Loading...
1/*
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/buffer_head.h>
14#include <linux/mpage.h>
15#include <linux/writeback.h>
16#include <linux/backing-dev.h>
17#include <linux/pagevec.h>
18#include <linux/blkdev.h>
19#include <linux/bio.h>
20#include <linux/prefetch.h>
21#include <linux/uio.h>
22#include <linux/mm.h>
23#include <linux/memcontrol.h>
24#include <linux/cleancache.h>
25#include <linux/sched/signal.h>
26
27#include "f2fs.h"
28#include "node.h"
29#include "segment.h"
30#include "trace.h"
31#include <trace/events/f2fs.h>
32
33static bool __is_cp_guaranteed(struct page *page)
34{
35 struct address_space *mapping = page->mapping;
36 struct inode *inode;
37 struct f2fs_sb_info *sbi;
38
39 if (!mapping)
40 return false;
41
42 inode = mapping->host;
43 sbi = F2FS_I_SB(inode);
44
45 if (inode->i_ino == F2FS_META_INO(sbi) ||
46 inode->i_ino == F2FS_NODE_INO(sbi) ||
47 S_ISDIR(inode->i_mode) ||
48 is_cold_data(page))
49 return true;
50 return false;
51}
52
53static void f2fs_read_end_io(struct bio *bio)
54{
55 struct bio_vec *bvec;
56 int i;
57
58#ifdef CONFIG_F2FS_FAULT_INJECTION
59 if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)), FAULT_IO)) {
60 f2fs_show_injection_info(FAULT_IO);
61 bio->bi_status = BLK_STS_IOERR;
62 }
63#endif
64
65 if (f2fs_bio_encrypted(bio)) {
66 if (bio->bi_status) {
67 fscrypt_release_ctx(bio->bi_private);
68 } else {
69 fscrypt_decrypt_bio_pages(bio->bi_private, bio);
70 return;
71 }
72 }
73
74 bio_for_each_segment_all(bvec, bio, i) {
75 struct page *page = bvec->bv_page;
76
77 if (!bio->bi_status) {
78 if (!PageUptodate(page))
79 SetPageUptodate(page);
80 } else {
81 ClearPageUptodate(page);
82 SetPageError(page);
83 }
84 unlock_page(page);
85 }
86 bio_put(bio);
87}
88
89static void f2fs_write_end_io(struct bio *bio)
90{
91 struct f2fs_sb_info *sbi = bio->bi_private;
92 struct bio_vec *bvec;
93 int i;
94
95 bio_for_each_segment_all(bvec, bio, i) {
96 struct page *page = bvec->bv_page;
97 enum count_type type = WB_DATA_TYPE(page);
98
99 if (IS_DUMMY_WRITTEN_PAGE(page)) {
100 set_page_private(page, (unsigned long)NULL);
101 ClearPagePrivate(page);
102 unlock_page(page);
103 mempool_free(page, sbi->write_io_dummy);
104
105 if (unlikely(bio->bi_status))
106 f2fs_stop_checkpoint(sbi, true);
107 continue;
108 }
109
110 fscrypt_pullback_bio_page(&page, true);
111
112 if (unlikely(bio->bi_status)) {
113 mapping_set_error(page->mapping, -EIO);
114 if (type == F2FS_WB_CP_DATA)
115 f2fs_stop_checkpoint(sbi, true);
116 }
117
118 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
119 page->index != nid_of_node(page));
120
121 dec_page_count(sbi, type);
122 clear_cold_data(page);
123 end_page_writeback(page);
124 }
125 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
126 wq_has_sleeper(&sbi->cp_wait))
127 wake_up(&sbi->cp_wait);
128
129 bio_put(bio);
130}
131
132/*
133 * Return true, if pre_bio's bdev is same as its target device.
134 */
135struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
136 block_t blk_addr, struct bio *bio)
137{
138 struct block_device *bdev = sbi->sb->s_bdev;
139 int i;
140
141 for (i = 0; i < sbi->s_ndevs; i++) {
142 if (FDEV(i).start_blk <= blk_addr &&
143 FDEV(i).end_blk >= blk_addr) {
144 blk_addr -= FDEV(i).start_blk;
145 bdev = FDEV(i).bdev;
146 break;
147 }
148 }
149 if (bio) {
150 bio_set_dev(bio, bdev);
151 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
152 }
153 return bdev;
154}
155
156int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
157{
158 int i;
159
160 for (i = 0; i < sbi->s_ndevs; i++)
161 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
162 return i;
163 return 0;
164}
165
166static bool __same_bdev(struct f2fs_sb_info *sbi,
167 block_t blk_addr, struct bio *bio)
168{
169 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
170 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
171}
172
173/*
174 * Low-level block read/write IO operations.
175 */
176static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
177 struct writeback_control *wbc,
178 int npages, bool is_read,
179 enum page_type type, enum temp_type temp)
180{
181 struct bio *bio;
182
183 bio = f2fs_bio_alloc(sbi, npages, true);
184
185 f2fs_target_device(sbi, blk_addr, bio);
186 if (is_read) {
187 bio->bi_end_io = f2fs_read_end_io;
188 bio->bi_private = NULL;
189 } else {
190 bio->bi_end_io = f2fs_write_end_io;
191 bio->bi_private = sbi;
192 bio->bi_write_hint = io_type_to_rw_hint(sbi, type, temp);
193 }
194 if (wbc)
195 wbc_init_bio(wbc, bio);
196
197 return bio;
198}
199
200static inline void __submit_bio(struct f2fs_sb_info *sbi,
201 struct bio *bio, enum page_type type)
202{
203 if (!is_read_io(bio_op(bio))) {
204 unsigned int start;
205
206 if (type != DATA && type != NODE)
207 goto submit_io;
208
209 if (f2fs_sb_has_blkzoned(sbi->sb) && current->plug)
210 blk_finish_plug(current->plug);
211
212 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
213 start %= F2FS_IO_SIZE(sbi);
214
215 if (start == 0)
216 goto submit_io;
217
218 /* fill dummy pages */
219 for (; start < F2FS_IO_SIZE(sbi); start++) {
220 struct page *page =
221 mempool_alloc(sbi->write_io_dummy,
222 GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
223 f2fs_bug_on(sbi, !page);
224
225 SetPagePrivate(page);
226 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
227 lock_page(page);
228 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
229 f2fs_bug_on(sbi, 1);
230 }
231 /*
232 * In the NODE case, we lose next block address chain. So, we
233 * need to do checkpoint in f2fs_sync_file.
234 */
235 if (type == NODE)
236 set_sbi_flag(sbi, SBI_NEED_CP);
237 }
238submit_io:
239 if (is_read_io(bio_op(bio)))
240 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
241 else
242 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
243 submit_bio(bio);
244}
245
246static void __submit_merged_bio(struct f2fs_bio_info *io)
247{
248 struct f2fs_io_info *fio = &io->fio;
249
250 if (!io->bio)
251 return;
252
253 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
254
255 if (is_read_io(fio->op))
256 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
257 else
258 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
259
260 __submit_bio(io->sbi, io->bio, fio->type);
261 io->bio = NULL;
262}
263
264static bool __has_merged_page(struct f2fs_bio_info *io,
265 struct inode *inode, nid_t ino, pgoff_t idx)
266{
267 struct bio_vec *bvec;
268 struct page *target;
269 int i;
270
271 if (!io->bio)
272 return false;
273
274 if (!inode && !ino)
275 return true;
276
277 bio_for_each_segment_all(bvec, io->bio, i) {
278
279 if (bvec->bv_page->mapping)
280 target = bvec->bv_page;
281 else
282 target = fscrypt_control_page(bvec->bv_page);
283
284 if (idx != target->index)
285 continue;
286
287 if (inode && inode == target->mapping->host)
288 return true;
289 if (ino && ino == ino_of_node(target))
290 return true;
291 }
292
293 return false;
294}
295
296static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
297 nid_t ino, pgoff_t idx, enum page_type type)
298{
299 enum page_type btype = PAGE_TYPE_OF_BIO(type);
300 enum temp_type temp;
301 struct f2fs_bio_info *io;
302 bool ret = false;
303
304 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
305 io = sbi->write_io[btype] + temp;
306
307 down_read(&io->io_rwsem);
308 ret = __has_merged_page(io, inode, ino, idx);
309 up_read(&io->io_rwsem);
310
311 /* TODO: use HOT temp only for meta pages now. */
312 if (ret || btype == META)
313 break;
314 }
315 return ret;
316}
317
318static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
319 enum page_type type, enum temp_type temp)
320{
321 enum page_type btype = PAGE_TYPE_OF_BIO(type);
322 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
323
324 down_write(&io->io_rwsem);
325
326 /* change META to META_FLUSH in the checkpoint procedure */
327 if (type >= META_FLUSH) {
328 io->fio.type = META_FLUSH;
329 io->fio.op = REQ_OP_WRITE;
330 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
331 if (!test_opt(sbi, NOBARRIER))
332 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
333 }
334 __submit_merged_bio(io);
335 up_write(&io->io_rwsem);
336}
337
338static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
339 struct inode *inode, nid_t ino, pgoff_t idx,
340 enum page_type type, bool force)
341{
342 enum temp_type temp;
343
344 if (!force && !has_merged_page(sbi, inode, ino, idx, type))
345 return;
346
347 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
348
349 __f2fs_submit_merged_write(sbi, type, temp);
350
351 /* TODO: use HOT temp only for meta pages now. */
352 if (type >= META)
353 break;
354 }
355}
356
357void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
358{
359 __submit_merged_write_cond(sbi, NULL, 0, 0, type, true);
360}
361
362void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
363 struct inode *inode, nid_t ino, pgoff_t idx,
364 enum page_type type)
365{
366 __submit_merged_write_cond(sbi, inode, ino, idx, type, false);
367}
368
369void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
370{
371 f2fs_submit_merged_write(sbi, DATA);
372 f2fs_submit_merged_write(sbi, NODE);
373 f2fs_submit_merged_write(sbi, META);
374}
375
376/*
377 * Fill the locked page with data located in the block address.
378 * A caller needs to unlock the page on failure.
379 */
380int f2fs_submit_page_bio(struct f2fs_io_info *fio)
381{
382 struct bio *bio;
383 struct page *page = fio->encrypted_page ?
384 fio->encrypted_page : fio->page;
385
386 verify_block_addr(fio, fio->new_blkaddr);
387 trace_f2fs_submit_page_bio(page, fio);
388 f2fs_trace_ios(fio, 0);
389
390 /* Allocate a new bio */
391 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc,
392 1, is_read_io(fio->op), fio->type, fio->temp);
393
394 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
395 bio_put(bio);
396 return -EFAULT;
397 }
398 bio_set_op_attrs(bio, fio->op, fio->op_flags);
399
400 __submit_bio(fio->sbi, bio, fio->type);
401
402 if (!is_read_io(fio->op))
403 inc_page_count(fio->sbi, WB_DATA_TYPE(fio->page));
404 return 0;
405}
406
407int f2fs_submit_page_write(struct f2fs_io_info *fio)
408{
409 struct f2fs_sb_info *sbi = fio->sbi;
410 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
411 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
412 struct page *bio_page;
413 int err = 0;
414
415 f2fs_bug_on(sbi, is_read_io(fio->op));
416
417 down_write(&io->io_rwsem);
418next:
419 if (fio->in_list) {
420 spin_lock(&io->io_lock);
421 if (list_empty(&io->io_list)) {
422 spin_unlock(&io->io_lock);
423 goto out_fail;
424 }
425 fio = list_first_entry(&io->io_list,
426 struct f2fs_io_info, list);
427 list_del(&fio->list);
428 spin_unlock(&io->io_lock);
429 }
430
431 if (fio->old_blkaddr != NEW_ADDR)
432 verify_block_addr(fio, fio->old_blkaddr);
433 verify_block_addr(fio, fio->new_blkaddr);
434
435 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
436
437 /* set submitted = true as a return value */
438 fio->submitted = true;
439
440 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
441
442 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
443 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
444 !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
445 __submit_merged_bio(io);
446alloc_new:
447 if (io->bio == NULL) {
448 if ((fio->type == DATA || fio->type == NODE) &&
449 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
450 err = -EAGAIN;
451 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
452 goto out_fail;
453 }
454 io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc,
455 BIO_MAX_PAGES, false,
456 fio->type, fio->temp);
457 io->fio = *fio;
458 }
459
460 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
461 __submit_merged_bio(io);
462 goto alloc_new;
463 }
464
465 if (fio->io_wbc)
466 wbc_account_io(fio->io_wbc, bio_page, PAGE_SIZE);
467
468 io->last_block_in_bio = fio->new_blkaddr;
469 f2fs_trace_ios(fio, 0);
470
471 trace_f2fs_submit_page_write(fio->page, fio);
472
473 if (fio->in_list)
474 goto next;
475out_fail:
476 up_write(&io->io_rwsem);
477 return err;
478}
479
480static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
481 unsigned nr_pages)
482{
483 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
484 struct fscrypt_ctx *ctx = NULL;
485 struct bio *bio;
486
487 if (f2fs_encrypted_file(inode)) {
488 ctx = fscrypt_get_ctx(inode, GFP_NOFS);
489 if (IS_ERR(ctx))
490 return ERR_CAST(ctx);
491
492 /* wait the page to be moved by cleaning */
493 f2fs_wait_on_block_writeback(sbi, blkaddr);
494 }
495
496 bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
497 if (!bio) {
498 if (ctx)
499 fscrypt_release_ctx(ctx);
500 return ERR_PTR(-ENOMEM);
501 }
502 f2fs_target_device(sbi, blkaddr, bio);
503 bio->bi_end_io = f2fs_read_end_io;
504 bio->bi_private = ctx;
505 bio_set_op_attrs(bio, REQ_OP_READ, 0);
506
507 return bio;
508}
509
510/* This can handle encryption stuffs */
511static int f2fs_submit_page_read(struct inode *inode, struct page *page,
512 block_t blkaddr)
513{
514 struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1);
515
516 if (IS_ERR(bio))
517 return PTR_ERR(bio);
518
519 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
520 bio_put(bio);
521 return -EFAULT;
522 }
523 __submit_bio(F2FS_I_SB(inode), bio, DATA);
524 return 0;
525}
526
527static void __set_data_blkaddr(struct dnode_of_data *dn)
528{
529 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
530 __le32 *addr_array;
531 int base = 0;
532
533 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
534 base = get_extra_isize(dn->inode);
535
536 /* Get physical address of data block */
537 addr_array = blkaddr_in_node(rn);
538 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
539}
540
541/*
542 * Lock ordering for the change of data block address:
543 * ->data_page
544 * ->node_page
545 * update block addresses in the node page
546 */
547void set_data_blkaddr(struct dnode_of_data *dn)
548{
549 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
550 __set_data_blkaddr(dn);
551 if (set_page_dirty(dn->node_page))
552 dn->node_changed = true;
553}
554
555void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
556{
557 dn->data_blkaddr = blkaddr;
558 set_data_blkaddr(dn);
559 f2fs_update_extent_cache(dn);
560}
561
562/* dn->ofs_in_node will be returned with up-to-date last block pointer */
563int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
564{
565 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
566 int err;
567
568 if (!count)
569 return 0;
570
571 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
572 return -EPERM;
573 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
574 return err;
575
576 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
577 dn->ofs_in_node, count);
578
579 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
580
581 for (; count > 0; dn->ofs_in_node++) {
582 block_t blkaddr = datablock_addr(dn->inode,
583 dn->node_page, dn->ofs_in_node);
584 if (blkaddr == NULL_ADDR) {
585 dn->data_blkaddr = NEW_ADDR;
586 __set_data_blkaddr(dn);
587 count--;
588 }
589 }
590
591 if (set_page_dirty(dn->node_page))
592 dn->node_changed = true;
593 return 0;
594}
595
596/* Should keep dn->ofs_in_node unchanged */
597int reserve_new_block(struct dnode_of_data *dn)
598{
599 unsigned int ofs_in_node = dn->ofs_in_node;
600 int ret;
601
602 ret = reserve_new_blocks(dn, 1);
603 dn->ofs_in_node = ofs_in_node;
604 return ret;
605}
606
607int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
608{
609 bool need_put = dn->inode_page ? false : true;
610 int err;
611
612 err = get_dnode_of_data(dn, index, ALLOC_NODE);
613 if (err)
614 return err;
615
616 if (dn->data_blkaddr == NULL_ADDR)
617 err = reserve_new_block(dn);
618 if (err || need_put)
619 f2fs_put_dnode(dn);
620 return err;
621}
622
623int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
624{
625 struct extent_info ei = {0,0,0};
626 struct inode *inode = dn->inode;
627
628 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
629 dn->data_blkaddr = ei.blk + index - ei.fofs;
630 return 0;
631 }
632
633 return f2fs_reserve_block(dn, index);
634}
635
636struct page *get_read_data_page(struct inode *inode, pgoff_t index,
637 int op_flags, bool for_write)
638{
639 struct address_space *mapping = inode->i_mapping;
640 struct dnode_of_data dn;
641 struct page *page;
642 struct extent_info ei = {0,0,0};
643 int err;
644
645 page = f2fs_grab_cache_page(mapping, index, for_write);
646 if (!page)
647 return ERR_PTR(-ENOMEM);
648
649 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
650 dn.data_blkaddr = ei.blk + index - ei.fofs;
651 goto got_it;
652 }
653
654 set_new_dnode(&dn, inode, NULL, NULL, 0);
655 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
656 if (err)
657 goto put_err;
658 f2fs_put_dnode(&dn);
659
660 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
661 err = -ENOENT;
662 goto put_err;
663 }
664got_it:
665 if (PageUptodate(page)) {
666 unlock_page(page);
667 return page;
668 }
669
670 /*
671 * A new dentry page is allocated but not able to be written, since its
672 * new inode page couldn't be allocated due to -ENOSPC.
673 * In such the case, its blkaddr can be remained as NEW_ADDR.
674 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
675 */
676 if (dn.data_blkaddr == NEW_ADDR) {
677 zero_user_segment(page, 0, PAGE_SIZE);
678 if (!PageUptodate(page))
679 SetPageUptodate(page);
680 unlock_page(page);
681 return page;
682 }
683
684 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
685 if (err)
686 goto put_err;
687 return page;
688
689put_err:
690 f2fs_put_page(page, 1);
691 return ERR_PTR(err);
692}
693
694struct page *find_data_page(struct inode *inode, pgoff_t index)
695{
696 struct address_space *mapping = inode->i_mapping;
697 struct page *page;
698
699 page = find_get_page(mapping, index);
700 if (page && PageUptodate(page))
701 return page;
702 f2fs_put_page(page, 0);
703
704 page = get_read_data_page(inode, index, 0, false);
705 if (IS_ERR(page))
706 return page;
707
708 if (PageUptodate(page))
709 return page;
710
711 wait_on_page_locked(page);
712 if (unlikely(!PageUptodate(page))) {
713 f2fs_put_page(page, 0);
714 return ERR_PTR(-EIO);
715 }
716 return page;
717}
718
719/*
720 * If it tries to access a hole, return an error.
721 * Because, the callers, functions in dir.c and GC, should be able to know
722 * whether this page exists or not.
723 */
724struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
725 bool for_write)
726{
727 struct address_space *mapping = inode->i_mapping;
728 struct page *page;
729repeat:
730 page = get_read_data_page(inode, index, 0, for_write);
731 if (IS_ERR(page))
732 return page;
733
734 /* wait for read completion */
735 lock_page(page);
736 if (unlikely(page->mapping != mapping)) {
737 f2fs_put_page(page, 1);
738 goto repeat;
739 }
740 if (unlikely(!PageUptodate(page))) {
741 f2fs_put_page(page, 1);
742 return ERR_PTR(-EIO);
743 }
744 return page;
745}
746
747/*
748 * Caller ensures that this data page is never allocated.
749 * A new zero-filled data page is allocated in the page cache.
750 *
751 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
752 * f2fs_unlock_op().
753 * Note that, ipage is set only by make_empty_dir, and if any error occur,
754 * ipage should be released by this function.
755 */
756struct page *get_new_data_page(struct inode *inode,
757 struct page *ipage, pgoff_t index, bool new_i_size)
758{
759 struct address_space *mapping = inode->i_mapping;
760 struct page *page;
761 struct dnode_of_data dn;
762 int err;
763
764 page = f2fs_grab_cache_page(mapping, index, true);
765 if (!page) {
766 /*
767 * before exiting, we should make sure ipage will be released
768 * if any error occur.
769 */
770 f2fs_put_page(ipage, 1);
771 return ERR_PTR(-ENOMEM);
772 }
773
774 set_new_dnode(&dn, inode, ipage, NULL, 0);
775 err = f2fs_reserve_block(&dn, index);
776 if (err) {
777 f2fs_put_page(page, 1);
778 return ERR_PTR(err);
779 }
780 if (!ipage)
781 f2fs_put_dnode(&dn);
782
783 if (PageUptodate(page))
784 goto got_it;
785
786 if (dn.data_blkaddr == NEW_ADDR) {
787 zero_user_segment(page, 0, PAGE_SIZE);
788 if (!PageUptodate(page))
789 SetPageUptodate(page);
790 } else {
791 f2fs_put_page(page, 1);
792
793 /* if ipage exists, blkaddr should be NEW_ADDR */
794 f2fs_bug_on(F2FS_I_SB(inode), ipage);
795 page = get_lock_data_page(inode, index, true);
796 if (IS_ERR(page))
797 return page;
798 }
799got_it:
800 if (new_i_size && i_size_read(inode) <
801 ((loff_t)(index + 1) << PAGE_SHIFT))
802 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
803 return page;
804}
805
806static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
807{
808 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
809 struct f2fs_summary sum;
810 struct node_info ni;
811 pgoff_t fofs;
812 blkcnt_t count = 1;
813 int err;
814
815 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
816 return -EPERM;
817
818 dn->data_blkaddr = datablock_addr(dn->inode,
819 dn->node_page, dn->ofs_in_node);
820 if (dn->data_blkaddr == NEW_ADDR)
821 goto alloc;
822
823 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
824 return err;
825
826alloc:
827 get_node_info(sbi, dn->nid, &ni);
828 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
829
830 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
831 &sum, seg_type, NULL, false);
832 set_data_blkaddr(dn);
833
834 /* update i_size */
835 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
836 dn->ofs_in_node;
837 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
838 f2fs_i_size_write(dn->inode,
839 ((loff_t)(fofs + 1) << PAGE_SHIFT));
840 return 0;
841}
842
843int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
844{
845 struct inode *inode = file_inode(iocb->ki_filp);
846 struct f2fs_map_blocks map;
847 int flag;
848 int err = 0;
849 bool direct_io = iocb->ki_flags & IOCB_DIRECT;
850
851 /* convert inline data for Direct I/O*/
852 if (direct_io) {
853 err = f2fs_convert_inline_inode(inode);
854 if (err)
855 return err;
856 }
857
858 if (is_inode_flag_set(inode, FI_NO_PREALLOC))
859 return 0;
860
861 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
862 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
863 if (map.m_len > map.m_lblk)
864 map.m_len -= map.m_lblk;
865 else
866 map.m_len = 0;
867
868 map.m_next_pgofs = NULL;
869 map.m_next_extent = NULL;
870 map.m_seg_type = NO_CHECK_TYPE;
871
872 if (direct_io) {
873 map.m_seg_type = rw_hint_to_seg_type(iocb->ki_hint);
874 flag = f2fs_force_buffered_io(inode, WRITE) ?
875 F2FS_GET_BLOCK_PRE_AIO :
876 F2FS_GET_BLOCK_PRE_DIO;
877 goto map_blocks;
878 }
879 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
880 err = f2fs_convert_inline_inode(inode);
881 if (err)
882 return err;
883 }
884 if (f2fs_has_inline_data(inode))
885 return err;
886
887 flag = F2FS_GET_BLOCK_PRE_AIO;
888
889map_blocks:
890 err = f2fs_map_blocks(inode, &map, 1, flag);
891 if (map.m_len > 0 && err == -ENOSPC) {
892 if (!direct_io)
893 set_inode_flag(inode, FI_NO_PREALLOC);
894 err = 0;
895 }
896 return err;
897}
898
899static inline void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
900{
901 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
902 if (lock)
903 down_read(&sbi->node_change);
904 else
905 up_read(&sbi->node_change);
906 } else {
907 if (lock)
908 f2fs_lock_op(sbi);
909 else
910 f2fs_unlock_op(sbi);
911 }
912}
913
914/*
915 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
916 * f2fs_map_blocks structure.
917 * If original data blocks are allocated, then give them to blockdev.
918 * Otherwise,
919 * a. preallocate requested block addresses
920 * b. do not use extent cache for better performance
921 * c. give the block addresses to blockdev
922 */
923int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
924 int create, int flag)
925{
926 unsigned int maxblocks = map->m_len;
927 struct dnode_of_data dn;
928 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
929 int mode = create ? ALLOC_NODE : LOOKUP_NODE;
930 pgoff_t pgofs, end_offset, end;
931 int err = 0, ofs = 1;
932 unsigned int ofs_in_node, last_ofs_in_node;
933 blkcnt_t prealloc;
934 struct extent_info ei = {0,0,0};
935 block_t blkaddr;
936 unsigned int start_pgofs;
937
938 if (!maxblocks)
939 return 0;
940
941 map->m_len = 0;
942 map->m_flags = 0;
943
944 /* it only supports block size == page size */
945 pgofs = (pgoff_t)map->m_lblk;
946 end = pgofs + maxblocks;
947
948 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
949 map->m_pblk = ei.blk + pgofs - ei.fofs;
950 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
951 map->m_flags = F2FS_MAP_MAPPED;
952 if (map->m_next_extent)
953 *map->m_next_extent = pgofs + map->m_len;
954 goto out;
955 }
956
957next_dnode:
958 if (create)
959 __do_map_lock(sbi, flag, true);
960
961 /* When reading holes, we need its node page */
962 set_new_dnode(&dn, inode, NULL, NULL, 0);
963 err = get_dnode_of_data(&dn, pgofs, mode);
964 if (err) {
965 if (flag == F2FS_GET_BLOCK_BMAP)
966 map->m_pblk = 0;
967 if (err == -ENOENT) {
968 err = 0;
969 if (map->m_next_pgofs)
970 *map->m_next_pgofs =
971 get_next_page_offset(&dn, pgofs);
972 if (map->m_next_extent)
973 *map->m_next_extent =
974 get_next_page_offset(&dn, pgofs);
975 }
976 goto unlock_out;
977 }
978
979 start_pgofs = pgofs;
980 prealloc = 0;
981 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
982 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
983
984next_block:
985 blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
986
987 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
988 if (create) {
989 if (unlikely(f2fs_cp_error(sbi))) {
990 err = -EIO;
991 goto sync_out;
992 }
993 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
994 if (blkaddr == NULL_ADDR) {
995 prealloc++;
996 last_ofs_in_node = dn.ofs_in_node;
997 }
998 } else {
999 err = __allocate_data_block(&dn,
1000 map->m_seg_type);
1001 if (!err)
1002 set_inode_flag(inode, FI_APPEND_WRITE);
1003 }
1004 if (err)
1005 goto sync_out;
1006 map->m_flags |= F2FS_MAP_NEW;
1007 blkaddr = dn.data_blkaddr;
1008 } else {
1009 if (flag == F2FS_GET_BLOCK_BMAP) {
1010 map->m_pblk = 0;
1011 goto sync_out;
1012 }
1013 if (flag == F2FS_GET_BLOCK_PRECACHE)
1014 goto sync_out;
1015 if (flag == F2FS_GET_BLOCK_FIEMAP &&
1016 blkaddr == NULL_ADDR) {
1017 if (map->m_next_pgofs)
1018 *map->m_next_pgofs = pgofs + 1;
1019 goto sync_out;
1020 }
1021 if (flag != F2FS_GET_BLOCK_FIEMAP) {
1022 /* for defragment case */
1023 if (map->m_next_pgofs)
1024 *map->m_next_pgofs = pgofs + 1;
1025 goto sync_out;
1026 }
1027 }
1028 }
1029
1030 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1031 goto skip;
1032
1033 if (map->m_len == 0) {
1034 /* preallocated unwritten block should be mapped for fiemap. */
1035 if (blkaddr == NEW_ADDR)
1036 map->m_flags |= F2FS_MAP_UNWRITTEN;
1037 map->m_flags |= F2FS_MAP_MAPPED;
1038
1039 map->m_pblk = blkaddr;
1040 map->m_len = 1;
1041 } else if ((map->m_pblk != NEW_ADDR &&
1042 blkaddr == (map->m_pblk + ofs)) ||
1043 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1044 flag == F2FS_GET_BLOCK_PRE_DIO) {
1045 ofs++;
1046 map->m_len++;
1047 } else {
1048 goto sync_out;
1049 }
1050
1051skip:
1052 dn.ofs_in_node++;
1053 pgofs++;
1054
1055 /* preallocate blocks in batch for one dnode page */
1056 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1057 (pgofs == end || dn.ofs_in_node == end_offset)) {
1058
1059 dn.ofs_in_node = ofs_in_node;
1060 err = reserve_new_blocks(&dn, prealloc);
1061 if (err)
1062 goto sync_out;
1063
1064 map->m_len += dn.ofs_in_node - ofs_in_node;
1065 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1066 err = -ENOSPC;
1067 goto sync_out;
1068 }
1069 dn.ofs_in_node = end_offset;
1070 }
1071
1072 if (pgofs >= end)
1073 goto sync_out;
1074 else if (dn.ofs_in_node < end_offset)
1075 goto next_block;
1076
1077 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1078 if (map->m_flags & F2FS_MAP_MAPPED) {
1079 unsigned int ofs = start_pgofs - map->m_lblk;
1080
1081 f2fs_update_extent_cache_range(&dn,
1082 start_pgofs, map->m_pblk + ofs,
1083 map->m_len - ofs);
1084 }
1085 }
1086
1087 f2fs_put_dnode(&dn);
1088
1089 if (create) {
1090 __do_map_lock(sbi, flag, false);
1091 f2fs_balance_fs(sbi, dn.node_changed);
1092 }
1093 goto next_dnode;
1094
1095sync_out:
1096 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1097 if (map->m_flags & F2FS_MAP_MAPPED) {
1098 unsigned int ofs = start_pgofs - map->m_lblk;
1099
1100 f2fs_update_extent_cache_range(&dn,
1101 start_pgofs, map->m_pblk + ofs,
1102 map->m_len - ofs);
1103 }
1104 if (map->m_next_extent)
1105 *map->m_next_extent = pgofs + 1;
1106 }
1107 f2fs_put_dnode(&dn);
1108unlock_out:
1109 if (create) {
1110 __do_map_lock(sbi, flag, false);
1111 f2fs_balance_fs(sbi, dn.node_changed);
1112 }
1113out:
1114 trace_f2fs_map_blocks(inode, map, err);
1115 return err;
1116}
1117
1118bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1119{
1120 struct f2fs_map_blocks map;
1121 block_t last_lblk;
1122 int err;
1123
1124 if (pos + len > i_size_read(inode))
1125 return false;
1126
1127 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1128 map.m_next_pgofs = NULL;
1129 map.m_next_extent = NULL;
1130 map.m_seg_type = NO_CHECK_TYPE;
1131 last_lblk = F2FS_BLK_ALIGN(pos + len);
1132
1133 while (map.m_lblk < last_lblk) {
1134 map.m_len = last_lblk - map.m_lblk;
1135 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1136 if (err || map.m_len == 0)
1137 return false;
1138 map.m_lblk += map.m_len;
1139 }
1140 return true;
1141}
1142
1143static int __get_data_block(struct inode *inode, sector_t iblock,
1144 struct buffer_head *bh, int create, int flag,
1145 pgoff_t *next_pgofs, int seg_type)
1146{
1147 struct f2fs_map_blocks map;
1148 int err;
1149
1150 map.m_lblk = iblock;
1151 map.m_len = bh->b_size >> inode->i_blkbits;
1152 map.m_next_pgofs = next_pgofs;
1153 map.m_next_extent = NULL;
1154 map.m_seg_type = seg_type;
1155
1156 err = f2fs_map_blocks(inode, &map, create, flag);
1157 if (!err) {
1158 map_bh(bh, inode->i_sb, map.m_pblk);
1159 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1160 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1161 }
1162 return err;
1163}
1164
1165static int get_data_block(struct inode *inode, sector_t iblock,
1166 struct buffer_head *bh_result, int create, int flag,
1167 pgoff_t *next_pgofs)
1168{
1169 return __get_data_block(inode, iblock, bh_result, create,
1170 flag, next_pgofs,
1171 NO_CHECK_TYPE);
1172}
1173
1174static int get_data_block_dio(struct inode *inode, sector_t iblock,
1175 struct buffer_head *bh_result, int create)
1176{
1177 return __get_data_block(inode, iblock, bh_result, create,
1178 F2FS_GET_BLOCK_DEFAULT, NULL,
1179 rw_hint_to_seg_type(
1180 inode->i_write_hint));
1181}
1182
1183static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1184 struct buffer_head *bh_result, int create)
1185{
1186 /* Block number less than F2FS MAX BLOCKS */
1187 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1188 return -EFBIG;
1189
1190 return __get_data_block(inode, iblock, bh_result, create,
1191 F2FS_GET_BLOCK_BMAP, NULL,
1192 NO_CHECK_TYPE);
1193}
1194
1195static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1196{
1197 return (offset >> inode->i_blkbits);
1198}
1199
1200static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1201{
1202 return (blk << inode->i_blkbits);
1203}
1204
1205static int f2fs_xattr_fiemap(struct inode *inode,
1206 struct fiemap_extent_info *fieinfo)
1207{
1208 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1209 struct page *page;
1210 struct node_info ni;
1211 __u64 phys = 0, len;
1212 __u32 flags;
1213 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1214 int err = 0;
1215
1216 if (f2fs_has_inline_xattr(inode)) {
1217 int offset;
1218
1219 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1220 inode->i_ino, false);
1221 if (!page)
1222 return -ENOMEM;
1223
1224 get_node_info(sbi, inode->i_ino, &ni);
1225
1226 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1227 offset = offsetof(struct f2fs_inode, i_addr) +
1228 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1229 get_inline_xattr_addrs(inode));
1230
1231 phys += offset;
1232 len = inline_xattr_size(inode);
1233
1234 f2fs_put_page(page, 1);
1235
1236 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1237
1238 if (!xnid)
1239 flags |= FIEMAP_EXTENT_LAST;
1240
1241 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1242 if (err || err == 1)
1243 return err;
1244 }
1245
1246 if (xnid) {
1247 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1248 if (!page)
1249 return -ENOMEM;
1250
1251 get_node_info(sbi, xnid, &ni);
1252
1253 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1254 len = inode->i_sb->s_blocksize;
1255
1256 f2fs_put_page(page, 1);
1257
1258 flags = FIEMAP_EXTENT_LAST;
1259 }
1260
1261 if (phys)
1262 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1263
1264 return (err < 0 ? err : 0);
1265}
1266
1267int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1268 u64 start, u64 len)
1269{
1270 struct buffer_head map_bh;
1271 sector_t start_blk, last_blk;
1272 pgoff_t next_pgofs;
1273 u64 logical = 0, phys = 0, size = 0;
1274 u32 flags = 0;
1275 int ret = 0;
1276
1277 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1278 ret = f2fs_precache_extents(inode);
1279 if (ret)
1280 return ret;
1281 }
1282
1283 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1284 if (ret)
1285 return ret;
1286
1287 inode_lock(inode);
1288
1289 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1290 ret = f2fs_xattr_fiemap(inode, fieinfo);
1291 goto out;
1292 }
1293
1294 if (f2fs_has_inline_data(inode)) {
1295 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1296 if (ret != -EAGAIN)
1297 goto out;
1298 }
1299
1300 if (logical_to_blk(inode, len) == 0)
1301 len = blk_to_logical(inode, 1);
1302
1303 start_blk = logical_to_blk(inode, start);
1304 last_blk = logical_to_blk(inode, start + len - 1);
1305
1306next:
1307 memset(&map_bh, 0, sizeof(struct buffer_head));
1308 map_bh.b_size = len;
1309
1310 ret = get_data_block(inode, start_blk, &map_bh, 0,
1311 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1312 if (ret)
1313 goto out;
1314
1315 /* HOLE */
1316 if (!buffer_mapped(&map_bh)) {
1317 start_blk = next_pgofs;
1318
1319 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1320 F2FS_I_SB(inode)->max_file_blocks))
1321 goto prep_next;
1322
1323 flags |= FIEMAP_EXTENT_LAST;
1324 }
1325
1326 if (size) {
1327 if (f2fs_encrypted_inode(inode))
1328 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1329
1330 ret = fiemap_fill_next_extent(fieinfo, logical,
1331 phys, size, flags);
1332 }
1333
1334 if (start_blk > last_blk || ret)
1335 goto out;
1336
1337 logical = blk_to_logical(inode, start_blk);
1338 phys = blk_to_logical(inode, map_bh.b_blocknr);
1339 size = map_bh.b_size;
1340 flags = 0;
1341 if (buffer_unwritten(&map_bh))
1342 flags = FIEMAP_EXTENT_UNWRITTEN;
1343
1344 start_blk += logical_to_blk(inode, size);
1345
1346prep_next:
1347 cond_resched();
1348 if (fatal_signal_pending(current))
1349 ret = -EINTR;
1350 else
1351 goto next;
1352out:
1353 if (ret == 1)
1354 ret = 0;
1355
1356 inode_unlock(inode);
1357 return ret;
1358}
1359
1360/*
1361 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1362 * Major change was from block_size == page_size in f2fs by default.
1363 */
1364static int f2fs_mpage_readpages(struct address_space *mapping,
1365 struct list_head *pages, struct page *page,
1366 unsigned nr_pages)
1367{
1368 struct bio *bio = NULL;
1369 sector_t last_block_in_bio = 0;
1370 struct inode *inode = mapping->host;
1371 const unsigned blkbits = inode->i_blkbits;
1372 const unsigned blocksize = 1 << blkbits;
1373 sector_t block_in_file;
1374 sector_t last_block;
1375 sector_t last_block_in_file;
1376 sector_t block_nr;
1377 struct f2fs_map_blocks map;
1378
1379 map.m_pblk = 0;
1380 map.m_lblk = 0;
1381 map.m_len = 0;
1382 map.m_flags = 0;
1383 map.m_next_pgofs = NULL;
1384 map.m_next_extent = NULL;
1385 map.m_seg_type = NO_CHECK_TYPE;
1386
1387 for (; nr_pages; nr_pages--) {
1388 if (pages) {
1389 page = list_last_entry(pages, struct page, lru);
1390
1391 prefetchw(&page->flags);
1392 list_del(&page->lru);
1393 if (add_to_page_cache_lru(page, mapping,
1394 page->index,
1395 readahead_gfp_mask(mapping)))
1396 goto next_page;
1397 }
1398
1399 block_in_file = (sector_t)page->index;
1400 last_block = block_in_file + nr_pages;
1401 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1402 blkbits;
1403 if (last_block > last_block_in_file)
1404 last_block = last_block_in_file;
1405
1406 /*
1407 * Map blocks using the previous result first.
1408 */
1409 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1410 block_in_file > map.m_lblk &&
1411 block_in_file < (map.m_lblk + map.m_len))
1412 goto got_it;
1413
1414 /*
1415 * Then do more f2fs_map_blocks() calls until we are
1416 * done with this page.
1417 */
1418 map.m_flags = 0;
1419
1420 if (block_in_file < last_block) {
1421 map.m_lblk = block_in_file;
1422 map.m_len = last_block - block_in_file;
1423
1424 if (f2fs_map_blocks(inode, &map, 0,
1425 F2FS_GET_BLOCK_DEFAULT))
1426 goto set_error_page;
1427 }
1428got_it:
1429 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1430 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1431 SetPageMappedToDisk(page);
1432
1433 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1434 SetPageUptodate(page);
1435 goto confused;
1436 }
1437 } else {
1438 zero_user_segment(page, 0, PAGE_SIZE);
1439 if (!PageUptodate(page))
1440 SetPageUptodate(page);
1441 unlock_page(page);
1442 goto next_page;
1443 }
1444
1445 /*
1446 * This page will go to BIO. Do we need to send this
1447 * BIO off first?
1448 */
1449 if (bio && (last_block_in_bio != block_nr - 1 ||
1450 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1451submit_and_realloc:
1452 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1453 bio = NULL;
1454 }
1455 if (bio == NULL) {
1456 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages);
1457 if (IS_ERR(bio)) {
1458 bio = NULL;
1459 goto set_error_page;
1460 }
1461 }
1462
1463 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1464 goto submit_and_realloc;
1465
1466 last_block_in_bio = block_nr;
1467 goto next_page;
1468set_error_page:
1469 SetPageError(page);
1470 zero_user_segment(page, 0, PAGE_SIZE);
1471 unlock_page(page);
1472 goto next_page;
1473confused:
1474 if (bio) {
1475 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1476 bio = NULL;
1477 }
1478 unlock_page(page);
1479next_page:
1480 if (pages)
1481 put_page(page);
1482 }
1483 BUG_ON(pages && !list_empty(pages));
1484 if (bio)
1485 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1486 return 0;
1487}
1488
1489static int f2fs_read_data_page(struct file *file, struct page *page)
1490{
1491 struct inode *inode = page->mapping->host;
1492 int ret = -EAGAIN;
1493
1494 trace_f2fs_readpage(page, DATA);
1495
1496 /* If the file has inline data, try to read it directly */
1497 if (f2fs_has_inline_data(inode))
1498 ret = f2fs_read_inline_data(inode, page);
1499 if (ret == -EAGAIN)
1500 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1501 return ret;
1502}
1503
1504static int f2fs_read_data_pages(struct file *file,
1505 struct address_space *mapping,
1506 struct list_head *pages, unsigned nr_pages)
1507{
1508 struct inode *inode = mapping->host;
1509 struct page *page = list_last_entry(pages, struct page, lru);
1510
1511 trace_f2fs_readpages(inode, page, nr_pages);
1512
1513 /* If the file has inline data, skip readpages */
1514 if (f2fs_has_inline_data(inode))
1515 return 0;
1516
1517 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1518}
1519
1520static int encrypt_one_page(struct f2fs_io_info *fio)
1521{
1522 struct inode *inode = fio->page->mapping->host;
1523 gfp_t gfp_flags = GFP_NOFS;
1524
1525 if (!f2fs_encrypted_file(inode))
1526 return 0;
1527
1528 /* wait for GCed encrypted page writeback */
1529 f2fs_wait_on_block_writeback(fio->sbi, fio->old_blkaddr);
1530
1531retry_encrypt:
1532 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1533 PAGE_SIZE, 0, fio->page->index, gfp_flags);
1534 if (!IS_ERR(fio->encrypted_page))
1535 return 0;
1536
1537 /* flush pending IOs and wait for a while in the ENOMEM case */
1538 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1539 f2fs_flush_merged_writes(fio->sbi);
1540 congestion_wait(BLK_RW_ASYNC, HZ/50);
1541 gfp_flags |= __GFP_NOFAIL;
1542 goto retry_encrypt;
1543 }
1544 return PTR_ERR(fio->encrypted_page);
1545}
1546
1547static inline bool check_inplace_update_policy(struct inode *inode,
1548 struct f2fs_io_info *fio)
1549{
1550 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1551 unsigned int policy = SM_I(sbi)->ipu_policy;
1552
1553 if (policy & (0x1 << F2FS_IPU_FORCE))
1554 return true;
1555 if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
1556 return true;
1557 if (policy & (0x1 << F2FS_IPU_UTIL) &&
1558 utilization(sbi) > SM_I(sbi)->min_ipu_util)
1559 return true;
1560 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
1561 utilization(sbi) > SM_I(sbi)->min_ipu_util)
1562 return true;
1563
1564 /*
1565 * IPU for rewrite async pages
1566 */
1567 if (policy & (0x1 << F2FS_IPU_ASYNC) &&
1568 fio && fio->op == REQ_OP_WRITE &&
1569 !(fio->op_flags & REQ_SYNC) &&
1570 !f2fs_encrypted_inode(inode))
1571 return true;
1572
1573 /* this is only set during fdatasync */
1574 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
1575 is_inode_flag_set(inode, FI_NEED_IPU))
1576 return true;
1577
1578 return false;
1579}
1580
1581bool should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
1582{
1583 if (f2fs_is_pinned_file(inode))
1584 return true;
1585
1586 /* if this is cold file, we should overwrite to avoid fragmentation */
1587 if (file_is_cold(inode))
1588 return true;
1589
1590 return check_inplace_update_policy(inode, fio);
1591}
1592
1593bool should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
1594{
1595 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1596
1597 if (test_opt(sbi, LFS))
1598 return true;
1599 if (S_ISDIR(inode->i_mode))
1600 return true;
1601 if (f2fs_is_atomic_file(inode))
1602 return true;
1603 if (fio) {
1604 if (is_cold_data(fio->page))
1605 return true;
1606 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1607 return true;
1608 }
1609 return false;
1610}
1611
1612static inline bool need_inplace_update(struct f2fs_io_info *fio)
1613{
1614 struct inode *inode = fio->page->mapping->host;
1615
1616 if (should_update_outplace(inode, fio))
1617 return false;
1618
1619 return should_update_inplace(inode, fio);
1620}
1621
1622static inline bool valid_ipu_blkaddr(struct f2fs_io_info *fio)
1623{
1624 if (fio->old_blkaddr == NEW_ADDR)
1625 return false;
1626 if (fio->old_blkaddr == NULL_ADDR)
1627 return false;
1628 return true;
1629}
1630
1631int do_write_data_page(struct f2fs_io_info *fio)
1632{
1633 struct page *page = fio->page;
1634 struct inode *inode = page->mapping->host;
1635 struct dnode_of_data dn;
1636 struct extent_info ei = {0,0,0};
1637 bool ipu_force = false;
1638 int err = 0;
1639
1640 set_new_dnode(&dn, inode, NULL, NULL, 0);
1641 if (need_inplace_update(fio) &&
1642 f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1643 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1644
1645 if (valid_ipu_blkaddr(fio)) {
1646 ipu_force = true;
1647 fio->need_lock = LOCK_DONE;
1648 goto got_it;
1649 }
1650 }
1651
1652 /* Deadlock due to between page->lock and f2fs_lock_op */
1653 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
1654 return -EAGAIN;
1655
1656 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1657 if (err)
1658 goto out;
1659
1660 fio->old_blkaddr = dn.data_blkaddr;
1661
1662 /* This page is already truncated */
1663 if (fio->old_blkaddr == NULL_ADDR) {
1664 ClearPageUptodate(page);
1665 goto out_writepage;
1666 }
1667got_it:
1668 /*
1669 * If current allocation needs SSR,
1670 * it had better in-place writes for updated data.
1671 */
1672 if (ipu_force || (valid_ipu_blkaddr(fio) && need_inplace_update(fio))) {
1673 err = encrypt_one_page(fio);
1674 if (err)
1675 goto out_writepage;
1676
1677 set_page_writeback(page);
1678 f2fs_put_dnode(&dn);
1679 if (fio->need_lock == LOCK_REQ)
1680 f2fs_unlock_op(fio->sbi);
1681 err = rewrite_data_page(fio);
1682 trace_f2fs_do_write_data_page(fio->page, IPU);
1683 set_inode_flag(inode, FI_UPDATE_WRITE);
1684 return err;
1685 }
1686
1687 if (fio->need_lock == LOCK_RETRY) {
1688 if (!f2fs_trylock_op(fio->sbi)) {
1689 err = -EAGAIN;
1690 goto out_writepage;
1691 }
1692 fio->need_lock = LOCK_REQ;
1693 }
1694
1695 err = encrypt_one_page(fio);
1696 if (err)
1697 goto out_writepage;
1698
1699 set_page_writeback(page);
1700
1701 /* LFS mode write path */
1702 write_data_page(&dn, fio);
1703 trace_f2fs_do_write_data_page(page, OPU);
1704 set_inode_flag(inode, FI_APPEND_WRITE);
1705 if (page->index == 0)
1706 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1707out_writepage:
1708 f2fs_put_dnode(&dn);
1709out:
1710 if (fio->need_lock == LOCK_REQ)
1711 f2fs_unlock_op(fio->sbi);
1712 return err;
1713}
1714
1715static int __write_data_page(struct page *page, bool *submitted,
1716 struct writeback_control *wbc,
1717 enum iostat_type io_type)
1718{
1719 struct inode *inode = page->mapping->host;
1720 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1721 loff_t i_size = i_size_read(inode);
1722 const pgoff_t end_index = ((unsigned long long) i_size)
1723 >> PAGE_SHIFT;
1724 loff_t psize = (page->index + 1) << PAGE_SHIFT;
1725 unsigned offset = 0;
1726 bool need_balance_fs = false;
1727 int err = 0;
1728 struct f2fs_io_info fio = {
1729 .sbi = sbi,
1730 .ino = inode->i_ino,
1731 .type = DATA,
1732 .op = REQ_OP_WRITE,
1733 .op_flags = wbc_to_write_flags(wbc),
1734 .old_blkaddr = NULL_ADDR,
1735 .page = page,
1736 .encrypted_page = NULL,
1737 .submitted = false,
1738 .need_lock = LOCK_RETRY,
1739 .io_type = io_type,
1740 .io_wbc = wbc,
1741 };
1742
1743 trace_f2fs_writepage(page, DATA);
1744
1745 /* we should bypass data pages to proceed the kworkder jobs */
1746 if (unlikely(f2fs_cp_error(sbi))) {
1747 mapping_set_error(page->mapping, -EIO);
1748 goto out;
1749 }
1750
1751 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1752 goto redirty_out;
1753
1754 if (page->index < end_index)
1755 goto write;
1756
1757 /*
1758 * If the offset is out-of-range of file size,
1759 * this page does not have to be written to disk.
1760 */
1761 offset = i_size & (PAGE_SIZE - 1);
1762 if ((page->index >= end_index + 1) || !offset)
1763 goto out;
1764
1765 zero_user_segment(page, offset, PAGE_SIZE);
1766write:
1767 if (f2fs_is_drop_cache(inode))
1768 goto out;
1769 /* we should not write 0'th page having journal header */
1770 if (f2fs_is_volatile_file(inode) && (!page->index ||
1771 (!wbc->for_reclaim &&
1772 available_free_memory(sbi, BASE_CHECK))))
1773 goto redirty_out;
1774
1775 /* Dentry blocks are controlled by checkpoint */
1776 if (S_ISDIR(inode->i_mode)) {
1777 fio.need_lock = LOCK_DONE;
1778 err = do_write_data_page(&fio);
1779 goto done;
1780 }
1781
1782 if (!wbc->for_reclaim)
1783 need_balance_fs = true;
1784 else if (has_not_enough_free_secs(sbi, 0, 0))
1785 goto redirty_out;
1786 else
1787 set_inode_flag(inode, FI_HOT_DATA);
1788
1789 err = -EAGAIN;
1790 if (f2fs_has_inline_data(inode)) {
1791 err = f2fs_write_inline_data(inode, page);
1792 if (!err)
1793 goto out;
1794 }
1795
1796 if (err == -EAGAIN) {
1797 err = do_write_data_page(&fio);
1798 if (err == -EAGAIN) {
1799 fio.need_lock = LOCK_REQ;
1800 err = do_write_data_page(&fio);
1801 }
1802 }
1803
1804 if (err) {
1805 file_set_keep_isize(inode);
1806 } else {
1807 down_write(&F2FS_I(inode)->i_sem);
1808 if (F2FS_I(inode)->last_disk_size < psize)
1809 F2FS_I(inode)->last_disk_size = psize;
1810 up_write(&F2FS_I(inode)->i_sem);
1811 }
1812
1813done:
1814 if (err && err != -ENOENT)
1815 goto redirty_out;
1816
1817out:
1818 inode_dec_dirty_pages(inode);
1819 if (err)
1820 ClearPageUptodate(page);
1821
1822 if (wbc->for_reclaim) {
1823 f2fs_submit_merged_write_cond(sbi, inode, 0, page->index, DATA);
1824 clear_inode_flag(inode, FI_HOT_DATA);
1825 remove_dirty_inode(inode);
1826 submitted = NULL;
1827 }
1828
1829 unlock_page(page);
1830 if (!S_ISDIR(inode->i_mode))
1831 f2fs_balance_fs(sbi, need_balance_fs);
1832
1833 if (unlikely(f2fs_cp_error(sbi))) {
1834 f2fs_submit_merged_write(sbi, DATA);
1835 submitted = NULL;
1836 }
1837
1838 if (submitted)
1839 *submitted = fio.submitted;
1840
1841 return 0;
1842
1843redirty_out:
1844 redirty_page_for_writepage(wbc, page);
1845 if (!err)
1846 return AOP_WRITEPAGE_ACTIVATE;
1847 unlock_page(page);
1848 return err;
1849}
1850
1851static int f2fs_write_data_page(struct page *page,
1852 struct writeback_control *wbc)
1853{
1854 return __write_data_page(page, NULL, wbc, FS_DATA_IO);
1855}
1856
1857/*
1858 * This function was copied from write_cche_pages from mm/page-writeback.c.
1859 * The major change is making write step of cold data page separately from
1860 * warm/hot data page.
1861 */
1862static int f2fs_write_cache_pages(struct address_space *mapping,
1863 struct writeback_control *wbc,
1864 enum iostat_type io_type)
1865{
1866 int ret = 0;
1867 int done = 0;
1868 struct pagevec pvec;
1869 int nr_pages;
1870 pgoff_t uninitialized_var(writeback_index);
1871 pgoff_t index;
1872 pgoff_t end; /* Inclusive */
1873 pgoff_t done_index;
1874 pgoff_t last_idx = ULONG_MAX;
1875 int cycled;
1876 int range_whole = 0;
1877 int tag;
1878
1879 pagevec_init(&pvec);
1880
1881 if (get_dirty_pages(mapping->host) <=
1882 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
1883 set_inode_flag(mapping->host, FI_HOT_DATA);
1884 else
1885 clear_inode_flag(mapping->host, FI_HOT_DATA);
1886
1887 if (wbc->range_cyclic) {
1888 writeback_index = mapping->writeback_index; /* prev offset */
1889 index = writeback_index;
1890 if (index == 0)
1891 cycled = 1;
1892 else
1893 cycled = 0;
1894 end = -1;
1895 } else {
1896 index = wbc->range_start >> PAGE_SHIFT;
1897 end = wbc->range_end >> PAGE_SHIFT;
1898 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1899 range_whole = 1;
1900 cycled = 1; /* ignore range_cyclic tests */
1901 }
1902 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1903 tag = PAGECACHE_TAG_TOWRITE;
1904 else
1905 tag = PAGECACHE_TAG_DIRTY;
1906retry:
1907 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1908 tag_pages_for_writeback(mapping, index, end);
1909 done_index = index;
1910 while (!done && (index <= end)) {
1911 int i;
1912
1913 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
1914 tag);
1915 if (nr_pages == 0)
1916 break;
1917
1918 for (i = 0; i < nr_pages; i++) {
1919 struct page *page = pvec.pages[i];
1920 bool submitted = false;
1921
1922 done_index = page->index;
1923retry_write:
1924 lock_page(page);
1925
1926 if (unlikely(page->mapping != mapping)) {
1927continue_unlock:
1928 unlock_page(page);
1929 continue;
1930 }
1931
1932 if (!PageDirty(page)) {
1933 /* someone wrote it for us */
1934 goto continue_unlock;
1935 }
1936
1937 if (PageWriteback(page)) {
1938 if (wbc->sync_mode != WB_SYNC_NONE)
1939 f2fs_wait_on_page_writeback(page,
1940 DATA, true);
1941 else
1942 goto continue_unlock;
1943 }
1944
1945 BUG_ON(PageWriteback(page));
1946 if (!clear_page_dirty_for_io(page))
1947 goto continue_unlock;
1948
1949 ret = __write_data_page(page, &submitted, wbc, io_type);
1950 if (unlikely(ret)) {
1951 /*
1952 * keep nr_to_write, since vfs uses this to
1953 * get # of written pages.
1954 */
1955 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1956 unlock_page(page);
1957 ret = 0;
1958 continue;
1959 } else if (ret == -EAGAIN) {
1960 ret = 0;
1961 if (wbc->sync_mode == WB_SYNC_ALL) {
1962 cond_resched();
1963 congestion_wait(BLK_RW_ASYNC,
1964 HZ/50);
1965 goto retry_write;
1966 }
1967 continue;
1968 }
1969 done_index = page->index + 1;
1970 done = 1;
1971 break;
1972 } else if (submitted) {
1973 last_idx = page->index;
1974 }
1975
1976 /* give a priority to WB_SYNC threads */
1977 if ((atomic_read(&F2FS_M_SB(mapping)->wb_sync_req) ||
1978 --wbc->nr_to_write <= 0) &&
1979 wbc->sync_mode == WB_SYNC_NONE) {
1980 done = 1;
1981 break;
1982 }
1983 }
1984 pagevec_release(&pvec);
1985 cond_resched();
1986 }
1987
1988 if (!cycled && !done) {
1989 cycled = 1;
1990 index = 0;
1991 end = writeback_index - 1;
1992 goto retry;
1993 }
1994 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1995 mapping->writeback_index = done_index;
1996
1997 if (last_idx != ULONG_MAX)
1998 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
1999 0, last_idx, DATA);
2000
2001 return ret;
2002}
2003
2004int __f2fs_write_data_pages(struct address_space *mapping,
2005 struct writeback_control *wbc,
2006 enum iostat_type io_type)
2007{
2008 struct inode *inode = mapping->host;
2009 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2010 struct blk_plug plug;
2011 int ret;
2012
2013 /* deal with chardevs and other special file */
2014 if (!mapping->a_ops->writepage)
2015 return 0;
2016
2017 /* skip writing if there is no dirty page in this inode */
2018 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
2019 return 0;
2020
2021 /* during POR, we don't need to trigger writepage at all. */
2022 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2023 goto skip_write;
2024
2025 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
2026 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
2027 available_free_memory(sbi, DIRTY_DENTS))
2028 goto skip_write;
2029
2030 /* skip writing during file defragment */
2031 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
2032 goto skip_write;
2033
2034 trace_f2fs_writepages(mapping->host, wbc, DATA);
2035
2036 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
2037 if (wbc->sync_mode == WB_SYNC_ALL)
2038 atomic_inc(&sbi->wb_sync_req);
2039 else if (atomic_read(&sbi->wb_sync_req))
2040 goto skip_write;
2041
2042 blk_start_plug(&plug);
2043 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
2044 blk_finish_plug(&plug);
2045
2046 if (wbc->sync_mode == WB_SYNC_ALL)
2047 atomic_dec(&sbi->wb_sync_req);
2048 /*
2049 * if some pages were truncated, we cannot guarantee its mapping->host
2050 * to detect pending bios.
2051 */
2052
2053 remove_dirty_inode(inode);
2054 return ret;
2055
2056skip_write:
2057 wbc->pages_skipped += get_dirty_pages(inode);
2058 trace_f2fs_writepages(mapping->host, wbc, DATA);
2059 return 0;
2060}
2061
2062static int f2fs_write_data_pages(struct address_space *mapping,
2063 struct writeback_control *wbc)
2064{
2065 struct inode *inode = mapping->host;
2066
2067 return __f2fs_write_data_pages(mapping, wbc,
2068 F2FS_I(inode)->cp_task == current ?
2069 FS_CP_DATA_IO : FS_DATA_IO);
2070}
2071
2072static void f2fs_write_failed(struct address_space *mapping, loff_t to)
2073{
2074 struct inode *inode = mapping->host;
2075 loff_t i_size = i_size_read(inode);
2076
2077 if (to > i_size) {
2078 down_write(&F2FS_I(inode)->i_mmap_sem);
2079 truncate_pagecache(inode, i_size);
2080 truncate_blocks(inode, i_size, true);
2081 up_write(&F2FS_I(inode)->i_mmap_sem);
2082 }
2083}
2084
2085static int prepare_write_begin(struct f2fs_sb_info *sbi,
2086 struct page *page, loff_t pos, unsigned len,
2087 block_t *blk_addr, bool *node_changed)
2088{
2089 struct inode *inode = page->mapping->host;
2090 pgoff_t index = page->index;
2091 struct dnode_of_data dn;
2092 struct page *ipage;
2093 bool locked = false;
2094 struct extent_info ei = {0,0,0};
2095 int err = 0;
2096
2097 /*
2098 * we already allocated all the blocks, so we don't need to get
2099 * the block addresses when there is no need to fill the page.
2100 */
2101 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
2102 !is_inode_flag_set(inode, FI_NO_PREALLOC))
2103 return 0;
2104
2105 if (f2fs_has_inline_data(inode) ||
2106 (pos & PAGE_MASK) >= i_size_read(inode)) {
2107 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
2108 locked = true;
2109 }
2110restart:
2111 /* check inline_data */
2112 ipage = get_node_page(sbi, inode->i_ino);
2113 if (IS_ERR(ipage)) {
2114 err = PTR_ERR(ipage);
2115 goto unlock_out;
2116 }
2117
2118 set_new_dnode(&dn, inode, ipage, ipage, 0);
2119
2120 if (f2fs_has_inline_data(inode)) {
2121 if (pos + len <= MAX_INLINE_DATA(inode)) {
2122 read_inline_data(page, ipage);
2123 set_inode_flag(inode, FI_DATA_EXIST);
2124 if (inode->i_nlink)
2125 set_inline_node(ipage);
2126 } else {
2127 err = f2fs_convert_inline_page(&dn, page);
2128 if (err)
2129 goto out;
2130 if (dn.data_blkaddr == NULL_ADDR)
2131 err = f2fs_get_block(&dn, index);
2132 }
2133 } else if (locked) {
2134 err = f2fs_get_block(&dn, index);
2135 } else {
2136 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
2137 dn.data_blkaddr = ei.blk + index - ei.fofs;
2138 } else {
2139 /* hole case */
2140 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
2141 if (err || dn.data_blkaddr == NULL_ADDR) {
2142 f2fs_put_dnode(&dn);
2143 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
2144 true);
2145 locked = true;
2146 goto restart;
2147 }
2148 }
2149 }
2150
2151 /* convert_inline_page can make node_changed */
2152 *blk_addr = dn.data_blkaddr;
2153 *node_changed = dn.node_changed;
2154out:
2155 f2fs_put_dnode(&dn);
2156unlock_out:
2157 if (locked)
2158 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
2159 return err;
2160}
2161
2162static int f2fs_write_begin(struct file *file, struct address_space *mapping,
2163 loff_t pos, unsigned len, unsigned flags,
2164 struct page **pagep, void **fsdata)
2165{
2166 struct inode *inode = mapping->host;
2167 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2168 struct page *page = NULL;
2169 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
2170 bool need_balance = false, drop_atomic = false;
2171 block_t blkaddr = NULL_ADDR;
2172 int err = 0;
2173
2174 trace_f2fs_write_begin(inode, pos, len, flags);
2175
2176 if (f2fs_is_atomic_file(inode) &&
2177 !available_free_memory(sbi, INMEM_PAGES)) {
2178 err = -ENOMEM;
2179 drop_atomic = true;
2180 goto fail;
2181 }
2182
2183 /*
2184 * We should check this at this moment to avoid deadlock on inode page
2185 * and #0 page. The locking rule for inline_data conversion should be:
2186 * lock_page(page #0) -> lock_page(inode_page)
2187 */
2188 if (index != 0) {
2189 err = f2fs_convert_inline_inode(inode);
2190 if (err)
2191 goto fail;
2192 }
2193repeat:
2194 /*
2195 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
2196 * wait_for_stable_page. Will wait that below with our IO control.
2197 */
2198 page = f2fs_pagecache_get_page(mapping, index,
2199 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
2200 if (!page) {
2201 err = -ENOMEM;
2202 goto fail;
2203 }
2204
2205 *pagep = page;
2206
2207 err = prepare_write_begin(sbi, page, pos, len,
2208 &blkaddr, &need_balance);
2209 if (err)
2210 goto fail;
2211
2212 if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
2213 unlock_page(page);
2214 f2fs_balance_fs(sbi, true);
2215 lock_page(page);
2216 if (page->mapping != mapping) {
2217 /* The page got truncated from under us */
2218 f2fs_put_page(page, 1);
2219 goto repeat;
2220 }
2221 }
2222
2223 f2fs_wait_on_page_writeback(page, DATA, false);
2224
2225 /* wait for GCed encrypted page writeback */
2226 if (f2fs_encrypted_file(inode))
2227 f2fs_wait_on_block_writeback(sbi, blkaddr);
2228
2229 if (len == PAGE_SIZE || PageUptodate(page))
2230 return 0;
2231
2232 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
2233 zero_user_segment(page, len, PAGE_SIZE);
2234 return 0;
2235 }
2236
2237 if (blkaddr == NEW_ADDR) {
2238 zero_user_segment(page, 0, PAGE_SIZE);
2239 SetPageUptodate(page);
2240 } else {
2241 err = f2fs_submit_page_read(inode, page, blkaddr);
2242 if (err)
2243 goto fail;
2244
2245 lock_page(page);
2246 if (unlikely(page->mapping != mapping)) {
2247 f2fs_put_page(page, 1);
2248 goto repeat;
2249 }
2250 if (unlikely(!PageUptodate(page))) {
2251 err = -EIO;
2252 goto fail;
2253 }
2254 }
2255 return 0;
2256
2257fail:
2258 f2fs_put_page(page, 1);
2259 f2fs_write_failed(mapping, pos + len);
2260 if (drop_atomic)
2261 drop_inmem_pages_all(sbi);
2262 return err;
2263}
2264
2265static int f2fs_write_end(struct file *file,
2266 struct address_space *mapping,
2267 loff_t pos, unsigned len, unsigned copied,
2268 struct page *page, void *fsdata)
2269{
2270 struct inode *inode = page->mapping->host;
2271
2272 trace_f2fs_write_end(inode, pos, len, copied);
2273
2274 /*
2275 * This should be come from len == PAGE_SIZE, and we expect copied
2276 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2277 * let generic_perform_write() try to copy data again through copied=0.
2278 */
2279 if (!PageUptodate(page)) {
2280 if (unlikely(copied != len))
2281 copied = 0;
2282 else
2283 SetPageUptodate(page);
2284 }
2285 if (!copied)
2286 goto unlock_out;
2287
2288 set_page_dirty(page);
2289
2290 if (pos + copied > i_size_read(inode))
2291 f2fs_i_size_write(inode, pos + copied);
2292unlock_out:
2293 f2fs_put_page(page, 1);
2294 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2295 return copied;
2296}
2297
2298static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2299 loff_t offset)
2300{
2301 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
2302
2303 if (offset & blocksize_mask)
2304 return -EINVAL;
2305
2306 if (iov_iter_alignment(iter) & blocksize_mask)
2307 return -EINVAL;
2308
2309 return 0;
2310}
2311
2312static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2313{
2314 struct address_space *mapping = iocb->ki_filp->f_mapping;
2315 struct inode *inode = mapping->host;
2316 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2317 size_t count = iov_iter_count(iter);
2318 loff_t offset = iocb->ki_pos;
2319 int rw = iov_iter_rw(iter);
2320 int err;
2321 enum rw_hint hint = iocb->ki_hint;
2322 int whint_mode = F2FS_OPTION(sbi).whint_mode;
2323
2324 err = check_direct_IO(inode, iter, offset);
2325 if (err)
2326 return err;
2327
2328 if (f2fs_force_buffered_io(inode, rw))
2329 return 0;
2330
2331 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2332
2333 if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
2334 iocb->ki_hint = WRITE_LIFE_NOT_SET;
2335
2336 if (!down_read_trylock(&F2FS_I(inode)->dio_rwsem[rw])) {
2337 if (iocb->ki_flags & IOCB_NOWAIT) {
2338 iocb->ki_hint = hint;
2339 err = -EAGAIN;
2340 goto out;
2341 }
2342 down_read(&F2FS_I(inode)->dio_rwsem[rw]);
2343 }
2344
2345 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
2346 up_read(&F2FS_I(inode)->dio_rwsem[rw]);
2347
2348 if (rw == WRITE) {
2349 if (whint_mode == WHINT_MODE_OFF)
2350 iocb->ki_hint = hint;
2351 if (err > 0) {
2352 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
2353 err);
2354 set_inode_flag(inode, FI_UPDATE_WRITE);
2355 } else if (err < 0) {
2356 f2fs_write_failed(mapping, offset + count);
2357 }
2358 }
2359
2360out:
2361 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2362
2363 return err;
2364}
2365
2366void f2fs_invalidate_page(struct page *page, unsigned int offset,
2367 unsigned int length)
2368{
2369 struct inode *inode = page->mapping->host;
2370 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2371
2372 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2373 (offset % PAGE_SIZE || length != PAGE_SIZE))
2374 return;
2375
2376 if (PageDirty(page)) {
2377 if (inode->i_ino == F2FS_META_INO(sbi)) {
2378 dec_page_count(sbi, F2FS_DIRTY_META);
2379 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2380 dec_page_count(sbi, F2FS_DIRTY_NODES);
2381 } else {
2382 inode_dec_dirty_pages(inode);
2383 remove_dirty_inode(inode);
2384 }
2385 }
2386
2387 /* This is atomic written page, keep Private */
2388 if (IS_ATOMIC_WRITTEN_PAGE(page))
2389 return drop_inmem_page(inode, page);
2390
2391 set_page_private(page, 0);
2392 ClearPagePrivate(page);
2393}
2394
2395int f2fs_release_page(struct page *page, gfp_t wait)
2396{
2397 /* If this is dirty page, keep PagePrivate */
2398 if (PageDirty(page))
2399 return 0;
2400
2401 /* This is atomic written page, keep Private */
2402 if (IS_ATOMIC_WRITTEN_PAGE(page))
2403 return 0;
2404
2405 set_page_private(page, 0);
2406 ClearPagePrivate(page);
2407 return 1;
2408}
2409
2410/*
2411 * This was copied from __set_page_dirty_buffers which gives higher performance
2412 * in very high speed storages. (e.g., pmem)
2413 */
2414void f2fs_set_page_dirty_nobuffers(struct page *page)
2415{
2416 struct address_space *mapping = page->mapping;
2417 unsigned long flags;
2418
2419 if (unlikely(!mapping))
2420 return;
2421
2422 spin_lock(&mapping->private_lock);
2423 lock_page_memcg(page);
2424 SetPageDirty(page);
2425 spin_unlock(&mapping->private_lock);
2426
2427 xa_lock_irqsave(&mapping->i_pages, flags);
2428 WARN_ON_ONCE(!PageUptodate(page));
2429 account_page_dirtied(page, mapping);
2430 radix_tree_tag_set(&mapping->i_pages,
2431 page_index(page), PAGECACHE_TAG_DIRTY);
2432 xa_unlock_irqrestore(&mapping->i_pages, flags);
2433 unlock_page_memcg(page);
2434
2435 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2436 return;
2437}
2438
2439static int f2fs_set_data_page_dirty(struct page *page)
2440{
2441 struct address_space *mapping = page->mapping;
2442 struct inode *inode = mapping->host;
2443
2444 trace_f2fs_set_page_dirty(page, DATA);
2445
2446 if (!PageUptodate(page))
2447 SetPageUptodate(page);
2448
2449 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2450 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2451 register_inmem_page(inode, page);
2452 return 1;
2453 }
2454 /*
2455 * Previously, this page has been registered, we just
2456 * return here.
2457 */
2458 return 0;
2459 }
2460
2461 if (!PageDirty(page)) {
2462 f2fs_set_page_dirty_nobuffers(page);
2463 update_dirty_page(inode, page);
2464 return 1;
2465 }
2466 return 0;
2467}
2468
2469static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2470{
2471 struct inode *inode = mapping->host;
2472
2473 if (f2fs_has_inline_data(inode))
2474 return 0;
2475
2476 /* make sure allocating whole blocks */
2477 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2478 filemap_write_and_wait(mapping);
2479
2480 return generic_block_bmap(mapping, block, get_data_block_bmap);
2481}
2482
2483#ifdef CONFIG_MIGRATION
2484#include <linux/migrate.h>
2485
2486int f2fs_migrate_page(struct address_space *mapping,
2487 struct page *newpage, struct page *page, enum migrate_mode mode)
2488{
2489 int rc, extra_count;
2490 struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2491 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2492
2493 BUG_ON(PageWriteback(page));
2494
2495 /* migrating an atomic written page is safe with the inmem_lock hold */
2496 if (atomic_written) {
2497 if (mode != MIGRATE_SYNC)
2498 return -EBUSY;
2499 if (!mutex_trylock(&fi->inmem_lock))
2500 return -EAGAIN;
2501 }
2502
2503 /*
2504 * A reference is expected if PagePrivate set when move mapping,
2505 * however F2FS breaks this for maintaining dirty page counts when
2506 * truncating pages. So here adjusting the 'extra_count' make it work.
2507 */
2508 extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
2509 rc = migrate_page_move_mapping(mapping, newpage,
2510 page, NULL, mode, extra_count);
2511 if (rc != MIGRATEPAGE_SUCCESS) {
2512 if (atomic_written)
2513 mutex_unlock(&fi->inmem_lock);
2514 return rc;
2515 }
2516
2517 if (atomic_written) {
2518 struct inmem_pages *cur;
2519 list_for_each_entry(cur, &fi->inmem_pages, list)
2520 if (cur->page == page) {
2521 cur->page = newpage;
2522 break;
2523 }
2524 mutex_unlock(&fi->inmem_lock);
2525 put_page(page);
2526 get_page(newpage);
2527 }
2528
2529 if (PagePrivate(page))
2530 SetPagePrivate(newpage);
2531 set_page_private(newpage, page_private(page));
2532
2533 if (mode != MIGRATE_SYNC_NO_COPY)
2534 migrate_page_copy(newpage, page);
2535 else
2536 migrate_page_states(newpage, page);
2537
2538 return MIGRATEPAGE_SUCCESS;
2539}
2540#endif
2541
2542const struct address_space_operations f2fs_dblock_aops = {
2543 .readpage = f2fs_read_data_page,
2544 .readpages = f2fs_read_data_pages,
2545 .writepage = f2fs_write_data_page,
2546 .writepages = f2fs_write_data_pages,
2547 .write_begin = f2fs_write_begin,
2548 .write_end = f2fs_write_end,
2549 .set_page_dirty = f2fs_set_data_page_dirty,
2550 .invalidatepage = f2fs_invalidate_page,
2551 .releasepage = f2fs_release_page,
2552 .direct_IO = f2fs_direct_IO,
2553 .bmap = f2fs_bmap,
2554#ifdef CONFIG_MIGRATION
2555 .migratepage = f2fs_migrate_page,
2556#endif
2557};
1/*
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/buffer_head.h>
14#include <linux/mpage.h>
15#include <linux/writeback.h>
16#include <linux/backing-dev.h>
17#include <linux/pagevec.h>
18#include <linux/blkdev.h>
19#include <linux/bio.h>
20#include <linux/prefetch.h>
21#include <linux/uio.h>
22#include <linux/cleancache.h>
23
24#include "f2fs.h"
25#include "node.h"
26#include "segment.h"
27#include "trace.h"
28#include <trace/events/f2fs.h>
29
30static void f2fs_read_end_io(struct bio *bio)
31{
32 struct bio_vec *bvec;
33 int i;
34
35 if (f2fs_bio_encrypted(bio)) {
36 if (bio->bi_error) {
37 fscrypt_release_ctx(bio->bi_private);
38 } else {
39 fscrypt_decrypt_bio_pages(bio->bi_private, bio);
40 return;
41 }
42 }
43
44 bio_for_each_segment_all(bvec, bio, i) {
45 struct page *page = bvec->bv_page;
46
47 if (!bio->bi_error) {
48 SetPageUptodate(page);
49 } else {
50 ClearPageUptodate(page);
51 SetPageError(page);
52 }
53 unlock_page(page);
54 }
55 bio_put(bio);
56}
57
58static void f2fs_write_end_io(struct bio *bio)
59{
60 struct f2fs_sb_info *sbi = bio->bi_private;
61 struct bio_vec *bvec;
62 int i;
63
64 bio_for_each_segment_all(bvec, bio, i) {
65 struct page *page = bvec->bv_page;
66
67 fscrypt_pullback_bio_page(&page, true);
68
69 if (unlikely(bio->bi_error)) {
70 set_bit(AS_EIO, &page->mapping->flags);
71 f2fs_stop_checkpoint(sbi);
72 }
73 end_page_writeback(page);
74 dec_page_count(sbi, F2FS_WRITEBACK);
75 }
76
77 if (!get_pages(sbi, F2FS_WRITEBACK) && wq_has_sleeper(&sbi->cp_wait))
78 wake_up(&sbi->cp_wait);
79
80 bio_put(bio);
81}
82
83/*
84 * Low-level block read/write IO operations.
85 */
86static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
87 int npages, bool is_read)
88{
89 struct bio *bio;
90
91 bio = f2fs_bio_alloc(npages);
92
93 bio->bi_bdev = sbi->sb->s_bdev;
94 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
95 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
96 bio->bi_private = is_read ? NULL : sbi;
97
98 return bio;
99}
100
101static void __submit_merged_bio(struct f2fs_bio_info *io)
102{
103 struct f2fs_io_info *fio = &io->fio;
104
105 if (!io->bio)
106 return;
107
108 if (is_read_io(fio->rw))
109 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
110 else
111 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
112
113 submit_bio(fio->rw, io->bio);
114 io->bio = NULL;
115}
116
117static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
118 struct page *page, nid_t ino)
119{
120 struct bio_vec *bvec;
121 struct page *target;
122 int i;
123
124 if (!io->bio)
125 return false;
126
127 if (!inode && !page && !ino)
128 return true;
129
130 bio_for_each_segment_all(bvec, io->bio, i) {
131
132 if (bvec->bv_page->mapping)
133 target = bvec->bv_page;
134 else
135 target = fscrypt_control_page(bvec->bv_page);
136
137 if (inode && inode == target->mapping->host)
138 return true;
139 if (page && page == target)
140 return true;
141 if (ino && ino == ino_of_node(target))
142 return true;
143 }
144
145 return false;
146}
147
148static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
149 struct page *page, nid_t ino,
150 enum page_type type)
151{
152 enum page_type btype = PAGE_TYPE_OF_BIO(type);
153 struct f2fs_bio_info *io = &sbi->write_io[btype];
154 bool ret;
155
156 down_read(&io->io_rwsem);
157 ret = __has_merged_page(io, inode, page, ino);
158 up_read(&io->io_rwsem);
159 return ret;
160}
161
162static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
163 struct inode *inode, struct page *page,
164 nid_t ino, enum page_type type, int rw)
165{
166 enum page_type btype = PAGE_TYPE_OF_BIO(type);
167 struct f2fs_bio_info *io;
168
169 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
170
171 down_write(&io->io_rwsem);
172
173 if (!__has_merged_page(io, inode, page, ino))
174 goto out;
175
176 /* change META to META_FLUSH in the checkpoint procedure */
177 if (type >= META_FLUSH) {
178 io->fio.type = META_FLUSH;
179 if (test_opt(sbi, NOBARRIER))
180 io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
181 else
182 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
183 }
184 __submit_merged_bio(io);
185out:
186 up_write(&io->io_rwsem);
187}
188
189void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
190 int rw)
191{
192 __f2fs_submit_merged_bio(sbi, NULL, NULL, 0, type, rw);
193}
194
195void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
196 struct inode *inode, struct page *page,
197 nid_t ino, enum page_type type, int rw)
198{
199 if (has_merged_page(sbi, inode, page, ino, type))
200 __f2fs_submit_merged_bio(sbi, inode, page, ino, type, rw);
201}
202
203void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi)
204{
205 f2fs_submit_merged_bio(sbi, DATA, WRITE);
206 f2fs_submit_merged_bio(sbi, NODE, WRITE);
207 f2fs_submit_merged_bio(sbi, META, WRITE);
208}
209
210/*
211 * Fill the locked page with data located in the block address.
212 * Return unlocked page.
213 */
214int f2fs_submit_page_bio(struct f2fs_io_info *fio)
215{
216 struct bio *bio;
217 struct page *page = fio->encrypted_page ?
218 fio->encrypted_page : fio->page;
219
220 trace_f2fs_submit_page_bio(page, fio);
221 f2fs_trace_ios(fio, 0);
222
223 /* Allocate a new bio */
224 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->rw));
225
226 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
227 bio_put(bio);
228 return -EFAULT;
229 }
230
231 submit_bio(fio->rw, bio);
232 return 0;
233}
234
235void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
236{
237 struct f2fs_sb_info *sbi = fio->sbi;
238 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
239 struct f2fs_bio_info *io;
240 bool is_read = is_read_io(fio->rw);
241 struct page *bio_page;
242
243 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
244
245 if (fio->old_blkaddr != NEW_ADDR)
246 verify_block_addr(sbi, fio->old_blkaddr);
247 verify_block_addr(sbi, fio->new_blkaddr);
248
249 down_write(&io->io_rwsem);
250
251 if (!is_read)
252 inc_page_count(sbi, F2FS_WRITEBACK);
253
254 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
255 io->fio.rw != fio->rw))
256 __submit_merged_bio(io);
257alloc_new:
258 if (io->bio == NULL) {
259 int bio_blocks = MAX_BIO_BLOCKS(sbi);
260
261 io->bio = __bio_alloc(sbi, fio->new_blkaddr,
262 bio_blocks, is_read);
263 io->fio = *fio;
264 }
265
266 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
267
268 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) <
269 PAGE_SIZE) {
270 __submit_merged_bio(io);
271 goto alloc_new;
272 }
273
274 io->last_block_in_bio = fio->new_blkaddr;
275 f2fs_trace_ios(fio, 0);
276
277 up_write(&io->io_rwsem);
278 trace_f2fs_submit_page_mbio(fio->page, fio);
279}
280
281/*
282 * Lock ordering for the change of data block address:
283 * ->data_page
284 * ->node_page
285 * update block addresses in the node page
286 */
287void set_data_blkaddr(struct dnode_of_data *dn)
288{
289 struct f2fs_node *rn;
290 __le32 *addr_array;
291 struct page *node_page = dn->node_page;
292 unsigned int ofs_in_node = dn->ofs_in_node;
293
294 f2fs_wait_on_page_writeback(node_page, NODE, true);
295
296 rn = F2FS_NODE(node_page);
297
298 /* Get physical address of data block */
299 addr_array = blkaddr_in_node(rn);
300 addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
301 if (set_page_dirty(node_page))
302 dn->node_changed = true;
303}
304
305void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
306{
307 dn->data_blkaddr = blkaddr;
308 set_data_blkaddr(dn);
309 f2fs_update_extent_cache(dn);
310}
311
312int reserve_new_block(struct dnode_of_data *dn)
313{
314 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
315
316 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
317 return -EPERM;
318 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
319 return -ENOSPC;
320
321 trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
322
323 dn->data_blkaddr = NEW_ADDR;
324 set_data_blkaddr(dn);
325 mark_inode_dirty(dn->inode);
326 sync_inode_page(dn);
327 return 0;
328}
329
330int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
331{
332 bool need_put = dn->inode_page ? false : true;
333 int err;
334
335 err = get_dnode_of_data(dn, index, ALLOC_NODE);
336 if (err)
337 return err;
338
339 if (dn->data_blkaddr == NULL_ADDR)
340 err = reserve_new_block(dn);
341 if (err || need_put)
342 f2fs_put_dnode(dn);
343 return err;
344}
345
346int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
347{
348 struct extent_info ei;
349 struct inode *inode = dn->inode;
350
351 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
352 dn->data_blkaddr = ei.blk + index - ei.fofs;
353 return 0;
354 }
355
356 return f2fs_reserve_block(dn, index);
357}
358
359struct page *get_read_data_page(struct inode *inode, pgoff_t index,
360 int rw, bool for_write)
361{
362 struct address_space *mapping = inode->i_mapping;
363 struct dnode_of_data dn;
364 struct page *page;
365 struct extent_info ei;
366 int err;
367 struct f2fs_io_info fio = {
368 .sbi = F2FS_I_SB(inode),
369 .type = DATA,
370 .rw = rw,
371 .encrypted_page = NULL,
372 };
373
374 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
375 return read_mapping_page(mapping, index, NULL);
376
377 page = f2fs_grab_cache_page(mapping, index, for_write);
378 if (!page)
379 return ERR_PTR(-ENOMEM);
380
381 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
382 dn.data_blkaddr = ei.blk + index - ei.fofs;
383 goto got_it;
384 }
385
386 set_new_dnode(&dn, inode, NULL, NULL, 0);
387 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
388 if (err)
389 goto put_err;
390 f2fs_put_dnode(&dn);
391
392 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
393 err = -ENOENT;
394 goto put_err;
395 }
396got_it:
397 if (PageUptodate(page)) {
398 unlock_page(page);
399 return page;
400 }
401
402 /*
403 * A new dentry page is allocated but not able to be written, since its
404 * new inode page couldn't be allocated due to -ENOSPC.
405 * In such the case, its blkaddr can be remained as NEW_ADDR.
406 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
407 */
408 if (dn.data_blkaddr == NEW_ADDR) {
409 zero_user_segment(page, 0, PAGE_SIZE);
410 SetPageUptodate(page);
411 unlock_page(page);
412 return page;
413 }
414
415 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
416 fio.page = page;
417 err = f2fs_submit_page_bio(&fio);
418 if (err)
419 goto put_err;
420 return page;
421
422put_err:
423 f2fs_put_page(page, 1);
424 return ERR_PTR(err);
425}
426
427struct page *find_data_page(struct inode *inode, pgoff_t index)
428{
429 struct address_space *mapping = inode->i_mapping;
430 struct page *page;
431
432 page = find_get_page(mapping, index);
433 if (page && PageUptodate(page))
434 return page;
435 f2fs_put_page(page, 0);
436
437 page = get_read_data_page(inode, index, READ_SYNC, false);
438 if (IS_ERR(page))
439 return page;
440
441 if (PageUptodate(page))
442 return page;
443
444 wait_on_page_locked(page);
445 if (unlikely(!PageUptodate(page))) {
446 f2fs_put_page(page, 0);
447 return ERR_PTR(-EIO);
448 }
449 return page;
450}
451
452/*
453 * If it tries to access a hole, return an error.
454 * Because, the callers, functions in dir.c and GC, should be able to know
455 * whether this page exists or not.
456 */
457struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
458 bool for_write)
459{
460 struct address_space *mapping = inode->i_mapping;
461 struct page *page;
462repeat:
463 page = get_read_data_page(inode, index, READ_SYNC, for_write);
464 if (IS_ERR(page))
465 return page;
466
467 /* wait for read completion */
468 lock_page(page);
469 if (unlikely(!PageUptodate(page))) {
470 f2fs_put_page(page, 1);
471 return ERR_PTR(-EIO);
472 }
473 if (unlikely(page->mapping != mapping)) {
474 f2fs_put_page(page, 1);
475 goto repeat;
476 }
477 return page;
478}
479
480/*
481 * Caller ensures that this data page is never allocated.
482 * A new zero-filled data page is allocated in the page cache.
483 *
484 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
485 * f2fs_unlock_op().
486 * Note that, ipage is set only by make_empty_dir, and if any error occur,
487 * ipage should be released by this function.
488 */
489struct page *get_new_data_page(struct inode *inode,
490 struct page *ipage, pgoff_t index, bool new_i_size)
491{
492 struct address_space *mapping = inode->i_mapping;
493 struct page *page;
494 struct dnode_of_data dn;
495 int err;
496
497 page = f2fs_grab_cache_page(mapping, index, true);
498 if (!page) {
499 /*
500 * before exiting, we should make sure ipage will be released
501 * if any error occur.
502 */
503 f2fs_put_page(ipage, 1);
504 return ERR_PTR(-ENOMEM);
505 }
506
507 set_new_dnode(&dn, inode, ipage, NULL, 0);
508 err = f2fs_reserve_block(&dn, index);
509 if (err) {
510 f2fs_put_page(page, 1);
511 return ERR_PTR(err);
512 }
513 if (!ipage)
514 f2fs_put_dnode(&dn);
515
516 if (PageUptodate(page))
517 goto got_it;
518
519 if (dn.data_blkaddr == NEW_ADDR) {
520 zero_user_segment(page, 0, PAGE_SIZE);
521 SetPageUptodate(page);
522 } else {
523 f2fs_put_page(page, 1);
524
525 /* if ipage exists, blkaddr should be NEW_ADDR */
526 f2fs_bug_on(F2FS_I_SB(inode), ipage);
527 page = get_lock_data_page(inode, index, true);
528 if (IS_ERR(page))
529 return page;
530 }
531got_it:
532 if (new_i_size && i_size_read(inode) <
533 ((loff_t)(index + 1) << PAGE_SHIFT)) {
534 i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
535 /* Only the directory inode sets new_i_size */
536 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
537 }
538 return page;
539}
540
541static int __allocate_data_block(struct dnode_of_data *dn)
542{
543 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
544 struct f2fs_summary sum;
545 struct node_info ni;
546 int seg = CURSEG_WARM_DATA;
547 pgoff_t fofs;
548
549 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
550 return -EPERM;
551
552 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
553 if (dn->data_blkaddr == NEW_ADDR)
554 goto alloc;
555
556 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
557 return -ENOSPC;
558
559alloc:
560 get_node_info(sbi, dn->nid, &ni);
561 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
562
563 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
564 seg = CURSEG_DIRECT_IO;
565
566 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
567 &sum, seg);
568 set_data_blkaddr(dn);
569
570 /* update i_size */
571 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
572 dn->ofs_in_node;
573 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
574 i_size_write(dn->inode,
575 ((loff_t)(fofs + 1) << PAGE_SHIFT));
576 return 0;
577}
578
579ssize_t f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
580{
581 struct inode *inode = file_inode(iocb->ki_filp);
582 struct f2fs_map_blocks map;
583 ssize_t ret = 0;
584
585 map.m_lblk = F2FS_BYTES_TO_BLK(iocb->ki_pos);
586 map.m_len = F2FS_BLK_ALIGN(iov_iter_count(from));
587 map.m_next_pgofs = NULL;
588
589 if (f2fs_encrypted_inode(inode))
590 return 0;
591
592 if (iocb->ki_flags & IOCB_DIRECT) {
593 ret = f2fs_convert_inline_inode(inode);
594 if (ret)
595 return ret;
596 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
597 }
598 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
599 ret = f2fs_convert_inline_inode(inode);
600 if (ret)
601 return ret;
602 }
603 if (!f2fs_has_inline_data(inode))
604 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
605 return ret;
606}
607
608/*
609 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
610 * f2fs_map_blocks structure.
611 * If original data blocks are allocated, then give them to blockdev.
612 * Otherwise,
613 * a. preallocate requested block addresses
614 * b. do not use extent cache for better performance
615 * c. give the block addresses to blockdev
616 */
617int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
618 int create, int flag)
619{
620 unsigned int maxblocks = map->m_len;
621 struct dnode_of_data dn;
622 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
623 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
624 pgoff_t pgofs, end_offset;
625 int err = 0, ofs = 1;
626 struct extent_info ei;
627 bool allocated = false;
628 block_t blkaddr;
629
630 map->m_len = 0;
631 map->m_flags = 0;
632
633 /* it only supports block size == page size */
634 pgofs = (pgoff_t)map->m_lblk;
635
636 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
637 map->m_pblk = ei.blk + pgofs - ei.fofs;
638 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
639 map->m_flags = F2FS_MAP_MAPPED;
640 goto out;
641 }
642
643next_dnode:
644 if (create)
645 f2fs_lock_op(sbi);
646
647 /* When reading holes, we need its node page */
648 set_new_dnode(&dn, inode, NULL, NULL, 0);
649 err = get_dnode_of_data(&dn, pgofs, mode);
650 if (err) {
651 if (err == -ENOENT) {
652 err = 0;
653 if (map->m_next_pgofs)
654 *map->m_next_pgofs =
655 get_next_page_offset(&dn, pgofs);
656 }
657 goto unlock_out;
658 }
659
660 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
661
662next_block:
663 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
664
665 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
666 if (create) {
667 if (unlikely(f2fs_cp_error(sbi))) {
668 err = -EIO;
669 goto sync_out;
670 }
671 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
672 if (blkaddr == NULL_ADDR)
673 err = reserve_new_block(&dn);
674 } else {
675 err = __allocate_data_block(&dn);
676 }
677 if (err)
678 goto sync_out;
679 allocated = true;
680 map->m_flags = F2FS_MAP_NEW;
681 blkaddr = dn.data_blkaddr;
682 } else {
683 if (flag == F2FS_GET_BLOCK_FIEMAP &&
684 blkaddr == NULL_ADDR) {
685 if (map->m_next_pgofs)
686 *map->m_next_pgofs = pgofs + 1;
687 }
688 if (flag != F2FS_GET_BLOCK_FIEMAP ||
689 blkaddr != NEW_ADDR) {
690 if (flag == F2FS_GET_BLOCK_BMAP)
691 err = -ENOENT;
692 goto sync_out;
693 }
694 }
695 }
696
697 if (map->m_len == 0) {
698 /* preallocated unwritten block should be mapped for fiemap. */
699 if (blkaddr == NEW_ADDR)
700 map->m_flags |= F2FS_MAP_UNWRITTEN;
701 map->m_flags |= F2FS_MAP_MAPPED;
702
703 map->m_pblk = blkaddr;
704 map->m_len = 1;
705 } else if ((map->m_pblk != NEW_ADDR &&
706 blkaddr == (map->m_pblk + ofs)) ||
707 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
708 flag == F2FS_GET_BLOCK_PRE_DIO ||
709 flag == F2FS_GET_BLOCK_PRE_AIO) {
710 ofs++;
711 map->m_len++;
712 } else {
713 goto sync_out;
714 }
715
716 dn.ofs_in_node++;
717 pgofs++;
718
719 if (map->m_len < maxblocks) {
720 if (dn.ofs_in_node < end_offset)
721 goto next_block;
722
723 if (allocated)
724 sync_inode_page(&dn);
725 f2fs_put_dnode(&dn);
726
727 if (create) {
728 f2fs_unlock_op(sbi);
729 f2fs_balance_fs(sbi, allocated);
730 }
731 allocated = false;
732 goto next_dnode;
733 }
734
735sync_out:
736 if (allocated)
737 sync_inode_page(&dn);
738 f2fs_put_dnode(&dn);
739unlock_out:
740 if (create) {
741 f2fs_unlock_op(sbi);
742 f2fs_balance_fs(sbi, allocated);
743 }
744out:
745 trace_f2fs_map_blocks(inode, map, err);
746 return err;
747}
748
749static int __get_data_block(struct inode *inode, sector_t iblock,
750 struct buffer_head *bh, int create, int flag,
751 pgoff_t *next_pgofs)
752{
753 struct f2fs_map_blocks map;
754 int ret;
755
756 map.m_lblk = iblock;
757 map.m_len = bh->b_size >> inode->i_blkbits;
758 map.m_next_pgofs = next_pgofs;
759
760 ret = f2fs_map_blocks(inode, &map, create, flag);
761 if (!ret) {
762 map_bh(bh, inode->i_sb, map.m_pblk);
763 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
764 bh->b_size = map.m_len << inode->i_blkbits;
765 }
766 return ret;
767}
768
769static int get_data_block(struct inode *inode, sector_t iblock,
770 struct buffer_head *bh_result, int create, int flag,
771 pgoff_t *next_pgofs)
772{
773 return __get_data_block(inode, iblock, bh_result, create,
774 flag, next_pgofs);
775}
776
777static int get_data_block_dio(struct inode *inode, sector_t iblock,
778 struct buffer_head *bh_result, int create)
779{
780 return __get_data_block(inode, iblock, bh_result, create,
781 F2FS_GET_BLOCK_DIO, NULL);
782}
783
784static int get_data_block_bmap(struct inode *inode, sector_t iblock,
785 struct buffer_head *bh_result, int create)
786{
787 /* Block number less than F2FS MAX BLOCKS */
788 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
789 return -EFBIG;
790
791 return __get_data_block(inode, iblock, bh_result, create,
792 F2FS_GET_BLOCK_BMAP, NULL);
793}
794
795static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
796{
797 return (offset >> inode->i_blkbits);
798}
799
800static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
801{
802 return (blk << inode->i_blkbits);
803}
804
805int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
806 u64 start, u64 len)
807{
808 struct buffer_head map_bh;
809 sector_t start_blk, last_blk;
810 pgoff_t next_pgofs;
811 loff_t isize;
812 u64 logical = 0, phys = 0, size = 0;
813 u32 flags = 0;
814 int ret = 0;
815
816 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
817 if (ret)
818 return ret;
819
820 if (f2fs_has_inline_data(inode)) {
821 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
822 if (ret != -EAGAIN)
823 return ret;
824 }
825
826 inode_lock(inode);
827
828 isize = i_size_read(inode);
829 if (start >= isize)
830 goto out;
831
832 if (start + len > isize)
833 len = isize - start;
834
835 if (logical_to_blk(inode, len) == 0)
836 len = blk_to_logical(inode, 1);
837
838 start_blk = logical_to_blk(inode, start);
839 last_blk = logical_to_blk(inode, start + len - 1);
840
841next:
842 memset(&map_bh, 0, sizeof(struct buffer_head));
843 map_bh.b_size = len;
844
845 ret = get_data_block(inode, start_blk, &map_bh, 0,
846 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
847 if (ret)
848 goto out;
849
850 /* HOLE */
851 if (!buffer_mapped(&map_bh)) {
852 start_blk = next_pgofs;
853 /* Go through holes util pass the EOF */
854 if (blk_to_logical(inode, start_blk) < isize)
855 goto prep_next;
856 /* Found a hole beyond isize means no more extents.
857 * Note that the premise is that filesystems don't
858 * punch holes beyond isize and keep size unchanged.
859 */
860 flags |= FIEMAP_EXTENT_LAST;
861 }
862
863 if (size) {
864 if (f2fs_encrypted_inode(inode))
865 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
866
867 ret = fiemap_fill_next_extent(fieinfo, logical,
868 phys, size, flags);
869 }
870
871 if (start_blk > last_blk || ret)
872 goto out;
873
874 logical = blk_to_logical(inode, start_blk);
875 phys = blk_to_logical(inode, map_bh.b_blocknr);
876 size = map_bh.b_size;
877 flags = 0;
878 if (buffer_unwritten(&map_bh))
879 flags = FIEMAP_EXTENT_UNWRITTEN;
880
881 start_blk += logical_to_blk(inode, size);
882
883prep_next:
884 cond_resched();
885 if (fatal_signal_pending(current))
886 ret = -EINTR;
887 else
888 goto next;
889out:
890 if (ret == 1)
891 ret = 0;
892
893 inode_unlock(inode);
894 return ret;
895}
896
897/*
898 * This function was originally taken from fs/mpage.c, and customized for f2fs.
899 * Major change was from block_size == page_size in f2fs by default.
900 */
901static int f2fs_mpage_readpages(struct address_space *mapping,
902 struct list_head *pages, struct page *page,
903 unsigned nr_pages)
904{
905 struct bio *bio = NULL;
906 unsigned page_idx;
907 sector_t last_block_in_bio = 0;
908 struct inode *inode = mapping->host;
909 const unsigned blkbits = inode->i_blkbits;
910 const unsigned blocksize = 1 << blkbits;
911 sector_t block_in_file;
912 sector_t last_block;
913 sector_t last_block_in_file;
914 sector_t block_nr;
915 struct block_device *bdev = inode->i_sb->s_bdev;
916 struct f2fs_map_blocks map;
917
918 map.m_pblk = 0;
919 map.m_lblk = 0;
920 map.m_len = 0;
921 map.m_flags = 0;
922 map.m_next_pgofs = NULL;
923
924 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
925
926 prefetchw(&page->flags);
927 if (pages) {
928 page = list_entry(pages->prev, struct page, lru);
929 list_del(&page->lru);
930 if (add_to_page_cache_lru(page, mapping,
931 page->index, GFP_KERNEL))
932 goto next_page;
933 }
934
935 block_in_file = (sector_t)page->index;
936 last_block = block_in_file + nr_pages;
937 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
938 blkbits;
939 if (last_block > last_block_in_file)
940 last_block = last_block_in_file;
941
942 /*
943 * Map blocks using the previous result first.
944 */
945 if ((map.m_flags & F2FS_MAP_MAPPED) &&
946 block_in_file > map.m_lblk &&
947 block_in_file < (map.m_lblk + map.m_len))
948 goto got_it;
949
950 /*
951 * Then do more f2fs_map_blocks() calls until we are
952 * done with this page.
953 */
954 map.m_flags = 0;
955
956 if (block_in_file < last_block) {
957 map.m_lblk = block_in_file;
958 map.m_len = last_block - block_in_file;
959
960 if (f2fs_map_blocks(inode, &map, 0,
961 F2FS_GET_BLOCK_READ))
962 goto set_error_page;
963 }
964got_it:
965 if ((map.m_flags & F2FS_MAP_MAPPED)) {
966 block_nr = map.m_pblk + block_in_file - map.m_lblk;
967 SetPageMappedToDisk(page);
968
969 if (!PageUptodate(page) && !cleancache_get_page(page)) {
970 SetPageUptodate(page);
971 goto confused;
972 }
973 } else {
974 zero_user_segment(page, 0, PAGE_SIZE);
975 SetPageUptodate(page);
976 unlock_page(page);
977 goto next_page;
978 }
979
980 /*
981 * This page will go to BIO. Do we need to send this
982 * BIO off first?
983 */
984 if (bio && (last_block_in_bio != block_nr - 1)) {
985submit_and_realloc:
986 submit_bio(READ, bio);
987 bio = NULL;
988 }
989 if (bio == NULL) {
990 struct fscrypt_ctx *ctx = NULL;
991
992 if (f2fs_encrypted_inode(inode) &&
993 S_ISREG(inode->i_mode)) {
994
995 ctx = fscrypt_get_ctx(inode, GFP_NOFS);
996 if (IS_ERR(ctx))
997 goto set_error_page;
998
999 /* wait the page to be moved by cleaning */
1000 f2fs_wait_on_encrypted_page_writeback(
1001 F2FS_I_SB(inode), block_nr);
1002 }
1003
1004 bio = bio_alloc(GFP_KERNEL,
1005 min_t(int, nr_pages, BIO_MAX_PAGES));
1006 if (!bio) {
1007 if (ctx)
1008 fscrypt_release_ctx(ctx);
1009 goto set_error_page;
1010 }
1011 bio->bi_bdev = bdev;
1012 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr);
1013 bio->bi_end_io = f2fs_read_end_io;
1014 bio->bi_private = ctx;
1015 }
1016
1017 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1018 goto submit_and_realloc;
1019
1020 last_block_in_bio = block_nr;
1021 goto next_page;
1022set_error_page:
1023 SetPageError(page);
1024 zero_user_segment(page, 0, PAGE_SIZE);
1025 unlock_page(page);
1026 goto next_page;
1027confused:
1028 if (bio) {
1029 submit_bio(READ, bio);
1030 bio = NULL;
1031 }
1032 unlock_page(page);
1033next_page:
1034 if (pages)
1035 put_page(page);
1036 }
1037 BUG_ON(pages && !list_empty(pages));
1038 if (bio)
1039 submit_bio(READ, bio);
1040 return 0;
1041}
1042
1043static int f2fs_read_data_page(struct file *file, struct page *page)
1044{
1045 struct inode *inode = page->mapping->host;
1046 int ret = -EAGAIN;
1047
1048 trace_f2fs_readpage(page, DATA);
1049
1050 /* If the file has inline data, try to read it directly */
1051 if (f2fs_has_inline_data(inode))
1052 ret = f2fs_read_inline_data(inode, page);
1053 if (ret == -EAGAIN)
1054 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1055 return ret;
1056}
1057
1058static int f2fs_read_data_pages(struct file *file,
1059 struct address_space *mapping,
1060 struct list_head *pages, unsigned nr_pages)
1061{
1062 struct inode *inode = file->f_mapping->host;
1063 struct page *page = list_entry(pages->prev, struct page, lru);
1064
1065 trace_f2fs_readpages(inode, page, nr_pages);
1066
1067 /* If the file has inline data, skip readpages */
1068 if (f2fs_has_inline_data(inode))
1069 return 0;
1070
1071 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1072}
1073
1074int do_write_data_page(struct f2fs_io_info *fio)
1075{
1076 struct page *page = fio->page;
1077 struct inode *inode = page->mapping->host;
1078 struct dnode_of_data dn;
1079 int err = 0;
1080
1081 set_new_dnode(&dn, inode, NULL, NULL, 0);
1082 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1083 if (err)
1084 return err;
1085
1086 fio->old_blkaddr = dn.data_blkaddr;
1087
1088 /* This page is already truncated */
1089 if (fio->old_blkaddr == NULL_ADDR) {
1090 ClearPageUptodate(page);
1091 goto out_writepage;
1092 }
1093
1094 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1095 gfp_t gfp_flags = GFP_NOFS;
1096
1097 /* wait for GCed encrypted page writeback */
1098 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
1099 fio->old_blkaddr);
1100retry_encrypt:
1101 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1102 gfp_flags);
1103 if (IS_ERR(fio->encrypted_page)) {
1104 err = PTR_ERR(fio->encrypted_page);
1105 if (err == -ENOMEM) {
1106 /* flush pending ios and wait for a while */
1107 f2fs_flush_merged_bios(F2FS_I_SB(inode));
1108 congestion_wait(BLK_RW_ASYNC, HZ/50);
1109 gfp_flags |= __GFP_NOFAIL;
1110 err = 0;
1111 goto retry_encrypt;
1112 }
1113 goto out_writepage;
1114 }
1115 }
1116
1117 set_page_writeback(page);
1118
1119 /*
1120 * If current allocation needs SSR,
1121 * it had better in-place writes for updated data.
1122 */
1123 if (unlikely(fio->old_blkaddr != NEW_ADDR &&
1124 !is_cold_data(page) &&
1125 !IS_ATOMIC_WRITTEN_PAGE(page) &&
1126 need_inplace_update(inode))) {
1127 rewrite_data_page(fio);
1128 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
1129 trace_f2fs_do_write_data_page(page, IPU);
1130 } else {
1131 write_data_page(&dn, fio);
1132 trace_f2fs_do_write_data_page(page, OPU);
1133 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
1134 if (page->index == 0)
1135 set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1136 }
1137out_writepage:
1138 f2fs_put_dnode(&dn);
1139 return err;
1140}
1141
1142static int f2fs_write_data_page(struct page *page,
1143 struct writeback_control *wbc)
1144{
1145 struct inode *inode = page->mapping->host;
1146 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1147 loff_t i_size = i_size_read(inode);
1148 const pgoff_t end_index = ((unsigned long long) i_size)
1149 >> PAGE_SHIFT;
1150 unsigned offset = 0;
1151 bool need_balance_fs = false;
1152 int err = 0;
1153 struct f2fs_io_info fio = {
1154 .sbi = sbi,
1155 .type = DATA,
1156 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1157 .page = page,
1158 .encrypted_page = NULL,
1159 };
1160
1161 trace_f2fs_writepage(page, DATA);
1162
1163 if (page->index < end_index)
1164 goto write;
1165
1166 /*
1167 * If the offset is out-of-range of file size,
1168 * this page does not have to be written to disk.
1169 */
1170 offset = i_size & (PAGE_SIZE - 1);
1171 if ((page->index >= end_index + 1) || !offset)
1172 goto out;
1173
1174 zero_user_segment(page, offset, PAGE_SIZE);
1175write:
1176 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1177 goto redirty_out;
1178 if (f2fs_is_drop_cache(inode))
1179 goto out;
1180 if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
1181 available_free_memory(sbi, BASE_CHECK))
1182 goto redirty_out;
1183
1184 /* Dentry blocks are controlled by checkpoint */
1185 if (S_ISDIR(inode->i_mode)) {
1186 if (unlikely(f2fs_cp_error(sbi)))
1187 goto redirty_out;
1188 err = do_write_data_page(&fio);
1189 goto done;
1190 }
1191
1192 /* we should bypass data pages to proceed the kworkder jobs */
1193 if (unlikely(f2fs_cp_error(sbi))) {
1194 SetPageError(page);
1195 goto out;
1196 }
1197
1198 if (!wbc->for_reclaim)
1199 need_balance_fs = true;
1200 else if (has_not_enough_free_secs(sbi, 0))
1201 goto redirty_out;
1202
1203 err = -EAGAIN;
1204 f2fs_lock_op(sbi);
1205 if (f2fs_has_inline_data(inode))
1206 err = f2fs_write_inline_data(inode, page);
1207 if (err == -EAGAIN)
1208 err = do_write_data_page(&fio);
1209 f2fs_unlock_op(sbi);
1210done:
1211 if (err && err != -ENOENT)
1212 goto redirty_out;
1213
1214 clear_cold_data(page);
1215out:
1216 inode_dec_dirty_pages(inode);
1217 if (err)
1218 ClearPageUptodate(page);
1219
1220 if (wbc->for_reclaim) {
1221 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, DATA, WRITE);
1222 remove_dirty_inode(inode);
1223 }
1224
1225 unlock_page(page);
1226 f2fs_balance_fs(sbi, need_balance_fs);
1227
1228 if (unlikely(f2fs_cp_error(sbi)))
1229 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1230
1231 return 0;
1232
1233redirty_out:
1234 redirty_page_for_writepage(wbc, page);
1235 return AOP_WRITEPAGE_ACTIVATE;
1236}
1237
1238static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1239 void *data)
1240{
1241 struct address_space *mapping = data;
1242 int ret = mapping->a_ops->writepage(page, wbc);
1243 mapping_set_error(mapping, ret);
1244 return ret;
1245}
1246
1247/*
1248 * This function was copied from write_cche_pages from mm/page-writeback.c.
1249 * The major change is making write step of cold data page separately from
1250 * warm/hot data page.
1251 */
1252static int f2fs_write_cache_pages(struct address_space *mapping,
1253 struct writeback_control *wbc, writepage_t writepage,
1254 void *data)
1255{
1256 int ret = 0;
1257 int done = 0;
1258 struct pagevec pvec;
1259 int nr_pages;
1260 pgoff_t uninitialized_var(writeback_index);
1261 pgoff_t index;
1262 pgoff_t end; /* Inclusive */
1263 pgoff_t done_index;
1264 int cycled;
1265 int range_whole = 0;
1266 int tag;
1267 int step = 0;
1268
1269 pagevec_init(&pvec, 0);
1270next:
1271 if (wbc->range_cyclic) {
1272 writeback_index = mapping->writeback_index; /* prev offset */
1273 index = writeback_index;
1274 if (index == 0)
1275 cycled = 1;
1276 else
1277 cycled = 0;
1278 end = -1;
1279 } else {
1280 index = wbc->range_start >> PAGE_SHIFT;
1281 end = wbc->range_end >> PAGE_SHIFT;
1282 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1283 range_whole = 1;
1284 cycled = 1; /* ignore range_cyclic tests */
1285 }
1286 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1287 tag = PAGECACHE_TAG_TOWRITE;
1288 else
1289 tag = PAGECACHE_TAG_DIRTY;
1290retry:
1291 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1292 tag_pages_for_writeback(mapping, index, end);
1293 done_index = index;
1294 while (!done && (index <= end)) {
1295 int i;
1296
1297 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1298 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1299 if (nr_pages == 0)
1300 break;
1301
1302 for (i = 0; i < nr_pages; i++) {
1303 struct page *page = pvec.pages[i];
1304
1305 if (page->index > end) {
1306 done = 1;
1307 break;
1308 }
1309
1310 done_index = page->index;
1311
1312 lock_page(page);
1313
1314 if (unlikely(page->mapping != mapping)) {
1315continue_unlock:
1316 unlock_page(page);
1317 continue;
1318 }
1319
1320 if (!PageDirty(page)) {
1321 /* someone wrote it for us */
1322 goto continue_unlock;
1323 }
1324
1325 if (step == is_cold_data(page))
1326 goto continue_unlock;
1327
1328 if (PageWriteback(page)) {
1329 if (wbc->sync_mode != WB_SYNC_NONE)
1330 f2fs_wait_on_page_writeback(page,
1331 DATA, true);
1332 else
1333 goto continue_unlock;
1334 }
1335
1336 BUG_ON(PageWriteback(page));
1337 if (!clear_page_dirty_for_io(page))
1338 goto continue_unlock;
1339
1340 ret = (*writepage)(page, wbc, data);
1341 if (unlikely(ret)) {
1342 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1343 unlock_page(page);
1344 ret = 0;
1345 } else {
1346 done_index = page->index + 1;
1347 done = 1;
1348 break;
1349 }
1350 }
1351
1352 if (--wbc->nr_to_write <= 0 &&
1353 wbc->sync_mode == WB_SYNC_NONE) {
1354 done = 1;
1355 break;
1356 }
1357 }
1358 pagevec_release(&pvec);
1359 cond_resched();
1360 }
1361
1362 if (step < 1) {
1363 step++;
1364 goto next;
1365 }
1366
1367 if (!cycled && !done) {
1368 cycled = 1;
1369 index = 0;
1370 end = writeback_index - 1;
1371 goto retry;
1372 }
1373 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1374 mapping->writeback_index = done_index;
1375
1376 return ret;
1377}
1378
1379static int f2fs_write_data_pages(struct address_space *mapping,
1380 struct writeback_control *wbc)
1381{
1382 struct inode *inode = mapping->host;
1383 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1384 bool locked = false;
1385 int ret;
1386 long diff;
1387
1388 /* deal with chardevs and other special file */
1389 if (!mapping->a_ops->writepage)
1390 return 0;
1391
1392 /* skip writing if there is no dirty page in this inode */
1393 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1394 return 0;
1395
1396 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1397 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1398 available_free_memory(sbi, DIRTY_DENTS))
1399 goto skip_write;
1400
1401 /* skip writing during file defragment */
1402 if (is_inode_flag_set(F2FS_I(inode), FI_DO_DEFRAG))
1403 goto skip_write;
1404
1405 /* during POR, we don't need to trigger writepage at all. */
1406 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1407 goto skip_write;
1408
1409 trace_f2fs_writepages(mapping->host, wbc, DATA);
1410
1411 diff = nr_pages_to_write(sbi, DATA, wbc);
1412
1413 if (!S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_ALL) {
1414 mutex_lock(&sbi->writepages);
1415 locked = true;
1416 }
1417 ret = f2fs_write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
1418 f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
1419 if (locked)
1420 mutex_unlock(&sbi->writepages);
1421
1422 remove_dirty_inode(inode);
1423
1424 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1425 return ret;
1426
1427skip_write:
1428 wbc->pages_skipped += get_dirty_pages(inode);
1429 trace_f2fs_writepages(mapping->host, wbc, DATA);
1430 return 0;
1431}
1432
1433static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1434{
1435 struct inode *inode = mapping->host;
1436 loff_t i_size = i_size_read(inode);
1437
1438 if (to > i_size) {
1439 truncate_pagecache(inode, i_size);
1440 truncate_blocks(inode, i_size, true);
1441 }
1442}
1443
1444static int prepare_write_begin(struct f2fs_sb_info *sbi,
1445 struct page *page, loff_t pos, unsigned len,
1446 block_t *blk_addr, bool *node_changed)
1447{
1448 struct inode *inode = page->mapping->host;
1449 pgoff_t index = page->index;
1450 struct dnode_of_data dn;
1451 struct page *ipage;
1452 bool locked = false;
1453 struct extent_info ei;
1454 int err = 0;
1455
1456 /*
1457 * we already allocated all the blocks, so we don't need to get
1458 * the block addresses when there is no need to fill the page.
1459 */
1460 if (!f2fs_has_inline_data(inode) && !f2fs_encrypted_inode(inode) &&
1461 len == PAGE_SIZE)
1462 return 0;
1463
1464 if (f2fs_has_inline_data(inode) ||
1465 (pos & PAGE_MASK) >= i_size_read(inode)) {
1466 f2fs_lock_op(sbi);
1467 locked = true;
1468 }
1469restart:
1470 /* check inline_data */
1471 ipage = get_node_page(sbi, inode->i_ino);
1472 if (IS_ERR(ipage)) {
1473 err = PTR_ERR(ipage);
1474 goto unlock_out;
1475 }
1476
1477 set_new_dnode(&dn, inode, ipage, ipage, 0);
1478
1479 if (f2fs_has_inline_data(inode)) {
1480 if (pos + len <= MAX_INLINE_DATA) {
1481 read_inline_data(page, ipage);
1482 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1483 set_inline_node(ipage);
1484 } else {
1485 err = f2fs_convert_inline_page(&dn, page);
1486 if (err)
1487 goto out;
1488 if (dn.data_blkaddr == NULL_ADDR)
1489 err = f2fs_get_block(&dn, index);
1490 }
1491 } else if (locked) {
1492 err = f2fs_get_block(&dn, index);
1493 } else {
1494 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1495 dn.data_blkaddr = ei.blk + index - ei.fofs;
1496 } else {
1497 /* hole case */
1498 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1499 if (err || (!err && dn.data_blkaddr == NULL_ADDR)) {
1500 f2fs_put_dnode(&dn);
1501 f2fs_lock_op(sbi);
1502 locked = true;
1503 goto restart;
1504 }
1505 }
1506 }
1507
1508 /* convert_inline_page can make node_changed */
1509 *blk_addr = dn.data_blkaddr;
1510 *node_changed = dn.node_changed;
1511out:
1512 f2fs_put_dnode(&dn);
1513unlock_out:
1514 if (locked)
1515 f2fs_unlock_op(sbi);
1516 return err;
1517}
1518
1519static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1520 loff_t pos, unsigned len, unsigned flags,
1521 struct page **pagep, void **fsdata)
1522{
1523 struct inode *inode = mapping->host;
1524 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1525 struct page *page = NULL;
1526 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1527 bool need_balance = false;
1528 block_t blkaddr = NULL_ADDR;
1529 int err = 0;
1530
1531 trace_f2fs_write_begin(inode, pos, len, flags);
1532
1533 /*
1534 * We should check this at this moment to avoid deadlock on inode page
1535 * and #0 page. The locking rule for inline_data conversion should be:
1536 * lock_page(page #0) -> lock_page(inode_page)
1537 */
1538 if (index != 0) {
1539 err = f2fs_convert_inline_inode(inode);
1540 if (err)
1541 goto fail;
1542 }
1543repeat:
1544 page = grab_cache_page_write_begin(mapping, index, flags);
1545 if (!page) {
1546 err = -ENOMEM;
1547 goto fail;
1548 }
1549
1550 *pagep = page;
1551
1552 err = prepare_write_begin(sbi, page, pos, len,
1553 &blkaddr, &need_balance);
1554 if (err)
1555 goto fail;
1556
1557 if (need_balance && has_not_enough_free_secs(sbi, 0)) {
1558 unlock_page(page);
1559 f2fs_balance_fs(sbi, true);
1560 lock_page(page);
1561 if (page->mapping != mapping) {
1562 /* The page got truncated from under us */
1563 f2fs_put_page(page, 1);
1564 goto repeat;
1565 }
1566 }
1567
1568 f2fs_wait_on_page_writeback(page, DATA, false);
1569
1570 /* wait for GCed encrypted page writeback */
1571 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1572 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1573
1574 if (len == PAGE_SIZE)
1575 goto out_update;
1576 if (PageUptodate(page))
1577 goto out_clear;
1578
1579 if ((pos & PAGE_MASK) >= i_size_read(inode)) {
1580 unsigned start = pos & (PAGE_SIZE - 1);
1581 unsigned end = start + len;
1582
1583 /* Reading beyond i_size is simple: memset to zero */
1584 zero_user_segments(page, 0, start, end, PAGE_SIZE);
1585 goto out_update;
1586 }
1587
1588 if (blkaddr == NEW_ADDR) {
1589 zero_user_segment(page, 0, PAGE_SIZE);
1590 } else {
1591 struct f2fs_io_info fio = {
1592 .sbi = sbi,
1593 .type = DATA,
1594 .rw = READ_SYNC,
1595 .old_blkaddr = blkaddr,
1596 .new_blkaddr = blkaddr,
1597 .page = page,
1598 .encrypted_page = NULL,
1599 };
1600 err = f2fs_submit_page_bio(&fio);
1601 if (err)
1602 goto fail;
1603
1604 lock_page(page);
1605 if (unlikely(!PageUptodate(page))) {
1606 err = -EIO;
1607 goto fail;
1608 }
1609 if (unlikely(page->mapping != mapping)) {
1610 f2fs_put_page(page, 1);
1611 goto repeat;
1612 }
1613
1614 /* avoid symlink page */
1615 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1616 err = fscrypt_decrypt_page(page);
1617 if (err)
1618 goto fail;
1619 }
1620 }
1621out_update:
1622 SetPageUptodate(page);
1623out_clear:
1624 clear_cold_data(page);
1625 return 0;
1626
1627fail:
1628 f2fs_put_page(page, 1);
1629 f2fs_write_failed(mapping, pos + len);
1630 return err;
1631}
1632
1633static int f2fs_write_end(struct file *file,
1634 struct address_space *mapping,
1635 loff_t pos, unsigned len, unsigned copied,
1636 struct page *page, void *fsdata)
1637{
1638 struct inode *inode = page->mapping->host;
1639
1640 trace_f2fs_write_end(inode, pos, len, copied);
1641
1642 set_page_dirty(page);
1643
1644 if (pos + copied > i_size_read(inode)) {
1645 i_size_write(inode, pos + copied);
1646 mark_inode_dirty(inode);
1647 }
1648
1649 f2fs_put_page(page, 1);
1650 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1651 return copied;
1652}
1653
1654static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1655 loff_t offset)
1656{
1657 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1658
1659 if (offset & blocksize_mask)
1660 return -EINVAL;
1661
1662 if (iov_iter_alignment(iter) & blocksize_mask)
1663 return -EINVAL;
1664
1665 return 0;
1666}
1667
1668static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
1669 loff_t offset)
1670{
1671 struct address_space *mapping = iocb->ki_filp->f_mapping;
1672 struct inode *inode = mapping->host;
1673 size_t count = iov_iter_count(iter);
1674 int err;
1675
1676 err = check_direct_IO(inode, iter, offset);
1677 if (err)
1678 return err;
1679
1680 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1681 return 0;
1682
1683 trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
1684
1685 err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block_dio);
1686 if (err < 0 && iov_iter_rw(iter) == WRITE)
1687 f2fs_write_failed(mapping, offset + count);
1688
1689 trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
1690
1691 return err;
1692}
1693
1694void f2fs_invalidate_page(struct page *page, unsigned int offset,
1695 unsigned int length)
1696{
1697 struct inode *inode = page->mapping->host;
1698 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1699
1700 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1701 (offset % PAGE_SIZE || length != PAGE_SIZE))
1702 return;
1703
1704 if (PageDirty(page)) {
1705 if (inode->i_ino == F2FS_META_INO(sbi))
1706 dec_page_count(sbi, F2FS_DIRTY_META);
1707 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1708 dec_page_count(sbi, F2FS_DIRTY_NODES);
1709 else
1710 inode_dec_dirty_pages(inode);
1711 }
1712
1713 /* This is atomic written page, keep Private */
1714 if (IS_ATOMIC_WRITTEN_PAGE(page))
1715 return;
1716
1717 ClearPagePrivate(page);
1718}
1719
1720int f2fs_release_page(struct page *page, gfp_t wait)
1721{
1722 /* If this is dirty page, keep PagePrivate */
1723 if (PageDirty(page))
1724 return 0;
1725
1726 /* This is atomic written page, keep Private */
1727 if (IS_ATOMIC_WRITTEN_PAGE(page))
1728 return 0;
1729
1730 ClearPagePrivate(page);
1731 return 1;
1732}
1733
1734static int f2fs_set_data_page_dirty(struct page *page)
1735{
1736 struct address_space *mapping = page->mapping;
1737 struct inode *inode = mapping->host;
1738
1739 trace_f2fs_set_page_dirty(page, DATA);
1740
1741 SetPageUptodate(page);
1742
1743 if (f2fs_is_atomic_file(inode)) {
1744 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
1745 register_inmem_page(inode, page);
1746 return 1;
1747 }
1748 /*
1749 * Previously, this page has been registered, we just
1750 * return here.
1751 */
1752 return 0;
1753 }
1754
1755 if (!PageDirty(page)) {
1756 __set_page_dirty_nobuffers(page);
1757 update_dirty_page(inode, page);
1758 return 1;
1759 }
1760 return 0;
1761}
1762
1763static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1764{
1765 struct inode *inode = mapping->host;
1766
1767 if (f2fs_has_inline_data(inode))
1768 return 0;
1769
1770 /* make sure allocating whole blocks */
1771 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1772 filemap_write_and_wait(mapping);
1773
1774 return generic_block_bmap(mapping, block, get_data_block_bmap);
1775}
1776
1777const struct address_space_operations f2fs_dblock_aops = {
1778 .readpage = f2fs_read_data_page,
1779 .readpages = f2fs_read_data_pages,
1780 .writepage = f2fs_write_data_page,
1781 .writepages = f2fs_write_data_pages,
1782 .write_begin = f2fs_write_begin,
1783 .write_end = f2fs_write_end,
1784 .set_page_dirty = f2fs_set_data_page_dirty,
1785 .invalidatepage = f2fs_invalidate_page,
1786 .releasepage = f2fs_release_page,
1787 .direct_IO = f2fs_direct_IO,
1788 .bmap = f2fs_bmap,
1789};