Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * Key Wrapping: RFC3394 / NIST SP800-38F
  3 *
  4 * Copyright (C) 2015, Stephan Mueller <smueller@chronox.de>
  5 *
  6 * Redistribution and use in source and binary forms, with or without
  7 * modification, are permitted provided that the following conditions
  8 * are met:
  9 * 1. Redistributions of source code must retain the above copyright
 10 *    notice, and the entire permission notice in its entirety,
 11 *    including the disclaimer of warranties.
 12 * 2. Redistributions in binary form must reproduce the above copyright
 13 *    notice, this list of conditions and the following disclaimer in the
 14 *    documentation and/or other materials provided with the distribution.
 15 * 3. The name of the author may not be used to endorse or promote
 16 *    products derived from this software without specific prior
 17 *    written permission.
 18 *
 19 * ALTERNATIVELY, this product may be distributed under the terms of
 20 * the GNU General Public License, in which case the provisions of the GPL2
 21 * are required INSTEAD OF the above restrictions.  (This clause is
 22 * necessary due to a potential bad interaction between the GPL and
 23 * the restrictions contained in a BSD-style copyright.)
 24 *
 25 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 26 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 27 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
 28 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
 29 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
 31 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 32 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 35 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
 36 * DAMAGE.
 37 */
 38
 39/*
 40 * Note for using key wrapping:
 41 *
 42 *	* The result of the encryption operation is the ciphertext starting
 43 *	  with the 2nd semiblock. The first semiblock is provided as the IV.
 44 *	  The IV used to start the encryption operation is the default IV.
 45 *
 46 *	* The input for the decryption is the first semiblock handed in as an
 47 *	  IV. The ciphertext is the data starting with the 2nd semiblock. The
 48 *	  return code of the decryption operation will be EBADMSG in case an
 49 *	  integrity error occurs.
 50 *
 51 * To obtain the full result of an encryption as expected by SP800-38F, the
 52 * caller must allocate a buffer of plaintext + 8 bytes:
 53 *
 54 *	unsigned int datalen = ptlen + crypto_skcipher_ivsize(tfm);
 55 *	u8 data[datalen];
 56 *	u8 *iv = data;
 57 *	u8 *pt = data + crypto_skcipher_ivsize(tfm);
 58 *		<ensure that pt contains the plaintext of size ptlen>
 59 *	sg_init_one(&sg, ptdata, ptlen);
 60 *	skcipher_request_set_crypt(req, &sg, &sg, ptlen, iv);
 61 *
 62 *	==> After encryption, data now contains full KW result as per SP800-38F.
 63 *
 64 * In case of decryption, ciphertext now already has the expected length
 65 * and must be segmented appropriately:
 66 *
 67 *	unsigned int datalen = CTLEN;
 68 *	u8 data[datalen];
 69 *		<ensure that data contains full ciphertext>
 70 *	u8 *iv = data;
 71 *	u8 *ct = data + crypto_skcipher_ivsize(tfm);
 72 *	unsigned int ctlen = datalen - crypto_skcipher_ivsize(tfm);
 73 *	sg_init_one(&sg, ctdata, ctlen);
 74 *	skcipher_request_set_crypt(req, &sg, &sg, ptlen, iv);
 75 *
 76 *	==> After decryption (which hopefully does not return EBADMSG), the ct
 77 *	pointer now points to the plaintext of size ctlen.
 78 *
 79 * Note 2: KWP is not implemented as this would defy in-place operation.
 80 *	   If somebody wants to wrap non-aligned data, he should simply pad
 81 *	   the input with zeros to fill it up to the 8 byte boundary.
 82 */
 83
 84#include <linux/module.h>
 85#include <linux/crypto.h>
 86#include <linux/scatterlist.h>
 87#include <crypto/scatterwalk.h>
 88#include <crypto/internal/skcipher.h>
 89
 90struct crypto_kw_ctx {
 91	struct crypto_cipher *child;
 92};
 93
 94struct crypto_kw_block {
 95#define SEMIBSIZE 8
 96	__be64 A;
 97	__be64 R;
 98};
 99
 
 
 
 
 
 
 
 
100/*
101 * Fast forward the SGL to the "end" length minus SEMIBSIZE.
102 * The start in the SGL defined by the fast-forward is returned with
103 * the walk variable
104 */
105static void crypto_kw_scatterlist_ff(struct scatter_walk *walk,
106				     struct scatterlist *sg,
107				     unsigned int end)
108{
109	unsigned int skip = 0;
110
111	/* The caller should only operate on full SEMIBLOCKs. */
112	BUG_ON(end < SEMIBSIZE);
113
114	skip = end - SEMIBSIZE;
115	while (sg) {
116		if (sg->length > skip) {
117			scatterwalk_start(walk, sg);
118			scatterwalk_advance(walk, skip);
119			break;
120		} else
121			skip -= sg->length;
122
123		sg = sg_next(sg);
124	}
125}
126
127static int crypto_kw_decrypt(struct blkcipher_desc *desc,
128			     struct scatterlist *dst, struct scatterlist *src,
129			     unsigned int nbytes)
130{
131	struct crypto_blkcipher *tfm = desc->tfm;
132	struct crypto_kw_ctx *ctx = crypto_blkcipher_ctx(tfm);
133	struct crypto_cipher *child = ctx->child;
134	struct crypto_kw_block block;
135	struct scatterlist *lsrc, *ldst;
136	u64 t = 6 * ((nbytes) >> 3);
137	unsigned int i;
 
 
 
 
 
 
 
138	int ret = 0;
139
140	/*
141	 * Require at least 2 semiblocks (note, the 3rd semiblock that is
142	 * required by SP800-38F is the IV.
143	 */
144	if (nbytes < (2 * SEMIBSIZE) || nbytes % SEMIBSIZE)
145		return -EINVAL;
146
147	/* Place the IV into block A */
148	memcpy(&block.A, desc->info, SEMIBSIZE);
149
150	/*
151	 * src scatterlist is read-only. dst scatterlist is r/w. During the
152	 * first loop, lsrc points to src and ldst to dst. For any
153	 * subsequent round, the code operates on dst only.
154	 */
155	lsrc = src;
156	ldst = dst;
157
158	for (i = 0; i < 6; i++) {
159		struct scatter_walk src_walk, dst_walk;
 
 
160		unsigned int tmp_nbytes = nbytes;
 
161
162		while (tmp_nbytes) {
163			/* move pointer by tmp_nbytes in the SGL */
164			crypto_kw_scatterlist_ff(&src_walk, lsrc, tmp_nbytes);
165			/* get the source block */
166			scatterwalk_copychunks(&block.R, &src_walk, SEMIBSIZE,
167					       false);
168
 
 
169			/* perform KW operation: modify IV with counter */
170			block.A ^= cpu_to_be64(t);
171			t--;
172			/* perform KW operation: decrypt block */
173			crypto_cipher_decrypt_one(child, (u8*)&block,
174						  (u8*)&block);
175
176			/* move pointer by tmp_nbytes in the SGL */
177			crypto_kw_scatterlist_ff(&dst_walk, ldst, tmp_nbytes);
178			/* Copy block->R into place */
179			scatterwalk_copychunks(&block.R, &dst_walk, SEMIBSIZE,
180					       true);
181
182			tmp_nbytes -= SEMIBSIZE;
183		}
184
185		/* we now start to operate on the dst SGL only */
186		lsrc = dst;
187		ldst = dst;
188	}
189
190	/* Perform authentication check */
191	if (block.A != cpu_to_be64(0xa6a6a6a6a6a6a6a6ULL))
 
192		ret = -EBADMSG;
193
194	memzero_explicit(&block, sizeof(struct crypto_kw_block));
195
196	return ret;
197}
198
199static int crypto_kw_encrypt(struct blkcipher_desc *desc,
200			     struct scatterlist *dst, struct scatterlist *src,
201			     unsigned int nbytes)
202{
203	struct crypto_blkcipher *tfm = desc->tfm;
204	struct crypto_kw_ctx *ctx = crypto_blkcipher_ctx(tfm);
205	struct crypto_cipher *child = ctx->child;
206	struct crypto_kw_block block;
207	struct scatterlist *lsrc, *ldst;
208	u64 t = 1;
209	unsigned int i;
210
 
 
 
 
 
 
 
211	/*
212	 * Require at least 2 semiblocks (note, the 3rd semiblock that is
213	 * required by SP800-38F is the IV that occupies the first semiblock.
214	 * This means that the dst memory must be one semiblock larger than src.
215	 * Also ensure that the given data is aligned to semiblock.
216	 */
217	if (nbytes < (2 * SEMIBSIZE) || nbytes % SEMIBSIZE)
218		return -EINVAL;
219
220	/*
221	 * Place the predefined IV into block A -- for encrypt, the caller
222	 * does not need to provide an IV, but he needs to fetch the final IV.
223	 */
224	block.A = cpu_to_be64(0xa6a6a6a6a6a6a6a6ULL);
225
226	/*
227	 * src scatterlist is read-only. dst scatterlist is r/w. During the
228	 * first loop, lsrc points to src and ldst to dst. For any
229	 * subsequent round, the code operates on dst only.
230	 */
231	lsrc = src;
232	ldst = dst;
233
234	for (i = 0; i < 6; i++) {
235		struct scatter_walk src_walk, dst_walk;
 
236		unsigned int tmp_nbytes = nbytes;
 
237
238		scatterwalk_start(&src_walk, lsrc);
239		scatterwalk_start(&dst_walk, ldst);
240
241		while (tmp_nbytes) {
242			/* get the source block */
243			scatterwalk_copychunks(&block.R, &src_walk, SEMIBSIZE,
244					       false);
245
246			/* perform KW operation: encrypt block */
247			crypto_cipher_encrypt_one(child, (u8 *)&block,
248						  (u8 *)&block);
 
 
249			/* perform KW operation: modify IV with counter */
250			block.A ^= cpu_to_be64(t);
251			t++;
252
253			/* Copy block->R into place */
254			scatterwalk_copychunks(&block.R, &dst_walk, SEMIBSIZE,
255					       true);
256
257			tmp_nbytes -= SEMIBSIZE;
258		}
259
260		/* we now start to operate on the dst SGL only */
261		lsrc = dst;
262		ldst = dst;
263	}
264
265	/* establish the IV for the caller to pick up */
266	memcpy(desc->info, &block.A, SEMIBSIZE);
267
268	memzero_explicit(&block, sizeof(struct crypto_kw_block));
269
270	return 0;
271}
272
273static int crypto_kw_setkey(struct crypto_tfm *parent, const u8 *key,
274			    unsigned int keylen)
275{
276	struct crypto_kw_ctx *ctx = crypto_tfm_ctx(parent);
277	struct crypto_cipher *child = ctx->child;
278	int err;
279
280	crypto_cipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
281	crypto_cipher_set_flags(child, crypto_tfm_get_flags(parent) &
282				       CRYPTO_TFM_REQ_MASK);
283	err = crypto_cipher_setkey(child, key, keylen);
284	crypto_tfm_set_flags(parent, crypto_cipher_get_flags(child) &
285				     CRYPTO_TFM_RES_MASK);
286	return err;
287}
288
289static int crypto_kw_init_tfm(struct crypto_tfm *tfm)
290{
291	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
292	struct crypto_spawn *spawn = crypto_instance_ctx(inst);
293	struct crypto_kw_ctx *ctx = crypto_tfm_ctx(tfm);
294	struct crypto_cipher *cipher;
295
296	cipher = crypto_spawn_cipher(spawn);
297	if (IS_ERR(cipher))
298		return PTR_ERR(cipher);
299
300	ctx->child = cipher;
301	return 0;
302}
303
304static void crypto_kw_exit_tfm(struct crypto_tfm *tfm)
305{
306	struct crypto_kw_ctx *ctx = crypto_tfm_ctx(tfm);
307
308	crypto_free_cipher(ctx->child);
309}
310
311static struct crypto_instance *crypto_kw_alloc(struct rtattr **tb)
312{
313	struct crypto_instance *inst = NULL;
314	struct crypto_alg *alg = NULL;
315	int err;
316
317	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_BLKCIPHER);
318	if (err)
319		return ERR_PTR(err);
320
321	alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER,
322				  CRYPTO_ALG_TYPE_MASK);
323	if (IS_ERR(alg))
324		return ERR_CAST(alg);
325
326	inst = ERR_PTR(-EINVAL);
327	/* Section 5.1 requirement for KW */
328	if (alg->cra_blocksize != sizeof(struct crypto_kw_block))
329		goto err;
330
331	inst = crypto_alloc_instance("kw", alg);
332	if (IS_ERR(inst))
333		goto err;
334
335	inst->alg.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER;
336	inst->alg.cra_priority = alg->cra_priority;
337	inst->alg.cra_blocksize = SEMIBSIZE;
338	inst->alg.cra_alignmask = 0;
339	inst->alg.cra_type = &crypto_blkcipher_type;
340	inst->alg.cra_blkcipher.ivsize = SEMIBSIZE;
341	inst->alg.cra_blkcipher.min_keysize = alg->cra_cipher.cia_min_keysize;
342	inst->alg.cra_blkcipher.max_keysize = alg->cra_cipher.cia_max_keysize;
343
344	inst->alg.cra_ctxsize = sizeof(struct crypto_kw_ctx);
345
346	inst->alg.cra_init = crypto_kw_init_tfm;
347	inst->alg.cra_exit = crypto_kw_exit_tfm;
348
349	inst->alg.cra_blkcipher.setkey = crypto_kw_setkey;
350	inst->alg.cra_blkcipher.encrypt = crypto_kw_encrypt;
351	inst->alg.cra_blkcipher.decrypt = crypto_kw_decrypt;
352
353err:
354	crypto_mod_put(alg);
355	return inst;
356}
357
358static void crypto_kw_free(struct crypto_instance *inst)
359{
360	crypto_drop_spawn(crypto_instance_ctx(inst));
361	kfree(inst);
362}
363
364static struct crypto_template crypto_kw_tmpl = {
365	.name = "kw",
366	.alloc = crypto_kw_alloc,
367	.free = crypto_kw_free,
368	.module = THIS_MODULE,
369};
370
371static int __init crypto_kw_init(void)
372{
373	return crypto_register_template(&crypto_kw_tmpl);
374}
375
376static void __exit crypto_kw_exit(void)
377{
378	crypto_unregister_template(&crypto_kw_tmpl);
379}
380
381module_init(crypto_kw_init);
382module_exit(crypto_kw_exit);
383
384MODULE_LICENSE("Dual BSD/GPL");
385MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
386MODULE_DESCRIPTION("Key Wrapping (RFC3394 / NIST SP800-38F)");
387MODULE_ALIAS_CRYPTO("kw");
v4.6
  1/*
  2 * Key Wrapping: RFC3394 / NIST SP800-38F
  3 *
  4 * Copyright (C) 2015, Stephan Mueller <smueller@chronox.de>
  5 *
  6 * Redistribution and use in source and binary forms, with or without
  7 * modification, are permitted provided that the following conditions
  8 * are met:
  9 * 1. Redistributions of source code must retain the above copyright
 10 *    notice, and the entire permission notice in its entirety,
 11 *    including the disclaimer of warranties.
 12 * 2. Redistributions in binary form must reproduce the above copyright
 13 *    notice, this list of conditions and the following disclaimer in the
 14 *    documentation and/or other materials provided with the distribution.
 15 * 3. The name of the author may not be used to endorse or promote
 16 *    products derived from this software without specific prior
 17 *    written permission.
 18 *
 19 * ALTERNATIVELY, this product may be distributed under the terms of
 20 * the GNU General Public License, in which case the provisions of the GPL2
 21 * are required INSTEAD OF the above restrictions.  (This clause is
 22 * necessary due to a potential bad interaction between the GPL and
 23 * the restrictions contained in a BSD-style copyright.)
 24 *
 25 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 26 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 27 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
 28 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
 29 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
 31 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 32 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 35 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
 36 * DAMAGE.
 37 */
 38
 39/*
 40 * Note for using key wrapping:
 41 *
 42 *	* The result of the encryption operation is the ciphertext starting
 43 *	  with the 2nd semiblock. The first semiblock is provided as the IV.
 44 *	  The IV used to start the encryption operation is the default IV.
 45 *
 46 *	* The input for the decryption is the first semiblock handed in as an
 47 *	  IV. The ciphertext is the data starting with the 2nd semiblock. The
 48 *	  return code of the decryption operation will be EBADMSG in case an
 49 *	  integrity error occurs.
 50 *
 51 * To obtain the full result of an encryption as expected by SP800-38F, the
 52 * caller must allocate a buffer of plaintext + 8 bytes:
 53 *
 54 *	unsigned int datalen = ptlen + crypto_skcipher_ivsize(tfm);
 55 *	u8 data[datalen];
 56 *	u8 *iv = data;
 57 *	u8 *pt = data + crypto_skcipher_ivsize(tfm);
 58 *		<ensure that pt contains the plaintext of size ptlen>
 59 *	sg_init_one(&sg, ptdata, ptlen);
 60 *	skcipher_request_set_crypt(req, &sg, &sg, ptlen, iv);
 61 *
 62 *	==> After encryption, data now contains full KW result as per SP800-38F.
 63 *
 64 * In case of decryption, ciphertext now already has the expected length
 65 * and must be segmented appropriately:
 66 *
 67 *	unsigned int datalen = CTLEN;
 68 *	u8 data[datalen];
 69 *		<ensure that data contains full ciphertext>
 70 *	u8 *iv = data;
 71 *	u8 *ct = data + crypto_skcipher_ivsize(tfm);
 72 *	unsigned int ctlen = datalen - crypto_skcipher_ivsize(tfm);
 73 *	sg_init_one(&sg, ctdata, ctlen);
 74 *	skcipher_request_set_crypt(req, &sg, &sg, ptlen, iv);
 75 *
 76 *	==> After decryption (which hopefully does not return EBADMSG), the ct
 77 *	pointer now points to the plaintext of size ctlen.
 78 *
 79 * Note 2: KWP is not implemented as this would defy in-place operation.
 80 *	   If somebody wants to wrap non-aligned data, he should simply pad
 81 *	   the input with zeros to fill it up to the 8 byte boundary.
 82 */
 83
 84#include <linux/module.h>
 85#include <linux/crypto.h>
 86#include <linux/scatterlist.h>
 87#include <crypto/scatterwalk.h>
 88#include <crypto/internal/skcipher.h>
 89
 90struct crypto_kw_ctx {
 91	struct crypto_cipher *child;
 92};
 93
 94struct crypto_kw_block {
 95#define SEMIBSIZE 8
 96	u8 A[SEMIBSIZE];
 97	u8 R[SEMIBSIZE];
 98};
 99
100/* convert 64 bit integer into its string representation */
101static inline void crypto_kw_cpu_to_be64(u64 val, u8 *buf)
102{
103	__be64 *a = (__be64 *)buf;
104
105	*a = cpu_to_be64(val);
106}
107
108/*
109 * Fast forward the SGL to the "end" length minus SEMIBSIZE.
110 * The start in the SGL defined by the fast-forward is returned with
111 * the walk variable
112 */
113static void crypto_kw_scatterlist_ff(struct scatter_walk *walk,
114				     struct scatterlist *sg,
115				     unsigned int end)
116{
117	unsigned int skip = 0;
118
119	/* The caller should only operate on full SEMIBLOCKs. */
120	BUG_ON(end < SEMIBSIZE);
121
122	skip = end - SEMIBSIZE;
123	while (sg) {
124		if (sg->length > skip) {
125			scatterwalk_start(walk, sg);
126			scatterwalk_advance(walk, skip);
127			break;
128		} else
129			skip -= sg->length;
130
131		sg = sg_next(sg);
132	}
133}
134
135static int crypto_kw_decrypt(struct blkcipher_desc *desc,
136			     struct scatterlist *dst, struct scatterlist *src,
137			     unsigned int nbytes)
138{
139	struct crypto_blkcipher *tfm = desc->tfm;
140	struct crypto_kw_ctx *ctx = crypto_blkcipher_ctx(tfm);
141	struct crypto_cipher *child = ctx->child;
142
143	unsigned long alignmask = max_t(unsigned long, SEMIBSIZE,
144					crypto_cipher_alignmask(child));
145	unsigned int i;
146
147	u8 blockbuf[sizeof(struct crypto_kw_block) + alignmask];
148	struct crypto_kw_block *block = (struct crypto_kw_block *)
149					PTR_ALIGN(blockbuf + 0, alignmask + 1);
150
151	u64 t = 6 * ((nbytes) >> 3);
152	struct scatterlist *lsrc, *ldst;
153	int ret = 0;
154
155	/*
156	 * Require at least 2 semiblocks (note, the 3rd semiblock that is
157	 * required by SP800-38F is the IV.
158	 */
159	if (nbytes < (2 * SEMIBSIZE) || nbytes % SEMIBSIZE)
160		return -EINVAL;
161
162	/* Place the IV into block A */
163	memcpy(block->A, desc->info, SEMIBSIZE);
164
165	/*
166	 * src scatterlist is read-only. dst scatterlist is r/w. During the
167	 * first loop, lsrc points to src and ldst to dst. For any
168	 * subsequent round, the code operates on dst only.
169	 */
170	lsrc = src;
171	ldst = dst;
172
173	for (i = 0; i < 6; i++) {
174		u8 tbe_buffer[SEMIBSIZE + alignmask];
175		/* alignment for the crypto_xor and the _to_be64 operation */
176		u8 *tbe = PTR_ALIGN(tbe_buffer + 0, alignmask + 1);
177		unsigned int tmp_nbytes = nbytes;
178		struct scatter_walk src_walk, dst_walk;
179
180		while (tmp_nbytes) {
181			/* move pointer by tmp_nbytes in the SGL */
182			crypto_kw_scatterlist_ff(&src_walk, lsrc, tmp_nbytes);
183			/* get the source block */
184			scatterwalk_copychunks(block->R, &src_walk, SEMIBSIZE,
185					       false);
186
187			/* perform KW operation: get counter as byte string */
188			crypto_kw_cpu_to_be64(t, tbe);
189			/* perform KW operation: modify IV with counter */
190			crypto_xor(block->A, tbe, SEMIBSIZE);
191			t--;
192			/* perform KW operation: decrypt block */
193			crypto_cipher_decrypt_one(child, (u8*)block,
194						  (u8*)block);
195
196			/* move pointer by tmp_nbytes in the SGL */
197			crypto_kw_scatterlist_ff(&dst_walk, ldst, tmp_nbytes);
198			/* Copy block->R into place */
199			scatterwalk_copychunks(block->R, &dst_walk, SEMIBSIZE,
200					       true);
201
202			tmp_nbytes -= SEMIBSIZE;
203		}
204
205		/* we now start to operate on the dst SGL only */
206		lsrc = dst;
207		ldst = dst;
208	}
209
210	/* Perform authentication check */
211	if (crypto_memneq("\xA6\xA6\xA6\xA6\xA6\xA6\xA6\xA6", block->A,
212			  SEMIBSIZE))
213		ret = -EBADMSG;
214
215	memzero_explicit(block, sizeof(struct crypto_kw_block));
216
217	return ret;
218}
219
220static int crypto_kw_encrypt(struct blkcipher_desc *desc,
221			     struct scatterlist *dst, struct scatterlist *src,
222			     unsigned int nbytes)
223{
224	struct crypto_blkcipher *tfm = desc->tfm;
225	struct crypto_kw_ctx *ctx = crypto_blkcipher_ctx(tfm);
226	struct crypto_cipher *child = ctx->child;
227
228	unsigned long alignmask = max_t(unsigned long, SEMIBSIZE,
229					crypto_cipher_alignmask(child));
230	unsigned int i;
231
232	u8 blockbuf[sizeof(struct crypto_kw_block) + alignmask];
233	struct crypto_kw_block *block = (struct crypto_kw_block *)
234					PTR_ALIGN(blockbuf + 0, alignmask + 1);
235
236	u64 t = 1;
237	struct scatterlist *lsrc, *ldst;
238
239	/*
240	 * Require at least 2 semiblocks (note, the 3rd semiblock that is
241	 * required by SP800-38F is the IV that occupies the first semiblock.
242	 * This means that the dst memory must be one semiblock larger than src.
243	 * Also ensure that the given data is aligned to semiblock.
244	 */
245	if (nbytes < (2 * SEMIBSIZE) || nbytes % SEMIBSIZE)
246		return -EINVAL;
247
248	/*
249	 * Place the predefined IV into block A -- for encrypt, the caller
250	 * does not need to provide an IV, but he needs to fetch the final IV.
251	 */
252	memcpy(block->A, "\xA6\xA6\xA6\xA6\xA6\xA6\xA6\xA6", SEMIBSIZE);
253
254	/*
255	 * src scatterlist is read-only. dst scatterlist is r/w. During the
256	 * first loop, lsrc points to src and ldst to dst. For any
257	 * subsequent round, the code operates on dst only.
258	 */
259	lsrc = src;
260	ldst = dst;
261
262	for (i = 0; i < 6; i++) {
263		u8 tbe_buffer[SEMIBSIZE + alignmask];
264		u8 *tbe = PTR_ALIGN(tbe_buffer + 0, alignmask + 1);
265		unsigned int tmp_nbytes = nbytes;
266		struct scatter_walk src_walk, dst_walk;
267
268		scatterwalk_start(&src_walk, lsrc);
269		scatterwalk_start(&dst_walk, ldst);
270
271		while (tmp_nbytes) {
272			/* get the source block */
273			scatterwalk_copychunks(block->R, &src_walk, SEMIBSIZE,
274					       false);
275
276			/* perform KW operation: encrypt block */
277			crypto_cipher_encrypt_one(child, (u8 *)block,
278						  (u8 *)block);
279			/* perform KW operation: get counter as byte string */
280			crypto_kw_cpu_to_be64(t, tbe);
281			/* perform KW operation: modify IV with counter */
282			crypto_xor(block->A, tbe, SEMIBSIZE);
283			t++;
284
285			/* Copy block->R into place */
286			scatterwalk_copychunks(block->R, &dst_walk, SEMIBSIZE,
287					       true);
288
289			tmp_nbytes -= SEMIBSIZE;
290		}
291
292		/* we now start to operate on the dst SGL only */
293		lsrc = dst;
294		ldst = dst;
295	}
296
297	/* establish the IV for the caller to pick up */
298	memcpy(desc->info, block->A, SEMIBSIZE);
299
300	memzero_explicit(block, sizeof(struct crypto_kw_block));
301
302	return 0;
303}
304
305static int crypto_kw_setkey(struct crypto_tfm *parent, const u8 *key,
306			    unsigned int keylen)
307{
308	struct crypto_kw_ctx *ctx = crypto_tfm_ctx(parent);
309	struct crypto_cipher *child = ctx->child;
310	int err;
311
312	crypto_cipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
313	crypto_cipher_set_flags(child, crypto_tfm_get_flags(parent) &
314				       CRYPTO_TFM_REQ_MASK);
315	err = crypto_cipher_setkey(child, key, keylen);
316	crypto_tfm_set_flags(parent, crypto_cipher_get_flags(child) &
317				     CRYPTO_TFM_RES_MASK);
318	return err;
319}
320
321static int crypto_kw_init_tfm(struct crypto_tfm *tfm)
322{
323	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
324	struct crypto_spawn *spawn = crypto_instance_ctx(inst);
325	struct crypto_kw_ctx *ctx = crypto_tfm_ctx(tfm);
326	struct crypto_cipher *cipher;
327
328	cipher = crypto_spawn_cipher(spawn);
329	if (IS_ERR(cipher))
330		return PTR_ERR(cipher);
331
332	ctx->child = cipher;
333	return 0;
334}
335
336static void crypto_kw_exit_tfm(struct crypto_tfm *tfm)
337{
338	struct crypto_kw_ctx *ctx = crypto_tfm_ctx(tfm);
339
340	crypto_free_cipher(ctx->child);
341}
342
343static struct crypto_instance *crypto_kw_alloc(struct rtattr **tb)
344{
345	struct crypto_instance *inst = NULL;
346	struct crypto_alg *alg = NULL;
347	int err;
348
349	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_BLKCIPHER);
350	if (err)
351		return ERR_PTR(err);
352
353	alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER,
354				  CRYPTO_ALG_TYPE_MASK);
355	if (IS_ERR(alg))
356		return ERR_CAST(alg);
357
358	inst = ERR_PTR(-EINVAL);
359	/* Section 5.1 requirement for KW */
360	if (alg->cra_blocksize != sizeof(struct crypto_kw_block))
361		goto err;
362
363	inst = crypto_alloc_instance("kw", alg);
364	if (IS_ERR(inst))
365		goto err;
366
367	inst->alg.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER;
368	inst->alg.cra_priority = alg->cra_priority;
369	inst->alg.cra_blocksize = SEMIBSIZE;
370	inst->alg.cra_alignmask = 0;
371	inst->alg.cra_type = &crypto_blkcipher_type;
372	inst->alg.cra_blkcipher.ivsize = SEMIBSIZE;
373	inst->alg.cra_blkcipher.min_keysize = alg->cra_cipher.cia_min_keysize;
374	inst->alg.cra_blkcipher.max_keysize = alg->cra_cipher.cia_max_keysize;
375
376	inst->alg.cra_ctxsize = sizeof(struct crypto_kw_ctx);
377
378	inst->alg.cra_init = crypto_kw_init_tfm;
379	inst->alg.cra_exit = crypto_kw_exit_tfm;
380
381	inst->alg.cra_blkcipher.setkey = crypto_kw_setkey;
382	inst->alg.cra_blkcipher.encrypt = crypto_kw_encrypt;
383	inst->alg.cra_blkcipher.decrypt = crypto_kw_decrypt;
384
385err:
386	crypto_mod_put(alg);
387	return inst;
388}
389
390static void crypto_kw_free(struct crypto_instance *inst)
391{
392	crypto_drop_spawn(crypto_instance_ctx(inst));
393	kfree(inst);
394}
395
396static struct crypto_template crypto_kw_tmpl = {
397	.name = "kw",
398	.alloc = crypto_kw_alloc,
399	.free = crypto_kw_free,
400	.module = THIS_MODULE,
401};
402
403static int __init crypto_kw_init(void)
404{
405	return crypto_register_template(&crypto_kw_tmpl);
406}
407
408static void __exit crypto_kw_exit(void)
409{
410	crypto_unregister_template(&crypto_kw_tmpl);
411}
412
413module_init(crypto_kw_init);
414module_exit(crypto_kw_exit);
415
416MODULE_LICENSE("Dual BSD/GPL");
417MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
418MODULE_DESCRIPTION("Key Wrapping (RFC3394 / NIST SP800-38F)");
419MODULE_ALIAS_CRYPTO("kw");