Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/* Intel PRO/1000 Linux driver
   3 * Copyright(c) 1999 - 2015 Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * The full GNU General Public License is included in this distribution in
  15 * the file called "COPYING".
  16 *
  17 * Contact Information:
  18 * Linux NICS <linux.nics@intel.com>
  19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  21 */
  22
  23#include "e1000.h"
  24
  25/**
  26 *  e1000e_get_bus_info_pcie - Get PCIe bus information
  27 *  @hw: pointer to the HW structure
  28 *
  29 *  Determines and stores the system bus information for a particular
  30 *  network interface.  The following bus information is determined and stored:
  31 *  bus speed, bus width, type (PCIe), and PCIe function.
  32 **/
  33s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
  34{
  35	struct e1000_mac_info *mac = &hw->mac;
  36	struct e1000_bus_info *bus = &hw->bus;
  37	struct e1000_adapter *adapter = hw->adapter;
  38	u16 pcie_link_status, cap_offset;
  39
  40	cap_offset = adapter->pdev->pcie_cap;
  41	if (!cap_offset) {
  42		bus->width = e1000_bus_width_unknown;
  43	} else {
  44		pci_read_config_word(adapter->pdev,
  45				     cap_offset + PCIE_LINK_STATUS,
  46				     &pcie_link_status);
  47		bus->width = (enum e1000_bus_width)((pcie_link_status &
  48						     PCIE_LINK_WIDTH_MASK) >>
  49						    PCIE_LINK_WIDTH_SHIFT);
  50	}
  51
  52	mac->ops.set_lan_id(hw);
  53
  54	return 0;
  55}
  56
  57/**
  58 *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
  59 *
  60 *  @hw: pointer to the HW structure
  61 *
  62 *  Determines the LAN function id by reading memory-mapped registers
  63 *  and swaps the port value if requested.
  64 **/
  65void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
  66{
  67	struct e1000_bus_info *bus = &hw->bus;
  68	u32 reg;
  69
  70	/* The status register reports the correct function number
  71	 * for the device regardless of function swap state.
  72	 */
  73	reg = er32(STATUS);
  74	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
  75}
  76
  77/**
  78 *  e1000_set_lan_id_single_port - Set LAN id for a single port device
  79 *  @hw: pointer to the HW structure
  80 *
  81 *  Sets the LAN function id to zero for a single port device.
  82 **/
  83void e1000_set_lan_id_single_port(struct e1000_hw *hw)
  84{
  85	struct e1000_bus_info *bus = &hw->bus;
  86
  87	bus->func = 0;
  88}
  89
  90/**
  91 *  e1000_clear_vfta_generic - Clear VLAN filter table
  92 *  @hw: pointer to the HW structure
  93 *
  94 *  Clears the register array which contains the VLAN filter table by
  95 *  setting all the values to 0.
  96 **/
  97void e1000_clear_vfta_generic(struct e1000_hw *hw)
  98{
  99	u32 offset;
 100
 101	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
 102		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
 103		e1e_flush();
 104	}
 105}
 106
 107/**
 108 *  e1000_write_vfta_generic - Write value to VLAN filter table
 109 *  @hw: pointer to the HW structure
 110 *  @offset: register offset in VLAN filter table
 111 *  @value: register value written to VLAN filter table
 112 *
 113 *  Writes value at the given offset in the register array which stores
 114 *  the VLAN filter table.
 115 **/
 116void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
 117{
 118	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
 119	e1e_flush();
 120}
 121
 122/**
 123 *  e1000e_init_rx_addrs - Initialize receive address's
 124 *  @hw: pointer to the HW structure
 125 *  @rar_count: receive address registers
 126 *
 127 *  Setup the receive address registers by setting the base receive address
 128 *  register to the devices MAC address and clearing all the other receive
 129 *  address registers to 0.
 130 **/
 131void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
 132{
 133	u32 i;
 134	u8 mac_addr[ETH_ALEN] = { 0 };
 135
 136	/* Setup the receive address */
 137	e_dbg("Programming MAC Address into RAR[0]\n");
 138
 139	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
 140
 141	/* Zero out the other (rar_entry_count - 1) receive addresses */
 142	e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
 143	for (i = 1; i < rar_count; i++)
 144		hw->mac.ops.rar_set(hw, mac_addr, i);
 145}
 146
 147/**
 148 *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
 149 *  @hw: pointer to the HW structure
 150 *
 151 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
 152 *  can be setup by pre-boot software and must be treated like a permanent
 153 *  address and must override the actual permanent MAC address. If an
 154 *  alternate MAC address is found it is programmed into RAR0, replacing
 155 *  the permanent address that was installed into RAR0 by the Si on reset.
 156 *  This function will return SUCCESS unless it encounters an error while
 157 *  reading the EEPROM.
 158 **/
 159s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
 160{
 161	u32 i;
 162	s32 ret_val;
 163	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
 164	u8 alt_mac_addr[ETH_ALEN];
 165
 166	ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
 167	if (ret_val)
 168		return ret_val;
 169
 170	/* not supported on 82573 */
 171	if (hw->mac.type == e1000_82573)
 172		return 0;
 173
 174	ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
 175				 &nvm_alt_mac_addr_offset);
 176	if (ret_val) {
 177		e_dbg("NVM Read Error\n");
 178		return ret_val;
 179	}
 180
 181	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
 182	    (nvm_alt_mac_addr_offset == 0x0000))
 183		/* There is no Alternate MAC Address */
 184		return 0;
 185
 186	if (hw->bus.func == E1000_FUNC_1)
 187		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
 188	for (i = 0; i < ETH_ALEN; i += 2) {
 189		offset = nvm_alt_mac_addr_offset + (i >> 1);
 190		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
 191		if (ret_val) {
 192			e_dbg("NVM Read Error\n");
 193			return ret_val;
 194		}
 195
 196		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
 197		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
 198	}
 199
 200	/* if multicast bit is set, the alternate address will not be used */
 201	if (is_multicast_ether_addr(alt_mac_addr)) {
 202		e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
 203		return 0;
 204	}
 205
 206	/* We have a valid alternate MAC address, and we want to treat it the
 207	 * same as the normal permanent MAC address stored by the HW into the
 208	 * RAR. Do this by mapping this address into RAR0.
 209	 */
 210	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
 211
 212	return 0;
 213}
 214
 215u32 e1000e_rar_get_count_generic(struct e1000_hw *hw)
 216{
 217	return hw->mac.rar_entry_count;
 218}
 219
 220/**
 221 *  e1000e_rar_set_generic - Set receive address register
 222 *  @hw: pointer to the HW structure
 223 *  @addr: pointer to the receive address
 224 *  @index: receive address array register
 225 *
 226 *  Sets the receive address array register at index to the address passed
 227 *  in by addr.
 228 **/
 229int e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
 230{
 231	u32 rar_low, rar_high;
 232
 233	/* HW expects these in little endian so we reverse the byte order
 234	 * from network order (big endian) to little endian
 235	 */
 236	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
 237		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
 238
 239	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
 240
 241	/* If MAC address zero, no need to set the AV bit */
 242	if (rar_low || rar_high)
 243		rar_high |= E1000_RAH_AV;
 244
 245	/* Some bridges will combine consecutive 32-bit writes into
 246	 * a single burst write, which will malfunction on some parts.
 247	 * The flushes avoid this.
 248	 */
 249	ew32(RAL(index), rar_low);
 250	e1e_flush();
 251	ew32(RAH(index), rar_high);
 252	e1e_flush();
 253
 254	return 0;
 255}
 256
 257/**
 258 *  e1000_hash_mc_addr - Generate a multicast hash value
 259 *  @hw: pointer to the HW structure
 260 *  @mc_addr: pointer to a multicast address
 261 *
 262 *  Generates a multicast address hash value which is used to determine
 263 *  the multicast filter table array address and new table value.
 264 **/
 265static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
 266{
 267	u32 hash_value, hash_mask;
 268	u8 bit_shift = 0;
 269
 270	/* Register count multiplied by bits per register */
 271	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
 272
 273	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
 274	 * where 0xFF would still fall within the hash mask.
 275	 */
 276	while (hash_mask >> bit_shift != 0xFF)
 277		bit_shift++;
 278
 279	/* The portion of the address that is used for the hash table
 280	 * is determined by the mc_filter_type setting.
 281	 * The algorithm is such that there is a total of 8 bits of shifting.
 282	 * The bit_shift for a mc_filter_type of 0 represents the number of
 283	 * left-shifts where the MSB of mc_addr[5] would still fall within
 284	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
 285	 * of 8 bits of shifting, then mc_addr[4] will shift right the
 286	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
 287	 * cases are a variation of this algorithm...essentially raising the
 288	 * number of bits to shift mc_addr[5] left, while still keeping the
 289	 * 8-bit shifting total.
 290	 *
 291	 * For example, given the following Destination MAC Address and an
 292	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
 293	 * we can see that the bit_shift for case 0 is 4.  These are the hash
 294	 * values resulting from each mc_filter_type...
 295	 * [0] [1] [2] [3] [4] [5]
 296	 * 01  AA  00  12  34  56
 297	 * LSB           MSB
 298	 *
 299	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
 300	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
 301	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
 302	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
 303	 */
 304	switch (hw->mac.mc_filter_type) {
 305	default:
 306	case 0:
 307		break;
 308	case 1:
 309		bit_shift += 1;
 310		break;
 311	case 2:
 312		bit_shift += 2;
 313		break;
 314	case 3:
 315		bit_shift += 4;
 316		break;
 317	}
 318
 319	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
 320				   (((u16)mc_addr[5]) << bit_shift)));
 321
 322	return hash_value;
 323}
 324
 325/**
 326 *  e1000e_update_mc_addr_list_generic - Update Multicast addresses
 327 *  @hw: pointer to the HW structure
 328 *  @mc_addr_list: array of multicast addresses to program
 329 *  @mc_addr_count: number of multicast addresses to program
 330 *
 331 *  Updates entire Multicast Table Array.
 332 *  The caller must have a packed mc_addr_list of multicast addresses.
 333 **/
 334void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
 335					u8 *mc_addr_list, u32 mc_addr_count)
 336{
 337	u32 hash_value, hash_bit, hash_reg;
 338	int i;
 339
 340	/* clear mta_shadow */
 341	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
 342
 343	/* update mta_shadow from mc_addr_list */
 344	for (i = 0; (u32)i < mc_addr_count; i++) {
 345		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
 346
 347		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
 348		hash_bit = hash_value & 0x1F;
 349
 350		hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
 351		mc_addr_list += (ETH_ALEN);
 352	}
 353
 354	/* replace the entire MTA table */
 355	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
 356		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
 357	e1e_flush();
 358}
 359
 360/**
 361 *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
 362 *  @hw: pointer to the HW structure
 363 *
 364 *  Clears the base hardware counters by reading the counter registers.
 365 **/
 366void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
 367{
 368	er32(CRCERRS);
 369	er32(SYMERRS);
 370	er32(MPC);
 371	er32(SCC);
 372	er32(ECOL);
 373	er32(MCC);
 374	er32(LATECOL);
 375	er32(COLC);
 376	er32(DC);
 377	er32(SEC);
 378	er32(RLEC);
 379	er32(XONRXC);
 380	er32(XONTXC);
 381	er32(XOFFRXC);
 382	er32(XOFFTXC);
 383	er32(FCRUC);
 384	er32(GPRC);
 385	er32(BPRC);
 386	er32(MPRC);
 387	er32(GPTC);
 388	er32(GORCL);
 389	er32(GORCH);
 390	er32(GOTCL);
 391	er32(GOTCH);
 392	er32(RNBC);
 393	er32(RUC);
 394	er32(RFC);
 395	er32(ROC);
 396	er32(RJC);
 397	er32(TORL);
 398	er32(TORH);
 399	er32(TOTL);
 400	er32(TOTH);
 401	er32(TPR);
 402	er32(TPT);
 403	er32(MPTC);
 404	er32(BPTC);
 405}
 406
 407/**
 408 *  e1000e_check_for_copper_link - Check for link (Copper)
 409 *  @hw: pointer to the HW structure
 410 *
 411 *  Checks to see of the link status of the hardware has changed.  If a
 412 *  change in link status has been detected, then we read the PHY registers
 413 *  to get the current speed/duplex if link exists.
 414 **/
 415s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
 416{
 417	struct e1000_mac_info *mac = &hw->mac;
 418	s32 ret_val;
 419	bool link;
 420
 421	/* We only want to go out to the PHY registers to see if Auto-Neg
 422	 * has completed and/or if our link status has changed.  The
 423	 * get_link_status flag is set upon receiving a Link Status
 424	 * Change or Rx Sequence Error interrupt.
 425	 */
 426	if (!mac->get_link_status)
 427		return 0;
 428	mac->get_link_status = false;
 429
 430	/* First we want to see if the MII Status Register reports
 431	 * link.  If so, then we want to get the current speed/duplex
 432	 * of the PHY.
 433	 */
 434	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
 435	if (ret_val || !link)
 436		goto out;
 
 
 
 
 
 437
 438	/* Check if there was DownShift, must be checked
 439	 * immediately after link-up
 440	 */
 441	e1000e_check_downshift(hw);
 442
 443	/* If we are forcing speed/duplex, then we simply return since
 444	 * we have already determined whether we have link or not.
 445	 */
 446	if (!mac->autoneg)
 447		return -E1000_ERR_CONFIG;
 448
 449	/* Auto-Neg is enabled.  Auto Speed Detection takes care
 450	 * of MAC speed/duplex configuration.  So we only need to
 451	 * configure Collision Distance in the MAC.
 452	 */
 453	mac->ops.config_collision_dist(hw);
 454
 455	/* Configure Flow Control now that Auto-Neg has completed.
 456	 * First, we need to restore the desired flow control
 457	 * settings because we may have had to re-autoneg with a
 458	 * different link partner.
 459	 */
 460	ret_val = e1000e_config_fc_after_link_up(hw);
 461	if (ret_val)
 462		e_dbg("Error configuring flow control\n");
 463
 464	return ret_val;
 465
 466out:
 467	mac->get_link_status = true;
 468	return ret_val;
 469}
 470
 471/**
 472 *  e1000e_check_for_fiber_link - Check for link (Fiber)
 473 *  @hw: pointer to the HW structure
 474 *
 475 *  Checks for link up on the hardware.  If link is not up and we have
 476 *  a signal, then we need to force link up.
 477 **/
 478s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
 479{
 480	struct e1000_mac_info *mac = &hw->mac;
 481	u32 rxcw;
 482	u32 ctrl;
 483	u32 status;
 484	s32 ret_val;
 485
 486	ctrl = er32(CTRL);
 487	status = er32(STATUS);
 488	rxcw = er32(RXCW);
 489
 490	/* If we don't have link (auto-negotiation failed or link partner
 491	 * cannot auto-negotiate), the cable is plugged in (we have signal),
 492	 * and our link partner is not trying to auto-negotiate with us (we
 493	 * are receiving idles or data), we need to force link up. We also
 494	 * need to give auto-negotiation time to complete, in case the cable
 495	 * was just plugged in. The autoneg_failed flag does this.
 496	 */
 497	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
 498	if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
 499	    !(rxcw & E1000_RXCW_C)) {
 500		if (!mac->autoneg_failed) {
 501			mac->autoneg_failed = true;
 502			return 0;
 503		}
 504		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
 505
 506		/* Disable auto-negotiation in the TXCW register */
 507		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
 508
 509		/* Force link-up and also force full-duplex. */
 510		ctrl = er32(CTRL);
 511		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
 512		ew32(CTRL, ctrl);
 513
 514		/* Configure Flow Control after forcing link up. */
 515		ret_val = e1000e_config_fc_after_link_up(hw);
 516		if (ret_val) {
 517			e_dbg("Error configuring flow control\n");
 518			return ret_val;
 519		}
 520	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
 521		/* If we are forcing link and we are receiving /C/ ordered
 522		 * sets, re-enable auto-negotiation in the TXCW register
 523		 * and disable forced link in the Device Control register
 524		 * in an attempt to auto-negotiate with our link partner.
 525		 */
 526		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
 527		ew32(TXCW, mac->txcw);
 528		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
 529
 530		mac->serdes_has_link = true;
 531	}
 532
 533	return 0;
 534}
 535
 536/**
 537 *  e1000e_check_for_serdes_link - Check for link (Serdes)
 538 *  @hw: pointer to the HW structure
 539 *
 540 *  Checks for link up on the hardware.  If link is not up and we have
 541 *  a signal, then we need to force link up.
 542 **/
 543s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
 544{
 545	struct e1000_mac_info *mac = &hw->mac;
 546	u32 rxcw;
 547	u32 ctrl;
 548	u32 status;
 549	s32 ret_val;
 550
 551	ctrl = er32(CTRL);
 552	status = er32(STATUS);
 553	rxcw = er32(RXCW);
 554
 555	/* If we don't have link (auto-negotiation failed or link partner
 556	 * cannot auto-negotiate), and our link partner is not trying to
 557	 * auto-negotiate with us (we are receiving idles or data),
 558	 * we need to force link up. We also need to give auto-negotiation
 559	 * time to complete.
 560	 */
 561	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
 562	if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
 563		if (!mac->autoneg_failed) {
 564			mac->autoneg_failed = true;
 565			return 0;
 566		}
 567		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
 568
 569		/* Disable auto-negotiation in the TXCW register */
 570		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
 571
 572		/* Force link-up and also force full-duplex. */
 573		ctrl = er32(CTRL);
 574		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
 575		ew32(CTRL, ctrl);
 576
 577		/* Configure Flow Control after forcing link up. */
 578		ret_val = e1000e_config_fc_after_link_up(hw);
 579		if (ret_val) {
 580			e_dbg("Error configuring flow control\n");
 581			return ret_val;
 582		}
 583	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
 584		/* If we are forcing link and we are receiving /C/ ordered
 585		 * sets, re-enable auto-negotiation in the TXCW register
 586		 * and disable forced link in the Device Control register
 587		 * in an attempt to auto-negotiate with our link partner.
 588		 */
 589		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
 590		ew32(TXCW, mac->txcw);
 591		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
 592
 593		mac->serdes_has_link = true;
 594	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
 595		/* If we force link for non-auto-negotiation switch, check
 596		 * link status based on MAC synchronization for internal
 597		 * serdes media type.
 598		 */
 599		/* SYNCH bit and IV bit are sticky. */
 600		usleep_range(10, 20);
 601		rxcw = er32(RXCW);
 602		if (rxcw & E1000_RXCW_SYNCH) {
 603			if (!(rxcw & E1000_RXCW_IV)) {
 604				mac->serdes_has_link = true;
 605				e_dbg("SERDES: Link up - forced.\n");
 606			}
 607		} else {
 608			mac->serdes_has_link = false;
 609			e_dbg("SERDES: Link down - force failed.\n");
 610		}
 611	}
 612
 613	if (E1000_TXCW_ANE & er32(TXCW)) {
 614		status = er32(STATUS);
 615		if (status & E1000_STATUS_LU) {
 616			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
 617			usleep_range(10, 20);
 618			rxcw = er32(RXCW);
 619			if (rxcw & E1000_RXCW_SYNCH) {
 620				if (!(rxcw & E1000_RXCW_IV)) {
 621					mac->serdes_has_link = true;
 622					e_dbg("SERDES: Link up - autoneg completed successfully.\n");
 623				} else {
 624					mac->serdes_has_link = false;
 625					e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
 626				}
 627			} else {
 628				mac->serdes_has_link = false;
 629				e_dbg("SERDES: Link down - no sync.\n");
 630			}
 631		} else {
 632			mac->serdes_has_link = false;
 633			e_dbg("SERDES: Link down - autoneg failed\n");
 634		}
 635	}
 636
 637	return 0;
 638}
 639
 640/**
 641 *  e1000_set_default_fc_generic - Set flow control default values
 642 *  @hw: pointer to the HW structure
 643 *
 644 *  Read the EEPROM for the default values for flow control and store the
 645 *  values.
 646 **/
 647static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
 648{
 649	s32 ret_val;
 650	u16 nvm_data;
 651
 652	/* Read and store word 0x0F of the EEPROM. This word contains bits
 653	 * that determine the hardware's default PAUSE (flow control) mode,
 654	 * a bit that determines whether the HW defaults to enabling or
 655	 * disabling auto-negotiation, and the direction of the
 656	 * SW defined pins. If there is no SW over-ride of the flow
 657	 * control setting, then the variable hw->fc will
 658	 * be initialized based on a value in the EEPROM.
 659	 */
 660	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
 661
 662	if (ret_val) {
 663		e_dbg("NVM Read Error\n");
 664		return ret_val;
 665	}
 666
 667	if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
 668		hw->fc.requested_mode = e1000_fc_none;
 669	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
 670		hw->fc.requested_mode = e1000_fc_tx_pause;
 671	else
 672		hw->fc.requested_mode = e1000_fc_full;
 673
 674	return 0;
 675}
 676
 677/**
 678 *  e1000e_setup_link_generic - Setup flow control and link settings
 679 *  @hw: pointer to the HW structure
 680 *
 681 *  Determines which flow control settings to use, then configures flow
 682 *  control.  Calls the appropriate media-specific link configuration
 683 *  function.  Assuming the adapter has a valid link partner, a valid link
 684 *  should be established.  Assumes the hardware has previously been reset
 685 *  and the transmitter and receiver are not enabled.
 686 **/
 687s32 e1000e_setup_link_generic(struct e1000_hw *hw)
 688{
 689	s32 ret_val;
 690
 691	/* In the case of the phy reset being blocked, we already have a link.
 692	 * We do not need to set it up again.
 693	 */
 694	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
 695		return 0;
 696
 697	/* If requested flow control is set to default, set flow control
 698	 * based on the EEPROM flow control settings.
 699	 */
 700	if (hw->fc.requested_mode == e1000_fc_default) {
 701		ret_val = e1000_set_default_fc_generic(hw);
 702		if (ret_val)
 703			return ret_val;
 704	}
 705
 706	/* Save off the requested flow control mode for use later.  Depending
 707	 * on the link partner's capabilities, we may or may not use this mode.
 708	 */
 709	hw->fc.current_mode = hw->fc.requested_mode;
 710
 711	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
 712
 713	/* Call the necessary media_type subroutine to configure the link. */
 714	ret_val = hw->mac.ops.setup_physical_interface(hw);
 715	if (ret_val)
 716		return ret_val;
 717
 718	/* Initialize the flow control address, type, and PAUSE timer
 719	 * registers to their default values.  This is done even if flow
 720	 * control is disabled, because it does not hurt anything to
 721	 * initialize these registers.
 722	 */
 723	e_dbg("Initializing the Flow Control address, type and timer regs\n");
 724	ew32(FCT, FLOW_CONTROL_TYPE);
 725	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
 726	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
 727
 728	ew32(FCTTV, hw->fc.pause_time);
 729
 730	return e1000e_set_fc_watermarks(hw);
 731}
 732
 733/**
 734 *  e1000_commit_fc_settings_generic - Configure flow control
 735 *  @hw: pointer to the HW structure
 736 *
 737 *  Write the flow control settings to the Transmit Config Word Register (TXCW)
 738 *  base on the flow control settings in e1000_mac_info.
 739 **/
 740static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
 741{
 742	struct e1000_mac_info *mac = &hw->mac;
 743	u32 txcw;
 744
 745	/* Check for a software override of the flow control settings, and
 746	 * setup the device accordingly.  If auto-negotiation is enabled, then
 747	 * software will have to set the "PAUSE" bits to the correct value in
 748	 * the Transmit Config Word Register (TXCW) and re-start auto-
 749	 * negotiation.  However, if auto-negotiation is disabled, then
 750	 * software will have to manually configure the two flow control enable
 751	 * bits in the CTRL register.
 752	 *
 753	 * The possible values of the "fc" parameter are:
 754	 *      0:  Flow control is completely disabled
 755	 *      1:  Rx flow control is enabled (we can receive pause frames,
 756	 *          but not send pause frames).
 757	 *      2:  Tx flow control is enabled (we can send pause frames but we
 758	 *          do not support receiving pause frames).
 759	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
 760	 */
 761	switch (hw->fc.current_mode) {
 762	case e1000_fc_none:
 763		/* Flow control completely disabled by a software over-ride. */
 764		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
 765		break;
 766	case e1000_fc_rx_pause:
 767		/* Rx Flow control is enabled and Tx Flow control is disabled
 768		 * by a software over-ride. Since there really isn't a way to
 769		 * advertise that we are capable of Rx Pause ONLY, we will
 770		 * advertise that we support both symmetric and asymmetric Rx
 771		 * PAUSE.  Later, we will disable the adapter's ability to send
 772		 * PAUSE frames.
 773		 */
 774		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 775		break;
 776	case e1000_fc_tx_pause:
 777		/* Tx Flow control is enabled, and Rx Flow control is disabled,
 778		 * by a software over-ride.
 779		 */
 780		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
 781		break;
 782	case e1000_fc_full:
 783		/* Flow control (both Rx and Tx) is enabled by a software
 784		 * over-ride.
 785		 */
 786		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 787		break;
 788	default:
 789		e_dbg("Flow control param set incorrectly\n");
 790		return -E1000_ERR_CONFIG;
 791	}
 792
 793	ew32(TXCW, txcw);
 794	mac->txcw = txcw;
 795
 796	return 0;
 797}
 798
 799/**
 800 *  e1000_poll_fiber_serdes_link_generic - Poll for link up
 801 *  @hw: pointer to the HW structure
 802 *
 803 *  Polls for link up by reading the status register, if link fails to come
 804 *  up with auto-negotiation, then the link is forced if a signal is detected.
 805 **/
 806static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
 807{
 808	struct e1000_mac_info *mac = &hw->mac;
 809	u32 i, status;
 810	s32 ret_val;
 811
 812	/* If we have a signal (the cable is plugged in, or assumed true for
 813	 * serdes media) then poll for a "Link-Up" indication in the Device
 814	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
 815	 * seconds (Auto-negotiation should complete in less than 500
 816	 * milliseconds even if the other end is doing it in SW).
 817	 */
 818	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
 819		usleep_range(10000, 20000);
 820		status = er32(STATUS);
 821		if (status & E1000_STATUS_LU)
 822			break;
 823	}
 824	if (i == FIBER_LINK_UP_LIMIT) {
 825		e_dbg("Never got a valid link from auto-neg!!!\n");
 826		mac->autoneg_failed = true;
 827		/* AutoNeg failed to achieve a link, so we'll call
 828		 * mac->check_for_link. This routine will force the
 829		 * link up if we detect a signal. This will allow us to
 830		 * communicate with non-autonegotiating link partners.
 831		 */
 832		ret_val = mac->ops.check_for_link(hw);
 833		if (ret_val) {
 834			e_dbg("Error while checking for link\n");
 835			return ret_val;
 836		}
 837		mac->autoneg_failed = false;
 838	} else {
 839		mac->autoneg_failed = false;
 840		e_dbg("Valid Link Found\n");
 841	}
 842
 843	return 0;
 844}
 845
 846/**
 847 *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
 848 *  @hw: pointer to the HW structure
 849 *
 850 *  Configures collision distance and flow control for fiber and serdes
 851 *  links.  Upon successful setup, poll for link.
 852 **/
 853s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
 854{
 855	u32 ctrl;
 856	s32 ret_val;
 857
 858	ctrl = er32(CTRL);
 859
 860	/* Take the link out of reset */
 861	ctrl &= ~E1000_CTRL_LRST;
 862
 863	hw->mac.ops.config_collision_dist(hw);
 864
 865	ret_val = e1000_commit_fc_settings_generic(hw);
 866	if (ret_val)
 867		return ret_val;
 868
 869	/* Since auto-negotiation is enabled, take the link out of reset (the
 870	 * link will be in reset, because we previously reset the chip). This
 871	 * will restart auto-negotiation.  If auto-negotiation is successful
 872	 * then the link-up status bit will be set and the flow control enable
 873	 * bits (RFCE and TFCE) will be set according to their negotiated value.
 874	 */
 875	e_dbg("Auto-negotiation enabled\n");
 876
 877	ew32(CTRL, ctrl);
 878	e1e_flush();
 879	usleep_range(1000, 2000);
 880
 881	/* For these adapters, the SW definable pin 1 is set when the optics
 882	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
 883	 * indication.
 884	 */
 885	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
 886	    (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
 887		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
 888	} else {
 889		e_dbg("No signal detected\n");
 890	}
 891
 892	return ret_val;
 893}
 894
 895/**
 896 *  e1000e_config_collision_dist_generic - Configure collision distance
 897 *  @hw: pointer to the HW structure
 898 *
 899 *  Configures the collision distance to the default value and is used
 900 *  during link setup.
 901 **/
 902void e1000e_config_collision_dist_generic(struct e1000_hw *hw)
 903{
 904	u32 tctl;
 905
 906	tctl = er32(TCTL);
 907
 908	tctl &= ~E1000_TCTL_COLD;
 909	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
 910
 911	ew32(TCTL, tctl);
 912	e1e_flush();
 913}
 914
 915/**
 916 *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
 917 *  @hw: pointer to the HW structure
 918 *
 919 *  Sets the flow control high/low threshold (watermark) registers.  If
 920 *  flow control XON frame transmission is enabled, then set XON frame
 921 *  transmission as well.
 922 **/
 923s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
 924{
 925	u32 fcrtl = 0, fcrth = 0;
 926
 927	/* Set the flow control receive threshold registers.  Normally,
 928	 * these registers will be set to a default threshold that may be
 929	 * adjusted later by the driver's runtime code.  However, if the
 930	 * ability to transmit pause frames is not enabled, then these
 931	 * registers will be set to 0.
 932	 */
 933	if (hw->fc.current_mode & e1000_fc_tx_pause) {
 934		/* We need to set up the Receive Threshold high and low water
 935		 * marks as well as (optionally) enabling the transmission of
 936		 * XON frames.
 937		 */
 938		fcrtl = hw->fc.low_water;
 939		if (hw->fc.send_xon)
 940			fcrtl |= E1000_FCRTL_XONE;
 941
 942		fcrth = hw->fc.high_water;
 943	}
 944	ew32(FCRTL, fcrtl);
 945	ew32(FCRTH, fcrth);
 946
 947	return 0;
 948}
 949
 950/**
 951 *  e1000e_force_mac_fc - Force the MAC's flow control settings
 952 *  @hw: pointer to the HW structure
 953 *
 954 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
 955 *  device control register to reflect the adapter settings.  TFCE and RFCE
 956 *  need to be explicitly set by software when a copper PHY is used because
 957 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
 958 *  also configure these bits when link is forced on a fiber connection.
 959 **/
 960s32 e1000e_force_mac_fc(struct e1000_hw *hw)
 961{
 962	u32 ctrl;
 963
 964	ctrl = er32(CTRL);
 965
 966	/* Because we didn't get link via the internal auto-negotiation
 967	 * mechanism (we either forced link or we got link via PHY
 968	 * auto-neg), we have to manually enable/disable transmit an
 969	 * receive flow control.
 970	 *
 971	 * The "Case" statement below enables/disable flow control
 972	 * according to the "hw->fc.current_mode" parameter.
 973	 *
 974	 * The possible values of the "fc" parameter are:
 975	 *      0:  Flow control is completely disabled
 976	 *      1:  Rx flow control is enabled (we can receive pause
 977	 *          frames but not send pause frames).
 978	 *      2:  Tx flow control is enabled (we can send pause frames
 979	 *          frames but we do not receive pause frames).
 980	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
 981	 *  other:  No other values should be possible at this point.
 982	 */
 983	e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
 984
 985	switch (hw->fc.current_mode) {
 986	case e1000_fc_none:
 987		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
 988		break;
 989	case e1000_fc_rx_pause:
 990		ctrl &= (~E1000_CTRL_TFCE);
 991		ctrl |= E1000_CTRL_RFCE;
 992		break;
 993	case e1000_fc_tx_pause:
 994		ctrl &= (~E1000_CTRL_RFCE);
 995		ctrl |= E1000_CTRL_TFCE;
 996		break;
 997	case e1000_fc_full:
 998		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
 999		break;
1000	default:
1001		e_dbg("Flow control param set incorrectly\n");
1002		return -E1000_ERR_CONFIG;
1003	}
1004
1005	ew32(CTRL, ctrl);
1006
1007	return 0;
1008}
1009
1010/**
1011 *  e1000e_config_fc_after_link_up - Configures flow control after link
1012 *  @hw: pointer to the HW structure
1013 *
1014 *  Checks the status of auto-negotiation after link up to ensure that the
1015 *  speed and duplex were not forced.  If the link needed to be forced, then
1016 *  flow control needs to be forced also.  If auto-negotiation is enabled
1017 *  and did not fail, then we configure flow control based on our link
1018 *  partner.
1019 **/
1020s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1021{
1022	struct e1000_mac_info *mac = &hw->mac;
1023	s32 ret_val = 0;
1024	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
1025	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1026	u16 speed, duplex;
1027
1028	/* Check for the case where we have fiber media and auto-neg failed
1029	 * so we had to force link.  In this case, we need to force the
1030	 * configuration of the MAC to match the "fc" parameter.
1031	 */
1032	if (mac->autoneg_failed) {
1033		if (hw->phy.media_type == e1000_media_type_fiber ||
1034		    hw->phy.media_type == e1000_media_type_internal_serdes)
1035			ret_val = e1000e_force_mac_fc(hw);
1036	} else {
1037		if (hw->phy.media_type == e1000_media_type_copper)
1038			ret_val = e1000e_force_mac_fc(hw);
1039	}
1040
1041	if (ret_val) {
1042		e_dbg("Error forcing flow control settings\n");
1043		return ret_val;
1044	}
1045
1046	/* Check for the case where we have copper media and auto-neg is
1047	 * enabled.  In this case, we need to check and see if Auto-Neg
1048	 * has completed, and if so, how the PHY and link partner has
1049	 * flow control configured.
1050	 */
1051	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1052		/* Read the MII Status Register and check to see if AutoNeg
1053		 * has completed.  We read this twice because this reg has
1054		 * some "sticky" (latched) bits.
1055		 */
1056		ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1057		if (ret_val)
1058			return ret_val;
1059		ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1060		if (ret_val)
1061			return ret_val;
1062
1063		if (!(mii_status_reg & BMSR_ANEGCOMPLETE)) {
1064			e_dbg("Copper PHY and Auto Neg has not completed.\n");
1065			return ret_val;
1066		}
1067
1068		/* The AutoNeg process has completed, so we now need to
1069		 * read both the Auto Negotiation Advertisement
1070		 * Register (Address 4) and the Auto_Negotiation Base
1071		 * Page Ability Register (Address 5) to determine how
1072		 * flow control was negotiated.
1073		 */
1074		ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_nway_adv_reg);
1075		if (ret_val)
1076			return ret_val;
1077		ret_val = e1e_rphy(hw, MII_LPA, &mii_nway_lp_ability_reg);
1078		if (ret_val)
1079			return ret_val;
1080
1081		/* Two bits in the Auto Negotiation Advertisement Register
1082		 * (Address 4) and two bits in the Auto Negotiation Base
1083		 * Page Ability Register (Address 5) determine flow control
1084		 * for both the PHY and the link partner.  The following
1085		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1086		 * 1999, describes these PAUSE resolution bits and how flow
1087		 * control is determined based upon these settings.
1088		 * NOTE:  DC = Don't Care
1089		 *
1090		 *   LOCAL DEVICE  |   LINK PARTNER
1091		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1092		 *-------|---------|-------|---------|--------------------
1093		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1094		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1095		 *   0   |    1    |   1   |    0    | e1000_fc_none
1096		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1097		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1098		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1099		 *   1   |    1    |   0   |    0    | e1000_fc_none
1100		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1101		 *
1102		 * Are both PAUSE bits set to 1?  If so, this implies
1103		 * Symmetric Flow Control is enabled at both ends.  The
1104		 * ASM_DIR bits are irrelevant per the spec.
1105		 *
1106		 * For Symmetric Flow Control:
1107		 *
1108		 *   LOCAL DEVICE  |   LINK PARTNER
1109		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1110		 *-------|---------|-------|---------|--------------------
1111		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
1112		 *
1113		 */
1114		if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1115		    (mii_nway_lp_ability_reg & LPA_PAUSE_CAP)) {
1116			/* Now we need to check if the user selected Rx ONLY
1117			 * of pause frames.  In this case, we had to advertise
1118			 * FULL flow control because we could not advertise Rx
1119			 * ONLY. Hence, we must now check to see if we need to
1120			 * turn OFF the TRANSMISSION of PAUSE frames.
1121			 */
1122			if (hw->fc.requested_mode == e1000_fc_full) {
1123				hw->fc.current_mode = e1000_fc_full;
1124				e_dbg("Flow Control = FULL.\n");
1125			} else {
1126				hw->fc.current_mode = e1000_fc_rx_pause;
1127				e_dbg("Flow Control = Rx PAUSE frames only.\n");
1128			}
1129		}
1130		/* For receiving PAUSE frames ONLY.
1131		 *
1132		 *   LOCAL DEVICE  |   LINK PARTNER
1133		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1134		 *-------|---------|-------|---------|--------------------
1135		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1136		 */
1137		else if (!(mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1138			 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1139			 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1140			 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1141			hw->fc.current_mode = e1000_fc_tx_pause;
1142			e_dbg("Flow Control = Tx PAUSE frames only.\n");
1143		}
1144		/* For transmitting PAUSE frames ONLY.
1145		 *
1146		 *   LOCAL DEVICE  |   LINK PARTNER
1147		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1148		 *-------|---------|-------|---------|--------------------
1149		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1150		 */
1151		else if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1152			 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1153			 !(mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1154			 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1155			hw->fc.current_mode = e1000_fc_rx_pause;
1156			e_dbg("Flow Control = Rx PAUSE frames only.\n");
1157		} else {
1158			/* Per the IEEE spec, at this point flow control
1159			 * should be disabled.
1160			 */
1161			hw->fc.current_mode = e1000_fc_none;
1162			e_dbg("Flow Control = NONE.\n");
1163		}
1164
1165		/* Now we need to do one last check...  If we auto-
1166		 * negotiated to HALF DUPLEX, flow control should not be
1167		 * enabled per IEEE 802.3 spec.
1168		 */
1169		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1170		if (ret_val) {
1171			e_dbg("Error getting link speed and duplex\n");
1172			return ret_val;
1173		}
1174
1175		if (duplex == HALF_DUPLEX)
1176			hw->fc.current_mode = e1000_fc_none;
1177
1178		/* Now we call a subroutine to actually force the MAC
1179		 * controller to use the correct flow control settings.
1180		 */
1181		ret_val = e1000e_force_mac_fc(hw);
1182		if (ret_val) {
1183			e_dbg("Error forcing flow control settings\n");
1184			return ret_val;
1185		}
1186	}
1187
1188	/* Check for the case where we have SerDes media and auto-neg is
1189	 * enabled.  In this case, we need to check and see if Auto-Neg
1190	 * has completed, and if so, how the PHY and link partner has
1191	 * flow control configured.
1192	 */
1193	if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
1194	    mac->autoneg) {
1195		/* Read the PCS_LSTS and check to see if AutoNeg
1196		 * has completed.
1197		 */
1198		pcs_status_reg = er32(PCS_LSTAT);
1199
1200		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1201			e_dbg("PCS Auto Neg has not completed.\n");
1202			return ret_val;
1203		}
1204
1205		/* The AutoNeg process has completed, so we now need to
1206		 * read both the Auto Negotiation Advertisement
1207		 * Register (PCS_ANADV) and the Auto_Negotiation Base
1208		 * Page Ability Register (PCS_LPAB) to determine how
1209		 * flow control was negotiated.
1210		 */
1211		pcs_adv_reg = er32(PCS_ANADV);
1212		pcs_lp_ability_reg = er32(PCS_LPAB);
1213
1214		/* Two bits in the Auto Negotiation Advertisement Register
1215		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1216		 * Page Ability Register (PCS_LPAB) determine flow control
1217		 * for both the PHY and the link partner.  The following
1218		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1219		 * 1999, describes these PAUSE resolution bits and how flow
1220		 * control is determined based upon these settings.
1221		 * NOTE:  DC = Don't Care
1222		 *
1223		 *   LOCAL DEVICE  |   LINK PARTNER
1224		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1225		 *-------|---------|-------|---------|--------------------
1226		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1227		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1228		 *   0   |    1    |   1   |    0    | e1000_fc_none
1229		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1230		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1231		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1232		 *   1   |    1    |   0   |    0    | e1000_fc_none
1233		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1234		 *
1235		 * Are both PAUSE bits set to 1?  If so, this implies
1236		 * Symmetric Flow Control is enabled at both ends.  The
1237		 * ASM_DIR bits are irrelevant per the spec.
1238		 *
1239		 * For Symmetric Flow Control:
1240		 *
1241		 *   LOCAL DEVICE  |   LINK PARTNER
1242		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1243		 *-------|---------|-------|---------|--------------------
1244		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1245		 *
1246		 */
1247		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1248		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1249			/* Now we need to check if the user selected Rx ONLY
1250			 * of pause frames.  In this case, we had to advertise
1251			 * FULL flow control because we could not advertise Rx
1252			 * ONLY. Hence, we must now check to see if we need to
1253			 * turn OFF the TRANSMISSION of PAUSE frames.
1254			 */
1255			if (hw->fc.requested_mode == e1000_fc_full) {
1256				hw->fc.current_mode = e1000_fc_full;
1257				e_dbg("Flow Control = FULL.\n");
1258			} else {
1259				hw->fc.current_mode = e1000_fc_rx_pause;
1260				e_dbg("Flow Control = Rx PAUSE frames only.\n");
1261			}
1262		}
1263		/* For receiving PAUSE frames ONLY.
1264		 *
1265		 *   LOCAL DEVICE  |   LINK PARTNER
1266		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1267		 *-------|---------|-------|---------|--------------------
1268		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1269		 */
1270		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1271			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1272			 (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1273			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1274			hw->fc.current_mode = e1000_fc_tx_pause;
1275			e_dbg("Flow Control = Tx PAUSE frames only.\n");
1276		}
1277		/* For transmitting PAUSE frames ONLY.
1278		 *
1279		 *   LOCAL DEVICE  |   LINK PARTNER
1280		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1281		 *-------|---------|-------|---------|--------------------
1282		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1283		 */
1284		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1285			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1286			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1287			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1288			hw->fc.current_mode = e1000_fc_rx_pause;
1289			e_dbg("Flow Control = Rx PAUSE frames only.\n");
1290		} else {
1291			/* Per the IEEE spec, at this point flow control
1292			 * should be disabled.
1293			 */
1294			hw->fc.current_mode = e1000_fc_none;
1295			e_dbg("Flow Control = NONE.\n");
1296		}
1297
1298		/* Now we call a subroutine to actually force the MAC
1299		 * controller to use the correct flow control settings.
1300		 */
1301		pcs_ctrl_reg = er32(PCS_LCTL);
1302		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1303		ew32(PCS_LCTL, pcs_ctrl_reg);
1304
1305		ret_val = e1000e_force_mac_fc(hw);
1306		if (ret_val) {
1307			e_dbg("Error forcing flow control settings\n");
1308			return ret_val;
1309		}
1310	}
1311
1312	return 0;
1313}
1314
1315/**
1316 *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1317 *  @hw: pointer to the HW structure
1318 *  @speed: stores the current speed
1319 *  @duplex: stores the current duplex
1320 *
1321 *  Read the status register for the current speed/duplex and store the current
1322 *  speed and duplex for copper connections.
1323 **/
1324s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1325				       u16 *duplex)
1326{
1327	u32 status;
1328
1329	status = er32(STATUS);
1330	if (status & E1000_STATUS_SPEED_1000)
1331		*speed = SPEED_1000;
1332	else if (status & E1000_STATUS_SPEED_100)
1333		*speed = SPEED_100;
1334	else
1335		*speed = SPEED_10;
1336
1337	if (status & E1000_STATUS_FD)
1338		*duplex = FULL_DUPLEX;
1339	else
1340		*duplex = HALF_DUPLEX;
1341
1342	e_dbg("%u Mbps, %s Duplex\n",
1343	      *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
1344	      *duplex == FULL_DUPLEX ? "Full" : "Half");
1345
1346	return 0;
1347}
1348
1349/**
1350 *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1351 *  @hw: pointer to the HW structure
1352 *  @speed: stores the current speed
1353 *  @duplex: stores the current duplex
1354 *
1355 *  Sets the speed and duplex to gigabit full duplex (the only possible option)
1356 *  for fiber/serdes links.
1357 **/
1358s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused
1359					     *hw, u16 *speed, u16 *duplex)
1360{
1361	*speed = SPEED_1000;
1362	*duplex = FULL_DUPLEX;
1363
1364	return 0;
1365}
1366
1367/**
1368 *  e1000e_get_hw_semaphore - Acquire hardware semaphore
1369 *  @hw: pointer to the HW structure
1370 *
1371 *  Acquire the HW semaphore to access the PHY or NVM
1372 **/
1373s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1374{
1375	u32 swsm;
1376	s32 timeout = hw->nvm.word_size + 1;
1377	s32 i = 0;
1378
1379	/* Get the SW semaphore */
1380	while (i < timeout) {
1381		swsm = er32(SWSM);
1382		if (!(swsm & E1000_SWSM_SMBI))
1383			break;
1384
1385		usleep_range(50, 100);
1386		i++;
1387	}
1388
1389	if (i == timeout) {
1390		e_dbg("Driver can't access device - SMBI bit is set.\n");
1391		return -E1000_ERR_NVM;
1392	}
1393
1394	/* Get the FW semaphore. */
1395	for (i = 0; i < timeout; i++) {
1396		swsm = er32(SWSM);
1397		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1398
1399		/* Semaphore acquired if bit latched */
1400		if (er32(SWSM) & E1000_SWSM_SWESMBI)
1401			break;
1402
1403		usleep_range(50, 100);
1404	}
1405
1406	if (i == timeout) {
1407		/* Release semaphores */
1408		e1000e_put_hw_semaphore(hw);
1409		e_dbg("Driver can't access the NVM\n");
1410		return -E1000_ERR_NVM;
1411	}
1412
1413	return 0;
1414}
1415
1416/**
1417 *  e1000e_put_hw_semaphore - Release hardware semaphore
1418 *  @hw: pointer to the HW structure
1419 *
1420 *  Release hardware semaphore used to access the PHY or NVM
1421 **/
1422void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1423{
1424	u32 swsm;
1425
1426	swsm = er32(SWSM);
1427	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1428	ew32(SWSM, swsm);
1429}
1430
1431/**
1432 *  e1000e_get_auto_rd_done - Check for auto read completion
1433 *  @hw: pointer to the HW structure
1434 *
1435 *  Check EEPROM for Auto Read done bit.
1436 **/
1437s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1438{
1439	s32 i = 0;
1440
1441	while (i < AUTO_READ_DONE_TIMEOUT) {
1442		if (er32(EECD) & E1000_EECD_AUTO_RD)
1443			break;
1444		usleep_range(1000, 2000);
1445		i++;
1446	}
1447
1448	if (i == AUTO_READ_DONE_TIMEOUT) {
1449		e_dbg("Auto read by HW from NVM has not completed.\n");
1450		return -E1000_ERR_RESET;
1451	}
1452
1453	return 0;
1454}
1455
1456/**
1457 *  e1000e_valid_led_default - Verify a valid default LED config
1458 *  @hw: pointer to the HW structure
1459 *  @data: pointer to the NVM (EEPROM)
1460 *
1461 *  Read the EEPROM for the current default LED configuration.  If the
1462 *  LED configuration is not valid, set to a valid LED configuration.
1463 **/
1464s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1465{
1466	s32 ret_val;
1467
1468	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1469	if (ret_val) {
1470		e_dbg("NVM Read Error\n");
1471		return ret_val;
1472	}
1473
1474	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1475		*data = ID_LED_DEFAULT;
1476
1477	return 0;
1478}
1479
1480/**
1481 *  e1000e_id_led_init_generic -
1482 *  @hw: pointer to the HW structure
1483 *
1484 **/
1485s32 e1000e_id_led_init_generic(struct e1000_hw *hw)
1486{
1487	struct e1000_mac_info *mac = &hw->mac;
1488	s32 ret_val;
1489	const u32 ledctl_mask = 0x000000FF;
1490	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1491	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1492	u16 data, i, temp;
1493	const u16 led_mask = 0x0F;
1494
1495	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1496	if (ret_val)
1497		return ret_val;
1498
1499	mac->ledctl_default = er32(LEDCTL);
1500	mac->ledctl_mode1 = mac->ledctl_default;
1501	mac->ledctl_mode2 = mac->ledctl_default;
1502
1503	for (i = 0; i < 4; i++) {
1504		temp = (data >> (i << 2)) & led_mask;
1505		switch (temp) {
1506		case ID_LED_ON1_DEF2:
1507		case ID_LED_ON1_ON2:
1508		case ID_LED_ON1_OFF2:
1509			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1510			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1511			break;
1512		case ID_LED_OFF1_DEF2:
1513		case ID_LED_OFF1_ON2:
1514		case ID_LED_OFF1_OFF2:
1515			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1516			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1517			break;
1518		default:
1519			/* Do nothing */
1520			break;
1521		}
1522		switch (temp) {
1523		case ID_LED_DEF1_ON2:
1524		case ID_LED_ON1_ON2:
1525		case ID_LED_OFF1_ON2:
1526			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1527			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1528			break;
1529		case ID_LED_DEF1_OFF2:
1530		case ID_LED_ON1_OFF2:
1531		case ID_LED_OFF1_OFF2:
1532			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1533			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1534			break;
1535		default:
1536			/* Do nothing */
1537			break;
1538		}
1539	}
1540
1541	return 0;
1542}
1543
1544/**
1545 *  e1000e_setup_led_generic - Configures SW controllable LED
1546 *  @hw: pointer to the HW structure
1547 *
1548 *  This prepares the SW controllable LED for use and saves the current state
1549 *  of the LED so it can be later restored.
1550 **/
1551s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1552{
1553	u32 ledctl;
1554
1555	if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1556		return -E1000_ERR_CONFIG;
1557
1558	if (hw->phy.media_type == e1000_media_type_fiber) {
1559		ledctl = er32(LEDCTL);
1560		hw->mac.ledctl_default = ledctl;
1561		/* Turn off LED0 */
1562		ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
1563			    E1000_LEDCTL_LED0_MODE_MASK);
1564		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1565			   E1000_LEDCTL_LED0_MODE_SHIFT);
1566		ew32(LEDCTL, ledctl);
1567	} else if (hw->phy.media_type == e1000_media_type_copper) {
1568		ew32(LEDCTL, hw->mac.ledctl_mode1);
1569	}
1570
1571	return 0;
1572}
1573
1574/**
1575 *  e1000e_cleanup_led_generic - Set LED config to default operation
1576 *  @hw: pointer to the HW structure
1577 *
1578 *  Remove the current LED configuration and set the LED configuration
1579 *  to the default value, saved from the EEPROM.
1580 **/
1581s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1582{
1583	ew32(LEDCTL, hw->mac.ledctl_default);
1584	return 0;
1585}
1586
1587/**
1588 *  e1000e_blink_led_generic - Blink LED
1589 *  @hw: pointer to the HW structure
1590 *
1591 *  Blink the LEDs which are set to be on.
1592 **/
1593s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1594{
1595	u32 ledctl_blink = 0;
1596	u32 i;
1597
1598	if (hw->phy.media_type == e1000_media_type_fiber) {
1599		/* always blink LED0 for PCI-E fiber */
1600		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1601		    (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1602	} else {
1603		/* Set the blink bit for each LED that's "on" (0x0E)
1604		 * (or "off" if inverted) in ledctl_mode2.  The blink
1605		 * logic in hardware only works when mode is set to "on"
1606		 * so it must be changed accordingly when the mode is
1607		 * "off" and inverted.
1608		 */
1609		ledctl_blink = hw->mac.ledctl_mode2;
1610		for (i = 0; i < 32; i += 8) {
1611			u32 mode = (hw->mac.ledctl_mode2 >> i) &
1612			    E1000_LEDCTL_LED0_MODE_MASK;
1613			u32 led_default = hw->mac.ledctl_default >> i;
1614
1615			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1616			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1617			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1618			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1619				ledctl_blink &=
1620				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1621				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1622						 E1000_LEDCTL_MODE_LED_ON) << i;
1623			}
1624		}
1625	}
1626
1627	ew32(LEDCTL, ledctl_blink);
1628
1629	return 0;
1630}
1631
1632/**
1633 *  e1000e_led_on_generic - Turn LED on
1634 *  @hw: pointer to the HW structure
1635 *
1636 *  Turn LED on.
1637 **/
1638s32 e1000e_led_on_generic(struct e1000_hw *hw)
1639{
1640	u32 ctrl;
1641
1642	switch (hw->phy.media_type) {
1643	case e1000_media_type_fiber:
1644		ctrl = er32(CTRL);
1645		ctrl &= ~E1000_CTRL_SWDPIN0;
1646		ctrl |= E1000_CTRL_SWDPIO0;
1647		ew32(CTRL, ctrl);
1648		break;
1649	case e1000_media_type_copper:
1650		ew32(LEDCTL, hw->mac.ledctl_mode2);
1651		break;
1652	default:
1653		break;
1654	}
1655
1656	return 0;
1657}
1658
1659/**
1660 *  e1000e_led_off_generic - Turn LED off
1661 *  @hw: pointer to the HW structure
1662 *
1663 *  Turn LED off.
1664 **/
1665s32 e1000e_led_off_generic(struct e1000_hw *hw)
1666{
1667	u32 ctrl;
1668
1669	switch (hw->phy.media_type) {
1670	case e1000_media_type_fiber:
1671		ctrl = er32(CTRL);
1672		ctrl |= E1000_CTRL_SWDPIN0;
1673		ctrl |= E1000_CTRL_SWDPIO0;
1674		ew32(CTRL, ctrl);
1675		break;
1676	case e1000_media_type_copper:
1677		ew32(LEDCTL, hw->mac.ledctl_mode1);
1678		break;
1679	default:
1680		break;
1681	}
1682
1683	return 0;
1684}
1685
1686/**
1687 *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1688 *  @hw: pointer to the HW structure
1689 *  @no_snoop: bitmap of snoop events
1690 *
1691 *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1692 **/
1693void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1694{
1695	u32 gcr;
1696
1697	if (no_snoop) {
1698		gcr = er32(GCR);
1699		gcr &= ~(PCIE_NO_SNOOP_ALL);
1700		gcr |= no_snoop;
1701		ew32(GCR, gcr);
1702	}
1703}
1704
1705/**
1706 *  e1000e_disable_pcie_master - Disables PCI-express master access
1707 *  @hw: pointer to the HW structure
1708 *
1709 *  Returns 0 if successful, else returns -10
1710 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1711 *  the master requests to be disabled.
1712 *
1713 *  Disables PCI-Express master access and verifies there are no pending
1714 *  requests.
1715 **/
1716s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1717{
1718	u32 ctrl;
1719	s32 timeout = MASTER_DISABLE_TIMEOUT;
1720
1721	ctrl = er32(CTRL);
1722	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1723	ew32(CTRL, ctrl);
1724
1725	while (timeout) {
1726		if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
1727			break;
1728		usleep_range(100, 200);
1729		timeout--;
1730	}
1731
1732	if (!timeout) {
1733		e_dbg("Master requests are pending.\n");
1734		return -E1000_ERR_MASTER_REQUESTS_PENDING;
1735	}
1736
1737	return 0;
1738}
1739
1740/**
1741 *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1742 *  @hw: pointer to the HW structure
1743 *
1744 *  Reset the Adaptive Interframe Spacing throttle to default values.
1745 **/
1746void e1000e_reset_adaptive(struct e1000_hw *hw)
1747{
1748	struct e1000_mac_info *mac = &hw->mac;
1749
1750	if (!mac->adaptive_ifs) {
1751		e_dbg("Not in Adaptive IFS mode!\n");
1752		return;
1753	}
1754
1755	mac->current_ifs_val = 0;
1756	mac->ifs_min_val = IFS_MIN;
1757	mac->ifs_max_val = IFS_MAX;
1758	mac->ifs_step_size = IFS_STEP;
1759	mac->ifs_ratio = IFS_RATIO;
1760
1761	mac->in_ifs_mode = false;
1762	ew32(AIT, 0);
1763}
1764
1765/**
1766 *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
1767 *  @hw: pointer to the HW structure
1768 *
1769 *  Update the Adaptive Interframe Spacing Throttle value based on the
1770 *  time between transmitted packets and time between collisions.
1771 **/
1772void e1000e_update_adaptive(struct e1000_hw *hw)
1773{
1774	struct e1000_mac_info *mac = &hw->mac;
1775
1776	if (!mac->adaptive_ifs) {
1777		e_dbg("Not in Adaptive IFS mode!\n");
1778		return;
1779	}
1780
1781	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1782		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1783			mac->in_ifs_mode = true;
1784			if (mac->current_ifs_val < mac->ifs_max_val) {
1785				if (!mac->current_ifs_val)
1786					mac->current_ifs_val = mac->ifs_min_val;
1787				else
1788					mac->current_ifs_val +=
1789					    mac->ifs_step_size;
1790				ew32(AIT, mac->current_ifs_val);
1791			}
1792		}
1793	} else {
1794		if (mac->in_ifs_mode &&
1795		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1796			mac->current_ifs_val = 0;
1797			mac->in_ifs_mode = false;
1798			ew32(AIT, 0);
1799		}
1800	}
1801}
v4.6
 
   1/* Intel PRO/1000 Linux driver
   2 * Copyright(c) 1999 - 2015 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Contact Information:
  17 * Linux NICS <linux.nics@intel.com>
  18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  20 */
  21
  22#include "e1000.h"
  23
  24/**
  25 *  e1000e_get_bus_info_pcie - Get PCIe bus information
  26 *  @hw: pointer to the HW structure
  27 *
  28 *  Determines and stores the system bus information for a particular
  29 *  network interface.  The following bus information is determined and stored:
  30 *  bus speed, bus width, type (PCIe), and PCIe function.
  31 **/
  32s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
  33{
  34	struct e1000_mac_info *mac = &hw->mac;
  35	struct e1000_bus_info *bus = &hw->bus;
  36	struct e1000_adapter *adapter = hw->adapter;
  37	u16 pcie_link_status, cap_offset;
  38
  39	cap_offset = adapter->pdev->pcie_cap;
  40	if (!cap_offset) {
  41		bus->width = e1000_bus_width_unknown;
  42	} else {
  43		pci_read_config_word(adapter->pdev,
  44				     cap_offset + PCIE_LINK_STATUS,
  45				     &pcie_link_status);
  46		bus->width = (enum e1000_bus_width)((pcie_link_status &
  47						     PCIE_LINK_WIDTH_MASK) >>
  48						    PCIE_LINK_WIDTH_SHIFT);
  49	}
  50
  51	mac->ops.set_lan_id(hw);
  52
  53	return 0;
  54}
  55
  56/**
  57 *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
  58 *
  59 *  @hw: pointer to the HW structure
  60 *
  61 *  Determines the LAN function id by reading memory-mapped registers
  62 *  and swaps the port value if requested.
  63 **/
  64void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
  65{
  66	struct e1000_bus_info *bus = &hw->bus;
  67	u32 reg;
  68
  69	/* The status register reports the correct function number
  70	 * for the device regardless of function swap state.
  71	 */
  72	reg = er32(STATUS);
  73	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
  74}
  75
  76/**
  77 *  e1000_set_lan_id_single_port - Set LAN id for a single port device
  78 *  @hw: pointer to the HW structure
  79 *
  80 *  Sets the LAN function id to zero for a single port device.
  81 **/
  82void e1000_set_lan_id_single_port(struct e1000_hw *hw)
  83{
  84	struct e1000_bus_info *bus = &hw->bus;
  85
  86	bus->func = 0;
  87}
  88
  89/**
  90 *  e1000_clear_vfta_generic - Clear VLAN filter table
  91 *  @hw: pointer to the HW structure
  92 *
  93 *  Clears the register array which contains the VLAN filter table by
  94 *  setting all the values to 0.
  95 **/
  96void e1000_clear_vfta_generic(struct e1000_hw *hw)
  97{
  98	u32 offset;
  99
 100	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
 101		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
 102		e1e_flush();
 103	}
 104}
 105
 106/**
 107 *  e1000_write_vfta_generic - Write value to VLAN filter table
 108 *  @hw: pointer to the HW structure
 109 *  @offset: register offset in VLAN filter table
 110 *  @value: register value written to VLAN filter table
 111 *
 112 *  Writes value at the given offset in the register array which stores
 113 *  the VLAN filter table.
 114 **/
 115void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
 116{
 117	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
 118	e1e_flush();
 119}
 120
 121/**
 122 *  e1000e_init_rx_addrs - Initialize receive address's
 123 *  @hw: pointer to the HW structure
 124 *  @rar_count: receive address registers
 125 *
 126 *  Setup the receive address registers by setting the base receive address
 127 *  register to the devices MAC address and clearing all the other receive
 128 *  address registers to 0.
 129 **/
 130void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
 131{
 132	u32 i;
 133	u8 mac_addr[ETH_ALEN] = { 0 };
 134
 135	/* Setup the receive address */
 136	e_dbg("Programming MAC Address into RAR[0]\n");
 137
 138	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
 139
 140	/* Zero out the other (rar_entry_count - 1) receive addresses */
 141	e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
 142	for (i = 1; i < rar_count; i++)
 143		hw->mac.ops.rar_set(hw, mac_addr, i);
 144}
 145
 146/**
 147 *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
 148 *  @hw: pointer to the HW structure
 149 *
 150 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
 151 *  can be setup by pre-boot software and must be treated like a permanent
 152 *  address and must override the actual permanent MAC address. If an
 153 *  alternate MAC address is found it is programmed into RAR0, replacing
 154 *  the permanent address that was installed into RAR0 by the Si on reset.
 155 *  This function will return SUCCESS unless it encounters an error while
 156 *  reading the EEPROM.
 157 **/
 158s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
 159{
 160	u32 i;
 161	s32 ret_val;
 162	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
 163	u8 alt_mac_addr[ETH_ALEN];
 164
 165	ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
 166	if (ret_val)
 167		return ret_val;
 168
 169	/* not supported on 82573 */
 170	if (hw->mac.type == e1000_82573)
 171		return 0;
 172
 173	ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
 174				 &nvm_alt_mac_addr_offset);
 175	if (ret_val) {
 176		e_dbg("NVM Read Error\n");
 177		return ret_val;
 178	}
 179
 180	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
 181	    (nvm_alt_mac_addr_offset == 0x0000))
 182		/* There is no Alternate MAC Address */
 183		return 0;
 184
 185	if (hw->bus.func == E1000_FUNC_1)
 186		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
 187	for (i = 0; i < ETH_ALEN; i += 2) {
 188		offset = nvm_alt_mac_addr_offset + (i >> 1);
 189		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
 190		if (ret_val) {
 191			e_dbg("NVM Read Error\n");
 192			return ret_val;
 193		}
 194
 195		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
 196		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
 197	}
 198
 199	/* if multicast bit is set, the alternate address will not be used */
 200	if (is_multicast_ether_addr(alt_mac_addr)) {
 201		e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
 202		return 0;
 203	}
 204
 205	/* We have a valid alternate MAC address, and we want to treat it the
 206	 * same as the normal permanent MAC address stored by the HW into the
 207	 * RAR. Do this by mapping this address into RAR0.
 208	 */
 209	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
 210
 211	return 0;
 212}
 213
 214u32 e1000e_rar_get_count_generic(struct e1000_hw *hw)
 215{
 216	return hw->mac.rar_entry_count;
 217}
 218
 219/**
 220 *  e1000e_rar_set_generic - Set receive address register
 221 *  @hw: pointer to the HW structure
 222 *  @addr: pointer to the receive address
 223 *  @index: receive address array register
 224 *
 225 *  Sets the receive address array register at index to the address passed
 226 *  in by addr.
 227 **/
 228int e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
 229{
 230	u32 rar_low, rar_high;
 231
 232	/* HW expects these in little endian so we reverse the byte order
 233	 * from network order (big endian) to little endian
 234	 */
 235	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
 236		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
 237
 238	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
 239
 240	/* If MAC address zero, no need to set the AV bit */
 241	if (rar_low || rar_high)
 242		rar_high |= E1000_RAH_AV;
 243
 244	/* Some bridges will combine consecutive 32-bit writes into
 245	 * a single burst write, which will malfunction on some parts.
 246	 * The flushes avoid this.
 247	 */
 248	ew32(RAL(index), rar_low);
 249	e1e_flush();
 250	ew32(RAH(index), rar_high);
 251	e1e_flush();
 252
 253	return 0;
 254}
 255
 256/**
 257 *  e1000_hash_mc_addr - Generate a multicast hash value
 258 *  @hw: pointer to the HW structure
 259 *  @mc_addr: pointer to a multicast address
 260 *
 261 *  Generates a multicast address hash value which is used to determine
 262 *  the multicast filter table array address and new table value.
 263 **/
 264static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
 265{
 266	u32 hash_value, hash_mask;
 267	u8 bit_shift = 0;
 268
 269	/* Register count multiplied by bits per register */
 270	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
 271
 272	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
 273	 * where 0xFF would still fall within the hash mask.
 274	 */
 275	while (hash_mask >> bit_shift != 0xFF)
 276		bit_shift++;
 277
 278	/* The portion of the address that is used for the hash table
 279	 * is determined by the mc_filter_type setting.
 280	 * The algorithm is such that there is a total of 8 bits of shifting.
 281	 * The bit_shift for a mc_filter_type of 0 represents the number of
 282	 * left-shifts where the MSB of mc_addr[5] would still fall within
 283	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
 284	 * of 8 bits of shifting, then mc_addr[4] will shift right the
 285	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
 286	 * cases are a variation of this algorithm...essentially raising the
 287	 * number of bits to shift mc_addr[5] left, while still keeping the
 288	 * 8-bit shifting total.
 289	 *
 290	 * For example, given the following Destination MAC Address and an
 291	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
 292	 * we can see that the bit_shift for case 0 is 4.  These are the hash
 293	 * values resulting from each mc_filter_type...
 294	 * [0] [1] [2] [3] [4] [5]
 295	 * 01  AA  00  12  34  56
 296	 * LSB           MSB
 297	 *
 298	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
 299	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
 300	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
 301	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
 302	 */
 303	switch (hw->mac.mc_filter_type) {
 304	default:
 305	case 0:
 306		break;
 307	case 1:
 308		bit_shift += 1;
 309		break;
 310	case 2:
 311		bit_shift += 2;
 312		break;
 313	case 3:
 314		bit_shift += 4;
 315		break;
 316	}
 317
 318	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
 319				   (((u16)mc_addr[5]) << bit_shift)));
 320
 321	return hash_value;
 322}
 323
 324/**
 325 *  e1000e_update_mc_addr_list_generic - Update Multicast addresses
 326 *  @hw: pointer to the HW structure
 327 *  @mc_addr_list: array of multicast addresses to program
 328 *  @mc_addr_count: number of multicast addresses to program
 329 *
 330 *  Updates entire Multicast Table Array.
 331 *  The caller must have a packed mc_addr_list of multicast addresses.
 332 **/
 333void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
 334					u8 *mc_addr_list, u32 mc_addr_count)
 335{
 336	u32 hash_value, hash_bit, hash_reg;
 337	int i;
 338
 339	/* clear mta_shadow */
 340	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
 341
 342	/* update mta_shadow from mc_addr_list */
 343	for (i = 0; (u32)i < mc_addr_count; i++) {
 344		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
 345
 346		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
 347		hash_bit = hash_value & 0x1F;
 348
 349		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
 350		mc_addr_list += (ETH_ALEN);
 351	}
 352
 353	/* replace the entire MTA table */
 354	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
 355		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
 356	e1e_flush();
 357}
 358
 359/**
 360 *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
 361 *  @hw: pointer to the HW structure
 362 *
 363 *  Clears the base hardware counters by reading the counter registers.
 364 **/
 365void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
 366{
 367	er32(CRCERRS);
 368	er32(SYMERRS);
 369	er32(MPC);
 370	er32(SCC);
 371	er32(ECOL);
 372	er32(MCC);
 373	er32(LATECOL);
 374	er32(COLC);
 375	er32(DC);
 376	er32(SEC);
 377	er32(RLEC);
 378	er32(XONRXC);
 379	er32(XONTXC);
 380	er32(XOFFRXC);
 381	er32(XOFFTXC);
 382	er32(FCRUC);
 383	er32(GPRC);
 384	er32(BPRC);
 385	er32(MPRC);
 386	er32(GPTC);
 387	er32(GORCL);
 388	er32(GORCH);
 389	er32(GOTCL);
 390	er32(GOTCH);
 391	er32(RNBC);
 392	er32(RUC);
 393	er32(RFC);
 394	er32(ROC);
 395	er32(RJC);
 396	er32(TORL);
 397	er32(TORH);
 398	er32(TOTL);
 399	er32(TOTH);
 400	er32(TPR);
 401	er32(TPT);
 402	er32(MPTC);
 403	er32(BPTC);
 404}
 405
 406/**
 407 *  e1000e_check_for_copper_link - Check for link (Copper)
 408 *  @hw: pointer to the HW structure
 409 *
 410 *  Checks to see of the link status of the hardware has changed.  If a
 411 *  change in link status has been detected, then we read the PHY registers
 412 *  to get the current speed/duplex if link exists.
 413 **/
 414s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
 415{
 416	struct e1000_mac_info *mac = &hw->mac;
 417	s32 ret_val;
 418	bool link;
 419
 420	/* We only want to go out to the PHY registers to see if Auto-Neg
 421	 * has completed and/or if our link status has changed.  The
 422	 * get_link_status flag is set upon receiving a Link Status
 423	 * Change or Rx Sequence Error interrupt.
 424	 */
 425	if (!mac->get_link_status)
 426		return 0;
 
 427
 428	/* First we want to see if the MII Status Register reports
 429	 * link.  If so, then we want to get the current speed/duplex
 430	 * of the PHY.
 431	 */
 432	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
 433	if (ret_val)
 434		return ret_val;
 435
 436	if (!link)
 437		return 0;	/* No link detected */
 438
 439	mac->get_link_status = false;
 440
 441	/* Check if there was DownShift, must be checked
 442	 * immediately after link-up
 443	 */
 444	e1000e_check_downshift(hw);
 445
 446	/* If we are forcing speed/duplex, then we simply return since
 447	 * we have already determined whether we have link or not.
 448	 */
 449	if (!mac->autoneg)
 450		return -E1000_ERR_CONFIG;
 451
 452	/* Auto-Neg is enabled.  Auto Speed Detection takes care
 453	 * of MAC speed/duplex configuration.  So we only need to
 454	 * configure Collision Distance in the MAC.
 455	 */
 456	mac->ops.config_collision_dist(hw);
 457
 458	/* Configure Flow Control now that Auto-Neg has completed.
 459	 * First, we need to restore the desired flow control
 460	 * settings because we may have had to re-autoneg with a
 461	 * different link partner.
 462	 */
 463	ret_val = e1000e_config_fc_after_link_up(hw);
 464	if (ret_val)
 465		e_dbg("Error configuring flow control\n");
 466
 
 
 
 
 467	return ret_val;
 468}
 469
 470/**
 471 *  e1000e_check_for_fiber_link - Check for link (Fiber)
 472 *  @hw: pointer to the HW structure
 473 *
 474 *  Checks for link up on the hardware.  If link is not up and we have
 475 *  a signal, then we need to force link up.
 476 **/
 477s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
 478{
 479	struct e1000_mac_info *mac = &hw->mac;
 480	u32 rxcw;
 481	u32 ctrl;
 482	u32 status;
 483	s32 ret_val;
 484
 485	ctrl = er32(CTRL);
 486	status = er32(STATUS);
 487	rxcw = er32(RXCW);
 488
 489	/* If we don't have link (auto-negotiation failed or link partner
 490	 * cannot auto-negotiate), the cable is plugged in (we have signal),
 491	 * and our link partner is not trying to auto-negotiate with us (we
 492	 * are receiving idles or data), we need to force link up. We also
 493	 * need to give auto-negotiation time to complete, in case the cable
 494	 * was just plugged in. The autoneg_failed flag does this.
 495	 */
 496	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
 497	if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
 498	    !(rxcw & E1000_RXCW_C)) {
 499		if (!mac->autoneg_failed) {
 500			mac->autoneg_failed = true;
 501			return 0;
 502		}
 503		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
 504
 505		/* Disable auto-negotiation in the TXCW register */
 506		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
 507
 508		/* Force link-up and also force full-duplex. */
 509		ctrl = er32(CTRL);
 510		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
 511		ew32(CTRL, ctrl);
 512
 513		/* Configure Flow Control after forcing link up. */
 514		ret_val = e1000e_config_fc_after_link_up(hw);
 515		if (ret_val) {
 516			e_dbg("Error configuring flow control\n");
 517			return ret_val;
 518		}
 519	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
 520		/* If we are forcing link and we are receiving /C/ ordered
 521		 * sets, re-enable auto-negotiation in the TXCW register
 522		 * and disable forced link in the Device Control register
 523		 * in an attempt to auto-negotiate with our link partner.
 524		 */
 525		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
 526		ew32(TXCW, mac->txcw);
 527		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
 528
 529		mac->serdes_has_link = true;
 530	}
 531
 532	return 0;
 533}
 534
 535/**
 536 *  e1000e_check_for_serdes_link - Check for link (Serdes)
 537 *  @hw: pointer to the HW structure
 538 *
 539 *  Checks for link up on the hardware.  If link is not up and we have
 540 *  a signal, then we need to force link up.
 541 **/
 542s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
 543{
 544	struct e1000_mac_info *mac = &hw->mac;
 545	u32 rxcw;
 546	u32 ctrl;
 547	u32 status;
 548	s32 ret_val;
 549
 550	ctrl = er32(CTRL);
 551	status = er32(STATUS);
 552	rxcw = er32(RXCW);
 553
 554	/* If we don't have link (auto-negotiation failed or link partner
 555	 * cannot auto-negotiate), and our link partner is not trying to
 556	 * auto-negotiate with us (we are receiving idles or data),
 557	 * we need to force link up. We also need to give auto-negotiation
 558	 * time to complete.
 559	 */
 560	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
 561	if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
 562		if (!mac->autoneg_failed) {
 563			mac->autoneg_failed = true;
 564			return 0;
 565		}
 566		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
 567
 568		/* Disable auto-negotiation in the TXCW register */
 569		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
 570
 571		/* Force link-up and also force full-duplex. */
 572		ctrl = er32(CTRL);
 573		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
 574		ew32(CTRL, ctrl);
 575
 576		/* Configure Flow Control after forcing link up. */
 577		ret_val = e1000e_config_fc_after_link_up(hw);
 578		if (ret_val) {
 579			e_dbg("Error configuring flow control\n");
 580			return ret_val;
 581		}
 582	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
 583		/* If we are forcing link and we are receiving /C/ ordered
 584		 * sets, re-enable auto-negotiation in the TXCW register
 585		 * and disable forced link in the Device Control register
 586		 * in an attempt to auto-negotiate with our link partner.
 587		 */
 588		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
 589		ew32(TXCW, mac->txcw);
 590		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
 591
 592		mac->serdes_has_link = true;
 593	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
 594		/* If we force link for non-auto-negotiation switch, check
 595		 * link status based on MAC synchronization for internal
 596		 * serdes media type.
 597		 */
 598		/* SYNCH bit and IV bit are sticky. */
 599		usleep_range(10, 20);
 600		rxcw = er32(RXCW);
 601		if (rxcw & E1000_RXCW_SYNCH) {
 602			if (!(rxcw & E1000_RXCW_IV)) {
 603				mac->serdes_has_link = true;
 604				e_dbg("SERDES: Link up - forced.\n");
 605			}
 606		} else {
 607			mac->serdes_has_link = false;
 608			e_dbg("SERDES: Link down - force failed.\n");
 609		}
 610	}
 611
 612	if (E1000_TXCW_ANE & er32(TXCW)) {
 613		status = er32(STATUS);
 614		if (status & E1000_STATUS_LU) {
 615			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
 616			usleep_range(10, 20);
 617			rxcw = er32(RXCW);
 618			if (rxcw & E1000_RXCW_SYNCH) {
 619				if (!(rxcw & E1000_RXCW_IV)) {
 620					mac->serdes_has_link = true;
 621					e_dbg("SERDES: Link up - autoneg completed successfully.\n");
 622				} else {
 623					mac->serdes_has_link = false;
 624					e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
 625				}
 626			} else {
 627				mac->serdes_has_link = false;
 628				e_dbg("SERDES: Link down - no sync.\n");
 629			}
 630		} else {
 631			mac->serdes_has_link = false;
 632			e_dbg("SERDES: Link down - autoneg failed\n");
 633		}
 634	}
 635
 636	return 0;
 637}
 638
 639/**
 640 *  e1000_set_default_fc_generic - Set flow control default values
 641 *  @hw: pointer to the HW structure
 642 *
 643 *  Read the EEPROM for the default values for flow control and store the
 644 *  values.
 645 **/
 646static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
 647{
 648	s32 ret_val;
 649	u16 nvm_data;
 650
 651	/* Read and store word 0x0F of the EEPROM. This word contains bits
 652	 * that determine the hardware's default PAUSE (flow control) mode,
 653	 * a bit that determines whether the HW defaults to enabling or
 654	 * disabling auto-negotiation, and the direction of the
 655	 * SW defined pins. If there is no SW over-ride of the flow
 656	 * control setting, then the variable hw->fc will
 657	 * be initialized based on a value in the EEPROM.
 658	 */
 659	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
 660
 661	if (ret_val) {
 662		e_dbg("NVM Read Error\n");
 663		return ret_val;
 664	}
 665
 666	if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
 667		hw->fc.requested_mode = e1000_fc_none;
 668	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
 669		hw->fc.requested_mode = e1000_fc_tx_pause;
 670	else
 671		hw->fc.requested_mode = e1000_fc_full;
 672
 673	return 0;
 674}
 675
 676/**
 677 *  e1000e_setup_link_generic - Setup flow control and link settings
 678 *  @hw: pointer to the HW structure
 679 *
 680 *  Determines which flow control settings to use, then configures flow
 681 *  control.  Calls the appropriate media-specific link configuration
 682 *  function.  Assuming the adapter has a valid link partner, a valid link
 683 *  should be established.  Assumes the hardware has previously been reset
 684 *  and the transmitter and receiver are not enabled.
 685 **/
 686s32 e1000e_setup_link_generic(struct e1000_hw *hw)
 687{
 688	s32 ret_val;
 689
 690	/* In the case of the phy reset being blocked, we already have a link.
 691	 * We do not need to set it up again.
 692	 */
 693	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
 694		return 0;
 695
 696	/* If requested flow control is set to default, set flow control
 697	 * based on the EEPROM flow control settings.
 698	 */
 699	if (hw->fc.requested_mode == e1000_fc_default) {
 700		ret_val = e1000_set_default_fc_generic(hw);
 701		if (ret_val)
 702			return ret_val;
 703	}
 704
 705	/* Save off the requested flow control mode for use later.  Depending
 706	 * on the link partner's capabilities, we may or may not use this mode.
 707	 */
 708	hw->fc.current_mode = hw->fc.requested_mode;
 709
 710	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
 711
 712	/* Call the necessary media_type subroutine to configure the link. */
 713	ret_val = hw->mac.ops.setup_physical_interface(hw);
 714	if (ret_val)
 715		return ret_val;
 716
 717	/* Initialize the flow control address, type, and PAUSE timer
 718	 * registers to their default values.  This is done even if flow
 719	 * control is disabled, because it does not hurt anything to
 720	 * initialize these registers.
 721	 */
 722	e_dbg("Initializing the Flow Control address, type and timer regs\n");
 723	ew32(FCT, FLOW_CONTROL_TYPE);
 724	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
 725	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
 726
 727	ew32(FCTTV, hw->fc.pause_time);
 728
 729	return e1000e_set_fc_watermarks(hw);
 730}
 731
 732/**
 733 *  e1000_commit_fc_settings_generic - Configure flow control
 734 *  @hw: pointer to the HW structure
 735 *
 736 *  Write the flow control settings to the Transmit Config Word Register (TXCW)
 737 *  base on the flow control settings in e1000_mac_info.
 738 **/
 739static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
 740{
 741	struct e1000_mac_info *mac = &hw->mac;
 742	u32 txcw;
 743
 744	/* Check for a software override of the flow control settings, and
 745	 * setup the device accordingly.  If auto-negotiation is enabled, then
 746	 * software will have to set the "PAUSE" bits to the correct value in
 747	 * the Transmit Config Word Register (TXCW) and re-start auto-
 748	 * negotiation.  However, if auto-negotiation is disabled, then
 749	 * software will have to manually configure the two flow control enable
 750	 * bits in the CTRL register.
 751	 *
 752	 * The possible values of the "fc" parameter are:
 753	 *      0:  Flow control is completely disabled
 754	 *      1:  Rx flow control is enabled (we can receive pause frames,
 755	 *          but not send pause frames).
 756	 *      2:  Tx flow control is enabled (we can send pause frames but we
 757	 *          do not support receiving pause frames).
 758	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
 759	 */
 760	switch (hw->fc.current_mode) {
 761	case e1000_fc_none:
 762		/* Flow control completely disabled by a software over-ride. */
 763		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
 764		break;
 765	case e1000_fc_rx_pause:
 766		/* Rx Flow control is enabled and Tx Flow control is disabled
 767		 * by a software over-ride. Since there really isn't a way to
 768		 * advertise that we are capable of Rx Pause ONLY, we will
 769		 * advertise that we support both symmetric and asymmetric Rx
 770		 * PAUSE.  Later, we will disable the adapter's ability to send
 771		 * PAUSE frames.
 772		 */
 773		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 774		break;
 775	case e1000_fc_tx_pause:
 776		/* Tx Flow control is enabled, and Rx Flow control is disabled,
 777		 * by a software over-ride.
 778		 */
 779		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
 780		break;
 781	case e1000_fc_full:
 782		/* Flow control (both Rx and Tx) is enabled by a software
 783		 * over-ride.
 784		 */
 785		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 786		break;
 787	default:
 788		e_dbg("Flow control param set incorrectly\n");
 789		return -E1000_ERR_CONFIG;
 790	}
 791
 792	ew32(TXCW, txcw);
 793	mac->txcw = txcw;
 794
 795	return 0;
 796}
 797
 798/**
 799 *  e1000_poll_fiber_serdes_link_generic - Poll for link up
 800 *  @hw: pointer to the HW structure
 801 *
 802 *  Polls for link up by reading the status register, if link fails to come
 803 *  up with auto-negotiation, then the link is forced if a signal is detected.
 804 **/
 805static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
 806{
 807	struct e1000_mac_info *mac = &hw->mac;
 808	u32 i, status;
 809	s32 ret_val;
 810
 811	/* If we have a signal (the cable is plugged in, or assumed true for
 812	 * serdes media) then poll for a "Link-Up" indication in the Device
 813	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
 814	 * seconds (Auto-negotiation should complete in less than 500
 815	 * milliseconds even if the other end is doing it in SW).
 816	 */
 817	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
 818		usleep_range(10000, 20000);
 819		status = er32(STATUS);
 820		if (status & E1000_STATUS_LU)
 821			break;
 822	}
 823	if (i == FIBER_LINK_UP_LIMIT) {
 824		e_dbg("Never got a valid link from auto-neg!!!\n");
 825		mac->autoneg_failed = true;
 826		/* AutoNeg failed to achieve a link, so we'll call
 827		 * mac->check_for_link. This routine will force the
 828		 * link up if we detect a signal. This will allow us to
 829		 * communicate with non-autonegotiating link partners.
 830		 */
 831		ret_val = mac->ops.check_for_link(hw);
 832		if (ret_val) {
 833			e_dbg("Error while checking for link\n");
 834			return ret_val;
 835		}
 836		mac->autoneg_failed = false;
 837	} else {
 838		mac->autoneg_failed = false;
 839		e_dbg("Valid Link Found\n");
 840	}
 841
 842	return 0;
 843}
 844
 845/**
 846 *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
 847 *  @hw: pointer to the HW structure
 848 *
 849 *  Configures collision distance and flow control for fiber and serdes
 850 *  links.  Upon successful setup, poll for link.
 851 **/
 852s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
 853{
 854	u32 ctrl;
 855	s32 ret_val;
 856
 857	ctrl = er32(CTRL);
 858
 859	/* Take the link out of reset */
 860	ctrl &= ~E1000_CTRL_LRST;
 861
 862	hw->mac.ops.config_collision_dist(hw);
 863
 864	ret_val = e1000_commit_fc_settings_generic(hw);
 865	if (ret_val)
 866		return ret_val;
 867
 868	/* Since auto-negotiation is enabled, take the link out of reset (the
 869	 * link will be in reset, because we previously reset the chip). This
 870	 * will restart auto-negotiation.  If auto-negotiation is successful
 871	 * then the link-up status bit will be set and the flow control enable
 872	 * bits (RFCE and TFCE) will be set according to their negotiated value.
 873	 */
 874	e_dbg("Auto-negotiation enabled\n");
 875
 876	ew32(CTRL, ctrl);
 877	e1e_flush();
 878	usleep_range(1000, 2000);
 879
 880	/* For these adapters, the SW definable pin 1 is set when the optics
 881	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
 882	 * indication.
 883	 */
 884	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
 885	    (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
 886		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
 887	} else {
 888		e_dbg("No signal detected\n");
 889	}
 890
 891	return ret_val;
 892}
 893
 894/**
 895 *  e1000e_config_collision_dist_generic - Configure collision distance
 896 *  @hw: pointer to the HW structure
 897 *
 898 *  Configures the collision distance to the default value and is used
 899 *  during link setup.
 900 **/
 901void e1000e_config_collision_dist_generic(struct e1000_hw *hw)
 902{
 903	u32 tctl;
 904
 905	tctl = er32(TCTL);
 906
 907	tctl &= ~E1000_TCTL_COLD;
 908	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
 909
 910	ew32(TCTL, tctl);
 911	e1e_flush();
 912}
 913
 914/**
 915 *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
 916 *  @hw: pointer to the HW structure
 917 *
 918 *  Sets the flow control high/low threshold (watermark) registers.  If
 919 *  flow control XON frame transmission is enabled, then set XON frame
 920 *  transmission as well.
 921 **/
 922s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
 923{
 924	u32 fcrtl = 0, fcrth = 0;
 925
 926	/* Set the flow control receive threshold registers.  Normally,
 927	 * these registers will be set to a default threshold that may be
 928	 * adjusted later by the driver's runtime code.  However, if the
 929	 * ability to transmit pause frames is not enabled, then these
 930	 * registers will be set to 0.
 931	 */
 932	if (hw->fc.current_mode & e1000_fc_tx_pause) {
 933		/* We need to set up the Receive Threshold high and low water
 934		 * marks as well as (optionally) enabling the transmission of
 935		 * XON frames.
 936		 */
 937		fcrtl = hw->fc.low_water;
 938		if (hw->fc.send_xon)
 939			fcrtl |= E1000_FCRTL_XONE;
 940
 941		fcrth = hw->fc.high_water;
 942	}
 943	ew32(FCRTL, fcrtl);
 944	ew32(FCRTH, fcrth);
 945
 946	return 0;
 947}
 948
 949/**
 950 *  e1000e_force_mac_fc - Force the MAC's flow control settings
 951 *  @hw: pointer to the HW structure
 952 *
 953 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
 954 *  device control register to reflect the adapter settings.  TFCE and RFCE
 955 *  need to be explicitly set by software when a copper PHY is used because
 956 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
 957 *  also configure these bits when link is forced on a fiber connection.
 958 **/
 959s32 e1000e_force_mac_fc(struct e1000_hw *hw)
 960{
 961	u32 ctrl;
 962
 963	ctrl = er32(CTRL);
 964
 965	/* Because we didn't get link via the internal auto-negotiation
 966	 * mechanism (we either forced link or we got link via PHY
 967	 * auto-neg), we have to manually enable/disable transmit an
 968	 * receive flow control.
 969	 *
 970	 * The "Case" statement below enables/disable flow control
 971	 * according to the "hw->fc.current_mode" parameter.
 972	 *
 973	 * The possible values of the "fc" parameter are:
 974	 *      0:  Flow control is completely disabled
 975	 *      1:  Rx flow control is enabled (we can receive pause
 976	 *          frames but not send pause frames).
 977	 *      2:  Tx flow control is enabled (we can send pause frames
 978	 *          frames but we do not receive pause frames).
 979	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
 980	 *  other:  No other values should be possible at this point.
 981	 */
 982	e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
 983
 984	switch (hw->fc.current_mode) {
 985	case e1000_fc_none:
 986		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
 987		break;
 988	case e1000_fc_rx_pause:
 989		ctrl &= (~E1000_CTRL_TFCE);
 990		ctrl |= E1000_CTRL_RFCE;
 991		break;
 992	case e1000_fc_tx_pause:
 993		ctrl &= (~E1000_CTRL_RFCE);
 994		ctrl |= E1000_CTRL_TFCE;
 995		break;
 996	case e1000_fc_full:
 997		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
 998		break;
 999	default:
1000		e_dbg("Flow control param set incorrectly\n");
1001		return -E1000_ERR_CONFIG;
1002	}
1003
1004	ew32(CTRL, ctrl);
1005
1006	return 0;
1007}
1008
1009/**
1010 *  e1000e_config_fc_after_link_up - Configures flow control after link
1011 *  @hw: pointer to the HW structure
1012 *
1013 *  Checks the status of auto-negotiation after link up to ensure that the
1014 *  speed and duplex were not forced.  If the link needed to be forced, then
1015 *  flow control needs to be forced also.  If auto-negotiation is enabled
1016 *  and did not fail, then we configure flow control based on our link
1017 *  partner.
1018 **/
1019s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1020{
1021	struct e1000_mac_info *mac = &hw->mac;
1022	s32 ret_val = 0;
1023	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
1024	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1025	u16 speed, duplex;
1026
1027	/* Check for the case where we have fiber media and auto-neg failed
1028	 * so we had to force link.  In this case, we need to force the
1029	 * configuration of the MAC to match the "fc" parameter.
1030	 */
1031	if (mac->autoneg_failed) {
1032		if (hw->phy.media_type == e1000_media_type_fiber ||
1033		    hw->phy.media_type == e1000_media_type_internal_serdes)
1034			ret_val = e1000e_force_mac_fc(hw);
1035	} else {
1036		if (hw->phy.media_type == e1000_media_type_copper)
1037			ret_val = e1000e_force_mac_fc(hw);
1038	}
1039
1040	if (ret_val) {
1041		e_dbg("Error forcing flow control settings\n");
1042		return ret_val;
1043	}
1044
1045	/* Check for the case where we have copper media and auto-neg is
1046	 * enabled.  In this case, we need to check and see if Auto-Neg
1047	 * has completed, and if so, how the PHY and link partner has
1048	 * flow control configured.
1049	 */
1050	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1051		/* Read the MII Status Register and check to see if AutoNeg
1052		 * has completed.  We read this twice because this reg has
1053		 * some "sticky" (latched) bits.
1054		 */
1055		ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1056		if (ret_val)
1057			return ret_val;
1058		ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1059		if (ret_val)
1060			return ret_val;
1061
1062		if (!(mii_status_reg & BMSR_ANEGCOMPLETE)) {
1063			e_dbg("Copper PHY and Auto Neg has not completed.\n");
1064			return ret_val;
1065		}
1066
1067		/* The AutoNeg process has completed, so we now need to
1068		 * read both the Auto Negotiation Advertisement
1069		 * Register (Address 4) and the Auto_Negotiation Base
1070		 * Page Ability Register (Address 5) to determine how
1071		 * flow control was negotiated.
1072		 */
1073		ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_nway_adv_reg);
1074		if (ret_val)
1075			return ret_val;
1076		ret_val = e1e_rphy(hw, MII_LPA, &mii_nway_lp_ability_reg);
1077		if (ret_val)
1078			return ret_val;
1079
1080		/* Two bits in the Auto Negotiation Advertisement Register
1081		 * (Address 4) and two bits in the Auto Negotiation Base
1082		 * Page Ability Register (Address 5) determine flow control
1083		 * for both the PHY and the link partner.  The following
1084		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1085		 * 1999, describes these PAUSE resolution bits and how flow
1086		 * control is determined based upon these settings.
1087		 * NOTE:  DC = Don't Care
1088		 *
1089		 *   LOCAL DEVICE  |   LINK PARTNER
1090		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1091		 *-------|---------|-------|---------|--------------------
1092		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1093		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1094		 *   0   |    1    |   1   |    0    | e1000_fc_none
1095		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1096		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1097		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1098		 *   1   |    1    |   0   |    0    | e1000_fc_none
1099		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1100		 *
1101		 * Are both PAUSE bits set to 1?  If so, this implies
1102		 * Symmetric Flow Control is enabled at both ends.  The
1103		 * ASM_DIR bits are irrelevant per the spec.
1104		 *
1105		 * For Symmetric Flow Control:
1106		 *
1107		 *   LOCAL DEVICE  |   LINK PARTNER
1108		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1109		 *-------|---------|-------|---------|--------------------
1110		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
1111		 *
1112		 */
1113		if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1114		    (mii_nway_lp_ability_reg & LPA_PAUSE_CAP)) {
1115			/* Now we need to check if the user selected Rx ONLY
1116			 * of pause frames.  In this case, we had to advertise
1117			 * FULL flow control because we could not advertise Rx
1118			 * ONLY. Hence, we must now check to see if we need to
1119			 * turn OFF the TRANSMISSION of PAUSE frames.
1120			 */
1121			if (hw->fc.requested_mode == e1000_fc_full) {
1122				hw->fc.current_mode = e1000_fc_full;
1123				e_dbg("Flow Control = FULL.\n");
1124			} else {
1125				hw->fc.current_mode = e1000_fc_rx_pause;
1126				e_dbg("Flow Control = Rx PAUSE frames only.\n");
1127			}
1128		}
1129		/* For receiving PAUSE frames ONLY.
1130		 *
1131		 *   LOCAL DEVICE  |   LINK PARTNER
1132		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1133		 *-------|---------|-------|---------|--------------------
1134		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1135		 */
1136		else if (!(mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1137			 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1138			 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1139			 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1140			hw->fc.current_mode = e1000_fc_tx_pause;
1141			e_dbg("Flow Control = Tx PAUSE frames only.\n");
1142		}
1143		/* For transmitting PAUSE frames ONLY.
1144		 *
1145		 *   LOCAL DEVICE  |   LINK PARTNER
1146		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1147		 *-------|---------|-------|---------|--------------------
1148		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1149		 */
1150		else if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1151			 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1152			 !(mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1153			 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1154			hw->fc.current_mode = e1000_fc_rx_pause;
1155			e_dbg("Flow Control = Rx PAUSE frames only.\n");
1156		} else {
1157			/* Per the IEEE spec, at this point flow control
1158			 * should be disabled.
1159			 */
1160			hw->fc.current_mode = e1000_fc_none;
1161			e_dbg("Flow Control = NONE.\n");
1162		}
1163
1164		/* Now we need to do one last check...  If we auto-
1165		 * negotiated to HALF DUPLEX, flow control should not be
1166		 * enabled per IEEE 802.3 spec.
1167		 */
1168		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1169		if (ret_val) {
1170			e_dbg("Error getting link speed and duplex\n");
1171			return ret_val;
1172		}
1173
1174		if (duplex == HALF_DUPLEX)
1175			hw->fc.current_mode = e1000_fc_none;
1176
1177		/* Now we call a subroutine to actually force the MAC
1178		 * controller to use the correct flow control settings.
1179		 */
1180		ret_val = e1000e_force_mac_fc(hw);
1181		if (ret_val) {
1182			e_dbg("Error forcing flow control settings\n");
1183			return ret_val;
1184		}
1185	}
1186
1187	/* Check for the case where we have SerDes media and auto-neg is
1188	 * enabled.  In this case, we need to check and see if Auto-Neg
1189	 * has completed, and if so, how the PHY and link partner has
1190	 * flow control configured.
1191	 */
1192	if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
1193	    mac->autoneg) {
1194		/* Read the PCS_LSTS and check to see if AutoNeg
1195		 * has completed.
1196		 */
1197		pcs_status_reg = er32(PCS_LSTAT);
1198
1199		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1200			e_dbg("PCS Auto Neg has not completed.\n");
1201			return ret_val;
1202		}
1203
1204		/* The AutoNeg process has completed, so we now need to
1205		 * read both the Auto Negotiation Advertisement
1206		 * Register (PCS_ANADV) and the Auto_Negotiation Base
1207		 * Page Ability Register (PCS_LPAB) to determine how
1208		 * flow control was negotiated.
1209		 */
1210		pcs_adv_reg = er32(PCS_ANADV);
1211		pcs_lp_ability_reg = er32(PCS_LPAB);
1212
1213		/* Two bits in the Auto Negotiation Advertisement Register
1214		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1215		 * Page Ability Register (PCS_LPAB) determine flow control
1216		 * for both the PHY and the link partner.  The following
1217		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1218		 * 1999, describes these PAUSE resolution bits and how flow
1219		 * control is determined based upon these settings.
1220		 * NOTE:  DC = Don't Care
1221		 *
1222		 *   LOCAL DEVICE  |   LINK PARTNER
1223		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1224		 *-------|---------|-------|---------|--------------------
1225		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1226		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1227		 *   0   |    1    |   1   |    0    | e1000_fc_none
1228		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1229		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1230		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1231		 *   1   |    1    |   0   |    0    | e1000_fc_none
1232		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1233		 *
1234		 * Are both PAUSE bits set to 1?  If so, this implies
1235		 * Symmetric Flow Control is enabled at both ends.  The
1236		 * ASM_DIR bits are irrelevant per the spec.
1237		 *
1238		 * For Symmetric Flow Control:
1239		 *
1240		 *   LOCAL DEVICE  |   LINK PARTNER
1241		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1242		 *-------|---------|-------|---------|--------------------
1243		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1244		 *
1245		 */
1246		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1247		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1248			/* Now we need to check if the user selected Rx ONLY
1249			 * of pause frames.  In this case, we had to advertise
1250			 * FULL flow control because we could not advertise Rx
1251			 * ONLY. Hence, we must now check to see if we need to
1252			 * turn OFF the TRANSMISSION of PAUSE frames.
1253			 */
1254			if (hw->fc.requested_mode == e1000_fc_full) {
1255				hw->fc.current_mode = e1000_fc_full;
1256				e_dbg("Flow Control = FULL.\n");
1257			} else {
1258				hw->fc.current_mode = e1000_fc_rx_pause;
1259				e_dbg("Flow Control = Rx PAUSE frames only.\n");
1260			}
1261		}
1262		/* For receiving PAUSE frames ONLY.
1263		 *
1264		 *   LOCAL DEVICE  |   LINK PARTNER
1265		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1266		 *-------|---------|-------|---------|--------------------
1267		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1268		 */
1269		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1270			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1271			 (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1272			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1273			hw->fc.current_mode = e1000_fc_tx_pause;
1274			e_dbg("Flow Control = Tx PAUSE frames only.\n");
1275		}
1276		/* For transmitting PAUSE frames ONLY.
1277		 *
1278		 *   LOCAL DEVICE  |   LINK PARTNER
1279		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1280		 *-------|---------|-------|---------|--------------------
1281		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1282		 */
1283		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1284			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1285			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1286			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1287			hw->fc.current_mode = e1000_fc_rx_pause;
1288			e_dbg("Flow Control = Rx PAUSE frames only.\n");
1289		} else {
1290			/* Per the IEEE spec, at this point flow control
1291			 * should be disabled.
1292			 */
1293			hw->fc.current_mode = e1000_fc_none;
1294			e_dbg("Flow Control = NONE.\n");
1295		}
1296
1297		/* Now we call a subroutine to actually force the MAC
1298		 * controller to use the correct flow control settings.
1299		 */
1300		pcs_ctrl_reg = er32(PCS_LCTL);
1301		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1302		ew32(PCS_LCTL, pcs_ctrl_reg);
1303
1304		ret_val = e1000e_force_mac_fc(hw);
1305		if (ret_val) {
1306			e_dbg("Error forcing flow control settings\n");
1307			return ret_val;
1308		}
1309	}
1310
1311	return 0;
1312}
1313
1314/**
1315 *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1316 *  @hw: pointer to the HW structure
1317 *  @speed: stores the current speed
1318 *  @duplex: stores the current duplex
1319 *
1320 *  Read the status register for the current speed/duplex and store the current
1321 *  speed and duplex for copper connections.
1322 **/
1323s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1324				       u16 *duplex)
1325{
1326	u32 status;
1327
1328	status = er32(STATUS);
1329	if (status & E1000_STATUS_SPEED_1000)
1330		*speed = SPEED_1000;
1331	else if (status & E1000_STATUS_SPEED_100)
1332		*speed = SPEED_100;
1333	else
1334		*speed = SPEED_10;
1335
1336	if (status & E1000_STATUS_FD)
1337		*duplex = FULL_DUPLEX;
1338	else
1339		*duplex = HALF_DUPLEX;
1340
1341	e_dbg("%u Mbps, %s Duplex\n",
1342	      *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
1343	      *duplex == FULL_DUPLEX ? "Full" : "Half");
1344
1345	return 0;
1346}
1347
1348/**
1349 *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1350 *  @hw: pointer to the HW structure
1351 *  @speed: stores the current speed
1352 *  @duplex: stores the current duplex
1353 *
1354 *  Sets the speed and duplex to gigabit full duplex (the only possible option)
1355 *  for fiber/serdes links.
1356 **/
1357s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused
1358					     *hw, u16 *speed, u16 *duplex)
1359{
1360	*speed = SPEED_1000;
1361	*duplex = FULL_DUPLEX;
1362
1363	return 0;
1364}
1365
1366/**
1367 *  e1000e_get_hw_semaphore - Acquire hardware semaphore
1368 *  @hw: pointer to the HW structure
1369 *
1370 *  Acquire the HW semaphore to access the PHY or NVM
1371 **/
1372s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1373{
1374	u32 swsm;
1375	s32 timeout = hw->nvm.word_size + 1;
1376	s32 i = 0;
1377
1378	/* Get the SW semaphore */
1379	while (i < timeout) {
1380		swsm = er32(SWSM);
1381		if (!(swsm & E1000_SWSM_SMBI))
1382			break;
1383
1384		usleep_range(50, 100);
1385		i++;
1386	}
1387
1388	if (i == timeout) {
1389		e_dbg("Driver can't access device - SMBI bit is set.\n");
1390		return -E1000_ERR_NVM;
1391	}
1392
1393	/* Get the FW semaphore. */
1394	for (i = 0; i < timeout; i++) {
1395		swsm = er32(SWSM);
1396		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1397
1398		/* Semaphore acquired if bit latched */
1399		if (er32(SWSM) & E1000_SWSM_SWESMBI)
1400			break;
1401
1402		usleep_range(50, 100);
1403	}
1404
1405	if (i == timeout) {
1406		/* Release semaphores */
1407		e1000e_put_hw_semaphore(hw);
1408		e_dbg("Driver can't access the NVM\n");
1409		return -E1000_ERR_NVM;
1410	}
1411
1412	return 0;
1413}
1414
1415/**
1416 *  e1000e_put_hw_semaphore - Release hardware semaphore
1417 *  @hw: pointer to the HW structure
1418 *
1419 *  Release hardware semaphore used to access the PHY or NVM
1420 **/
1421void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1422{
1423	u32 swsm;
1424
1425	swsm = er32(SWSM);
1426	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1427	ew32(SWSM, swsm);
1428}
1429
1430/**
1431 *  e1000e_get_auto_rd_done - Check for auto read completion
1432 *  @hw: pointer to the HW structure
1433 *
1434 *  Check EEPROM for Auto Read done bit.
1435 **/
1436s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1437{
1438	s32 i = 0;
1439
1440	while (i < AUTO_READ_DONE_TIMEOUT) {
1441		if (er32(EECD) & E1000_EECD_AUTO_RD)
1442			break;
1443		usleep_range(1000, 2000);
1444		i++;
1445	}
1446
1447	if (i == AUTO_READ_DONE_TIMEOUT) {
1448		e_dbg("Auto read by HW from NVM has not completed.\n");
1449		return -E1000_ERR_RESET;
1450	}
1451
1452	return 0;
1453}
1454
1455/**
1456 *  e1000e_valid_led_default - Verify a valid default LED config
1457 *  @hw: pointer to the HW structure
1458 *  @data: pointer to the NVM (EEPROM)
1459 *
1460 *  Read the EEPROM for the current default LED configuration.  If the
1461 *  LED configuration is not valid, set to a valid LED configuration.
1462 **/
1463s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1464{
1465	s32 ret_val;
1466
1467	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1468	if (ret_val) {
1469		e_dbg("NVM Read Error\n");
1470		return ret_val;
1471	}
1472
1473	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1474		*data = ID_LED_DEFAULT;
1475
1476	return 0;
1477}
1478
1479/**
1480 *  e1000e_id_led_init_generic -
1481 *  @hw: pointer to the HW structure
1482 *
1483 **/
1484s32 e1000e_id_led_init_generic(struct e1000_hw *hw)
1485{
1486	struct e1000_mac_info *mac = &hw->mac;
1487	s32 ret_val;
1488	const u32 ledctl_mask = 0x000000FF;
1489	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1490	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1491	u16 data, i, temp;
1492	const u16 led_mask = 0x0F;
1493
1494	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1495	if (ret_val)
1496		return ret_val;
1497
1498	mac->ledctl_default = er32(LEDCTL);
1499	mac->ledctl_mode1 = mac->ledctl_default;
1500	mac->ledctl_mode2 = mac->ledctl_default;
1501
1502	for (i = 0; i < 4; i++) {
1503		temp = (data >> (i << 2)) & led_mask;
1504		switch (temp) {
1505		case ID_LED_ON1_DEF2:
1506		case ID_LED_ON1_ON2:
1507		case ID_LED_ON1_OFF2:
1508			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1509			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1510			break;
1511		case ID_LED_OFF1_DEF2:
1512		case ID_LED_OFF1_ON2:
1513		case ID_LED_OFF1_OFF2:
1514			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1515			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1516			break;
1517		default:
1518			/* Do nothing */
1519			break;
1520		}
1521		switch (temp) {
1522		case ID_LED_DEF1_ON2:
1523		case ID_LED_ON1_ON2:
1524		case ID_LED_OFF1_ON2:
1525			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1526			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1527			break;
1528		case ID_LED_DEF1_OFF2:
1529		case ID_LED_ON1_OFF2:
1530		case ID_LED_OFF1_OFF2:
1531			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1532			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1533			break;
1534		default:
1535			/* Do nothing */
1536			break;
1537		}
1538	}
1539
1540	return 0;
1541}
1542
1543/**
1544 *  e1000e_setup_led_generic - Configures SW controllable LED
1545 *  @hw: pointer to the HW structure
1546 *
1547 *  This prepares the SW controllable LED for use and saves the current state
1548 *  of the LED so it can be later restored.
1549 **/
1550s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1551{
1552	u32 ledctl;
1553
1554	if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1555		return -E1000_ERR_CONFIG;
1556
1557	if (hw->phy.media_type == e1000_media_type_fiber) {
1558		ledctl = er32(LEDCTL);
1559		hw->mac.ledctl_default = ledctl;
1560		/* Turn off LED0 */
1561		ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
1562			    E1000_LEDCTL_LED0_MODE_MASK);
1563		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1564			   E1000_LEDCTL_LED0_MODE_SHIFT);
1565		ew32(LEDCTL, ledctl);
1566	} else if (hw->phy.media_type == e1000_media_type_copper) {
1567		ew32(LEDCTL, hw->mac.ledctl_mode1);
1568	}
1569
1570	return 0;
1571}
1572
1573/**
1574 *  e1000e_cleanup_led_generic - Set LED config to default operation
1575 *  @hw: pointer to the HW structure
1576 *
1577 *  Remove the current LED configuration and set the LED configuration
1578 *  to the default value, saved from the EEPROM.
1579 **/
1580s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1581{
1582	ew32(LEDCTL, hw->mac.ledctl_default);
1583	return 0;
1584}
1585
1586/**
1587 *  e1000e_blink_led_generic - Blink LED
1588 *  @hw: pointer to the HW structure
1589 *
1590 *  Blink the LEDs which are set to be on.
1591 **/
1592s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1593{
1594	u32 ledctl_blink = 0;
1595	u32 i;
1596
1597	if (hw->phy.media_type == e1000_media_type_fiber) {
1598		/* always blink LED0 for PCI-E fiber */
1599		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1600		    (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1601	} else {
1602		/* Set the blink bit for each LED that's "on" (0x0E)
1603		 * (or "off" if inverted) in ledctl_mode2.  The blink
1604		 * logic in hardware only works when mode is set to "on"
1605		 * so it must be changed accordingly when the mode is
1606		 * "off" and inverted.
1607		 */
1608		ledctl_blink = hw->mac.ledctl_mode2;
1609		for (i = 0; i < 32; i += 8) {
1610			u32 mode = (hw->mac.ledctl_mode2 >> i) &
1611			    E1000_LEDCTL_LED0_MODE_MASK;
1612			u32 led_default = hw->mac.ledctl_default >> i;
1613
1614			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1615			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1616			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1617			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1618				ledctl_blink &=
1619				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1620				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1621						 E1000_LEDCTL_MODE_LED_ON) << i;
1622			}
1623		}
1624	}
1625
1626	ew32(LEDCTL, ledctl_blink);
1627
1628	return 0;
1629}
1630
1631/**
1632 *  e1000e_led_on_generic - Turn LED on
1633 *  @hw: pointer to the HW structure
1634 *
1635 *  Turn LED on.
1636 **/
1637s32 e1000e_led_on_generic(struct e1000_hw *hw)
1638{
1639	u32 ctrl;
1640
1641	switch (hw->phy.media_type) {
1642	case e1000_media_type_fiber:
1643		ctrl = er32(CTRL);
1644		ctrl &= ~E1000_CTRL_SWDPIN0;
1645		ctrl |= E1000_CTRL_SWDPIO0;
1646		ew32(CTRL, ctrl);
1647		break;
1648	case e1000_media_type_copper:
1649		ew32(LEDCTL, hw->mac.ledctl_mode2);
1650		break;
1651	default:
1652		break;
1653	}
1654
1655	return 0;
1656}
1657
1658/**
1659 *  e1000e_led_off_generic - Turn LED off
1660 *  @hw: pointer to the HW structure
1661 *
1662 *  Turn LED off.
1663 **/
1664s32 e1000e_led_off_generic(struct e1000_hw *hw)
1665{
1666	u32 ctrl;
1667
1668	switch (hw->phy.media_type) {
1669	case e1000_media_type_fiber:
1670		ctrl = er32(CTRL);
1671		ctrl |= E1000_CTRL_SWDPIN0;
1672		ctrl |= E1000_CTRL_SWDPIO0;
1673		ew32(CTRL, ctrl);
1674		break;
1675	case e1000_media_type_copper:
1676		ew32(LEDCTL, hw->mac.ledctl_mode1);
1677		break;
1678	default:
1679		break;
1680	}
1681
1682	return 0;
1683}
1684
1685/**
1686 *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1687 *  @hw: pointer to the HW structure
1688 *  @no_snoop: bitmap of snoop events
1689 *
1690 *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1691 **/
1692void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1693{
1694	u32 gcr;
1695
1696	if (no_snoop) {
1697		gcr = er32(GCR);
1698		gcr &= ~(PCIE_NO_SNOOP_ALL);
1699		gcr |= no_snoop;
1700		ew32(GCR, gcr);
1701	}
1702}
1703
1704/**
1705 *  e1000e_disable_pcie_master - Disables PCI-express master access
1706 *  @hw: pointer to the HW structure
1707 *
1708 *  Returns 0 if successful, else returns -10
1709 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1710 *  the master requests to be disabled.
1711 *
1712 *  Disables PCI-Express master access and verifies there are no pending
1713 *  requests.
1714 **/
1715s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1716{
1717	u32 ctrl;
1718	s32 timeout = MASTER_DISABLE_TIMEOUT;
1719
1720	ctrl = er32(CTRL);
1721	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1722	ew32(CTRL, ctrl);
1723
1724	while (timeout) {
1725		if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
1726			break;
1727		usleep_range(100, 200);
1728		timeout--;
1729	}
1730
1731	if (!timeout) {
1732		e_dbg("Master requests are pending.\n");
1733		return -E1000_ERR_MASTER_REQUESTS_PENDING;
1734	}
1735
1736	return 0;
1737}
1738
1739/**
1740 *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1741 *  @hw: pointer to the HW structure
1742 *
1743 *  Reset the Adaptive Interframe Spacing throttle to default values.
1744 **/
1745void e1000e_reset_adaptive(struct e1000_hw *hw)
1746{
1747	struct e1000_mac_info *mac = &hw->mac;
1748
1749	if (!mac->adaptive_ifs) {
1750		e_dbg("Not in Adaptive IFS mode!\n");
1751		return;
1752	}
1753
1754	mac->current_ifs_val = 0;
1755	mac->ifs_min_val = IFS_MIN;
1756	mac->ifs_max_val = IFS_MAX;
1757	mac->ifs_step_size = IFS_STEP;
1758	mac->ifs_ratio = IFS_RATIO;
1759
1760	mac->in_ifs_mode = false;
1761	ew32(AIT, 0);
1762}
1763
1764/**
1765 *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
1766 *  @hw: pointer to the HW structure
1767 *
1768 *  Update the Adaptive Interframe Spacing Throttle value based on the
1769 *  time between transmitted packets and time between collisions.
1770 **/
1771void e1000e_update_adaptive(struct e1000_hw *hw)
1772{
1773	struct e1000_mac_info *mac = &hw->mac;
1774
1775	if (!mac->adaptive_ifs) {
1776		e_dbg("Not in Adaptive IFS mode!\n");
1777		return;
1778	}
1779
1780	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1781		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1782			mac->in_ifs_mode = true;
1783			if (mac->current_ifs_val < mac->ifs_max_val) {
1784				if (!mac->current_ifs_val)
1785					mac->current_ifs_val = mac->ifs_min_val;
1786				else
1787					mac->current_ifs_val +=
1788					    mac->ifs_step_size;
1789				ew32(AIT, mac->current_ifs_val);
1790			}
1791		}
1792	} else {
1793		if (mac->in_ifs_mode &&
1794		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1795			mac->current_ifs_val = 0;
1796			mac->in_ifs_mode = false;
1797			ew32(AIT, 0);
1798		}
1799	}
1800}