Loading...
1/*
2 * Network device driver for the BMAC ethernet controller on
3 * Apple Powermacs. Assumes it's under a DBDMA controller.
4 *
5 * Copyright (C) 1998 Randy Gobbel.
6 *
7 * May 1999, Al Viro: proper release of /proc/net/bmac entry, switched to
8 * dynamic procfs inode.
9 */
10#include <linux/interrupt.h>
11#include <linux/module.h>
12#include <linux/kernel.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/string.h>
17#include <linux/timer.h>
18#include <linux/proc_fs.h>
19#include <linux/init.h>
20#include <linux/spinlock.h>
21#include <linux/crc32.h>
22#include <linux/bitrev.h>
23#include <linux/ethtool.h>
24#include <linux/slab.h>
25#include <asm/prom.h>
26#include <asm/dbdma.h>
27#include <asm/io.h>
28#include <asm/page.h>
29#include <asm/pgtable.h>
30#include <asm/machdep.h>
31#include <asm/pmac_feature.h>
32#include <asm/macio.h>
33#include <asm/irq.h>
34
35#include "bmac.h"
36
37#define trunc_page(x) ((void *)(((unsigned long)(x)) & ~((unsigned long)(PAGE_SIZE - 1))))
38#define round_page(x) trunc_page(((unsigned long)(x)) + ((unsigned long)(PAGE_SIZE - 1)))
39
40/*
41 * CRC polynomial - used in working out multicast filter bits.
42 */
43#define ENET_CRCPOLY 0x04c11db7
44
45/* switch to use multicast code lifted from sunhme driver */
46#define SUNHME_MULTICAST
47
48#define N_RX_RING 64
49#define N_TX_RING 32
50#define MAX_TX_ACTIVE 1
51#define ETHERCRC 4
52#define ETHERMINPACKET 64
53#define ETHERMTU 1500
54#define RX_BUFLEN (ETHERMTU + 14 + ETHERCRC + 2)
55#define TX_TIMEOUT HZ /* 1 second */
56
57/* Bits in transmit DMA status */
58#define TX_DMA_ERR 0x80
59
60#define XXDEBUG(args)
61
62struct bmac_data {
63 /* volatile struct bmac *bmac; */
64 struct sk_buff_head *queue;
65 volatile struct dbdma_regs __iomem *tx_dma;
66 int tx_dma_intr;
67 volatile struct dbdma_regs __iomem *rx_dma;
68 int rx_dma_intr;
69 volatile struct dbdma_cmd *tx_cmds; /* xmit dma command list */
70 volatile struct dbdma_cmd *rx_cmds; /* recv dma command list */
71 struct macio_dev *mdev;
72 int is_bmac_plus;
73 struct sk_buff *rx_bufs[N_RX_RING];
74 int rx_fill;
75 int rx_empty;
76 struct sk_buff *tx_bufs[N_TX_RING];
77 int tx_fill;
78 int tx_empty;
79 unsigned char tx_fullup;
80 struct timer_list tx_timeout;
81 int timeout_active;
82 int sleeping;
83 int opened;
84 unsigned short hash_use_count[64];
85 unsigned short hash_table_mask[4];
86 spinlock_t lock;
87};
88
89#if 0 /* Move that to ethtool */
90
91typedef struct bmac_reg_entry {
92 char *name;
93 unsigned short reg_offset;
94} bmac_reg_entry_t;
95
96#define N_REG_ENTRIES 31
97
98static bmac_reg_entry_t reg_entries[N_REG_ENTRIES] = {
99 {"MEMADD", MEMADD},
100 {"MEMDATAHI", MEMDATAHI},
101 {"MEMDATALO", MEMDATALO},
102 {"TXPNTR", TXPNTR},
103 {"RXPNTR", RXPNTR},
104 {"IPG1", IPG1},
105 {"IPG2", IPG2},
106 {"ALIMIT", ALIMIT},
107 {"SLOT", SLOT},
108 {"PALEN", PALEN},
109 {"PAPAT", PAPAT},
110 {"TXSFD", TXSFD},
111 {"JAM", JAM},
112 {"TXCFG", TXCFG},
113 {"TXMAX", TXMAX},
114 {"TXMIN", TXMIN},
115 {"PAREG", PAREG},
116 {"DCNT", DCNT},
117 {"NCCNT", NCCNT},
118 {"NTCNT", NTCNT},
119 {"EXCNT", EXCNT},
120 {"LTCNT", LTCNT},
121 {"TXSM", TXSM},
122 {"RXCFG", RXCFG},
123 {"RXMAX", RXMAX},
124 {"RXMIN", RXMIN},
125 {"FRCNT", FRCNT},
126 {"AECNT", AECNT},
127 {"FECNT", FECNT},
128 {"RXSM", RXSM},
129 {"RXCV", RXCV}
130};
131
132#endif
133
134static unsigned char *bmac_emergency_rxbuf;
135
136/*
137 * Number of bytes of private data per BMAC: allow enough for
138 * the rx and tx dma commands plus a branch dma command each,
139 * and another 16 bytes to allow us to align the dma command
140 * buffers on a 16 byte boundary.
141 */
142#define PRIV_BYTES (sizeof(struct bmac_data) \
143 + (N_RX_RING + N_TX_RING + 4) * sizeof(struct dbdma_cmd) \
144 + sizeof(struct sk_buff_head))
145
146static int bmac_open(struct net_device *dev);
147static int bmac_close(struct net_device *dev);
148static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev);
149static void bmac_set_multicast(struct net_device *dev);
150static void bmac_reset_and_enable(struct net_device *dev);
151static void bmac_start_chip(struct net_device *dev);
152static void bmac_init_chip(struct net_device *dev);
153static void bmac_init_registers(struct net_device *dev);
154static void bmac_enable_and_reset_chip(struct net_device *dev);
155static int bmac_set_address(struct net_device *dev, void *addr);
156static irqreturn_t bmac_misc_intr(int irq, void *dev_id);
157static irqreturn_t bmac_txdma_intr(int irq, void *dev_id);
158static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id);
159static void bmac_set_timeout(struct net_device *dev);
160static void bmac_tx_timeout(struct timer_list *t);
161static int bmac_output(struct sk_buff *skb, struct net_device *dev);
162static void bmac_start(struct net_device *dev);
163
164#define DBDMA_SET(x) ( ((x) | (x) << 16) )
165#define DBDMA_CLEAR(x) ( (x) << 16)
166
167static inline void
168dbdma_st32(volatile __u32 __iomem *a, unsigned long x)
169{
170 __asm__ volatile( "stwbrx %0,0,%1" : : "r" (x), "r" (a) : "memory");
171}
172
173static inline unsigned long
174dbdma_ld32(volatile __u32 __iomem *a)
175{
176 __u32 swap;
177 __asm__ volatile ("lwbrx %0,0,%1" : "=r" (swap) : "r" (a));
178 return swap;
179}
180
181static void
182dbdma_continue(volatile struct dbdma_regs __iomem *dmap)
183{
184 dbdma_st32(&dmap->control,
185 DBDMA_SET(RUN|WAKE) | DBDMA_CLEAR(PAUSE|DEAD));
186 eieio();
187}
188
189static void
190dbdma_reset(volatile struct dbdma_regs __iomem *dmap)
191{
192 dbdma_st32(&dmap->control,
193 DBDMA_CLEAR(ACTIVE|DEAD|WAKE|FLUSH|PAUSE|RUN));
194 eieio();
195 while (dbdma_ld32(&dmap->status) & RUN)
196 eieio();
197}
198
199static void
200dbdma_setcmd(volatile struct dbdma_cmd *cp,
201 unsigned short cmd, unsigned count, unsigned long addr,
202 unsigned long cmd_dep)
203{
204 out_le16(&cp->command, cmd);
205 out_le16(&cp->req_count, count);
206 out_le32(&cp->phy_addr, addr);
207 out_le32(&cp->cmd_dep, cmd_dep);
208 out_le16(&cp->xfer_status, 0);
209 out_le16(&cp->res_count, 0);
210}
211
212static inline
213void bmwrite(struct net_device *dev, unsigned long reg_offset, unsigned data )
214{
215 out_le16((void __iomem *)dev->base_addr + reg_offset, data);
216}
217
218
219static inline
220unsigned short bmread(struct net_device *dev, unsigned long reg_offset )
221{
222 return in_le16((void __iomem *)dev->base_addr + reg_offset);
223}
224
225static void
226bmac_enable_and_reset_chip(struct net_device *dev)
227{
228 struct bmac_data *bp = netdev_priv(dev);
229 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
230 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
231
232 if (rd)
233 dbdma_reset(rd);
234 if (td)
235 dbdma_reset(td);
236
237 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 1);
238}
239
240#define MIFDELAY udelay(10)
241
242static unsigned int
243bmac_mif_readbits(struct net_device *dev, int nb)
244{
245 unsigned int val = 0;
246
247 while (--nb >= 0) {
248 bmwrite(dev, MIFCSR, 0);
249 MIFDELAY;
250 if (bmread(dev, MIFCSR) & 8)
251 val |= 1 << nb;
252 bmwrite(dev, MIFCSR, 1);
253 MIFDELAY;
254 }
255 bmwrite(dev, MIFCSR, 0);
256 MIFDELAY;
257 bmwrite(dev, MIFCSR, 1);
258 MIFDELAY;
259 return val;
260}
261
262static void
263bmac_mif_writebits(struct net_device *dev, unsigned int val, int nb)
264{
265 int b;
266
267 while (--nb >= 0) {
268 b = (val & (1 << nb))? 6: 4;
269 bmwrite(dev, MIFCSR, b);
270 MIFDELAY;
271 bmwrite(dev, MIFCSR, b|1);
272 MIFDELAY;
273 }
274}
275
276static unsigned int
277bmac_mif_read(struct net_device *dev, unsigned int addr)
278{
279 unsigned int val;
280
281 bmwrite(dev, MIFCSR, 4);
282 MIFDELAY;
283 bmac_mif_writebits(dev, ~0U, 32);
284 bmac_mif_writebits(dev, 6, 4);
285 bmac_mif_writebits(dev, addr, 10);
286 bmwrite(dev, MIFCSR, 2);
287 MIFDELAY;
288 bmwrite(dev, MIFCSR, 1);
289 MIFDELAY;
290 val = bmac_mif_readbits(dev, 17);
291 bmwrite(dev, MIFCSR, 4);
292 MIFDELAY;
293 return val;
294}
295
296static void
297bmac_mif_write(struct net_device *dev, unsigned int addr, unsigned int val)
298{
299 bmwrite(dev, MIFCSR, 4);
300 MIFDELAY;
301 bmac_mif_writebits(dev, ~0U, 32);
302 bmac_mif_writebits(dev, 5, 4);
303 bmac_mif_writebits(dev, addr, 10);
304 bmac_mif_writebits(dev, 2, 2);
305 bmac_mif_writebits(dev, val, 16);
306 bmac_mif_writebits(dev, 3, 2);
307}
308
309static void
310bmac_init_registers(struct net_device *dev)
311{
312 struct bmac_data *bp = netdev_priv(dev);
313 volatile unsigned short regValue;
314 unsigned short *pWord16;
315 int i;
316
317 /* XXDEBUG(("bmac: enter init_registers\n")); */
318
319 bmwrite(dev, RXRST, RxResetValue);
320 bmwrite(dev, TXRST, TxResetBit);
321
322 i = 100;
323 do {
324 --i;
325 udelay(10000);
326 regValue = bmread(dev, TXRST); /* wait for reset to clear..acknowledge */
327 } while ((regValue & TxResetBit) && i > 0);
328
329 if (!bp->is_bmac_plus) {
330 regValue = bmread(dev, XCVRIF);
331 regValue |= ClkBit | SerialMode | COLActiveLow;
332 bmwrite(dev, XCVRIF, regValue);
333 udelay(10000);
334 }
335
336 bmwrite(dev, RSEED, (unsigned short)0x1968);
337
338 regValue = bmread(dev, XIFC);
339 regValue |= TxOutputEnable;
340 bmwrite(dev, XIFC, regValue);
341
342 bmread(dev, PAREG);
343
344 /* set collision counters to 0 */
345 bmwrite(dev, NCCNT, 0);
346 bmwrite(dev, NTCNT, 0);
347 bmwrite(dev, EXCNT, 0);
348 bmwrite(dev, LTCNT, 0);
349
350 /* set rx counters to 0 */
351 bmwrite(dev, FRCNT, 0);
352 bmwrite(dev, LECNT, 0);
353 bmwrite(dev, AECNT, 0);
354 bmwrite(dev, FECNT, 0);
355 bmwrite(dev, RXCV, 0);
356
357 /* set tx fifo information */
358 bmwrite(dev, TXTH, 4); /* 4 octets before tx starts */
359
360 bmwrite(dev, TXFIFOCSR, 0); /* first disable txFIFO */
361 bmwrite(dev, TXFIFOCSR, TxFIFOEnable );
362
363 /* set rx fifo information */
364 bmwrite(dev, RXFIFOCSR, 0); /* first disable rxFIFO */
365 bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
366
367 //bmwrite(dev, TXCFG, TxMACEnable); /* TxNeverGiveUp maybe later */
368 bmread(dev, STATUS); /* read it just to clear it */
369
370 /* zero out the chip Hash Filter registers */
371 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
372 bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
373 bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
374 bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
375 bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
376
377 pWord16 = (unsigned short *)dev->dev_addr;
378 bmwrite(dev, MADD0, *pWord16++);
379 bmwrite(dev, MADD1, *pWord16++);
380 bmwrite(dev, MADD2, *pWord16);
381
382 bmwrite(dev, RXCFG, RxCRCNoStrip | RxHashFilterEnable | RxRejectOwnPackets);
383
384 bmwrite(dev, INTDISABLE, EnableNormal);
385}
386
387#if 0
388static void
389bmac_disable_interrupts(struct net_device *dev)
390{
391 bmwrite(dev, INTDISABLE, DisableAll);
392}
393
394static void
395bmac_enable_interrupts(struct net_device *dev)
396{
397 bmwrite(dev, INTDISABLE, EnableNormal);
398}
399#endif
400
401
402static void
403bmac_start_chip(struct net_device *dev)
404{
405 struct bmac_data *bp = netdev_priv(dev);
406 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
407 unsigned short oldConfig;
408
409 /* enable rx dma channel */
410 dbdma_continue(rd);
411
412 oldConfig = bmread(dev, TXCFG);
413 bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
414
415 /* turn on rx plus any other bits already on (promiscuous possibly) */
416 oldConfig = bmread(dev, RXCFG);
417 bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
418 udelay(20000);
419}
420
421static void
422bmac_init_phy(struct net_device *dev)
423{
424 unsigned int addr;
425 struct bmac_data *bp = netdev_priv(dev);
426
427 printk(KERN_DEBUG "phy registers:");
428 for (addr = 0; addr < 32; ++addr) {
429 if ((addr & 7) == 0)
430 printk(KERN_DEBUG);
431 printk(KERN_CONT " %.4x", bmac_mif_read(dev, addr));
432 }
433 printk(KERN_CONT "\n");
434
435 if (bp->is_bmac_plus) {
436 unsigned int capable, ctrl;
437
438 ctrl = bmac_mif_read(dev, 0);
439 capable = ((bmac_mif_read(dev, 1) & 0xf800) >> 6) | 1;
440 if (bmac_mif_read(dev, 4) != capable ||
441 (ctrl & 0x1000) == 0) {
442 bmac_mif_write(dev, 4, capable);
443 bmac_mif_write(dev, 0, 0x1200);
444 } else
445 bmac_mif_write(dev, 0, 0x1000);
446 }
447}
448
449static void bmac_init_chip(struct net_device *dev)
450{
451 bmac_init_phy(dev);
452 bmac_init_registers(dev);
453}
454
455#ifdef CONFIG_PM
456static int bmac_suspend(struct macio_dev *mdev, pm_message_t state)
457{
458 struct net_device* dev = macio_get_drvdata(mdev);
459 struct bmac_data *bp = netdev_priv(dev);
460 unsigned long flags;
461 unsigned short config;
462 int i;
463
464 netif_device_detach(dev);
465 /* prolly should wait for dma to finish & turn off the chip */
466 spin_lock_irqsave(&bp->lock, flags);
467 if (bp->timeout_active) {
468 del_timer(&bp->tx_timeout);
469 bp->timeout_active = 0;
470 }
471 disable_irq(dev->irq);
472 disable_irq(bp->tx_dma_intr);
473 disable_irq(bp->rx_dma_intr);
474 bp->sleeping = 1;
475 spin_unlock_irqrestore(&bp->lock, flags);
476 if (bp->opened) {
477 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
478 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
479
480 config = bmread(dev, RXCFG);
481 bmwrite(dev, RXCFG, (config & ~RxMACEnable));
482 config = bmread(dev, TXCFG);
483 bmwrite(dev, TXCFG, (config & ~TxMACEnable));
484 bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
485 /* disable rx and tx dma */
486 rd->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
487 td->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
488 /* free some skb's */
489 for (i=0; i<N_RX_RING; i++) {
490 if (bp->rx_bufs[i] != NULL) {
491 dev_kfree_skb(bp->rx_bufs[i]);
492 bp->rx_bufs[i] = NULL;
493 }
494 }
495 for (i = 0; i<N_TX_RING; i++) {
496 if (bp->tx_bufs[i] != NULL) {
497 dev_kfree_skb(bp->tx_bufs[i]);
498 bp->tx_bufs[i] = NULL;
499 }
500 }
501 }
502 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
503 return 0;
504}
505
506static int bmac_resume(struct macio_dev *mdev)
507{
508 struct net_device* dev = macio_get_drvdata(mdev);
509 struct bmac_data *bp = netdev_priv(dev);
510
511 /* see if this is enough */
512 if (bp->opened)
513 bmac_reset_and_enable(dev);
514
515 enable_irq(dev->irq);
516 enable_irq(bp->tx_dma_intr);
517 enable_irq(bp->rx_dma_intr);
518 netif_device_attach(dev);
519
520 return 0;
521}
522#endif /* CONFIG_PM */
523
524static int bmac_set_address(struct net_device *dev, void *addr)
525{
526 struct bmac_data *bp = netdev_priv(dev);
527 unsigned char *p = addr;
528 unsigned short *pWord16;
529 unsigned long flags;
530 int i;
531
532 XXDEBUG(("bmac: enter set_address\n"));
533 spin_lock_irqsave(&bp->lock, flags);
534
535 for (i = 0; i < 6; ++i) {
536 dev->dev_addr[i] = p[i];
537 }
538 /* load up the hardware address */
539 pWord16 = (unsigned short *)dev->dev_addr;
540 bmwrite(dev, MADD0, *pWord16++);
541 bmwrite(dev, MADD1, *pWord16++);
542 bmwrite(dev, MADD2, *pWord16);
543
544 spin_unlock_irqrestore(&bp->lock, flags);
545 XXDEBUG(("bmac: exit set_address\n"));
546 return 0;
547}
548
549static inline void bmac_set_timeout(struct net_device *dev)
550{
551 struct bmac_data *bp = netdev_priv(dev);
552 unsigned long flags;
553
554 spin_lock_irqsave(&bp->lock, flags);
555 if (bp->timeout_active)
556 del_timer(&bp->tx_timeout);
557 bp->tx_timeout.expires = jiffies + TX_TIMEOUT;
558 add_timer(&bp->tx_timeout);
559 bp->timeout_active = 1;
560 spin_unlock_irqrestore(&bp->lock, flags);
561}
562
563static void
564bmac_construct_xmt(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
565{
566 void *vaddr;
567 unsigned long baddr;
568 unsigned long len;
569
570 len = skb->len;
571 vaddr = skb->data;
572 baddr = virt_to_bus(vaddr);
573
574 dbdma_setcmd(cp, (OUTPUT_LAST | INTR_ALWAYS | WAIT_IFCLR), len, baddr, 0);
575}
576
577static void
578bmac_construct_rxbuff(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
579{
580 unsigned char *addr = skb? skb->data: bmac_emergency_rxbuf;
581
582 dbdma_setcmd(cp, (INPUT_LAST | INTR_ALWAYS), RX_BUFLEN,
583 virt_to_bus(addr), 0);
584}
585
586static void
587bmac_init_tx_ring(struct bmac_data *bp)
588{
589 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
590
591 memset((char *)bp->tx_cmds, 0, (N_TX_RING+1) * sizeof(struct dbdma_cmd));
592
593 bp->tx_empty = 0;
594 bp->tx_fill = 0;
595 bp->tx_fullup = 0;
596
597 /* put a branch at the end of the tx command list */
598 dbdma_setcmd(&bp->tx_cmds[N_TX_RING],
599 (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->tx_cmds));
600
601 /* reset tx dma */
602 dbdma_reset(td);
603 out_le32(&td->wait_sel, 0x00200020);
604 out_le32(&td->cmdptr, virt_to_bus(bp->tx_cmds));
605}
606
607static int
608bmac_init_rx_ring(struct net_device *dev)
609{
610 struct bmac_data *bp = netdev_priv(dev);
611 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
612 int i;
613 struct sk_buff *skb;
614
615 /* initialize list of sk_buffs for receiving and set up recv dma */
616 memset((char *)bp->rx_cmds, 0,
617 (N_RX_RING + 1) * sizeof(struct dbdma_cmd));
618 for (i = 0; i < N_RX_RING; i++) {
619 if ((skb = bp->rx_bufs[i]) == NULL) {
620 bp->rx_bufs[i] = skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
621 if (skb != NULL)
622 skb_reserve(skb, 2);
623 }
624 bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
625 }
626
627 bp->rx_empty = 0;
628 bp->rx_fill = i;
629
630 /* Put a branch back to the beginning of the receive command list */
631 dbdma_setcmd(&bp->rx_cmds[N_RX_RING],
632 (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->rx_cmds));
633
634 /* start rx dma */
635 dbdma_reset(rd);
636 out_le32(&rd->cmdptr, virt_to_bus(bp->rx_cmds));
637
638 return 1;
639}
640
641
642static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev)
643{
644 struct bmac_data *bp = netdev_priv(dev);
645 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
646 int i;
647
648 /* see if there's a free slot in the tx ring */
649 /* XXDEBUG(("bmac_xmit_start: empty=%d fill=%d\n", */
650 /* bp->tx_empty, bp->tx_fill)); */
651 i = bp->tx_fill + 1;
652 if (i >= N_TX_RING)
653 i = 0;
654 if (i == bp->tx_empty) {
655 netif_stop_queue(dev);
656 bp->tx_fullup = 1;
657 XXDEBUG(("bmac_transmit_packet: tx ring full\n"));
658 return -1; /* can't take it at the moment */
659 }
660
661 dbdma_setcmd(&bp->tx_cmds[i], DBDMA_STOP, 0, 0, 0);
662
663 bmac_construct_xmt(skb, &bp->tx_cmds[bp->tx_fill]);
664
665 bp->tx_bufs[bp->tx_fill] = skb;
666 bp->tx_fill = i;
667
668 dev->stats.tx_bytes += skb->len;
669
670 dbdma_continue(td);
671
672 return 0;
673}
674
675static int rxintcount;
676
677static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id)
678{
679 struct net_device *dev = (struct net_device *) dev_id;
680 struct bmac_data *bp = netdev_priv(dev);
681 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
682 volatile struct dbdma_cmd *cp;
683 int i, nb, stat;
684 struct sk_buff *skb;
685 unsigned int residual;
686 int last;
687 unsigned long flags;
688
689 spin_lock_irqsave(&bp->lock, flags);
690
691 if (++rxintcount < 10) {
692 XXDEBUG(("bmac_rxdma_intr\n"));
693 }
694
695 last = -1;
696 i = bp->rx_empty;
697
698 while (1) {
699 cp = &bp->rx_cmds[i];
700 stat = le16_to_cpu(cp->xfer_status);
701 residual = le16_to_cpu(cp->res_count);
702 if ((stat & ACTIVE) == 0)
703 break;
704 nb = RX_BUFLEN - residual - 2;
705 if (nb < (ETHERMINPACKET - ETHERCRC)) {
706 skb = NULL;
707 dev->stats.rx_length_errors++;
708 dev->stats.rx_errors++;
709 } else {
710 skb = bp->rx_bufs[i];
711 bp->rx_bufs[i] = NULL;
712 }
713 if (skb != NULL) {
714 nb -= ETHERCRC;
715 skb_put(skb, nb);
716 skb->protocol = eth_type_trans(skb, dev);
717 netif_rx(skb);
718 ++dev->stats.rx_packets;
719 dev->stats.rx_bytes += nb;
720 } else {
721 ++dev->stats.rx_dropped;
722 }
723 if ((skb = bp->rx_bufs[i]) == NULL) {
724 bp->rx_bufs[i] = skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
725 if (skb != NULL)
726 skb_reserve(bp->rx_bufs[i], 2);
727 }
728 bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
729 cp->res_count = cpu_to_le16(0);
730 cp->xfer_status = cpu_to_le16(0);
731 last = i;
732 if (++i >= N_RX_RING) i = 0;
733 }
734
735 if (last != -1) {
736 bp->rx_fill = last;
737 bp->rx_empty = i;
738 }
739
740 dbdma_continue(rd);
741 spin_unlock_irqrestore(&bp->lock, flags);
742
743 if (rxintcount < 10) {
744 XXDEBUG(("bmac_rxdma_intr done\n"));
745 }
746 return IRQ_HANDLED;
747}
748
749static int txintcount;
750
751static irqreturn_t bmac_txdma_intr(int irq, void *dev_id)
752{
753 struct net_device *dev = (struct net_device *) dev_id;
754 struct bmac_data *bp = netdev_priv(dev);
755 volatile struct dbdma_cmd *cp;
756 int stat;
757 unsigned long flags;
758
759 spin_lock_irqsave(&bp->lock, flags);
760
761 if (txintcount++ < 10) {
762 XXDEBUG(("bmac_txdma_intr\n"));
763 }
764
765 /* del_timer(&bp->tx_timeout); */
766 /* bp->timeout_active = 0; */
767
768 while (1) {
769 cp = &bp->tx_cmds[bp->tx_empty];
770 stat = le16_to_cpu(cp->xfer_status);
771 if (txintcount < 10) {
772 XXDEBUG(("bmac_txdma_xfer_stat=%#0x\n", stat));
773 }
774 if (!(stat & ACTIVE)) {
775 /*
776 * status field might not have been filled by DBDMA
777 */
778 if (cp == bus_to_virt(in_le32(&bp->tx_dma->cmdptr)))
779 break;
780 }
781
782 if (bp->tx_bufs[bp->tx_empty]) {
783 ++dev->stats.tx_packets;
784 dev_kfree_skb_irq(bp->tx_bufs[bp->tx_empty]);
785 }
786 bp->tx_bufs[bp->tx_empty] = NULL;
787 bp->tx_fullup = 0;
788 netif_wake_queue(dev);
789 if (++bp->tx_empty >= N_TX_RING)
790 bp->tx_empty = 0;
791 if (bp->tx_empty == bp->tx_fill)
792 break;
793 }
794
795 spin_unlock_irqrestore(&bp->lock, flags);
796
797 if (txintcount < 10) {
798 XXDEBUG(("bmac_txdma_intr done->bmac_start\n"));
799 }
800
801 bmac_start(dev);
802 return IRQ_HANDLED;
803}
804
805#ifndef SUNHME_MULTICAST
806/* Real fast bit-reversal algorithm, 6-bit values */
807static int reverse6[64] = {
808 0x0,0x20,0x10,0x30,0x8,0x28,0x18,0x38,
809 0x4,0x24,0x14,0x34,0xc,0x2c,0x1c,0x3c,
810 0x2,0x22,0x12,0x32,0xa,0x2a,0x1a,0x3a,
811 0x6,0x26,0x16,0x36,0xe,0x2e,0x1e,0x3e,
812 0x1,0x21,0x11,0x31,0x9,0x29,0x19,0x39,
813 0x5,0x25,0x15,0x35,0xd,0x2d,0x1d,0x3d,
814 0x3,0x23,0x13,0x33,0xb,0x2b,0x1b,0x3b,
815 0x7,0x27,0x17,0x37,0xf,0x2f,0x1f,0x3f
816};
817
818static unsigned int
819crc416(unsigned int curval, unsigned short nxtval)
820{
821 register unsigned int counter, cur = curval, next = nxtval;
822 register int high_crc_set, low_data_set;
823
824 /* Swap bytes */
825 next = ((next & 0x00FF) << 8) | (next >> 8);
826
827 /* Compute bit-by-bit */
828 for (counter = 0; counter < 16; ++counter) {
829 /* is high CRC bit set? */
830 if ((cur & 0x80000000) == 0) high_crc_set = 0;
831 else high_crc_set = 1;
832
833 cur = cur << 1;
834
835 if ((next & 0x0001) == 0) low_data_set = 0;
836 else low_data_set = 1;
837
838 next = next >> 1;
839
840 /* do the XOR */
841 if (high_crc_set ^ low_data_set) cur = cur ^ ENET_CRCPOLY;
842 }
843 return cur;
844}
845
846static unsigned int
847bmac_crc(unsigned short *address)
848{
849 unsigned int newcrc;
850
851 XXDEBUG(("bmac_crc: addr=%#04x, %#04x, %#04x\n", *address, address[1], address[2]));
852 newcrc = crc416(0xffffffff, *address); /* address bits 47 - 32 */
853 newcrc = crc416(newcrc, address[1]); /* address bits 31 - 16 */
854 newcrc = crc416(newcrc, address[2]); /* address bits 15 - 0 */
855
856 return(newcrc);
857}
858
859/*
860 * Add requested mcast addr to BMac's hash table filter.
861 *
862 */
863
864static void
865bmac_addhash(struct bmac_data *bp, unsigned char *addr)
866{
867 unsigned int crc;
868 unsigned short mask;
869
870 if (!(*addr)) return;
871 crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
872 crc = reverse6[crc]; /* Hyperfast bit-reversing algorithm */
873 if (bp->hash_use_count[crc]++) return; /* This bit is already set */
874 mask = crc % 16;
875 mask = (unsigned char)1 << mask;
876 bp->hash_use_count[crc/16] |= mask;
877}
878
879static void
880bmac_removehash(struct bmac_data *bp, unsigned char *addr)
881{
882 unsigned int crc;
883 unsigned char mask;
884
885 /* Now, delete the address from the filter copy, as indicated */
886 crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
887 crc = reverse6[crc]; /* Hyperfast bit-reversing algorithm */
888 if (bp->hash_use_count[crc] == 0) return; /* That bit wasn't in use! */
889 if (--bp->hash_use_count[crc]) return; /* That bit is still in use */
890 mask = crc % 16;
891 mask = ((unsigned char)1 << mask) ^ 0xffff; /* To turn off bit */
892 bp->hash_table_mask[crc/16] &= mask;
893}
894
895/*
896 * Sync the adapter with the software copy of the multicast mask
897 * (logical address filter).
898 */
899
900static void
901bmac_rx_off(struct net_device *dev)
902{
903 unsigned short rx_cfg;
904
905 rx_cfg = bmread(dev, RXCFG);
906 rx_cfg &= ~RxMACEnable;
907 bmwrite(dev, RXCFG, rx_cfg);
908 do {
909 rx_cfg = bmread(dev, RXCFG);
910 } while (rx_cfg & RxMACEnable);
911}
912
913unsigned short
914bmac_rx_on(struct net_device *dev, int hash_enable, int promisc_enable)
915{
916 unsigned short rx_cfg;
917
918 rx_cfg = bmread(dev, RXCFG);
919 rx_cfg |= RxMACEnable;
920 if (hash_enable) rx_cfg |= RxHashFilterEnable;
921 else rx_cfg &= ~RxHashFilterEnable;
922 if (promisc_enable) rx_cfg |= RxPromiscEnable;
923 else rx_cfg &= ~RxPromiscEnable;
924 bmwrite(dev, RXRST, RxResetValue);
925 bmwrite(dev, RXFIFOCSR, 0); /* first disable rxFIFO */
926 bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
927 bmwrite(dev, RXCFG, rx_cfg );
928 return rx_cfg;
929}
930
931static void
932bmac_update_hash_table_mask(struct net_device *dev, struct bmac_data *bp)
933{
934 bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
935 bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
936 bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
937 bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
938}
939
940#if 0
941static void
942bmac_add_multi(struct net_device *dev,
943 struct bmac_data *bp, unsigned char *addr)
944{
945 /* XXDEBUG(("bmac: enter bmac_add_multi\n")); */
946 bmac_addhash(bp, addr);
947 bmac_rx_off(dev);
948 bmac_update_hash_table_mask(dev, bp);
949 bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
950 /* XXDEBUG(("bmac: exit bmac_add_multi\n")); */
951}
952
953static void
954bmac_remove_multi(struct net_device *dev,
955 struct bmac_data *bp, unsigned char *addr)
956{
957 bmac_removehash(bp, addr);
958 bmac_rx_off(dev);
959 bmac_update_hash_table_mask(dev, bp);
960 bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
961}
962#endif
963
964/* Set or clear the multicast filter for this adaptor.
965 num_addrs == -1 Promiscuous mode, receive all packets
966 num_addrs == 0 Normal mode, clear multicast list
967 num_addrs > 0 Multicast mode, receive normal and MC packets, and do
968 best-effort filtering.
969 */
970static void bmac_set_multicast(struct net_device *dev)
971{
972 struct netdev_hw_addr *ha;
973 struct bmac_data *bp = netdev_priv(dev);
974 int num_addrs = netdev_mc_count(dev);
975 unsigned short rx_cfg;
976 int i;
977
978 if (bp->sleeping)
979 return;
980
981 XXDEBUG(("bmac: enter bmac_set_multicast, n_addrs=%d\n", num_addrs));
982
983 if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
984 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0xffff;
985 bmac_update_hash_table_mask(dev, bp);
986 rx_cfg = bmac_rx_on(dev, 1, 0);
987 XXDEBUG(("bmac: all multi, rx_cfg=%#08x\n"));
988 } else if ((dev->flags & IFF_PROMISC) || (num_addrs < 0)) {
989 rx_cfg = bmread(dev, RXCFG);
990 rx_cfg |= RxPromiscEnable;
991 bmwrite(dev, RXCFG, rx_cfg);
992 rx_cfg = bmac_rx_on(dev, 0, 1);
993 XXDEBUG(("bmac: promisc mode enabled, rx_cfg=%#08x\n", rx_cfg));
994 } else {
995 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
996 for (i=0; i<64; i++) bp->hash_use_count[i] = 0;
997 if (num_addrs == 0) {
998 rx_cfg = bmac_rx_on(dev, 0, 0);
999 XXDEBUG(("bmac: multi disabled, rx_cfg=%#08x\n", rx_cfg));
1000 } else {
1001 netdev_for_each_mc_addr(ha, dev)
1002 bmac_addhash(bp, ha->addr);
1003 bmac_update_hash_table_mask(dev, bp);
1004 rx_cfg = bmac_rx_on(dev, 1, 0);
1005 XXDEBUG(("bmac: multi enabled, rx_cfg=%#08x\n", rx_cfg));
1006 }
1007 }
1008 /* XXDEBUG(("bmac: exit bmac_set_multicast\n")); */
1009}
1010#else /* ifdef SUNHME_MULTICAST */
1011
1012/* The version of set_multicast below was lifted from sunhme.c */
1013
1014static void bmac_set_multicast(struct net_device *dev)
1015{
1016 struct netdev_hw_addr *ha;
1017 unsigned short rx_cfg;
1018 u32 crc;
1019
1020 if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
1021 bmwrite(dev, BHASH0, 0xffff);
1022 bmwrite(dev, BHASH1, 0xffff);
1023 bmwrite(dev, BHASH2, 0xffff);
1024 bmwrite(dev, BHASH3, 0xffff);
1025 } else if(dev->flags & IFF_PROMISC) {
1026 rx_cfg = bmread(dev, RXCFG);
1027 rx_cfg |= RxPromiscEnable;
1028 bmwrite(dev, RXCFG, rx_cfg);
1029 } else {
1030 u16 hash_table[4] = { 0 };
1031
1032 rx_cfg = bmread(dev, RXCFG);
1033 rx_cfg &= ~RxPromiscEnable;
1034 bmwrite(dev, RXCFG, rx_cfg);
1035
1036 netdev_for_each_mc_addr(ha, dev) {
1037 crc = ether_crc_le(6, ha->addr);
1038 crc >>= 26;
1039 hash_table[crc >> 4] |= 1 << (crc & 0xf);
1040 }
1041 bmwrite(dev, BHASH0, hash_table[0]);
1042 bmwrite(dev, BHASH1, hash_table[1]);
1043 bmwrite(dev, BHASH2, hash_table[2]);
1044 bmwrite(dev, BHASH3, hash_table[3]);
1045 }
1046}
1047#endif /* SUNHME_MULTICAST */
1048
1049static int miscintcount;
1050
1051static irqreturn_t bmac_misc_intr(int irq, void *dev_id)
1052{
1053 struct net_device *dev = (struct net_device *) dev_id;
1054 unsigned int status = bmread(dev, STATUS);
1055 if (miscintcount++ < 10) {
1056 XXDEBUG(("bmac_misc_intr\n"));
1057 }
1058 /* XXDEBUG(("bmac_misc_intr, status=%#08x\n", status)); */
1059 /* bmac_txdma_intr_inner(irq, dev_id); */
1060 /* if (status & FrameReceived) dev->stats.rx_dropped++; */
1061 if (status & RxErrorMask) dev->stats.rx_errors++;
1062 if (status & RxCRCCntExp) dev->stats.rx_crc_errors++;
1063 if (status & RxLenCntExp) dev->stats.rx_length_errors++;
1064 if (status & RxOverFlow) dev->stats.rx_over_errors++;
1065 if (status & RxAlignCntExp) dev->stats.rx_frame_errors++;
1066
1067 /* if (status & FrameSent) dev->stats.tx_dropped++; */
1068 if (status & TxErrorMask) dev->stats.tx_errors++;
1069 if (status & TxUnderrun) dev->stats.tx_fifo_errors++;
1070 if (status & TxNormalCollExp) dev->stats.collisions++;
1071 return IRQ_HANDLED;
1072}
1073
1074/*
1075 * Procedure for reading EEPROM
1076 */
1077#define SROMAddressLength 5
1078#define DataInOn 0x0008
1079#define DataInOff 0x0000
1080#define Clk 0x0002
1081#define ChipSelect 0x0001
1082#define SDIShiftCount 3
1083#define SD0ShiftCount 2
1084#define DelayValue 1000 /* number of microseconds */
1085#define SROMStartOffset 10 /* this is in words */
1086#define SROMReadCount 3 /* number of words to read from SROM */
1087#define SROMAddressBits 6
1088#define EnetAddressOffset 20
1089
1090static unsigned char
1091bmac_clock_out_bit(struct net_device *dev)
1092{
1093 unsigned short data;
1094 unsigned short val;
1095
1096 bmwrite(dev, SROMCSR, ChipSelect | Clk);
1097 udelay(DelayValue);
1098
1099 data = bmread(dev, SROMCSR);
1100 udelay(DelayValue);
1101 val = (data >> SD0ShiftCount) & 1;
1102
1103 bmwrite(dev, SROMCSR, ChipSelect);
1104 udelay(DelayValue);
1105
1106 return val;
1107}
1108
1109static void
1110bmac_clock_in_bit(struct net_device *dev, unsigned int val)
1111{
1112 unsigned short data;
1113
1114 if (val != 0 && val != 1) return;
1115
1116 data = (val << SDIShiftCount);
1117 bmwrite(dev, SROMCSR, data | ChipSelect );
1118 udelay(DelayValue);
1119
1120 bmwrite(dev, SROMCSR, data | ChipSelect | Clk );
1121 udelay(DelayValue);
1122
1123 bmwrite(dev, SROMCSR, data | ChipSelect);
1124 udelay(DelayValue);
1125}
1126
1127static void
1128reset_and_select_srom(struct net_device *dev)
1129{
1130 /* first reset */
1131 bmwrite(dev, SROMCSR, 0);
1132 udelay(DelayValue);
1133
1134 /* send it the read command (110) */
1135 bmac_clock_in_bit(dev, 1);
1136 bmac_clock_in_bit(dev, 1);
1137 bmac_clock_in_bit(dev, 0);
1138}
1139
1140static unsigned short
1141read_srom(struct net_device *dev, unsigned int addr, unsigned int addr_len)
1142{
1143 unsigned short data, val;
1144 int i;
1145
1146 /* send out the address we want to read from */
1147 for (i = 0; i < addr_len; i++) {
1148 val = addr >> (addr_len-i-1);
1149 bmac_clock_in_bit(dev, val & 1);
1150 }
1151
1152 /* Now read in the 16-bit data */
1153 data = 0;
1154 for (i = 0; i < 16; i++) {
1155 val = bmac_clock_out_bit(dev);
1156 data <<= 1;
1157 data |= val;
1158 }
1159 bmwrite(dev, SROMCSR, 0);
1160
1161 return data;
1162}
1163
1164/*
1165 * It looks like Cogent and SMC use different methods for calculating
1166 * checksums. What a pain..
1167 */
1168
1169static int
1170bmac_verify_checksum(struct net_device *dev)
1171{
1172 unsigned short data, storedCS;
1173
1174 reset_and_select_srom(dev);
1175 data = read_srom(dev, 3, SROMAddressBits);
1176 storedCS = ((data >> 8) & 0x0ff) | ((data << 8) & 0xff00);
1177
1178 return 0;
1179}
1180
1181
1182static void
1183bmac_get_station_address(struct net_device *dev, unsigned char *ea)
1184{
1185 int i;
1186 unsigned short data;
1187
1188 for (i = 0; i < 6; i++)
1189 {
1190 reset_and_select_srom(dev);
1191 data = read_srom(dev, i + EnetAddressOffset/2, SROMAddressBits);
1192 ea[2*i] = bitrev8(data & 0x0ff);
1193 ea[2*i+1] = bitrev8((data >> 8) & 0x0ff);
1194 }
1195}
1196
1197static void bmac_reset_and_enable(struct net_device *dev)
1198{
1199 struct bmac_data *bp = netdev_priv(dev);
1200 unsigned long flags;
1201 struct sk_buff *skb;
1202 unsigned char *data;
1203
1204 spin_lock_irqsave(&bp->lock, flags);
1205 bmac_enable_and_reset_chip(dev);
1206 bmac_init_tx_ring(bp);
1207 bmac_init_rx_ring(dev);
1208 bmac_init_chip(dev);
1209 bmac_start_chip(dev);
1210 bmwrite(dev, INTDISABLE, EnableNormal);
1211 bp->sleeping = 0;
1212
1213 /*
1214 * It seems that the bmac can't receive until it's transmitted
1215 * a packet. So we give it a dummy packet to transmit.
1216 */
1217 skb = netdev_alloc_skb(dev, ETHERMINPACKET);
1218 if (skb != NULL) {
1219 data = skb_put_zero(skb, ETHERMINPACKET);
1220 memcpy(data, dev->dev_addr, ETH_ALEN);
1221 memcpy(data + ETH_ALEN, dev->dev_addr, ETH_ALEN);
1222 bmac_transmit_packet(skb, dev);
1223 }
1224 spin_unlock_irqrestore(&bp->lock, flags);
1225}
1226
1227static const struct ethtool_ops bmac_ethtool_ops = {
1228 .get_link = ethtool_op_get_link,
1229};
1230
1231static const struct net_device_ops bmac_netdev_ops = {
1232 .ndo_open = bmac_open,
1233 .ndo_stop = bmac_close,
1234 .ndo_start_xmit = bmac_output,
1235 .ndo_set_rx_mode = bmac_set_multicast,
1236 .ndo_set_mac_address = bmac_set_address,
1237 .ndo_validate_addr = eth_validate_addr,
1238};
1239
1240static int bmac_probe(struct macio_dev *mdev, const struct of_device_id *match)
1241{
1242 int j, rev, ret;
1243 struct bmac_data *bp;
1244 const unsigned char *prop_addr;
1245 unsigned char addr[6];
1246 struct net_device *dev;
1247 int is_bmac_plus = ((int)match->data) != 0;
1248
1249 if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
1250 printk(KERN_ERR "BMAC: can't use, need 3 addrs and 3 intrs\n");
1251 return -ENODEV;
1252 }
1253 prop_addr = of_get_property(macio_get_of_node(mdev),
1254 "mac-address", NULL);
1255 if (prop_addr == NULL) {
1256 prop_addr = of_get_property(macio_get_of_node(mdev),
1257 "local-mac-address", NULL);
1258 if (prop_addr == NULL) {
1259 printk(KERN_ERR "BMAC: Can't get mac-address\n");
1260 return -ENODEV;
1261 }
1262 }
1263 memcpy(addr, prop_addr, sizeof(addr));
1264
1265 dev = alloc_etherdev(PRIV_BYTES);
1266 if (!dev)
1267 return -ENOMEM;
1268
1269 bp = netdev_priv(dev);
1270 SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
1271 macio_set_drvdata(mdev, dev);
1272
1273 bp->mdev = mdev;
1274 spin_lock_init(&bp->lock);
1275
1276 if (macio_request_resources(mdev, "bmac")) {
1277 printk(KERN_ERR "BMAC: can't request IO resource !\n");
1278 goto out_free;
1279 }
1280
1281 dev->base_addr = (unsigned long)
1282 ioremap(macio_resource_start(mdev, 0), macio_resource_len(mdev, 0));
1283 if (dev->base_addr == 0)
1284 goto out_release;
1285
1286 dev->irq = macio_irq(mdev, 0);
1287
1288 bmac_enable_and_reset_chip(dev);
1289 bmwrite(dev, INTDISABLE, DisableAll);
1290
1291 rev = addr[0] == 0 && addr[1] == 0xA0;
1292 for (j = 0; j < 6; ++j)
1293 dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j];
1294
1295 /* Enable chip without interrupts for now */
1296 bmac_enable_and_reset_chip(dev);
1297 bmwrite(dev, INTDISABLE, DisableAll);
1298
1299 dev->netdev_ops = &bmac_netdev_ops;
1300 dev->ethtool_ops = &bmac_ethtool_ops;
1301
1302 bmac_get_station_address(dev, addr);
1303 if (bmac_verify_checksum(dev) != 0)
1304 goto err_out_iounmap;
1305
1306 bp->is_bmac_plus = is_bmac_plus;
1307 bp->tx_dma = ioremap(macio_resource_start(mdev, 1), macio_resource_len(mdev, 1));
1308 if (!bp->tx_dma)
1309 goto err_out_iounmap;
1310 bp->tx_dma_intr = macio_irq(mdev, 1);
1311 bp->rx_dma = ioremap(macio_resource_start(mdev, 2), macio_resource_len(mdev, 2));
1312 if (!bp->rx_dma)
1313 goto err_out_iounmap_tx;
1314 bp->rx_dma_intr = macio_irq(mdev, 2);
1315
1316 bp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(bp + 1);
1317 bp->rx_cmds = bp->tx_cmds + N_TX_RING + 1;
1318
1319 bp->queue = (struct sk_buff_head *)(bp->rx_cmds + N_RX_RING + 1);
1320 skb_queue_head_init(bp->queue);
1321
1322 timer_setup(&bp->tx_timeout, bmac_tx_timeout, 0);
1323
1324 ret = request_irq(dev->irq, bmac_misc_intr, 0, "BMAC-misc", dev);
1325 if (ret) {
1326 printk(KERN_ERR "BMAC: can't get irq %d\n", dev->irq);
1327 goto err_out_iounmap_rx;
1328 }
1329 ret = request_irq(bp->tx_dma_intr, bmac_txdma_intr, 0, "BMAC-txdma", dev);
1330 if (ret) {
1331 printk(KERN_ERR "BMAC: can't get irq %d\n", bp->tx_dma_intr);
1332 goto err_out_irq0;
1333 }
1334 ret = request_irq(bp->rx_dma_intr, bmac_rxdma_intr, 0, "BMAC-rxdma", dev);
1335 if (ret) {
1336 printk(KERN_ERR "BMAC: can't get irq %d\n", bp->rx_dma_intr);
1337 goto err_out_irq1;
1338 }
1339
1340 /* Mask chip interrupts and disable chip, will be
1341 * re-enabled on open()
1342 */
1343 disable_irq(dev->irq);
1344 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1345
1346 if (register_netdev(dev) != 0) {
1347 printk(KERN_ERR "BMAC: Ethernet registration failed\n");
1348 goto err_out_irq2;
1349 }
1350
1351 printk(KERN_INFO "%s: BMAC%s at %pM",
1352 dev->name, (is_bmac_plus ? "+" : ""), dev->dev_addr);
1353 XXDEBUG((", base_addr=%#0lx", dev->base_addr));
1354 printk("\n");
1355
1356 return 0;
1357
1358err_out_irq2:
1359 free_irq(bp->rx_dma_intr, dev);
1360err_out_irq1:
1361 free_irq(bp->tx_dma_intr, dev);
1362err_out_irq0:
1363 free_irq(dev->irq, dev);
1364err_out_iounmap_rx:
1365 iounmap(bp->rx_dma);
1366err_out_iounmap_tx:
1367 iounmap(bp->tx_dma);
1368err_out_iounmap:
1369 iounmap((void __iomem *)dev->base_addr);
1370out_release:
1371 macio_release_resources(mdev);
1372out_free:
1373 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1374 free_netdev(dev);
1375
1376 return -ENODEV;
1377}
1378
1379static int bmac_open(struct net_device *dev)
1380{
1381 struct bmac_data *bp = netdev_priv(dev);
1382 /* XXDEBUG(("bmac: enter open\n")); */
1383 /* reset the chip */
1384 bp->opened = 1;
1385 bmac_reset_and_enable(dev);
1386 enable_irq(dev->irq);
1387 return 0;
1388}
1389
1390static int bmac_close(struct net_device *dev)
1391{
1392 struct bmac_data *bp = netdev_priv(dev);
1393 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1394 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1395 unsigned short config;
1396 int i;
1397
1398 bp->sleeping = 1;
1399
1400 /* disable rx and tx */
1401 config = bmread(dev, RXCFG);
1402 bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1403
1404 config = bmread(dev, TXCFG);
1405 bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1406
1407 bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
1408
1409 /* disable rx and tx dma */
1410 rd->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
1411 td->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
1412
1413 /* free some skb's */
1414 XXDEBUG(("bmac: free rx bufs\n"));
1415 for (i=0; i<N_RX_RING; i++) {
1416 if (bp->rx_bufs[i] != NULL) {
1417 dev_kfree_skb(bp->rx_bufs[i]);
1418 bp->rx_bufs[i] = NULL;
1419 }
1420 }
1421 XXDEBUG(("bmac: free tx bufs\n"));
1422 for (i = 0; i<N_TX_RING; i++) {
1423 if (bp->tx_bufs[i] != NULL) {
1424 dev_kfree_skb(bp->tx_bufs[i]);
1425 bp->tx_bufs[i] = NULL;
1426 }
1427 }
1428 XXDEBUG(("bmac: all bufs freed\n"));
1429
1430 bp->opened = 0;
1431 disable_irq(dev->irq);
1432 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1433
1434 return 0;
1435}
1436
1437static void
1438bmac_start(struct net_device *dev)
1439{
1440 struct bmac_data *bp = netdev_priv(dev);
1441 int i;
1442 struct sk_buff *skb;
1443 unsigned long flags;
1444
1445 if (bp->sleeping)
1446 return;
1447
1448 spin_lock_irqsave(&bp->lock, flags);
1449 while (1) {
1450 i = bp->tx_fill + 1;
1451 if (i >= N_TX_RING)
1452 i = 0;
1453 if (i == bp->tx_empty)
1454 break;
1455 skb = skb_dequeue(bp->queue);
1456 if (skb == NULL)
1457 break;
1458 bmac_transmit_packet(skb, dev);
1459 }
1460 spin_unlock_irqrestore(&bp->lock, flags);
1461}
1462
1463static int
1464bmac_output(struct sk_buff *skb, struct net_device *dev)
1465{
1466 struct bmac_data *bp = netdev_priv(dev);
1467 skb_queue_tail(bp->queue, skb);
1468 bmac_start(dev);
1469 return NETDEV_TX_OK;
1470}
1471
1472static void bmac_tx_timeout(struct timer_list *t)
1473{
1474 struct bmac_data *bp = from_timer(bp, t, tx_timeout);
1475 struct net_device *dev = macio_get_drvdata(bp->mdev);
1476 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1477 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1478 volatile struct dbdma_cmd *cp;
1479 unsigned long flags;
1480 unsigned short config, oldConfig;
1481 int i;
1482
1483 XXDEBUG(("bmac: tx_timeout called\n"));
1484 spin_lock_irqsave(&bp->lock, flags);
1485 bp->timeout_active = 0;
1486
1487 /* update various counters */
1488/* bmac_handle_misc_intrs(bp, 0); */
1489
1490 cp = &bp->tx_cmds[bp->tx_empty];
1491/* XXDEBUG((KERN_DEBUG "bmac: tx dmastat=%x %x runt=%d pr=%x fs=%x fc=%x\n", */
1492/* le32_to_cpu(td->status), le16_to_cpu(cp->xfer_status), bp->tx_bad_runt, */
1493/* mb->pr, mb->xmtfs, mb->fifofc)); */
1494
1495 /* turn off both tx and rx and reset the chip */
1496 config = bmread(dev, RXCFG);
1497 bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1498 config = bmread(dev, TXCFG);
1499 bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1500 out_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1501 printk(KERN_ERR "bmac: transmit timeout - resetting\n");
1502 bmac_enable_and_reset_chip(dev);
1503
1504 /* restart rx dma */
1505 cp = bus_to_virt(le32_to_cpu(rd->cmdptr));
1506 out_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1507 out_le16(&cp->xfer_status, 0);
1508 out_le32(&rd->cmdptr, virt_to_bus(cp));
1509 out_le32(&rd->control, DBDMA_SET(RUN|WAKE));
1510
1511 /* fix up the transmit side */
1512 XXDEBUG((KERN_DEBUG "bmac: tx empty=%d fill=%d fullup=%d\n",
1513 bp->tx_empty, bp->tx_fill, bp->tx_fullup));
1514 i = bp->tx_empty;
1515 ++dev->stats.tx_errors;
1516 if (i != bp->tx_fill) {
1517 dev_kfree_skb(bp->tx_bufs[i]);
1518 bp->tx_bufs[i] = NULL;
1519 if (++i >= N_TX_RING) i = 0;
1520 bp->tx_empty = i;
1521 }
1522 bp->tx_fullup = 0;
1523 netif_wake_queue(dev);
1524 if (i != bp->tx_fill) {
1525 cp = &bp->tx_cmds[i];
1526 out_le16(&cp->xfer_status, 0);
1527 out_le16(&cp->command, OUTPUT_LAST);
1528 out_le32(&td->cmdptr, virt_to_bus(cp));
1529 out_le32(&td->control, DBDMA_SET(RUN));
1530 /* bmac_set_timeout(dev); */
1531 XXDEBUG((KERN_DEBUG "bmac: starting %d\n", i));
1532 }
1533
1534 /* turn it back on */
1535 oldConfig = bmread(dev, RXCFG);
1536 bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
1537 oldConfig = bmread(dev, TXCFG);
1538 bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
1539
1540 spin_unlock_irqrestore(&bp->lock, flags);
1541}
1542
1543#if 0
1544static void dump_dbdma(volatile struct dbdma_cmd *cp,int count)
1545{
1546 int i,*ip;
1547
1548 for (i=0;i< count;i++) {
1549 ip = (int*)(cp+i);
1550
1551 printk("dbdma req 0x%x addr 0x%x baddr 0x%x xfer/res 0x%x\n",
1552 le32_to_cpup(ip+0),
1553 le32_to_cpup(ip+1),
1554 le32_to_cpup(ip+2),
1555 le32_to_cpup(ip+3));
1556 }
1557
1558}
1559#endif
1560
1561#if 0
1562static int
1563bmac_proc_info(char *buffer, char **start, off_t offset, int length)
1564{
1565 int len = 0;
1566 off_t pos = 0;
1567 off_t begin = 0;
1568 int i;
1569
1570 if (bmac_devs == NULL)
1571 return -ENOSYS;
1572
1573 len += sprintf(buffer, "BMAC counters & registers\n");
1574
1575 for (i = 0; i<N_REG_ENTRIES; i++) {
1576 len += sprintf(buffer + len, "%s: %#08x\n",
1577 reg_entries[i].name,
1578 bmread(bmac_devs, reg_entries[i].reg_offset));
1579 pos = begin + len;
1580
1581 if (pos < offset) {
1582 len = 0;
1583 begin = pos;
1584 }
1585
1586 if (pos > offset+length) break;
1587 }
1588
1589 *start = buffer + (offset - begin);
1590 len -= (offset - begin);
1591
1592 if (len > length) len = length;
1593
1594 return len;
1595}
1596#endif
1597
1598static int bmac_remove(struct macio_dev *mdev)
1599{
1600 struct net_device *dev = macio_get_drvdata(mdev);
1601 struct bmac_data *bp = netdev_priv(dev);
1602
1603 unregister_netdev(dev);
1604
1605 free_irq(dev->irq, dev);
1606 free_irq(bp->tx_dma_intr, dev);
1607 free_irq(bp->rx_dma_intr, dev);
1608
1609 iounmap((void __iomem *)dev->base_addr);
1610 iounmap(bp->tx_dma);
1611 iounmap(bp->rx_dma);
1612
1613 macio_release_resources(mdev);
1614
1615 free_netdev(dev);
1616
1617 return 0;
1618}
1619
1620static const struct of_device_id bmac_match[] =
1621{
1622 {
1623 .name = "bmac",
1624 .data = (void *)0,
1625 },
1626 {
1627 .type = "network",
1628 .compatible = "bmac+",
1629 .data = (void *)1,
1630 },
1631 {},
1632};
1633MODULE_DEVICE_TABLE (of, bmac_match);
1634
1635static struct macio_driver bmac_driver =
1636{
1637 .driver = {
1638 .name = "bmac",
1639 .owner = THIS_MODULE,
1640 .of_match_table = bmac_match,
1641 },
1642 .probe = bmac_probe,
1643 .remove = bmac_remove,
1644#ifdef CONFIG_PM
1645 .suspend = bmac_suspend,
1646 .resume = bmac_resume,
1647#endif
1648};
1649
1650
1651static int __init bmac_init(void)
1652{
1653 if (bmac_emergency_rxbuf == NULL) {
1654 bmac_emergency_rxbuf = kmalloc(RX_BUFLEN, GFP_KERNEL);
1655 if (bmac_emergency_rxbuf == NULL)
1656 return -ENOMEM;
1657 }
1658
1659 return macio_register_driver(&bmac_driver);
1660}
1661
1662static void __exit bmac_exit(void)
1663{
1664 macio_unregister_driver(&bmac_driver);
1665
1666 kfree(bmac_emergency_rxbuf);
1667 bmac_emergency_rxbuf = NULL;
1668}
1669
1670MODULE_AUTHOR("Randy Gobbel/Paul Mackerras");
1671MODULE_DESCRIPTION("PowerMac BMAC ethernet driver.");
1672MODULE_LICENSE("GPL");
1673
1674module_init(bmac_init);
1675module_exit(bmac_exit);
1/*
2 * Network device driver for the BMAC ethernet controller on
3 * Apple Powermacs. Assumes it's under a DBDMA controller.
4 *
5 * Copyright (C) 1998 Randy Gobbel.
6 *
7 * May 1999, Al Viro: proper release of /proc/net/bmac entry, switched to
8 * dynamic procfs inode.
9 */
10#include <linux/interrupt.h>
11#include <linux/module.h>
12#include <linux/kernel.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/string.h>
17#include <linux/timer.h>
18#include <linux/proc_fs.h>
19#include <linux/init.h>
20#include <linux/spinlock.h>
21#include <linux/crc32.h>
22#include <linux/bitrev.h>
23#include <linux/ethtool.h>
24#include <linux/slab.h>
25#include <asm/prom.h>
26#include <asm/dbdma.h>
27#include <asm/io.h>
28#include <asm/page.h>
29#include <asm/pgtable.h>
30#include <asm/machdep.h>
31#include <asm/pmac_feature.h>
32#include <asm/macio.h>
33#include <asm/irq.h>
34
35#include "bmac.h"
36
37#define trunc_page(x) ((void *)(((unsigned long)(x)) & ~((unsigned long)(PAGE_SIZE - 1))))
38#define round_page(x) trunc_page(((unsigned long)(x)) + ((unsigned long)(PAGE_SIZE - 1)))
39
40/*
41 * CRC polynomial - used in working out multicast filter bits.
42 */
43#define ENET_CRCPOLY 0x04c11db7
44
45/* switch to use multicast code lifted from sunhme driver */
46#define SUNHME_MULTICAST
47
48#define N_RX_RING 64
49#define N_TX_RING 32
50#define MAX_TX_ACTIVE 1
51#define ETHERCRC 4
52#define ETHERMINPACKET 64
53#define ETHERMTU 1500
54#define RX_BUFLEN (ETHERMTU + 14 + ETHERCRC + 2)
55#define TX_TIMEOUT HZ /* 1 second */
56
57/* Bits in transmit DMA status */
58#define TX_DMA_ERR 0x80
59
60#define XXDEBUG(args)
61
62struct bmac_data {
63 /* volatile struct bmac *bmac; */
64 struct sk_buff_head *queue;
65 volatile struct dbdma_regs __iomem *tx_dma;
66 int tx_dma_intr;
67 volatile struct dbdma_regs __iomem *rx_dma;
68 int rx_dma_intr;
69 volatile struct dbdma_cmd *tx_cmds; /* xmit dma command list */
70 volatile struct dbdma_cmd *rx_cmds; /* recv dma command list */
71 struct macio_dev *mdev;
72 int is_bmac_plus;
73 struct sk_buff *rx_bufs[N_RX_RING];
74 int rx_fill;
75 int rx_empty;
76 struct sk_buff *tx_bufs[N_TX_RING];
77 int tx_fill;
78 int tx_empty;
79 unsigned char tx_fullup;
80 struct timer_list tx_timeout;
81 int timeout_active;
82 int sleeping;
83 int opened;
84 unsigned short hash_use_count[64];
85 unsigned short hash_table_mask[4];
86 spinlock_t lock;
87};
88
89#if 0 /* Move that to ethtool */
90
91typedef struct bmac_reg_entry {
92 char *name;
93 unsigned short reg_offset;
94} bmac_reg_entry_t;
95
96#define N_REG_ENTRIES 31
97
98static bmac_reg_entry_t reg_entries[N_REG_ENTRIES] = {
99 {"MEMADD", MEMADD},
100 {"MEMDATAHI", MEMDATAHI},
101 {"MEMDATALO", MEMDATALO},
102 {"TXPNTR", TXPNTR},
103 {"RXPNTR", RXPNTR},
104 {"IPG1", IPG1},
105 {"IPG2", IPG2},
106 {"ALIMIT", ALIMIT},
107 {"SLOT", SLOT},
108 {"PALEN", PALEN},
109 {"PAPAT", PAPAT},
110 {"TXSFD", TXSFD},
111 {"JAM", JAM},
112 {"TXCFG", TXCFG},
113 {"TXMAX", TXMAX},
114 {"TXMIN", TXMIN},
115 {"PAREG", PAREG},
116 {"DCNT", DCNT},
117 {"NCCNT", NCCNT},
118 {"NTCNT", NTCNT},
119 {"EXCNT", EXCNT},
120 {"LTCNT", LTCNT},
121 {"TXSM", TXSM},
122 {"RXCFG", RXCFG},
123 {"RXMAX", RXMAX},
124 {"RXMIN", RXMIN},
125 {"FRCNT", FRCNT},
126 {"AECNT", AECNT},
127 {"FECNT", FECNT},
128 {"RXSM", RXSM},
129 {"RXCV", RXCV}
130};
131
132#endif
133
134static unsigned char *bmac_emergency_rxbuf;
135
136/*
137 * Number of bytes of private data per BMAC: allow enough for
138 * the rx and tx dma commands plus a branch dma command each,
139 * and another 16 bytes to allow us to align the dma command
140 * buffers on a 16 byte boundary.
141 */
142#define PRIV_BYTES (sizeof(struct bmac_data) \
143 + (N_RX_RING + N_TX_RING + 4) * sizeof(struct dbdma_cmd) \
144 + sizeof(struct sk_buff_head))
145
146static int bmac_open(struct net_device *dev);
147static int bmac_close(struct net_device *dev);
148static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev);
149static void bmac_set_multicast(struct net_device *dev);
150static void bmac_reset_and_enable(struct net_device *dev);
151static void bmac_start_chip(struct net_device *dev);
152static void bmac_init_chip(struct net_device *dev);
153static void bmac_init_registers(struct net_device *dev);
154static void bmac_enable_and_reset_chip(struct net_device *dev);
155static int bmac_set_address(struct net_device *dev, void *addr);
156static irqreturn_t bmac_misc_intr(int irq, void *dev_id);
157static irqreturn_t bmac_txdma_intr(int irq, void *dev_id);
158static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id);
159static void bmac_set_timeout(struct net_device *dev);
160static void bmac_tx_timeout(unsigned long data);
161static int bmac_output(struct sk_buff *skb, struct net_device *dev);
162static void bmac_start(struct net_device *dev);
163
164#define DBDMA_SET(x) ( ((x) | (x) << 16) )
165#define DBDMA_CLEAR(x) ( (x) << 16)
166
167static inline void
168dbdma_st32(volatile __u32 __iomem *a, unsigned long x)
169{
170 __asm__ volatile( "stwbrx %0,0,%1" : : "r" (x), "r" (a) : "memory");
171}
172
173static inline unsigned long
174dbdma_ld32(volatile __u32 __iomem *a)
175{
176 __u32 swap;
177 __asm__ volatile ("lwbrx %0,0,%1" : "=r" (swap) : "r" (a));
178 return swap;
179}
180
181static void
182dbdma_continue(volatile struct dbdma_regs __iomem *dmap)
183{
184 dbdma_st32(&dmap->control,
185 DBDMA_SET(RUN|WAKE) | DBDMA_CLEAR(PAUSE|DEAD));
186 eieio();
187}
188
189static void
190dbdma_reset(volatile struct dbdma_regs __iomem *dmap)
191{
192 dbdma_st32(&dmap->control,
193 DBDMA_CLEAR(ACTIVE|DEAD|WAKE|FLUSH|PAUSE|RUN));
194 eieio();
195 while (dbdma_ld32(&dmap->status) & RUN)
196 eieio();
197}
198
199static void
200dbdma_setcmd(volatile struct dbdma_cmd *cp,
201 unsigned short cmd, unsigned count, unsigned long addr,
202 unsigned long cmd_dep)
203{
204 out_le16(&cp->command, cmd);
205 out_le16(&cp->req_count, count);
206 out_le32(&cp->phy_addr, addr);
207 out_le32(&cp->cmd_dep, cmd_dep);
208 out_le16(&cp->xfer_status, 0);
209 out_le16(&cp->res_count, 0);
210}
211
212static inline
213void bmwrite(struct net_device *dev, unsigned long reg_offset, unsigned data )
214{
215 out_le16((void __iomem *)dev->base_addr + reg_offset, data);
216}
217
218
219static inline
220unsigned short bmread(struct net_device *dev, unsigned long reg_offset )
221{
222 return in_le16((void __iomem *)dev->base_addr + reg_offset);
223}
224
225static void
226bmac_enable_and_reset_chip(struct net_device *dev)
227{
228 struct bmac_data *bp = netdev_priv(dev);
229 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
230 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
231
232 if (rd)
233 dbdma_reset(rd);
234 if (td)
235 dbdma_reset(td);
236
237 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 1);
238}
239
240#define MIFDELAY udelay(10)
241
242static unsigned int
243bmac_mif_readbits(struct net_device *dev, int nb)
244{
245 unsigned int val = 0;
246
247 while (--nb >= 0) {
248 bmwrite(dev, MIFCSR, 0);
249 MIFDELAY;
250 if (bmread(dev, MIFCSR) & 8)
251 val |= 1 << nb;
252 bmwrite(dev, MIFCSR, 1);
253 MIFDELAY;
254 }
255 bmwrite(dev, MIFCSR, 0);
256 MIFDELAY;
257 bmwrite(dev, MIFCSR, 1);
258 MIFDELAY;
259 return val;
260}
261
262static void
263bmac_mif_writebits(struct net_device *dev, unsigned int val, int nb)
264{
265 int b;
266
267 while (--nb >= 0) {
268 b = (val & (1 << nb))? 6: 4;
269 bmwrite(dev, MIFCSR, b);
270 MIFDELAY;
271 bmwrite(dev, MIFCSR, b|1);
272 MIFDELAY;
273 }
274}
275
276static unsigned int
277bmac_mif_read(struct net_device *dev, unsigned int addr)
278{
279 unsigned int val;
280
281 bmwrite(dev, MIFCSR, 4);
282 MIFDELAY;
283 bmac_mif_writebits(dev, ~0U, 32);
284 bmac_mif_writebits(dev, 6, 4);
285 bmac_mif_writebits(dev, addr, 10);
286 bmwrite(dev, MIFCSR, 2);
287 MIFDELAY;
288 bmwrite(dev, MIFCSR, 1);
289 MIFDELAY;
290 val = bmac_mif_readbits(dev, 17);
291 bmwrite(dev, MIFCSR, 4);
292 MIFDELAY;
293 return val;
294}
295
296static void
297bmac_mif_write(struct net_device *dev, unsigned int addr, unsigned int val)
298{
299 bmwrite(dev, MIFCSR, 4);
300 MIFDELAY;
301 bmac_mif_writebits(dev, ~0U, 32);
302 bmac_mif_writebits(dev, 5, 4);
303 bmac_mif_writebits(dev, addr, 10);
304 bmac_mif_writebits(dev, 2, 2);
305 bmac_mif_writebits(dev, val, 16);
306 bmac_mif_writebits(dev, 3, 2);
307}
308
309static void
310bmac_init_registers(struct net_device *dev)
311{
312 struct bmac_data *bp = netdev_priv(dev);
313 volatile unsigned short regValue;
314 unsigned short *pWord16;
315 int i;
316
317 /* XXDEBUG(("bmac: enter init_registers\n")); */
318
319 bmwrite(dev, RXRST, RxResetValue);
320 bmwrite(dev, TXRST, TxResetBit);
321
322 i = 100;
323 do {
324 --i;
325 udelay(10000);
326 regValue = bmread(dev, TXRST); /* wait for reset to clear..acknowledge */
327 } while ((regValue & TxResetBit) && i > 0);
328
329 if (!bp->is_bmac_plus) {
330 regValue = bmread(dev, XCVRIF);
331 regValue |= ClkBit | SerialMode | COLActiveLow;
332 bmwrite(dev, XCVRIF, regValue);
333 udelay(10000);
334 }
335
336 bmwrite(dev, RSEED, (unsigned short)0x1968);
337
338 regValue = bmread(dev, XIFC);
339 regValue |= TxOutputEnable;
340 bmwrite(dev, XIFC, regValue);
341
342 bmread(dev, PAREG);
343
344 /* set collision counters to 0 */
345 bmwrite(dev, NCCNT, 0);
346 bmwrite(dev, NTCNT, 0);
347 bmwrite(dev, EXCNT, 0);
348 bmwrite(dev, LTCNT, 0);
349
350 /* set rx counters to 0 */
351 bmwrite(dev, FRCNT, 0);
352 bmwrite(dev, LECNT, 0);
353 bmwrite(dev, AECNT, 0);
354 bmwrite(dev, FECNT, 0);
355 bmwrite(dev, RXCV, 0);
356
357 /* set tx fifo information */
358 bmwrite(dev, TXTH, 4); /* 4 octets before tx starts */
359
360 bmwrite(dev, TXFIFOCSR, 0); /* first disable txFIFO */
361 bmwrite(dev, TXFIFOCSR, TxFIFOEnable );
362
363 /* set rx fifo information */
364 bmwrite(dev, RXFIFOCSR, 0); /* first disable rxFIFO */
365 bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
366
367 //bmwrite(dev, TXCFG, TxMACEnable); /* TxNeverGiveUp maybe later */
368 bmread(dev, STATUS); /* read it just to clear it */
369
370 /* zero out the chip Hash Filter registers */
371 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
372 bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
373 bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
374 bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
375 bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
376
377 pWord16 = (unsigned short *)dev->dev_addr;
378 bmwrite(dev, MADD0, *pWord16++);
379 bmwrite(dev, MADD1, *pWord16++);
380 bmwrite(dev, MADD2, *pWord16);
381
382 bmwrite(dev, RXCFG, RxCRCNoStrip | RxHashFilterEnable | RxRejectOwnPackets);
383
384 bmwrite(dev, INTDISABLE, EnableNormal);
385}
386
387#if 0
388static void
389bmac_disable_interrupts(struct net_device *dev)
390{
391 bmwrite(dev, INTDISABLE, DisableAll);
392}
393
394static void
395bmac_enable_interrupts(struct net_device *dev)
396{
397 bmwrite(dev, INTDISABLE, EnableNormal);
398}
399#endif
400
401
402static void
403bmac_start_chip(struct net_device *dev)
404{
405 struct bmac_data *bp = netdev_priv(dev);
406 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
407 unsigned short oldConfig;
408
409 /* enable rx dma channel */
410 dbdma_continue(rd);
411
412 oldConfig = bmread(dev, TXCFG);
413 bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
414
415 /* turn on rx plus any other bits already on (promiscuous possibly) */
416 oldConfig = bmread(dev, RXCFG);
417 bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
418 udelay(20000);
419}
420
421static void
422bmac_init_phy(struct net_device *dev)
423{
424 unsigned int addr;
425 struct bmac_data *bp = netdev_priv(dev);
426
427 printk(KERN_DEBUG "phy registers:");
428 for (addr = 0; addr < 32; ++addr) {
429 if ((addr & 7) == 0)
430 printk(KERN_DEBUG);
431 printk(KERN_CONT " %.4x", bmac_mif_read(dev, addr));
432 }
433 printk(KERN_CONT "\n");
434
435 if (bp->is_bmac_plus) {
436 unsigned int capable, ctrl;
437
438 ctrl = bmac_mif_read(dev, 0);
439 capable = ((bmac_mif_read(dev, 1) & 0xf800) >> 6) | 1;
440 if (bmac_mif_read(dev, 4) != capable ||
441 (ctrl & 0x1000) == 0) {
442 bmac_mif_write(dev, 4, capable);
443 bmac_mif_write(dev, 0, 0x1200);
444 } else
445 bmac_mif_write(dev, 0, 0x1000);
446 }
447}
448
449static void bmac_init_chip(struct net_device *dev)
450{
451 bmac_init_phy(dev);
452 bmac_init_registers(dev);
453}
454
455#ifdef CONFIG_PM
456static int bmac_suspend(struct macio_dev *mdev, pm_message_t state)
457{
458 struct net_device* dev = macio_get_drvdata(mdev);
459 struct bmac_data *bp = netdev_priv(dev);
460 unsigned long flags;
461 unsigned short config;
462 int i;
463
464 netif_device_detach(dev);
465 /* prolly should wait for dma to finish & turn off the chip */
466 spin_lock_irqsave(&bp->lock, flags);
467 if (bp->timeout_active) {
468 del_timer(&bp->tx_timeout);
469 bp->timeout_active = 0;
470 }
471 disable_irq(dev->irq);
472 disable_irq(bp->tx_dma_intr);
473 disable_irq(bp->rx_dma_intr);
474 bp->sleeping = 1;
475 spin_unlock_irqrestore(&bp->lock, flags);
476 if (bp->opened) {
477 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
478 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
479
480 config = bmread(dev, RXCFG);
481 bmwrite(dev, RXCFG, (config & ~RxMACEnable));
482 config = bmread(dev, TXCFG);
483 bmwrite(dev, TXCFG, (config & ~TxMACEnable));
484 bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
485 /* disable rx and tx dma */
486 rd->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
487 td->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
488 /* free some skb's */
489 for (i=0; i<N_RX_RING; i++) {
490 if (bp->rx_bufs[i] != NULL) {
491 dev_kfree_skb(bp->rx_bufs[i]);
492 bp->rx_bufs[i] = NULL;
493 }
494 }
495 for (i = 0; i<N_TX_RING; i++) {
496 if (bp->tx_bufs[i] != NULL) {
497 dev_kfree_skb(bp->tx_bufs[i]);
498 bp->tx_bufs[i] = NULL;
499 }
500 }
501 }
502 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
503 return 0;
504}
505
506static int bmac_resume(struct macio_dev *mdev)
507{
508 struct net_device* dev = macio_get_drvdata(mdev);
509 struct bmac_data *bp = netdev_priv(dev);
510
511 /* see if this is enough */
512 if (bp->opened)
513 bmac_reset_and_enable(dev);
514
515 enable_irq(dev->irq);
516 enable_irq(bp->tx_dma_intr);
517 enable_irq(bp->rx_dma_intr);
518 netif_device_attach(dev);
519
520 return 0;
521}
522#endif /* CONFIG_PM */
523
524static int bmac_set_address(struct net_device *dev, void *addr)
525{
526 struct bmac_data *bp = netdev_priv(dev);
527 unsigned char *p = addr;
528 unsigned short *pWord16;
529 unsigned long flags;
530 int i;
531
532 XXDEBUG(("bmac: enter set_address\n"));
533 spin_lock_irqsave(&bp->lock, flags);
534
535 for (i = 0; i < 6; ++i) {
536 dev->dev_addr[i] = p[i];
537 }
538 /* load up the hardware address */
539 pWord16 = (unsigned short *)dev->dev_addr;
540 bmwrite(dev, MADD0, *pWord16++);
541 bmwrite(dev, MADD1, *pWord16++);
542 bmwrite(dev, MADD2, *pWord16);
543
544 spin_unlock_irqrestore(&bp->lock, flags);
545 XXDEBUG(("bmac: exit set_address\n"));
546 return 0;
547}
548
549static inline void bmac_set_timeout(struct net_device *dev)
550{
551 struct bmac_data *bp = netdev_priv(dev);
552 unsigned long flags;
553
554 spin_lock_irqsave(&bp->lock, flags);
555 if (bp->timeout_active)
556 del_timer(&bp->tx_timeout);
557 bp->tx_timeout.expires = jiffies + TX_TIMEOUT;
558 bp->tx_timeout.function = bmac_tx_timeout;
559 bp->tx_timeout.data = (unsigned long) dev;
560 add_timer(&bp->tx_timeout);
561 bp->timeout_active = 1;
562 spin_unlock_irqrestore(&bp->lock, flags);
563}
564
565static void
566bmac_construct_xmt(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
567{
568 void *vaddr;
569 unsigned long baddr;
570 unsigned long len;
571
572 len = skb->len;
573 vaddr = skb->data;
574 baddr = virt_to_bus(vaddr);
575
576 dbdma_setcmd(cp, (OUTPUT_LAST | INTR_ALWAYS | WAIT_IFCLR), len, baddr, 0);
577}
578
579static void
580bmac_construct_rxbuff(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
581{
582 unsigned char *addr = skb? skb->data: bmac_emergency_rxbuf;
583
584 dbdma_setcmd(cp, (INPUT_LAST | INTR_ALWAYS), RX_BUFLEN,
585 virt_to_bus(addr), 0);
586}
587
588static void
589bmac_init_tx_ring(struct bmac_data *bp)
590{
591 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
592
593 memset((char *)bp->tx_cmds, 0, (N_TX_RING+1) * sizeof(struct dbdma_cmd));
594
595 bp->tx_empty = 0;
596 bp->tx_fill = 0;
597 bp->tx_fullup = 0;
598
599 /* put a branch at the end of the tx command list */
600 dbdma_setcmd(&bp->tx_cmds[N_TX_RING],
601 (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->tx_cmds));
602
603 /* reset tx dma */
604 dbdma_reset(td);
605 out_le32(&td->wait_sel, 0x00200020);
606 out_le32(&td->cmdptr, virt_to_bus(bp->tx_cmds));
607}
608
609static int
610bmac_init_rx_ring(struct net_device *dev)
611{
612 struct bmac_data *bp = netdev_priv(dev);
613 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
614 int i;
615 struct sk_buff *skb;
616
617 /* initialize list of sk_buffs for receiving and set up recv dma */
618 memset((char *)bp->rx_cmds, 0,
619 (N_RX_RING + 1) * sizeof(struct dbdma_cmd));
620 for (i = 0; i < N_RX_RING; i++) {
621 if ((skb = bp->rx_bufs[i]) == NULL) {
622 bp->rx_bufs[i] = skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
623 if (skb != NULL)
624 skb_reserve(skb, 2);
625 }
626 bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
627 }
628
629 bp->rx_empty = 0;
630 bp->rx_fill = i;
631
632 /* Put a branch back to the beginning of the receive command list */
633 dbdma_setcmd(&bp->rx_cmds[N_RX_RING],
634 (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->rx_cmds));
635
636 /* start rx dma */
637 dbdma_reset(rd);
638 out_le32(&rd->cmdptr, virt_to_bus(bp->rx_cmds));
639
640 return 1;
641}
642
643
644static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev)
645{
646 struct bmac_data *bp = netdev_priv(dev);
647 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
648 int i;
649
650 /* see if there's a free slot in the tx ring */
651 /* XXDEBUG(("bmac_xmit_start: empty=%d fill=%d\n", */
652 /* bp->tx_empty, bp->tx_fill)); */
653 i = bp->tx_fill + 1;
654 if (i >= N_TX_RING)
655 i = 0;
656 if (i == bp->tx_empty) {
657 netif_stop_queue(dev);
658 bp->tx_fullup = 1;
659 XXDEBUG(("bmac_transmit_packet: tx ring full\n"));
660 return -1; /* can't take it at the moment */
661 }
662
663 dbdma_setcmd(&bp->tx_cmds[i], DBDMA_STOP, 0, 0, 0);
664
665 bmac_construct_xmt(skb, &bp->tx_cmds[bp->tx_fill]);
666
667 bp->tx_bufs[bp->tx_fill] = skb;
668 bp->tx_fill = i;
669
670 dev->stats.tx_bytes += skb->len;
671
672 dbdma_continue(td);
673
674 return 0;
675}
676
677static int rxintcount;
678
679static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id)
680{
681 struct net_device *dev = (struct net_device *) dev_id;
682 struct bmac_data *bp = netdev_priv(dev);
683 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
684 volatile struct dbdma_cmd *cp;
685 int i, nb, stat;
686 struct sk_buff *skb;
687 unsigned int residual;
688 int last;
689 unsigned long flags;
690
691 spin_lock_irqsave(&bp->lock, flags);
692
693 if (++rxintcount < 10) {
694 XXDEBUG(("bmac_rxdma_intr\n"));
695 }
696
697 last = -1;
698 i = bp->rx_empty;
699
700 while (1) {
701 cp = &bp->rx_cmds[i];
702 stat = le16_to_cpu(cp->xfer_status);
703 residual = le16_to_cpu(cp->res_count);
704 if ((stat & ACTIVE) == 0)
705 break;
706 nb = RX_BUFLEN - residual - 2;
707 if (nb < (ETHERMINPACKET - ETHERCRC)) {
708 skb = NULL;
709 dev->stats.rx_length_errors++;
710 dev->stats.rx_errors++;
711 } else {
712 skb = bp->rx_bufs[i];
713 bp->rx_bufs[i] = NULL;
714 }
715 if (skb != NULL) {
716 nb -= ETHERCRC;
717 skb_put(skb, nb);
718 skb->protocol = eth_type_trans(skb, dev);
719 netif_rx(skb);
720 ++dev->stats.rx_packets;
721 dev->stats.rx_bytes += nb;
722 } else {
723 ++dev->stats.rx_dropped;
724 }
725 if ((skb = bp->rx_bufs[i]) == NULL) {
726 bp->rx_bufs[i] = skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
727 if (skb != NULL)
728 skb_reserve(bp->rx_bufs[i], 2);
729 }
730 bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
731 cp->res_count = cpu_to_le16(0);
732 cp->xfer_status = cpu_to_le16(0);
733 last = i;
734 if (++i >= N_RX_RING) i = 0;
735 }
736
737 if (last != -1) {
738 bp->rx_fill = last;
739 bp->rx_empty = i;
740 }
741
742 dbdma_continue(rd);
743 spin_unlock_irqrestore(&bp->lock, flags);
744
745 if (rxintcount < 10) {
746 XXDEBUG(("bmac_rxdma_intr done\n"));
747 }
748 return IRQ_HANDLED;
749}
750
751static int txintcount;
752
753static irqreturn_t bmac_txdma_intr(int irq, void *dev_id)
754{
755 struct net_device *dev = (struct net_device *) dev_id;
756 struct bmac_data *bp = netdev_priv(dev);
757 volatile struct dbdma_cmd *cp;
758 int stat;
759 unsigned long flags;
760
761 spin_lock_irqsave(&bp->lock, flags);
762
763 if (txintcount++ < 10) {
764 XXDEBUG(("bmac_txdma_intr\n"));
765 }
766
767 /* del_timer(&bp->tx_timeout); */
768 /* bp->timeout_active = 0; */
769
770 while (1) {
771 cp = &bp->tx_cmds[bp->tx_empty];
772 stat = le16_to_cpu(cp->xfer_status);
773 if (txintcount < 10) {
774 XXDEBUG(("bmac_txdma_xfer_stat=%#0x\n", stat));
775 }
776 if (!(stat & ACTIVE)) {
777 /*
778 * status field might not have been filled by DBDMA
779 */
780 if (cp == bus_to_virt(in_le32(&bp->tx_dma->cmdptr)))
781 break;
782 }
783
784 if (bp->tx_bufs[bp->tx_empty]) {
785 ++dev->stats.tx_packets;
786 dev_kfree_skb_irq(bp->tx_bufs[bp->tx_empty]);
787 }
788 bp->tx_bufs[bp->tx_empty] = NULL;
789 bp->tx_fullup = 0;
790 netif_wake_queue(dev);
791 if (++bp->tx_empty >= N_TX_RING)
792 bp->tx_empty = 0;
793 if (bp->tx_empty == bp->tx_fill)
794 break;
795 }
796
797 spin_unlock_irqrestore(&bp->lock, flags);
798
799 if (txintcount < 10) {
800 XXDEBUG(("bmac_txdma_intr done->bmac_start\n"));
801 }
802
803 bmac_start(dev);
804 return IRQ_HANDLED;
805}
806
807#ifndef SUNHME_MULTICAST
808/* Real fast bit-reversal algorithm, 6-bit values */
809static int reverse6[64] = {
810 0x0,0x20,0x10,0x30,0x8,0x28,0x18,0x38,
811 0x4,0x24,0x14,0x34,0xc,0x2c,0x1c,0x3c,
812 0x2,0x22,0x12,0x32,0xa,0x2a,0x1a,0x3a,
813 0x6,0x26,0x16,0x36,0xe,0x2e,0x1e,0x3e,
814 0x1,0x21,0x11,0x31,0x9,0x29,0x19,0x39,
815 0x5,0x25,0x15,0x35,0xd,0x2d,0x1d,0x3d,
816 0x3,0x23,0x13,0x33,0xb,0x2b,0x1b,0x3b,
817 0x7,0x27,0x17,0x37,0xf,0x2f,0x1f,0x3f
818};
819
820static unsigned int
821crc416(unsigned int curval, unsigned short nxtval)
822{
823 register unsigned int counter, cur = curval, next = nxtval;
824 register int high_crc_set, low_data_set;
825
826 /* Swap bytes */
827 next = ((next & 0x00FF) << 8) | (next >> 8);
828
829 /* Compute bit-by-bit */
830 for (counter = 0; counter < 16; ++counter) {
831 /* is high CRC bit set? */
832 if ((cur & 0x80000000) == 0) high_crc_set = 0;
833 else high_crc_set = 1;
834
835 cur = cur << 1;
836
837 if ((next & 0x0001) == 0) low_data_set = 0;
838 else low_data_set = 1;
839
840 next = next >> 1;
841
842 /* do the XOR */
843 if (high_crc_set ^ low_data_set) cur = cur ^ ENET_CRCPOLY;
844 }
845 return cur;
846}
847
848static unsigned int
849bmac_crc(unsigned short *address)
850{
851 unsigned int newcrc;
852
853 XXDEBUG(("bmac_crc: addr=%#04x, %#04x, %#04x\n", *address, address[1], address[2]));
854 newcrc = crc416(0xffffffff, *address); /* address bits 47 - 32 */
855 newcrc = crc416(newcrc, address[1]); /* address bits 31 - 16 */
856 newcrc = crc416(newcrc, address[2]); /* address bits 15 - 0 */
857
858 return(newcrc);
859}
860
861/*
862 * Add requested mcast addr to BMac's hash table filter.
863 *
864 */
865
866static void
867bmac_addhash(struct bmac_data *bp, unsigned char *addr)
868{
869 unsigned int crc;
870 unsigned short mask;
871
872 if (!(*addr)) return;
873 crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
874 crc = reverse6[crc]; /* Hyperfast bit-reversing algorithm */
875 if (bp->hash_use_count[crc]++) return; /* This bit is already set */
876 mask = crc % 16;
877 mask = (unsigned char)1 << mask;
878 bp->hash_use_count[crc/16] |= mask;
879}
880
881static void
882bmac_removehash(struct bmac_data *bp, unsigned char *addr)
883{
884 unsigned int crc;
885 unsigned char mask;
886
887 /* Now, delete the address from the filter copy, as indicated */
888 crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
889 crc = reverse6[crc]; /* Hyperfast bit-reversing algorithm */
890 if (bp->hash_use_count[crc] == 0) return; /* That bit wasn't in use! */
891 if (--bp->hash_use_count[crc]) return; /* That bit is still in use */
892 mask = crc % 16;
893 mask = ((unsigned char)1 << mask) ^ 0xffff; /* To turn off bit */
894 bp->hash_table_mask[crc/16] &= mask;
895}
896
897/*
898 * Sync the adapter with the software copy of the multicast mask
899 * (logical address filter).
900 */
901
902static void
903bmac_rx_off(struct net_device *dev)
904{
905 unsigned short rx_cfg;
906
907 rx_cfg = bmread(dev, RXCFG);
908 rx_cfg &= ~RxMACEnable;
909 bmwrite(dev, RXCFG, rx_cfg);
910 do {
911 rx_cfg = bmread(dev, RXCFG);
912 } while (rx_cfg & RxMACEnable);
913}
914
915unsigned short
916bmac_rx_on(struct net_device *dev, int hash_enable, int promisc_enable)
917{
918 unsigned short rx_cfg;
919
920 rx_cfg = bmread(dev, RXCFG);
921 rx_cfg |= RxMACEnable;
922 if (hash_enable) rx_cfg |= RxHashFilterEnable;
923 else rx_cfg &= ~RxHashFilterEnable;
924 if (promisc_enable) rx_cfg |= RxPromiscEnable;
925 else rx_cfg &= ~RxPromiscEnable;
926 bmwrite(dev, RXRST, RxResetValue);
927 bmwrite(dev, RXFIFOCSR, 0); /* first disable rxFIFO */
928 bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
929 bmwrite(dev, RXCFG, rx_cfg );
930 return rx_cfg;
931}
932
933static void
934bmac_update_hash_table_mask(struct net_device *dev, struct bmac_data *bp)
935{
936 bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
937 bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
938 bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
939 bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
940}
941
942#if 0
943static void
944bmac_add_multi(struct net_device *dev,
945 struct bmac_data *bp, unsigned char *addr)
946{
947 /* XXDEBUG(("bmac: enter bmac_add_multi\n")); */
948 bmac_addhash(bp, addr);
949 bmac_rx_off(dev);
950 bmac_update_hash_table_mask(dev, bp);
951 bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
952 /* XXDEBUG(("bmac: exit bmac_add_multi\n")); */
953}
954
955static void
956bmac_remove_multi(struct net_device *dev,
957 struct bmac_data *bp, unsigned char *addr)
958{
959 bmac_removehash(bp, addr);
960 bmac_rx_off(dev);
961 bmac_update_hash_table_mask(dev, bp);
962 bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
963}
964#endif
965
966/* Set or clear the multicast filter for this adaptor.
967 num_addrs == -1 Promiscuous mode, receive all packets
968 num_addrs == 0 Normal mode, clear multicast list
969 num_addrs > 0 Multicast mode, receive normal and MC packets, and do
970 best-effort filtering.
971 */
972static void bmac_set_multicast(struct net_device *dev)
973{
974 struct netdev_hw_addr *ha;
975 struct bmac_data *bp = netdev_priv(dev);
976 int num_addrs = netdev_mc_count(dev);
977 unsigned short rx_cfg;
978 int i;
979
980 if (bp->sleeping)
981 return;
982
983 XXDEBUG(("bmac: enter bmac_set_multicast, n_addrs=%d\n", num_addrs));
984
985 if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
986 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0xffff;
987 bmac_update_hash_table_mask(dev, bp);
988 rx_cfg = bmac_rx_on(dev, 1, 0);
989 XXDEBUG(("bmac: all multi, rx_cfg=%#08x\n"));
990 } else if ((dev->flags & IFF_PROMISC) || (num_addrs < 0)) {
991 rx_cfg = bmread(dev, RXCFG);
992 rx_cfg |= RxPromiscEnable;
993 bmwrite(dev, RXCFG, rx_cfg);
994 rx_cfg = bmac_rx_on(dev, 0, 1);
995 XXDEBUG(("bmac: promisc mode enabled, rx_cfg=%#08x\n", rx_cfg));
996 } else {
997 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
998 for (i=0; i<64; i++) bp->hash_use_count[i] = 0;
999 if (num_addrs == 0) {
1000 rx_cfg = bmac_rx_on(dev, 0, 0);
1001 XXDEBUG(("bmac: multi disabled, rx_cfg=%#08x\n", rx_cfg));
1002 } else {
1003 netdev_for_each_mc_addr(ha, dev)
1004 bmac_addhash(bp, ha->addr);
1005 bmac_update_hash_table_mask(dev, bp);
1006 rx_cfg = bmac_rx_on(dev, 1, 0);
1007 XXDEBUG(("bmac: multi enabled, rx_cfg=%#08x\n", rx_cfg));
1008 }
1009 }
1010 /* XXDEBUG(("bmac: exit bmac_set_multicast\n")); */
1011}
1012#else /* ifdef SUNHME_MULTICAST */
1013
1014/* The version of set_multicast below was lifted from sunhme.c */
1015
1016static void bmac_set_multicast(struct net_device *dev)
1017{
1018 struct netdev_hw_addr *ha;
1019 unsigned short rx_cfg;
1020 u32 crc;
1021
1022 if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
1023 bmwrite(dev, BHASH0, 0xffff);
1024 bmwrite(dev, BHASH1, 0xffff);
1025 bmwrite(dev, BHASH2, 0xffff);
1026 bmwrite(dev, BHASH3, 0xffff);
1027 } else if(dev->flags & IFF_PROMISC) {
1028 rx_cfg = bmread(dev, RXCFG);
1029 rx_cfg |= RxPromiscEnable;
1030 bmwrite(dev, RXCFG, rx_cfg);
1031 } else {
1032 u16 hash_table[4] = { 0 };
1033
1034 rx_cfg = bmread(dev, RXCFG);
1035 rx_cfg &= ~RxPromiscEnable;
1036 bmwrite(dev, RXCFG, rx_cfg);
1037
1038 netdev_for_each_mc_addr(ha, dev) {
1039 crc = ether_crc_le(6, ha->addr);
1040 crc >>= 26;
1041 hash_table[crc >> 4] |= 1 << (crc & 0xf);
1042 }
1043 bmwrite(dev, BHASH0, hash_table[0]);
1044 bmwrite(dev, BHASH1, hash_table[1]);
1045 bmwrite(dev, BHASH2, hash_table[2]);
1046 bmwrite(dev, BHASH3, hash_table[3]);
1047 }
1048}
1049#endif /* SUNHME_MULTICAST */
1050
1051static int miscintcount;
1052
1053static irqreturn_t bmac_misc_intr(int irq, void *dev_id)
1054{
1055 struct net_device *dev = (struct net_device *) dev_id;
1056 unsigned int status = bmread(dev, STATUS);
1057 if (miscintcount++ < 10) {
1058 XXDEBUG(("bmac_misc_intr\n"));
1059 }
1060 /* XXDEBUG(("bmac_misc_intr, status=%#08x\n", status)); */
1061 /* bmac_txdma_intr_inner(irq, dev_id); */
1062 /* if (status & FrameReceived) dev->stats.rx_dropped++; */
1063 if (status & RxErrorMask) dev->stats.rx_errors++;
1064 if (status & RxCRCCntExp) dev->stats.rx_crc_errors++;
1065 if (status & RxLenCntExp) dev->stats.rx_length_errors++;
1066 if (status & RxOverFlow) dev->stats.rx_over_errors++;
1067 if (status & RxAlignCntExp) dev->stats.rx_frame_errors++;
1068
1069 /* if (status & FrameSent) dev->stats.tx_dropped++; */
1070 if (status & TxErrorMask) dev->stats.tx_errors++;
1071 if (status & TxUnderrun) dev->stats.tx_fifo_errors++;
1072 if (status & TxNormalCollExp) dev->stats.collisions++;
1073 return IRQ_HANDLED;
1074}
1075
1076/*
1077 * Procedure for reading EEPROM
1078 */
1079#define SROMAddressLength 5
1080#define DataInOn 0x0008
1081#define DataInOff 0x0000
1082#define Clk 0x0002
1083#define ChipSelect 0x0001
1084#define SDIShiftCount 3
1085#define SD0ShiftCount 2
1086#define DelayValue 1000 /* number of microseconds */
1087#define SROMStartOffset 10 /* this is in words */
1088#define SROMReadCount 3 /* number of words to read from SROM */
1089#define SROMAddressBits 6
1090#define EnetAddressOffset 20
1091
1092static unsigned char
1093bmac_clock_out_bit(struct net_device *dev)
1094{
1095 unsigned short data;
1096 unsigned short val;
1097
1098 bmwrite(dev, SROMCSR, ChipSelect | Clk);
1099 udelay(DelayValue);
1100
1101 data = bmread(dev, SROMCSR);
1102 udelay(DelayValue);
1103 val = (data >> SD0ShiftCount) & 1;
1104
1105 bmwrite(dev, SROMCSR, ChipSelect);
1106 udelay(DelayValue);
1107
1108 return val;
1109}
1110
1111static void
1112bmac_clock_in_bit(struct net_device *dev, unsigned int val)
1113{
1114 unsigned short data;
1115
1116 if (val != 0 && val != 1) return;
1117
1118 data = (val << SDIShiftCount);
1119 bmwrite(dev, SROMCSR, data | ChipSelect );
1120 udelay(DelayValue);
1121
1122 bmwrite(dev, SROMCSR, data | ChipSelect | Clk );
1123 udelay(DelayValue);
1124
1125 bmwrite(dev, SROMCSR, data | ChipSelect);
1126 udelay(DelayValue);
1127}
1128
1129static void
1130reset_and_select_srom(struct net_device *dev)
1131{
1132 /* first reset */
1133 bmwrite(dev, SROMCSR, 0);
1134 udelay(DelayValue);
1135
1136 /* send it the read command (110) */
1137 bmac_clock_in_bit(dev, 1);
1138 bmac_clock_in_bit(dev, 1);
1139 bmac_clock_in_bit(dev, 0);
1140}
1141
1142static unsigned short
1143read_srom(struct net_device *dev, unsigned int addr, unsigned int addr_len)
1144{
1145 unsigned short data, val;
1146 int i;
1147
1148 /* send out the address we want to read from */
1149 for (i = 0; i < addr_len; i++) {
1150 val = addr >> (addr_len-i-1);
1151 bmac_clock_in_bit(dev, val & 1);
1152 }
1153
1154 /* Now read in the 16-bit data */
1155 data = 0;
1156 for (i = 0; i < 16; i++) {
1157 val = bmac_clock_out_bit(dev);
1158 data <<= 1;
1159 data |= val;
1160 }
1161 bmwrite(dev, SROMCSR, 0);
1162
1163 return data;
1164}
1165
1166/*
1167 * It looks like Cogent and SMC use different methods for calculating
1168 * checksums. What a pain..
1169 */
1170
1171static int
1172bmac_verify_checksum(struct net_device *dev)
1173{
1174 unsigned short data, storedCS;
1175
1176 reset_and_select_srom(dev);
1177 data = read_srom(dev, 3, SROMAddressBits);
1178 storedCS = ((data >> 8) & 0x0ff) | ((data << 8) & 0xff00);
1179
1180 return 0;
1181}
1182
1183
1184static void
1185bmac_get_station_address(struct net_device *dev, unsigned char *ea)
1186{
1187 int i;
1188 unsigned short data;
1189
1190 for (i = 0; i < 6; i++)
1191 {
1192 reset_and_select_srom(dev);
1193 data = read_srom(dev, i + EnetAddressOffset/2, SROMAddressBits);
1194 ea[2*i] = bitrev8(data & 0x0ff);
1195 ea[2*i+1] = bitrev8((data >> 8) & 0x0ff);
1196 }
1197}
1198
1199static void bmac_reset_and_enable(struct net_device *dev)
1200{
1201 struct bmac_data *bp = netdev_priv(dev);
1202 unsigned long flags;
1203 struct sk_buff *skb;
1204 unsigned char *data;
1205
1206 spin_lock_irqsave(&bp->lock, flags);
1207 bmac_enable_and_reset_chip(dev);
1208 bmac_init_tx_ring(bp);
1209 bmac_init_rx_ring(dev);
1210 bmac_init_chip(dev);
1211 bmac_start_chip(dev);
1212 bmwrite(dev, INTDISABLE, EnableNormal);
1213 bp->sleeping = 0;
1214
1215 /*
1216 * It seems that the bmac can't receive until it's transmitted
1217 * a packet. So we give it a dummy packet to transmit.
1218 */
1219 skb = netdev_alloc_skb(dev, ETHERMINPACKET);
1220 if (skb != NULL) {
1221 data = skb_put(skb, ETHERMINPACKET);
1222 memset(data, 0, ETHERMINPACKET);
1223 memcpy(data, dev->dev_addr, ETH_ALEN);
1224 memcpy(data + ETH_ALEN, dev->dev_addr, ETH_ALEN);
1225 bmac_transmit_packet(skb, dev);
1226 }
1227 spin_unlock_irqrestore(&bp->lock, flags);
1228}
1229
1230static const struct ethtool_ops bmac_ethtool_ops = {
1231 .get_link = ethtool_op_get_link,
1232};
1233
1234static const struct net_device_ops bmac_netdev_ops = {
1235 .ndo_open = bmac_open,
1236 .ndo_stop = bmac_close,
1237 .ndo_start_xmit = bmac_output,
1238 .ndo_set_rx_mode = bmac_set_multicast,
1239 .ndo_set_mac_address = bmac_set_address,
1240 .ndo_change_mtu = eth_change_mtu,
1241 .ndo_validate_addr = eth_validate_addr,
1242};
1243
1244static int bmac_probe(struct macio_dev *mdev, const struct of_device_id *match)
1245{
1246 int j, rev, ret;
1247 struct bmac_data *bp;
1248 const unsigned char *prop_addr;
1249 unsigned char addr[6];
1250 struct net_device *dev;
1251 int is_bmac_plus = ((int)match->data) != 0;
1252
1253 if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
1254 printk(KERN_ERR "BMAC: can't use, need 3 addrs and 3 intrs\n");
1255 return -ENODEV;
1256 }
1257 prop_addr = of_get_property(macio_get_of_node(mdev),
1258 "mac-address", NULL);
1259 if (prop_addr == NULL) {
1260 prop_addr = of_get_property(macio_get_of_node(mdev),
1261 "local-mac-address", NULL);
1262 if (prop_addr == NULL) {
1263 printk(KERN_ERR "BMAC: Can't get mac-address\n");
1264 return -ENODEV;
1265 }
1266 }
1267 memcpy(addr, prop_addr, sizeof(addr));
1268
1269 dev = alloc_etherdev(PRIV_BYTES);
1270 if (!dev)
1271 return -ENOMEM;
1272
1273 bp = netdev_priv(dev);
1274 SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
1275 macio_set_drvdata(mdev, dev);
1276
1277 bp->mdev = mdev;
1278 spin_lock_init(&bp->lock);
1279
1280 if (macio_request_resources(mdev, "bmac")) {
1281 printk(KERN_ERR "BMAC: can't request IO resource !\n");
1282 goto out_free;
1283 }
1284
1285 dev->base_addr = (unsigned long)
1286 ioremap(macio_resource_start(mdev, 0), macio_resource_len(mdev, 0));
1287 if (dev->base_addr == 0)
1288 goto out_release;
1289
1290 dev->irq = macio_irq(mdev, 0);
1291
1292 bmac_enable_and_reset_chip(dev);
1293 bmwrite(dev, INTDISABLE, DisableAll);
1294
1295 rev = addr[0] == 0 && addr[1] == 0xA0;
1296 for (j = 0; j < 6; ++j)
1297 dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j];
1298
1299 /* Enable chip without interrupts for now */
1300 bmac_enable_and_reset_chip(dev);
1301 bmwrite(dev, INTDISABLE, DisableAll);
1302
1303 dev->netdev_ops = &bmac_netdev_ops;
1304 dev->ethtool_ops = &bmac_ethtool_ops;
1305
1306 bmac_get_station_address(dev, addr);
1307 if (bmac_verify_checksum(dev) != 0)
1308 goto err_out_iounmap;
1309
1310 bp->is_bmac_plus = is_bmac_plus;
1311 bp->tx_dma = ioremap(macio_resource_start(mdev, 1), macio_resource_len(mdev, 1));
1312 if (!bp->tx_dma)
1313 goto err_out_iounmap;
1314 bp->tx_dma_intr = macio_irq(mdev, 1);
1315 bp->rx_dma = ioremap(macio_resource_start(mdev, 2), macio_resource_len(mdev, 2));
1316 if (!bp->rx_dma)
1317 goto err_out_iounmap_tx;
1318 bp->rx_dma_intr = macio_irq(mdev, 2);
1319
1320 bp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(bp + 1);
1321 bp->rx_cmds = bp->tx_cmds + N_TX_RING + 1;
1322
1323 bp->queue = (struct sk_buff_head *)(bp->rx_cmds + N_RX_RING + 1);
1324 skb_queue_head_init(bp->queue);
1325
1326 init_timer(&bp->tx_timeout);
1327
1328 ret = request_irq(dev->irq, bmac_misc_intr, 0, "BMAC-misc", dev);
1329 if (ret) {
1330 printk(KERN_ERR "BMAC: can't get irq %d\n", dev->irq);
1331 goto err_out_iounmap_rx;
1332 }
1333 ret = request_irq(bp->tx_dma_intr, bmac_txdma_intr, 0, "BMAC-txdma", dev);
1334 if (ret) {
1335 printk(KERN_ERR "BMAC: can't get irq %d\n", bp->tx_dma_intr);
1336 goto err_out_irq0;
1337 }
1338 ret = request_irq(bp->rx_dma_intr, bmac_rxdma_intr, 0, "BMAC-rxdma", dev);
1339 if (ret) {
1340 printk(KERN_ERR "BMAC: can't get irq %d\n", bp->rx_dma_intr);
1341 goto err_out_irq1;
1342 }
1343
1344 /* Mask chip interrupts and disable chip, will be
1345 * re-enabled on open()
1346 */
1347 disable_irq(dev->irq);
1348 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1349
1350 if (register_netdev(dev) != 0) {
1351 printk(KERN_ERR "BMAC: Ethernet registration failed\n");
1352 goto err_out_irq2;
1353 }
1354
1355 printk(KERN_INFO "%s: BMAC%s at %pM",
1356 dev->name, (is_bmac_plus ? "+" : ""), dev->dev_addr);
1357 XXDEBUG((", base_addr=%#0lx", dev->base_addr));
1358 printk("\n");
1359
1360 return 0;
1361
1362err_out_irq2:
1363 free_irq(bp->rx_dma_intr, dev);
1364err_out_irq1:
1365 free_irq(bp->tx_dma_intr, dev);
1366err_out_irq0:
1367 free_irq(dev->irq, dev);
1368err_out_iounmap_rx:
1369 iounmap(bp->rx_dma);
1370err_out_iounmap_tx:
1371 iounmap(bp->tx_dma);
1372err_out_iounmap:
1373 iounmap((void __iomem *)dev->base_addr);
1374out_release:
1375 macio_release_resources(mdev);
1376out_free:
1377 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1378 free_netdev(dev);
1379
1380 return -ENODEV;
1381}
1382
1383static int bmac_open(struct net_device *dev)
1384{
1385 struct bmac_data *bp = netdev_priv(dev);
1386 /* XXDEBUG(("bmac: enter open\n")); */
1387 /* reset the chip */
1388 bp->opened = 1;
1389 bmac_reset_and_enable(dev);
1390 enable_irq(dev->irq);
1391 return 0;
1392}
1393
1394static int bmac_close(struct net_device *dev)
1395{
1396 struct bmac_data *bp = netdev_priv(dev);
1397 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1398 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1399 unsigned short config;
1400 int i;
1401
1402 bp->sleeping = 1;
1403
1404 /* disable rx and tx */
1405 config = bmread(dev, RXCFG);
1406 bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1407
1408 config = bmread(dev, TXCFG);
1409 bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1410
1411 bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
1412
1413 /* disable rx and tx dma */
1414 rd->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
1415 td->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
1416
1417 /* free some skb's */
1418 XXDEBUG(("bmac: free rx bufs\n"));
1419 for (i=0; i<N_RX_RING; i++) {
1420 if (bp->rx_bufs[i] != NULL) {
1421 dev_kfree_skb(bp->rx_bufs[i]);
1422 bp->rx_bufs[i] = NULL;
1423 }
1424 }
1425 XXDEBUG(("bmac: free tx bufs\n"));
1426 for (i = 0; i<N_TX_RING; i++) {
1427 if (bp->tx_bufs[i] != NULL) {
1428 dev_kfree_skb(bp->tx_bufs[i]);
1429 bp->tx_bufs[i] = NULL;
1430 }
1431 }
1432 XXDEBUG(("bmac: all bufs freed\n"));
1433
1434 bp->opened = 0;
1435 disable_irq(dev->irq);
1436 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1437
1438 return 0;
1439}
1440
1441static void
1442bmac_start(struct net_device *dev)
1443{
1444 struct bmac_data *bp = netdev_priv(dev);
1445 int i;
1446 struct sk_buff *skb;
1447 unsigned long flags;
1448
1449 if (bp->sleeping)
1450 return;
1451
1452 spin_lock_irqsave(&bp->lock, flags);
1453 while (1) {
1454 i = bp->tx_fill + 1;
1455 if (i >= N_TX_RING)
1456 i = 0;
1457 if (i == bp->tx_empty)
1458 break;
1459 skb = skb_dequeue(bp->queue);
1460 if (skb == NULL)
1461 break;
1462 bmac_transmit_packet(skb, dev);
1463 }
1464 spin_unlock_irqrestore(&bp->lock, flags);
1465}
1466
1467static int
1468bmac_output(struct sk_buff *skb, struct net_device *dev)
1469{
1470 struct bmac_data *bp = netdev_priv(dev);
1471 skb_queue_tail(bp->queue, skb);
1472 bmac_start(dev);
1473 return NETDEV_TX_OK;
1474}
1475
1476static void bmac_tx_timeout(unsigned long data)
1477{
1478 struct net_device *dev = (struct net_device *) data;
1479 struct bmac_data *bp = netdev_priv(dev);
1480 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1481 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1482 volatile struct dbdma_cmd *cp;
1483 unsigned long flags;
1484 unsigned short config, oldConfig;
1485 int i;
1486
1487 XXDEBUG(("bmac: tx_timeout called\n"));
1488 spin_lock_irqsave(&bp->lock, flags);
1489 bp->timeout_active = 0;
1490
1491 /* update various counters */
1492/* bmac_handle_misc_intrs(bp, 0); */
1493
1494 cp = &bp->tx_cmds[bp->tx_empty];
1495/* XXDEBUG((KERN_DEBUG "bmac: tx dmastat=%x %x runt=%d pr=%x fs=%x fc=%x\n", */
1496/* le32_to_cpu(td->status), le16_to_cpu(cp->xfer_status), bp->tx_bad_runt, */
1497/* mb->pr, mb->xmtfs, mb->fifofc)); */
1498
1499 /* turn off both tx and rx and reset the chip */
1500 config = bmread(dev, RXCFG);
1501 bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1502 config = bmread(dev, TXCFG);
1503 bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1504 out_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1505 printk(KERN_ERR "bmac: transmit timeout - resetting\n");
1506 bmac_enable_and_reset_chip(dev);
1507
1508 /* restart rx dma */
1509 cp = bus_to_virt(le32_to_cpu(rd->cmdptr));
1510 out_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1511 out_le16(&cp->xfer_status, 0);
1512 out_le32(&rd->cmdptr, virt_to_bus(cp));
1513 out_le32(&rd->control, DBDMA_SET(RUN|WAKE));
1514
1515 /* fix up the transmit side */
1516 XXDEBUG((KERN_DEBUG "bmac: tx empty=%d fill=%d fullup=%d\n",
1517 bp->tx_empty, bp->tx_fill, bp->tx_fullup));
1518 i = bp->tx_empty;
1519 ++dev->stats.tx_errors;
1520 if (i != bp->tx_fill) {
1521 dev_kfree_skb(bp->tx_bufs[i]);
1522 bp->tx_bufs[i] = NULL;
1523 if (++i >= N_TX_RING) i = 0;
1524 bp->tx_empty = i;
1525 }
1526 bp->tx_fullup = 0;
1527 netif_wake_queue(dev);
1528 if (i != bp->tx_fill) {
1529 cp = &bp->tx_cmds[i];
1530 out_le16(&cp->xfer_status, 0);
1531 out_le16(&cp->command, OUTPUT_LAST);
1532 out_le32(&td->cmdptr, virt_to_bus(cp));
1533 out_le32(&td->control, DBDMA_SET(RUN));
1534 /* bmac_set_timeout(dev); */
1535 XXDEBUG((KERN_DEBUG "bmac: starting %d\n", i));
1536 }
1537
1538 /* turn it back on */
1539 oldConfig = bmread(dev, RXCFG);
1540 bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
1541 oldConfig = bmread(dev, TXCFG);
1542 bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
1543
1544 spin_unlock_irqrestore(&bp->lock, flags);
1545}
1546
1547#if 0
1548static void dump_dbdma(volatile struct dbdma_cmd *cp,int count)
1549{
1550 int i,*ip;
1551
1552 for (i=0;i< count;i++) {
1553 ip = (int*)(cp+i);
1554
1555 printk("dbdma req 0x%x addr 0x%x baddr 0x%x xfer/res 0x%x\n",
1556 le32_to_cpup(ip+0),
1557 le32_to_cpup(ip+1),
1558 le32_to_cpup(ip+2),
1559 le32_to_cpup(ip+3));
1560 }
1561
1562}
1563#endif
1564
1565#if 0
1566static int
1567bmac_proc_info(char *buffer, char **start, off_t offset, int length)
1568{
1569 int len = 0;
1570 off_t pos = 0;
1571 off_t begin = 0;
1572 int i;
1573
1574 if (bmac_devs == NULL)
1575 return -ENOSYS;
1576
1577 len += sprintf(buffer, "BMAC counters & registers\n");
1578
1579 for (i = 0; i<N_REG_ENTRIES; i++) {
1580 len += sprintf(buffer + len, "%s: %#08x\n",
1581 reg_entries[i].name,
1582 bmread(bmac_devs, reg_entries[i].reg_offset));
1583 pos = begin + len;
1584
1585 if (pos < offset) {
1586 len = 0;
1587 begin = pos;
1588 }
1589
1590 if (pos > offset+length) break;
1591 }
1592
1593 *start = buffer + (offset - begin);
1594 len -= (offset - begin);
1595
1596 if (len > length) len = length;
1597
1598 return len;
1599}
1600#endif
1601
1602static int bmac_remove(struct macio_dev *mdev)
1603{
1604 struct net_device *dev = macio_get_drvdata(mdev);
1605 struct bmac_data *bp = netdev_priv(dev);
1606
1607 unregister_netdev(dev);
1608
1609 free_irq(dev->irq, dev);
1610 free_irq(bp->tx_dma_intr, dev);
1611 free_irq(bp->rx_dma_intr, dev);
1612
1613 iounmap((void __iomem *)dev->base_addr);
1614 iounmap(bp->tx_dma);
1615 iounmap(bp->rx_dma);
1616
1617 macio_release_resources(mdev);
1618
1619 free_netdev(dev);
1620
1621 return 0;
1622}
1623
1624static const struct of_device_id bmac_match[] =
1625{
1626 {
1627 .name = "bmac",
1628 .data = (void *)0,
1629 },
1630 {
1631 .type = "network",
1632 .compatible = "bmac+",
1633 .data = (void *)1,
1634 },
1635 {},
1636};
1637MODULE_DEVICE_TABLE (of, bmac_match);
1638
1639static struct macio_driver bmac_driver =
1640{
1641 .driver = {
1642 .name = "bmac",
1643 .owner = THIS_MODULE,
1644 .of_match_table = bmac_match,
1645 },
1646 .probe = bmac_probe,
1647 .remove = bmac_remove,
1648#ifdef CONFIG_PM
1649 .suspend = bmac_suspend,
1650 .resume = bmac_resume,
1651#endif
1652};
1653
1654
1655static int __init bmac_init(void)
1656{
1657 if (bmac_emergency_rxbuf == NULL) {
1658 bmac_emergency_rxbuf = kmalloc(RX_BUFLEN, GFP_KERNEL);
1659 if (bmac_emergency_rxbuf == NULL)
1660 return -ENOMEM;
1661 }
1662
1663 return macio_register_driver(&bmac_driver);
1664}
1665
1666static void __exit bmac_exit(void)
1667{
1668 macio_unregister_driver(&bmac_driver);
1669
1670 kfree(bmac_emergency_rxbuf);
1671 bmac_emergency_rxbuf = NULL;
1672}
1673
1674MODULE_AUTHOR("Randy Gobbel/Paul Mackerras");
1675MODULE_DESCRIPTION("PowerMac BMAC ethernet driver.");
1676MODULE_LICENSE("GPL");
1677
1678module_init(bmac_init);
1679module_exit(bmac_exit);