Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * Cryptographic API.
   3 *
   4 * Support for ATMEL SHA1/SHA256 HW acceleration.
   5 *
   6 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
   7 * Author: Nicolas Royer <nicolas@eukrea.com>
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as published
  11 * by the Free Software Foundation.
  12 *
  13 * Some ideas are from omap-sham.c drivers.
  14 */
  15
  16
  17#include <linux/kernel.h>
  18#include <linux/module.h>
  19#include <linux/slab.h>
  20#include <linux/err.h>
  21#include <linux/clk.h>
  22#include <linux/io.h>
  23#include <linux/hw_random.h>
  24#include <linux/platform_device.h>
  25
  26#include <linux/device.h>
  27#include <linux/init.h>
  28#include <linux/errno.h>
  29#include <linux/interrupt.h>
  30#include <linux/irq.h>
  31#include <linux/scatterlist.h>
  32#include <linux/dma-mapping.h>
  33#include <linux/of_device.h>
  34#include <linux/delay.h>
  35#include <linux/crypto.h>
  36#include <linux/cryptohash.h>
  37#include <crypto/scatterwalk.h>
  38#include <crypto/algapi.h>
  39#include <crypto/sha.h>
  40#include <crypto/hash.h>
  41#include <crypto/internal/hash.h>
  42#include <linux/platform_data/crypto-atmel.h>
  43#include "atmel-sha-regs.h"
  44#include "atmel-authenc.h"
  45
  46/* SHA flags */
  47#define SHA_FLAGS_BUSY			BIT(0)
  48#define	SHA_FLAGS_FINAL			BIT(1)
  49#define SHA_FLAGS_DMA_ACTIVE	BIT(2)
  50#define SHA_FLAGS_OUTPUT_READY	BIT(3)
  51#define SHA_FLAGS_INIT			BIT(4)
  52#define SHA_FLAGS_CPU			BIT(5)
  53#define SHA_FLAGS_DMA_READY		BIT(6)
  54#define SHA_FLAGS_DUMP_REG	BIT(7)
  55
  56/* bits[11:8] are reserved. */
  57
  58#define SHA_FLAGS_FINUP		BIT(16)
  59#define SHA_FLAGS_SG		BIT(17)
 
 
 
 
 
 
  60#define SHA_FLAGS_ERROR		BIT(23)
  61#define SHA_FLAGS_PAD		BIT(24)
  62#define SHA_FLAGS_RESTORE	BIT(25)
  63#define SHA_FLAGS_IDATAR0	BIT(26)
  64#define SHA_FLAGS_WAIT_DATARDY	BIT(27)
  65
  66#define SHA_OP_INIT	0
  67#define SHA_OP_UPDATE	1
  68#define SHA_OP_FINAL	2
  69#define SHA_OP_DIGEST	3
  70
  71#define SHA_BUFFER_LEN		(PAGE_SIZE / 16)
  72
  73#define ATMEL_SHA_DMA_THRESHOLD		56
  74
  75struct atmel_sha_caps {
  76	bool	has_dma;
  77	bool	has_dualbuff;
  78	bool	has_sha224;
  79	bool	has_sha_384_512;
  80	bool	has_uihv;
  81	bool	has_hmac;
  82};
  83
  84struct atmel_sha_dev;
  85
  86/*
  87 * .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
  88 * tested by the ahash_prepare_alg() function.
  89 */
  90struct atmel_sha_reqctx {
  91	struct atmel_sha_dev	*dd;
  92	unsigned long	flags;
  93	unsigned long	op;
  94
  95	u8	digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
  96	u64	digcnt[2];
  97	size_t	bufcnt;
  98	size_t	buflen;
  99	dma_addr_t	dma_addr;
 100
 101	/* walk state */
 102	struct scatterlist	*sg;
 103	unsigned int	offset;	/* offset in current sg */
 104	unsigned int	total;	/* total request */
 105
 106	size_t block_size;
 107	size_t hash_size;
 108
 109	u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
 110};
 111
 112typedef int (*atmel_sha_fn_t)(struct atmel_sha_dev *);
 113
 114struct atmel_sha_ctx {
 115	struct atmel_sha_dev	*dd;
 116	atmel_sha_fn_t		start;
 117
 118	unsigned long		flags;
 119};
 120
 121#define ATMEL_SHA_QUEUE_LENGTH	50
 122
 123struct atmel_sha_dma {
 124	struct dma_chan			*chan;
 125	struct dma_slave_config dma_conf;
 126	struct scatterlist	*sg;
 127	int			nents;
 128	unsigned int		last_sg_length;
 129};
 130
 131struct atmel_sha_dev {
 132	struct list_head	list;
 133	unsigned long		phys_base;
 134	struct device		*dev;
 135	struct clk			*iclk;
 136	int					irq;
 137	void __iomem		*io_base;
 138
 139	spinlock_t		lock;
 140	int			err;
 141	struct tasklet_struct	done_task;
 142	struct tasklet_struct	queue_task;
 143
 144	unsigned long		flags;
 145	struct crypto_queue	queue;
 146	struct ahash_request	*req;
 147	bool			is_async;
 148	bool			force_complete;
 149	atmel_sha_fn_t		resume;
 150	atmel_sha_fn_t		cpu_transfer_complete;
 151
 152	struct atmel_sha_dma	dma_lch_in;
 153
 154	struct atmel_sha_caps	caps;
 155
 156	struct scatterlist	tmp;
 157
 158	u32	hw_version;
 159};
 160
 161struct atmel_sha_drv {
 162	struct list_head	dev_list;
 163	spinlock_t		lock;
 164};
 165
 166static struct atmel_sha_drv atmel_sha = {
 167	.dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
 168	.lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
 169};
 170
 171#ifdef VERBOSE_DEBUG
 172static const char *atmel_sha_reg_name(u32 offset, char *tmp, size_t sz, bool wr)
 173{
 174	switch (offset) {
 175	case SHA_CR:
 176		return "CR";
 177
 178	case SHA_MR:
 179		return "MR";
 180
 181	case SHA_IER:
 182		return "IER";
 183
 184	case SHA_IDR:
 185		return "IDR";
 186
 187	case SHA_IMR:
 188		return "IMR";
 189
 190	case SHA_ISR:
 191		return "ISR";
 192
 193	case SHA_MSR:
 194		return "MSR";
 195
 196	case SHA_BCR:
 197		return "BCR";
 198
 199	case SHA_REG_DIN(0):
 200	case SHA_REG_DIN(1):
 201	case SHA_REG_DIN(2):
 202	case SHA_REG_DIN(3):
 203	case SHA_REG_DIN(4):
 204	case SHA_REG_DIN(5):
 205	case SHA_REG_DIN(6):
 206	case SHA_REG_DIN(7):
 207	case SHA_REG_DIN(8):
 208	case SHA_REG_DIN(9):
 209	case SHA_REG_DIN(10):
 210	case SHA_REG_DIN(11):
 211	case SHA_REG_DIN(12):
 212	case SHA_REG_DIN(13):
 213	case SHA_REG_DIN(14):
 214	case SHA_REG_DIN(15):
 215		snprintf(tmp, sz, "IDATAR[%u]", (offset - SHA_REG_DIN(0)) >> 2);
 216		break;
 217
 218	case SHA_REG_DIGEST(0):
 219	case SHA_REG_DIGEST(1):
 220	case SHA_REG_DIGEST(2):
 221	case SHA_REG_DIGEST(3):
 222	case SHA_REG_DIGEST(4):
 223	case SHA_REG_DIGEST(5):
 224	case SHA_REG_DIGEST(6):
 225	case SHA_REG_DIGEST(7):
 226	case SHA_REG_DIGEST(8):
 227	case SHA_REG_DIGEST(9):
 228	case SHA_REG_DIGEST(10):
 229	case SHA_REG_DIGEST(11):
 230	case SHA_REG_DIGEST(12):
 231	case SHA_REG_DIGEST(13):
 232	case SHA_REG_DIGEST(14):
 233	case SHA_REG_DIGEST(15):
 234		if (wr)
 235			snprintf(tmp, sz, "IDATAR[%u]",
 236				 16u + ((offset - SHA_REG_DIGEST(0)) >> 2));
 237		else
 238			snprintf(tmp, sz, "ODATAR[%u]",
 239				 (offset - SHA_REG_DIGEST(0)) >> 2);
 240		break;
 241
 242	case SHA_HW_VERSION:
 243		return "HWVER";
 244
 245	default:
 246		snprintf(tmp, sz, "0x%02x", offset);
 247		break;
 248	}
 249
 250	return tmp;
 251}
 252
 253#endif /* VERBOSE_DEBUG */
 254
 255static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
 256{
 257	u32 value = readl_relaxed(dd->io_base + offset);
 258
 259#ifdef VERBOSE_DEBUG
 260	if (dd->flags & SHA_FLAGS_DUMP_REG) {
 261		char tmp[16];
 262
 263		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
 264			 atmel_sha_reg_name(offset, tmp, sizeof(tmp), false));
 265	}
 266#endif /* VERBOSE_DEBUG */
 267
 268	return value;
 269}
 270
 271static inline void atmel_sha_write(struct atmel_sha_dev *dd,
 272					u32 offset, u32 value)
 273{
 274#ifdef VERBOSE_DEBUG
 275	if (dd->flags & SHA_FLAGS_DUMP_REG) {
 276		char tmp[16];
 277
 278		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
 279			 atmel_sha_reg_name(offset, tmp, sizeof(tmp), true));
 280	}
 281#endif /* VERBOSE_DEBUG */
 282
 283	writel_relaxed(value, dd->io_base + offset);
 284}
 285
 286static inline int atmel_sha_complete(struct atmel_sha_dev *dd, int err)
 287{
 288	struct ahash_request *req = dd->req;
 289
 290	dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
 291		       SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY |
 292		       SHA_FLAGS_DUMP_REG);
 293
 294	clk_disable(dd->iclk);
 295
 296	if ((dd->is_async || dd->force_complete) && req->base.complete)
 297		req->base.complete(&req->base, err);
 298
 299	/* handle new request */
 300	tasklet_schedule(&dd->queue_task);
 301
 302	return err;
 303}
 304
 305static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
 306{
 307	size_t count;
 308
 309	while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
 310		count = min(ctx->sg->length - ctx->offset, ctx->total);
 311		count = min(count, ctx->buflen - ctx->bufcnt);
 312
 313		if (count <= 0) {
 314			/*
 315			* Check if count <= 0 because the buffer is full or
 316			* because the sg length is 0. In the latest case,
 317			* check if there is another sg in the list, a 0 length
 318			* sg doesn't necessarily mean the end of the sg list.
 319			*/
 320			if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
 321				ctx->sg = sg_next(ctx->sg);
 322				continue;
 323			} else {
 324				break;
 325			}
 326		}
 327
 328		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
 329			ctx->offset, count, 0);
 330
 331		ctx->bufcnt += count;
 332		ctx->offset += count;
 333		ctx->total -= count;
 334
 335		if (ctx->offset == ctx->sg->length) {
 336			ctx->sg = sg_next(ctx->sg);
 337			if (ctx->sg)
 338				ctx->offset = 0;
 339			else
 340				ctx->total = 0;
 341		}
 342	}
 343
 344	return 0;
 345}
 346
 347/*
 348 * The purpose of this padding is to ensure that the padded message is a
 349 * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
 350 * The bit "1" is appended at the end of the message followed by
 351 * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
 352 * 128 bits block (SHA384/SHA512) equals to the message length in bits
 353 * is appended.
 354 *
 355 * For SHA1/SHA224/SHA256, padlen is calculated as followed:
 356 *  - if message length < 56 bytes then padlen = 56 - message length
 357 *  - else padlen = 64 + 56 - message length
 358 *
 359 * For SHA384/SHA512, padlen is calculated as followed:
 360 *  - if message length < 112 bytes then padlen = 112 - message length
 361 *  - else padlen = 128 + 112 - message length
 362 */
 363static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
 364{
 365	unsigned int index, padlen;
 366	u64 bits[2];
 367	u64 size[2];
 368
 369	size[0] = ctx->digcnt[0];
 370	size[1] = ctx->digcnt[1];
 371
 372	size[0] += ctx->bufcnt;
 373	if (size[0] < ctx->bufcnt)
 374		size[1]++;
 375
 376	size[0] += length;
 377	if (size[0]  < length)
 378		size[1]++;
 379
 380	bits[1] = cpu_to_be64(size[0] << 3);
 381	bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
 382
 383	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
 384	case SHA_FLAGS_SHA384:
 385	case SHA_FLAGS_SHA512:
 386		index = ctx->bufcnt & 0x7f;
 387		padlen = (index < 112) ? (112 - index) : ((128+112) - index);
 388		*(ctx->buffer + ctx->bufcnt) = 0x80;
 389		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
 390		memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
 391		ctx->bufcnt += padlen + 16;
 392		ctx->flags |= SHA_FLAGS_PAD;
 393		break;
 394
 395	default:
 396		index = ctx->bufcnt & 0x3f;
 397		padlen = (index < 56) ? (56 - index) : ((64+56) - index);
 398		*(ctx->buffer + ctx->bufcnt) = 0x80;
 399		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
 400		memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
 401		ctx->bufcnt += padlen + 8;
 402		ctx->flags |= SHA_FLAGS_PAD;
 403		break;
 404	}
 405}
 406
 407static struct atmel_sha_dev *atmel_sha_find_dev(struct atmel_sha_ctx *tctx)
 408{
 
 
 
 409	struct atmel_sha_dev *dd = NULL;
 410	struct atmel_sha_dev *tmp;
 411
 412	spin_lock_bh(&atmel_sha.lock);
 413	if (!tctx->dd) {
 414		list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
 415			dd = tmp;
 416			break;
 417		}
 418		tctx->dd = dd;
 419	} else {
 420		dd = tctx->dd;
 421	}
 422
 423	spin_unlock_bh(&atmel_sha.lock);
 424
 425	return dd;
 426}
 427
 428static int atmel_sha_init(struct ahash_request *req)
 429{
 430	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 431	struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
 432	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 433	struct atmel_sha_dev *dd = atmel_sha_find_dev(tctx);
 434
 435	ctx->dd = dd;
 436
 437	ctx->flags = 0;
 438
 439	dev_dbg(dd->dev, "init: digest size: %d\n",
 440		crypto_ahash_digestsize(tfm));
 441
 442	switch (crypto_ahash_digestsize(tfm)) {
 443	case SHA1_DIGEST_SIZE:
 444		ctx->flags |= SHA_FLAGS_SHA1;
 445		ctx->block_size = SHA1_BLOCK_SIZE;
 446		break;
 447	case SHA224_DIGEST_SIZE:
 448		ctx->flags |= SHA_FLAGS_SHA224;
 449		ctx->block_size = SHA224_BLOCK_SIZE;
 450		break;
 451	case SHA256_DIGEST_SIZE:
 452		ctx->flags |= SHA_FLAGS_SHA256;
 453		ctx->block_size = SHA256_BLOCK_SIZE;
 454		break;
 455	case SHA384_DIGEST_SIZE:
 456		ctx->flags |= SHA_FLAGS_SHA384;
 457		ctx->block_size = SHA384_BLOCK_SIZE;
 458		break;
 459	case SHA512_DIGEST_SIZE:
 460		ctx->flags |= SHA_FLAGS_SHA512;
 461		ctx->block_size = SHA512_BLOCK_SIZE;
 462		break;
 463	default:
 464		return -EINVAL;
 465		break;
 466	}
 467
 468	ctx->bufcnt = 0;
 469	ctx->digcnt[0] = 0;
 470	ctx->digcnt[1] = 0;
 471	ctx->buflen = SHA_BUFFER_LEN;
 472
 473	return 0;
 474}
 475
 476static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
 477{
 478	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 479	u32 valmr = SHA_MR_MODE_AUTO;
 480	unsigned int i, hashsize = 0;
 481
 482	if (likely(dma)) {
 483		if (!dd->caps.has_dma)
 484			atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
 485		valmr = SHA_MR_MODE_PDC;
 486		if (dd->caps.has_dualbuff)
 487			valmr |= SHA_MR_DUALBUFF;
 488	} else {
 489		atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
 490	}
 491
 492	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
 493	case SHA_FLAGS_SHA1:
 494		valmr |= SHA_MR_ALGO_SHA1;
 495		hashsize = SHA1_DIGEST_SIZE;
 496		break;
 497
 498	case SHA_FLAGS_SHA224:
 499		valmr |= SHA_MR_ALGO_SHA224;
 500		hashsize = SHA256_DIGEST_SIZE;
 501		break;
 502
 503	case SHA_FLAGS_SHA256:
 504		valmr |= SHA_MR_ALGO_SHA256;
 505		hashsize = SHA256_DIGEST_SIZE;
 506		break;
 507
 508	case SHA_FLAGS_SHA384:
 509		valmr |= SHA_MR_ALGO_SHA384;
 510		hashsize = SHA512_DIGEST_SIZE;
 511		break;
 512
 513	case SHA_FLAGS_SHA512:
 514		valmr |= SHA_MR_ALGO_SHA512;
 515		hashsize = SHA512_DIGEST_SIZE;
 516		break;
 517
 518	default:
 519		break;
 520	}
 521
 522	/* Setting CR_FIRST only for the first iteration */
 523	if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
 524		atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
 525	} else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
 526		const u32 *hash = (const u32 *)ctx->digest;
 527
 528		/*
 529		 * Restore the hardware context: update the User Initialize
 530		 * Hash Value (UIHV) with the value saved when the latest
 531		 * 'update' operation completed on this very same crypto
 532		 * request.
 533		 */
 534		ctx->flags &= ~SHA_FLAGS_RESTORE;
 535		atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
 536		for (i = 0; i < hashsize / sizeof(u32); ++i)
 537			atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
 538		atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
 539		valmr |= SHA_MR_UIHV;
 540	}
 541	/*
 542	 * WARNING: If the UIHV feature is not available, the hardware CANNOT
 543	 * process concurrent requests: the internal registers used to store
 544	 * the hash/digest are still set to the partial digest output values
 545	 * computed during the latest round.
 546	 */
 547
 548	atmel_sha_write(dd, SHA_MR, valmr);
 549}
 550
 551static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev *dd,
 552						atmel_sha_fn_t resume)
 553{
 554	u32 isr = atmel_sha_read(dd, SHA_ISR);
 555
 556	if (unlikely(isr & SHA_INT_DATARDY))
 557		return resume(dd);
 558
 559	dd->resume = resume;
 560	atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
 561	return -EINPROGRESS;
 562}
 563
 564static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
 565			      size_t length, int final)
 566{
 567	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 568	int count, len32;
 569	const u32 *buffer = (const u32 *)buf;
 570
 571	dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
 572		ctx->digcnt[1], ctx->digcnt[0], length, final);
 573
 574	atmel_sha_write_ctrl(dd, 0);
 575
 576	/* should be non-zero before next lines to disable clocks later */
 577	ctx->digcnt[0] += length;
 578	if (ctx->digcnt[0] < length)
 579		ctx->digcnt[1]++;
 580
 581	if (final)
 582		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
 583
 584	len32 = DIV_ROUND_UP(length, sizeof(u32));
 585
 586	dd->flags |= SHA_FLAGS_CPU;
 587
 588	for (count = 0; count < len32; count++)
 589		atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
 590
 591	return -EINPROGRESS;
 592}
 593
 594static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
 595		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
 596{
 597	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 598	int len32;
 599
 600	dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
 601		ctx->digcnt[1], ctx->digcnt[0], length1, final);
 602
 603	len32 = DIV_ROUND_UP(length1, sizeof(u32));
 604	atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
 605	atmel_sha_write(dd, SHA_TPR, dma_addr1);
 606	atmel_sha_write(dd, SHA_TCR, len32);
 607
 608	len32 = DIV_ROUND_UP(length2, sizeof(u32));
 609	atmel_sha_write(dd, SHA_TNPR, dma_addr2);
 610	atmel_sha_write(dd, SHA_TNCR, len32);
 611
 612	atmel_sha_write_ctrl(dd, 1);
 613
 614	/* should be non-zero before next lines to disable clocks later */
 615	ctx->digcnt[0] += length1;
 616	if (ctx->digcnt[0] < length1)
 617		ctx->digcnt[1]++;
 618
 619	if (final)
 620		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
 621
 622	dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
 623
 624	/* Start DMA transfer */
 625	atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
 626
 627	return -EINPROGRESS;
 628}
 629
 630static void atmel_sha_dma_callback(void *data)
 631{
 632	struct atmel_sha_dev *dd = data;
 633
 634	dd->is_async = true;
 635
 636	/* dma_lch_in - completed - wait DATRDY */
 637	atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
 638}
 639
 640static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
 641		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
 642{
 643	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 644	struct dma_async_tx_descriptor	*in_desc;
 645	struct scatterlist sg[2];
 646
 647	dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
 648		ctx->digcnt[1], ctx->digcnt[0], length1, final);
 649
 650	dd->dma_lch_in.dma_conf.src_maxburst = 16;
 651	dd->dma_lch_in.dma_conf.dst_maxburst = 16;
 652
 653	dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
 654
 655	if (length2) {
 656		sg_init_table(sg, 2);
 657		sg_dma_address(&sg[0]) = dma_addr1;
 658		sg_dma_len(&sg[0]) = length1;
 659		sg_dma_address(&sg[1]) = dma_addr2;
 660		sg_dma_len(&sg[1]) = length2;
 661		in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
 662			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 663	} else {
 664		sg_init_table(sg, 1);
 665		sg_dma_address(&sg[0]) = dma_addr1;
 666		sg_dma_len(&sg[0]) = length1;
 667		in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
 668			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 669	}
 670	if (!in_desc)
 671		return atmel_sha_complete(dd, -EINVAL);
 672
 673	in_desc->callback = atmel_sha_dma_callback;
 674	in_desc->callback_param = dd;
 675
 676	atmel_sha_write_ctrl(dd, 1);
 677
 678	/* should be non-zero before next lines to disable clocks later */
 679	ctx->digcnt[0] += length1;
 680	if (ctx->digcnt[0] < length1)
 681		ctx->digcnt[1]++;
 682
 683	if (final)
 684		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
 685
 686	dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
 687
 688	/* Start DMA transfer */
 689	dmaengine_submit(in_desc);
 690	dma_async_issue_pending(dd->dma_lch_in.chan);
 691
 692	return -EINPROGRESS;
 693}
 694
 695static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
 696		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
 697{
 698	if (dd->caps.has_dma)
 699		return atmel_sha_xmit_dma(dd, dma_addr1, length1,
 700				dma_addr2, length2, final);
 701	else
 702		return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
 703				dma_addr2, length2, final);
 704}
 705
 706static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
 707{
 708	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 709	int bufcnt;
 710
 711	atmel_sha_append_sg(ctx);
 712	atmel_sha_fill_padding(ctx, 0);
 713	bufcnt = ctx->bufcnt;
 714	ctx->bufcnt = 0;
 715
 716	return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
 717}
 718
 719static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
 720					struct atmel_sha_reqctx *ctx,
 721					size_t length, int final)
 722{
 723	ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
 724				ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
 725	if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
 726		dev_err(dd->dev, "dma %zu bytes error\n", ctx->buflen +
 727				ctx->block_size);
 728		return atmel_sha_complete(dd, -EINVAL);
 729	}
 730
 731	ctx->flags &= ~SHA_FLAGS_SG;
 732
 733	/* next call does not fail... so no unmap in the case of error */
 734	return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
 735}
 736
 737static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
 738{
 739	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 740	unsigned int final;
 741	size_t count;
 742
 743	atmel_sha_append_sg(ctx);
 744
 745	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
 746
 747	dev_dbg(dd->dev, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n",
 748		 ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
 749
 750	if (final)
 751		atmel_sha_fill_padding(ctx, 0);
 752
 753	if (final || (ctx->bufcnt == ctx->buflen)) {
 754		count = ctx->bufcnt;
 755		ctx->bufcnt = 0;
 756		return atmel_sha_xmit_dma_map(dd, ctx, count, final);
 757	}
 758
 759	return 0;
 760}
 761
 762static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
 763{
 764	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 765	unsigned int length, final, tail;
 766	struct scatterlist *sg;
 767	unsigned int count;
 768
 769	if (!ctx->total)
 770		return 0;
 771
 772	if (ctx->bufcnt || ctx->offset)
 773		return atmel_sha_update_dma_slow(dd);
 774
 775	dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n",
 776		ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
 777
 778	sg = ctx->sg;
 779
 780	if (!IS_ALIGNED(sg->offset, sizeof(u32)))
 781		return atmel_sha_update_dma_slow(dd);
 782
 783	if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
 784		/* size is not ctx->block_size aligned */
 785		return atmel_sha_update_dma_slow(dd);
 786
 787	length = min(ctx->total, sg->length);
 788
 789	if (sg_is_last(sg)) {
 790		if (!(ctx->flags & SHA_FLAGS_FINUP)) {
 791			/* not last sg must be ctx->block_size aligned */
 792			tail = length & (ctx->block_size - 1);
 793			length -= tail;
 794		}
 795	}
 796
 797	ctx->total -= length;
 798	ctx->offset = length; /* offset where to start slow */
 799
 800	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
 801
 802	/* Add padding */
 803	if (final) {
 804		tail = length & (ctx->block_size - 1);
 805		length -= tail;
 806		ctx->total += tail;
 807		ctx->offset = length; /* offset where to start slow */
 808
 809		sg = ctx->sg;
 810		atmel_sha_append_sg(ctx);
 811
 812		atmel_sha_fill_padding(ctx, length);
 813
 814		ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
 815			ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
 816		if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
 817			dev_err(dd->dev, "dma %zu bytes error\n",
 818				ctx->buflen + ctx->block_size);
 819			return atmel_sha_complete(dd, -EINVAL);
 820		}
 821
 822		if (length == 0) {
 823			ctx->flags &= ~SHA_FLAGS_SG;
 824			count = ctx->bufcnt;
 825			ctx->bufcnt = 0;
 826			return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
 827					0, final);
 828		} else {
 829			ctx->sg = sg;
 830			if (!dma_map_sg(dd->dev, ctx->sg, 1,
 831				DMA_TO_DEVICE)) {
 832					dev_err(dd->dev, "dma_map_sg  error\n");
 833					return atmel_sha_complete(dd, -EINVAL);
 834			}
 835
 836			ctx->flags |= SHA_FLAGS_SG;
 837
 838			count = ctx->bufcnt;
 839			ctx->bufcnt = 0;
 840			return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
 841					length, ctx->dma_addr, count, final);
 842		}
 843	}
 844
 845	if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
 846		dev_err(dd->dev, "dma_map_sg  error\n");
 847		return atmel_sha_complete(dd, -EINVAL);
 848	}
 849
 850	ctx->flags |= SHA_FLAGS_SG;
 851
 852	/* next call does not fail... so no unmap in the case of error */
 853	return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
 854								0, final);
 855}
 856
 857static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
 858{
 859	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 860
 861	if (ctx->flags & SHA_FLAGS_SG) {
 862		dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
 863		if (ctx->sg->length == ctx->offset) {
 864			ctx->sg = sg_next(ctx->sg);
 865			if (ctx->sg)
 866				ctx->offset = 0;
 867		}
 868		if (ctx->flags & SHA_FLAGS_PAD) {
 869			dma_unmap_single(dd->dev, ctx->dma_addr,
 870				ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
 871		}
 872	} else {
 873		dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
 874						ctx->block_size, DMA_TO_DEVICE);
 875	}
 876
 877	return 0;
 878}
 879
 880static int atmel_sha_update_req(struct atmel_sha_dev *dd)
 881{
 882	struct ahash_request *req = dd->req;
 883	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 884	int err;
 885
 886	dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
 887		ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
 888
 889	if (ctx->flags & SHA_FLAGS_CPU)
 890		err = atmel_sha_update_cpu(dd);
 891	else
 892		err = atmel_sha_update_dma_start(dd);
 893
 894	/* wait for dma completion before can take more data */
 895	dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
 896			err, ctx->digcnt[1], ctx->digcnt[0]);
 897
 898	return err;
 899}
 900
 901static int atmel_sha_final_req(struct atmel_sha_dev *dd)
 902{
 903	struct ahash_request *req = dd->req;
 904	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 905	int err = 0;
 906	int count;
 907
 908	if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
 909		atmel_sha_fill_padding(ctx, 0);
 910		count = ctx->bufcnt;
 911		ctx->bufcnt = 0;
 912		err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
 913	}
 914	/* faster to handle last block with cpu */
 915	else {
 916		atmel_sha_fill_padding(ctx, 0);
 917		count = ctx->bufcnt;
 918		ctx->bufcnt = 0;
 919		err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
 920	}
 921
 922	dev_dbg(dd->dev, "final_req: err: %d\n", err);
 923
 924	return err;
 925}
 926
 927static void atmel_sha_copy_hash(struct ahash_request *req)
 928{
 929	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 930	u32 *hash = (u32 *)ctx->digest;
 931	unsigned int i, hashsize;
 932
 933	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
 934	case SHA_FLAGS_SHA1:
 935		hashsize = SHA1_DIGEST_SIZE;
 936		break;
 937
 938	case SHA_FLAGS_SHA224:
 939	case SHA_FLAGS_SHA256:
 940		hashsize = SHA256_DIGEST_SIZE;
 941		break;
 942
 943	case SHA_FLAGS_SHA384:
 944	case SHA_FLAGS_SHA512:
 945		hashsize = SHA512_DIGEST_SIZE;
 946		break;
 947
 948	default:
 949		/* Should not happen... */
 950		return;
 951	}
 952
 953	for (i = 0; i < hashsize / sizeof(u32); ++i)
 954		hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
 955	ctx->flags |= SHA_FLAGS_RESTORE;
 956}
 957
 958static void atmel_sha_copy_ready_hash(struct ahash_request *req)
 959{
 960	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 961
 962	if (!req->result)
 963		return;
 964
 965	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
 966	default:
 967	case SHA_FLAGS_SHA1:
 968		memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
 969		break;
 970
 971	case SHA_FLAGS_SHA224:
 972		memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
 973		break;
 974
 975	case SHA_FLAGS_SHA256:
 976		memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
 977		break;
 978
 979	case SHA_FLAGS_SHA384:
 980		memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
 981		break;
 982
 983	case SHA_FLAGS_SHA512:
 984		memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
 985		break;
 986	}
 987}
 988
 989static int atmel_sha_finish(struct ahash_request *req)
 990{
 991	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 992	struct atmel_sha_dev *dd = ctx->dd;
 993
 994	if (ctx->digcnt[0] || ctx->digcnt[1])
 995		atmel_sha_copy_ready_hash(req);
 996
 997	dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx->digcnt[1],
 998		ctx->digcnt[0], ctx->bufcnt);
 999
1000	return 0;
1001}
1002
1003static void atmel_sha_finish_req(struct ahash_request *req, int err)
1004{
1005	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1006	struct atmel_sha_dev *dd = ctx->dd;
1007
1008	if (!err) {
1009		atmel_sha_copy_hash(req);
1010		if (SHA_FLAGS_FINAL & dd->flags)
1011			err = atmel_sha_finish(req);
1012	} else {
1013		ctx->flags |= SHA_FLAGS_ERROR;
1014	}
1015
1016	/* atomic operation is not needed here */
1017	(void)atmel_sha_complete(dd, err);
 
 
 
 
 
 
 
 
 
1018}
1019
1020static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
1021{
1022	int err;
1023
1024	err = clk_enable(dd->iclk);
1025	if (err)
1026		return err;
1027
1028	if (!(SHA_FLAGS_INIT & dd->flags)) {
1029		atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
1030		dd->flags |= SHA_FLAGS_INIT;
1031		dd->err = 0;
1032	}
1033
1034	return 0;
1035}
1036
1037static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
1038{
1039	return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
1040}
1041
1042static void atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
1043{
1044	atmel_sha_hw_init(dd);
1045
1046	dd->hw_version = atmel_sha_get_version(dd);
1047
1048	dev_info(dd->dev,
1049			"version: 0x%x\n", dd->hw_version);
1050
1051	clk_disable(dd->iclk);
1052}
1053
1054static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
1055				  struct ahash_request *req)
1056{
1057	struct crypto_async_request *async_req, *backlog;
1058	struct atmel_sha_ctx *ctx;
1059	unsigned long flags;
1060	bool start_async;
1061	int err = 0, ret = 0;
1062
1063	spin_lock_irqsave(&dd->lock, flags);
1064	if (req)
1065		ret = ahash_enqueue_request(&dd->queue, req);
1066
1067	if (SHA_FLAGS_BUSY & dd->flags) {
1068		spin_unlock_irqrestore(&dd->lock, flags);
1069		return ret;
1070	}
1071
1072	backlog = crypto_get_backlog(&dd->queue);
1073	async_req = crypto_dequeue_request(&dd->queue);
1074	if (async_req)
1075		dd->flags |= SHA_FLAGS_BUSY;
1076
1077	spin_unlock_irqrestore(&dd->lock, flags);
1078
1079	if (!async_req)
1080		return ret;
1081
1082	if (backlog)
1083		backlog->complete(backlog, -EINPROGRESS);
1084
1085	ctx = crypto_tfm_ctx(async_req->tfm);
1086
1087	dd->req = ahash_request_cast(async_req);
1088	start_async = (dd->req != req);
1089	dd->is_async = start_async;
1090	dd->force_complete = false;
1091
1092	/* WARNING: ctx->start() MAY change dd->is_async. */
1093	err = ctx->start(dd);
1094	return (start_async) ? ret : err;
1095}
1096
1097static int atmel_sha_done(struct atmel_sha_dev *dd);
1098
1099static int atmel_sha_start(struct atmel_sha_dev *dd)
1100{
1101	struct ahash_request *req = dd->req;
1102	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1103	int err;
1104
1105	dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
1106						ctx->op, req->nbytes);
1107
1108	err = atmel_sha_hw_init(dd);
1109	if (err)
1110		return atmel_sha_complete(dd, err);
1111
1112	/*
1113	 * atmel_sha_update_req() and atmel_sha_final_req() can return either:
1114	 *  -EINPROGRESS: the hardware is busy and the SHA driver will resume
1115	 *                its job later in the done_task.
1116	 *                This is the main path.
1117	 *
1118	 * 0: the SHA driver can continue its job then release the hardware
1119	 *    later, if needed, with atmel_sha_finish_req().
1120	 *    This is the alternate path.
1121	 *
1122	 * < 0: an error has occurred so atmel_sha_complete(dd, err) has already
1123	 *      been called, hence the hardware has been released.
1124	 *      The SHA driver must stop its job without calling
1125	 *      atmel_sha_finish_req(), otherwise atmel_sha_complete() would be
1126	 *      called a second time.
1127	 *
1128	 * Please note that currently, atmel_sha_final_req() never returns 0.
1129	 */
1130
1131	dd->resume = atmel_sha_done;
1132	if (ctx->op == SHA_OP_UPDATE) {
1133		err = atmel_sha_update_req(dd);
1134		if (!err && (ctx->flags & SHA_FLAGS_FINUP))
1135			/* no final() after finup() */
1136			err = atmel_sha_final_req(dd);
1137	} else if (ctx->op == SHA_OP_FINAL) {
1138		err = atmel_sha_final_req(dd);
1139	}
1140
1141	if (!err)
 
1142		/* done_task will not finish it, so do it here */
1143		atmel_sha_finish_req(req, err);
1144
1145	dev_dbg(dd->dev, "exit, err: %d\n", err);
1146
1147	return err;
1148}
1149
1150static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
1151{
1152	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1153	struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1154	struct atmel_sha_dev *dd = tctx->dd;
1155
1156	ctx->op = op;
1157
1158	return atmel_sha_handle_queue(dd, req);
1159}
1160
1161static int atmel_sha_update(struct ahash_request *req)
1162{
1163	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1164
1165	if (!req->nbytes)
1166		return 0;
1167
1168	ctx->total = req->nbytes;
1169	ctx->sg = req->src;
1170	ctx->offset = 0;
1171
1172	if (ctx->flags & SHA_FLAGS_FINUP) {
1173		if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
1174			/* faster to use CPU for short transfers */
1175			ctx->flags |= SHA_FLAGS_CPU;
1176	} else if (ctx->bufcnt + ctx->total < ctx->buflen) {
1177		atmel_sha_append_sg(ctx);
1178		return 0;
1179	}
1180	return atmel_sha_enqueue(req, SHA_OP_UPDATE);
1181}
1182
1183static int atmel_sha_final(struct ahash_request *req)
1184{
1185	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1186
1187	ctx->flags |= SHA_FLAGS_FINUP;
1188
1189	if (ctx->flags & SHA_FLAGS_ERROR)
1190		return 0; /* uncompleted hash is not needed */
1191
1192	if (ctx->flags & SHA_FLAGS_PAD)
1193		/* copy ready hash (+ finalize hmac) */
1194		return atmel_sha_finish(req);
1195
1196	return atmel_sha_enqueue(req, SHA_OP_FINAL);
1197}
1198
1199static int atmel_sha_finup(struct ahash_request *req)
1200{
1201	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1202	int err1, err2;
1203
1204	ctx->flags |= SHA_FLAGS_FINUP;
1205
1206	err1 = atmel_sha_update(req);
1207	if (err1 == -EINPROGRESS ||
1208	    (err1 == -EBUSY && (ahash_request_flags(req) &
1209				CRYPTO_TFM_REQ_MAY_BACKLOG)))
1210		return err1;
1211
1212	/*
1213	 * final() has to be always called to cleanup resources
1214	 * even if udpate() failed, except EINPROGRESS
1215	 */
1216	err2 = atmel_sha_final(req);
1217
1218	return err1 ?: err2;
1219}
1220
1221static int atmel_sha_digest(struct ahash_request *req)
1222{
1223	return atmel_sha_init(req) ?: atmel_sha_finup(req);
1224}
1225
1226
1227static int atmel_sha_export(struct ahash_request *req, void *out)
1228{
1229	const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1230
1231	memcpy(out, ctx, sizeof(*ctx));
1232	return 0;
1233}
1234
1235static int atmel_sha_import(struct ahash_request *req, const void *in)
1236{
1237	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1238
1239	memcpy(ctx, in, sizeof(*ctx));
1240	return 0;
1241}
1242
1243static int atmel_sha_cra_init(struct crypto_tfm *tfm)
1244{
1245	struct atmel_sha_ctx *ctx = crypto_tfm_ctx(tfm);
1246
1247	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1248				 sizeof(struct atmel_sha_reqctx));
1249	ctx->start = atmel_sha_start;
1250
1251	return 0;
1252}
1253
1254static struct ahash_alg sha_1_256_algs[] = {
1255{
1256	.init		= atmel_sha_init,
1257	.update		= atmel_sha_update,
1258	.final		= atmel_sha_final,
1259	.finup		= atmel_sha_finup,
1260	.digest		= atmel_sha_digest,
1261	.export		= atmel_sha_export,
1262	.import		= atmel_sha_import,
1263	.halg = {
1264		.digestsize	= SHA1_DIGEST_SIZE,
1265		.statesize	= sizeof(struct atmel_sha_reqctx),
1266		.base	= {
1267			.cra_name		= "sha1",
1268			.cra_driver_name	= "atmel-sha1",
1269			.cra_priority		= 100,
1270			.cra_flags		= CRYPTO_ALG_ASYNC,
1271			.cra_blocksize		= SHA1_BLOCK_SIZE,
1272			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1273			.cra_alignmask		= 0,
1274			.cra_module		= THIS_MODULE,
1275			.cra_init		= atmel_sha_cra_init,
1276		}
1277	}
1278},
1279{
1280	.init		= atmel_sha_init,
1281	.update		= atmel_sha_update,
1282	.final		= atmel_sha_final,
1283	.finup		= atmel_sha_finup,
1284	.digest		= atmel_sha_digest,
1285	.export		= atmel_sha_export,
1286	.import		= atmel_sha_import,
1287	.halg = {
1288		.digestsize	= SHA256_DIGEST_SIZE,
1289		.statesize	= sizeof(struct atmel_sha_reqctx),
1290		.base	= {
1291			.cra_name		= "sha256",
1292			.cra_driver_name	= "atmel-sha256",
1293			.cra_priority		= 100,
1294			.cra_flags		= CRYPTO_ALG_ASYNC,
1295			.cra_blocksize		= SHA256_BLOCK_SIZE,
1296			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1297			.cra_alignmask		= 0,
1298			.cra_module		= THIS_MODULE,
1299			.cra_init		= atmel_sha_cra_init,
1300		}
1301	}
1302},
1303};
1304
1305static struct ahash_alg sha_224_alg = {
1306	.init		= atmel_sha_init,
1307	.update		= atmel_sha_update,
1308	.final		= atmel_sha_final,
1309	.finup		= atmel_sha_finup,
1310	.digest		= atmel_sha_digest,
1311	.export		= atmel_sha_export,
1312	.import		= atmel_sha_import,
1313	.halg = {
1314		.digestsize	= SHA224_DIGEST_SIZE,
1315		.statesize	= sizeof(struct atmel_sha_reqctx),
1316		.base	= {
1317			.cra_name		= "sha224",
1318			.cra_driver_name	= "atmel-sha224",
1319			.cra_priority		= 100,
1320			.cra_flags		= CRYPTO_ALG_ASYNC,
1321			.cra_blocksize		= SHA224_BLOCK_SIZE,
1322			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1323			.cra_alignmask		= 0,
1324			.cra_module		= THIS_MODULE,
1325			.cra_init		= atmel_sha_cra_init,
1326		}
1327	}
1328};
1329
1330static struct ahash_alg sha_384_512_algs[] = {
1331{
1332	.init		= atmel_sha_init,
1333	.update		= atmel_sha_update,
1334	.final		= atmel_sha_final,
1335	.finup		= atmel_sha_finup,
1336	.digest		= atmel_sha_digest,
1337	.export		= atmel_sha_export,
1338	.import		= atmel_sha_import,
1339	.halg = {
1340		.digestsize	= SHA384_DIGEST_SIZE,
1341		.statesize	= sizeof(struct atmel_sha_reqctx),
1342		.base	= {
1343			.cra_name		= "sha384",
1344			.cra_driver_name	= "atmel-sha384",
1345			.cra_priority		= 100,
1346			.cra_flags		= CRYPTO_ALG_ASYNC,
1347			.cra_blocksize		= SHA384_BLOCK_SIZE,
1348			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1349			.cra_alignmask		= 0x3,
1350			.cra_module		= THIS_MODULE,
1351			.cra_init		= atmel_sha_cra_init,
1352		}
1353	}
1354},
1355{
1356	.init		= atmel_sha_init,
1357	.update		= atmel_sha_update,
1358	.final		= atmel_sha_final,
1359	.finup		= atmel_sha_finup,
1360	.digest		= atmel_sha_digest,
1361	.export		= atmel_sha_export,
1362	.import		= atmel_sha_import,
1363	.halg = {
1364		.digestsize	= SHA512_DIGEST_SIZE,
1365		.statesize	= sizeof(struct atmel_sha_reqctx),
1366		.base	= {
1367			.cra_name		= "sha512",
1368			.cra_driver_name	= "atmel-sha512",
1369			.cra_priority		= 100,
1370			.cra_flags		= CRYPTO_ALG_ASYNC,
1371			.cra_blocksize		= SHA512_BLOCK_SIZE,
1372			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1373			.cra_alignmask		= 0x3,
1374			.cra_module		= THIS_MODULE,
1375			.cra_init		= atmel_sha_cra_init,
1376		}
1377	}
1378},
1379};
1380
1381static void atmel_sha_queue_task(unsigned long data)
1382{
1383	struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1384
1385	atmel_sha_handle_queue(dd, NULL);
1386}
1387
1388static int atmel_sha_done(struct atmel_sha_dev *dd)
1389{
 
1390	int err = 0;
1391
1392	if (SHA_FLAGS_CPU & dd->flags) {
1393		if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1394			dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1395			goto finish;
1396		}
1397	} else if (SHA_FLAGS_DMA_READY & dd->flags) {
1398		if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1399			dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1400			atmel_sha_update_dma_stop(dd);
1401			if (dd->err) {
1402				err = dd->err;
1403				goto finish;
1404			}
1405		}
1406		if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1407			/* hash or semi-hash ready */
1408			dd->flags &= ~(SHA_FLAGS_DMA_READY |
1409						SHA_FLAGS_OUTPUT_READY);
1410			err = atmel_sha_update_dma_start(dd);
1411			if (err != -EINPROGRESS)
1412				goto finish;
1413		}
1414	}
1415	return err;
1416
1417finish:
1418	/* finish curent request */
1419	atmel_sha_finish_req(dd->req, err);
1420
1421	return err;
1422}
1423
1424static void atmel_sha_done_task(unsigned long data)
1425{
1426	struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1427
1428	dd->is_async = true;
1429	(void)dd->resume(dd);
1430}
1431
1432static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1433{
1434	struct atmel_sha_dev *sha_dd = dev_id;
1435	u32 reg;
1436
1437	reg = atmel_sha_read(sha_dd, SHA_ISR);
1438	if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1439		atmel_sha_write(sha_dd, SHA_IDR, reg);
1440		if (SHA_FLAGS_BUSY & sha_dd->flags) {
1441			sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1442			if (!(SHA_FLAGS_CPU & sha_dd->flags))
1443				sha_dd->flags |= SHA_FLAGS_DMA_READY;
1444			tasklet_schedule(&sha_dd->done_task);
1445		} else {
1446			dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1447		}
1448		return IRQ_HANDLED;
1449	}
1450
1451	return IRQ_NONE;
1452}
1453
1454
1455/* DMA transfer functions */
1456
1457static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev *dd,
1458					struct scatterlist *sg,
1459					size_t len)
1460{
1461	struct atmel_sha_dma *dma = &dd->dma_lch_in;
1462	struct ahash_request *req = dd->req;
1463	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1464	size_t bs = ctx->block_size;
1465	int nents;
1466
1467	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
1468		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
1469			return false;
1470
1471		/*
1472		 * This is the last sg, the only one that is allowed to
1473		 * have an unaligned length.
1474		 */
1475		if (len <= sg->length) {
1476			dma->nents = nents + 1;
1477			dma->last_sg_length = sg->length;
1478			sg->length = ALIGN(len, sizeof(u32));
1479			return true;
1480		}
1481
1482		/* All other sg lengths MUST be aligned to the block size. */
1483		if (!IS_ALIGNED(sg->length, bs))
1484			return false;
1485
1486		len -= sg->length;
1487	}
1488
1489	return false;
1490}
1491
1492static void atmel_sha_dma_callback2(void *data)
1493{
1494	struct atmel_sha_dev *dd = data;
1495	struct atmel_sha_dma *dma = &dd->dma_lch_in;
1496	struct scatterlist *sg;
1497	int nents;
1498
1499	dmaengine_terminate_all(dma->chan);
1500	dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1501
1502	sg = dma->sg;
1503	for (nents = 0; nents < dma->nents - 1; ++nents)
1504		sg = sg_next(sg);
1505	sg->length = dma->last_sg_length;
1506
1507	dd->is_async = true;
1508	(void)atmel_sha_wait_for_data_ready(dd, dd->resume);
1509}
1510
1511static int atmel_sha_dma_start(struct atmel_sha_dev *dd,
1512			       struct scatterlist *src,
1513			       size_t len,
1514			       atmel_sha_fn_t resume)
1515{
1516	struct atmel_sha_dma *dma = &dd->dma_lch_in;
1517	struct dma_slave_config *config = &dma->dma_conf;
1518	struct dma_chan *chan = dma->chan;
1519	struct dma_async_tx_descriptor *desc;
1520	dma_cookie_t cookie;
1521	unsigned int sg_len;
1522	int err;
1523
1524	dd->resume = resume;
1525
1526	/*
1527	 * dma->nents has already been initialized by
1528	 * atmel_sha_dma_check_aligned().
1529	 */
1530	dma->sg = src;
1531	sg_len = dma_map_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1532	if (!sg_len) {
1533		err = -ENOMEM;
1534		goto exit;
1535	}
1536
1537	config->src_maxburst = 16;
1538	config->dst_maxburst = 16;
1539	err = dmaengine_slave_config(chan, config);
1540	if (err)
1541		goto unmap_sg;
1542
1543	desc = dmaengine_prep_slave_sg(chan, dma->sg, sg_len, DMA_MEM_TO_DEV,
1544				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1545	if (!desc) {
1546		err = -ENOMEM;
1547		goto unmap_sg;
1548	}
1549
1550	desc->callback = atmel_sha_dma_callback2;
1551	desc->callback_param = dd;
1552	cookie = dmaengine_submit(desc);
1553	err = dma_submit_error(cookie);
1554	if (err)
1555		goto unmap_sg;
1556
1557	dma_async_issue_pending(chan);
1558
1559	return -EINPROGRESS;
1560
1561unmap_sg:
1562	dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1563exit:
1564	return atmel_sha_complete(dd, err);
1565}
1566
1567
1568/* CPU transfer functions */
1569
1570static int atmel_sha_cpu_transfer(struct atmel_sha_dev *dd)
1571{
1572	struct ahash_request *req = dd->req;
1573	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1574	const u32 *words = (const u32 *)ctx->buffer;
1575	size_t i, num_words;
1576	u32 isr, din, din_inc;
1577
1578	din_inc = (ctx->flags & SHA_FLAGS_IDATAR0) ? 0 : 1;
1579	for (;;) {
1580		/* Write data into the Input Data Registers. */
1581		num_words = DIV_ROUND_UP(ctx->bufcnt, sizeof(u32));
1582		for (i = 0, din = 0; i < num_words; ++i, din += din_inc)
1583			atmel_sha_write(dd, SHA_REG_DIN(din), words[i]);
1584
1585		ctx->offset += ctx->bufcnt;
1586		ctx->total -= ctx->bufcnt;
1587
1588		if (!ctx->total)
1589			break;
1590
1591		/*
1592		 * Prepare next block:
1593		 * Fill ctx->buffer now with the next data to be written into
1594		 * IDATARx: it gives time for the SHA hardware to process
1595		 * the current data so the SHA_INT_DATARDY flag might be set
1596		 * in SHA_ISR when polling this register at the beginning of
1597		 * the next loop.
1598		 */
1599		ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1600		scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1601					 ctx->offset, ctx->bufcnt, 0);
1602
1603		/* Wait for hardware to be ready again. */
1604		isr = atmel_sha_read(dd, SHA_ISR);
1605		if (!(isr & SHA_INT_DATARDY)) {
1606			/* Not ready yet. */
1607			dd->resume = atmel_sha_cpu_transfer;
1608			atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
1609			return -EINPROGRESS;
1610		}
1611	}
1612
1613	if (unlikely(!(ctx->flags & SHA_FLAGS_WAIT_DATARDY)))
1614		return dd->cpu_transfer_complete(dd);
1615
1616	return atmel_sha_wait_for_data_ready(dd, dd->cpu_transfer_complete);
1617}
1618
1619static int atmel_sha_cpu_start(struct atmel_sha_dev *dd,
1620			       struct scatterlist *sg,
1621			       unsigned int len,
1622			       bool idatar0_only,
1623			       bool wait_data_ready,
1624			       atmel_sha_fn_t resume)
1625{
1626	struct ahash_request *req = dd->req;
1627	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1628
1629	if (!len)
1630		return resume(dd);
1631
1632	ctx->flags &= ~(SHA_FLAGS_IDATAR0 | SHA_FLAGS_WAIT_DATARDY);
1633
1634	if (idatar0_only)
1635		ctx->flags |= SHA_FLAGS_IDATAR0;
1636
1637	if (wait_data_ready)
1638		ctx->flags |= SHA_FLAGS_WAIT_DATARDY;
1639
1640	ctx->sg = sg;
1641	ctx->total = len;
1642	ctx->offset = 0;
1643
1644	/* Prepare the first block to be written. */
1645	ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1646	scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1647				 ctx->offset, ctx->bufcnt, 0);
1648
1649	dd->cpu_transfer_complete = resume;
1650	return atmel_sha_cpu_transfer(dd);
1651}
1652
1653static int atmel_sha_cpu_hash(struct atmel_sha_dev *dd,
1654			      const void *data, unsigned int datalen,
1655			      bool auto_padding,
1656			      atmel_sha_fn_t resume)
1657{
1658	struct ahash_request *req = dd->req;
1659	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1660	u32 msglen = (auto_padding) ? datalen : 0;
1661	u32 mr = SHA_MR_MODE_AUTO;
1662
1663	if (!(IS_ALIGNED(datalen, ctx->block_size) || auto_padding))
1664		return atmel_sha_complete(dd, -EINVAL);
1665
1666	mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1667	atmel_sha_write(dd, SHA_MR, mr);
1668	atmel_sha_write(dd, SHA_MSR, msglen);
1669	atmel_sha_write(dd, SHA_BCR, msglen);
1670	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1671
1672	sg_init_one(&dd->tmp, data, datalen);
1673	return atmel_sha_cpu_start(dd, &dd->tmp, datalen, false, true, resume);
1674}
1675
1676
1677/* hmac functions */
1678
1679struct atmel_sha_hmac_key {
1680	bool			valid;
1681	unsigned int		keylen;
1682	u8			buffer[SHA512_BLOCK_SIZE];
1683	u8			*keydup;
1684};
1685
1686static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key *hkey)
1687{
1688	memset(hkey, 0, sizeof(*hkey));
1689}
1690
1691static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key *hkey)
1692{
1693	kfree(hkey->keydup);
1694	memset(hkey, 0, sizeof(*hkey));
1695}
1696
1697static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key *hkey,
1698					 const u8 *key,
1699					 unsigned int keylen)
1700{
1701	atmel_sha_hmac_key_release(hkey);
1702
1703	if (keylen > sizeof(hkey->buffer)) {
1704		hkey->keydup = kmemdup(key, keylen, GFP_KERNEL);
1705		if (!hkey->keydup)
1706			return -ENOMEM;
1707
1708	} else {
1709		memcpy(hkey->buffer, key, keylen);
1710	}
1711
1712	hkey->valid = true;
1713	hkey->keylen = keylen;
1714	return 0;
1715}
1716
1717static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key *hkey,
1718					  const u8 **key,
1719					  unsigned int *keylen)
1720{
1721	if (!hkey->valid)
1722		return false;
1723
1724	*keylen = hkey->keylen;
1725	*key = (hkey->keydup) ? hkey->keydup : hkey->buffer;
1726	return true;
1727}
1728
1729
1730struct atmel_sha_hmac_ctx {
1731	struct atmel_sha_ctx	base;
1732
1733	struct atmel_sha_hmac_key	hkey;
1734	u32			ipad[SHA512_BLOCK_SIZE / sizeof(u32)];
1735	u32			opad[SHA512_BLOCK_SIZE / sizeof(u32)];
1736	atmel_sha_fn_t		resume;
1737};
1738
1739static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1740				atmel_sha_fn_t resume);
1741static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1742				      const u8 *key, unsigned int keylen);
1743static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd);
1744static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd);
1745static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd);
1746static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd);
1747
1748static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd);
1749static int atmel_sha_hmac_final(struct atmel_sha_dev *dd);
1750static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd);
1751static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd);
1752
1753static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1754				atmel_sha_fn_t resume)
1755{
1756	struct ahash_request *req = dd->req;
1757	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1758	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1759	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1760	unsigned int keylen;
1761	const u8 *key;
1762	size_t bs;
1763
1764	hmac->resume = resume;
1765	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
1766	case SHA_FLAGS_SHA1:
1767		ctx->block_size = SHA1_BLOCK_SIZE;
1768		ctx->hash_size = SHA1_DIGEST_SIZE;
1769		break;
1770
1771	case SHA_FLAGS_SHA224:
1772		ctx->block_size = SHA224_BLOCK_SIZE;
1773		ctx->hash_size = SHA256_DIGEST_SIZE;
1774		break;
1775
1776	case SHA_FLAGS_SHA256:
1777		ctx->block_size = SHA256_BLOCK_SIZE;
1778		ctx->hash_size = SHA256_DIGEST_SIZE;
1779		break;
1780
1781	case SHA_FLAGS_SHA384:
1782		ctx->block_size = SHA384_BLOCK_SIZE;
1783		ctx->hash_size = SHA512_DIGEST_SIZE;
1784		break;
1785
1786	case SHA_FLAGS_SHA512:
1787		ctx->block_size = SHA512_BLOCK_SIZE;
1788		ctx->hash_size = SHA512_DIGEST_SIZE;
1789		break;
1790
1791	default:
1792		return atmel_sha_complete(dd, -EINVAL);
1793	}
1794	bs = ctx->block_size;
1795
1796	if (likely(!atmel_sha_hmac_key_get(&hmac->hkey, &key, &keylen)))
1797		return resume(dd);
1798
1799	/* Compute K' from K. */
1800	if (unlikely(keylen > bs))
1801		return atmel_sha_hmac_prehash_key(dd, key, keylen);
1802
1803	/* Prepare ipad. */
1804	memcpy((u8 *)hmac->ipad, key, keylen);
1805	memset((u8 *)hmac->ipad + keylen, 0, bs - keylen);
1806	return atmel_sha_hmac_compute_ipad_hash(dd);
1807}
1808
1809static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1810				      const u8 *key, unsigned int keylen)
1811{
1812	return atmel_sha_cpu_hash(dd, key, keylen, true,
1813				  atmel_sha_hmac_prehash_key_done);
1814}
1815
1816static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd)
1817{
1818	struct ahash_request *req = dd->req;
1819	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1820	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1821	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1822	size_t ds = crypto_ahash_digestsize(tfm);
1823	size_t bs = ctx->block_size;
1824	size_t i, num_words = ds / sizeof(u32);
1825
1826	/* Prepare ipad. */
1827	for (i = 0; i < num_words; ++i)
1828		hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1829	memset((u8 *)hmac->ipad + ds, 0, bs - ds);
1830	return atmel_sha_hmac_compute_ipad_hash(dd);
1831}
1832
1833static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd)
1834{
1835	struct ahash_request *req = dd->req;
1836	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1837	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1838	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1839	size_t bs = ctx->block_size;
1840	size_t i, num_words = bs / sizeof(u32);
1841
1842	memcpy(hmac->opad, hmac->ipad, bs);
1843	for (i = 0; i < num_words; ++i) {
1844		hmac->ipad[i] ^= 0x36363636;
1845		hmac->opad[i] ^= 0x5c5c5c5c;
1846	}
1847
1848	return atmel_sha_cpu_hash(dd, hmac->ipad, bs, false,
1849				  atmel_sha_hmac_compute_opad_hash);
1850}
1851
1852static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd)
1853{
1854	struct ahash_request *req = dd->req;
1855	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1856	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1857	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1858	size_t bs = ctx->block_size;
1859	size_t hs = ctx->hash_size;
1860	size_t i, num_words = hs / sizeof(u32);
1861
1862	for (i = 0; i < num_words; ++i)
1863		hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1864	return atmel_sha_cpu_hash(dd, hmac->opad, bs, false,
1865				  atmel_sha_hmac_setup_done);
1866}
1867
1868static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd)
1869{
1870	struct ahash_request *req = dd->req;
1871	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1872	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1873	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1874	size_t hs = ctx->hash_size;
1875	size_t i, num_words = hs / sizeof(u32);
1876
1877	for (i = 0; i < num_words; ++i)
1878		hmac->opad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1879	atmel_sha_hmac_key_release(&hmac->hkey);
1880	return hmac->resume(dd);
1881}
1882
1883static int atmel_sha_hmac_start(struct atmel_sha_dev *dd)
1884{
1885	struct ahash_request *req = dd->req;
1886	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1887	int err;
1888
1889	err = atmel_sha_hw_init(dd);
1890	if (err)
1891		return atmel_sha_complete(dd, err);
1892
1893	switch (ctx->op) {
1894	case SHA_OP_INIT:
1895		err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_init_done);
1896		break;
1897
1898	case SHA_OP_UPDATE:
1899		dd->resume = atmel_sha_done;
1900		err = atmel_sha_update_req(dd);
1901		break;
1902
1903	case SHA_OP_FINAL:
1904		dd->resume = atmel_sha_hmac_final;
1905		err = atmel_sha_final_req(dd);
1906		break;
1907
1908	case SHA_OP_DIGEST:
1909		err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_digest2);
1910		break;
1911
1912	default:
1913		return atmel_sha_complete(dd, -EINVAL);
1914	}
1915
1916	return err;
1917}
1918
1919static int atmel_sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
1920				 unsigned int keylen)
1921{
1922	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1923
1924	if (atmel_sha_hmac_key_set(&hmac->hkey, key, keylen)) {
1925		crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1926		return -EINVAL;
1927	}
1928
1929	return 0;
1930}
1931
1932static int atmel_sha_hmac_init(struct ahash_request *req)
1933{
1934	int err;
1935
1936	err = atmel_sha_init(req);
1937	if (err)
1938		return err;
1939
1940	return atmel_sha_enqueue(req, SHA_OP_INIT);
1941}
1942
1943static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd)
1944{
1945	struct ahash_request *req = dd->req;
1946	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1947	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1948	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1949	size_t bs = ctx->block_size;
1950	size_t hs = ctx->hash_size;
1951
1952	ctx->bufcnt = 0;
1953	ctx->digcnt[0] = bs;
1954	ctx->digcnt[1] = 0;
1955	ctx->flags |= SHA_FLAGS_RESTORE;
1956	memcpy(ctx->digest, hmac->ipad, hs);
1957	return atmel_sha_complete(dd, 0);
1958}
1959
1960static int atmel_sha_hmac_final(struct atmel_sha_dev *dd)
1961{
1962	struct ahash_request *req = dd->req;
1963	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1964	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1965	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1966	u32 *digest = (u32 *)ctx->digest;
1967	size_t ds = crypto_ahash_digestsize(tfm);
1968	size_t bs = ctx->block_size;
1969	size_t hs = ctx->hash_size;
1970	size_t i, num_words;
1971	u32 mr;
1972
1973	/* Save d = SHA((K' + ipad) | msg). */
1974	num_words = ds / sizeof(u32);
1975	for (i = 0; i < num_words; ++i)
1976		digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1977
1978	/* Restore context to finish computing SHA((K' + opad) | d). */
1979	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1980	num_words = hs / sizeof(u32);
1981	for (i = 0; i < num_words; ++i)
1982		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1983
1984	mr = SHA_MR_MODE_AUTO | SHA_MR_UIHV;
1985	mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1986	atmel_sha_write(dd, SHA_MR, mr);
1987	atmel_sha_write(dd, SHA_MSR, bs + ds);
1988	atmel_sha_write(dd, SHA_BCR, ds);
1989	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1990
1991	sg_init_one(&dd->tmp, digest, ds);
1992	return atmel_sha_cpu_start(dd, &dd->tmp, ds, false, true,
1993				   atmel_sha_hmac_final_done);
1994}
1995
1996static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd)
1997{
1998	/*
1999	 * req->result might not be sizeof(u32) aligned, so copy the
2000	 * digest into ctx->digest[] before memcpy() the data into
2001	 * req->result.
2002	 */
2003	atmel_sha_copy_hash(dd->req);
2004	atmel_sha_copy_ready_hash(dd->req);
2005	return atmel_sha_complete(dd, 0);
2006}
2007
2008static int atmel_sha_hmac_digest(struct ahash_request *req)
2009{
2010	int err;
2011
2012	err = atmel_sha_init(req);
2013	if (err)
2014		return err;
2015
2016	return atmel_sha_enqueue(req, SHA_OP_DIGEST);
2017}
2018
2019static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd)
2020{
2021	struct ahash_request *req = dd->req;
2022	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
2023	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2024	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2025	size_t hs = ctx->hash_size;
2026	size_t i, num_words = hs / sizeof(u32);
2027	bool use_dma = false;
2028	u32 mr;
2029
2030	/* Special case for empty message. */
2031	if (!req->nbytes)
2032		return atmel_sha_complete(dd, -EINVAL); // TODO:
2033
2034	/* Check DMA threshold and alignment. */
2035	if (req->nbytes > ATMEL_SHA_DMA_THRESHOLD &&
2036	    atmel_sha_dma_check_aligned(dd, req->src, req->nbytes))
2037		use_dma = true;
2038
2039	/* Write both initial hash values to compute a HMAC. */
2040	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2041	for (i = 0; i < num_words; ++i)
2042		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2043
2044	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2045	for (i = 0; i < num_words; ++i)
2046		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2047
2048	/* Write the Mode, Message Size, Bytes Count then Control Registers. */
2049	mr = (SHA_MR_HMAC | SHA_MR_DUALBUFF);
2050	mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2051	if (use_dma)
2052		mr |= SHA_MR_MODE_IDATAR0;
2053	else
2054		mr |= SHA_MR_MODE_AUTO;
2055	atmel_sha_write(dd, SHA_MR, mr);
2056
2057	atmel_sha_write(dd, SHA_MSR, req->nbytes);
2058	atmel_sha_write(dd, SHA_BCR, req->nbytes);
2059
2060	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2061
2062	/* Process data. */
2063	if (use_dma)
2064		return atmel_sha_dma_start(dd, req->src, req->nbytes,
2065					   atmel_sha_hmac_final_done);
2066
2067	return atmel_sha_cpu_start(dd, req->src, req->nbytes, false, true,
2068				   atmel_sha_hmac_final_done);
2069}
2070
2071static int atmel_sha_hmac_cra_init(struct crypto_tfm *tfm)
2072{
2073	struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2074
2075	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
2076				 sizeof(struct atmel_sha_reqctx));
2077	hmac->base.start = atmel_sha_hmac_start;
2078	atmel_sha_hmac_key_init(&hmac->hkey);
2079
2080	return 0;
2081}
2082
2083static void atmel_sha_hmac_cra_exit(struct crypto_tfm *tfm)
2084{
2085	struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2086
2087	atmel_sha_hmac_key_release(&hmac->hkey);
2088}
2089
2090static struct ahash_alg sha_hmac_algs[] = {
2091{
2092	.init		= atmel_sha_hmac_init,
2093	.update		= atmel_sha_update,
2094	.final		= atmel_sha_final,
2095	.digest		= atmel_sha_hmac_digest,
2096	.setkey		= atmel_sha_hmac_setkey,
2097	.export		= atmel_sha_export,
2098	.import		= atmel_sha_import,
2099	.halg = {
2100		.digestsize	= SHA1_DIGEST_SIZE,
2101		.statesize	= sizeof(struct atmel_sha_reqctx),
2102		.base	= {
2103			.cra_name		= "hmac(sha1)",
2104			.cra_driver_name	= "atmel-hmac-sha1",
2105			.cra_priority		= 100,
2106			.cra_flags		= CRYPTO_ALG_ASYNC,
2107			.cra_blocksize		= SHA1_BLOCK_SIZE,
2108			.cra_ctxsize		= sizeof(struct atmel_sha_hmac_ctx),
2109			.cra_alignmask		= 0,
2110			.cra_module		= THIS_MODULE,
2111			.cra_init		= atmel_sha_hmac_cra_init,
2112			.cra_exit		= atmel_sha_hmac_cra_exit,
2113		}
2114	}
2115},
2116{
2117	.init		= atmel_sha_hmac_init,
2118	.update		= atmel_sha_update,
2119	.final		= atmel_sha_final,
2120	.digest		= atmel_sha_hmac_digest,
2121	.setkey		= atmel_sha_hmac_setkey,
2122	.export		= atmel_sha_export,
2123	.import		= atmel_sha_import,
2124	.halg = {
2125		.digestsize	= SHA224_DIGEST_SIZE,
2126		.statesize	= sizeof(struct atmel_sha_reqctx),
2127		.base	= {
2128			.cra_name		= "hmac(sha224)",
2129			.cra_driver_name	= "atmel-hmac-sha224",
2130			.cra_priority		= 100,
2131			.cra_flags		= CRYPTO_ALG_ASYNC,
2132			.cra_blocksize		= SHA224_BLOCK_SIZE,
2133			.cra_ctxsize		= sizeof(struct atmel_sha_hmac_ctx),
2134			.cra_alignmask		= 0,
2135			.cra_module		= THIS_MODULE,
2136			.cra_init		= atmel_sha_hmac_cra_init,
2137			.cra_exit		= atmel_sha_hmac_cra_exit,
2138		}
2139	}
2140},
2141{
2142	.init		= atmel_sha_hmac_init,
2143	.update		= atmel_sha_update,
2144	.final		= atmel_sha_final,
2145	.digest		= atmel_sha_hmac_digest,
2146	.setkey		= atmel_sha_hmac_setkey,
2147	.export		= atmel_sha_export,
2148	.import		= atmel_sha_import,
2149	.halg = {
2150		.digestsize	= SHA256_DIGEST_SIZE,
2151		.statesize	= sizeof(struct atmel_sha_reqctx),
2152		.base	= {
2153			.cra_name		= "hmac(sha256)",
2154			.cra_driver_name	= "atmel-hmac-sha256",
2155			.cra_priority		= 100,
2156			.cra_flags		= CRYPTO_ALG_ASYNC,
2157			.cra_blocksize		= SHA256_BLOCK_SIZE,
2158			.cra_ctxsize		= sizeof(struct atmel_sha_hmac_ctx),
2159			.cra_alignmask		= 0,
2160			.cra_module		= THIS_MODULE,
2161			.cra_init		= atmel_sha_hmac_cra_init,
2162			.cra_exit		= atmel_sha_hmac_cra_exit,
2163		}
2164	}
2165},
2166{
2167	.init		= atmel_sha_hmac_init,
2168	.update		= atmel_sha_update,
2169	.final		= atmel_sha_final,
2170	.digest		= atmel_sha_hmac_digest,
2171	.setkey		= atmel_sha_hmac_setkey,
2172	.export		= atmel_sha_export,
2173	.import		= atmel_sha_import,
2174	.halg = {
2175		.digestsize	= SHA384_DIGEST_SIZE,
2176		.statesize	= sizeof(struct atmel_sha_reqctx),
2177		.base	= {
2178			.cra_name		= "hmac(sha384)",
2179			.cra_driver_name	= "atmel-hmac-sha384",
2180			.cra_priority		= 100,
2181			.cra_flags		= CRYPTO_ALG_ASYNC,
2182			.cra_blocksize		= SHA384_BLOCK_SIZE,
2183			.cra_ctxsize		= sizeof(struct atmel_sha_hmac_ctx),
2184			.cra_alignmask		= 0,
2185			.cra_module		= THIS_MODULE,
2186			.cra_init		= atmel_sha_hmac_cra_init,
2187			.cra_exit		= atmel_sha_hmac_cra_exit,
2188		}
2189	}
2190},
2191{
2192	.init		= atmel_sha_hmac_init,
2193	.update		= atmel_sha_update,
2194	.final		= atmel_sha_final,
2195	.digest		= atmel_sha_hmac_digest,
2196	.setkey		= atmel_sha_hmac_setkey,
2197	.export		= atmel_sha_export,
2198	.import		= atmel_sha_import,
2199	.halg = {
2200		.digestsize	= SHA512_DIGEST_SIZE,
2201		.statesize	= sizeof(struct atmel_sha_reqctx),
2202		.base	= {
2203			.cra_name		= "hmac(sha512)",
2204			.cra_driver_name	= "atmel-hmac-sha512",
2205			.cra_priority		= 100,
2206			.cra_flags		= CRYPTO_ALG_ASYNC,
2207			.cra_blocksize		= SHA512_BLOCK_SIZE,
2208			.cra_ctxsize		= sizeof(struct atmel_sha_hmac_ctx),
2209			.cra_alignmask		= 0,
2210			.cra_module		= THIS_MODULE,
2211			.cra_init		= atmel_sha_hmac_cra_init,
2212			.cra_exit		= atmel_sha_hmac_cra_exit,
2213		}
2214	}
2215},
2216};
2217
2218#ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2219/* authenc functions */
2220
2221static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd);
2222static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd);
2223static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd);
2224
2225
2226struct atmel_sha_authenc_ctx {
2227	struct crypto_ahash	*tfm;
2228};
2229
2230struct atmel_sha_authenc_reqctx {
2231	struct atmel_sha_reqctx	base;
2232
2233	atmel_aes_authenc_fn_t	cb;
2234	struct atmel_aes_dev	*aes_dev;
2235
2236	/* _init() parameters. */
2237	struct scatterlist	*assoc;
2238	u32			assoclen;
2239	u32			textlen;
2240
2241	/* _final() parameters. */
2242	u32			*digest;
2243	unsigned int		digestlen;
2244};
2245
2246static void atmel_sha_authenc_complete(struct crypto_async_request *areq,
2247				       int err)
2248{
2249	struct ahash_request *req = areq->data;
2250	struct atmel_sha_authenc_reqctx *authctx  = ahash_request_ctx(req);
2251
2252	authctx->cb(authctx->aes_dev, err, authctx->base.dd->is_async);
2253}
2254
2255static int atmel_sha_authenc_start(struct atmel_sha_dev *dd)
2256{
2257	struct ahash_request *req = dd->req;
2258	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2259	int err;
2260
2261	/*
2262	 * Force atmel_sha_complete() to call req->base.complete(), ie
2263	 * atmel_sha_authenc_complete(), which in turn calls authctx->cb().
2264	 */
2265	dd->force_complete = true;
2266
2267	err = atmel_sha_hw_init(dd);
2268	return authctx->cb(authctx->aes_dev, err, dd->is_async);
2269}
2270
2271bool atmel_sha_authenc_is_ready(void)
2272{
2273	struct atmel_sha_ctx dummy;
2274
2275	dummy.dd = NULL;
2276	return (atmel_sha_find_dev(&dummy) != NULL);
2277}
2278EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready);
2279
2280unsigned int atmel_sha_authenc_get_reqsize(void)
2281{
2282	return sizeof(struct atmel_sha_authenc_reqctx);
2283}
2284EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize);
2285
2286struct atmel_sha_authenc_ctx *atmel_sha_authenc_spawn(unsigned long mode)
2287{
2288	struct atmel_sha_authenc_ctx *auth;
2289	struct crypto_ahash *tfm;
2290	struct atmel_sha_ctx *tctx;
2291	const char *name;
2292	int err = -EINVAL;
2293
2294	switch (mode & SHA_FLAGS_MODE_MASK) {
2295	case SHA_FLAGS_HMAC_SHA1:
2296		name = "atmel-hmac-sha1";
2297		break;
2298
2299	case SHA_FLAGS_HMAC_SHA224:
2300		name = "atmel-hmac-sha224";
2301		break;
2302
2303	case SHA_FLAGS_HMAC_SHA256:
2304		name = "atmel-hmac-sha256";
2305		break;
2306
2307	case SHA_FLAGS_HMAC_SHA384:
2308		name = "atmel-hmac-sha384";
2309		break;
2310
2311	case SHA_FLAGS_HMAC_SHA512:
2312		name = "atmel-hmac-sha512";
2313		break;
2314
2315	default:
2316		goto error;
2317	}
2318
2319	tfm = crypto_alloc_ahash(name,
2320				 CRYPTO_ALG_TYPE_AHASH,
2321				 CRYPTO_ALG_TYPE_AHASH_MASK);
2322	if (IS_ERR(tfm)) {
2323		err = PTR_ERR(tfm);
2324		goto error;
2325	}
2326	tctx = crypto_ahash_ctx(tfm);
2327	tctx->start = atmel_sha_authenc_start;
2328	tctx->flags = mode;
2329
2330	auth = kzalloc(sizeof(*auth), GFP_KERNEL);
2331	if (!auth) {
2332		err = -ENOMEM;
2333		goto err_free_ahash;
2334	}
2335	auth->tfm = tfm;
2336
2337	return auth;
2338
2339err_free_ahash:
2340	crypto_free_ahash(tfm);
2341error:
2342	return ERR_PTR(err);
2343}
2344EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn);
2345
2346void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx *auth)
2347{
2348	if (auth)
2349		crypto_free_ahash(auth->tfm);
2350	kfree(auth);
2351}
2352EXPORT_SYMBOL_GPL(atmel_sha_authenc_free);
2353
2354int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx *auth,
2355			     const u8 *key, unsigned int keylen,
2356			     u32 *flags)
2357{
2358	struct crypto_ahash *tfm = auth->tfm;
2359	int err;
2360
2361	crypto_ahash_clear_flags(tfm, CRYPTO_TFM_REQ_MASK);
2362	crypto_ahash_set_flags(tfm, *flags & CRYPTO_TFM_REQ_MASK);
2363	err = crypto_ahash_setkey(tfm, key, keylen);
2364	*flags = crypto_ahash_get_flags(tfm);
2365
2366	return err;
2367}
2368EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey);
2369
2370int atmel_sha_authenc_schedule(struct ahash_request *req,
2371			       struct atmel_sha_authenc_ctx *auth,
2372			       atmel_aes_authenc_fn_t cb,
2373			       struct atmel_aes_dev *aes_dev)
2374{
2375	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2376	struct atmel_sha_reqctx *ctx = &authctx->base;
2377	struct crypto_ahash *tfm = auth->tfm;
2378	struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
2379	struct atmel_sha_dev *dd;
2380
2381	/* Reset request context (MUST be done first). */
2382	memset(authctx, 0, sizeof(*authctx));
2383
2384	/* Get SHA device. */
2385	dd = atmel_sha_find_dev(tctx);
2386	if (!dd)
2387		return cb(aes_dev, -ENODEV, false);
2388
2389	/* Init request context. */
2390	ctx->dd = dd;
2391	ctx->buflen = SHA_BUFFER_LEN;
2392	authctx->cb = cb;
2393	authctx->aes_dev = aes_dev;
2394	ahash_request_set_tfm(req, tfm);
2395	ahash_request_set_callback(req, 0, atmel_sha_authenc_complete, req);
2396
2397	return atmel_sha_handle_queue(dd, req);
2398}
2399EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule);
2400
2401int atmel_sha_authenc_init(struct ahash_request *req,
2402			   struct scatterlist *assoc, unsigned int assoclen,
2403			   unsigned int textlen,
2404			   atmel_aes_authenc_fn_t cb,
2405			   struct atmel_aes_dev *aes_dev)
2406{
2407	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2408	struct atmel_sha_reqctx *ctx = &authctx->base;
2409	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2410	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2411	struct atmel_sha_dev *dd = ctx->dd;
2412
2413	if (unlikely(!IS_ALIGNED(assoclen, sizeof(u32))))
2414		return atmel_sha_complete(dd, -EINVAL);
2415
2416	authctx->cb = cb;
2417	authctx->aes_dev = aes_dev;
2418	authctx->assoc = assoc;
2419	authctx->assoclen = assoclen;
2420	authctx->textlen = textlen;
2421
2422	ctx->flags = hmac->base.flags;
2423	return atmel_sha_hmac_setup(dd, atmel_sha_authenc_init2);
2424}
2425EXPORT_SYMBOL_GPL(atmel_sha_authenc_init);
2426
2427static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd)
2428{
2429	struct ahash_request *req = dd->req;
2430	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2431	struct atmel_sha_reqctx *ctx = &authctx->base;
2432	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2433	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2434	size_t hs = ctx->hash_size;
2435	size_t i, num_words = hs / sizeof(u32);
2436	u32 mr, msg_size;
2437
2438	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2439	for (i = 0; i < num_words; ++i)
2440		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2441
2442	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2443	for (i = 0; i < num_words; ++i)
2444		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2445
2446	mr = (SHA_MR_MODE_IDATAR0 |
2447	      SHA_MR_HMAC |
2448	      SHA_MR_DUALBUFF);
2449	mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2450	atmel_sha_write(dd, SHA_MR, mr);
2451
2452	msg_size = authctx->assoclen + authctx->textlen;
2453	atmel_sha_write(dd, SHA_MSR, msg_size);
2454	atmel_sha_write(dd, SHA_BCR, msg_size);
2455
2456	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2457
2458	/* Process assoc data. */
2459	return atmel_sha_cpu_start(dd, authctx->assoc, authctx->assoclen,
2460				   true, false,
2461				   atmel_sha_authenc_init_done);
2462}
2463
2464static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd)
2465{
2466	struct ahash_request *req = dd->req;
2467	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2468
2469	return authctx->cb(authctx->aes_dev, 0, dd->is_async);
2470}
2471
2472int atmel_sha_authenc_final(struct ahash_request *req,
2473			    u32 *digest, unsigned int digestlen,
2474			    atmel_aes_authenc_fn_t cb,
2475			    struct atmel_aes_dev *aes_dev)
2476{
2477	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2478	struct atmel_sha_reqctx *ctx = &authctx->base;
2479	struct atmel_sha_dev *dd = ctx->dd;
2480
2481	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
2482	case SHA_FLAGS_SHA1:
2483		authctx->digestlen = SHA1_DIGEST_SIZE;
2484		break;
2485
2486	case SHA_FLAGS_SHA224:
2487		authctx->digestlen = SHA224_DIGEST_SIZE;
2488		break;
2489
2490	case SHA_FLAGS_SHA256:
2491		authctx->digestlen = SHA256_DIGEST_SIZE;
2492		break;
2493
2494	case SHA_FLAGS_SHA384:
2495		authctx->digestlen = SHA384_DIGEST_SIZE;
2496		break;
2497
2498	case SHA_FLAGS_SHA512:
2499		authctx->digestlen = SHA512_DIGEST_SIZE;
2500		break;
2501
2502	default:
2503		return atmel_sha_complete(dd, -EINVAL);
2504	}
2505	if (authctx->digestlen > digestlen)
2506		authctx->digestlen = digestlen;
2507
2508	authctx->cb = cb;
2509	authctx->aes_dev = aes_dev;
2510	authctx->digest = digest;
2511	return atmel_sha_wait_for_data_ready(dd,
2512					     atmel_sha_authenc_final_done);
2513}
2514EXPORT_SYMBOL_GPL(atmel_sha_authenc_final);
2515
2516static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd)
2517{
2518	struct ahash_request *req = dd->req;
2519	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2520	size_t i, num_words = authctx->digestlen / sizeof(u32);
2521
2522	for (i = 0; i < num_words; ++i)
2523		authctx->digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
2524
2525	return atmel_sha_complete(dd, 0);
2526}
2527
2528void atmel_sha_authenc_abort(struct ahash_request *req)
2529{
2530	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2531	struct atmel_sha_reqctx *ctx = &authctx->base;
2532	struct atmel_sha_dev *dd = ctx->dd;
2533
2534	/* Prevent atmel_sha_complete() from calling req->base.complete(). */
2535	dd->is_async = false;
2536	dd->force_complete = false;
2537	(void)atmel_sha_complete(dd, 0);
2538}
2539EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort);
2540
2541#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2542
2543
2544static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
2545{
2546	int i;
2547
2548	if (dd->caps.has_hmac)
2549		for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++)
2550			crypto_unregister_ahash(&sha_hmac_algs[i]);
2551
2552	for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
2553		crypto_unregister_ahash(&sha_1_256_algs[i]);
2554
2555	if (dd->caps.has_sha224)
2556		crypto_unregister_ahash(&sha_224_alg);
2557
2558	if (dd->caps.has_sha_384_512) {
2559		for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
2560			crypto_unregister_ahash(&sha_384_512_algs[i]);
2561	}
2562}
2563
2564static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
2565{
2566	int err, i, j;
2567
2568	for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
2569		err = crypto_register_ahash(&sha_1_256_algs[i]);
2570		if (err)
2571			goto err_sha_1_256_algs;
2572	}
2573
2574	if (dd->caps.has_sha224) {
2575		err = crypto_register_ahash(&sha_224_alg);
2576		if (err)
2577			goto err_sha_224_algs;
2578	}
2579
2580	if (dd->caps.has_sha_384_512) {
2581		for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
2582			err = crypto_register_ahash(&sha_384_512_algs[i]);
2583			if (err)
2584				goto err_sha_384_512_algs;
2585		}
2586	}
2587
2588	if (dd->caps.has_hmac) {
2589		for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++) {
2590			err = crypto_register_ahash(&sha_hmac_algs[i]);
2591			if (err)
2592				goto err_sha_hmac_algs;
2593		}
2594	}
2595
2596	return 0;
2597
2598	/*i = ARRAY_SIZE(sha_hmac_algs);*/
2599err_sha_hmac_algs:
2600	for (j = 0; j < i; j++)
2601		crypto_unregister_ahash(&sha_hmac_algs[j]);
2602	i = ARRAY_SIZE(sha_384_512_algs);
2603err_sha_384_512_algs:
2604	for (j = 0; j < i; j++)
2605		crypto_unregister_ahash(&sha_384_512_algs[j]);
2606	crypto_unregister_ahash(&sha_224_alg);
2607err_sha_224_algs:
2608	i = ARRAY_SIZE(sha_1_256_algs);
2609err_sha_1_256_algs:
2610	for (j = 0; j < i; j++)
2611		crypto_unregister_ahash(&sha_1_256_algs[j]);
2612
2613	return err;
2614}
2615
2616static bool atmel_sha_filter(struct dma_chan *chan, void *slave)
2617{
2618	struct at_dma_slave	*sl = slave;
2619
2620	if (sl && sl->dma_dev == chan->device->dev) {
2621		chan->private = sl;
2622		return true;
2623	} else {
2624		return false;
2625	}
2626}
2627
2628static int atmel_sha_dma_init(struct atmel_sha_dev *dd,
2629				struct crypto_platform_data *pdata)
2630{
 
2631	dma_cap_mask_t mask_in;
2632
2633	/* Try to grab DMA channel */
2634	dma_cap_zero(mask_in);
2635	dma_cap_set(DMA_SLAVE, mask_in);
2636
2637	dd->dma_lch_in.chan = dma_request_slave_channel_compat(mask_in,
2638			atmel_sha_filter, &pdata->dma_slave->rxdata, dd->dev, "tx");
2639	if (!dd->dma_lch_in.chan) {
2640		dev_warn(dd->dev, "no DMA channel available\n");
2641		return -ENODEV;
2642	}
2643
2644	dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV;
2645	dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
2646		SHA_REG_DIN(0);
2647	dd->dma_lch_in.dma_conf.src_maxburst = 1;
2648	dd->dma_lch_in.dma_conf.src_addr_width =
2649		DMA_SLAVE_BUSWIDTH_4_BYTES;
2650	dd->dma_lch_in.dma_conf.dst_maxburst = 1;
2651	dd->dma_lch_in.dma_conf.dst_addr_width =
2652		DMA_SLAVE_BUSWIDTH_4_BYTES;
2653	dd->dma_lch_in.dma_conf.device_fc = false;
2654
2655	return 0;
2656}
2657
2658static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
2659{
2660	dma_release_channel(dd->dma_lch_in.chan);
2661}
2662
2663static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
2664{
2665
2666	dd->caps.has_dma = 0;
2667	dd->caps.has_dualbuff = 0;
2668	dd->caps.has_sha224 = 0;
2669	dd->caps.has_sha_384_512 = 0;
2670	dd->caps.has_uihv = 0;
2671	dd->caps.has_hmac = 0;
2672
2673	/* keep only major version number */
2674	switch (dd->hw_version & 0xff0) {
2675	case 0x510:
2676		dd->caps.has_dma = 1;
2677		dd->caps.has_dualbuff = 1;
2678		dd->caps.has_sha224 = 1;
2679		dd->caps.has_sha_384_512 = 1;
2680		dd->caps.has_uihv = 1;
2681		dd->caps.has_hmac = 1;
2682		break;
2683	case 0x420:
2684		dd->caps.has_dma = 1;
2685		dd->caps.has_dualbuff = 1;
2686		dd->caps.has_sha224 = 1;
2687		dd->caps.has_sha_384_512 = 1;
2688		dd->caps.has_uihv = 1;
2689		break;
2690	case 0x410:
2691		dd->caps.has_dma = 1;
2692		dd->caps.has_dualbuff = 1;
2693		dd->caps.has_sha224 = 1;
2694		dd->caps.has_sha_384_512 = 1;
2695		break;
2696	case 0x400:
2697		dd->caps.has_dma = 1;
2698		dd->caps.has_dualbuff = 1;
2699		dd->caps.has_sha224 = 1;
2700		break;
2701	case 0x320:
2702		break;
2703	default:
2704		dev_warn(dd->dev,
2705				"Unmanaged sha version, set minimum capabilities\n");
2706		break;
2707	}
2708}
2709
2710#if defined(CONFIG_OF)
2711static const struct of_device_id atmel_sha_dt_ids[] = {
2712	{ .compatible = "atmel,at91sam9g46-sha" },
2713	{ /* sentinel */ }
2714};
2715
2716MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
2717
2718static struct crypto_platform_data *atmel_sha_of_init(struct platform_device *pdev)
2719{
2720	struct device_node *np = pdev->dev.of_node;
2721	struct crypto_platform_data *pdata;
2722
2723	if (!np) {
2724		dev_err(&pdev->dev, "device node not found\n");
2725		return ERR_PTR(-EINVAL);
2726	}
2727
2728	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
2729	if (!pdata)
 
2730		return ERR_PTR(-ENOMEM);
 
2731
2732	pdata->dma_slave = devm_kzalloc(&pdev->dev,
2733					sizeof(*(pdata->dma_slave)),
2734					GFP_KERNEL);
2735	if (!pdata->dma_slave)
 
2736		return ERR_PTR(-ENOMEM);
 
2737
2738	return pdata;
2739}
2740#else /* CONFIG_OF */
2741static inline struct crypto_platform_data *atmel_sha_of_init(struct platform_device *dev)
2742{
2743	return ERR_PTR(-EINVAL);
2744}
2745#endif
2746
2747static int atmel_sha_probe(struct platform_device *pdev)
2748{
2749	struct atmel_sha_dev *sha_dd;
2750	struct crypto_platform_data	*pdata;
2751	struct device *dev = &pdev->dev;
2752	struct resource *sha_res;
2753	int err;
2754
2755	sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
2756	if (sha_dd == NULL) {
 
2757		err = -ENOMEM;
2758		goto sha_dd_err;
2759	}
2760
2761	sha_dd->dev = dev;
2762
2763	platform_set_drvdata(pdev, sha_dd);
2764
2765	INIT_LIST_HEAD(&sha_dd->list);
2766	spin_lock_init(&sha_dd->lock);
2767
2768	tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
2769					(unsigned long)sha_dd);
2770	tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
2771					(unsigned long)sha_dd);
2772
2773	crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
2774
 
 
2775	/* Get the base address */
2776	sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2777	if (!sha_res) {
2778		dev_err(dev, "no MEM resource info\n");
2779		err = -ENODEV;
2780		goto res_err;
2781	}
2782	sha_dd->phys_base = sha_res->start;
2783
2784	/* Get the IRQ */
2785	sha_dd->irq = platform_get_irq(pdev,  0);
2786	if (sha_dd->irq < 0) {
2787		dev_err(dev, "no IRQ resource info\n");
2788		err = sha_dd->irq;
2789		goto res_err;
2790	}
2791
2792	err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
2793			       IRQF_SHARED, "atmel-sha", sha_dd);
2794	if (err) {
2795		dev_err(dev, "unable to request sha irq.\n");
2796		goto res_err;
2797	}
2798
2799	/* Initializing the clock */
2800	sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
2801	if (IS_ERR(sha_dd->iclk)) {
2802		dev_err(dev, "clock initialization failed.\n");
2803		err = PTR_ERR(sha_dd->iclk);
2804		goto res_err;
2805	}
2806
2807	sha_dd->io_base = devm_ioremap_resource(&pdev->dev, sha_res);
2808	if (IS_ERR(sha_dd->io_base)) {
2809		dev_err(dev, "can't ioremap\n");
2810		err = PTR_ERR(sha_dd->io_base);
2811		goto res_err;
2812	}
2813
2814	err = clk_prepare(sha_dd->iclk);
2815	if (err)
2816		goto res_err;
2817
2818	atmel_sha_hw_version_init(sha_dd);
2819
2820	atmel_sha_get_cap(sha_dd);
2821
2822	if (sha_dd->caps.has_dma) {
2823		pdata = pdev->dev.platform_data;
2824		if (!pdata) {
2825			pdata = atmel_sha_of_init(pdev);
2826			if (IS_ERR(pdata)) {
2827				dev_err(&pdev->dev, "platform data not available\n");
2828				err = PTR_ERR(pdata);
2829				goto iclk_unprepare;
2830			}
2831		}
2832		if (!pdata->dma_slave) {
2833			err = -ENXIO;
2834			goto iclk_unprepare;
2835		}
2836		err = atmel_sha_dma_init(sha_dd, pdata);
2837		if (err)
2838			goto err_sha_dma;
2839
2840		dev_info(dev, "using %s for DMA transfers\n",
2841				dma_chan_name(sha_dd->dma_lch_in.chan));
2842	}
2843
2844	spin_lock(&atmel_sha.lock);
2845	list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
2846	spin_unlock(&atmel_sha.lock);
2847
2848	err = atmel_sha_register_algs(sha_dd);
2849	if (err)
2850		goto err_algs;
2851
2852	dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
2853			sha_dd->caps.has_sha224 ? "/SHA224" : "",
2854			sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
2855
2856	return 0;
2857
2858err_algs:
2859	spin_lock(&atmel_sha.lock);
2860	list_del(&sha_dd->list);
2861	spin_unlock(&atmel_sha.lock);
2862	if (sha_dd->caps.has_dma)
2863		atmel_sha_dma_cleanup(sha_dd);
2864err_sha_dma:
2865iclk_unprepare:
2866	clk_unprepare(sha_dd->iclk);
2867res_err:
2868	tasklet_kill(&sha_dd->queue_task);
2869	tasklet_kill(&sha_dd->done_task);
2870sha_dd_err:
2871	dev_err(dev, "initialization failed.\n");
2872
2873	return err;
2874}
2875
2876static int atmel_sha_remove(struct platform_device *pdev)
2877{
2878	struct atmel_sha_dev *sha_dd;
2879
2880	sha_dd = platform_get_drvdata(pdev);
2881	if (!sha_dd)
2882		return -ENODEV;
2883	spin_lock(&atmel_sha.lock);
2884	list_del(&sha_dd->list);
2885	spin_unlock(&atmel_sha.lock);
2886
2887	atmel_sha_unregister_algs(sha_dd);
2888
2889	tasklet_kill(&sha_dd->queue_task);
2890	tasklet_kill(&sha_dd->done_task);
2891
2892	if (sha_dd->caps.has_dma)
2893		atmel_sha_dma_cleanup(sha_dd);
2894
2895	clk_unprepare(sha_dd->iclk);
2896
2897	return 0;
2898}
2899
2900static struct platform_driver atmel_sha_driver = {
2901	.probe		= atmel_sha_probe,
2902	.remove		= atmel_sha_remove,
2903	.driver		= {
2904		.name	= "atmel_sha",
2905		.of_match_table	= of_match_ptr(atmel_sha_dt_ids),
2906	},
2907};
2908
2909module_platform_driver(atmel_sha_driver);
2910
2911MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
2912MODULE_LICENSE("GPL v2");
2913MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
v4.6
   1/*
   2 * Cryptographic API.
   3 *
   4 * Support for ATMEL SHA1/SHA256 HW acceleration.
   5 *
   6 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
   7 * Author: Nicolas Royer <nicolas@eukrea.com>
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as published
  11 * by the Free Software Foundation.
  12 *
  13 * Some ideas are from omap-sham.c drivers.
  14 */
  15
  16
  17#include <linux/kernel.h>
  18#include <linux/module.h>
  19#include <linux/slab.h>
  20#include <linux/err.h>
  21#include <linux/clk.h>
  22#include <linux/io.h>
  23#include <linux/hw_random.h>
  24#include <linux/platform_device.h>
  25
  26#include <linux/device.h>
  27#include <linux/init.h>
  28#include <linux/errno.h>
  29#include <linux/interrupt.h>
  30#include <linux/irq.h>
  31#include <linux/scatterlist.h>
  32#include <linux/dma-mapping.h>
  33#include <linux/of_device.h>
  34#include <linux/delay.h>
  35#include <linux/crypto.h>
  36#include <linux/cryptohash.h>
  37#include <crypto/scatterwalk.h>
  38#include <crypto/algapi.h>
  39#include <crypto/sha.h>
  40#include <crypto/hash.h>
  41#include <crypto/internal/hash.h>
  42#include <linux/platform_data/crypto-atmel.h>
  43#include "atmel-sha-regs.h"
 
  44
  45/* SHA flags */
  46#define SHA_FLAGS_BUSY			BIT(0)
  47#define	SHA_FLAGS_FINAL			BIT(1)
  48#define SHA_FLAGS_DMA_ACTIVE	BIT(2)
  49#define SHA_FLAGS_OUTPUT_READY	BIT(3)
  50#define SHA_FLAGS_INIT			BIT(4)
  51#define SHA_FLAGS_CPU			BIT(5)
  52#define SHA_FLAGS_DMA_READY		BIT(6)
 
 
 
  53
  54#define SHA_FLAGS_FINUP		BIT(16)
  55#define SHA_FLAGS_SG		BIT(17)
  56#define SHA_FLAGS_ALGO_MASK	GENMASK(22, 18)
  57#define SHA_FLAGS_SHA1		BIT(18)
  58#define SHA_FLAGS_SHA224	BIT(19)
  59#define SHA_FLAGS_SHA256	BIT(20)
  60#define SHA_FLAGS_SHA384	BIT(21)
  61#define SHA_FLAGS_SHA512	BIT(22)
  62#define SHA_FLAGS_ERROR		BIT(23)
  63#define SHA_FLAGS_PAD		BIT(24)
  64#define SHA_FLAGS_RESTORE	BIT(25)
 
 
  65
 
  66#define SHA_OP_UPDATE	1
  67#define SHA_OP_FINAL	2
 
  68
  69#define SHA_BUFFER_LEN		(PAGE_SIZE / 16)
  70
  71#define ATMEL_SHA_DMA_THRESHOLD		56
  72
  73struct atmel_sha_caps {
  74	bool	has_dma;
  75	bool	has_dualbuff;
  76	bool	has_sha224;
  77	bool	has_sha_384_512;
  78	bool	has_uihv;
 
  79};
  80
  81struct atmel_sha_dev;
  82
  83/*
  84 * .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
  85 * tested by the ahash_prepare_alg() function.
  86 */
  87struct atmel_sha_reqctx {
  88	struct atmel_sha_dev	*dd;
  89	unsigned long	flags;
  90	unsigned long	op;
  91
  92	u8	digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
  93	u64	digcnt[2];
  94	size_t	bufcnt;
  95	size_t	buflen;
  96	dma_addr_t	dma_addr;
  97
  98	/* walk state */
  99	struct scatterlist	*sg;
 100	unsigned int	offset;	/* offset in current sg */
 101	unsigned int	total;	/* total request */
 102
 103	size_t block_size;
 
 104
 105	u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
 106};
 107
 
 
 108struct atmel_sha_ctx {
 109	struct atmel_sha_dev	*dd;
 
 110
 111	unsigned long		flags;
 112};
 113
 114#define ATMEL_SHA_QUEUE_LENGTH	50
 115
 116struct atmel_sha_dma {
 117	struct dma_chan			*chan;
 118	struct dma_slave_config dma_conf;
 
 
 
 119};
 120
 121struct atmel_sha_dev {
 122	struct list_head	list;
 123	unsigned long		phys_base;
 124	struct device		*dev;
 125	struct clk			*iclk;
 126	int					irq;
 127	void __iomem		*io_base;
 128
 129	spinlock_t		lock;
 130	int			err;
 131	struct tasklet_struct	done_task;
 132	struct tasklet_struct	queue_task;
 133
 134	unsigned long		flags;
 135	struct crypto_queue	queue;
 136	struct ahash_request	*req;
 
 
 
 
 137
 138	struct atmel_sha_dma	dma_lch_in;
 139
 140	struct atmel_sha_caps	caps;
 141
 
 
 142	u32	hw_version;
 143};
 144
 145struct atmel_sha_drv {
 146	struct list_head	dev_list;
 147	spinlock_t		lock;
 148};
 149
 150static struct atmel_sha_drv atmel_sha = {
 151	.dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
 152	.lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
 153};
 154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 155static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
 156{
 157	return readl_relaxed(dd->io_base + offset);
 
 
 
 
 
 
 
 
 
 
 
 158}
 159
 160static inline void atmel_sha_write(struct atmel_sha_dev *dd,
 161					u32 offset, u32 value)
 162{
 
 
 
 
 
 
 
 
 
 163	writel_relaxed(value, dd->io_base + offset);
 164}
 165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 166static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
 167{
 168	size_t count;
 169
 170	while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
 171		count = min(ctx->sg->length - ctx->offset, ctx->total);
 172		count = min(count, ctx->buflen - ctx->bufcnt);
 173
 174		if (count <= 0) {
 175			/*
 176			* Check if count <= 0 because the buffer is full or
 177			* because the sg length is 0. In the latest case,
 178			* check if there is another sg in the list, a 0 length
 179			* sg doesn't necessarily mean the end of the sg list.
 180			*/
 181			if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
 182				ctx->sg = sg_next(ctx->sg);
 183				continue;
 184			} else {
 185				break;
 186			}
 187		}
 188
 189		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
 190			ctx->offset, count, 0);
 191
 192		ctx->bufcnt += count;
 193		ctx->offset += count;
 194		ctx->total -= count;
 195
 196		if (ctx->offset == ctx->sg->length) {
 197			ctx->sg = sg_next(ctx->sg);
 198			if (ctx->sg)
 199				ctx->offset = 0;
 200			else
 201				ctx->total = 0;
 202		}
 203	}
 204
 205	return 0;
 206}
 207
 208/*
 209 * The purpose of this padding is to ensure that the padded message is a
 210 * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
 211 * The bit "1" is appended at the end of the message followed by
 212 * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
 213 * 128 bits block (SHA384/SHA512) equals to the message length in bits
 214 * is appended.
 215 *
 216 * For SHA1/SHA224/SHA256, padlen is calculated as followed:
 217 *  - if message length < 56 bytes then padlen = 56 - message length
 218 *  - else padlen = 64 + 56 - message length
 219 *
 220 * For SHA384/SHA512, padlen is calculated as followed:
 221 *  - if message length < 112 bytes then padlen = 112 - message length
 222 *  - else padlen = 128 + 112 - message length
 223 */
 224static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
 225{
 226	unsigned int index, padlen;
 227	u64 bits[2];
 228	u64 size[2];
 229
 230	size[0] = ctx->digcnt[0];
 231	size[1] = ctx->digcnt[1];
 232
 233	size[0] += ctx->bufcnt;
 234	if (size[0] < ctx->bufcnt)
 235		size[1]++;
 236
 237	size[0] += length;
 238	if (size[0]  < length)
 239		size[1]++;
 240
 241	bits[1] = cpu_to_be64(size[0] << 3);
 242	bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
 243
 244	if (ctx->flags & (SHA_FLAGS_SHA384 | SHA_FLAGS_SHA512)) {
 
 
 245		index = ctx->bufcnt & 0x7f;
 246		padlen = (index < 112) ? (112 - index) : ((128+112) - index);
 247		*(ctx->buffer + ctx->bufcnt) = 0x80;
 248		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
 249		memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
 250		ctx->bufcnt += padlen + 16;
 251		ctx->flags |= SHA_FLAGS_PAD;
 252	} else {
 
 
 253		index = ctx->bufcnt & 0x3f;
 254		padlen = (index < 56) ? (56 - index) : ((64+56) - index);
 255		*(ctx->buffer + ctx->bufcnt) = 0x80;
 256		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
 257		memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
 258		ctx->bufcnt += padlen + 8;
 259		ctx->flags |= SHA_FLAGS_PAD;
 
 260	}
 261}
 262
 263static int atmel_sha_init(struct ahash_request *req)
 264{
 265	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 266	struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
 267	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 268	struct atmel_sha_dev *dd = NULL;
 269	struct atmel_sha_dev *tmp;
 270
 271	spin_lock_bh(&atmel_sha.lock);
 272	if (!tctx->dd) {
 273		list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
 274			dd = tmp;
 275			break;
 276		}
 277		tctx->dd = dd;
 278	} else {
 279		dd = tctx->dd;
 280	}
 281
 282	spin_unlock_bh(&atmel_sha.lock);
 283
 
 
 
 
 
 
 
 
 
 
 284	ctx->dd = dd;
 285
 286	ctx->flags = 0;
 287
 288	dev_dbg(dd->dev, "init: digest size: %d\n",
 289		crypto_ahash_digestsize(tfm));
 290
 291	switch (crypto_ahash_digestsize(tfm)) {
 292	case SHA1_DIGEST_SIZE:
 293		ctx->flags |= SHA_FLAGS_SHA1;
 294		ctx->block_size = SHA1_BLOCK_SIZE;
 295		break;
 296	case SHA224_DIGEST_SIZE:
 297		ctx->flags |= SHA_FLAGS_SHA224;
 298		ctx->block_size = SHA224_BLOCK_SIZE;
 299		break;
 300	case SHA256_DIGEST_SIZE:
 301		ctx->flags |= SHA_FLAGS_SHA256;
 302		ctx->block_size = SHA256_BLOCK_SIZE;
 303		break;
 304	case SHA384_DIGEST_SIZE:
 305		ctx->flags |= SHA_FLAGS_SHA384;
 306		ctx->block_size = SHA384_BLOCK_SIZE;
 307		break;
 308	case SHA512_DIGEST_SIZE:
 309		ctx->flags |= SHA_FLAGS_SHA512;
 310		ctx->block_size = SHA512_BLOCK_SIZE;
 311		break;
 312	default:
 313		return -EINVAL;
 314		break;
 315	}
 316
 317	ctx->bufcnt = 0;
 318	ctx->digcnt[0] = 0;
 319	ctx->digcnt[1] = 0;
 320	ctx->buflen = SHA_BUFFER_LEN;
 321
 322	return 0;
 323}
 324
 325static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
 326{
 327	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 328	u32 valmr = SHA_MR_MODE_AUTO;
 329	unsigned int i, hashsize = 0;
 330
 331	if (likely(dma)) {
 332		if (!dd->caps.has_dma)
 333			atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
 334		valmr = SHA_MR_MODE_PDC;
 335		if (dd->caps.has_dualbuff)
 336			valmr |= SHA_MR_DUALBUFF;
 337	} else {
 338		atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
 339	}
 340
 341	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
 342	case SHA_FLAGS_SHA1:
 343		valmr |= SHA_MR_ALGO_SHA1;
 344		hashsize = SHA1_DIGEST_SIZE;
 345		break;
 346
 347	case SHA_FLAGS_SHA224:
 348		valmr |= SHA_MR_ALGO_SHA224;
 349		hashsize = SHA256_DIGEST_SIZE;
 350		break;
 351
 352	case SHA_FLAGS_SHA256:
 353		valmr |= SHA_MR_ALGO_SHA256;
 354		hashsize = SHA256_DIGEST_SIZE;
 355		break;
 356
 357	case SHA_FLAGS_SHA384:
 358		valmr |= SHA_MR_ALGO_SHA384;
 359		hashsize = SHA512_DIGEST_SIZE;
 360		break;
 361
 362	case SHA_FLAGS_SHA512:
 363		valmr |= SHA_MR_ALGO_SHA512;
 364		hashsize = SHA512_DIGEST_SIZE;
 365		break;
 366
 367	default:
 368		break;
 369	}
 370
 371	/* Setting CR_FIRST only for the first iteration */
 372	if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
 373		atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
 374	} else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
 375		const u32 *hash = (const u32 *)ctx->digest;
 376
 377		/*
 378		 * Restore the hardware context: update the User Initialize
 379		 * Hash Value (UIHV) with the value saved when the latest
 380		 * 'update' operation completed on this very same crypto
 381		 * request.
 382		 */
 383		ctx->flags &= ~SHA_FLAGS_RESTORE;
 384		atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
 385		for (i = 0; i < hashsize / sizeof(u32); ++i)
 386			atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
 387		atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
 388		valmr |= SHA_MR_UIHV;
 389	}
 390	/*
 391	 * WARNING: If the UIHV feature is not available, the hardware CANNOT
 392	 * process concurrent requests: the internal registers used to store
 393	 * the hash/digest are still set to the partial digest output values
 394	 * computed during the latest round.
 395	 */
 396
 397	atmel_sha_write(dd, SHA_MR, valmr);
 398}
 399
 
 
 
 
 
 
 
 
 
 
 
 
 
 400static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
 401			      size_t length, int final)
 402{
 403	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 404	int count, len32;
 405	const u32 *buffer = (const u32 *)buf;
 406
 407	dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
 408		ctx->digcnt[1], ctx->digcnt[0], length, final);
 409
 410	atmel_sha_write_ctrl(dd, 0);
 411
 412	/* should be non-zero before next lines to disable clocks later */
 413	ctx->digcnt[0] += length;
 414	if (ctx->digcnt[0] < length)
 415		ctx->digcnt[1]++;
 416
 417	if (final)
 418		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
 419
 420	len32 = DIV_ROUND_UP(length, sizeof(u32));
 421
 422	dd->flags |= SHA_FLAGS_CPU;
 423
 424	for (count = 0; count < len32; count++)
 425		atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
 426
 427	return -EINPROGRESS;
 428}
 429
 430static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
 431		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
 432{
 433	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 434	int len32;
 435
 436	dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
 437		ctx->digcnt[1], ctx->digcnt[0], length1, final);
 438
 439	len32 = DIV_ROUND_UP(length1, sizeof(u32));
 440	atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
 441	atmel_sha_write(dd, SHA_TPR, dma_addr1);
 442	atmel_sha_write(dd, SHA_TCR, len32);
 443
 444	len32 = DIV_ROUND_UP(length2, sizeof(u32));
 445	atmel_sha_write(dd, SHA_TNPR, dma_addr2);
 446	atmel_sha_write(dd, SHA_TNCR, len32);
 447
 448	atmel_sha_write_ctrl(dd, 1);
 449
 450	/* should be non-zero before next lines to disable clocks later */
 451	ctx->digcnt[0] += length1;
 452	if (ctx->digcnt[0] < length1)
 453		ctx->digcnt[1]++;
 454
 455	if (final)
 456		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
 457
 458	dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
 459
 460	/* Start DMA transfer */
 461	atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
 462
 463	return -EINPROGRESS;
 464}
 465
 466static void atmel_sha_dma_callback(void *data)
 467{
 468	struct atmel_sha_dev *dd = data;
 469
 
 
 470	/* dma_lch_in - completed - wait DATRDY */
 471	atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
 472}
 473
 474static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
 475		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
 476{
 477	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 478	struct dma_async_tx_descriptor	*in_desc;
 479	struct scatterlist sg[2];
 480
 481	dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
 482		ctx->digcnt[1], ctx->digcnt[0], length1, final);
 483
 484	dd->dma_lch_in.dma_conf.src_maxburst = 16;
 485	dd->dma_lch_in.dma_conf.dst_maxburst = 16;
 486
 487	dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
 488
 489	if (length2) {
 490		sg_init_table(sg, 2);
 491		sg_dma_address(&sg[0]) = dma_addr1;
 492		sg_dma_len(&sg[0]) = length1;
 493		sg_dma_address(&sg[1]) = dma_addr2;
 494		sg_dma_len(&sg[1]) = length2;
 495		in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
 496			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 497	} else {
 498		sg_init_table(sg, 1);
 499		sg_dma_address(&sg[0]) = dma_addr1;
 500		sg_dma_len(&sg[0]) = length1;
 501		in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
 502			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 503	}
 504	if (!in_desc)
 505		return -EINVAL;
 506
 507	in_desc->callback = atmel_sha_dma_callback;
 508	in_desc->callback_param = dd;
 509
 510	atmel_sha_write_ctrl(dd, 1);
 511
 512	/* should be non-zero before next lines to disable clocks later */
 513	ctx->digcnt[0] += length1;
 514	if (ctx->digcnt[0] < length1)
 515		ctx->digcnt[1]++;
 516
 517	if (final)
 518		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
 519
 520	dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
 521
 522	/* Start DMA transfer */
 523	dmaengine_submit(in_desc);
 524	dma_async_issue_pending(dd->dma_lch_in.chan);
 525
 526	return -EINPROGRESS;
 527}
 528
 529static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
 530		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
 531{
 532	if (dd->caps.has_dma)
 533		return atmel_sha_xmit_dma(dd, dma_addr1, length1,
 534				dma_addr2, length2, final);
 535	else
 536		return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
 537				dma_addr2, length2, final);
 538}
 539
 540static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
 541{
 542	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 543	int bufcnt;
 544
 545	atmel_sha_append_sg(ctx);
 546	atmel_sha_fill_padding(ctx, 0);
 547	bufcnt = ctx->bufcnt;
 548	ctx->bufcnt = 0;
 549
 550	return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
 551}
 552
 553static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
 554					struct atmel_sha_reqctx *ctx,
 555					size_t length, int final)
 556{
 557	ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
 558				ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
 559	if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
 560		dev_err(dd->dev, "dma %u bytes error\n", ctx->buflen +
 561				ctx->block_size);
 562		return -EINVAL;
 563	}
 564
 565	ctx->flags &= ~SHA_FLAGS_SG;
 566
 567	/* next call does not fail... so no unmap in the case of error */
 568	return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
 569}
 570
 571static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
 572{
 573	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 574	unsigned int final;
 575	size_t count;
 576
 577	atmel_sha_append_sg(ctx);
 578
 579	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
 580
 581	dev_dbg(dd->dev, "slow: bufcnt: %u, digcnt: 0x%llx 0x%llx, final: %d\n",
 582		 ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
 583
 584	if (final)
 585		atmel_sha_fill_padding(ctx, 0);
 586
 587	if (final || (ctx->bufcnt == ctx->buflen)) {
 588		count = ctx->bufcnt;
 589		ctx->bufcnt = 0;
 590		return atmel_sha_xmit_dma_map(dd, ctx, count, final);
 591	}
 592
 593	return 0;
 594}
 595
 596static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
 597{
 598	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 599	unsigned int length, final, tail;
 600	struct scatterlist *sg;
 601	unsigned int count;
 602
 603	if (!ctx->total)
 604		return 0;
 605
 606	if (ctx->bufcnt || ctx->offset)
 607		return atmel_sha_update_dma_slow(dd);
 608
 609	dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %u, total: %u\n",
 610		ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
 611
 612	sg = ctx->sg;
 613
 614	if (!IS_ALIGNED(sg->offset, sizeof(u32)))
 615		return atmel_sha_update_dma_slow(dd);
 616
 617	if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
 618		/* size is not ctx->block_size aligned */
 619		return atmel_sha_update_dma_slow(dd);
 620
 621	length = min(ctx->total, sg->length);
 622
 623	if (sg_is_last(sg)) {
 624		if (!(ctx->flags & SHA_FLAGS_FINUP)) {
 625			/* not last sg must be ctx->block_size aligned */
 626			tail = length & (ctx->block_size - 1);
 627			length -= tail;
 628		}
 629	}
 630
 631	ctx->total -= length;
 632	ctx->offset = length; /* offset where to start slow */
 633
 634	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
 635
 636	/* Add padding */
 637	if (final) {
 638		tail = length & (ctx->block_size - 1);
 639		length -= tail;
 640		ctx->total += tail;
 641		ctx->offset = length; /* offset where to start slow */
 642
 643		sg = ctx->sg;
 644		atmel_sha_append_sg(ctx);
 645
 646		atmel_sha_fill_padding(ctx, length);
 647
 648		ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
 649			ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
 650		if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
 651			dev_err(dd->dev, "dma %u bytes error\n",
 652				ctx->buflen + ctx->block_size);
 653			return -EINVAL;
 654		}
 655
 656		if (length == 0) {
 657			ctx->flags &= ~SHA_FLAGS_SG;
 658			count = ctx->bufcnt;
 659			ctx->bufcnt = 0;
 660			return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
 661					0, final);
 662		} else {
 663			ctx->sg = sg;
 664			if (!dma_map_sg(dd->dev, ctx->sg, 1,
 665				DMA_TO_DEVICE)) {
 666					dev_err(dd->dev, "dma_map_sg  error\n");
 667					return -EINVAL;
 668			}
 669
 670			ctx->flags |= SHA_FLAGS_SG;
 671
 672			count = ctx->bufcnt;
 673			ctx->bufcnt = 0;
 674			return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
 675					length, ctx->dma_addr, count, final);
 676		}
 677	}
 678
 679	if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
 680		dev_err(dd->dev, "dma_map_sg  error\n");
 681		return -EINVAL;
 682	}
 683
 684	ctx->flags |= SHA_FLAGS_SG;
 685
 686	/* next call does not fail... so no unmap in the case of error */
 687	return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
 688								0, final);
 689}
 690
 691static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
 692{
 693	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 694
 695	if (ctx->flags & SHA_FLAGS_SG) {
 696		dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
 697		if (ctx->sg->length == ctx->offset) {
 698			ctx->sg = sg_next(ctx->sg);
 699			if (ctx->sg)
 700				ctx->offset = 0;
 701		}
 702		if (ctx->flags & SHA_FLAGS_PAD) {
 703			dma_unmap_single(dd->dev, ctx->dma_addr,
 704				ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
 705		}
 706	} else {
 707		dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
 708						ctx->block_size, DMA_TO_DEVICE);
 709	}
 710
 711	return 0;
 712}
 713
 714static int atmel_sha_update_req(struct atmel_sha_dev *dd)
 715{
 716	struct ahash_request *req = dd->req;
 717	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 718	int err;
 719
 720	dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
 721		ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
 722
 723	if (ctx->flags & SHA_FLAGS_CPU)
 724		err = atmel_sha_update_cpu(dd);
 725	else
 726		err = atmel_sha_update_dma_start(dd);
 727
 728	/* wait for dma completion before can take more data */
 729	dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
 730			err, ctx->digcnt[1], ctx->digcnt[0]);
 731
 732	return err;
 733}
 734
 735static int atmel_sha_final_req(struct atmel_sha_dev *dd)
 736{
 737	struct ahash_request *req = dd->req;
 738	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 739	int err = 0;
 740	int count;
 741
 742	if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
 743		atmel_sha_fill_padding(ctx, 0);
 744		count = ctx->bufcnt;
 745		ctx->bufcnt = 0;
 746		err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
 747	}
 748	/* faster to handle last block with cpu */
 749	else {
 750		atmel_sha_fill_padding(ctx, 0);
 751		count = ctx->bufcnt;
 752		ctx->bufcnt = 0;
 753		err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
 754	}
 755
 756	dev_dbg(dd->dev, "final_req: err: %d\n", err);
 757
 758	return err;
 759}
 760
 761static void atmel_sha_copy_hash(struct ahash_request *req)
 762{
 763	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 764	u32 *hash = (u32 *)ctx->digest;
 765	unsigned int i, hashsize;
 766
 767	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
 768	case SHA_FLAGS_SHA1:
 769		hashsize = SHA1_DIGEST_SIZE;
 770		break;
 771
 772	case SHA_FLAGS_SHA224:
 773	case SHA_FLAGS_SHA256:
 774		hashsize = SHA256_DIGEST_SIZE;
 775		break;
 776
 777	case SHA_FLAGS_SHA384:
 778	case SHA_FLAGS_SHA512:
 779		hashsize = SHA512_DIGEST_SIZE;
 780		break;
 781
 782	default:
 783		/* Should not happen... */
 784		return;
 785	}
 786
 787	for (i = 0; i < hashsize / sizeof(u32); ++i)
 788		hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
 789	ctx->flags |= SHA_FLAGS_RESTORE;
 790}
 791
 792static void atmel_sha_copy_ready_hash(struct ahash_request *req)
 793{
 794	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 795
 796	if (!req->result)
 797		return;
 798
 799	if (ctx->flags & SHA_FLAGS_SHA1)
 
 
 800		memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
 801	else if (ctx->flags & SHA_FLAGS_SHA224)
 
 
 802		memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
 803	else if (ctx->flags & SHA_FLAGS_SHA256)
 
 
 804		memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
 805	else if (ctx->flags & SHA_FLAGS_SHA384)
 
 
 806		memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
 807	else
 
 
 808		memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
 
 
 809}
 810
 811static int atmel_sha_finish(struct ahash_request *req)
 812{
 813	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 814	struct atmel_sha_dev *dd = ctx->dd;
 815
 816	if (ctx->digcnt[0] || ctx->digcnt[1])
 817		atmel_sha_copy_ready_hash(req);
 818
 819	dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %d\n", ctx->digcnt[1],
 820		ctx->digcnt[0], ctx->bufcnt);
 821
 822	return 0;
 823}
 824
 825static void atmel_sha_finish_req(struct ahash_request *req, int err)
 826{
 827	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 828	struct atmel_sha_dev *dd = ctx->dd;
 829
 830	if (!err) {
 831		atmel_sha_copy_hash(req);
 832		if (SHA_FLAGS_FINAL & dd->flags)
 833			err = atmel_sha_finish(req);
 834	} else {
 835		ctx->flags |= SHA_FLAGS_ERROR;
 836	}
 837
 838	/* atomic operation is not needed here */
 839	dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
 840			SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY);
 841
 842	clk_disable(dd->iclk);
 843
 844	if (req->base.complete)
 845		req->base.complete(&req->base, err);
 846
 847	/* handle new request */
 848	tasklet_schedule(&dd->queue_task);
 849}
 850
 851static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
 852{
 853	int err;
 854
 855	err = clk_enable(dd->iclk);
 856	if (err)
 857		return err;
 858
 859	if (!(SHA_FLAGS_INIT & dd->flags)) {
 860		atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
 861		dd->flags |= SHA_FLAGS_INIT;
 862		dd->err = 0;
 863	}
 864
 865	return 0;
 866}
 867
 868static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
 869{
 870	return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
 871}
 872
 873static void atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
 874{
 875	atmel_sha_hw_init(dd);
 876
 877	dd->hw_version = atmel_sha_get_version(dd);
 878
 879	dev_info(dd->dev,
 880			"version: 0x%x\n", dd->hw_version);
 881
 882	clk_disable(dd->iclk);
 883}
 884
 885static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
 886				  struct ahash_request *req)
 887{
 888	struct crypto_async_request *async_req, *backlog;
 889	struct atmel_sha_reqctx *ctx;
 890	unsigned long flags;
 
 891	int err = 0, ret = 0;
 892
 893	spin_lock_irqsave(&dd->lock, flags);
 894	if (req)
 895		ret = ahash_enqueue_request(&dd->queue, req);
 896
 897	if (SHA_FLAGS_BUSY & dd->flags) {
 898		spin_unlock_irqrestore(&dd->lock, flags);
 899		return ret;
 900	}
 901
 902	backlog = crypto_get_backlog(&dd->queue);
 903	async_req = crypto_dequeue_request(&dd->queue);
 904	if (async_req)
 905		dd->flags |= SHA_FLAGS_BUSY;
 906
 907	spin_unlock_irqrestore(&dd->lock, flags);
 908
 909	if (!async_req)
 910		return ret;
 911
 912	if (backlog)
 913		backlog->complete(backlog, -EINPROGRESS);
 914
 915	req = ahash_request_cast(async_req);
 916	dd->req = req;
 917	ctx = ahash_request_ctx(req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 918
 919	dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
 920						ctx->op, req->nbytes);
 921
 922	err = atmel_sha_hw_init(dd);
 
 
 923
 924	if (err)
 925		goto err1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 926
 
 927	if (ctx->op == SHA_OP_UPDATE) {
 928		err = atmel_sha_update_req(dd);
 929		if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINUP))
 930			/* no final() after finup() */
 931			err = atmel_sha_final_req(dd);
 932	} else if (ctx->op == SHA_OP_FINAL) {
 933		err = atmel_sha_final_req(dd);
 934	}
 935
 936err1:
 937	if (err != -EINPROGRESS)
 938		/* done_task will not finish it, so do it here */
 939		atmel_sha_finish_req(req, err);
 940
 941	dev_dbg(dd->dev, "exit, err: %d\n", err);
 942
 943	return ret;
 944}
 945
 946static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
 947{
 948	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 949	struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
 950	struct atmel_sha_dev *dd = tctx->dd;
 951
 952	ctx->op = op;
 953
 954	return atmel_sha_handle_queue(dd, req);
 955}
 956
 957static int atmel_sha_update(struct ahash_request *req)
 958{
 959	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 960
 961	if (!req->nbytes)
 962		return 0;
 963
 964	ctx->total = req->nbytes;
 965	ctx->sg = req->src;
 966	ctx->offset = 0;
 967
 968	if (ctx->flags & SHA_FLAGS_FINUP) {
 969		if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
 970			/* faster to use CPU for short transfers */
 971			ctx->flags |= SHA_FLAGS_CPU;
 972	} else if (ctx->bufcnt + ctx->total < ctx->buflen) {
 973		atmel_sha_append_sg(ctx);
 974		return 0;
 975	}
 976	return atmel_sha_enqueue(req, SHA_OP_UPDATE);
 977}
 978
 979static int atmel_sha_final(struct ahash_request *req)
 980{
 981	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 982
 983	ctx->flags |= SHA_FLAGS_FINUP;
 984
 985	if (ctx->flags & SHA_FLAGS_ERROR)
 986		return 0; /* uncompleted hash is not needed */
 987
 988	if (ctx->flags & SHA_FLAGS_PAD)
 989		/* copy ready hash (+ finalize hmac) */
 990		return atmel_sha_finish(req);
 991
 992	return atmel_sha_enqueue(req, SHA_OP_FINAL);
 993}
 994
 995static int atmel_sha_finup(struct ahash_request *req)
 996{
 997	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 998	int err1, err2;
 999
1000	ctx->flags |= SHA_FLAGS_FINUP;
1001
1002	err1 = atmel_sha_update(req);
1003	if (err1 == -EINPROGRESS || err1 == -EBUSY)
 
 
1004		return err1;
1005
1006	/*
1007	 * final() has to be always called to cleanup resources
1008	 * even if udpate() failed, except EINPROGRESS
1009	 */
1010	err2 = atmel_sha_final(req);
1011
1012	return err1 ?: err2;
1013}
1014
1015static int atmel_sha_digest(struct ahash_request *req)
1016{
1017	return atmel_sha_init(req) ?: atmel_sha_finup(req);
1018}
1019
1020
1021static int atmel_sha_export(struct ahash_request *req, void *out)
1022{
1023	const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1024
1025	memcpy(out, ctx, sizeof(*ctx));
1026	return 0;
1027}
1028
1029static int atmel_sha_import(struct ahash_request *req, const void *in)
1030{
1031	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1032
1033	memcpy(ctx, in, sizeof(*ctx));
1034	return 0;
1035}
1036
1037static int atmel_sha_cra_init(struct crypto_tfm *tfm)
1038{
 
 
1039	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1040				 sizeof(struct atmel_sha_reqctx));
 
1041
1042	return 0;
1043}
1044
1045static struct ahash_alg sha_1_256_algs[] = {
1046{
1047	.init		= atmel_sha_init,
1048	.update		= atmel_sha_update,
1049	.final		= atmel_sha_final,
1050	.finup		= atmel_sha_finup,
1051	.digest		= atmel_sha_digest,
1052	.export		= atmel_sha_export,
1053	.import		= atmel_sha_import,
1054	.halg = {
1055		.digestsize	= SHA1_DIGEST_SIZE,
1056		.statesize	= sizeof(struct atmel_sha_reqctx),
1057		.base	= {
1058			.cra_name		= "sha1",
1059			.cra_driver_name	= "atmel-sha1",
1060			.cra_priority		= 100,
1061			.cra_flags		= CRYPTO_ALG_ASYNC,
1062			.cra_blocksize		= SHA1_BLOCK_SIZE,
1063			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1064			.cra_alignmask		= 0,
1065			.cra_module		= THIS_MODULE,
1066			.cra_init		= atmel_sha_cra_init,
1067		}
1068	}
1069},
1070{
1071	.init		= atmel_sha_init,
1072	.update		= atmel_sha_update,
1073	.final		= atmel_sha_final,
1074	.finup		= atmel_sha_finup,
1075	.digest		= atmel_sha_digest,
1076	.export		= atmel_sha_export,
1077	.import		= atmel_sha_import,
1078	.halg = {
1079		.digestsize	= SHA256_DIGEST_SIZE,
1080		.statesize	= sizeof(struct atmel_sha_reqctx),
1081		.base	= {
1082			.cra_name		= "sha256",
1083			.cra_driver_name	= "atmel-sha256",
1084			.cra_priority		= 100,
1085			.cra_flags		= CRYPTO_ALG_ASYNC,
1086			.cra_blocksize		= SHA256_BLOCK_SIZE,
1087			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1088			.cra_alignmask		= 0,
1089			.cra_module		= THIS_MODULE,
1090			.cra_init		= atmel_sha_cra_init,
1091		}
1092	}
1093},
1094};
1095
1096static struct ahash_alg sha_224_alg = {
1097	.init		= atmel_sha_init,
1098	.update		= atmel_sha_update,
1099	.final		= atmel_sha_final,
1100	.finup		= atmel_sha_finup,
1101	.digest		= atmel_sha_digest,
1102	.export		= atmel_sha_export,
1103	.import		= atmel_sha_import,
1104	.halg = {
1105		.digestsize	= SHA224_DIGEST_SIZE,
1106		.statesize	= sizeof(struct atmel_sha_reqctx),
1107		.base	= {
1108			.cra_name		= "sha224",
1109			.cra_driver_name	= "atmel-sha224",
1110			.cra_priority		= 100,
1111			.cra_flags		= CRYPTO_ALG_ASYNC,
1112			.cra_blocksize		= SHA224_BLOCK_SIZE,
1113			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1114			.cra_alignmask		= 0,
1115			.cra_module		= THIS_MODULE,
1116			.cra_init		= atmel_sha_cra_init,
1117		}
1118	}
1119};
1120
1121static struct ahash_alg sha_384_512_algs[] = {
1122{
1123	.init		= atmel_sha_init,
1124	.update		= atmel_sha_update,
1125	.final		= atmel_sha_final,
1126	.finup		= atmel_sha_finup,
1127	.digest		= atmel_sha_digest,
1128	.export		= atmel_sha_export,
1129	.import		= atmel_sha_import,
1130	.halg = {
1131		.digestsize	= SHA384_DIGEST_SIZE,
1132		.statesize	= sizeof(struct atmel_sha_reqctx),
1133		.base	= {
1134			.cra_name		= "sha384",
1135			.cra_driver_name	= "atmel-sha384",
1136			.cra_priority		= 100,
1137			.cra_flags		= CRYPTO_ALG_ASYNC,
1138			.cra_blocksize		= SHA384_BLOCK_SIZE,
1139			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1140			.cra_alignmask		= 0x3,
1141			.cra_module		= THIS_MODULE,
1142			.cra_init		= atmel_sha_cra_init,
1143		}
1144	}
1145},
1146{
1147	.init		= atmel_sha_init,
1148	.update		= atmel_sha_update,
1149	.final		= atmel_sha_final,
1150	.finup		= atmel_sha_finup,
1151	.digest		= atmel_sha_digest,
1152	.export		= atmel_sha_export,
1153	.import		= atmel_sha_import,
1154	.halg = {
1155		.digestsize	= SHA512_DIGEST_SIZE,
1156		.statesize	= sizeof(struct atmel_sha_reqctx),
1157		.base	= {
1158			.cra_name		= "sha512",
1159			.cra_driver_name	= "atmel-sha512",
1160			.cra_priority		= 100,
1161			.cra_flags		= CRYPTO_ALG_ASYNC,
1162			.cra_blocksize		= SHA512_BLOCK_SIZE,
1163			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1164			.cra_alignmask		= 0x3,
1165			.cra_module		= THIS_MODULE,
1166			.cra_init		= atmel_sha_cra_init,
1167		}
1168	}
1169},
1170};
1171
1172static void atmel_sha_queue_task(unsigned long data)
1173{
1174	struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1175
1176	atmel_sha_handle_queue(dd, NULL);
1177}
1178
1179static void atmel_sha_done_task(unsigned long data)
1180{
1181	struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1182	int err = 0;
1183
1184	if (SHA_FLAGS_CPU & dd->flags) {
1185		if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1186			dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1187			goto finish;
1188		}
1189	} else if (SHA_FLAGS_DMA_READY & dd->flags) {
1190		if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1191			dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1192			atmel_sha_update_dma_stop(dd);
1193			if (dd->err) {
1194				err = dd->err;
1195				goto finish;
1196			}
1197		}
1198		if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1199			/* hash or semi-hash ready */
1200			dd->flags &= ~(SHA_FLAGS_DMA_READY |
1201						SHA_FLAGS_OUTPUT_READY);
1202			err = atmel_sha_update_dma_start(dd);
1203			if (err != -EINPROGRESS)
1204				goto finish;
1205		}
1206	}
1207	return;
1208
1209finish:
1210	/* finish curent request */
1211	atmel_sha_finish_req(dd->req, err);
 
 
 
 
 
 
 
 
 
 
1212}
1213
1214static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1215{
1216	struct atmel_sha_dev *sha_dd = dev_id;
1217	u32 reg;
1218
1219	reg = atmel_sha_read(sha_dd, SHA_ISR);
1220	if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1221		atmel_sha_write(sha_dd, SHA_IDR, reg);
1222		if (SHA_FLAGS_BUSY & sha_dd->flags) {
1223			sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1224			if (!(SHA_FLAGS_CPU & sha_dd->flags))
1225				sha_dd->flags |= SHA_FLAGS_DMA_READY;
1226			tasklet_schedule(&sha_dd->done_task);
1227		} else {
1228			dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1229		}
1230		return IRQ_HANDLED;
1231	}
1232
1233	return IRQ_NONE;
1234}
1235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1236static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
1237{
1238	int i;
1239
 
 
 
 
1240	for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
1241		crypto_unregister_ahash(&sha_1_256_algs[i]);
1242
1243	if (dd->caps.has_sha224)
1244		crypto_unregister_ahash(&sha_224_alg);
1245
1246	if (dd->caps.has_sha_384_512) {
1247		for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
1248			crypto_unregister_ahash(&sha_384_512_algs[i]);
1249	}
1250}
1251
1252static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
1253{
1254	int err, i, j;
1255
1256	for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
1257		err = crypto_register_ahash(&sha_1_256_algs[i]);
1258		if (err)
1259			goto err_sha_1_256_algs;
1260	}
1261
1262	if (dd->caps.has_sha224) {
1263		err = crypto_register_ahash(&sha_224_alg);
1264		if (err)
1265			goto err_sha_224_algs;
1266	}
1267
1268	if (dd->caps.has_sha_384_512) {
1269		for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
1270			err = crypto_register_ahash(&sha_384_512_algs[i]);
1271			if (err)
1272				goto err_sha_384_512_algs;
1273		}
1274	}
1275
 
 
 
 
 
 
 
 
1276	return 0;
1277
 
 
 
 
 
1278err_sha_384_512_algs:
1279	for (j = 0; j < i; j++)
1280		crypto_unregister_ahash(&sha_384_512_algs[j]);
1281	crypto_unregister_ahash(&sha_224_alg);
1282err_sha_224_algs:
1283	i = ARRAY_SIZE(sha_1_256_algs);
1284err_sha_1_256_algs:
1285	for (j = 0; j < i; j++)
1286		crypto_unregister_ahash(&sha_1_256_algs[j]);
1287
1288	return err;
1289}
1290
1291static bool atmel_sha_filter(struct dma_chan *chan, void *slave)
1292{
1293	struct at_dma_slave	*sl = slave;
1294
1295	if (sl && sl->dma_dev == chan->device->dev) {
1296		chan->private = sl;
1297		return true;
1298	} else {
1299		return false;
1300	}
1301}
1302
1303static int atmel_sha_dma_init(struct atmel_sha_dev *dd,
1304				struct crypto_platform_data *pdata)
1305{
1306	int err = -ENOMEM;
1307	dma_cap_mask_t mask_in;
1308
1309	/* Try to grab DMA channel */
1310	dma_cap_zero(mask_in);
1311	dma_cap_set(DMA_SLAVE, mask_in);
1312
1313	dd->dma_lch_in.chan = dma_request_slave_channel_compat(mask_in,
1314			atmel_sha_filter, &pdata->dma_slave->rxdata, dd->dev, "tx");
1315	if (!dd->dma_lch_in.chan) {
1316		dev_warn(dd->dev, "no DMA channel available\n");
1317		return err;
1318	}
1319
1320	dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV;
1321	dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
1322		SHA_REG_DIN(0);
1323	dd->dma_lch_in.dma_conf.src_maxburst = 1;
1324	dd->dma_lch_in.dma_conf.src_addr_width =
1325		DMA_SLAVE_BUSWIDTH_4_BYTES;
1326	dd->dma_lch_in.dma_conf.dst_maxburst = 1;
1327	dd->dma_lch_in.dma_conf.dst_addr_width =
1328		DMA_SLAVE_BUSWIDTH_4_BYTES;
1329	dd->dma_lch_in.dma_conf.device_fc = false;
1330
1331	return 0;
1332}
1333
1334static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
1335{
1336	dma_release_channel(dd->dma_lch_in.chan);
1337}
1338
1339static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
1340{
1341
1342	dd->caps.has_dma = 0;
1343	dd->caps.has_dualbuff = 0;
1344	dd->caps.has_sha224 = 0;
1345	dd->caps.has_sha_384_512 = 0;
1346	dd->caps.has_uihv = 0;
 
1347
1348	/* keep only major version number */
1349	switch (dd->hw_version & 0xff0) {
1350	case 0x510:
1351		dd->caps.has_dma = 1;
1352		dd->caps.has_dualbuff = 1;
1353		dd->caps.has_sha224 = 1;
1354		dd->caps.has_sha_384_512 = 1;
1355		dd->caps.has_uihv = 1;
 
1356		break;
1357	case 0x420:
1358		dd->caps.has_dma = 1;
1359		dd->caps.has_dualbuff = 1;
1360		dd->caps.has_sha224 = 1;
1361		dd->caps.has_sha_384_512 = 1;
1362		dd->caps.has_uihv = 1;
1363		break;
1364	case 0x410:
1365		dd->caps.has_dma = 1;
1366		dd->caps.has_dualbuff = 1;
1367		dd->caps.has_sha224 = 1;
1368		dd->caps.has_sha_384_512 = 1;
1369		break;
1370	case 0x400:
1371		dd->caps.has_dma = 1;
1372		dd->caps.has_dualbuff = 1;
1373		dd->caps.has_sha224 = 1;
1374		break;
1375	case 0x320:
1376		break;
1377	default:
1378		dev_warn(dd->dev,
1379				"Unmanaged sha version, set minimum capabilities\n");
1380		break;
1381	}
1382}
1383
1384#if defined(CONFIG_OF)
1385static const struct of_device_id atmel_sha_dt_ids[] = {
1386	{ .compatible = "atmel,at91sam9g46-sha" },
1387	{ /* sentinel */ }
1388};
1389
1390MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
1391
1392static struct crypto_platform_data *atmel_sha_of_init(struct platform_device *pdev)
1393{
1394	struct device_node *np = pdev->dev.of_node;
1395	struct crypto_platform_data *pdata;
1396
1397	if (!np) {
1398		dev_err(&pdev->dev, "device node not found\n");
1399		return ERR_PTR(-EINVAL);
1400	}
1401
1402	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1403	if (!pdata) {
1404		dev_err(&pdev->dev, "could not allocate memory for pdata\n");
1405		return ERR_PTR(-ENOMEM);
1406	}
1407
1408	pdata->dma_slave = devm_kzalloc(&pdev->dev,
1409					sizeof(*(pdata->dma_slave)),
1410					GFP_KERNEL);
1411	if (!pdata->dma_slave) {
1412		dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
1413		return ERR_PTR(-ENOMEM);
1414	}
1415
1416	return pdata;
1417}
1418#else /* CONFIG_OF */
1419static inline struct crypto_platform_data *atmel_sha_of_init(struct platform_device *dev)
1420{
1421	return ERR_PTR(-EINVAL);
1422}
1423#endif
1424
1425static int atmel_sha_probe(struct platform_device *pdev)
1426{
1427	struct atmel_sha_dev *sha_dd;
1428	struct crypto_platform_data	*pdata;
1429	struct device *dev = &pdev->dev;
1430	struct resource *sha_res;
1431	int err;
1432
1433	sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
1434	if (sha_dd == NULL) {
1435		dev_err(dev, "unable to alloc data struct.\n");
1436		err = -ENOMEM;
1437		goto sha_dd_err;
1438	}
1439
1440	sha_dd->dev = dev;
1441
1442	platform_set_drvdata(pdev, sha_dd);
1443
1444	INIT_LIST_HEAD(&sha_dd->list);
1445	spin_lock_init(&sha_dd->lock);
1446
1447	tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
1448					(unsigned long)sha_dd);
1449	tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
1450					(unsigned long)sha_dd);
1451
1452	crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
1453
1454	sha_dd->irq = -1;
1455
1456	/* Get the base address */
1457	sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1458	if (!sha_res) {
1459		dev_err(dev, "no MEM resource info\n");
1460		err = -ENODEV;
1461		goto res_err;
1462	}
1463	sha_dd->phys_base = sha_res->start;
1464
1465	/* Get the IRQ */
1466	sha_dd->irq = platform_get_irq(pdev,  0);
1467	if (sha_dd->irq < 0) {
1468		dev_err(dev, "no IRQ resource info\n");
1469		err = sha_dd->irq;
1470		goto res_err;
1471	}
1472
1473	err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
1474			       IRQF_SHARED, "atmel-sha", sha_dd);
1475	if (err) {
1476		dev_err(dev, "unable to request sha irq.\n");
1477		goto res_err;
1478	}
1479
1480	/* Initializing the clock */
1481	sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
1482	if (IS_ERR(sha_dd->iclk)) {
1483		dev_err(dev, "clock initialization failed.\n");
1484		err = PTR_ERR(sha_dd->iclk);
1485		goto res_err;
1486	}
1487
1488	sha_dd->io_base = devm_ioremap_resource(&pdev->dev, sha_res);
1489	if (IS_ERR(sha_dd->io_base)) {
1490		dev_err(dev, "can't ioremap\n");
1491		err = PTR_ERR(sha_dd->io_base);
1492		goto res_err;
1493	}
1494
1495	err = clk_prepare(sha_dd->iclk);
1496	if (err)
1497		goto res_err;
1498
1499	atmel_sha_hw_version_init(sha_dd);
1500
1501	atmel_sha_get_cap(sha_dd);
1502
1503	if (sha_dd->caps.has_dma) {
1504		pdata = pdev->dev.platform_data;
1505		if (!pdata) {
1506			pdata = atmel_sha_of_init(pdev);
1507			if (IS_ERR(pdata)) {
1508				dev_err(&pdev->dev, "platform data not available\n");
1509				err = PTR_ERR(pdata);
1510				goto iclk_unprepare;
1511			}
1512		}
1513		if (!pdata->dma_slave) {
1514			err = -ENXIO;
1515			goto iclk_unprepare;
1516		}
1517		err = atmel_sha_dma_init(sha_dd, pdata);
1518		if (err)
1519			goto err_sha_dma;
1520
1521		dev_info(dev, "using %s for DMA transfers\n",
1522				dma_chan_name(sha_dd->dma_lch_in.chan));
1523	}
1524
1525	spin_lock(&atmel_sha.lock);
1526	list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
1527	spin_unlock(&atmel_sha.lock);
1528
1529	err = atmel_sha_register_algs(sha_dd);
1530	if (err)
1531		goto err_algs;
1532
1533	dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
1534			sha_dd->caps.has_sha224 ? "/SHA224" : "",
1535			sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
1536
1537	return 0;
1538
1539err_algs:
1540	spin_lock(&atmel_sha.lock);
1541	list_del(&sha_dd->list);
1542	spin_unlock(&atmel_sha.lock);
1543	if (sha_dd->caps.has_dma)
1544		atmel_sha_dma_cleanup(sha_dd);
1545err_sha_dma:
1546iclk_unprepare:
1547	clk_unprepare(sha_dd->iclk);
1548res_err:
1549	tasklet_kill(&sha_dd->queue_task);
1550	tasklet_kill(&sha_dd->done_task);
1551sha_dd_err:
1552	dev_err(dev, "initialization failed.\n");
1553
1554	return err;
1555}
1556
1557static int atmel_sha_remove(struct platform_device *pdev)
1558{
1559	static struct atmel_sha_dev *sha_dd;
1560
1561	sha_dd = platform_get_drvdata(pdev);
1562	if (!sha_dd)
1563		return -ENODEV;
1564	spin_lock(&atmel_sha.lock);
1565	list_del(&sha_dd->list);
1566	spin_unlock(&atmel_sha.lock);
1567
1568	atmel_sha_unregister_algs(sha_dd);
1569
1570	tasklet_kill(&sha_dd->queue_task);
1571	tasklet_kill(&sha_dd->done_task);
1572
1573	if (sha_dd->caps.has_dma)
1574		atmel_sha_dma_cleanup(sha_dd);
1575
1576	clk_unprepare(sha_dd->iclk);
1577
1578	return 0;
1579}
1580
1581static struct platform_driver atmel_sha_driver = {
1582	.probe		= atmel_sha_probe,
1583	.remove		= atmel_sha_remove,
1584	.driver		= {
1585		.name	= "atmel_sha",
1586		.of_match_table	= of_match_ptr(atmel_sha_dt_ids),
1587	},
1588};
1589
1590module_platform_driver(atmel_sha_driver);
1591
1592MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
1593MODULE_LICENSE("GPL v2");
1594MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");