Linux Audio

Check our new training course

Loading...
v4.17
  1/****************************************************************************
  2 * Driver for Solarflare network controllers and boards
  3 * Copyright 2005-2006 Fen Systems Ltd.
  4 * Copyright 2006-2013 Solarflare Communications Inc.
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms of the GNU General Public License version 2 as published
  8 * by the Free Software Foundation, incorporated herein by reference.
  9 */
 10
 11#ifndef EFX_IO_H
 12#define EFX_IO_H
 13
 14#include <linux/io.h>
 15#include <linux/spinlock.h>
 16
 17/**************************************************************************
 18 *
 19 * NIC register I/O
 20 *
 21 **************************************************************************
 22 *
 23 * Notes on locking strategy for the Falcon architecture:
 24 *
 25 * Many CSRs are very wide and cannot be read or written atomically.
 26 * Writes from the host are buffered by the Bus Interface Unit (BIU)
 27 * up to 128 bits.  Whenever the host writes part of such a register,
 28 * the BIU collects the written value and does not write to the
 29 * underlying register until all 4 dwords have been written.  A
 30 * similar buffering scheme applies to host access to the NIC's 64-bit
 31 * SRAM.
 32 *
 33 * Writes to different CSRs and 64-bit SRAM words must be serialised,
 34 * since interleaved access can result in lost writes.  We use
 35 * efx_nic::biu_lock for this.
 36 *
 37 * We also serialise reads from 128-bit CSRs and SRAM with the same
 38 * spinlock.  This may not be necessary, but it doesn't really matter
 39 * as there are no such reads on the fast path.
 40 *
 41 * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are
 42 * 128-bit but are special-cased in the BIU to avoid the need for
 43 * locking in the host:
 44 *
 45 * - They are write-only.
 46 * - The semantics of writing to these registers are such that
 47 *   replacing the low 96 bits with zero does not affect functionality.
 48 * - If the host writes to the last dword address of such a register
 49 *   (i.e. the high 32 bits) the underlying register will always be
 50 *   written.  If the collector and the current write together do not
 51 *   provide values for all 128 bits of the register, the low 96 bits
 52 *   will be written as zero.
 53 * - If the host writes to the address of any other part of such a
 54 *   register while the collector already holds values for some other
 55 *   register, the write is discarded and the collector maintains its
 56 *   current state.
 57 *
 58 * The EF10 architecture exposes very few registers to the host and
 59 * most of them are only 32 bits wide.  The only exceptions are the MC
 60 * doorbell register pair, which has its own latching, and
 61 * TX_DESC_UPD, which works in a similar way to the Falcon
 62 * architecture.
 63 */
 64
 65#if BITS_PER_LONG == 64
 66#define EFX_USE_QWORD_IO 1
 67#endif
 68
 69/* Hardware issue requires that only 64-bit naturally aligned writes
 70 * are seen by hardware. Its not strictly necessary to restrict to
 71 * x86_64 arch, but done for safety since unusual write combining behaviour
 72 * can break PIO.
 73 */
 74#ifdef CONFIG_X86_64
 75/* PIO is a win only if write-combining is possible */
 76#ifdef ARCH_HAS_IOREMAP_WC
 77#define EFX_USE_PIO 1
 78#endif
 79#endif
 80
 81#ifdef EFX_USE_QWORD_IO
 82static inline void _efx_writeq(struct efx_nic *efx, __le64 value,
 83				  unsigned int reg)
 84{
 85	__raw_writeq((__force u64)value, efx->membase + reg);
 86}
 87static inline __le64 _efx_readq(struct efx_nic *efx, unsigned int reg)
 88{
 89	return (__force __le64)__raw_readq(efx->membase + reg);
 90}
 91#endif
 92
 93static inline void _efx_writed(struct efx_nic *efx, __le32 value,
 94				  unsigned int reg)
 95{
 96	__raw_writel((__force u32)value, efx->membase + reg);
 97}
 98static inline __le32 _efx_readd(struct efx_nic *efx, unsigned int reg)
 99{
100	return (__force __le32)__raw_readl(efx->membase + reg);
101}
102
103/* Write a normal 128-bit CSR, locking as appropriate. */
104static inline void efx_writeo(struct efx_nic *efx, const efx_oword_t *value,
105			      unsigned int reg)
106{
107	unsigned long flags __attribute__ ((unused));
108
109	netif_vdbg(efx, hw, efx->net_dev,
110		   "writing register %x with " EFX_OWORD_FMT "\n", reg,
111		   EFX_OWORD_VAL(*value));
112
113	spin_lock_irqsave(&efx->biu_lock, flags);
114#ifdef EFX_USE_QWORD_IO
115	_efx_writeq(efx, value->u64[0], reg + 0);
116	_efx_writeq(efx, value->u64[1], reg + 8);
117#else
118	_efx_writed(efx, value->u32[0], reg + 0);
119	_efx_writed(efx, value->u32[1], reg + 4);
120	_efx_writed(efx, value->u32[2], reg + 8);
121	_efx_writed(efx, value->u32[3], reg + 12);
122#endif
123	mmiowb();
124	spin_unlock_irqrestore(&efx->biu_lock, flags);
125}
126
127/* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */
128static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase,
129				   const efx_qword_t *value, unsigned int index)
130{
131	unsigned int addr = index * sizeof(*value);
132	unsigned long flags __attribute__ ((unused));
133
134	netif_vdbg(efx, hw, efx->net_dev,
135		   "writing SRAM address %x with " EFX_QWORD_FMT "\n",
136		   addr, EFX_QWORD_VAL(*value));
137
138	spin_lock_irqsave(&efx->biu_lock, flags);
139#ifdef EFX_USE_QWORD_IO
140	__raw_writeq((__force u64)value->u64[0], membase + addr);
141#else
142	__raw_writel((__force u32)value->u32[0], membase + addr);
143	__raw_writel((__force u32)value->u32[1], membase + addr + 4);
144#endif
145	mmiowb();
146	spin_unlock_irqrestore(&efx->biu_lock, flags);
147}
148
149/* Write a 32-bit CSR or the last dword of a special 128-bit CSR */
150static inline void efx_writed(struct efx_nic *efx, const efx_dword_t *value,
151			      unsigned int reg)
152{
153	netif_vdbg(efx, hw, efx->net_dev,
154		   "writing register %x with "EFX_DWORD_FMT"\n",
155		   reg, EFX_DWORD_VAL(*value));
156
157	/* No lock required */
158	_efx_writed(efx, value->u32[0], reg);
159}
160
161/* Read a 128-bit CSR, locking as appropriate. */
162static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value,
163			     unsigned int reg)
164{
165	unsigned long flags __attribute__ ((unused));
166
167	spin_lock_irqsave(&efx->biu_lock, flags);
168	value->u32[0] = _efx_readd(efx, reg + 0);
169	value->u32[1] = _efx_readd(efx, reg + 4);
170	value->u32[2] = _efx_readd(efx, reg + 8);
171	value->u32[3] = _efx_readd(efx, reg + 12);
172	spin_unlock_irqrestore(&efx->biu_lock, flags);
173
174	netif_vdbg(efx, hw, efx->net_dev,
175		   "read from register %x, got " EFX_OWORD_FMT "\n", reg,
176		   EFX_OWORD_VAL(*value));
177}
178
179/* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */
180static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase,
181				  efx_qword_t *value, unsigned int index)
182{
183	unsigned int addr = index * sizeof(*value);
184	unsigned long flags __attribute__ ((unused));
185
186	spin_lock_irqsave(&efx->biu_lock, flags);
187#ifdef EFX_USE_QWORD_IO
188	value->u64[0] = (__force __le64)__raw_readq(membase + addr);
189#else
190	value->u32[0] = (__force __le32)__raw_readl(membase + addr);
191	value->u32[1] = (__force __le32)__raw_readl(membase + addr + 4);
192#endif
193	spin_unlock_irqrestore(&efx->biu_lock, flags);
194
195	netif_vdbg(efx, hw, efx->net_dev,
196		   "read from SRAM address %x, got "EFX_QWORD_FMT"\n",
197		   addr, EFX_QWORD_VAL(*value));
198}
199
200/* Read a 32-bit CSR or SRAM */
201static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value,
202				unsigned int reg)
203{
204	value->u32[0] = _efx_readd(efx, reg);
205	netif_vdbg(efx, hw, efx->net_dev,
206		   "read from register %x, got "EFX_DWORD_FMT"\n",
207		   reg, EFX_DWORD_VAL(*value));
208}
209
210/* Write a 128-bit CSR forming part of a table */
211static inline void
212efx_writeo_table(struct efx_nic *efx, const efx_oword_t *value,
213		 unsigned int reg, unsigned int index)
214{
215	efx_writeo(efx, value, reg + index * sizeof(efx_oword_t));
216}
217
218/* Read a 128-bit CSR forming part of a table */
219static inline void efx_reado_table(struct efx_nic *efx, efx_oword_t *value,
220				     unsigned int reg, unsigned int index)
221{
222	efx_reado(efx, value, reg + index * sizeof(efx_oword_t));
223}
224
225/* default VI stride (step between per-VI registers) is 8K */
226#define EFX_DEFAULT_VI_STRIDE 0x2000
227
228/* Calculate offset to page-mapped register */
229static inline unsigned int efx_paged_reg(struct efx_nic *efx, unsigned int page,
230					 unsigned int reg)
231{
232	return page * efx->vi_stride + reg;
233}
234
235/* Write the whole of RX_DESC_UPD or TX_DESC_UPD */
236static inline void _efx_writeo_page(struct efx_nic *efx, efx_oword_t *value,
237				    unsigned int reg, unsigned int page)
238{
239	reg = efx_paged_reg(efx, page, reg);
240
241	netif_vdbg(efx, hw, efx->net_dev,
242		   "writing register %x with " EFX_OWORD_FMT "\n", reg,
243		   EFX_OWORD_VAL(*value));
244
245#ifdef EFX_USE_QWORD_IO
246	_efx_writeq(efx, value->u64[0], reg + 0);
247	_efx_writeq(efx, value->u64[1], reg + 8);
248#else
249	_efx_writed(efx, value->u32[0], reg + 0);
250	_efx_writed(efx, value->u32[1], reg + 4);
251	_efx_writed(efx, value->u32[2], reg + 8);
252	_efx_writed(efx, value->u32[3], reg + 12);
253#endif
254}
255#define efx_writeo_page(efx, value, reg, page)				\
256	_efx_writeo_page(efx, value,					\
257			 reg +						\
258			 BUILD_BUG_ON_ZERO((reg) != 0x830 && (reg) != 0xa10), \
259			 page)
260
261/* Write a page-mapped 32-bit CSR (EVQ_RPTR, EVQ_TMR (EF10), or the
262 * high bits of RX_DESC_UPD or TX_DESC_UPD)
263 */
264static inline void
265_efx_writed_page(struct efx_nic *efx, const efx_dword_t *value,
266		 unsigned int reg, unsigned int page)
267{
268	efx_writed(efx, value, efx_paged_reg(efx, page, reg));
269}
270#define efx_writed_page(efx, value, reg, page)				\
271	_efx_writed_page(efx, value,					\
272			 reg +						\
273			 BUILD_BUG_ON_ZERO((reg) != 0x400 &&		\
274					   (reg) != 0x420 &&		\
275					   (reg) != 0x830 &&		\
276					   (reg) != 0x83c &&		\
277					   (reg) != 0xa18 &&		\
278					   (reg) != 0xa1c),		\
279			 page)
280
281/* Write TIMER_COMMAND.  This is a page-mapped 32-bit CSR, but a bug
282 * in the BIU means that writes to TIMER_COMMAND[0] invalidate the
283 * collector register.
284 */
285static inline void _efx_writed_page_locked(struct efx_nic *efx,
286					   const efx_dword_t *value,
287					   unsigned int reg,
288					   unsigned int page)
289{
290	unsigned long flags __attribute__ ((unused));
291
292	if (page == 0) {
293		spin_lock_irqsave(&efx->biu_lock, flags);
294		efx_writed(efx, value, efx_paged_reg(efx, page, reg));
295		spin_unlock_irqrestore(&efx->biu_lock, flags);
296	} else {
297		efx_writed(efx, value, efx_paged_reg(efx, page, reg));
298	}
299}
300#define efx_writed_page_locked(efx, value, reg, page)			\
301	_efx_writed_page_locked(efx, value,				\
302				reg + BUILD_BUG_ON_ZERO((reg) != 0x420), \
303				page)
304
305#endif /* EFX_IO_H */
v4.6
  1/****************************************************************************
  2 * Driver for Solarflare network controllers and boards
  3 * Copyright 2005-2006 Fen Systems Ltd.
  4 * Copyright 2006-2013 Solarflare Communications Inc.
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms of the GNU General Public License version 2 as published
  8 * by the Free Software Foundation, incorporated herein by reference.
  9 */
 10
 11#ifndef EFX_IO_H
 12#define EFX_IO_H
 13
 14#include <linux/io.h>
 15#include <linux/spinlock.h>
 16
 17/**************************************************************************
 18 *
 19 * NIC register I/O
 20 *
 21 **************************************************************************
 22 *
 23 * Notes on locking strategy for the Falcon architecture:
 24 *
 25 * Many CSRs are very wide and cannot be read or written atomically.
 26 * Writes from the host are buffered by the Bus Interface Unit (BIU)
 27 * up to 128 bits.  Whenever the host writes part of such a register,
 28 * the BIU collects the written value and does not write to the
 29 * underlying register until all 4 dwords have been written.  A
 30 * similar buffering scheme applies to host access to the NIC's 64-bit
 31 * SRAM.
 32 *
 33 * Writes to different CSRs and 64-bit SRAM words must be serialised,
 34 * since interleaved access can result in lost writes.  We use
 35 * efx_nic::biu_lock for this.
 36 *
 37 * We also serialise reads from 128-bit CSRs and SRAM with the same
 38 * spinlock.  This may not be necessary, but it doesn't really matter
 39 * as there are no such reads on the fast path.
 40 *
 41 * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are
 42 * 128-bit but are special-cased in the BIU to avoid the need for
 43 * locking in the host:
 44 *
 45 * - They are write-only.
 46 * - The semantics of writing to these registers are such that
 47 *   replacing the low 96 bits with zero does not affect functionality.
 48 * - If the host writes to the last dword address of such a register
 49 *   (i.e. the high 32 bits) the underlying register will always be
 50 *   written.  If the collector and the current write together do not
 51 *   provide values for all 128 bits of the register, the low 96 bits
 52 *   will be written as zero.
 53 * - If the host writes to the address of any other part of such a
 54 *   register while the collector already holds values for some other
 55 *   register, the write is discarded and the collector maintains its
 56 *   current state.
 57 *
 58 * The EF10 architecture exposes very few registers to the host and
 59 * most of them are only 32 bits wide.  The only exceptions are the MC
 60 * doorbell register pair, which has its own latching, and
 61 * TX_DESC_UPD, which works in a similar way to the Falcon
 62 * architecture.
 63 */
 64
 65#if BITS_PER_LONG == 64
 66#define EFX_USE_QWORD_IO 1
 67#endif
 68
 69/* Hardware issue requires that only 64-bit naturally aligned writes
 70 * are seen by hardware. Its not strictly necessary to restrict to
 71 * x86_64 arch, but done for safety since unusual write combining behaviour
 72 * can break PIO.
 73 */
 74#ifdef CONFIG_X86_64
 75/* PIO is a win only if write-combining is possible */
 76#ifdef ARCH_HAS_IOREMAP_WC
 77#define EFX_USE_PIO 1
 78#endif
 79#endif
 80
 81#ifdef EFX_USE_QWORD_IO
 82static inline void _efx_writeq(struct efx_nic *efx, __le64 value,
 83				  unsigned int reg)
 84{
 85	__raw_writeq((__force u64)value, efx->membase + reg);
 86}
 87static inline __le64 _efx_readq(struct efx_nic *efx, unsigned int reg)
 88{
 89	return (__force __le64)__raw_readq(efx->membase + reg);
 90}
 91#endif
 92
 93static inline void _efx_writed(struct efx_nic *efx, __le32 value,
 94				  unsigned int reg)
 95{
 96	__raw_writel((__force u32)value, efx->membase + reg);
 97}
 98static inline __le32 _efx_readd(struct efx_nic *efx, unsigned int reg)
 99{
100	return (__force __le32)__raw_readl(efx->membase + reg);
101}
102
103/* Write a normal 128-bit CSR, locking as appropriate. */
104static inline void efx_writeo(struct efx_nic *efx, const efx_oword_t *value,
105			      unsigned int reg)
106{
107	unsigned long flags __attribute__ ((unused));
108
109	netif_vdbg(efx, hw, efx->net_dev,
110		   "writing register %x with " EFX_OWORD_FMT "\n", reg,
111		   EFX_OWORD_VAL(*value));
112
113	spin_lock_irqsave(&efx->biu_lock, flags);
114#ifdef EFX_USE_QWORD_IO
115	_efx_writeq(efx, value->u64[0], reg + 0);
116	_efx_writeq(efx, value->u64[1], reg + 8);
117#else
118	_efx_writed(efx, value->u32[0], reg + 0);
119	_efx_writed(efx, value->u32[1], reg + 4);
120	_efx_writed(efx, value->u32[2], reg + 8);
121	_efx_writed(efx, value->u32[3], reg + 12);
122#endif
123	mmiowb();
124	spin_unlock_irqrestore(&efx->biu_lock, flags);
125}
126
127/* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */
128static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase,
129				   const efx_qword_t *value, unsigned int index)
130{
131	unsigned int addr = index * sizeof(*value);
132	unsigned long flags __attribute__ ((unused));
133
134	netif_vdbg(efx, hw, efx->net_dev,
135		   "writing SRAM address %x with " EFX_QWORD_FMT "\n",
136		   addr, EFX_QWORD_VAL(*value));
137
138	spin_lock_irqsave(&efx->biu_lock, flags);
139#ifdef EFX_USE_QWORD_IO
140	__raw_writeq((__force u64)value->u64[0], membase + addr);
141#else
142	__raw_writel((__force u32)value->u32[0], membase + addr);
143	__raw_writel((__force u32)value->u32[1], membase + addr + 4);
144#endif
145	mmiowb();
146	spin_unlock_irqrestore(&efx->biu_lock, flags);
147}
148
149/* Write a 32-bit CSR or the last dword of a special 128-bit CSR */
150static inline void efx_writed(struct efx_nic *efx, const efx_dword_t *value,
151			      unsigned int reg)
152{
153	netif_vdbg(efx, hw, efx->net_dev,
154		   "writing register %x with "EFX_DWORD_FMT"\n",
155		   reg, EFX_DWORD_VAL(*value));
156
157	/* No lock required */
158	_efx_writed(efx, value->u32[0], reg);
159}
160
161/* Read a 128-bit CSR, locking as appropriate. */
162static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value,
163			     unsigned int reg)
164{
165	unsigned long flags __attribute__ ((unused));
166
167	spin_lock_irqsave(&efx->biu_lock, flags);
168	value->u32[0] = _efx_readd(efx, reg + 0);
169	value->u32[1] = _efx_readd(efx, reg + 4);
170	value->u32[2] = _efx_readd(efx, reg + 8);
171	value->u32[3] = _efx_readd(efx, reg + 12);
172	spin_unlock_irqrestore(&efx->biu_lock, flags);
173
174	netif_vdbg(efx, hw, efx->net_dev,
175		   "read from register %x, got " EFX_OWORD_FMT "\n", reg,
176		   EFX_OWORD_VAL(*value));
177}
178
179/* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */
180static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase,
181				  efx_qword_t *value, unsigned int index)
182{
183	unsigned int addr = index * sizeof(*value);
184	unsigned long flags __attribute__ ((unused));
185
186	spin_lock_irqsave(&efx->biu_lock, flags);
187#ifdef EFX_USE_QWORD_IO
188	value->u64[0] = (__force __le64)__raw_readq(membase + addr);
189#else
190	value->u32[0] = (__force __le32)__raw_readl(membase + addr);
191	value->u32[1] = (__force __le32)__raw_readl(membase + addr + 4);
192#endif
193	spin_unlock_irqrestore(&efx->biu_lock, flags);
194
195	netif_vdbg(efx, hw, efx->net_dev,
196		   "read from SRAM address %x, got "EFX_QWORD_FMT"\n",
197		   addr, EFX_QWORD_VAL(*value));
198}
199
200/* Read a 32-bit CSR or SRAM */
201static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value,
202				unsigned int reg)
203{
204	value->u32[0] = _efx_readd(efx, reg);
205	netif_vdbg(efx, hw, efx->net_dev,
206		   "read from register %x, got "EFX_DWORD_FMT"\n",
207		   reg, EFX_DWORD_VAL(*value));
208}
209
210/* Write a 128-bit CSR forming part of a table */
211static inline void
212efx_writeo_table(struct efx_nic *efx, const efx_oword_t *value,
213		 unsigned int reg, unsigned int index)
214{
215	efx_writeo(efx, value, reg + index * sizeof(efx_oword_t));
216}
217
218/* Read a 128-bit CSR forming part of a table */
219static inline void efx_reado_table(struct efx_nic *efx, efx_oword_t *value,
220				     unsigned int reg, unsigned int index)
221{
222	efx_reado(efx, value, reg + index * sizeof(efx_oword_t));
223}
224
225/* Page size used as step between per-VI registers */
226#define EFX_VI_PAGE_SIZE 0x2000
227
228/* Calculate offset to page-mapped register */
229#define EFX_PAGED_REG(page, reg) \
230	((page) * EFX_VI_PAGE_SIZE + (reg))
 
 
 
231
232/* Write the whole of RX_DESC_UPD or TX_DESC_UPD */
233static inline void _efx_writeo_page(struct efx_nic *efx, efx_oword_t *value,
234				    unsigned int reg, unsigned int page)
235{
236	reg = EFX_PAGED_REG(page, reg);
237
238	netif_vdbg(efx, hw, efx->net_dev,
239		   "writing register %x with " EFX_OWORD_FMT "\n", reg,
240		   EFX_OWORD_VAL(*value));
241
242#ifdef EFX_USE_QWORD_IO
243	_efx_writeq(efx, value->u64[0], reg + 0);
244	_efx_writeq(efx, value->u64[1], reg + 8);
245#else
246	_efx_writed(efx, value->u32[0], reg + 0);
247	_efx_writed(efx, value->u32[1], reg + 4);
248	_efx_writed(efx, value->u32[2], reg + 8);
249	_efx_writed(efx, value->u32[3], reg + 12);
250#endif
251}
252#define efx_writeo_page(efx, value, reg, page)				\
253	_efx_writeo_page(efx, value,					\
254			 reg +						\
255			 BUILD_BUG_ON_ZERO((reg) != 0x830 && (reg) != 0xa10), \
256			 page)
257
258/* Write a page-mapped 32-bit CSR (EVQ_RPTR, EVQ_TMR (EF10), or the
259 * high bits of RX_DESC_UPD or TX_DESC_UPD)
260 */
261static inline void
262_efx_writed_page(struct efx_nic *efx, const efx_dword_t *value,
263		 unsigned int reg, unsigned int page)
264{
265	efx_writed(efx, value, EFX_PAGED_REG(page, reg));
266}
267#define efx_writed_page(efx, value, reg, page)				\
268	_efx_writed_page(efx, value,					\
269			 reg +						\
270			 BUILD_BUG_ON_ZERO((reg) != 0x400 &&		\
271					   (reg) != 0x420 &&		\
272					   (reg) != 0x830 &&		\
273					   (reg) != 0x83c &&		\
274					   (reg) != 0xa18 &&		\
275					   (reg) != 0xa1c),		\
276			 page)
277
278/* Write TIMER_COMMAND.  This is a page-mapped 32-bit CSR, but a bug
279 * in the BIU means that writes to TIMER_COMMAND[0] invalidate the
280 * collector register.
281 */
282static inline void _efx_writed_page_locked(struct efx_nic *efx,
283					   const efx_dword_t *value,
284					   unsigned int reg,
285					   unsigned int page)
286{
287	unsigned long flags __attribute__ ((unused));
288
289	if (page == 0) {
290		spin_lock_irqsave(&efx->biu_lock, flags);
291		efx_writed(efx, value, EFX_PAGED_REG(page, reg));
292		spin_unlock_irqrestore(&efx->biu_lock, flags);
293	} else {
294		efx_writed(efx, value, EFX_PAGED_REG(page, reg));
295	}
296}
297#define efx_writed_page_locked(efx, value, reg, page)			\
298	_efx_writed_page_locked(efx, value,				\
299				reg + BUILD_BUG_ON_ZERO((reg) != 0x420), \
300				page)
301
302#endif /* EFX_IO_H */