROBE);
791		arch_teardown_hwirq(i);
792	}
793	irq_free_descs(from, cnt);
794}
795EXPORT_SYMBOL_GPL(irq_free_hwirqs);
796#endif
797
798/**
799 * irq_get_next_irq - get next allocated irq number
800 * @offset:	where to start the search
801 *
802 * Returns next irq number after offset or nr_irqs if none is found.
803 */
804unsigned int irq_get_next_irq(unsigned int offset)
805{
806	return find_next_bit(allocated_irqs, nr_irqs, offset);
807}
808
809struct irq_desc *
810__irq_get_desc_lock(unsigned int irq, unsigned long *flags, bool bus,
811		    unsigned int check)
812{
813	struct irq_desc *desc = irq_to_desc(irq);
814
815	if (desc) {
816		if (check & _IRQ_DESC_CHECK) {
817			if ((check & _IRQ_DESC_PERCPU) &&
818			    !irq_settings_is_per_cpu_devid(desc))
819				return NULL;
820
821			if (!(check & _IRQ_DESC_PERCPU) &&
822			    irq_settings_is_per_cpu_devid(desc))
823				return NULL;
824		}
825
826		if (bus)
827			chip_bus_lock(desc);
828		raw_spin_lock_irqsave(&desc->lock, *flags);
829	}
830	return desc;
831}
832
833void __irq_put_desc_unlock(struct irq_desc *desc, unsigned long flags, bool bus)
834{
835	raw_spin_unlock_irqrestore(&desc->lock, flags);
836	if (bus)
837		chip_bus_sync_unlock(desc);
838}
839
840int irq_set_percpu_devid_partition(unsigned int irq,
841				   const struct cpumask *affinity)
842{
843	struct irq_desc *desc = irq_to_desc(irq);
844
845	if (!desc)
846		return -EINVAL;
847
848	if (desc->percpu_enabled)
849		return -EINVAL;
850
851	desc->percpu_enabled = kzalloc(sizeof(*desc->percpu_enabled), GFP_KERNEL);
852
853	if (!desc->percpu_enabled)
854		return -ENOMEM;
855
856	if (affinity)
857		desc->percpu_affinity = affinity;
858	else
859		desc->percpu_affinity = cpu_possible_mask;
860
861	irq_set_percpu_devid_flags(irq);
862	return 0;
863}
864
865int irq_set_percpu_devid(unsigned int irq)
866{
867	return irq_set_percpu_devid_partition(irq, NULL);
868}
869
870int irq_get_percpu_devid_partition(unsigned int irq, struct cpumask *affinity)
871{
872	struct irq_desc *desc = irq_to_desc(irq);
873
874	if (!desc || !desc->percpu_enabled)
875		return -EINVAL;
876
877	if (affinity)
878		cpumask_copy(affinity, desc->percpu_affinity);
879
880	return 0;
881}
882EXPORT_SYMBOL_GPL(irq_get_percpu_devid_partition);
883
884void kstat_incr_irq_this_cpu(unsigned int irq)
885{
886	kstat_incr_irqs_this_cpu(irq_to_desc(irq));
887}
888
889/**
890 * kstat_irqs_cpu - Get the statistics for an interrupt on a cpu
891 * @irq:	The interrupt number
892 * @cpu:	The cpu number
893 *
894 * Returns the sum of interrupt counts on @cpu since boot for
895 * @irq. The caller must ensure that the interrupt is not removed
896 * concurrently.
897 */
898unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
899{
900	struct irq_desc *desc = irq_to_desc(irq);
901
902	return desc && desc->kstat_irqs ?
903			*per_cpu_ptr(desc->kstat_irqs, cpu) : 0;
904}
905
906/**
907 * kstat_irqs - Get the statistics for an interrupt
908 * @irq:	The interrupt number
909 *
910 * Returns the sum of interrupt counts on all cpus since boot for
911 * @irq. The caller must ensure that the interrupt is not removed
912 * concurrently.
913 */
914unsigned int kstat_irqs(unsigned int irq)
915{
916	struct irq_desc *desc = irq_to_desc(irq);
917	int cpu;
918	unsigned int sum = 0;
919
920	if (!desc || !desc->kstat_irqs)
921		return 0;
922	for_each_possible_cpu(cpu)
923		sum += *per_cpu_ptr(desc->kstat_irqs, cpu);
924	return sum;
925}
926
927/**
928 * kstat_irqs_usr - Get the statistics for an interrupt
929 * @irq:	The interrupt number
930 *
931 * Returns the sum of interrupt counts on all cpus since boot for
932 * @irq. Contrary to kstat_irqs() this can be called from any
933 * preemptible context. It's protected against concurrent removal of
934 * an interrupt descriptor when sparse irqs are enabled.
935 */
936unsigned int kstat_irqs_usr(unsigned int irq)
937{
938	unsigned int sum;
939
940	irq_lock_sparse();
941	sum = kstat_irqs(irq);
942	irq_unlock_sparse();
943	return sum;
944}
v4.6
 
  1/*
  2 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
  3 * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
  4 *
  5 * This file contains the interrupt descriptor management code
  6 *
  7 * Detailed information is available in Documentation/DocBook/genericirq
  8 *
  9 */
 10#include <linux/irq.h>
 11#include <linux/slab.h>
 12#include <linux/export.h>
 13#include <linux/interrupt.h>
 14#include <linux/kernel_stat.h>
 15#include <linux/radix-tree.h>
 16#include <linux/bitmap.h>
 17#include <linux/irqdomain.h>
 
 18
 19#include "internals.h"
 20
 21/*
 22 * lockdep: we want to handle all irq_desc locks as a single lock-class:
 23 */
 24static struct lock_class_key irq_desc_lock_class;
 25
 26#if defined(CONFIG_SMP)
 27static int __init irq_affinity_setup(char *str)
 28{
 29	zalloc_cpumask_var(&irq_default_affinity, GFP_NOWAIT);
 30	cpulist_parse(str, irq_default_affinity);
 31	/*
 32	 * Set at least the boot cpu. We don't want to end up with
 33	 * bugreports caused by random comandline masks
 34	 */
 35	cpumask_set_cpu(smp_processor_id(), irq_default_affinity);
 36	return 1;
 37}
 38__setup("irqaffinity=", irq_affinity_setup);
 39
 40static void __init init_irq_default_affinity(void)
 41{
 42#ifdef CONFIG_CPUMASK_OFFSTACK
 43	if (!irq_default_affinity)
 44		zalloc_cpumask_var(&irq_default_affinity, GFP_NOWAIT);
 45#endif
 46	if (cpumask_empty(irq_default_affinity))
 47		cpumask_setall(irq_default_affinity);
 48}
 49#else
 50static void __init init_irq_default_affinity(void)
 51{
 52}
 53#endif
 54
 55#ifdef CONFIG_SMP
 56static int alloc_masks(struct irq_desc *desc, gfp_t gfp, int node)
 57{
 58	if (!zalloc_cpumask_var_node(&desc->irq_common_data.affinity,
 59				     gfp, node))
 60		return -ENOMEM;
 61
 
 
 
 
 
 
 
 
 62#ifdef CONFIG_GENERIC_PENDING_IRQ
 63	if (!zalloc_cpumask_var_node(&desc->pending_mask, gfp, node)) {
 
 
 
 64		free_cpumask_var(desc->irq_common_data.affinity);
 65		return -ENOMEM;
 66	}
 67#endif
 68	return 0;
 69}
 70
 71static void desc_smp_init(struct irq_desc *desc, int node)
 
 72{
 73	cpumask_copy(desc->irq_common_data.affinity, irq_default_affinity);
 
 
 
 74#ifdef CONFIG_GENERIC_PENDING_IRQ
 75	cpumask_clear(desc->pending_mask);
 76#endif
 77#ifdef CONFIG_NUMA
 78	desc->irq_common_data.node = node;
 79#endif
 80}
 81
 82#else
 83static inline int
 84alloc_masks(struct irq_desc *desc, gfp_t gfp, int node) { return 0; }
 85static inline void desc_smp_init(struct irq_desc *desc, int node) { }
 
 86#endif
 87
 88static void desc_set_defaults(unsigned int irq, struct irq_desc *desc, int node,
 89		struct module *owner)
 90{
 91	int cpu;
 92
 93	desc->irq_common_data.handler_data = NULL;
 94	desc->irq_common_data.msi_desc = NULL;
 95
 96	desc->irq_data.common = &desc->irq_common_data;
 97	desc->irq_data.irq = irq;
 98	desc->irq_data.chip = &no_irq_chip;
 99	desc->irq_data.chip_data = NULL;
100	irq_settings_clr_and_set(desc, ~0, _IRQ_DEFAULT_INIT_FLAGS);
101	irqd_set(&desc->irq_data, IRQD_IRQ_DISABLED);
 
102	desc->handle_irq = handle_bad_irq;
103	desc->depth = 1;
104	desc->irq_count = 0;
105	desc->irqs_unhandled = 0;
106	desc->name = NULL;
107	desc->owner = owner;
108	for_each_possible_cpu(cpu)
109		*per_cpu_ptr(desc->kstat_irqs, cpu) = 0;
110	desc_smp_init(desc, node);
111}
112
113int nr_irqs = NR_IRQS;
114EXPORT_SYMBOL_GPL(nr_irqs);
115
116static DEFINE_MUTEX(sparse_irq_lock);
117static DECLARE_BITMAP(allocated_irqs, IRQ_BITMAP_BITS);
118
119#ifdef CONFIG_SPARSE_IRQ
120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121static RADIX_TREE(irq_desc_tree, GFP_KERNEL);
122
123static void irq_insert_desc(unsigned int irq, struct irq_desc *desc)
124{
125	radix_tree_insert(&irq_desc_tree, irq, desc);
126}
127
128struct irq_desc *irq_to_desc(unsigned int irq)
129{
130	return radix_tree_lookup(&irq_desc_tree, irq);
131}
132EXPORT_SYMBOL(irq_to_desc);
133
134static void delete_irq_desc(unsigned int irq)
135{
136	radix_tree_delete(&irq_desc_tree, irq);
137}
138
139#ifdef CONFIG_SMP
140static void free_masks(struct irq_desc *desc)
141{
142#ifdef CONFIG_GENERIC_PENDING_IRQ
143	free_cpumask_var(desc->pending_mask);
144#endif
145	free_cpumask_var(desc->irq_common_data.affinity);
 
 
 
146}
147#else
148static inline void free_masks(struct irq_desc *desc) { }
149#endif
150
151void irq_lock_sparse(void)
152{
153	mutex_lock(&sparse_irq_lock);
154}
155
156void irq_unlock_sparse(void)
157{
158	mutex_unlock(&sparse_irq_lock);
159}
160
161static struct irq_desc *alloc_desc(int irq, int node, struct module *owner)
 
 
162{
163	struct irq_desc *desc;
164	gfp_t gfp = GFP_KERNEL;
165
166	desc = kzalloc_node(sizeof(*desc), gfp, node);
167	if (!desc)
168		return NULL;
169	/* allocate based on nr_cpu_ids */
170	desc->kstat_irqs = alloc_percpu(unsigned int);
171	if (!desc->kstat_irqs)
172		goto err_desc;
173
174	if (alloc_masks(desc, gfp, node))
175		goto err_kstat;
176
177	raw_spin_lock_init(&desc->lock);
178	lockdep_set_class(&desc->lock, &irq_desc_lock_class);
 
179	init_rcu_head(&desc->rcu);
180
181	desc_set_defaults(irq, desc, node, owner);
 
 
182
183	return desc;
184
185err_kstat:
186	free_percpu(desc->kstat_irqs);
187err_desc:
188	kfree(desc);
189	return NULL;
190}
191
192static void delayed_free_desc(struct rcu_head *rhp)
193{
194	struct irq_desc *desc = container_of(rhp, struct irq_desc, rcu);
195
196	free_masks(desc);
197	free_percpu(desc->kstat_irqs);
198	kfree(desc);
199}
200
 
 
 
 
 
 
 
201static void free_desc(unsigned int irq)
202{
203	struct irq_desc *desc = irq_to_desc(irq);
204
 
205	unregister_irq_proc(irq, desc);
206
207	/*
208	 * sparse_irq_lock protects also show_interrupts() and
209	 * kstat_irq_usr(). Once we deleted the descriptor from the
210	 * sparse tree we can free it. Access in proc will fail to
211	 * lookup the descriptor.
 
 
 
212	 */
213	mutex_lock(&sparse_irq_lock);
214	delete_irq_desc(irq);
215	mutex_unlock(&sparse_irq_lock);
216
217	/*
218	 * We free the descriptor, masks and stat fields via RCU. That
219	 * allows demultiplex interrupts to do rcu based management of
220	 * the child interrupts.
221	 */
222	call_rcu(&desc->rcu, delayed_free_desc);
223}
224
225static int alloc_descs(unsigned int start, unsigned int cnt, int node,
226		       struct module *owner)
227{
 
228	struct irq_desc *desc;
 
229	int i;
230
 
 
 
 
 
 
 
 
 
 
 
231	for (i = 0; i < cnt; i++) {
232		desc = alloc_desc(start + i, node, owner);
 
 
 
 
 
233		if (!desc)
234			goto err;
235		mutex_lock(&sparse_irq_lock);
236		irq_insert_desc(start + i, desc);
237		mutex_unlock(&sparse_irq_lock);
 
238	}
 
239	return start;
240
241err:
242	for (i--; i >= 0; i--)
243		free_desc(start + i);
244
245	mutex_lock(&sparse_irq_lock);
246	bitmap_clear(allocated_irqs, start, cnt);
247	mutex_unlock(&sparse_irq_lock);
248	return -ENOMEM;
249}
250
251static int irq_expand_nr_irqs(unsigned int nr)
252{
253	if (nr > IRQ_BITMAP_BITS)
254		return -ENOMEM;
255	nr_irqs = nr;
256	return 0;
257}
258
259int __init early_irq_init(void)
260{
261	int i, initcnt, node = first_online_node;
262	struct irq_desc *desc;
263
264	init_irq_default_affinity();
265
266	/* Let arch update nr_irqs and return the nr of preallocated irqs */
267	initcnt = arch_probe_nr_irqs();
268	printk(KERN_INFO "NR_IRQS:%d nr_irqs:%d %d\n", NR_IRQS, nr_irqs, initcnt);
 
269
270	if (WARN_ON(nr_irqs > IRQ_BITMAP_BITS))
271		nr_irqs = IRQ_BITMAP_BITS;
272
273	if (WARN_ON(initcnt > IRQ_BITMAP_BITS))
274		initcnt = IRQ_BITMAP_BITS;
275
276	if (initcnt > nr_irqs)
277		nr_irqs = initcnt;
278
279	for (i = 0; i < initcnt; i++) {
280		desc = alloc_desc(i, node, NULL);
281		set_bit(i, allocated_irqs);
282		irq_insert_desc(i, desc);
283	}
284	return arch_early_irq_init();
285}
286
287#else /* !CONFIG_SPARSE_IRQ */
288
289struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
290	[0 ... NR_IRQS-1] = {
291		.handle_irq	= handle_bad_irq,
292		.depth		= 1,
293		.lock		= __RAW_SPIN_LOCK_UNLOCKED(irq_desc->lock),
294	}
295};
296
297int __init early_irq_init(void)
298{
299	int count, i, node = first_online_node;
300	struct irq_desc *desc;
301
302	init_irq_default_affinity();
303
304	printk(KERN_INFO "NR_IRQS:%d\n", NR_IRQS);
305
306	desc = irq_desc;
307	count = ARRAY_SIZE(irq_desc);
308
309	for (i = 0; i < count; i++) {
310		desc[i].kstat_irqs = alloc_percpu(unsigned int);
311		alloc_masks(&desc[i], GFP_KERNEL, node);
312		raw_spin_lock_init(&desc[i].lock);
313		lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
314		desc_set_defaults(i, &desc[i], node, NULL);
315	}
316	return arch_early_irq_init();
317}
318
319struct irq_desc *irq_to_desc(unsigned int irq)
320{
321	return (irq < NR_IRQS) ? irq_desc + irq : NULL;
322}
323EXPORT_SYMBOL(irq_to_desc);
324
325static void free_desc(unsigned int irq)
326{
327	struct irq_desc *desc = irq_to_desc(irq);
328	unsigned long flags;
329
330	raw_spin_lock_irqsave(&desc->lock, flags);
331	desc_set_defaults(irq, desc, irq_desc_get_node(desc), NULL);
332	raw_spin_unlock_irqrestore(&desc->lock, flags);
333}
334
335static inline int alloc_descs(unsigned int start, unsigned int cnt, int node,
 
336			      struct module *owner)
337{
338	u32 i;
339
340	for (i = 0; i < cnt; i++) {
341		struct irq_desc *desc = irq_to_desc(start + i);
342
343		desc->owner = owner;
344	}
 
345	return start;
346}
347
348static int irq_expand_nr_irqs(unsigned int nr)
349{
350	return -ENOMEM;
351}
352
353void irq_mark_irq(unsigned int irq)
354{
355	mutex_lock(&sparse_irq_lock);
356	bitmap_set(allocated_irqs, irq, 1);
357	mutex_unlock(&sparse_irq_lock);
358}
359
360#ifdef CONFIG_GENERIC_IRQ_LEGACY
361void irq_init_desc(unsigned int irq)
362{
363	free_desc(irq);
364}
365#endif
366
367#endif /* !CONFIG_SPARSE_IRQ */
368
369/**
370 * generic_handle_irq - Invoke the handler for a particular irq
371 * @irq:	The irq number to handle
372 *
373 */
374int generic_handle_irq(unsigned int irq)
375{
376	struct irq_desc *desc = irq_to_desc(irq);
377
378	if (!desc)
379		return -EINVAL;
380	generic_handle_irq_desc(desc);
381	return 0;
382}
383EXPORT_SYMBOL_GPL(generic_handle_irq);
384
385#ifdef CONFIG_HANDLE_DOMAIN_IRQ
386/**
387 * __handle_domain_irq - Invoke the handler for a HW irq belonging to a domain
388 * @domain:	The domain where to perform the lookup
389 * @hwirq:	The HW irq number to convert to a logical one
390 * @lookup:	Whether to perform the domain lookup or not
391 * @regs:	Register file coming from the low-level handling code
392 *
393 * Returns:	0 on success, or -EINVAL if conversion has failed
394 */
395int __handle_domain_irq(struct irq_domain *domain, unsigned int hwirq,
396			bool lookup, struct pt_regs *regs)
397{
398	struct pt_regs *old_regs = set_irq_regs(regs);
399	unsigned int irq = hwirq;
400	int ret = 0;
401
402	irq_enter();
403
404#ifdef CONFIG_IRQ_DOMAIN
405	if (lookup)
406		irq = irq_find_mapping(domain, hwirq);
407#endif
408
409	/*
410	 * Some hardware gives randomly wrong interrupts.  Rather
411	 * than crashing, do something sensible.
412	 */
413	if (unlikely(!irq || irq >= nr_irqs)) {
414		ack_bad_irq(irq);
415		ret = -EINVAL;
416	} else {
417		generic_handle_irq(irq);
418	}
419
420	irq_exit();
421	set_irq_regs(old_regs);
422	return ret;
423}
424#endif
425
426/* Dynamic interrupt handling */
427
428/**
429 * irq_free_descs - free irq descriptors
430 * @from:	Start of descriptor range
431 * @cnt:	Number of consecutive irqs to free
432 */
433void irq_free_descs(unsigned int from, unsigned int cnt)
434{
435	int i;
436
437	if (from >= nr_irqs || (from + cnt) > nr_irqs)
438		return;
439
 
440	for (i = 0; i < cnt; i++)
441		free_desc(from + i);
442
443	mutex_lock(&sparse_irq_lock);
444	bitmap_clear(allocated_irqs, from, cnt);
445	mutex_unlock(&sparse_irq_lock);
446}
447EXPORT_SYMBOL_GPL(irq_free_descs);
448
449/**
450 * irq_alloc_descs - allocate and initialize a range of irq descriptors
451 * @irq:	Allocate for specific irq number if irq >= 0
452 * @from:	Start the search from this irq number
453 * @cnt:	Number of consecutive irqs to allocate.
454 * @node:	Preferred node on which the irq descriptor should be allocated
455 * @owner:	Owning module (can be NULL)
 
 
 
456 *
457 * Returns the first irq number or error code
458 */
459int __ref
460__irq_alloc_descs(int irq, unsigned int from, unsigned int cnt, int node,
461		  struct module *owner)
462{
463	int start, ret;
464
465	if (!cnt)
466		return -EINVAL;
467
468	if (irq >= 0) {
469		if (from > irq)
470			return -EINVAL;
471		from = irq;
472	} else {
473		/*
474		 * For interrupts which are freely allocated the
475		 * architecture can force a lower bound to the @from
476		 * argument. x86 uses this to exclude the GSI space.
477		 */
478		from = arch_dynirq_lower_bound(from);
479	}
480
481	mutex_lock(&sparse_irq_lock);
482
483	start = bitmap_find_next_zero_area(allocated_irqs, IRQ_BITMAP_BITS,
484					   from, cnt, 0);
485	ret = -EEXIST;
486	if (irq >=0 && start != irq)
487		goto err;
488
489	if (start + cnt > nr_irqs) {
490		ret = irq_expand_nr_irqs(start + cnt);
491		if (ret)
492			goto err;
493	}
494
495	bitmap_set(allocated_irqs, start, cnt);
496	mutex_unlock(&sparse_irq_lock);
497	return alloc_descs(start, cnt, node, owner);
498
499err:
500	mutex_unlock(&sparse_irq_lock);
501	return ret;
502}
503EXPORT_SYMBOL_GPL(__irq_alloc_descs);
504
505#ifdef CONFIG_GENERIC_IRQ_LEGACY_ALLOC_HWIRQ
506/**
507 * irq_alloc_hwirqs - Allocate an irq descriptor and initialize the hardware
508 * @cnt:	number of interrupts to allocate
509 * @node:	node on which to allocate
510 *
511 * Returns an interrupt number > 0 or 0, if the allocation fails.
512 */
513unsigned int irq_alloc_hwirqs(int cnt, int node)
514{
515	int i, irq = __irq_alloc_descs(-1, 0, cnt, node, NULL);
516
517	if (irq < 0)
518		return 0;
519
520	for (i = irq; cnt > 0; i++, cnt--) {
521		if (arch_setup_hwirq(i, node))
522			goto err;
523		irq_clear_status_flags(i, _IRQ_NOREQUEST);
524	}
525	return irq;
526
527err:
528	for (i--; i >= irq; i--) {
529		irq_set_status_flags(i, _IRQ_NOREQUEST | _IRQ_NOPROBE);
530		arch_teardown_hwirq(i);
531	}
532	irq_free_descs(irq, cnt);
533	return 0;
534}
535EXPORT_SYMBOL_GPL(irq_alloc_hwirqs);
536
537/**
538 * irq_free_hwirqs - Free irq descriptor and cleanup the hardware
539 * @from:	Free from irq number
540 * @cnt:	number of interrupts to free
541 *
542 */
543void irq_free_hwirqs(unsigned int from, int cnt)
544{
545	int i, j;
546
547	for (i = from, j = cnt; j > 0; i++, j--) {
548		irq_set_status_flags(i, _IRQ_NOREQUEST | _IRQ_NOPROBE);
549		arch_teardown_hwirq(i);
550	}
551	irq_free_descs(from, cnt);
552}
553EXPORT_SYMBOL_GPL(irq_free_hwirqs);
554#endif
555
556/**
557 * irq_get_next_irq - get next allocated irq number
558 * @offset:	where to start the search
559 *
560 * Returns next irq number after offset or nr_irqs if none is found.
561 */
562unsigned int irq_get_next_irq(unsigned int offset)
563{
564	return find_next_bit(allocated_irqs, nr_irqs, offset);
565}
566
567struct irq_desc *
568__irq_get_desc_lock(unsigned int irq, unsigned long *flags, bool bus,
569		    unsigned int check)
570{
571	struct irq_desc *desc = irq_to_desc(irq);
572
573	if (desc) {
574		if (check & _IRQ_DESC_CHECK) {
575			if ((check & _IRQ_DESC_PERCPU) &&
576			    !irq_settings_is_per_cpu_devid(desc))
577				return NULL;
578
579			if (!(check & _IRQ_DESC_PERCPU) &&
580			    irq_settings_is_per_cpu_devid(desc))
581				return NULL;
582		}
583
584		if (bus)
585			chip_bus_lock(desc);
586		raw_spin_lock_irqsave(&desc->lock, *flags);
587	}
588	return desc;
589}
590
591void __irq_put_desc_unlock(struct irq_desc *desc, unsigned long flags, bool bus)
592{
593	raw_spin_unlock_irqrestore(&desc->lock, flags);
594	if (bus)
595		chip_bus_sync_unlock(desc);
596}
597
598int irq_set_percpu_devid(unsigned int irq)
 
599{
600	struct irq_desc *desc = irq_to_desc(irq);
601
602	if (!desc)
603		return -EINVAL;
604
605	if (desc->percpu_enabled)
606		return -EINVAL;
607
608	desc->percpu_enabled = kzalloc(sizeof(*desc->percpu_enabled), GFP_KERNEL);
609
610	if (!desc->percpu_enabled)
611		return -ENOMEM;
612
 
 
 
 
 
613	irq_set_percpu_devid_flags(irq);
614	return 0;
615}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
616
617void kstat_incr_irq_this_cpu(unsigned int irq)
618{
619	kstat_incr_irqs_this_cpu(irq_to_desc(irq));
620}
621
622/**
623 * kstat_irqs_cpu - Get the statistics for an interrupt on a cpu
624 * @irq:	The interrupt number
625 * @cpu:	The cpu number
626 *
627 * Returns the sum of interrupt counts on @cpu since boot for
628 * @irq. The caller must ensure that the interrupt is not removed
629 * concurrently.
630 */
631unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
632{
633	struct irq_desc *desc = irq_to_desc(irq);
634
635	return desc && desc->kstat_irqs ?
636			*per_cpu_ptr(desc->kstat_irqs, cpu) : 0;
637}
638
639/**
640 * kstat_irqs - Get the statistics for an interrupt
641 * @irq:	The interrupt number
642 *
643 * Returns the sum of interrupt counts on all cpus since boot for
644 * @irq. The caller must ensure that the interrupt is not removed
645 * concurrently.
646 */
647unsigned int kstat_irqs(unsigned int irq)
648{
649	struct irq_desc *desc = irq_to_desc(irq);
650	int cpu;
651	unsigned int sum = 0;
652
653	if (!desc || !desc->kstat_irqs)
654		return 0;
655	for_each_possible_cpu(cpu)
656		sum += *per_cpu_ptr(desc->kstat_irqs, cpu);
657	return sum;
658}
659
660/**
661 * kstat_irqs_usr - Get the statistics for an interrupt
662 * @irq:	The interrupt number
663 *
664 * Returns the sum of interrupt counts on all cpus since boot for
665 * @irq. Contrary to kstat_irqs() this can be called from any
666 * preemptible context. It's protected against concurrent removal of
667 * an interrupt descriptor when sparse irqs are enabled.
668 */
669unsigned int kstat_irqs_usr(unsigned int irq)
670{
671	unsigned int sum;
672
673	irq_lock_sparse();
674	sum = kstat_irqs(irq);
675	irq_unlock_sparse();
676	return sum;
677}