Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * General Purpose functions for the global management of the
4 * Communication Processor Module.
5 * Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
6 *
7 * In addition to the individual control of the communication
8 * channels, there are a few functions that globally affect the
9 * communication processor.
10 *
11 * Buffer descriptors must be allocated from the dual ported memory
12 * space. The allocator for that is here. When the communication
13 * process is reset, we reclaim the memory available. There is
14 * currently no deallocator for this memory.
15 * The amount of space available is platform dependent. On the
16 * MBX, the EPPC software loads additional microcode into the
17 * communication processor, and uses some of the DP ram for this
18 * purpose. Current, the first 512 bytes and the last 256 bytes of
19 * memory are used. Right now I am conservative and only use the
20 * memory that can never be used for microcode. If there are
21 * applications that require more DP ram, we can expand the boundaries
22 * but then we have to be careful of any downloaded microcode.
23 */
24#include <linux/errno.h>
25#include <linux/sched.h>
26#include <linux/kernel.h>
27#include <linux/dma-mapping.h>
28#include <linux/param.h>
29#include <linux/string.h>
30#include <linux/mm.h>
31#include <linux/interrupt.h>
32#include <linux/irq.h>
33#include <linux/module.h>
34#include <linux/spinlock.h>
35#include <linux/slab.h>
36#include <asm/page.h>
37#include <asm/pgtable.h>
38#include <asm/8xx_immap.h>
39#include <asm/cpm1.h>
40#include <asm/io.h>
41#include <asm/tlbflush.h>
42#include <asm/rheap.h>
43#include <asm/prom.h>
44#include <asm/cpm.h>
45
46#include <asm/fs_pd.h>
47
48#ifdef CONFIG_8xx_GPIO
49#include <linux/of_gpio.h>
50#endif
51
52#define CPM_MAP_SIZE (0x4000)
53
54cpm8xx_t __iomem *cpmp; /* Pointer to comm processor space */
55immap_t __iomem *mpc8xx_immr;
56static cpic8xx_t __iomem *cpic_reg;
57
58static struct irq_domain *cpm_pic_host;
59
60static void cpm_mask_irq(struct irq_data *d)
61{
62 unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
63
64 clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
65}
66
67static void cpm_unmask_irq(struct irq_data *d)
68{
69 unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
70
71 setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
72}
73
74static void cpm_end_irq(struct irq_data *d)
75{
76 unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
77
78 out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec));
79}
80
81static struct irq_chip cpm_pic = {
82 .name = "CPM PIC",
83 .irq_mask = cpm_mask_irq,
84 .irq_unmask = cpm_unmask_irq,
85 .irq_eoi = cpm_end_irq,
86};
87
88int cpm_get_irq(void)
89{
90 int cpm_vec;
91
92 /* Get the vector by setting the ACK bit and then reading
93 * the register.
94 */
95 out_be16(&cpic_reg->cpic_civr, 1);
96 cpm_vec = in_be16(&cpic_reg->cpic_civr);
97 cpm_vec >>= 11;
98
99 return irq_linear_revmap(cpm_pic_host, cpm_vec);
100}
101
102static int cpm_pic_host_map(struct irq_domain *h, unsigned int virq,
103 irq_hw_number_t hw)
104{
105 pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw);
106
107 irq_set_status_flags(virq, IRQ_LEVEL);
108 irq_set_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq);
109 return 0;
110}
111
112/* The CPM can generate the error interrupt when there is a race condition
113 * between generating and masking interrupts. All we have to do is ACK it
114 * and return. This is a no-op function so we don't need any special
115 * tests in the interrupt handler.
116 */
117static irqreturn_t cpm_error_interrupt(int irq, void *dev)
118{
119 return IRQ_HANDLED;
120}
121
122static struct irqaction cpm_error_irqaction = {
123 .handler = cpm_error_interrupt,
124 .flags = IRQF_NO_THREAD,
125 .name = "error",
126};
127
128static const struct irq_domain_ops cpm_pic_host_ops = {
129 .map = cpm_pic_host_map,
130};
131
132unsigned int cpm_pic_init(void)
133{
134 struct device_node *np = NULL;
135 struct resource res;
136 unsigned int sirq = 0, hwirq, eirq;
137 int ret;
138
139 pr_debug("cpm_pic_init\n");
140
141 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic");
142 if (np == NULL)
143 np = of_find_compatible_node(NULL, "cpm-pic", "CPM");
144 if (np == NULL) {
145 printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n");
146 return sirq;
147 }
148
149 ret = of_address_to_resource(np, 0, &res);
150 if (ret)
151 goto end;
152
153 cpic_reg = ioremap(res.start, resource_size(&res));
154 if (cpic_reg == NULL)
155 goto end;
156
157 sirq = irq_of_parse_and_map(np, 0);
158 if (!sirq)
159 goto end;
160
161 /* Initialize the CPM interrupt controller. */
162 hwirq = (unsigned int)virq_to_hw(sirq);
163 out_be32(&cpic_reg->cpic_cicr,
164 (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
165 ((hwirq/2) << 13) | CICR_HP_MASK);
166
167 out_be32(&cpic_reg->cpic_cimr, 0);
168
169 cpm_pic_host = irq_domain_add_linear(np, 64, &cpm_pic_host_ops, NULL);
170 if (cpm_pic_host == NULL) {
171 printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n");
172 sirq = 0;
173 goto end;
174 }
175
176 /* Install our own error handler. */
177 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1");
178 if (np == NULL)
179 np = of_find_node_by_type(NULL, "cpm");
180 if (np == NULL) {
181 printk(KERN_ERR "CPM PIC init: can not find cpm node\n");
182 goto end;
183 }
184
185 eirq = irq_of_parse_and_map(np, 0);
186 if (!eirq)
187 goto end;
188
189 if (setup_irq(eirq, &cpm_error_irqaction))
190 printk(KERN_ERR "Could not allocate CPM error IRQ!");
191
192 setbits32(&cpic_reg->cpic_cicr, CICR_IEN);
193
194end:
195 of_node_put(np);
196 return sirq;
197}
198
199void __init cpm_reset(void)
200{
201 sysconf8xx_t __iomem *siu_conf;
202
203 mpc8xx_immr = ioremap(get_immrbase(), 0x4000);
204 if (!mpc8xx_immr) {
205 printk(KERN_CRIT "Could not map IMMR\n");
206 return;
207 }
208
209 cpmp = &mpc8xx_immr->im_cpm;
210
211#ifndef CONFIG_PPC_EARLY_DEBUG_CPM
212 /* Perform a reset.
213 */
214 out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG);
215
216 /* Wait for it.
217 */
218 while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG);
219#endif
220
221#ifdef CONFIG_UCODE_PATCH
222 cpm_load_patch(cpmp);
223#endif
224
225 /* Set SDMA Bus Request priority 5.
226 * On 860T, this also enables FEC priority 6. I am not sure
227 * this is what we really want for some applications, but the
228 * manual recommends it.
229 * Bit 25, FAM can also be set to use FEC aggressive mode (860T).
230 */
231 siu_conf = immr_map(im_siu_conf);
232 if ((mfspr(SPRN_IMMR) & 0xffff) == 0x0900) /* MPC885 */
233 out_be32(&siu_conf->sc_sdcr, 0x40);
234 else
235 out_be32(&siu_conf->sc_sdcr, 1);
236 immr_unmap(siu_conf);
237}
238
239static DEFINE_SPINLOCK(cmd_lock);
240
241#define MAX_CR_CMD_LOOPS 10000
242
243int cpm_command(u32 command, u8 opcode)
244{
245 int i, ret;
246 unsigned long flags;
247
248 if (command & 0xffffff0f)
249 return -EINVAL;
250
251 spin_lock_irqsave(&cmd_lock, flags);
252
253 ret = 0;
254 out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8));
255 for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
256 if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
257 goto out;
258
259 printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
260 ret = -EIO;
261out:
262 spin_unlock_irqrestore(&cmd_lock, flags);
263 return ret;
264}
265EXPORT_SYMBOL(cpm_command);
266
267/* Set a baud rate generator. This needs lots of work. There are
268 * four BRGs, any of which can be wired to any channel.
269 * The internal baud rate clock is the system clock divided by 16.
270 * This assumes the baudrate is 16x oversampled by the uart.
271 */
272#define BRG_INT_CLK (get_brgfreq())
273#define BRG_UART_CLK (BRG_INT_CLK/16)
274#define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16)
275
276void
277cpm_setbrg(uint brg, uint rate)
278{
279 u32 __iomem *bp;
280
281 /* This is good enough to get SMCs running.....
282 */
283 bp = &cpmp->cp_brgc1;
284 bp += brg;
285 /* The BRG has a 12-bit counter. For really slow baud rates (or
286 * really fast processors), we may have to further divide by 16.
287 */
288 if (((BRG_UART_CLK / rate) - 1) < 4096)
289 out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
290 else
291 out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
292 CPM_BRG_EN | CPM_BRG_DIV16);
293}
294
295struct cpm_ioport16 {
296 __be16 dir, par, odr_sor, dat, intr;
297 __be16 res[3];
298};
299
300struct cpm_ioport32b {
301 __be32 dir, par, odr, dat;
302};
303
304struct cpm_ioport32e {
305 __be32 dir, par, sor, odr, dat;
306};
307
308static void cpm1_set_pin32(int port, int pin, int flags)
309{
310 struct cpm_ioport32e __iomem *iop;
311 pin = 1 << (31 - pin);
312
313 if (port == CPM_PORTB)
314 iop = (struct cpm_ioport32e __iomem *)
315 &mpc8xx_immr->im_cpm.cp_pbdir;
316 else
317 iop = (struct cpm_ioport32e __iomem *)
318 &mpc8xx_immr->im_cpm.cp_pedir;
319
320 if (flags & CPM_PIN_OUTPUT)
321 setbits32(&iop->dir, pin);
322 else
323 clrbits32(&iop->dir, pin);
324
325 if (!(flags & CPM_PIN_GPIO))
326 setbits32(&iop->par, pin);
327 else
328 clrbits32(&iop->par, pin);
329
330 if (port == CPM_PORTB) {
331 if (flags & CPM_PIN_OPENDRAIN)
332 setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
333 else
334 clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
335 }
336
337 if (port == CPM_PORTE) {
338 if (flags & CPM_PIN_SECONDARY)
339 setbits32(&iop->sor, pin);
340 else
341 clrbits32(&iop->sor, pin);
342
343 if (flags & CPM_PIN_OPENDRAIN)
344 setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
345 else
346 clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
347 }
348}
349
350static void cpm1_set_pin16(int port, int pin, int flags)
351{
352 struct cpm_ioport16 __iomem *iop =
353 (struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport;
354
355 pin = 1 << (15 - pin);
356
357 if (port != 0)
358 iop += port - 1;
359
360 if (flags & CPM_PIN_OUTPUT)
361 setbits16(&iop->dir, pin);
362 else
363 clrbits16(&iop->dir, pin);
364
365 if (!(flags & CPM_PIN_GPIO))
366 setbits16(&iop->par, pin);
367 else
368 clrbits16(&iop->par, pin);
369
370 if (port == CPM_PORTA) {
371 if (flags & CPM_PIN_OPENDRAIN)
372 setbits16(&iop->odr_sor, pin);
373 else
374 clrbits16(&iop->odr_sor, pin);
375 }
376 if (port == CPM_PORTC) {
377 if (flags & CPM_PIN_SECONDARY)
378 setbits16(&iop->odr_sor, pin);
379 else
380 clrbits16(&iop->odr_sor, pin);
381 if (flags & CPM_PIN_FALLEDGE)
382 setbits16(&iop->intr, pin);
383 else
384 clrbits16(&iop->intr, pin);
385 }
386}
387
388void cpm1_set_pin(enum cpm_port port, int pin, int flags)
389{
390 if (port == CPM_PORTB || port == CPM_PORTE)
391 cpm1_set_pin32(port, pin, flags);
392 else
393 cpm1_set_pin16(port, pin, flags);
394}
395
396int cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode)
397{
398 int shift;
399 int i, bits = 0;
400 u32 __iomem *reg;
401 u32 mask = 7;
402
403 u8 clk_map[][3] = {
404 {CPM_CLK_SCC1, CPM_BRG1, 0},
405 {CPM_CLK_SCC1, CPM_BRG2, 1},
406 {CPM_CLK_SCC1, CPM_BRG3, 2},
407 {CPM_CLK_SCC1, CPM_BRG4, 3},
408 {CPM_CLK_SCC1, CPM_CLK1, 4},
409 {CPM_CLK_SCC1, CPM_CLK2, 5},
410 {CPM_CLK_SCC1, CPM_CLK3, 6},
411 {CPM_CLK_SCC1, CPM_CLK4, 7},
412
413 {CPM_CLK_SCC2, CPM_BRG1, 0},
414 {CPM_CLK_SCC2, CPM_BRG2, 1},
415 {CPM_CLK_SCC2, CPM_BRG3, 2},
416 {CPM_CLK_SCC2, CPM_BRG4, 3},
417 {CPM_CLK_SCC2, CPM_CLK1, 4},
418 {CPM_CLK_SCC2, CPM_CLK2, 5},
419 {CPM_CLK_SCC2, CPM_CLK3, 6},
420 {CPM_CLK_SCC2, CPM_CLK4, 7},
421
422 {CPM_CLK_SCC3, CPM_BRG1, 0},
423 {CPM_CLK_SCC3, CPM_BRG2, 1},
424 {CPM_CLK_SCC3, CPM_BRG3, 2},
425 {CPM_CLK_SCC3, CPM_BRG4, 3},
426 {CPM_CLK_SCC3, CPM_CLK5, 4},
427 {CPM_CLK_SCC3, CPM_CLK6, 5},
428 {CPM_CLK_SCC3, CPM_CLK7, 6},
429 {CPM_CLK_SCC3, CPM_CLK8, 7},
430
431 {CPM_CLK_SCC4, CPM_BRG1, 0},
432 {CPM_CLK_SCC4, CPM_BRG2, 1},
433 {CPM_CLK_SCC4, CPM_BRG3, 2},
434 {CPM_CLK_SCC4, CPM_BRG4, 3},
435 {CPM_CLK_SCC4, CPM_CLK5, 4},
436 {CPM_CLK_SCC4, CPM_CLK6, 5},
437 {CPM_CLK_SCC4, CPM_CLK7, 6},
438 {CPM_CLK_SCC4, CPM_CLK8, 7},
439
440 {CPM_CLK_SMC1, CPM_BRG1, 0},
441 {CPM_CLK_SMC1, CPM_BRG2, 1},
442 {CPM_CLK_SMC1, CPM_BRG3, 2},
443 {CPM_CLK_SMC1, CPM_BRG4, 3},
444 {CPM_CLK_SMC1, CPM_CLK1, 4},
445 {CPM_CLK_SMC1, CPM_CLK2, 5},
446 {CPM_CLK_SMC1, CPM_CLK3, 6},
447 {CPM_CLK_SMC1, CPM_CLK4, 7},
448
449 {CPM_CLK_SMC2, CPM_BRG1, 0},
450 {CPM_CLK_SMC2, CPM_BRG2, 1},
451 {CPM_CLK_SMC2, CPM_BRG3, 2},
452 {CPM_CLK_SMC2, CPM_BRG4, 3},
453 {CPM_CLK_SMC2, CPM_CLK5, 4},
454 {CPM_CLK_SMC2, CPM_CLK6, 5},
455 {CPM_CLK_SMC2, CPM_CLK7, 6},
456 {CPM_CLK_SMC2, CPM_CLK8, 7},
457 };
458
459 switch (target) {
460 case CPM_CLK_SCC1:
461 reg = &mpc8xx_immr->im_cpm.cp_sicr;
462 shift = 0;
463 break;
464
465 case CPM_CLK_SCC2:
466 reg = &mpc8xx_immr->im_cpm.cp_sicr;
467 shift = 8;
468 break;
469
470 case CPM_CLK_SCC3:
471 reg = &mpc8xx_immr->im_cpm.cp_sicr;
472 shift = 16;
473 break;
474
475 case CPM_CLK_SCC4:
476 reg = &mpc8xx_immr->im_cpm.cp_sicr;
477 shift = 24;
478 break;
479
480 case CPM_CLK_SMC1:
481 reg = &mpc8xx_immr->im_cpm.cp_simode;
482 shift = 12;
483 break;
484
485 case CPM_CLK_SMC2:
486 reg = &mpc8xx_immr->im_cpm.cp_simode;
487 shift = 28;
488 break;
489
490 default:
491 printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n");
492 return -EINVAL;
493 }
494
495 for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
496 if (clk_map[i][0] == target && clk_map[i][1] == clock) {
497 bits = clk_map[i][2];
498 break;
499 }
500 }
501
502 if (i == ARRAY_SIZE(clk_map)) {
503 printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n");
504 return -EINVAL;
505 }
506
507 bits <<= shift;
508 mask <<= shift;
509
510 if (reg == &mpc8xx_immr->im_cpm.cp_sicr) {
511 if (mode == CPM_CLK_RTX) {
512 bits |= bits << 3;
513 mask |= mask << 3;
514 } else if (mode == CPM_CLK_RX) {
515 bits <<= 3;
516 mask <<= 3;
517 }
518 }
519
520 out_be32(reg, (in_be32(reg) & ~mask) | bits);
521
522 return 0;
523}
524
525/*
526 * GPIO LIB API implementation
527 */
528#ifdef CONFIG_8xx_GPIO
529
530struct cpm1_gpio16_chip {
531 struct of_mm_gpio_chip mm_gc;
532 spinlock_t lock;
533
534 /* shadowed data register to clear/set bits safely */
535 u16 cpdata;
536
537 /* IRQ associated with Pins when relevant */
538 int irq[16];
539};
540
541static void cpm1_gpio16_save_regs(struct of_mm_gpio_chip *mm_gc)
542{
543 struct cpm1_gpio16_chip *cpm1_gc =
544 container_of(mm_gc, struct cpm1_gpio16_chip, mm_gc);
545 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
546
547 cpm1_gc->cpdata = in_be16(&iop->dat);
548}
549
550static int cpm1_gpio16_get(struct gpio_chip *gc, unsigned int gpio)
551{
552 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
553 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
554 u16 pin_mask;
555
556 pin_mask = 1 << (15 - gpio);
557
558 return !!(in_be16(&iop->dat) & pin_mask);
559}
560
561static void __cpm1_gpio16_set(struct of_mm_gpio_chip *mm_gc, u16 pin_mask,
562 int value)
563{
564 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
565 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
566
567 if (value)
568 cpm1_gc->cpdata |= pin_mask;
569 else
570 cpm1_gc->cpdata &= ~pin_mask;
571
572 out_be16(&iop->dat, cpm1_gc->cpdata);
573}
574
575static void cpm1_gpio16_set(struct gpio_chip *gc, unsigned int gpio, int value)
576{
577 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
578 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
579 unsigned long flags;
580 u16 pin_mask = 1 << (15 - gpio);
581
582 spin_lock_irqsave(&cpm1_gc->lock, flags);
583
584 __cpm1_gpio16_set(mm_gc, pin_mask, value);
585
586 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
587}
588
589static int cpm1_gpio16_to_irq(struct gpio_chip *gc, unsigned int gpio)
590{
591 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
592 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
593
594 return cpm1_gc->irq[gpio] ? : -ENXIO;
595}
596
597static int cpm1_gpio16_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
598{
599 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
600 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
601 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
602 unsigned long flags;
603 u16 pin_mask = 1 << (15 - gpio);
604
605 spin_lock_irqsave(&cpm1_gc->lock, flags);
606
607 setbits16(&iop->dir, pin_mask);
608 __cpm1_gpio16_set(mm_gc, pin_mask, val);
609
610 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
611
612 return 0;
613}
614
615static int cpm1_gpio16_dir_in(struct gpio_chip *gc, unsigned int gpio)
616{
617 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
618 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
619 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
620 unsigned long flags;
621 u16 pin_mask = 1 << (15 - gpio);
622
623 spin_lock_irqsave(&cpm1_gc->lock, flags);
624
625 clrbits16(&iop->dir, pin_mask);
626
627 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
628
629 return 0;
630}
631
632int cpm1_gpiochip_add16(struct device *dev)
633{
634 struct device_node *np = dev->of_node;
635 struct cpm1_gpio16_chip *cpm1_gc;
636 struct of_mm_gpio_chip *mm_gc;
637 struct gpio_chip *gc;
638 u16 mask;
639
640 cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
641 if (!cpm1_gc)
642 return -ENOMEM;
643
644 spin_lock_init(&cpm1_gc->lock);
645
646 if (!of_property_read_u16(np, "fsl,cpm1-gpio-irq-mask", &mask)) {
647 int i, j;
648
649 for (i = 0, j = 0; i < 16; i++)
650 if (mask & (1 << (15 - i)))
651 cpm1_gc->irq[i] = irq_of_parse_and_map(np, j++);
652 }
653
654 mm_gc = &cpm1_gc->mm_gc;
655 gc = &mm_gc->gc;
656
657 mm_gc->save_regs = cpm1_gpio16_save_regs;
658 gc->ngpio = 16;
659 gc->direction_input = cpm1_gpio16_dir_in;
660 gc->direction_output = cpm1_gpio16_dir_out;
661 gc->get = cpm1_gpio16_get;
662 gc->set = cpm1_gpio16_set;
663 gc->to_irq = cpm1_gpio16_to_irq;
664 gc->parent = dev;
665 gc->owner = THIS_MODULE;
666
667 return of_mm_gpiochip_add_data(np, mm_gc, cpm1_gc);
668}
669
670struct cpm1_gpio32_chip {
671 struct of_mm_gpio_chip mm_gc;
672 spinlock_t lock;
673
674 /* shadowed data register to clear/set bits safely */
675 u32 cpdata;
676};
677
678static void cpm1_gpio32_save_regs(struct of_mm_gpio_chip *mm_gc)
679{
680 struct cpm1_gpio32_chip *cpm1_gc =
681 container_of(mm_gc, struct cpm1_gpio32_chip, mm_gc);
682 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
683
684 cpm1_gc->cpdata = in_be32(&iop->dat);
685}
686
687static int cpm1_gpio32_get(struct gpio_chip *gc, unsigned int gpio)
688{
689 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
690 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
691 u32 pin_mask;
692
693 pin_mask = 1 << (31 - gpio);
694
695 return !!(in_be32(&iop->dat) & pin_mask);
696}
697
698static void __cpm1_gpio32_set(struct of_mm_gpio_chip *mm_gc, u32 pin_mask,
699 int value)
700{
701 struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
702 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
703
704 if (value)
705 cpm1_gc->cpdata |= pin_mask;
706 else
707 cpm1_gc->cpdata &= ~pin_mask;
708
709 out_be32(&iop->dat, cpm1_gc->cpdata);
710}
711
712static void cpm1_gpio32_set(struct gpio_chip *gc, unsigned int gpio, int value)
713{
714 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
715 struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
716 unsigned long flags;
717 u32 pin_mask = 1 << (31 - gpio);
718
719 spin_lock_irqsave(&cpm1_gc->lock, flags);
720
721 __cpm1_gpio32_set(mm_gc, pin_mask, value);
722
723 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
724}
725
726static int cpm1_gpio32_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
727{
728 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
729 struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
730 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
731 unsigned long flags;
732 u32 pin_mask = 1 << (31 - gpio);
733
734 spin_lock_irqsave(&cpm1_gc->lock, flags);
735
736 setbits32(&iop->dir, pin_mask);
737 __cpm1_gpio32_set(mm_gc, pin_mask, val);
738
739 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
740
741 return 0;
742}
743
744static int cpm1_gpio32_dir_in(struct gpio_chip *gc, unsigned int gpio)
745{
746 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
747 struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
748 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
749 unsigned long flags;
750 u32 pin_mask = 1 << (31 - gpio);
751
752 spin_lock_irqsave(&cpm1_gc->lock, flags);
753
754 clrbits32(&iop->dir, pin_mask);
755
756 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
757
758 return 0;
759}
760
761int cpm1_gpiochip_add32(struct device *dev)
762{
763 struct device_node *np = dev->of_node;
764 struct cpm1_gpio32_chip *cpm1_gc;
765 struct of_mm_gpio_chip *mm_gc;
766 struct gpio_chip *gc;
767
768 cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
769 if (!cpm1_gc)
770 return -ENOMEM;
771
772 spin_lock_init(&cpm1_gc->lock);
773
774 mm_gc = &cpm1_gc->mm_gc;
775 gc = &mm_gc->gc;
776
777 mm_gc->save_regs = cpm1_gpio32_save_regs;
778 gc->ngpio = 32;
779 gc->direction_input = cpm1_gpio32_dir_in;
780 gc->direction_output = cpm1_gpio32_dir_out;
781 gc->get = cpm1_gpio32_get;
782 gc->set = cpm1_gpio32_set;
783 gc->parent = dev;
784 gc->owner = THIS_MODULE;
785
786 return of_mm_gpiochip_add_data(np, mm_gc, cpm1_gc);
787}
788
789#endif /* CONFIG_8xx_GPIO */
1/*
2 * General Purpose functions for the global management of the
3 * Communication Processor Module.
4 * Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
5 *
6 * In addition to the individual control of the communication
7 * channels, there are a few functions that globally affect the
8 * communication processor.
9 *
10 * Buffer descriptors must be allocated from the dual ported memory
11 * space. The allocator for that is here. When the communication
12 * process is reset, we reclaim the memory available. There is
13 * currently no deallocator for this memory.
14 * The amount of space available is platform dependent. On the
15 * MBX, the EPPC software loads additional microcode into the
16 * communication processor, and uses some of the DP ram for this
17 * purpose. Current, the first 512 bytes and the last 256 bytes of
18 * memory are used. Right now I am conservative and only use the
19 * memory that can never be used for microcode. If there are
20 * applications that require more DP ram, we can expand the boundaries
21 * but then we have to be careful of any downloaded microcode.
22 */
23#include <linux/errno.h>
24#include <linux/sched.h>
25#include <linux/kernel.h>
26#include <linux/dma-mapping.h>
27#include <linux/param.h>
28#include <linux/string.h>
29#include <linux/mm.h>
30#include <linux/interrupt.h>
31#include <linux/irq.h>
32#include <linux/module.h>
33#include <linux/spinlock.h>
34#include <linux/slab.h>
35#include <asm/page.h>
36#include <asm/pgtable.h>
37#include <asm/8xx_immap.h>
38#include <asm/cpm1.h>
39#include <asm/io.h>
40#include <asm/tlbflush.h>
41#include <asm/rheap.h>
42#include <asm/prom.h>
43#include <asm/cpm.h>
44
45#include <asm/fs_pd.h>
46
47#ifdef CONFIG_8xx_GPIO
48#include <linux/of_gpio.h>
49#endif
50
51#define CPM_MAP_SIZE (0x4000)
52
53cpm8xx_t __iomem *cpmp; /* Pointer to comm processor space */
54immap_t __iomem *mpc8xx_immr;
55static cpic8xx_t __iomem *cpic_reg;
56
57static struct irq_domain *cpm_pic_host;
58
59static void cpm_mask_irq(struct irq_data *d)
60{
61 unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
62
63 clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
64}
65
66static void cpm_unmask_irq(struct irq_data *d)
67{
68 unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
69
70 setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
71}
72
73static void cpm_end_irq(struct irq_data *d)
74{
75 unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
76
77 out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec));
78}
79
80static struct irq_chip cpm_pic = {
81 .name = "CPM PIC",
82 .irq_mask = cpm_mask_irq,
83 .irq_unmask = cpm_unmask_irq,
84 .irq_eoi = cpm_end_irq,
85};
86
87int cpm_get_irq(void)
88{
89 int cpm_vec;
90
91 /* Get the vector by setting the ACK bit and then reading
92 * the register.
93 */
94 out_be16(&cpic_reg->cpic_civr, 1);
95 cpm_vec = in_be16(&cpic_reg->cpic_civr);
96 cpm_vec >>= 11;
97
98 return irq_linear_revmap(cpm_pic_host, cpm_vec);
99}
100
101static int cpm_pic_host_map(struct irq_domain *h, unsigned int virq,
102 irq_hw_number_t hw)
103{
104 pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw);
105
106 irq_set_status_flags(virq, IRQ_LEVEL);
107 irq_set_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq);
108 return 0;
109}
110
111/* The CPM can generate the error interrupt when there is a race condition
112 * between generating and masking interrupts. All we have to do is ACK it
113 * and return. This is a no-op function so we don't need any special
114 * tests in the interrupt handler.
115 */
116static irqreturn_t cpm_error_interrupt(int irq, void *dev)
117{
118 return IRQ_HANDLED;
119}
120
121static struct irqaction cpm_error_irqaction = {
122 .handler = cpm_error_interrupt,
123 .flags = IRQF_NO_THREAD,
124 .name = "error",
125};
126
127static const struct irq_domain_ops cpm_pic_host_ops = {
128 .map = cpm_pic_host_map,
129};
130
131unsigned int cpm_pic_init(void)
132{
133 struct device_node *np = NULL;
134 struct resource res;
135 unsigned int sirq = NO_IRQ, hwirq, eirq;
136 int ret;
137
138 pr_debug("cpm_pic_init\n");
139
140 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic");
141 if (np == NULL)
142 np = of_find_compatible_node(NULL, "cpm-pic", "CPM");
143 if (np == NULL) {
144 printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n");
145 return sirq;
146 }
147
148 ret = of_address_to_resource(np, 0, &res);
149 if (ret)
150 goto end;
151
152 cpic_reg = ioremap(res.start, resource_size(&res));
153 if (cpic_reg == NULL)
154 goto end;
155
156 sirq = irq_of_parse_and_map(np, 0);
157 if (sirq == NO_IRQ)
158 goto end;
159
160 /* Initialize the CPM interrupt controller. */
161 hwirq = (unsigned int)virq_to_hw(sirq);
162 out_be32(&cpic_reg->cpic_cicr,
163 (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
164 ((hwirq/2) << 13) | CICR_HP_MASK);
165
166 out_be32(&cpic_reg->cpic_cimr, 0);
167
168 cpm_pic_host = irq_domain_add_linear(np, 64, &cpm_pic_host_ops, NULL);
169 if (cpm_pic_host == NULL) {
170 printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n");
171 sirq = NO_IRQ;
172 goto end;
173 }
174
175 /* Install our own error handler. */
176 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1");
177 if (np == NULL)
178 np = of_find_node_by_type(NULL, "cpm");
179 if (np == NULL) {
180 printk(KERN_ERR "CPM PIC init: can not find cpm node\n");
181 goto end;
182 }
183
184 eirq = irq_of_parse_and_map(np, 0);
185 if (eirq == NO_IRQ)
186 goto end;
187
188 if (setup_irq(eirq, &cpm_error_irqaction))
189 printk(KERN_ERR "Could not allocate CPM error IRQ!");
190
191 setbits32(&cpic_reg->cpic_cicr, CICR_IEN);
192
193end:
194 of_node_put(np);
195 return sirq;
196}
197
198void __init cpm_reset(void)
199{
200 sysconf8xx_t __iomem *siu_conf;
201
202 mpc8xx_immr = ioremap(get_immrbase(), 0x4000);
203 if (!mpc8xx_immr) {
204 printk(KERN_CRIT "Could not map IMMR\n");
205 return;
206 }
207
208 cpmp = &mpc8xx_immr->im_cpm;
209
210#ifndef CONFIG_PPC_EARLY_DEBUG_CPM
211 /* Perform a reset.
212 */
213 out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG);
214
215 /* Wait for it.
216 */
217 while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG);
218#endif
219
220#ifdef CONFIG_UCODE_PATCH
221 cpm_load_patch(cpmp);
222#endif
223
224 /* Set SDMA Bus Request priority 5.
225 * On 860T, this also enables FEC priority 6. I am not sure
226 * this is what we really want for some applications, but the
227 * manual recommends it.
228 * Bit 25, FAM can also be set to use FEC aggressive mode (860T).
229 */
230 siu_conf = immr_map(im_siu_conf);
231 if ((mfspr(SPRN_IMMR) & 0xffff) == 0x0900) /* MPC885 */
232 out_be32(&siu_conf->sc_sdcr, 0x40);
233 else
234 out_be32(&siu_conf->sc_sdcr, 1);
235 immr_unmap(siu_conf);
236
237 cpm_muram_init();
238}
239
240static DEFINE_SPINLOCK(cmd_lock);
241
242#define MAX_CR_CMD_LOOPS 10000
243
244int cpm_command(u32 command, u8 opcode)
245{
246 int i, ret;
247 unsigned long flags;
248
249 if (command & 0xffffff0f)
250 return -EINVAL;
251
252 spin_lock_irqsave(&cmd_lock, flags);
253
254 ret = 0;
255 out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8));
256 for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
257 if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
258 goto out;
259
260 printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
261 ret = -EIO;
262out:
263 spin_unlock_irqrestore(&cmd_lock, flags);
264 return ret;
265}
266EXPORT_SYMBOL(cpm_command);
267
268/* Set a baud rate generator. This needs lots of work. There are
269 * four BRGs, any of which can be wired to any channel.
270 * The internal baud rate clock is the system clock divided by 16.
271 * This assumes the baudrate is 16x oversampled by the uart.
272 */
273#define BRG_INT_CLK (get_brgfreq())
274#define BRG_UART_CLK (BRG_INT_CLK/16)
275#define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16)
276
277void
278cpm_setbrg(uint brg, uint rate)
279{
280 u32 __iomem *bp;
281
282 /* This is good enough to get SMCs running.....
283 */
284 bp = &cpmp->cp_brgc1;
285 bp += brg;
286 /* The BRG has a 12-bit counter. For really slow baud rates (or
287 * really fast processors), we may have to further divide by 16.
288 */
289 if (((BRG_UART_CLK / rate) - 1) < 4096)
290 out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
291 else
292 out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
293 CPM_BRG_EN | CPM_BRG_DIV16);
294}
295
296struct cpm_ioport16 {
297 __be16 dir, par, odr_sor, dat, intr;
298 __be16 res[3];
299};
300
301struct cpm_ioport32b {
302 __be32 dir, par, odr, dat;
303};
304
305struct cpm_ioport32e {
306 __be32 dir, par, sor, odr, dat;
307};
308
309static void cpm1_set_pin32(int port, int pin, int flags)
310{
311 struct cpm_ioport32e __iomem *iop;
312 pin = 1 << (31 - pin);
313
314 if (port == CPM_PORTB)
315 iop = (struct cpm_ioport32e __iomem *)
316 &mpc8xx_immr->im_cpm.cp_pbdir;
317 else
318 iop = (struct cpm_ioport32e __iomem *)
319 &mpc8xx_immr->im_cpm.cp_pedir;
320
321 if (flags & CPM_PIN_OUTPUT)
322 setbits32(&iop->dir, pin);
323 else
324 clrbits32(&iop->dir, pin);
325
326 if (!(flags & CPM_PIN_GPIO))
327 setbits32(&iop->par, pin);
328 else
329 clrbits32(&iop->par, pin);
330
331 if (port == CPM_PORTB) {
332 if (flags & CPM_PIN_OPENDRAIN)
333 setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
334 else
335 clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
336 }
337
338 if (port == CPM_PORTE) {
339 if (flags & CPM_PIN_SECONDARY)
340 setbits32(&iop->sor, pin);
341 else
342 clrbits32(&iop->sor, pin);
343
344 if (flags & CPM_PIN_OPENDRAIN)
345 setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
346 else
347 clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
348 }
349}
350
351static void cpm1_set_pin16(int port, int pin, int flags)
352{
353 struct cpm_ioport16 __iomem *iop =
354 (struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport;
355
356 pin = 1 << (15 - pin);
357
358 if (port != 0)
359 iop += port - 1;
360
361 if (flags & CPM_PIN_OUTPUT)
362 setbits16(&iop->dir, pin);
363 else
364 clrbits16(&iop->dir, pin);
365
366 if (!(flags & CPM_PIN_GPIO))
367 setbits16(&iop->par, pin);
368 else
369 clrbits16(&iop->par, pin);
370
371 if (port == CPM_PORTA) {
372 if (flags & CPM_PIN_OPENDRAIN)
373 setbits16(&iop->odr_sor, pin);
374 else
375 clrbits16(&iop->odr_sor, pin);
376 }
377 if (port == CPM_PORTC) {
378 if (flags & CPM_PIN_SECONDARY)
379 setbits16(&iop->odr_sor, pin);
380 else
381 clrbits16(&iop->odr_sor, pin);
382 }
383}
384
385void cpm1_set_pin(enum cpm_port port, int pin, int flags)
386{
387 if (port == CPM_PORTB || port == CPM_PORTE)
388 cpm1_set_pin32(port, pin, flags);
389 else
390 cpm1_set_pin16(port, pin, flags);
391}
392
393int cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode)
394{
395 int shift;
396 int i, bits = 0;
397 u32 __iomem *reg;
398 u32 mask = 7;
399
400 u8 clk_map[][3] = {
401 {CPM_CLK_SCC1, CPM_BRG1, 0},
402 {CPM_CLK_SCC1, CPM_BRG2, 1},
403 {CPM_CLK_SCC1, CPM_BRG3, 2},
404 {CPM_CLK_SCC1, CPM_BRG4, 3},
405 {CPM_CLK_SCC1, CPM_CLK1, 4},
406 {CPM_CLK_SCC1, CPM_CLK2, 5},
407 {CPM_CLK_SCC1, CPM_CLK3, 6},
408 {CPM_CLK_SCC1, CPM_CLK4, 7},
409
410 {CPM_CLK_SCC2, CPM_BRG1, 0},
411 {CPM_CLK_SCC2, CPM_BRG2, 1},
412 {CPM_CLK_SCC2, CPM_BRG3, 2},
413 {CPM_CLK_SCC2, CPM_BRG4, 3},
414 {CPM_CLK_SCC2, CPM_CLK1, 4},
415 {CPM_CLK_SCC2, CPM_CLK2, 5},
416 {CPM_CLK_SCC2, CPM_CLK3, 6},
417 {CPM_CLK_SCC2, CPM_CLK4, 7},
418
419 {CPM_CLK_SCC3, CPM_BRG1, 0},
420 {CPM_CLK_SCC3, CPM_BRG2, 1},
421 {CPM_CLK_SCC3, CPM_BRG3, 2},
422 {CPM_CLK_SCC3, CPM_BRG4, 3},
423 {CPM_CLK_SCC3, CPM_CLK5, 4},
424 {CPM_CLK_SCC3, CPM_CLK6, 5},
425 {CPM_CLK_SCC3, CPM_CLK7, 6},
426 {CPM_CLK_SCC3, CPM_CLK8, 7},
427
428 {CPM_CLK_SCC4, CPM_BRG1, 0},
429 {CPM_CLK_SCC4, CPM_BRG2, 1},
430 {CPM_CLK_SCC4, CPM_BRG3, 2},
431 {CPM_CLK_SCC4, CPM_BRG4, 3},
432 {CPM_CLK_SCC4, CPM_CLK5, 4},
433 {CPM_CLK_SCC4, CPM_CLK6, 5},
434 {CPM_CLK_SCC4, CPM_CLK7, 6},
435 {CPM_CLK_SCC4, CPM_CLK8, 7},
436
437 {CPM_CLK_SMC1, CPM_BRG1, 0},
438 {CPM_CLK_SMC1, CPM_BRG2, 1},
439 {CPM_CLK_SMC1, CPM_BRG3, 2},
440 {CPM_CLK_SMC1, CPM_BRG4, 3},
441 {CPM_CLK_SMC1, CPM_CLK1, 4},
442 {CPM_CLK_SMC1, CPM_CLK2, 5},
443 {CPM_CLK_SMC1, CPM_CLK3, 6},
444 {CPM_CLK_SMC1, CPM_CLK4, 7},
445
446 {CPM_CLK_SMC2, CPM_BRG1, 0},
447 {CPM_CLK_SMC2, CPM_BRG2, 1},
448 {CPM_CLK_SMC2, CPM_BRG3, 2},
449 {CPM_CLK_SMC2, CPM_BRG4, 3},
450 {CPM_CLK_SMC2, CPM_CLK5, 4},
451 {CPM_CLK_SMC2, CPM_CLK6, 5},
452 {CPM_CLK_SMC2, CPM_CLK7, 6},
453 {CPM_CLK_SMC2, CPM_CLK8, 7},
454 };
455
456 switch (target) {
457 case CPM_CLK_SCC1:
458 reg = &mpc8xx_immr->im_cpm.cp_sicr;
459 shift = 0;
460 break;
461
462 case CPM_CLK_SCC2:
463 reg = &mpc8xx_immr->im_cpm.cp_sicr;
464 shift = 8;
465 break;
466
467 case CPM_CLK_SCC3:
468 reg = &mpc8xx_immr->im_cpm.cp_sicr;
469 shift = 16;
470 break;
471
472 case CPM_CLK_SCC4:
473 reg = &mpc8xx_immr->im_cpm.cp_sicr;
474 shift = 24;
475 break;
476
477 case CPM_CLK_SMC1:
478 reg = &mpc8xx_immr->im_cpm.cp_simode;
479 shift = 12;
480 break;
481
482 case CPM_CLK_SMC2:
483 reg = &mpc8xx_immr->im_cpm.cp_simode;
484 shift = 28;
485 break;
486
487 default:
488 printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n");
489 return -EINVAL;
490 }
491
492 for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
493 if (clk_map[i][0] == target && clk_map[i][1] == clock) {
494 bits = clk_map[i][2];
495 break;
496 }
497 }
498
499 if (i == ARRAY_SIZE(clk_map)) {
500 printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n");
501 return -EINVAL;
502 }
503
504 bits <<= shift;
505 mask <<= shift;
506
507 if (reg == &mpc8xx_immr->im_cpm.cp_sicr) {
508 if (mode == CPM_CLK_RTX) {
509 bits |= bits << 3;
510 mask |= mask << 3;
511 } else if (mode == CPM_CLK_RX) {
512 bits <<= 3;
513 mask <<= 3;
514 }
515 }
516
517 out_be32(reg, (in_be32(reg) & ~mask) | bits);
518
519 return 0;
520}
521
522/*
523 * GPIO LIB API implementation
524 */
525#ifdef CONFIG_8xx_GPIO
526
527struct cpm1_gpio16_chip {
528 struct of_mm_gpio_chip mm_gc;
529 spinlock_t lock;
530
531 /* shadowed data register to clear/set bits safely */
532 u16 cpdata;
533};
534
535static inline struct cpm1_gpio16_chip *
536to_cpm1_gpio16_chip(struct of_mm_gpio_chip *mm_gc)
537{
538 return container_of(mm_gc, struct cpm1_gpio16_chip, mm_gc);
539}
540
541static void cpm1_gpio16_save_regs(struct of_mm_gpio_chip *mm_gc)
542{
543 struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
544 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
545
546 cpm1_gc->cpdata = in_be16(&iop->dat);
547}
548
549static int cpm1_gpio16_get(struct gpio_chip *gc, unsigned int gpio)
550{
551 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
552 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
553 u16 pin_mask;
554
555 pin_mask = 1 << (15 - gpio);
556
557 return !!(in_be16(&iop->dat) & pin_mask);
558}
559
560static void __cpm1_gpio16_set(struct of_mm_gpio_chip *mm_gc, u16 pin_mask,
561 int value)
562{
563 struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
564 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
565
566 if (value)
567 cpm1_gc->cpdata |= pin_mask;
568 else
569 cpm1_gc->cpdata &= ~pin_mask;
570
571 out_be16(&iop->dat, cpm1_gc->cpdata);
572}
573
574static void cpm1_gpio16_set(struct gpio_chip *gc, unsigned int gpio, int value)
575{
576 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
577 struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
578 unsigned long flags;
579 u16 pin_mask = 1 << (15 - gpio);
580
581 spin_lock_irqsave(&cpm1_gc->lock, flags);
582
583 __cpm1_gpio16_set(mm_gc, pin_mask, value);
584
585 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
586}
587
588static int cpm1_gpio16_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
589{
590 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
591 struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
592 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
593 unsigned long flags;
594 u16 pin_mask = 1 << (15 - gpio);
595
596 spin_lock_irqsave(&cpm1_gc->lock, flags);
597
598 setbits16(&iop->dir, pin_mask);
599 __cpm1_gpio16_set(mm_gc, pin_mask, val);
600
601 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
602
603 return 0;
604}
605
606static int cpm1_gpio16_dir_in(struct gpio_chip *gc, unsigned int gpio)
607{
608 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
609 struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
610 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
611 unsigned long flags;
612 u16 pin_mask = 1 << (15 - gpio);
613
614 spin_lock_irqsave(&cpm1_gc->lock, flags);
615
616 clrbits16(&iop->dir, pin_mask);
617
618 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
619
620 return 0;
621}
622
623int cpm1_gpiochip_add16(struct device_node *np)
624{
625 struct cpm1_gpio16_chip *cpm1_gc;
626 struct of_mm_gpio_chip *mm_gc;
627 struct gpio_chip *gc;
628
629 cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
630 if (!cpm1_gc)
631 return -ENOMEM;
632
633 spin_lock_init(&cpm1_gc->lock);
634
635 mm_gc = &cpm1_gc->mm_gc;
636 gc = &mm_gc->gc;
637
638 mm_gc->save_regs = cpm1_gpio16_save_regs;
639 gc->ngpio = 16;
640 gc->direction_input = cpm1_gpio16_dir_in;
641 gc->direction_output = cpm1_gpio16_dir_out;
642 gc->get = cpm1_gpio16_get;
643 gc->set = cpm1_gpio16_set;
644
645 return of_mm_gpiochip_add(np, mm_gc);
646}
647
648struct cpm1_gpio32_chip {
649 struct of_mm_gpio_chip mm_gc;
650 spinlock_t lock;
651
652 /* shadowed data register to clear/set bits safely */
653 u32 cpdata;
654};
655
656static inline struct cpm1_gpio32_chip *
657to_cpm1_gpio32_chip(struct of_mm_gpio_chip *mm_gc)
658{
659 return container_of(mm_gc, struct cpm1_gpio32_chip, mm_gc);
660}
661
662static void cpm1_gpio32_save_regs(struct of_mm_gpio_chip *mm_gc)
663{
664 struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
665 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
666
667 cpm1_gc->cpdata = in_be32(&iop->dat);
668}
669
670static int cpm1_gpio32_get(struct gpio_chip *gc, unsigned int gpio)
671{
672 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
673 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
674 u32 pin_mask;
675
676 pin_mask = 1 << (31 - gpio);
677
678 return !!(in_be32(&iop->dat) & pin_mask);
679}
680
681static void __cpm1_gpio32_set(struct of_mm_gpio_chip *mm_gc, u32 pin_mask,
682 int value)
683{
684 struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
685 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
686
687 if (value)
688 cpm1_gc->cpdata |= pin_mask;
689 else
690 cpm1_gc->cpdata &= ~pin_mask;
691
692 out_be32(&iop->dat, cpm1_gc->cpdata);
693}
694
695static void cpm1_gpio32_set(struct gpio_chip *gc, unsigned int gpio, int value)
696{
697 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
698 struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
699 unsigned long flags;
700 u32 pin_mask = 1 << (31 - gpio);
701
702 spin_lock_irqsave(&cpm1_gc->lock, flags);
703
704 __cpm1_gpio32_set(mm_gc, pin_mask, value);
705
706 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
707}
708
709static int cpm1_gpio32_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
710{
711 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
712 struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
713 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
714 unsigned long flags;
715 u32 pin_mask = 1 << (31 - gpio);
716
717 spin_lock_irqsave(&cpm1_gc->lock, flags);
718
719 setbits32(&iop->dir, pin_mask);
720 __cpm1_gpio32_set(mm_gc, pin_mask, val);
721
722 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
723
724 return 0;
725}
726
727static int cpm1_gpio32_dir_in(struct gpio_chip *gc, unsigned int gpio)
728{
729 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
730 struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
731 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
732 unsigned long flags;
733 u32 pin_mask = 1 << (31 - gpio);
734
735 spin_lock_irqsave(&cpm1_gc->lock, flags);
736
737 clrbits32(&iop->dir, pin_mask);
738
739 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
740
741 return 0;
742}
743
744int cpm1_gpiochip_add32(struct device_node *np)
745{
746 struct cpm1_gpio32_chip *cpm1_gc;
747 struct of_mm_gpio_chip *mm_gc;
748 struct gpio_chip *gc;
749
750 cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
751 if (!cpm1_gc)
752 return -ENOMEM;
753
754 spin_lock_init(&cpm1_gc->lock);
755
756 mm_gc = &cpm1_gc->mm_gc;
757 gc = &mm_gc->gc;
758
759 mm_gc->save_regs = cpm1_gpio32_save_regs;
760 gc->ngpio = 32;
761 gc->direction_input = cpm1_gpio32_dir_in;
762 gc->direction_output = cpm1_gpio32_dir_out;
763 gc->get = cpm1_gpio32_get;
764 gc->set = cpm1_gpio32_set;
765
766 return of_mm_gpiochip_add(np, mm_gc);
767}
768
769static int cpm_init_par_io(void)
770{
771 struct device_node *np;
772
773 for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-a")
774 cpm1_gpiochip_add16(np);
775
776 for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-b")
777 cpm1_gpiochip_add32(np);
778
779 for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-c")
780 cpm1_gpiochip_add16(np);
781
782 for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-d")
783 cpm1_gpiochip_add16(np);
784
785 /* Port E uses CPM2 layout */
786 for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-e")
787 cpm2_gpiochip_add32(np);
788 return 0;
789}
790arch_initcall(cpm_init_par_io);
791
792#endif /* CONFIG_8xx_GPIO */