Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Time of day based timer functions.
4 *
5 * S390 version
6 * Copyright IBM Corp. 1999, 2008
7 * Author(s): Hartmut Penner (hp@de.ibm.com),
8 * Martin Schwidefsky (schwidefsky@de.ibm.com),
9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10 *
11 * Derived from "arch/i386/kernel/time.c"
12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
13 */
14
15#define KMSG_COMPONENT "time"
16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18#include <linux/kernel_stat.h>
19#include <linux/errno.h>
20#include <linux/export.h>
21#include <linux/sched.h>
22#include <linux/sched/clock.h>
23#include <linux/kernel.h>
24#include <linux/param.h>
25#include <linux/string.h>
26#include <linux/mm.h>
27#include <linux/interrupt.h>
28#include <linux/cpu.h>
29#include <linux/stop_machine.h>
30#include <linux/time.h>
31#include <linux/device.h>
32#include <linux/delay.h>
33#include <linux/init.h>
34#include <linux/smp.h>
35#include <linux/types.h>
36#include <linux/profile.h>
37#include <linux/timex.h>
38#include <linux/notifier.h>
39#include <linux/timekeeper_internal.h>
40#include <linux/clockchips.h>
41#include <linux/gfp.h>
42#include <linux/kprobes.h>
43#include <linux/uaccess.h>
44#include <asm/facility.h>
45#include <asm/delay.h>
46#include <asm/div64.h>
47#include <asm/vdso.h>
48#include <asm/irq.h>
49#include <asm/irq_regs.h>
50#include <asm/vtimer.h>
51#include <asm/stp.h>
52#include <asm/cio.h>
53#include "entry.h"
54
55unsigned char tod_clock_base[16] __aligned(8) = {
56 /* Force to data section. */
57 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
58 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
59};
60EXPORT_SYMBOL_GPL(tod_clock_base);
61
62u64 clock_comparator_max = -1ULL;
63EXPORT_SYMBOL_GPL(clock_comparator_max);
64
65static DEFINE_PER_CPU(struct clock_event_device, comparators);
66
67ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
68EXPORT_SYMBOL(s390_epoch_delta_notifier);
69
70unsigned char ptff_function_mask[16];
71
72static unsigned long long lpar_offset;
73static unsigned long long initial_leap_seconds;
74static unsigned long long tod_steering_end;
75static long long tod_steering_delta;
76
77/*
78 * Get time offsets with PTFF
79 */
80void __init time_early_init(void)
81{
82 struct ptff_qto qto;
83 struct ptff_qui qui;
84
85 /* Initialize TOD steering parameters */
86 tod_steering_end = *(unsigned long long *) &tod_clock_base[1];
87 vdso_data->ts_end = tod_steering_end;
88
89 if (!test_facility(28))
90 return;
91
92 ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
93
94 /* get LPAR offset */
95 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
96 lpar_offset = qto.tod_epoch_difference;
97
98 /* get initial leap seconds */
99 if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
100 initial_leap_seconds = (unsigned long long)
101 ((long) qui.old_leap * 4096000000L);
102}
103
104/*
105 * Scheduler clock - returns current time in nanosec units.
106 */
107unsigned long long notrace sched_clock(void)
108{
109 return tod_to_ns(get_tod_clock_monotonic());
110}
111NOKPROBE_SYMBOL(sched_clock);
112
113/*
114 * Monotonic_clock - returns # of nanoseconds passed since time_init()
115 */
116unsigned long long monotonic_clock(void)
117{
118 return sched_clock();
119}
120EXPORT_SYMBOL(monotonic_clock);
121
122static void ext_to_timespec64(unsigned char *clk, struct timespec64 *xt)
123{
124 unsigned long long high, low, rem, sec, nsec;
125
126 /* Split extendnd TOD clock to micro-seconds and sub-micro-seconds */
127 high = (*(unsigned long long *) clk) >> 4;
128 low = (*(unsigned long long *)&clk[7]) << 4;
129 /* Calculate seconds and nano-seconds */
130 sec = high;
131 rem = do_div(sec, 1000000);
132 nsec = (((low >> 32) + (rem << 32)) * 1000) >> 32;
133
134 xt->tv_sec = sec;
135 xt->tv_nsec = nsec;
136}
137
138void clock_comparator_work(void)
139{
140 struct clock_event_device *cd;
141
142 S390_lowcore.clock_comparator = clock_comparator_max;
143 cd = this_cpu_ptr(&comparators);
144 cd->event_handler(cd);
145}
146
147static int s390_next_event(unsigned long delta,
148 struct clock_event_device *evt)
149{
150 S390_lowcore.clock_comparator = get_tod_clock() + delta;
151 set_clock_comparator(S390_lowcore.clock_comparator);
152 return 0;
153}
154
155/*
156 * Set up lowcore and control register of the current cpu to
157 * enable TOD clock and clock comparator interrupts.
158 */
159void init_cpu_timer(void)
160{
161 struct clock_event_device *cd;
162 int cpu;
163
164 S390_lowcore.clock_comparator = clock_comparator_max;
165 set_clock_comparator(S390_lowcore.clock_comparator);
166
167 cpu = smp_processor_id();
168 cd = &per_cpu(comparators, cpu);
169 cd->name = "comparator";
170 cd->features = CLOCK_EVT_FEAT_ONESHOT;
171 cd->mult = 16777;
172 cd->shift = 12;
173 cd->min_delta_ns = 1;
174 cd->min_delta_ticks = 1;
175 cd->max_delta_ns = LONG_MAX;
176 cd->max_delta_ticks = ULONG_MAX;
177 cd->rating = 400;
178 cd->cpumask = cpumask_of(cpu);
179 cd->set_next_event = s390_next_event;
180
181 clockevents_register_device(cd);
182
183 /* Enable clock comparator timer interrupt. */
184 __ctl_set_bit(0,11);
185
186 /* Always allow the timing alert external interrupt. */
187 __ctl_set_bit(0, 4);
188}
189
190static void clock_comparator_interrupt(struct ext_code ext_code,
191 unsigned int param32,
192 unsigned long param64)
193{
194 inc_irq_stat(IRQEXT_CLK);
195 if (S390_lowcore.clock_comparator == clock_comparator_max)
196 set_clock_comparator(S390_lowcore.clock_comparator);
197}
198
199static void stp_timing_alert(struct stp_irq_parm *);
200
201static void timing_alert_interrupt(struct ext_code ext_code,
202 unsigned int param32, unsigned long param64)
203{
204 inc_irq_stat(IRQEXT_TLA);
205 if (param32 & 0x00038000)
206 stp_timing_alert((struct stp_irq_parm *) ¶m32);
207}
208
209static void stp_reset(void);
210
211void read_persistent_clock64(struct timespec64 *ts)
212{
213 unsigned char clk[STORE_CLOCK_EXT_SIZE];
214 __u64 delta;
215
216 delta = initial_leap_seconds + TOD_UNIX_EPOCH;
217 get_tod_clock_ext(clk);
218 *(__u64 *) &clk[1] -= delta;
219 if (*(__u64 *) &clk[1] > delta)
220 clk[0]--;
221 ext_to_timespec64(clk, ts);
222}
223
224void read_boot_clock64(struct timespec64 *ts)
225{
226 unsigned char clk[STORE_CLOCK_EXT_SIZE];
227 __u64 delta;
228
229 delta = initial_leap_seconds + TOD_UNIX_EPOCH;
230 memcpy(clk, tod_clock_base, 16);
231 *(__u64 *) &clk[1] -= delta;
232 if (*(__u64 *) &clk[1] > delta)
233 clk[0]--;
234 ext_to_timespec64(clk, ts);
235}
236
237static u64 read_tod_clock(struct clocksource *cs)
238{
239 unsigned long long now, adj;
240
241 preempt_disable(); /* protect from changes to steering parameters */
242 now = get_tod_clock();
243 adj = tod_steering_end - now;
244 if (unlikely((s64) adj >= 0))
245 /*
246 * manually steer by 1 cycle every 2^16 cycles. This
247 * corresponds to shifting the tod delta by 15. 1s is
248 * therefore steered in ~9h. The adjust will decrease
249 * over time, until it finally reaches 0.
250 */
251 now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
252 preempt_enable();
253 return now;
254}
255
256static struct clocksource clocksource_tod = {
257 .name = "tod",
258 .rating = 400,
259 .read = read_tod_clock,
260 .mask = -1ULL,
261 .mult = 1000,
262 .shift = 12,
263 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
264};
265
266struct clocksource * __init clocksource_default_clock(void)
267{
268 return &clocksource_tod;
269}
270
271void update_vsyscall(struct timekeeper *tk)
272{
273 u64 nsecps;
274
275 if (tk->tkr_mono.clock != &clocksource_tod)
276 return;
277
278 /* Make userspace gettimeofday spin until we're done. */
279 ++vdso_data->tb_update_count;
280 smp_wmb();
281 vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last;
282 vdso_data->xtime_clock_sec = tk->xtime_sec;
283 vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec;
284 vdso_data->wtom_clock_sec =
285 tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
286 vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec +
287 + ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
288 nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift;
289 while (vdso_data->wtom_clock_nsec >= nsecps) {
290 vdso_data->wtom_clock_nsec -= nsecps;
291 vdso_data->wtom_clock_sec++;
292 }
293
294 vdso_data->xtime_coarse_sec = tk->xtime_sec;
295 vdso_data->xtime_coarse_nsec =
296 (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
297 vdso_data->wtom_coarse_sec =
298 vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec;
299 vdso_data->wtom_coarse_nsec =
300 vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
301 while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) {
302 vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC;
303 vdso_data->wtom_coarse_sec++;
304 }
305
306 vdso_data->tk_mult = tk->tkr_mono.mult;
307 vdso_data->tk_shift = tk->tkr_mono.shift;
308 smp_wmb();
309 ++vdso_data->tb_update_count;
310}
311
312extern struct timezone sys_tz;
313
314void update_vsyscall_tz(void)
315{
316 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
317 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
318}
319
320/*
321 * Initialize the TOD clock and the CPU timer of
322 * the boot cpu.
323 */
324void __init time_init(void)
325{
326 /* Reset time synchronization interfaces. */
327 stp_reset();
328
329 /* request the clock comparator external interrupt */
330 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
331 panic("Couldn't request external interrupt 0x1004");
332
333 /* request the timing alert external interrupt */
334 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
335 panic("Couldn't request external interrupt 0x1406");
336
337 if (__clocksource_register(&clocksource_tod) != 0)
338 panic("Could not register TOD clock source");
339
340 /* Enable TOD clock interrupts on the boot cpu. */
341 init_cpu_timer();
342
343 /* Enable cpu timer interrupts on the boot cpu. */
344 vtime_init();
345}
346
347static DEFINE_PER_CPU(atomic_t, clock_sync_word);
348static DEFINE_MUTEX(clock_sync_mutex);
349static unsigned long clock_sync_flags;
350
351#define CLOCK_SYNC_HAS_STP 0
352#define CLOCK_SYNC_STP 1
353
354/*
355 * The get_clock function for the physical clock. It will get the current
356 * TOD clock, subtract the LPAR offset and write the result to *clock.
357 * The function returns 0 if the clock is in sync with the external time
358 * source. If the clock mode is local it will return -EOPNOTSUPP and
359 * -EAGAIN if the clock is not in sync with the external reference.
360 */
361int get_phys_clock(unsigned long *clock)
362{
363 atomic_t *sw_ptr;
364 unsigned int sw0, sw1;
365
366 sw_ptr = &get_cpu_var(clock_sync_word);
367 sw0 = atomic_read(sw_ptr);
368 *clock = get_tod_clock() - lpar_offset;
369 sw1 = atomic_read(sw_ptr);
370 put_cpu_var(clock_sync_word);
371 if (sw0 == sw1 && (sw0 & 0x80000000U))
372 /* Success: time is in sync. */
373 return 0;
374 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
375 return -EOPNOTSUPP;
376 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
377 return -EACCES;
378 return -EAGAIN;
379}
380EXPORT_SYMBOL(get_phys_clock);
381
382/*
383 * Make get_phys_clock() return -EAGAIN.
384 */
385static void disable_sync_clock(void *dummy)
386{
387 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
388 /*
389 * Clear the in-sync bit 2^31. All get_phys_clock calls will
390 * fail until the sync bit is turned back on. In addition
391 * increase the "sequence" counter to avoid the race of an
392 * stp event and the complete recovery against get_phys_clock.
393 */
394 atomic_andnot(0x80000000, sw_ptr);
395 atomic_inc(sw_ptr);
396}
397
398/*
399 * Make get_phys_clock() return 0 again.
400 * Needs to be called from a context disabled for preemption.
401 */
402static void enable_sync_clock(void)
403{
404 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
405 atomic_or(0x80000000, sw_ptr);
406}
407
408/*
409 * Function to check if the clock is in sync.
410 */
411static inline int check_sync_clock(void)
412{
413 atomic_t *sw_ptr;
414 int rc;
415
416 sw_ptr = &get_cpu_var(clock_sync_word);
417 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
418 put_cpu_var(clock_sync_word);
419 return rc;
420}
421
422/*
423 * Apply clock delta to the global data structures.
424 * This is called once on the CPU that performed the clock sync.
425 */
426static void clock_sync_global(unsigned long long delta)
427{
428 unsigned long now, adj;
429 struct ptff_qto qto;
430
431 /* Fixup the monotonic sched clock. */
432 *(unsigned long long *) &tod_clock_base[1] += delta;
433 if (*(unsigned long long *) &tod_clock_base[1] < delta)
434 /* Epoch overflow */
435 tod_clock_base[0]++;
436 /* Adjust TOD steering parameters. */
437 vdso_data->tb_update_count++;
438 now = get_tod_clock();
439 adj = tod_steering_end - now;
440 if (unlikely((s64) adj >= 0))
441 /* Calculate how much of the old adjustment is left. */
442 tod_steering_delta = (tod_steering_delta < 0) ?
443 -(adj >> 15) : (adj >> 15);
444 tod_steering_delta += delta;
445 if ((abs(tod_steering_delta) >> 48) != 0)
446 panic("TOD clock sync offset %lli is too large to drift\n",
447 tod_steering_delta);
448 tod_steering_end = now + (abs(tod_steering_delta) << 15);
449 vdso_data->ts_dir = (tod_steering_delta < 0) ? 0 : 1;
450 vdso_data->ts_end = tod_steering_end;
451 vdso_data->tb_update_count++;
452 /* Update LPAR offset. */
453 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
454 lpar_offset = qto.tod_epoch_difference;
455 /* Call the TOD clock change notifier. */
456 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
457}
458
459/*
460 * Apply clock delta to the per-CPU data structures of this CPU.
461 * This is called for each online CPU after the call to clock_sync_global.
462 */
463static void clock_sync_local(unsigned long long delta)
464{
465 /* Add the delta to the clock comparator. */
466 if (S390_lowcore.clock_comparator != clock_comparator_max) {
467 S390_lowcore.clock_comparator += delta;
468 set_clock_comparator(S390_lowcore.clock_comparator);
469 }
470 /* Adjust the last_update_clock time-stamp. */
471 S390_lowcore.last_update_clock += delta;
472}
473
474/* Single threaded workqueue used for stp sync events */
475static struct workqueue_struct *time_sync_wq;
476
477static void __init time_init_wq(void)
478{
479 if (time_sync_wq)
480 return;
481 time_sync_wq = create_singlethread_workqueue("timesync");
482}
483
484struct clock_sync_data {
485 atomic_t cpus;
486 int in_sync;
487 unsigned long long clock_delta;
488};
489
490/*
491 * Server Time Protocol (STP) code.
492 */
493static bool stp_online;
494static struct stp_sstpi stp_info;
495static void *stp_page;
496
497static void stp_work_fn(struct work_struct *work);
498static DEFINE_MUTEX(stp_work_mutex);
499static DECLARE_WORK(stp_work, stp_work_fn);
500static struct timer_list stp_timer;
501
502static int __init early_parse_stp(char *p)
503{
504 return kstrtobool(p, &stp_online);
505}
506early_param("stp", early_parse_stp);
507
508/*
509 * Reset STP attachment.
510 */
511static void __init stp_reset(void)
512{
513 int rc;
514
515 stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
516 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
517 if (rc == 0)
518 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
519 else if (stp_online) {
520 pr_warn("The real or virtual hardware system does not provide an STP interface\n");
521 free_page((unsigned long) stp_page);
522 stp_page = NULL;
523 stp_online = false;
524 }
525}
526
527static void stp_timeout(struct timer_list *unused)
528{
529 queue_work(time_sync_wq, &stp_work);
530}
531
532static int __init stp_init(void)
533{
534 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
535 return 0;
536 timer_setup(&stp_timer, stp_timeout, 0);
537 time_init_wq();
538 if (!stp_online)
539 return 0;
540 queue_work(time_sync_wq, &stp_work);
541 return 0;
542}
543
544arch_initcall(stp_init);
545
546/*
547 * STP timing alert. There are three causes:
548 * 1) timing status change
549 * 2) link availability change
550 * 3) time control parameter change
551 * In all three cases we are only interested in the clock source state.
552 * If a STP clock source is now available use it.
553 */
554static void stp_timing_alert(struct stp_irq_parm *intparm)
555{
556 if (intparm->tsc || intparm->lac || intparm->tcpc)
557 queue_work(time_sync_wq, &stp_work);
558}
559
560/*
561 * STP sync check machine check. This is called when the timing state
562 * changes from the synchronized state to the unsynchronized state.
563 * After a STP sync check the clock is not in sync. The machine check
564 * is broadcasted to all cpus at the same time.
565 */
566int stp_sync_check(void)
567{
568 disable_sync_clock(NULL);
569 return 1;
570}
571
572/*
573 * STP island condition machine check. This is called when an attached
574 * server attempts to communicate over an STP link and the servers
575 * have matching CTN ids and have a valid stratum-1 configuration
576 * but the configurations do not match.
577 */
578int stp_island_check(void)
579{
580 disable_sync_clock(NULL);
581 return 1;
582}
583
584void stp_queue_work(void)
585{
586 queue_work(time_sync_wq, &stp_work);
587}
588
589static int stp_sync_clock(void *data)
590{
591 struct clock_sync_data *sync = data;
592 unsigned long long clock_delta;
593 static int first;
594 int rc;
595
596 enable_sync_clock();
597 if (xchg(&first, 1) == 0) {
598 /* Wait until all other cpus entered the sync function. */
599 while (atomic_read(&sync->cpus) != 0)
600 cpu_relax();
601 rc = 0;
602 if (stp_info.todoff[0] || stp_info.todoff[1] ||
603 stp_info.todoff[2] || stp_info.todoff[3] ||
604 stp_info.tmd != 2) {
605 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
606 &clock_delta);
607 if (rc == 0) {
608 sync->clock_delta = clock_delta;
609 clock_sync_global(clock_delta);
610 rc = chsc_sstpi(stp_page, &stp_info,
611 sizeof(struct stp_sstpi));
612 if (rc == 0 && stp_info.tmd != 2)
613 rc = -EAGAIN;
614 }
615 }
616 sync->in_sync = rc ? -EAGAIN : 1;
617 xchg(&first, 0);
618 } else {
619 /* Slave */
620 atomic_dec(&sync->cpus);
621 /* Wait for in_sync to be set. */
622 while (READ_ONCE(sync->in_sync) == 0)
623 __udelay(1);
624 }
625 if (sync->in_sync != 1)
626 /* Didn't work. Clear per-cpu in sync bit again. */
627 disable_sync_clock(NULL);
628 /* Apply clock delta to per-CPU fields of this CPU. */
629 clock_sync_local(sync->clock_delta);
630
631 return 0;
632}
633
634/*
635 * STP work. Check for the STP state and take over the clock
636 * synchronization if the STP clock source is usable.
637 */
638static void stp_work_fn(struct work_struct *work)
639{
640 struct clock_sync_data stp_sync;
641 int rc;
642
643 /* prevent multiple execution. */
644 mutex_lock(&stp_work_mutex);
645
646 if (!stp_online) {
647 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
648 del_timer_sync(&stp_timer);
649 goto out_unlock;
650 }
651
652 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0, NULL);
653 if (rc)
654 goto out_unlock;
655
656 rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
657 if (rc || stp_info.c == 0)
658 goto out_unlock;
659
660 /* Skip synchronization if the clock is already in sync. */
661 if (check_sync_clock())
662 goto out_unlock;
663
664 memset(&stp_sync, 0, sizeof(stp_sync));
665 cpus_read_lock();
666 atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
667 stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
668 cpus_read_unlock();
669
670 if (!check_sync_clock())
671 /*
672 * There is a usable clock but the synchonization failed.
673 * Retry after a second.
674 */
675 mod_timer(&stp_timer, jiffies + HZ);
676
677out_unlock:
678 mutex_unlock(&stp_work_mutex);
679}
680
681/*
682 * STP subsys sysfs interface functions
683 */
684static struct bus_type stp_subsys = {
685 .name = "stp",
686 .dev_name = "stp",
687};
688
689static ssize_t stp_ctn_id_show(struct device *dev,
690 struct device_attribute *attr,
691 char *buf)
692{
693 if (!stp_online)
694 return -ENODATA;
695 return sprintf(buf, "%016llx\n",
696 *(unsigned long long *) stp_info.ctnid);
697}
698
699static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
700
701static ssize_t stp_ctn_type_show(struct device *dev,
702 struct device_attribute *attr,
703 char *buf)
704{
705 if (!stp_online)
706 return -ENODATA;
707 return sprintf(buf, "%i\n", stp_info.ctn);
708}
709
710static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
711
712static ssize_t stp_dst_offset_show(struct device *dev,
713 struct device_attribute *attr,
714 char *buf)
715{
716 if (!stp_online || !(stp_info.vbits & 0x2000))
717 return -ENODATA;
718 return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
719}
720
721static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
722
723static ssize_t stp_leap_seconds_show(struct device *dev,
724 struct device_attribute *attr,
725 char *buf)
726{
727 if (!stp_online || !(stp_info.vbits & 0x8000))
728 return -ENODATA;
729 return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
730}
731
732static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
733
734static ssize_t stp_stratum_show(struct device *dev,
735 struct device_attribute *attr,
736 char *buf)
737{
738 if (!stp_online)
739 return -ENODATA;
740 return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
741}
742
743static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
744
745static ssize_t stp_time_offset_show(struct device *dev,
746 struct device_attribute *attr,
747 char *buf)
748{
749 if (!stp_online || !(stp_info.vbits & 0x0800))
750 return -ENODATA;
751 return sprintf(buf, "%i\n", (int) stp_info.tto);
752}
753
754static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
755
756static ssize_t stp_time_zone_offset_show(struct device *dev,
757 struct device_attribute *attr,
758 char *buf)
759{
760 if (!stp_online || !(stp_info.vbits & 0x4000))
761 return -ENODATA;
762 return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
763}
764
765static DEVICE_ATTR(time_zone_offset, 0400,
766 stp_time_zone_offset_show, NULL);
767
768static ssize_t stp_timing_mode_show(struct device *dev,
769 struct device_attribute *attr,
770 char *buf)
771{
772 if (!stp_online)
773 return -ENODATA;
774 return sprintf(buf, "%i\n", stp_info.tmd);
775}
776
777static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
778
779static ssize_t stp_timing_state_show(struct device *dev,
780 struct device_attribute *attr,
781 char *buf)
782{
783 if (!stp_online)
784 return -ENODATA;
785 return sprintf(buf, "%i\n", stp_info.tst);
786}
787
788static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
789
790static ssize_t stp_online_show(struct device *dev,
791 struct device_attribute *attr,
792 char *buf)
793{
794 return sprintf(buf, "%i\n", stp_online);
795}
796
797static ssize_t stp_online_store(struct device *dev,
798 struct device_attribute *attr,
799 const char *buf, size_t count)
800{
801 unsigned int value;
802
803 value = simple_strtoul(buf, NULL, 0);
804 if (value != 0 && value != 1)
805 return -EINVAL;
806 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
807 return -EOPNOTSUPP;
808 mutex_lock(&clock_sync_mutex);
809 stp_online = value;
810 if (stp_online)
811 set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
812 else
813 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
814 queue_work(time_sync_wq, &stp_work);
815 mutex_unlock(&clock_sync_mutex);
816 return count;
817}
818
819/*
820 * Can't use DEVICE_ATTR because the attribute should be named
821 * stp/online but dev_attr_online already exists in this file ..
822 */
823static struct device_attribute dev_attr_stp_online = {
824 .attr = { .name = "online", .mode = 0600 },
825 .show = stp_online_show,
826 .store = stp_online_store,
827};
828
829static struct device_attribute *stp_attributes[] = {
830 &dev_attr_ctn_id,
831 &dev_attr_ctn_type,
832 &dev_attr_dst_offset,
833 &dev_attr_leap_seconds,
834 &dev_attr_stp_online,
835 &dev_attr_stratum,
836 &dev_attr_time_offset,
837 &dev_attr_time_zone_offset,
838 &dev_attr_timing_mode,
839 &dev_attr_timing_state,
840 NULL
841};
842
843static int __init stp_init_sysfs(void)
844{
845 struct device_attribute **attr;
846 int rc;
847
848 rc = subsys_system_register(&stp_subsys, NULL);
849 if (rc)
850 goto out;
851 for (attr = stp_attributes; *attr; attr++) {
852 rc = device_create_file(stp_subsys.dev_root, *attr);
853 if (rc)
854 goto out_unreg;
855 }
856 return 0;
857out_unreg:
858 for (; attr >= stp_attributes; attr--)
859 device_remove_file(stp_subsys.dev_root, *attr);
860 bus_unregister(&stp_subsys);
861out:
862 return rc;
863}
864
865device_initcall(stp_init_sysfs);
1/*
2 * Time of day based timer functions.
3 *
4 * S390 version
5 * Copyright IBM Corp. 1999, 2008
6 * Author(s): Hartmut Penner (hp@de.ibm.com),
7 * Martin Schwidefsky (schwidefsky@de.ibm.com),
8 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
9 *
10 * Derived from "arch/i386/kernel/time.c"
11 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
12 */
13
14#define KMSG_COMPONENT "time"
15#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16
17#include <linux/kernel_stat.h>
18#include <linux/errno.h>
19#include <linux/module.h>
20#include <linux/sched.h>
21#include <linux/kernel.h>
22#include <linux/param.h>
23#include <linux/string.h>
24#include <linux/mm.h>
25#include <linux/interrupt.h>
26#include <linux/cpu.h>
27#include <linux/stop_machine.h>
28#include <linux/time.h>
29#include <linux/device.h>
30#include <linux/delay.h>
31#include <linux/init.h>
32#include <linux/smp.h>
33#include <linux/types.h>
34#include <linux/profile.h>
35#include <linux/timex.h>
36#include <linux/notifier.h>
37#include <linux/timekeeper_internal.h>
38#include <linux/clockchips.h>
39#include <linux/gfp.h>
40#include <linux/kprobes.h>
41#include <asm/uaccess.h>
42#include <asm/delay.h>
43#include <asm/div64.h>
44#include <asm/vdso.h>
45#include <asm/irq.h>
46#include <asm/irq_regs.h>
47#include <asm/vtimer.h>
48#include <asm/etr.h>
49#include <asm/cio.h>
50#include "entry.h"
51
52/* change this if you have some constant time drift */
53#define USECS_PER_JIFFY ((unsigned long) 1000000/HZ)
54#define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
55
56u64 sched_clock_base_cc = -1; /* Force to data section. */
57EXPORT_SYMBOL_GPL(sched_clock_base_cc);
58
59static DEFINE_PER_CPU(struct clock_event_device, comparators);
60
61ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
62EXPORT_SYMBOL(s390_epoch_delta_notifier);
63
64/*
65 * Scheduler clock - returns current time in nanosec units.
66 */
67unsigned long long notrace sched_clock(void)
68{
69 return tod_to_ns(get_tod_clock_monotonic());
70}
71NOKPROBE_SYMBOL(sched_clock);
72
73/*
74 * Monotonic_clock - returns # of nanoseconds passed since time_init()
75 */
76unsigned long long monotonic_clock(void)
77{
78 return sched_clock();
79}
80EXPORT_SYMBOL(monotonic_clock);
81
82void tod_to_timeval(__u64 todval, struct timespec64 *xt)
83{
84 unsigned long long sec;
85
86 sec = todval >> 12;
87 do_div(sec, 1000000);
88 xt->tv_sec = sec;
89 todval -= (sec * 1000000) << 12;
90 xt->tv_nsec = ((todval * 1000) >> 12);
91}
92EXPORT_SYMBOL(tod_to_timeval);
93
94void clock_comparator_work(void)
95{
96 struct clock_event_device *cd;
97
98 S390_lowcore.clock_comparator = -1ULL;
99 cd = this_cpu_ptr(&comparators);
100 cd->event_handler(cd);
101}
102
103/*
104 * Fixup the clock comparator.
105 */
106static void fixup_clock_comparator(unsigned long long delta)
107{
108 /* If nobody is waiting there's nothing to fix. */
109 if (S390_lowcore.clock_comparator == -1ULL)
110 return;
111 S390_lowcore.clock_comparator += delta;
112 set_clock_comparator(S390_lowcore.clock_comparator);
113}
114
115static int s390_next_event(unsigned long delta,
116 struct clock_event_device *evt)
117{
118 S390_lowcore.clock_comparator = get_tod_clock() + delta;
119 set_clock_comparator(S390_lowcore.clock_comparator);
120 return 0;
121}
122
123/*
124 * Set up lowcore and control register of the current cpu to
125 * enable TOD clock and clock comparator interrupts.
126 */
127void init_cpu_timer(void)
128{
129 struct clock_event_device *cd;
130 int cpu;
131
132 S390_lowcore.clock_comparator = -1ULL;
133 set_clock_comparator(S390_lowcore.clock_comparator);
134
135 cpu = smp_processor_id();
136 cd = &per_cpu(comparators, cpu);
137 cd->name = "comparator";
138 cd->features = CLOCK_EVT_FEAT_ONESHOT;
139 cd->mult = 16777;
140 cd->shift = 12;
141 cd->min_delta_ns = 1;
142 cd->max_delta_ns = LONG_MAX;
143 cd->rating = 400;
144 cd->cpumask = cpumask_of(cpu);
145 cd->set_next_event = s390_next_event;
146
147 clockevents_register_device(cd);
148
149 /* Enable clock comparator timer interrupt. */
150 __ctl_set_bit(0,11);
151
152 /* Always allow the timing alert external interrupt. */
153 __ctl_set_bit(0, 4);
154}
155
156static void clock_comparator_interrupt(struct ext_code ext_code,
157 unsigned int param32,
158 unsigned long param64)
159{
160 inc_irq_stat(IRQEXT_CLK);
161 if (S390_lowcore.clock_comparator == -1ULL)
162 set_clock_comparator(S390_lowcore.clock_comparator);
163}
164
165static void etr_timing_alert(struct etr_irq_parm *);
166static void stp_timing_alert(struct stp_irq_parm *);
167
168static void timing_alert_interrupt(struct ext_code ext_code,
169 unsigned int param32, unsigned long param64)
170{
171 inc_irq_stat(IRQEXT_TLA);
172 if (param32 & 0x00c40000)
173 etr_timing_alert((struct etr_irq_parm *) ¶m32);
174 if (param32 & 0x00038000)
175 stp_timing_alert((struct stp_irq_parm *) ¶m32);
176}
177
178static void etr_reset(void);
179static void stp_reset(void);
180
181void read_persistent_clock64(struct timespec64 *ts)
182{
183 tod_to_timeval(get_tod_clock() - TOD_UNIX_EPOCH, ts);
184}
185
186void read_boot_clock64(struct timespec64 *ts)
187{
188 tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts);
189}
190
191static cycle_t read_tod_clock(struct clocksource *cs)
192{
193 return get_tod_clock();
194}
195
196static struct clocksource clocksource_tod = {
197 .name = "tod",
198 .rating = 400,
199 .read = read_tod_clock,
200 .mask = -1ULL,
201 .mult = 1000,
202 .shift = 12,
203 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
204};
205
206struct clocksource * __init clocksource_default_clock(void)
207{
208 return &clocksource_tod;
209}
210
211void update_vsyscall(struct timekeeper *tk)
212{
213 u64 nsecps;
214
215 if (tk->tkr_mono.clock != &clocksource_tod)
216 return;
217
218 /* Make userspace gettimeofday spin until we're done. */
219 ++vdso_data->tb_update_count;
220 smp_wmb();
221 vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last;
222 vdso_data->xtime_clock_sec = tk->xtime_sec;
223 vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec;
224 vdso_data->wtom_clock_sec =
225 tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
226 vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec +
227 + ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
228 nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift;
229 while (vdso_data->wtom_clock_nsec >= nsecps) {
230 vdso_data->wtom_clock_nsec -= nsecps;
231 vdso_data->wtom_clock_sec++;
232 }
233
234 vdso_data->xtime_coarse_sec = tk->xtime_sec;
235 vdso_data->xtime_coarse_nsec =
236 (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
237 vdso_data->wtom_coarse_sec =
238 vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec;
239 vdso_data->wtom_coarse_nsec =
240 vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
241 while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) {
242 vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC;
243 vdso_data->wtom_coarse_sec++;
244 }
245
246 vdso_data->tk_mult = tk->tkr_mono.mult;
247 vdso_data->tk_shift = tk->tkr_mono.shift;
248 smp_wmb();
249 ++vdso_data->tb_update_count;
250}
251
252extern struct timezone sys_tz;
253
254void update_vsyscall_tz(void)
255{
256 /* Make userspace gettimeofday spin until we're done. */
257 ++vdso_data->tb_update_count;
258 smp_wmb();
259 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
260 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
261 smp_wmb();
262 ++vdso_data->tb_update_count;
263}
264
265/*
266 * Initialize the TOD clock and the CPU timer of
267 * the boot cpu.
268 */
269void __init time_init(void)
270{
271 /* Reset time synchronization interfaces. */
272 etr_reset();
273 stp_reset();
274
275 /* request the clock comparator external interrupt */
276 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
277 panic("Couldn't request external interrupt 0x1004");
278
279 /* request the timing alert external interrupt */
280 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
281 panic("Couldn't request external interrupt 0x1406");
282
283 if (__clocksource_register(&clocksource_tod) != 0)
284 panic("Could not register TOD clock source");
285
286 /* Enable TOD clock interrupts on the boot cpu. */
287 init_cpu_timer();
288
289 /* Enable cpu timer interrupts on the boot cpu. */
290 vtime_init();
291}
292
293/*
294 * The time is "clock". old is what we think the time is.
295 * Adjust the value by a multiple of jiffies and add the delta to ntp.
296 * "delay" is an approximation how long the synchronization took. If
297 * the time correction is positive, then "delay" is subtracted from
298 * the time difference and only the remaining part is passed to ntp.
299 */
300static unsigned long long adjust_time(unsigned long long old,
301 unsigned long long clock,
302 unsigned long long delay)
303{
304 unsigned long long delta, ticks;
305 struct timex adjust;
306
307 if (clock > old) {
308 /* It is later than we thought. */
309 delta = ticks = clock - old;
310 delta = ticks = (delta < delay) ? 0 : delta - delay;
311 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
312 adjust.offset = ticks * (1000000 / HZ);
313 } else {
314 /* It is earlier than we thought. */
315 delta = ticks = old - clock;
316 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
317 delta = -delta;
318 adjust.offset = -ticks * (1000000 / HZ);
319 }
320 sched_clock_base_cc += delta;
321 if (adjust.offset != 0) {
322 pr_notice("The ETR interface has adjusted the clock "
323 "by %li microseconds\n", adjust.offset);
324 adjust.modes = ADJ_OFFSET_SINGLESHOT;
325 do_adjtimex(&adjust);
326 }
327 return delta;
328}
329
330static DEFINE_PER_CPU(atomic_t, clock_sync_word);
331static DEFINE_MUTEX(clock_sync_mutex);
332static unsigned long clock_sync_flags;
333
334#define CLOCK_SYNC_HAS_ETR 0
335#define CLOCK_SYNC_HAS_STP 1
336#define CLOCK_SYNC_ETR 2
337#define CLOCK_SYNC_STP 3
338
339/*
340 * The synchronous get_clock function. It will write the current clock
341 * value to the clock pointer and return 0 if the clock is in sync with
342 * the external time source. If the clock mode is local it will return
343 * -EOPNOTSUPP and -EAGAIN if the clock is not in sync with the external
344 * reference.
345 */
346int get_sync_clock(unsigned long long *clock)
347{
348 atomic_t *sw_ptr;
349 unsigned int sw0, sw1;
350
351 sw_ptr = &get_cpu_var(clock_sync_word);
352 sw0 = atomic_read(sw_ptr);
353 *clock = get_tod_clock();
354 sw1 = atomic_read(sw_ptr);
355 put_cpu_var(clock_sync_word);
356 if (sw0 == sw1 && (sw0 & 0x80000000U))
357 /* Success: time is in sync. */
358 return 0;
359 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
360 !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
361 return -EOPNOTSUPP;
362 if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
363 !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
364 return -EACCES;
365 return -EAGAIN;
366}
367EXPORT_SYMBOL(get_sync_clock);
368
369/*
370 * Make get_sync_clock return -EAGAIN.
371 */
372static void disable_sync_clock(void *dummy)
373{
374 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
375 /*
376 * Clear the in-sync bit 2^31. All get_sync_clock calls will
377 * fail until the sync bit is turned back on. In addition
378 * increase the "sequence" counter to avoid the race of an
379 * etr event and the complete recovery against get_sync_clock.
380 */
381 atomic_andnot(0x80000000, sw_ptr);
382 atomic_inc(sw_ptr);
383}
384
385/*
386 * Make get_sync_clock return 0 again.
387 * Needs to be called from a context disabled for preemption.
388 */
389static void enable_sync_clock(void)
390{
391 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
392 atomic_or(0x80000000, sw_ptr);
393}
394
395/*
396 * Function to check if the clock is in sync.
397 */
398static inline int check_sync_clock(void)
399{
400 atomic_t *sw_ptr;
401 int rc;
402
403 sw_ptr = &get_cpu_var(clock_sync_word);
404 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
405 put_cpu_var(clock_sync_word);
406 return rc;
407}
408
409/* Single threaded workqueue used for etr and stp sync events */
410static struct workqueue_struct *time_sync_wq;
411
412static void __init time_init_wq(void)
413{
414 if (time_sync_wq)
415 return;
416 time_sync_wq = create_singlethread_workqueue("timesync");
417}
418
419/*
420 * External Time Reference (ETR) code.
421 */
422static int etr_port0_online;
423static int etr_port1_online;
424static int etr_steai_available;
425
426static int __init early_parse_etr(char *p)
427{
428 if (strncmp(p, "off", 3) == 0)
429 etr_port0_online = etr_port1_online = 0;
430 else if (strncmp(p, "port0", 5) == 0)
431 etr_port0_online = 1;
432 else if (strncmp(p, "port1", 5) == 0)
433 etr_port1_online = 1;
434 else if (strncmp(p, "on", 2) == 0)
435 etr_port0_online = etr_port1_online = 1;
436 return 0;
437}
438early_param("etr", early_parse_etr);
439
440enum etr_event {
441 ETR_EVENT_PORT0_CHANGE,
442 ETR_EVENT_PORT1_CHANGE,
443 ETR_EVENT_PORT_ALERT,
444 ETR_EVENT_SYNC_CHECK,
445 ETR_EVENT_SWITCH_LOCAL,
446 ETR_EVENT_UPDATE,
447};
448
449/*
450 * Valid bit combinations of the eacr register are (x = don't care):
451 * e0 e1 dp p0 p1 ea es sl
452 * 0 0 x 0 0 0 0 0 initial, disabled state
453 * 0 0 x 0 1 1 0 0 port 1 online
454 * 0 0 x 1 0 1 0 0 port 0 online
455 * 0 0 x 1 1 1 0 0 both ports online
456 * 0 1 x 0 1 1 0 0 port 1 online and usable, ETR or PPS mode
457 * 0 1 x 0 1 1 0 1 port 1 online, usable and ETR mode
458 * 0 1 x 0 1 1 1 0 port 1 online, usable, PPS mode, in-sync
459 * 0 1 x 0 1 1 1 1 port 1 online, usable, ETR mode, in-sync
460 * 0 1 x 1 1 1 0 0 both ports online, port 1 usable
461 * 0 1 x 1 1 1 1 0 both ports online, port 1 usable, PPS mode, in-sync
462 * 0 1 x 1 1 1 1 1 both ports online, port 1 usable, ETR mode, in-sync
463 * 1 0 x 1 0 1 0 0 port 0 online and usable, ETR or PPS mode
464 * 1 0 x 1 0 1 0 1 port 0 online, usable and ETR mode
465 * 1 0 x 1 0 1 1 0 port 0 online, usable, PPS mode, in-sync
466 * 1 0 x 1 0 1 1 1 port 0 online, usable, ETR mode, in-sync
467 * 1 0 x 1 1 1 0 0 both ports online, port 0 usable
468 * 1 0 x 1 1 1 1 0 both ports online, port 0 usable, PPS mode, in-sync
469 * 1 0 x 1 1 1 1 1 both ports online, port 0 usable, ETR mode, in-sync
470 * 1 1 x 1 1 1 1 0 both ports online & usable, ETR, in-sync
471 * 1 1 x 1 1 1 1 1 both ports online & usable, ETR, in-sync
472 */
473static struct etr_eacr etr_eacr;
474static u64 etr_tolec; /* time of last eacr update */
475static struct etr_aib etr_port0;
476static int etr_port0_uptodate;
477static struct etr_aib etr_port1;
478static int etr_port1_uptodate;
479static unsigned long etr_events;
480static struct timer_list etr_timer;
481
482static void etr_timeout(unsigned long dummy);
483static void etr_work_fn(struct work_struct *work);
484static DEFINE_MUTEX(etr_work_mutex);
485static DECLARE_WORK(etr_work, etr_work_fn);
486
487/*
488 * Reset ETR attachment.
489 */
490static void etr_reset(void)
491{
492 etr_eacr = (struct etr_eacr) {
493 .e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
494 .p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
495 .es = 0, .sl = 0 };
496 if (etr_setr(&etr_eacr) == 0) {
497 etr_tolec = get_tod_clock();
498 set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
499 if (etr_port0_online && etr_port1_online)
500 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
501 } else if (etr_port0_online || etr_port1_online) {
502 pr_warn("The real or virtual hardware system does not provide an ETR interface\n");
503 etr_port0_online = etr_port1_online = 0;
504 }
505}
506
507static int __init etr_init(void)
508{
509 struct etr_aib aib;
510
511 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
512 return 0;
513 time_init_wq();
514 /* Check if this machine has the steai instruction. */
515 if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
516 etr_steai_available = 1;
517 setup_timer(&etr_timer, etr_timeout, 0UL);
518 if (etr_port0_online) {
519 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
520 queue_work(time_sync_wq, &etr_work);
521 }
522 if (etr_port1_online) {
523 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
524 queue_work(time_sync_wq, &etr_work);
525 }
526 return 0;
527}
528
529arch_initcall(etr_init);
530
531/*
532 * Two sorts of ETR machine checks. The architecture reads:
533 * "When a machine-check niterruption occurs and if a switch-to-local or
534 * ETR-sync-check interrupt request is pending but disabled, this pending
535 * disabled interruption request is indicated and is cleared".
536 * Which means that we can get etr_switch_to_local events from the machine
537 * check handler although the interruption condition is disabled. Lovely..
538 */
539
540/*
541 * Switch to local machine check. This is called when the last usable
542 * ETR port goes inactive. After switch to local the clock is not in sync.
543 */
544int etr_switch_to_local(void)
545{
546 if (!etr_eacr.sl)
547 return 0;
548 disable_sync_clock(NULL);
549 if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) {
550 etr_eacr.es = etr_eacr.sl = 0;
551 etr_setr(&etr_eacr);
552 return 1;
553 }
554 return 0;
555}
556
557/*
558 * ETR sync check machine check. This is called when the ETR OTE and the
559 * local clock OTE are farther apart than the ETR sync check tolerance.
560 * After a ETR sync check the clock is not in sync. The machine check
561 * is broadcasted to all cpus at the same time.
562 */
563int etr_sync_check(void)
564{
565 if (!etr_eacr.es)
566 return 0;
567 disable_sync_clock(NULL);
568 if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) {
569 etr_eacr.es = 0;
570 etr_setr(&etr_eacr);
571 return 1;
572 }
573 return 0;
574}
575
576void etr_queue_work(void)
577{
578 queue_work(time_sync_wq, &etr_work);
579}
580
581/*
582 * ETR timing alert. There are two causes:
583 * 1) port state change, check the usability of the port
584 * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
585 * sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
586 * or ETR-data word 4 (edf4) has changed.
587 */
588static void etr_timing_alert(struct etr_irq_parm *intparm)
589{
590 if (intparm->pc0)
591 /* ETR port 0 state change. */
592 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
593 if (intparm->pc1)
594 /* ETR port 1 state change. */
595 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
596 if (intparm->eai)
597 /*
598 * ETR port alert on either port 0, 1 or both.
599 * Both ports are not up-to-date now.
600 */
601 set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
602 queue_work(time_sync_wq, &etr_work);
603}
604
605static void etr_timeout(unsigned long dummy)
606{
607 set_bit(ETR_EVENT_UPDATE, &etr_events);
608 queue_work(time_sync_wq, &etr_work);
609}
610
611/*
612 * Check if the etr mode is pss.
613 */
614static inline int etr_mode_is_pps(struct etr_eacr eacr)
615{
616 return eacr.es && !eacr.sl;
617}
618
619/*
620 * Check if the etr mode is etr.
621 */
622static inline int etr_mode_is_etr(struct etr_eacr eacr)
623{
624 return eacr.es && eacr.sl;
625}
626
627/*
628 * Check if the port can be used for TOD synchronization.
629 * For PPS mode the port has to receive OTEs. For ETR mode
630 * the port has to receive OTEs, the ETR stepping bit has to
631 * be zero and the validity bits for data frame 1, 2, and 3
632 * have to be 1.
633 */
634static int etr_port_valid(struct etr_aib *aib, int port)
635{
636 unsigned int psc;
637
638 /* Check that this port is receiving OTEs. */
639 if (aib->tsp == 0)
640 return 0;
641
642 psc = port ? aib->esw.psc1 : aib->esw.psc0;
643 if (psc == etr_lpsc_pps_mode)
644 return 1;
645 if (psc == etr_lpsc_operational_step)
646 return !aib->esw.y && aib->slsw.v1 &&
647 aib->slsw.v2 && aib->slsw.v3;
648 return 0;
649}
650
651/*
652 * Check if two ports are on the same network.
653 */
654static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
655{
656 // FIXME: any other fields we have to compare?
657 return aib1->edf1.net_id == aib2->edf1.net_id;
658}
659
660/*
661 * Wrapper for etr_stei that converts physical port states
662 * to logical port states to be consistent with the output
663 * of stetr (see etr_psc vs. etr_lpsc).
664 */
665static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
666{
667 BUG_ON(etr_steai(aib, func) != 0);
668 /* Convert port state to logical port state. */
669 if (aib->esw.psc0 == 1)
670 aib->esw.psc0 = 2;
671 else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
672 aib->esw.psc0 = 1;
673 if (aib->esw.psc1 == 1)
674 aib->esw.psc1 = 2;
675 else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
676 aib->esw.psc1 = 1;
677}
678
679/*
680 * Check if the aib a2 is still connected to the same attachment as
681 * aib a1, the etv values differ by one and a2 is valid.
682 */
683static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
684{
685 int state_a1, state_a2;
686
687 /* Paranoia check: e0/e1 should better be the same. */
688 if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
689 a1->esw.eacr.e1 != a2->esw.eacr.e1)
690 return 0;
691
692 /* Still connected to the same etr ? */
693 state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
694 state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
695 if (state_a1 == etr_lpsc_operational_step) {
696 if (state_a2 != etr_lpsc_operational_step ||
697 a1->edf1.net_id != a2->edf1.net_id ||
698 a1->edf1.etr_id != a2->edf1.etr_id ||
699 a1->edf1.etr_pn != a2->edf1.etr_pn)
700 return 0;
701 } else if (state_a2 != etr_lpsc_pps_mode)
702 return 0;
703
704 /* The ETV value of a2 needs to be ETV of a1 + 1. */
705 if (a1->edf2.etv + 1 != a2->edf2.etv)
706 return 0;
707
708 if (!etr_port_valid(a2, p))
709 return 0;
710
711 return 1;
712}
713
714struct clock_sync_data {
715 atomic_t cpus;
716 int in_sync;
717 unsigned long long fixup_cc;
718 int etr_port;
719 struct etr_aib *etr_aib;
720};
721
722static void clock_sync_cpu(struct clock_sync_data *sync)
723{
724 atomic_dec(&sync->cpus);
725 enable_sync_clock();
726 /*
727 * This looks like a busy wait loop but it isn't. etr_sync_cpus
728 * is called on all other cpus while the TOD clocks is stopped.
729 * __udelay will stop the cpu on an enabled wait psw until the
730 * TOD is running again.
731 */
732 while (sync->in_sync == 0) {
733 __udelay(1);
734 /*
735 * A different cpu changes *in_sync. Therefore use
736 * barrier() to force memory access.
737 */
738 barrier();
739 }
740 if (sync->in_sync != 1)
741 /* Didn't work. Clear per-cpu in sync bit again. */
742 disable_sync_clock(NULL);
743 /*
744 * This round of TOD syncing is done. Set the clock comparator
745 * to the next tick and let the processor continue.
746 */
747 fixup_clock_comparator(sync->fixup_cc);
748}
749
750/*
751 * Sync the TOD clock using the port referred to by aibp. This port
752 * has to be enabled and the other port has to be disabled. The
753 * last eacr update has to be more than 1.6 seconds in the past.
754 */
755static int etr_sync_clock(void *data)
756{
757 static int first;
758 unsigned long long clock, old_clock, clock_delta, delay, delta;
759 struct clock_sync_data *etr_sync;
760 struct etr_aib *sync_port, *aib;
761 int port;
762 int rc;
763
764 etr_sync = data;
765
766 if (xchg(&first, 1) == 1) {
767 /* Slave */
768 clock_sync_cpu(etr_sync);
769 return 0;
770 }
771
772 /* Wait until all other cpus entered the sync function. */
773 while (atomic_read(&etr_sync->cpus) != 0)
774 cpu_relax();
775
776 port = etr_sync->etr_port;
777 aib = etr_sync->etr_aib;
778 sync_port = (port == 0) ? &etr_port0 : &etr_port1;
779 enable_sync_clock();
780
781 /* Set clock to next OTE. */
782 __ctl_set_bit(14, 21);
783 __ctl_set_bit(0, 29);
784 clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
785 old_clock = get_tod_clock();
786 if (set_tod_clock(clock) == 0) {
787 __udelay(1); /* Wait for the clock to start. */
788 __ctl_clear_bit(0, 29);
789 __ctl_clear_bit(14, 21);
790 etr_stetr(aib);
791 /* Adjust Linux timing variables. */
792 delay = (unsigned long long)
793 (aib->edf2.etv - sync_port->edf2.etv) << 32;
794 delta = adjust_time(old_clock, clock, delay);
795 clock_delta = clock - old_clock;
796 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0,
797 &clock_delta);
798 etr_sync->fixup_cc = delta;
799 fixup_clock_comparator(delta);
800 /* Verify that the clock is properly set. */
801 if (!etr_aib_follows(sync_port, aib, port)) {
802 /* Didn't work. */
803 disable_sync_clock(NULL);
804 etr_sync->in_sync = -EAGAIN;
805 rc = -EAGAIN;
806 } else {
807 etr_sync->in_sync = 1;
808 rc = 0;
809 }
810 } else {
811 /* Could not set the clock ?!? */
812 __ctl_clear_bit(0, 29);
813 __ctl_clear_bit(14, 21);
814 disable_sync_clock(NULL);
815 etr_sync->in_sync = -EAGAIN;
816 rc = -EAGAIN;
817 }
818 xchg(&first, 0);
819 return rc;
820}
821
822static int etr_sync_clock_stop(struct etr_aib *aib, int port)
823{
824 struct clock_sync_data etr_sync;
825 struct etr_aib *sync_port;
826 int follows;
827 int rc;
828
829 /* Check if the current aib is adjacent to the sync port aib. */
830 sync_port = (port == 0) ? &etr_port0 : &etr_port1;
831 follows = etr_aib_follows(sync_port, aib, port);
832 memcpy(sync_port, aib, sizeof(*aib));
833 if (!follows)
834 return -EAGAIN;
835 memset(&etr_sync, 0, sizeof(etr_sync));
836 etr_sync.etr_aib = aib;
837 etr_sync.etr_port = port;
838 get_online_cpus();
839 atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
840 rc = stop_machine(etr_sync_clock, &etr_sync, cpu_online_mask);
841 put_online_cpus();
842 return rc;
843}
844
845/*
846 * Handle the immediate effects of the different events.
847 * The port change event is used for online/offline changes.
848 */
849static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
850{
851 if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
852 eacr.es = 0;
853 if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
854 eacr.es = eacr.sl = 0;
855 if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
856 etr_port0_uptodate = etr_port1_uptodate = 0;
857
858 if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
859 if (eacr.e0)
860 /*
861 * Port change of an enabled port. We have to
862 * assume that this can have caused an stepping
863 * port switch.
864 */
865 etr_tolec = get_tod_clock();
866 eacr.p0 = etr_port0_online;
867 if (!eacr.p0)
868 eacr.e0 = 0;
869 etr_port0_uptodate = 0;
870 }
871 if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
872 if (eacr.e1)
873 /*
874 * Port change of an enabled port. We have to
875 * assume that this can have caused an stepping
876 * port switch.
877 */
878 etr_tolec = get_tod_clock();
879 eacr.p1 = etr_port1_online;
880 if (!eacr.p1)
881 eacr.e1 = 0;
882 etr_port1_uptodate = 0;
883 }
884 clear_bit(ETR_EVENT_UPDATE, &etr_events);
885 return eacr;
886}
887
888/*
889 * Set up a timer that expires after the etr_tolec + 1.6 seconds if
890 * one of the ports needs an update.
891 */
892static void etr_set_tolec_timeout(unsigned long long now)
893{
894 unsigned long micros;
895
896 if ((!etr_eacr.p0 || etr_port0_uptodate) &&
897 (!etr_eacr.p1 || etr_port1_uptodate))
898 return;
899 micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
900 micros = (micros > 1600000) ? 0 : 1600000 - micros;
901 mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
902}
903
904/*
905 * Set up a time that expires after 1/2 second.
906 */
907static void etr_set_sync_timeout(void)
908{
909 mod_timer(&etr_timer, jiffies + HZ/2);
910}
911
912/*
913 * Update the aib information for one or both ports.
914 */
915static struct etr_eacr etr_handle_update(struct etr_aib *aib,
916 struct etr_eacr eacr)
917{
918 /* With both ports disabled the aib information is useless. */
919 if (!eacr.e0 && !eacr.e1)
920 return eacr;
921
922 /* Update port0 or port1 with aib stored in etr_work_fn. */
923 if (aib->esw.q == 0) {
924 /* Information for port 0 stored. */
925 if (eacr.p0 && !etr_port0_uptodate) {
926 etr_port0 = *aib;
927 if (etr_port0_online)
928 etr_port0_uptodate = 1;
929 }
930 } else {
931 /* Information for port 1 stored. */
932 if (eacr.p1 && !etr_port1_uptodate) {
933 etr_port1 = *aib;
934 if (etr_port0_online)
935 etr_port1_uptodate = 1;
936 }
937 }
938
939 /*
940 * Do not try to get the alternate port aib if the clock
941 * is not in sync yet.
942 */
943 if (!eacr.es || !check_sync_clock())
944 return eacr;
945
946 /*
947 * If steai is available we can get the information about
948 * the other port immediately. If only stetr is available the
949 * data-port bit toggle has to be used.
950 */
951 if (etr_steai_available) {
952 if (eacr.p0 && !etr_port0_uptodate) {
953 etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
954 etr_port0_uptodate = 1;
955 }
956 if (eacr.p1 && !etr_port1_uptodate) {
957 etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
958 etr_port1_uptodate = 1;
959 }
960 } else {
961 /*
962 * One port was updated above, if the other
963 * port is not uptodate toggle dp bit.
964 */
965 if ((eacr.p0 && !etr_port0_uptodate) ||
966 (eacr.p1 && !etr_port1_uptodate))
967 eacr.dp ^= 1;
968 else
969 eacr.dp = 0;
970 }
971 return eacr;
972}
973
974/*
975 * Write new etr control register if it differs from the current one.
976 * Return 1 if etr_tolec has been updated as well.
977 */
978static void etr_update_eacr(struct etr_eacr eacr)
979{
980 int dp_changed;
981
982 if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
983 /* No change, return. */
984 return;
985 /*
986 * The disable of an active port of the change of the data port
987 * bit can/will cause a change in the data port.
988 */
989 dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
990 (etr_eacr.dp ^ eacr.dp) != 0;
991 etr_eacr = eacr;
992 etr_setr(&etr_eacr);
993 if (dp_changed)
994 etr_tolec = get_tod_clock();
995}
996
997/*
998 * ETR work. In this function you'll find the main logic. In
999 * particular this is the only function that calls etr_update_eacr(),
1000 * it "controls" the etr control register.
1001 */
1002static void etr_work_fn(struct work_struct *work)
1003{
1004 unsigned long long now;
1005 struct etr_eacr eacr;
1006 struct etr_aib aib;
1007 int sync_port;
1008
1009 /* prevent multiple execution. */
1010 mutex_lock(&etr_work_mutex);
1011
1012 /* Create working copy of etr_eacr. */
1013 eacr = etr_eacr;
1014
1015 /* Check for the different events and their immediate effects. */
1016 eacr = etr_handle_events(eacr);
1017
1018 /* Check if ETR is supposed to be active. */
1019 eacr.ea = eacr.p0 || eacr.p1;
1020 if (!eacr.ea) {
1021 /* Both ports offline. Reset everything. */
1022 eacr.dp = eacr.es = eacr.sl = 0;
1023 on_each_cpu(disable_sync_clock, NULL, 1);
1024 del_timer_sync(&etr_timer);
1025 etr_update_eacr(eacr);
1026 goto out_unlock;
1027 }
1028
1029 /* Store aib to get the current ETR status word. */
1030 BUG_ON(etr_stetr(&aib) != 0);
1031 etr_port0.esw = etr_port1.esw = aib.esw; /* Copy status word. */
1032 now = get_tod_clock();
1033
1034 /*
1035 * Update the port information if the last stepping port change
1036 * or data port change is older than 1.6 seconds.
1037 */
1038 if (now >= etr_tolec + (1600000 << 12))
1039 eacr = etr_handle_update(&aib, eacr);
1040
1041 /*
1042 * Select ports to enable. The preferred synchronization mode is PPS.
1043 * If a port can be enabled depends on a number of things:
1044 * 1) The port needs to be online and uptodate. A port is not
1045 * disabled just because it is not uptodate, but it is only
1046 * enabled if it is uptodate.
1047 * 2) The port needs to have the same mode (pps / etr).
1048 * 3) The port needs to be usable -> etr_port_valid() == 1
1049 * 4) To enable the second port the clock needs to be in sync.
1050 * 5) If both ports are useable and are ETR ports, the network id
1051 * has to be the same.
1052 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1053 */
1054 if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1055 eacr.sl = 0;
1056 eacr.e0 = 1;
1057 if (!etr_mode_is_pps(etr_eacr))
1058 eacr.es = 0;
1059 if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1060 eacr.e1 = 0;
1061 // FIXME: uptodate checks ?
1062 else if (etr_port0_uptodate && etr_port1_uptodate)
1063 eacr.e1 = 1;
1064 sync_port = (etr_port0_uptodate &&
1065 etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1066 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1067 eacr.sl = 0;
1068 eacr.e0 = 0;
1069 eacr.e1 = 1;
1070 if (!etr_mode_is_pps(etr_eacr))
1071 eacr.es = 0;
1072 sync_port = (etr_port1_uptodate &&
1073 etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1074 } else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1075 eacr.sl = 1;
1076 eacr.e0 = 1;
1077 if (!etr_mode_is_etr(etr_eacr))
1078 eacr.es = 0;
1079 if (!eacr.es || !eacr.p1 ||
1080 aib.esw.psc1 != etr_lpsc_operational_alt)
1081 eacr.e1 = 0;
1082 else if (etr_port0_uptodate && etr_port1_uptodate &&
1083 etr_compare_network(&etr_port0, &etr_port1))
1084 eacr.e1 = 1;
1085 sync_port = (etr_port0_uptodate &&
1086 etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1087 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1088 eacr.sl = 1;
1089 eacr.e0 = 0;
1090 eacr.e1 = 1;
1091 if (!etr_mode_is_etr(etr_eacr))
1092 eacr.es = 0;
1093 sync_port = (etr_port1_uptodate &&
1094 etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1095 } else {
1096 /* Both ports not usable. */
1097 eacr.es = eacr.sl = 0;
1098 sync_port = -1;
1099 }
1100
1101 /*
1102 * If the clock is in sync just update the eacr and return.
1103 * If there is no valid sync port wait for a port update.
1104 */
1105 if ((eacr.es && check_sync_clock()) || sync_port < 0) {
1106 etr_update_eacr(eacr);
1107 etr_set_tolec_timeout(now);
1108 goto out_unlock;
1109 }
1110
1111 /*
1112 * Prepare control register for clock syncing
1113 * (reset data port bit, set sync check control.
1114 */
1115 eacr.dp = 0;
1116 eacr.es = 1;
1117
1118 /*
1119 * Update eacr and try to synchronize the clock. If the update
1120 * of eacr caused a stepping port switch (or if we have to
1121 * assume that a stepping port switch has occurred) or the
1122 * clock syncing failed, reset the sync check control bit
1123 * and set up a timer to try again after 0.5 seconds
1124 */
1125 etr_update_eacr(eacr);
1126 if (now < etr_tolec + (1600000 << 12) ||
1127 etr_sync_clock_stop(&aib, sync_port) != 0) {
1128 /* Sync failed. Try again in 1/2 second. */
1129 eacr.es = 0;
1130 etr_update_eacr(eacr);
1131 etr_set_sync_timeout();
1132 } else
1133 etr_set_tolec_timeout(now);
1134out_unlock:
1135 mutex_unlock(&etr_work_mutex);
1136}
1137
1138/*
1139 * Sysfs interface functions
1140 */
1141static struct bus_type etr_subsys = {
1142 .name = "etr",
1143 .dev_name = "etr",
1144};
1145
1146static struct device etr_port0_dev = {
1147 .id = 0,
1148 .bus = &etr_subsys,
1149};
1150
1151static struct device etr_port1_dev = {
1152 .id = 1,
1153 .bus = &etr_subsys,
1154};
1155
1156/*
1157 * ETR subsys attributes
1158 */
1159static ssize_t etr_stepping_port_show(struct device *dev,
1160 struct device_attribute *attr,
1161 char *buf)
1162{
1163 return sprintf(buf, "%i\n", etr_port0.esw.p);
1164}
1165
1166static DEVICE_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1167
1168static ssize_t etr_stepping_mode_show(struct device *dev,
1169 struct device_attribute *attr,
1170 char *buf)
1171{
1172 char *mode_str;
1173
1174 if (etr_mode_is_pps(etr_eacr))
1175 mode_str = "pps";
1176 else if (etr_mode_is_etr(etr_eacr))
1177 mode_str = "etr";
1178 else
1179 mode_str = "local";
1180 return sprintf(buf, "%s\n", mode_str);
1181}
1182
1183static DEVICE_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1184
1185/*
1186 * ETR port attributes
1187 */
1188static inline struct etr_aib *etr_aib_from_dev(struct device *dev)
1189{
1190 if (dev == &etr_port0_dev)
1191 return etr_port0_online ? &etr_port0 : NULL;
1192 else
1193 return etr_port1_online ? &etr_port1 : NULL;
1194}
1195
1196static ssize_t etr_online_show(struct device *dev,
1197 struct device_attribute *attr,
1198 char *buf)
1199{
1200 unsigned int online;
1201
1202 online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1203 return sprintf(buf, "%i\n", online);
1204}
1205
1206static ssize_t etr_online_store(struct device *dev,
1207 struct device_attribute *attr,
1208 const char *buf, size_t count)
1209{
1210 unsigned int value;
1211
1212 value = simple_strtoul(buf, NULL, 0);
1213 if (value != 0 && value != 1)
1214 return -EINVAL;
1215 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1216 return -EOPNOTSUPP;
1217 mutex_lock(&clock_sync_mutex);
1218 if (dev == &etr_port0_dev) {
1219 if (etr_port0_online == value)
1220 goto out; /* Nothing to do. */
1221 etr_port0_online = value;
1222 if (etr_port0_online && etr_port1_online)
1223 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1224 else
1225 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1226 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1227 queue_work(time_sync_wq, &etr_work);
1228 } else {
1229 if (etr_port1_online == value)
1230 goto out; /* Nothing to do. */
1231 etr_port1_online = value;
1232 if (etr_port0_online && etr_port1_online)
1233 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1234 else
1235 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1236 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1237 queue_work(time_sync_wq, &etr_work);
1238 }
1239out:
1240 mutex_unlock(&clock_sync_mutex);
1241 return count;
1242}
1243
1244static DEVICE_ATTR(online, 0600, etr_online_show, etr_online_store);
1245
1246static ssize_t etr_stepping_control_show(struct device *dev,
1247 struct device_attribute *attr,
1248 char *buf)
1249{
1250 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1251 etr_eacr.e0 : etr_eacr.e1);
1252}
1253
1254static DEVICE_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1255
1256static ssize_t etr_mode_code_show(struct device *dev,
1257 struct device_attribute *attr, char *buf)
1258{
1259 if (!etr_port0_online && !etr_port1_online)
1260 /* Status word is not uptodate if both ports are offline. */
1261 return -ENODATA;
1262 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1263 etr_port0.esw.psc0 : etr_port0.esw.psc1);
1264}
1265
1266static DEVICE_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1267
1268static ssize_t etr_untuned_show(struct device *dev,
1269 struct device_attribute *attr, char *buf)
1270{
1271 struct etr_aib *aib = etr_aib_from_dev(dev);
1272
1273 if (!aib || !aib->slsw.v1)
1274 return -ENODATA;
1275 return sprintf(buf, "%i\n", aib->edf1.u);
1276}
1277
1278static DEVICE_ATTR(untuned, 0400, etr_untuned_show, NULL);
1279
1280static ssize_t etr_network_id_show(struct device *dev,
1281 struct device_attribute *attr, char *buf)
1282{
1283 struct etr_aib *aib = etr_aib_from_dev(dev);
1284
1285 if (!aib || !aib->slsw.v1)
1286 return -ENODATA;
1287 return sprintf(buf, "%i\n", aib->edf1.net_id);
1288}
1289
1290static DEVICE_ATTR(network, 0400, etr_network_id_show, NULL);
1291
1292static ssize_t etr_id_show(struct device *dev,
1293 struct device_attribute *attr, char *buf)
1294{
1295 struct etr_aib *aib = etr_aib_from_dev(dev);
1296
1297 if (!aib || !aib->slsw.v1)
1298 return -ENODATA;
1299 return sprintf(buf, "%i\n", aib->edf1.etr_id);
1300}
1301
1302static DEVICE_ATTR(id, 0400, etr_id_show, NULL);
1303
1304static ssize_t etr_port_number_show(struct device *dev,
1305 struct device_attribute *attr, char *buf)
1306{
1307 struct etr_aib *aib = etr_aib_from_dev(dev);
1308
1309 if (!aib || !aib->slsw.v1)
1310 return -ENODATA;
1311 return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1312}
1313
1314static DEVICE_ATTR(port, 0400, etr_port_number_show, NULL);
1315
1316static ssize_t etr_coupled_show(struct device *dev,
1317 struct device_attribute *attr, char *buf)
1318{
1319 struct etr_aib *aib = etr_aib_from_dev(dev);
1320
1321 if (!aib || !aib->slsw.v3)
1322 return -ENODATA;
1323 return sprintf(buf, "%i\n", aib->edf3.c);
1324}
1325
1326static DEVICE_ATTR(coupled, 0400, etr_coupled_show, NULL);
1327
1328static ssize_t etr_local_time_show(struct device *dev,
1329 struct device_attribute *attr, char *buf)
1330{
1331 struct etr_aib *aib = etr_aib_from_dev(dev);
1332
1333 if (!aib || !aib->slsw.v3)
1334 return -ENODATA;
1335 return sprintf(buf, "%i\n", aib->edf3.blto);
1336}
1337
1338static DEVICE_ATTR(local_time, 0400, etr_local_time_show, NULL);
1339
1340static ssize_t etr_utc_offset_show(struct device *dev,
1341 struct device_attribute *attr, char *buf)
1342{
1343 struct etr_aib *aib = etr_aib_from_dev(dev);
1344
1345 if (!aib || !aib->slsw.v3)
1346 return -ENODATA;
1347 return sprintf(buf, "%i\n", aib->edf3.buo);
1348}
1349
1350static DEVICE_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1351
1352static struct device_attribute *etr_port_attributes[] = {
1353 &dev_attr_online,
1354 &dev_attr_stepping_control,
1355 &dev_attr_state_code,
1356 &dev_attr_untuned,
1357 &dev_attr_network,
1358 &dev_attr_id,
1359 &dev_attr_port,
1360 &dev_attr_coupled,
1361 &dev_attr_local_time,
1362 &dev_attr_utc_offset,
1363 NULL
1364};
1365
1366static int __init etr_register_port(struct device *dev)
1367{
1368 struct device_attribute **attr;
1369 int rc;
1370
1371 rc = device_register(dev);
1372 if (rc)
1373 goto out;
1374 for (attr = etr_port_attributes; *attr; attr++) {
1375 rc = device_create_file(dev, *attr);
1376 if (rc)
1377 goto out_unreg;
1378 }
1379 return 0;
1380out_unreg:
1381 for (; attr >= etr_port_attributes; attr--)
1382 device_remove_file(dev, *attr);
1383 device_unregister(dev);
1384out:
1385 return rc;
1386}
1387
1388static void __init etr_unregister_port(struct device *dev)
1389{
1390 struct device_attribute **attr;
1391
1392 for (attr = etr_port_attributes; *attr; attr++)
1393 device_remove_file(dev, *attr);
1394 device_unregister(dev);
1395}
1396
1397static int __init etr_init_sysfs(void)
1398{
1399 int rc;
1400
1401 rc = subsys_system_register(&etr_subsys, NULL);
1402 if (rc)
1403 goto out;
1404 rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1405 if (rc)
1406 goto out_unreg_subsys;
1407 rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1408 if (rc)
1409 goto out_remove_stepping_port;
1410 rc = etr_register_port(&etr_port0_dev);
1411 if (rc)
1412 goto out_remove_stepping_mode;
1413 rc = etr_register_port(&etr_port1_dev);
1414 if (rc)
1415 goto out_remove_port0;
1416 return 0;
1417
1418out_remove_port0:
1419 etr_unregister_port(&etr_port0_dev);
1420out_remove_stepping_mode:
1421 device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1422out_remove_stepping_port:
1423 device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1424out_unreg_subsys:
1425 bus_unregister(&etr_subsys);
1426out:
1427 return rc;
1428}
1429
1430device_initcall(etr_init_sysfs);
1431
1432/*
1433 * Server Time Protocol (STP) code.
1434 */
1435static bool stp_online;
1436static struct stp_sstpi stp_info;
1437static void *stp_page;
1438
1439static void stp_work_fn(struct work_struct *work);
1440static DEFINE_MUTEX(stp_work_mutex);
1441static DECLARE_WORK(stp_work, stp_work_fn);
1442static struct timer_list stp_timer;
1443
1444static int __init early_parse_stp(char *p)
1445{
1446 return kstrtobool(p, &stp_online);
1447}
1448early_param("stp", early_parse_stp);
1449
1450/*
1451 * Reset STP attachment.
1452 */
1453static void __init stp_reset(void)
1454{
1455 int rc;
1456
1457 stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
1458 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1459 if (rc == 0)
1460 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1461 else if (stp_online) {
1462 pr_warn("The real or virtual hardware system does not provide an STP interface\n");
1463 free_page((unsigned long) stp_page);
1464 stp_page = NULL;
1465 stp_online = 0;
1466 }
1467}
1468
1469static void stp_timeout(unsigned long dummy)
1470{
1471 queue_work(time_sync_wq, &stp_work);
1472}
1473
1474static int __init stp_init(void)
1475{
1476 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1477 return 0;
1478 setup_timer(&stp_timer, stp_timeout, 0UL);
1479 time_init_wq();
1480 if (!stp_online)
1481 return 0;
1482 queue_work(time_sync_wq, &stp_work);
1483 return 0;
1484}
1485
1486arch_initcall(stp_init);
1487
1488/*
1489 * STP timing alert. There are three causes:
1490 * 1) timing status change
1491 * 2) link availability change
1492 * 3) time control parameter change
1493 * In all three cases we are only interested in the clock source state.
1494 * If a STP clock source is now available use it.
1495 */
1496static void stp_timing_alert(struct stp_irq_parm *intparm)
1497{
1498 if (intparm->tsc || intparm->lac || intparm->tcpc)
1499 queue_work(time_sync_wq, &stp_work);
1500}
1501
1502/*
1503 * STP sync check machine check. This is called when the timing state
1504 * changes from the synchronized state to the unsynchronized state.
1505 * After a STP sync check the clock is not in sync. The machine check
1506 * is broadcasted to all cpus at the same time.
1507 */
1508int stp_sync_check(void)
1509{
1510 disable_sync_clock(NULL);
1511 return 1;
1512}
1513
1514/*
1515 * STP island condition machine check. This is called when an attached
1516 * server attempts to communicate over an STP link and the servers
1517 * have matching CTN ids and have a valid stratum-1 configuration
1518 * but the configurations do not match.
1519 */
1520int stp_island_check(void)
1521{
1522 disable_sync_clock(NULL);
1523 return 1;
1524}
1525
1526void stp_queue_work(void)
1527{
1528 queue_work(time_sync_wq, &stp_work);
1529}
1530
1531static int stp_sync_clock(void *data)
1532{
1533 static int first;
1534 unsigned long long old_clock, delta, new_clock, clock_delta;
1535 struct clock_sync_data *stp_sync;
1536 int rc;
1537
1538 stp_sync = data;
1539
1540 if (xchg(&first, 1) == 1) {
1541 /* Slave */
1542 clock_sync_cpu(stp_sync);
1543 return 0;
1544 }
1545
1546 /* Wait until all other cpus entered the sync function. */
1547 while (atomic_read(&stp_sync->cpus) != 0)
1548 cpu_relax();
1549
1550 enable_sync_clock();
1551
1552 rc = 0;
1553 if (stp_info.todoff[0] || stp_info.todoff[1] ||
1554 stp_info.todoff[2] || stp_info.todoff[3] ||
1555 stp_info.tmd != 2) {
1556 old_clock = get_tod_clock();
1557 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1558 if (rc == 0) {
1559 new_clock = get_tod_clock();
1560 delta = adjust_time(old_clock, new_clock, 0);
1561 clock_delta = new_clock - old_clock;
1562 atomic_notifier_call_chain(&s390_epoch_delta_notifier,
1563 0, &clock_delta);
1564 fixup_clock_comparator(delta);
1565 rc = chsc_sstpi(stp_page, &stp_info,
1566 sizeof(struct stp_sstpi));
1567 if (rc == 0 && stp_info.tmd != 2)
1568 rc = -EAGAIN;
1569 }
1570 }
1571 if (rc) {
1572 disable_sync_clock(NULL);
1573 stp_sync->in_sync = -EAGAIN;
1574 } else
1575 stp_sync->in_sync = 1;
1576 xchg(&first, 0);
1577 return 0;
1578}
1579
1580/*
1581 * STP work. Check for the STP state and take over the clock
1582 * synchronization if the STP clock source is usable.
1583 */
1584static void stp_work_fn(struct work_struct *work)
1585{
1586 struct clock_sync_data stp_sync;
1587 int rc;
1588
1589 /* prevent multiple execution. */
1590 mutex_lock(&stp_work_mutex);
1591
1592 if (!stp_online) {
1593 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1594 del_timer_sync(&stp_timer);
1595 goto out_unlock;
1596 }
1597
1598 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1599 if (rc)
1600 goto out_unlock;
1601
1602 rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1603 if (rc || stp_info.c == 0)
1604 goto out_unlock;
1605
1606 /* Skip synchronization if the clock is already in sync. */
1607 if (check_sync_clock())
1608 goto out_unlock;
1609
1610 memset(&stp_sync, 0, sizeof(stp_sync));
1611 get_online_cpus();
1612 atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
1613 stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask);
1614 put_online_cpus();
1615
1616 if (!check_sync_clock())
1617 /*
1618 * There is a usable clock but the synchonization failed.
1619 * Retry after a second.
1620 */
1621 mod_timer(&stp_timer, jiffies + HZ);
1622
1623out_unlock:
1624 mutex_unlock(&stp_work_mutex);
1625}
1626
1627/*
1628 * STP subsys sysfs interface functions
1629 */
1630static struct bus_type stp_subsys = {
1631 .name = "stp",
1632 .dev_name = "stp",
1633};
1634
1635static ssize_t stp_ctn_id_show(struct device *dev,
1636 struct device_attribute *attr,
1637 char *buf)
1638{
1639 if (!stp_online)
1640 return -ENODATA;
1641 return sprintf(buf, "%016llx\n",
1642 *(unsigned long long *) stp_info.ctnid);
1643}
1644
1645static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1646
1647static ssize_t stp_ctn_type_show(struct device *dev,
1648 struct device_attribute *attr,
1649 char *buf)
1650{
1651 if (!stp_online)
1652 return -ENODATA;
1653 return sprintf(buf, "%i\n", stp_info.ctn);
1654}
1655
1656static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1657
1658static ssize_t stp_dst_offset_show(struct device *dev,
1659 struct device_attribute *attr,
1660 char *buf)
1661{
1662 if (!stp_online || !(stp_info.vbits & 0x2000))
1663 return -ENODATA;
1664 return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1665}
1666
1667static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1668
1669static ssize_t stp_leap_seconds_show(struct device *dev,
1670 struct device_attribute *attr,
1671 char *buf)
1672{
1673 if (!stp_online || !(stp_info.vbits & 0x8000))
1674 return -ENODATA;
1675 return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1676}
1677
1678static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1679
1680static ssize_t stp_stratum_show(struct device *dev,
1681 struct device_attribute *attr,
1682 char *buf)
1683{
1684 if (!stp_online)
1685 return -ENODATA;
1686 return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1687}
1688
1689static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
1690
1691static ssize_t stp_time_offset_show(struct device *dev,
1692 struct device_attribute *attr,
1693 char *buf)
1694{
1695 if (!stp_online || !(stp_info.vbits & 0x0800))
1696 return -ENODATA;
1697 return sprintf(buf, "%i\n", (int) stp_info.tto);
1698}
1699
1700static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1701
1702static ssize_t stp_time_zone_offset_show(struct device *dev,
1703 struct device_attribute *attr,
1704 char *buf)
1705{
1706 if (!stp_online || !(stp_info.vbits & 0x4000))
1707 return -ENODATA;
1708 return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1709}
1710
1711static DEVICE_ATTR(time_zone_offset, 0400,
1712 stp_time_zone_offset_show, NULL);
1713
1714static ssize_t stp_timing_mode_show(struct device *dev,
1715 struct device_attribute *attr,
1716 char *buf)
1717{
1718 if (!stp_online)
1719 return -ENODATA;
1720 return sprintf(buf, "%i\n", stp_info.tmd);
1721}
1722
1723static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1724
1725static ssize_t stp_timing_state_show(struct device *dev,
1726 struct device_attribute *attr,
1727 char *buf)
1728{
1729 if (!stp_online)
1730 return -ENODATA;
1731 return sprintf(buf, "%i\n", stp_info.tst);
1732}
1733
1734static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1735
1736static ssize_t stp_online_show(struct device *dev,
1737 struct device_attribute *attr,
1738 char *buf)
1739{
1740 return sprintf(buf, "%i\n", stp_online);
1741}
1742
1743static ssize_t stp_online_store(struct device *dev,
1744 struct device_attribute *attr,
1745 const char *buf, size_t count)
1746{
1747 unsigned int value;
1748
1749 value = simple_strtoul(buf, NULL, 0);
1750 if (value != 0 && value != 1)
1751 return -EINVAL;
1752 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1753 return -EOPNOTSUPP;
1754 mutex_lock(&clock_sync_mutex);
1755 stp_online = value;
1756 if (stp_online)
1757 set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1758 else
1759 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1760 queue_work(time_sync_wq, &stp_work);
1761 mutex_unlock(&clock_sync_mutex);
1762 return count;
1763}
1764
1765/*
1766 * Can't use DEVICE_ATTR because the attribute should be named
1767 * stp/online but dev_attr_online already exists in this file ..
1768 */
1769static struct device_attribute dev_attr_stp_online = {
1770 .attr = { .name = "online", .mode = 0600 },
1771 .show = stp_online_show,
1772 .store = stp_online_store,
1773};
1774
1775static struct device_attribute *stp_attributes[] = {
1776 &dev_attr_ctn_id,
1777 &dev_attr_ctn_type,
1778 &dev_attr_dst_offset,
1779 &dev_attr_leap_seconds,
1780 &dev_attr_stp_online,
1781 &dev_attr_stratum,
1782 &dev_attr_time_offset,
1783 &dev_attr_time_zone_offset,
1784 &dev_attr_timing_mode,
1785 &dev_attr_timing_state,
1786 NULL
1787};
1788
1789static int __init stp_init_sysfs(void)
1790{
1791 struct device_attribute **attr;
1792 int rc;
1793
1794 rc = subsys_system_register(&stp_subsys, NULL);
1795 if (rc)
1796 goto out;
1797 for (attr = stp_attributes; *attr; attr++) {
1798 rc = device_create_file(stp_subsys.dev_root, *attr);
1799 if (rc)
1800 goto out_unreg;
1801 }
1802 return 0;
1803out_unreg:
1804 for (; attr >= stp_attributes; attr--)
1805 device_remove_file(stp_subsys.dev_root, *attr);
1806 bus_unregister(&stp_subsys);
1807out:
1808 return rc;
1809}
1810
1811device_initcall(stp_init_sysfs);