Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 03, 04 by Ralf Baechle
  7 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
  8 * Copyright (C) 2007  Maciej W. Rozycki
  9 * Copyright (C) 2014, Imagination Technologies Ltd.
 10 */
 11#ifndef _ASM_UACCESS_H
 12#define _ASM_UACCESS_H
 13
 14#include <linux/kernel.h>
 15#include <linux/string.h>
 
 16#include <asm/asm-eva.h>
 17#include <asm/extable.h>
 18
 19/*
 20 * The fs value determines whether argument validity checking should be
 21 * performed or not.  If get_fs() == USER_DS, checking is performed, with
 22 * get_fs() == KERNEL_DS, checking is bypassed.
 23 *
 24 * For historical reasons, these macros are grossly misnamed.
 25 */
 26#ifdef CONFIG_32BIT
 27
 28#ifdef CONFIG_KVM_GUEST
 29#define __UA_LIMIT 0x40000000UL
 30#else
 31#define __UA_LIMIT 0x80000000UL
 32#endif
 33
 34#define __UA_ADDR	".word"
 35#define __UA_LA		"la"
 36#define __UA_ADDU	"addu"
 37#define __UA_t0		"$8"
 38#define __UA_t1		"$9"
 39
 40#endif /* CONFIG_32BIT */
 41
 42#ifdef CONFIG_64BIT
 43
 44extern u64 __ua_limit;
 45
 46#define __UA_LIMIT	__ua_limit
 47
 48#define __UA_ADDR	".dword"
 49#define __UA_LA		"dla"
 50#define __UA_ADDU	"daddu"
 51#define __UA_t0		"$12"
 52#define __UA_t1		"$13"
 53
 54#endif /* CONFIG_64BIT */
 55
 56/*
 57 * USER_DS is a bitmask that has the bits set that may not be set in a valid
 58 * userspace address.  Note that we limit 32-bit userspace to 0x7fff8000 but
 59 * the arithmetic we're doing only works if the limit is a power of two, so
 60 * we use 0x80000000 here on 32-bit kernels.  If a process passes an invalid
 61 * address in this range it's the process's problem, not ours :-)
 62 */
 63
 64#ifdef CONFIG_KVM_GUEST
 65#define KERNEL_DS	((mm_segment_t) { 0x80000000UL })
 66#define USER_DS		((mm_segment_t) { 0xC0000000UL })
 67#else
 68#define KERNEL_DS	((mm_segment_t) { 0UL })
 69#define USER_DS		((mm_segment_t) { __UA_LIMIT })
 70#endif
 71
 
 
 
 72#define get_ds()	(KERNEL_DS)
 73#define get_fs()	(current_thread_info()->addr_limit)
 74#define set_fs(x)	(current_thread_info()->addr_limit = (x))
 75
 76#define segment_eq(a, b)	((a).seg == (b).seg)
 77
 78/*
 79 * eva_kernel_access() - determine whether kernel memory access on an EVA system
 80 *
 81 * Determines whether memory accesses should be performed to kernel memory
 82 * on a system using Extended Virtual Addressing (EVA).
 83 *
 84 * Return: true if a kernel memory access on an EVA system, else false.
 85 */
 86static inline bool eva_kernel_access(void)
 87{
 88	if (!IS_ENABLED(CONFIG_EVA))
 89		return false;
 90
 91	return uaccess_kernel();
 92}
 93
 94/*
 95 * Is a address valid? This does a straightforward calculation rather
 96 * than tests.
 97 *
 98 * Address valid if:
 99 *  - "addr" doesn't have any high-bits set
100 *  - AND "size" doesn't have any high-bits set
101 *  - AND "addr+size" doesn't have any high-bits set
102 *  - OR we are in kernel mode.
103 *
104 * __ua_size() is a trick to avoid runtime checking of positive constant
105 * sizes; for those we already know at compile time that the size is ok.
106 */
107#define __ua_size(size)							\
108	((__builtin_constant_p(size) && (signed long) (size) > 0) ? 0 : (size))
109
110/*
111 * access_ok: - Checks if a user space pointer is valid
112 * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE.  Note that
113 *	  %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
114 *	  to write to a block, it is always safe to read from it.
115 * @addr: User space pointer to start of block to check
116 * @size: Size of block to check
117 *
118 * Context: User context only. This function may sleep if pagefaults are
119 *          enabled.
120 *
121 * Checks if a pointer to a block of memory in user space is valid.
122 *
123 * Returns true (nonzero) if the memory block may be valid, false (zero)
124 * if it is definitely invalid.
125 *
126 * Note that, depending on architecture, this function probably just
127 * checks that the pointer is in the user space range - after calling
128 * this function, memory access functions may still return -EFAULT.
129 */
130
131static inline int __access_ok(const void __user *p, unsigned long size)
132{
133	unsigned long addr = (unsigned long)p;
134	return (get_fs().seg & (addr | (addr + size) | __ua_size(size))) == 0;
135}
 
 
 
 
 
 
 
 
 
136
137#define access_ok(type, addr, size)					\
138	likely(__access_ok((addr), (size)))
139
140/*
141 * put_user: - Write a simple value into user space.
142 * @x:	 Value to copy to user space.
143 * @ptr: Destination address, in user space.
144 *
145 * Context: User context only. This function may sleep if pagefaults are
146 *          enabled.
147 *
148 * This macro copies a single simple value from kernel space to user
149 * space.  It supports simple types like char and int, but not larger
150 * data types like structures or arrays.
151 *
152 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
153 * to the result of dereferencing @ptr.
154 *
155 * Returns zero on success, or -EFAULT on error.
156 */
157#define put_user(x,ptr) \
158	__put_user_check((x), (ptr), sizeof(*(ptr)))
159
160/*
161 * get_user: - Get a simple variable from user space.
162 * @x:	 Variable to store result.
163 * @ptr: Source address, in user space.
164 *
165 * Context: User context only. This function may sleep if pagefaults are
166 *          enabled.
167 *
168 * This macro copies a single simple variable from user space to kernel
169 * space.  It supports simple types like char and int, but not larger
170 * data types like structures or arrays.
171 *
172 * @ptr must have pointer-to-simple-variable type, and the result of
173 * dereferencing @ptr must be assignable to @x without a cast.
174 *
175 * Returns zero on success, or -EFAULT on error.
176 * On error, the variable @x is set to zero.
177 */
178#define get_user(x,ptr) \
179	__get_user_check((x), (ptr), sizeof(*(ptr)))
180
181/*
182 * __put_user: - Write a simple value into user space, with less checking.
183 * @x:	 Value to copy to user space.
184 * @ptr: Destination address, in user space.
185 *
186 * Context: User context only. This function may sleep if pagefaults are
187 *          enabled.
188 *
189 * This macro copies a single simple value from kernel space to user
190 * space.  It supports simple types like char and int, but not larger
191 * data types like structures or arrays.
192 *
193 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
194 * to the result of dereferencing @ptr.
195 *
196 * Caller must check the pointer with access_ok() before calling this
197 * function.
198 *
199 * Returns zero on success, or -EFAULT on error.
200 */
201#define __put_user(x,ptr) \
202	__put_user_nocheck((x), (ptr), sizeof(*(ptr)))
203
204/*
205 * __get_user: - Get a simple variable from user space, with less checking.
206 * @x:	 Variable to store result.
207 * @ptr: Source address, in user space.
208 *
209 * Context: User context only. This function may sleep if pagefaults are
210 *          enabled.
211 *
212 * This macro copies a single simple variable from user space to kernel
213 * space.  It supports simple types like char and int, but not larger
214 * data types like structures or arrays.
215 *
216 * @ptr must have pointer-to-simple-variable type, and the result of
217 * dereferencing @ptr must be assignable to @x without a cast.
218 *
219 * Caller must check the pointer with access_ok() before calling this
220 * function.
221 *
222 * Returns zero on success, or -EFAULT on error.
223 * On error, the variable @x is set to zero.
224 */
225#define __get_user(x,ptr) \
226	__get_user_nocheck((x), (ptr), sizeof(*(ptr)))
227
228struct __large_struct { unsigned long buf[100]; };
229#define __m(x) (*(struct __large_struct __user *)(x))
230
231/*
232 * Yuck.  We need two variants, one for 64bit operation and one
233 * for 32 bit mode and old iron.
234 */
235#ifndef CONFIG_EVA
236#define __get_kernel_common(val, size, ptr) __get_user_common(val, size, ptr)
237#else
238/*
239 * Kernel specific functions for EVA. We need to use normal load instructions
240 * to read data from kernel when operating in EVA mode. We use these macros to
241 * avoid redefining __get_user_asm for EVA.
242 */
243#undef _loadd
244#undef _loadw
245#undef _loadh
246#undef _loadb
247#ifdef CONFIG_32BIT
248#define _loadd			_loadw
249#else
250#define _loadd(reg, addr)	"ld " reg ", " addr
251#endif
252#define _loadw(reg, addr)	"lw " reg ", " addr
253#define _loadh(reg, addr)	"lh " reg ", " addr
254#define _loadb(reg, addr)	"lb " reg ", " addr
255
256#define __get_kernel_common(val, size, ptr)				\
257do {									\
258	switch (size) {							\
259	case 1: __get_data_asm(val, _loadb, ptr); break;		\
260	case 2: __get_data_asm(val, _loadh, ptr); break;		\
261	case 4: __get_data_asm(val, _loadw, ptr); break;		\
262	case 8: __GET_DW(val, _loadd, ptr); break;			\
263	default: __get_user_unknown(); break;				\
264	}								\
265} while (0)
266#endif
267
268#ifdef CONFIG_32BIT
269#define __GET_DW(val, insn, ptr) __get_data_asm_ll32(val, insn, ptr)
270#endif
271#ifdef CONFIG_64BIT
272#define __GET_DW(val, insn, ptr) __get_data_asm(val, insn, ptr)
273#endif
274
275extern void __get_user_unknown(void);
276
277#define __get_user_common(val, size, ptr)				\
278do {									\
279	switch (size) {							\
280	case 1: __get_data_asm(val, user_lb, ptr); break;		\
281	case 2: __get_data_asm(val, user_lh, ptr); break;		\
282	case 4: __get_data_asm(val, user_lw, ptr); break;		\
283	case 8: __GET_DW(val, user_ld, ptr); break;			\
284	default: __get_user_unknown(); break;				\
285	}								\
286} while (0)
287
288#define __get_user_nocheck(x, ptr, size)				\
289({									\
290	int __gu_err;							\
291									\
292	if (eva_kernel_access()) {					\
293		__get_kernel_common((x), size, ptr);			\
294	} else {							\
295		__chk_user_ptr(ptr);					\
296		__get_user_common((x), size, ptr);			\
297	}								\
298	__gu_err;							\
299})
300
301#define __get_user_check(x, ptr, size)					\
302({									\
303	int __gu_err = -EFAULT;						\
304	const __typeof__(*(ptr)) __user * __gu_ptr = (ptr);		\
305									\
306	might_fault();							\
307	if (likely(access_ok(VERIFY_READ,  __gu_ptr, size))) {		\
308		if (eva_kernel_access())				\
309			__get_kernel_common((x), size, __gu_ptr);	\
310		else							\
311			__get_user_common((x), size, __gu_ptr);		\
312	} else								\
313		(x) = 0;						\
314									\
315	__gu_err;							\
316})
317
318#define __get_data_asm(val, insn, addr)					\
319{									\
320	long __gu_tmp;							\
321									\
322	__asm__ __volatile__(						\
323	"1:	"insn("%1", "%3")"				\n"	\
324	"2:							\n"	\
325	"	.insn						\n"	\
326	"	.section .fixup,\"ax\"				\n"	\
327	"3:	li	%0, %4					\n"	\
328	"	move	%1, $0					\n"	\
329	"	j	2b					\n"	\
330	"	.previous					\n"	\
331	"	.section __ex_table,\"a\"			\n"	\
332	"	"__UA_ADDR "\t1b, 3b				\n"	\
333	"	.previous					\n"	\
334	: "=r" (__gu_err), "=r" (__gu_tmp)				\
335	: "0" (0), "o" (__m(addr)), "i" (-EFAULT));			\
336									\
337	(val) = (__typeof__(*(addr))) __gu_tmp;				\
338}
339
340/*
341 * Get a long long 64 using 32 bit registers.
342 */
343#define __get_data_asm_ll32(val, insn, addr)				\
344{									\
345	union {								\
346		unsigned long long	l;				\
347		__typeof__(*(addr))	t;				\
348	} __gu_tmp;							\
349									\
350	__asm__ __volatile__(						\
351	"1:	" insn("%1", "(%3)")"				\n"	\
352	"2:	" insn("%D1", "4(%3)")"				\n"	\
353	"3:							\n"	\
354	"	.insn						\n"	\
355	"	.section	.fixup,\"ax\"			\n"	\
356	"4:	li	%0, %4					\n"	\
357	"	move	%1, $0					\n"	\
358	"	move	%D1, $0					\n"	\
359	"	j	3b					\n"	\
360	"	.previous					\n"	\
361	"	.section	__ex_table,\"a\"		\n"	\
362	"	" __UA_ADDR "	1b, 4b				\n"	\
363	"	" __UA_ADDR "	2b, 4b				\n"	\
364	"	.previous					\n"	\
365	: "=r" (__gu_err), "=&r" (__gu_tmp.l)				\
366	: "0" (0), "r" (addr), "i" (-EFAULT));				\
367									\
368	(val) = __gu_tmp.t;						\
369}
370
371#ifndef CONFIG_EVA
372#define __put_kernel_common(ptr, size) __put_user_common(ptr, size)
373#else
374/*
375 * Kernel specific functions for EVA. We need to use normal load instructions
376 * to read data from kernel when operating in EVA mode. We use these macros to
377 * avoid redefining __get_data_asm for EVA.
378 */
379#undef _stored
380#undef _storew
381#undef _storeh
382#undef _storeb
383#ifdef CONFIG_32BIT
384#define _stored			_storew
385#else
386#define _stored(reg, addr)	"ld " reg ", " addr
387#endif
388
389#define _storew(reg, addr)	"sw " reg ", " addr
390#define _storeh(reg, addr)	"sh " reg ", " addr
391#define _storeb(reg, addr)	"sb " reg ", " addr
392
393#define __put_kernel_common(ptr, size)					\
394do {									\
395	switch (size) {							\
396	case 1: __put_data_asm(_storeb, ptr); break;			\
397	case 2: __put_data_asm(_storeh, ptr); break;			\
398	case 4: __put_data_asm(_storew, ptr); break;			\
399	case 8: __PUT_DW(_stored, ptr); break;				\
400	default: __put_user_unknown(); break;				\
401	}								\
402} while(0)
403#endif
404
405/*
406 * Yuck.  We need two variants, one for 64bit operation and one
407 * for 32 bit mode and old iron.
408 */
409#ifdef CONFIG_32BIT
410#define __PUT_DW(insn, ptr) __put_data_asm_ll32(insn, ptr)
411#endif
412#ifdef CONFIG_64BIT
413#define __PUT_DW(insn, ptr) __put_data_asm(insn, ptr)
414#endif
415
416#define __put_user_common(ptr, size)					\
417do {									\
418	switch (size) {							\
419	case 1: __put_data_asm(user_sb, ptr); break;			\
420	case 2: __put_data_asm(user_sh, ptr); break;			\
421	case 4: __put_data_asm(user_sw, ptr); break;			\
422	case 8: __PUT_DW(user_sd, ptr); break;				\
423	default: __put_user_unknown(); break;				\
424	}								\
425} while (0)
426
427#define __put_user_nocheck(x, ptr, size)				\
428({									\
429	__typeof__(*(ptr)) __pu_val;					\
430	int __pu_err = 0;						\
431									\
432	__pu_val = (x);							\
433	if (eva_kernel_access()) {					\
434		__put_kernel_common(ptr, size);				\
435	} else {							\
436		__chk_user_ptr(ptr);					\
437		__put_user_common(ptr, size);				\
438	}								\
439	__pu_err;							\
440})
441
442#define __put_user_check(x, ptr, size)					\
443({									\
444	__typeof__(*(ptr)) __user *__pu_addr = (ptr);			\
445	__typeof__(*(ptr)) __pu_val = (x);				\
446	int __pu_err = -EFAULT;						\
447									\
448	might_fault();							\
449	if (likely(access_ok(VERIFY_WRITE,  __pu_addr, size))) {	\
450		if (eva_kernel_access())				\
451			__put_kernel_common(__pu_addr, size);		\
452		else							\
453			__put_user_common(__pu_addr, size);		\
454	}								\
455									\
456	__pu_err;							\
457})
458
459#define __put_data_asm(insn, ptr)					\
460{									\
461	__asm__ __volatile__(						\
462	"1:	"insn("%z2", "%3")"	# __put_data_asm	\n"	\
463	"2:							\n"	\
464	"	.insn						\n"	\
465	"	.section	.fixup,\"ax\"			\n"	\
466	"3:	li	%0, %4					\n"	\
467	"	j	2b					\n"	\
468	"	.previous					\n"	\
469	"	.section	__ex_table,\"a\"		\n"	\
470	"	" __UA_ADDR "	1b, 3b				\n"	\
471	"	.previous					\n"	\
472	: "=r" (__pu_err)						\
473	: "0" (0), "Jr" (__pu_val), "o" (__m(ptr)),			\
474	  "i" (-EFAULT));						\
475}
476
477#define __put_data_asm_ll32(insn, ptr)					\
478{									\
479	__asm__ __volatile__(						\
480	"1:	"insn("%2", "(%3)")"	# __put_data_asm_ll32	\n"	\
481	"2:	"insn("%D2", "4(%3)")"				\n"	\
482	"3:							\n"	\
483	"	.insn						\n"	\
484	"	.section	.fixup,\"ax\"			\n"	\
485	"4:	li	%0, %4					\n"	\
486	"	j	3b					\n"	\
487	"	.previous					\n"	\
488	"	.section	__ex_table,\"a\"		\n"	\
489	"	" __UA_ADDR "	1b, 4b				\n"	\
490	"	" __UA_ADDR "	2b, 4b				\n"	\
491	"	.previous"						\
492	: "=r" (__pu_err)						\
493	: "0" (0), "r" (__pu_val), "r" (ptr),				\
494	  "i" (-EFAULT));						\
495}
496
497extern void __put_user_unknown(void);
498
499/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
500 * We're generating jump to subroutines which will be outside the range of
501 * jump instructions
502 */
503#ifdef MODULE
504#define __MODULE_JAL(destination)					\
505	".set\tnoat\n\t"						\
506	__UA_LA "\t$1, " #destination "\n\t"				\
507	"jalr\t$1\n\t"							\
508	".set\tat\n\t"
509#else
510#define __MODULE_JAL(destination)					\
511	"jal\t" #destination "\n\t"
512#endif
513
514#if defined(CONFIG_CPU_DADDI_WORKAROUNDS) || (defined(CONFIG_EVA) &&	\
515					      defined(CONFIG_CPU_HAS_PREFETCH))
516#define DADDI_SCRATCH "$3"
517#else
518#define DADDI_SCRATCH "$0"
519#endif
520
521extern size_t __copy_user(void *__to, const void *__from, size_t __n);
522
523#define __invoke_copy_from(func, to, from, n)				\
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
524({									\
525	register void *__cu_to_r __asm__("$4");				\
526	register const void __user *__cu_from_r __asm__("$5");		\
527	register long __cu_len_r __asm__("$6");				\
528									\
529	__cu_to_r = (to);						\
530	__cu_from_r = (from);						\
531	__cu_len_r = (n);						\
532	__asm__ __volatile__(						\
533	".set\tnoreorder\n\t"						\
534	__MODULE_JAL(func)						\
535	".set\tnoat\n\t"						\
536	__UA_ADDU "\t$1, %1, %2\n\t"					\
537	".set\tat\n\t"							\
538	".set\treorder"							\
539	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
540	:								\
541	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
542	  DADDI_SCRATCH, "memory");					\
543	__cu_len_r;							\
544})
545
546#define __invoke_copy_to(func, to, from, n)				\
 
 
 
 
 
 
 
 
 
 
 
547({									\
548	register void __user *__cu_to_r __asm__("$4");			\
549	register const void *__cu_from_r __asm__("$5");			\
550	register long __cu_len_r __asm__("$6");				\
551									\
552	__cu_to_r = (to);						\
553	__cu_from_r = (from);						\
554	__cu_len_r = (n);						\
555	__asm__ __volatile__(						\
556	__MODULE_JAL(func)						\
 
 
 
 
 
557	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
558	:								\
559	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
560	  DADDI_SCRATCH, "memory");					\
561	__cu_len_r;							\
562})
563
564#define __invoke_copy_from_kernel(to, from, n)				\
565	__invoke_copy_from(__copy_user, to, from, n)
566
567#define __invoke_copy_to_kernel(to, from, n)				\
568	__invoke_copy_to(__copy_user, to, from, n)
569
570#define ___invoke_copy_in_kernel(to, from, n)				\
571	__invoke_copy_from(__copy_user, to, from, n)
572
573#ifndef CONFIG_EVA
574#define __invoke_copy_from_user(to, from, n)				\
575	__invoke_copy_from(__copy_user, to, from, n)
576
577#define __invoke_copy_to_user(to, from, n)				\
578	__invoke_copy_to(__copy_user, to, from, n)
579
580#define ___invoke_copy_in_user(to, from, n)				\
581	__invoke_copy_from(__copy_user, to, from, n)
582
583#else
584
585/* EVA specific functions */
586
 
 
587extern size_t __copy_from_user_eva(void *__to, const void *__from,
588				   size_t __n);
589extern size_t __copy_to_user_eva(void *__to, const void *__from,
590				 size_t __n);
591extern size_t __copy_in_user_eva(void *__to, const void *__from, size_t __n);
592
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
593/*
594 * Source or destination address is in userland. We need to go through
595 * the TLB
596 */
597#define __invoke_copy_from_user(to, from, n)				\
598	__invoke_copy_from(__copy_from_user_eva, to, from, n)
 
 
 
 
599
600#define __invoke_copy_to_user(to, from, n)				\
601	__invoke_copy_to(__copy_to_user_eva, to, from, n)
602
603#define ___invoke_copy_in_user(to, from, n)				\
604	__invoke_copy_from(__copy_in_user_eva, to, from, n)
605
606#endif /* CONFIG_EVA */
 
 
 
 
 
607
608static inline unsigned long
609raw_copy_to_user(void __user *to, const void *from, unsigned long n)
610{
611	if (eva_kernel_access())
612		return __invoke_copy_to_kernel(to, from, n);
613	else
614		return __invoke_copy_to_user(to, from, n);
615}
616
617static inline unsigned long
618raw_copy_from_user(void *to, const void __user *from, unsigned long n)
619{
620	if (eva_kernel_access())
621		return __invoke_copy_from_kernel(to, from, n);
622	else
623		return __invoke_copy_from_user(to, from, n);
624}
625
626#define INLINE_COPY_FROM_USER
627#define INLINE_COPY_TO_USER
628
629static inline unsigned long
630raw_copy_in_user(void __user*to, const void __user *from, unsigned long n)
631{
632	if (eva_kernel_access())
633		return ___invoke_copy_in_kernel(to, from, n);
634	else
635		return ___invoke_copy_in_user(to, from,	n);
636}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
637
638extern __kernel_size_t __bzero_kernel(void __user *addr, __kernel_size_t size);
639extern __kernel_size_t __bzero(void __user *addr, __kernel_size_t size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
640
641/*
642 * __clear_user: - Zero a block of memory in user space, with less checking.
643 * @to:	  Destination address, in user space.
644 * @n:	  Number of bytes to zero.
645 *
646 * Zero a block of memory in user space.  Caller must check
647 * the specified block with access_ok() before calling this function.
648 *
649 * Returns number of bytes that could not be cleared.
650 * On success, this will be zero.
651 */
652static inline __kernel_size_t
653__clear_user(void __user *addr, __kernel_size_t size)
654{
655	__kernel_size_t res;
656
657#ifdef CONFIG_CPU_MICROMIPS
658/* micromips memset / bzero also clobbers t7 & t8 */
659#define bzero_clobbers "$4", "$5", "$6", __UA_t0, __UA_t1, "$15", "$24", "$31"
660#else
661#define bzero_clobbers "$4", "$5", "$6", __UA_t0, __UA_t1, "$31"
662#endif /* CONFIG_CPU_MICROMIPS */
663
664	if (eva_kernel_access()) {
665		__asm__ __volatile__(
666			"move\t$4, %1\n\t"
667			"move\t$5, $0\n\t"
668			"move\t$6, %2\n\t"
669			__MODULE_JAL(__bzero_kernel)
670			"move\t%0, $6"
671			: "=r" (res)
672			: "r" (addr), "r" (size)
673			: bzero_clobbers);
674	} else {
675		might_fault();
676		__asm__ __volatile__(
677			"move\t$4, %1\n\t"
678			"move\t$5, $0\n\t"
679			"move\t$6, %2\n\t"
680			__MODULE_JAL(__bzero)
681			"move\t%0, $6"
682			: "=r" (res)
683			: "r" (addr), "r" (size)
684			: bzero_clobbers);
685	}
686
687	return res;
688}
689
690#define clear_user(addr,n)						\
691({									\
692	void __user * __cl_addr = (addr);				\
693	unsigned long __cl_size = (n);					\
694	if (__cl_size && access_ok(VERIFY_WRITE,			\
695					__cl_addr, __cl_size))		\
696		__cl_size = __clear_user(__cl_addr, __cl_size);		\
697	__cl_size;							\
698})
699
700extern long __strncpy_from_kernel_asm(char *__to, const char __user *__from, long __len);
701extern long __strncpy_from_user_asm(char *__to, const char __user *__from, long __len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
702
703/*
704 * strncpy_from_user: - Copy a NUL terminated string from userspace.
705 * @dst:   Destination address, in kernel space.  This buffer must be at
706 *	   least @count bytes long.
707 * @src:   Source address, in user space.
708 * @count: Maximum number of bytes to copy, including the trailing NUL.
709 *
710 * Copies a NUL-terminated string from userspace to kernel space.
711 *
712 * On success, returns the length of the string (not including the trailing
713 * NUL).
714 *
715 * If access to userspace fails, returns -EFAULT (some data may have been
716 * copied).
717 *
718 * If @count is smaller than the length of the string, copies @count bytes
719 * and returns @count.
720 */
721static inline long
722strncpy_from_user(char *__to, const char __user *__from, long __len)
723{
724	long res;
725
726	if (eva_kernel_access()) {
727		__asm__ __volatile__(
728			"move\t$4, %1\n\t"
729			"move\t$5, %2\n\t"
730			"move\t$6, %3\n\t"
731			__MODULE_JAL(__strncpy_from_kernel_asm)
732			"move\t%0, $2"
733			: "=r" (res)
734			: "r" (__to), "r" (__from), "r" (__len)
735			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
736	} else {
737		might_fault();
738		__asm__ __volatile__(
739			"move\t$4, %1\n\t"
740			"move\t$5, %2\n\t"
741			"move\t$6, %3\n\t"
742			__MODULE_JAL(__strncpy_from_user_asm)
743			"move\t%0, $2"
744			: "=r" (res)
745			: "r" (__to), "r" (__from), "r" (__len)
746			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
747	}
748
749	return res;
750}
751
752extern long __strnlen_kernel_asm(const char __user *s, long n);
753extern long __strnlen_user_asm(const char __user *s, long n);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
754
755/*
756 * strnlen_user: - Get the size of a string in user space.
757 * @str: The string to measure.
758 *
759 * Context: User context only. This function may sleep if pagefaults are
760 *          enabled.
761 *
762 * Get the size of a NUL-terminated string in user space.
763 *
764 * Returns the size of the string INCLUDING the terminating NUL.
765 * On exception, returns 0.
766 * If the string is too long, returns a value greater than @n.
767 */
768static inline long strnlen_user(const char __user *s, long n)
769{
770	long res;
771
772	might_fault();
773	if (eva_kernel_access()) {
774		__asm__ __volatile__(
775			"move\t$4, %1\n\t"
776			"move\t$5, %2\n\t"
777			__MODULE_JAL(__strnlen_kernel_asm)
778			"move\t%0, $2"
779			: "=r" (res)
780			: "r" (s), "r" (n)
781			: "$2", "$4", "$5", __UA_t0, "$31");
782	} else {
783		__asm__ __volatile__(
784			"move\t$4, %1\n\t"
785			"move\t$5, %2\n\t"
786			__MODULE_JAL(__strnlen_user_asm)
787			"move\t%0, $2"
788			: "=r" (res)
789			: "r" (s), "r" (n)
790			: "$2", "$4", "$5", __UA_t0, "$31");
791	}
792
793	return res;
794}
 
 
 
 
 
 
 
 
795
796#endif /* _ASM_UACCESS_H */
v4.6
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 03, 04 by Ralf Baechle
   7 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
   8 * Copyright (C) 2007  Maciej W. Rozycki
   9 * Copyright (C) 2014, Imagination Technologies Ltd.
  10 */
  11#ifndef _ASM_UACCESS_H
  12#define _ASM_UACCESS_H
  13
  14#include <linux/kernel.h>
  15#include <linux/errno.h>
  16#include <linux/thread_info.h>
  17#include <asm/asm-eva.h>
 
  18
  19/*
  20 * The fs value determines whether argument validity checking should be
  21 * performed or not.  If get_fs() == USER_DS, checking is performed, with
  22 * get_fs() == KERNEL_DS, checking is bypassed.
  23 *
  24 * For historical reasons, these macros are grossly misnamed.
  25 */
  26#ifdef CONFIG_32BIT
  27
  28#ifdef CONFIG_KVM_GUEST
  29#define __UA_LIMIT 0x40000000UL
  30#else
  31#define __UA_LIMIT 0x80000000UL
  32#endif
  33
  34#define __UA_ADDR	".word"
  35#define __UA_LA		"la"
  36#define __UA_ADDU	"addu"
  37#define __UA_t0		"$8"
  38#define __UA_t1		"$9"
  39
  40#endif /* CONFIG_32BIT */
  41
  42#ifdef CONFIG_64BIT
  43
  44extern u64 __ua_limit;
  45
  46#define __UA_LIMIT	__ua_limit
  47
  48#define __UA_ADDR	".dword"
  49#define __UA_LA		"dla"
  50#define __UA_ADDU	"daddu"
  51#define __UA_t0		"$12"
  52#define __UA_t1		"$13"
  53
  54#endif /* CONFIG_64BIT */
  55
  56/*
  57 * USER_DS is a bitmask that has the bits set that may not be set in a valid
  58 * userspace address.  Note that we limit 32-bit userspace to 0x7fff8000 but
  59 * the arithmetic we're doing only works if the limit is a power of two, so
  60 * we use 0x80000000 here on 32-bit kernels.  If a process passes an invalid
  61 * address in this range it's the process's problem, not ours :-)
  62 */
  63
  64#ifdef CONFIG_KVM_GUEST
  65#define KERNEL_DS	((mm_segment_t) { 0x80000000UL })
  66#define USER_DS		((mm_segment_t) { 0xC0000000UL })
  67#else
  68#define KERNEL_DS	((mm_segment_t) { 0UL })
  69#define USER_DS		((mm_segment_t) { __UA_LIMIT })
  70#endif
  71
  72#define VERIFY_READ    0
  73#define VERIFY_WRITE   1
  74
  75#define get_ds()	(KERNEL_DS)
  76#define get_fs()	(current_thread_info()->addr_limit)
  77#define set_fs(x)	(current_thread_info()->addr_limit = (x))
  78
  79#define segment_eq(a, b)	((a).seg == (b).seg)
  80
  81/*
  82 * eva_kernel_access() - determine whether kernel memory access on an EVA system
  83 *
  84 * Determines whether memory accesses should be performed to kernel memory
  85 * on a system using Extended Virtual Addressing (EVA).
  86 *
  87 * Return: true if a kernel memory access on an EVA system, else false.
  88 */
  89static inline bool eva_kernel_access(void)
  90{
  91	if (!config_enabled(CONFIG_EVA))
  92		return false;
  93
  94	return segment_eq(get_fs(), get_ds());
  95}
  96
  97/*
  98 * Is a address valid? This does a straightforward calculation rather
  99 * than tests.
 100 *
 101 * Address valid if:
 102 *  - "addr" doesn't have any high-bits set
 103 *  - AND "size" doesn't have any high-bits set
 104 *  - AND "addr+size" doesn't have any high-bits set
 105 *  - OR we are in kernel mode.
 106 *
 107 * __ua_size() is a trick to avoid runtime checking of positive constant
 108 * sizes; for those we already know at compile time that the size is ok.
 109 */
 110#define __ua_size(size)							\
 111	((__builtin_constant_p(size) && (signed long) (size) > 0) ? 0 : (size))
 112
 113/*
 114 * access_ok: - Checks if a user space pointer is valid
 115 * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE.  Note that
 116 *	  %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
 117 *	  to write to a block, it is always safe to read from it.
 118 * @addr: User space pointer to start of block to check
 119 * @size: Size of block to check
 120 *
 121 * Context: User context only. This function may sleep if pagefaults are
 122 *          enabled.
 123 *
 124 * Checks if a pointer to a block of memory in user space is valid.
 125 *
 126 * Returns true (nonzero) if the memory block may be valid, false (zero)
 127 * if it is definitely invalid.
 128 *
 129 * Note that, depending on architecture, this function probably just
 130 * checks that the pointer is in the user space range - after calling
 131 * this function, memory access functions may still return -EFAULT.
 132 */
 133
 134#define __access_mask get_fs().seg
 135
 136#define __access_ok(addr, size, mask)					\
 137({									\
 138	unsigned long __addr = (unsigned long) (addr);			\
 139	unsigned long __size = size;					\
 140	unsigned long __mask = mask;					\
 141	unsigned long __ok;						\
 142									\
 143	__chk_user_ptr(addr);						\
 144	__ok = (signed long)(__mask & (__addr | (__addr + __size) |	\
 145		__ua_size(__size)));					\
 146	__ok == 0;							\
 147})
 148
 149#define access_ok(type, addr, size)					\
 150	likely(__access_ok((addr), (size), __access_mask))
 151
 152/*
 153 * put_user: - Write a simple value into user space.
 154 * @x:	 Value to copy to user space.
 155 * @ptr: Destination address, in user space.
 156 *
 157 * Context: User context only. This function may sleep if pagefaults are
 158 *          enabled.
 159 *
 160 * This macro copies a single simple value from kernel space to user
 161 * space.  It supports simple types like char and int, but not larger
 162 * data types like structures or arrays.
 163 *
 164 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 165 * to the result of dereferencing @ptr.
 166 *
 167 * Returns zero on success, or -EFAULT on error.
 168 */
 169#define put_user(x,ptr) \
 170	__put_user_check((x), (ptr), sizeof(*(ptr)))
 171
 172/*
 173 * get_user: - Get a simple variable from user space.
 174 * @x:	 Variable to store result.
 175 * @ptr: Source address, in user space.
 176 *
 177 * Context: User context only. This function may sleep if pagefaults are
 178 *          enabled.
 179 *
 180 * This macro copies a single simple variable from user space to kernel
 181 * space.  It supports simple types like char and int, but not larger
 182 * data types like structures or arrays.
 183 *
 184 * @ptr must have pointer-to-simple-variable type, and the result of
 185 * dereferencing @ptr must be assignable to @x without a cast.
 186 *
 187 * Returns zero on success, or -EFAULT on error.
 188 * On error, the variable @x is set to zero.
 189 */
 190#define get_user(x,ptr) \
 191	__get_user_check((x), (ptr), sizeof(*(ptr)))
 192
 193/*
 194 * __put_user: - Write a simple value into user space, with less checking.
 195 * @x:	 Value to copy to user space.
 196 * @ptr: Destination address, in user space.
 197 *
 198 * Context: User context only. This function may sleep if pagefaults are
 199 *          enabled.
 200 *
 201 * This macro copies a single simple value from kernel space to user
 202 * space.  It supports simple types like char and int, but not larger
 203 * data types like structures or arrays.
 204 *
 205 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 206 * to the result of dereferencing @ptr.
 207 *
 208 * Caller must check the pointer with access_ok() before calling this
 209 * function.
 210 *
 211 * Returns zero on success, or -EFAULT on error.
 212 */
 213#define __put_user(x,ptr) \
 214	__put_user_nocheck((x), (ptr), sizeof(*(ptr)))
 215
 216/*
 217 * __get_user: - Get a simple variable from user space, with less checking.
 218 * @x:	 Variable to store result.
 219 * @ptr: Source address, in user space.
 220 *
 221 * Context: User context only. This function may sleep if pagefaults are
 222 *          enabled.
 223 *
 224 * This macro copies a single simple variable from user space to kernel
 225 * space.  It supports simple types like char and int, but not larger
 226 * data types like structures or arrays.
 227 *
 228 * @ptr must have pointer-to-simple-variable type, and the result of
 229 * dereferencing @ptr must be assignable to @x without a cast.
 230 *
 231 * Caller must check the pointer with access_ok() before calling this
 232 * function.
 233 *
 234 * Returns zero on success, or -EFAULT on error.
 235 * On error, the variable @x is set to zero.
 236 */
 237#define __get_user(x,ptr) \
 238	__get_user_nocheck((x), (ptr), sizeof(*(ptr)))
 239
 240struct __large_struct { unsigned long buf[100]; };
 241#define __m(x) (*(struct __large_struct __user *)(x))
 242
 243/*
 244 * Yuck.  We need two variants, one for 64bit operation and one
 245 * for 32 bit mode and old iron.
 246 */
 247#ifndef CONFIG_EVA
 248#define __get_kernel_common(val, size, ptr) __get_user_common(val, size, ptr)
 249#else
 250/*
 251 * Kernel specific functions for EVA. We need to use normal load instructions
 252 * to read data from kernel when operating in EVA mode. We use these macros to
 253 * avoid redefining __get_user_asm for EVA.
 254 */
 255#undef _loadd
 256#undef _loadw
 257#undef _loadh
 258#undef _loadb
 259#ifdef CONFIG_32BIT
 260#define _loadd			_loadw
 261#else
 262#define _loadd(reg, addr)	"ld " reg ", " addr
 263#endif
 264#define _loadw(reg, addr)	"lw " reg ", " addr
 265#define _loadh(reg, addr)	"lh " reg ", " addr
 266#define _loadb(reg, addr)	"lb " reg ", " addr
 267
 268#define __get_kernel_common(val, size, ptr)				\
 269do {									\
 270	switch (size) {							\
 271	case 1: __get_data_asm(val, _loadb, ptr); break;		\
 272	case 2: __get_data_asm(val, _loadh, ptr); break;		\
 273	case 4: __get_data_asm(val, _loadw, ptr); break;		\
 274	case 8: __GET_DW(val, _loadd, ptr); break;			\
 275	default: __get_user_unknown(); break;				\
 276	}								\
 277} while (0)
 278#endif
 279
 280#ifdef CONFIG_32BIT
 281#define __GET_DW(val, insn, ptr) __get_data_asm_ll32(val, insn, ptr)
 282#endif
 283#ifdef CONFIG_64BIT
 284#define __GET_DW(val, insn, ptr) __get_data_asm(val, insn, ptr)
 285#endif
 286
 287extern void __get_user_unknown(void);
 288
 289#define __get_user_common(val, size, ptr)				\
 290do {									\
 291	switch (size) {							\
 292	case 1: __get_data_asm(val, user_lb, ptr); break;		\
 293	case 2: __get_data_asm(val, user_lh, ptr); break;		\
 294	case 4: __get_data_asm(val, user_lw, ptr); break;		\
 295	case 8: __GET_DW(val, user_ld, ptr); break;			\
 296	default: __get_user_unknown(); break;				\
 297	}								\
 298} while (0)
 299
 300#define __get_user_nocheck(x, ptr, size)				\
 301({									\
 302	int __gu_err;							\
 303									\
 304	if (eva_kernel_access()) {					\
 305		__get_kernel_common((x), size, ptr);			\
 306	} else {							\
 307		__chk_user_ptr(ptr);					\
 308		__get_user_common((x), size, ptr);			\
 309	}								\
 310	__gu_err;							\
 311})
 312
 313#define __get_user_check(x, ptr, size)					\
 314({									\
 315	int __gu_err = -EFAULT;						\
 316	const __typeof__(*(ptr)) __user * __gu_ptr = (ptr);		\
 317									\
 318	might_fault();							\
 319	if (likely(access_ok(VERIFY_READ,  __gu_ptr, size))) {		\
 320		if (eva_kernel_access())				\
 321			__get_kernel_common((x), size, __gu_ptr);	\
 322		else							\
 323			__get_user_common((x), size, __gu_ptr);		\
 324	} else								\
 325		(x) = 0;						\
 326									\
 327	__gu_err;							\
 328})
 329
 330#define __get_data_asm(val, insn, addr)					\
 331{									\
 332	long __gu_tmp;							\
 333									\
 334	__asm__ __volatile__(						\
 335	"1:	"insn("%1", "%3")"				\n"	\
 336	"2:							\n"	\
 337	"	.insn						\n"	\
 338	"	.section .fixup,\"ax\"				\n"	\
 339	"3:	li	%0, %4					\n"	\
 340	"	move	%1, $0					\n"	\
 341	"	j	2b					\n"	\
 342	"	.previous					\n"	\
 343	"	.section __ex_table,\"a\"			\n"	\
 344	"	"__UA_ADDR "\t1b, 3b				\n"	\
 345	"	.previous					\n"	\
 346	: "=r" (__gu_err), "=r" (__gu_tmp)				\
 347	: "0" (0), "o" (__m(addr)), "i" (-EFAULT));			\
 348									\
 349	(val) = (__typeof__(*(addr))) __gu_tmp;				\
 350}
 351
 352/*
 353 * Get a long long 64 using 32 bit registers.
 354 */
 355#define __get_data_asm_ll32(val, insn, addr)				\
 356{									\
 357	union {								\
 358		unsigned long long	l;				\
 359		__typeof__(*(addr))	t;				\
 360	} __gu_tmp;							\
 361									\
 362	__asm__ __volatile__(						\
 363	"1:	" insn("%1", "(%3)")"				\n"	\
 364	"2:	" insn("%D1", "4(%3)")"				\n"	\
 365	"3:							\n"	\
 366	"	.insn						\n"	\
 367	"	.section	.fixup,\"ax\"			\n"	\
 368	"4:	li	%0, %4					\n"	\
 369	"	move	%1, $0					\n"	\
 370	"	move	%D1, $0					\n"	\
 371	"	j	3b					\n"	\
 372	"	.previous					\n"	\
 373	"	.section	__ex_table,\"a\"		\n"	\
 374	"	" __UA_ADDR "	1b, 4b				\n"	\
 375	"	" __UA_ADDR "	2b, 4b				\n"	\
 376	"	.previous					\n"	\
 377	: "=r" (__gu_err), "=&r" (__gu_tmp.l)				\
 378	: "0" (0), "r" (addr), "i" (-EFAULT));				\
 379									\
 380	(val) = __gu_tmp.t;						\
 381}
 382
 383#ifndef CONFIG_EVA
 384#define __put_kernel_common(ptr, size) __put_user_common(ptr, size)
 385#else
 386/*
 387 * Kernel specific functions for EVA. We need to use normal load instructions
 388 * to read data from kernel when operating in EVA mode. We use these macros to
 389 * avoid redefining __get_data_asm for EVA.
 390 */
 391#undef _stored
 392#undef _storew
 393#undef _storeh
 394#undef _storeb
 395#ifdef CONFIG_32BIT
 396#define _stored			_storew
 397#else
 398#define _stored(reg, addr)	"ld " reg ", " addr
 399#endif
 400
 401#define _storew(reg, addr)	"sw " reg ", " addr
 402#define _storeh(reg, addr)	"sh " reg ", " addr
 403#define _storeb(reg, addr)	"sb " reg ", " addr
 404
 405#define __put_kernel_common(ptr, size)					\
 406do {									\
 407	switch (size) {							\
 408	case 1: __put_data_asm(_storeb, ptr); break;			\
 409	case 2: __put_data_asm(_storeh, ptr); break;			\
 410	case 4: __put_data_asm(_storew, ptr); break;			\
 411	case 8: __PUT_DW(_stored, ptr); break;				\
 412	default: __put_user_unknown(); break;				\
 413	}								\
 414} while(0)
 415#endif
 416
 417/*
 418 * Yuck.  We need two variants, one for 64bit operation and one
 419 * for 32 bit mode and old iron.
 420 */
 421#ifdef CONFIG_32BIT
 422#define __PUT_DW(insn, ptr) __put_data_asm_ll32(insn, ptr)
 423#endif
 424#ifdef CONFIG_64BIT
 425#define __PUT_DW(insn, ptr) __put_data_asm(insn, ptr)
 426#endif
 427
 428#define __put_user_common(ptr, size)					\
 429do {									\
 430	switch (size) {							\
 431	case 1: __put_data_asm(user_sb, ptr); break;			\
 432	case 2: __put_data_asm(user_sh, ptr); break;			\
 433	case 4: __put_data_asm(user_sw, ptr); break;			\
 434	case 8: __PUT_DW(user_sd, ptr); break;				\
 435	default: __put_user_unknown(); break;				\
 436	}								\
 437} while (0)
 438
 439#define __put_user_nocheck(x, ptr, size)				\
 440({									\
 441	__typeof__(*(ptr)) __pu_val;					\
 442	int __pu_err = 0;						\
 443									\
 444	__pu_val = (x);							\
 445	if (eva_kernel_access()) {					\
 446		__put_kernel_common(ptr, size);				\
 447	} else {							\
 448		__chk_user_ptr(ptr);					\
 449		__put_user_common(ptr, size);				\
 450	}								\
 451	__pu_err;							\
 452})
 453
 454#define __put_user_check(x, ptr, size)					\
 455({									\
 456	__typeof__(*(ptr)) __user *__pu_addr = (ptr);			\
 457	__typeof__(*(ptr)) __pu_val = (x);				\
 458	int __pu_err = -EFAULT;						\
 459									\
 460	might_fault();							\
 461	if (likely(access_ok(VERIFY_WRITE,  __pu_addr, size))) {	\
 462		if (eva_kernel_access())				\
 463			__put_kernel_common(__pu_addr, size);		\
 464		else							\
 465			__put_user_common(__pu_addr, size);		\
 466	}								\
 467									\
 468	__pu_err;							\
 469})
 470
 471#define __put_data_asm(insn, ptr)					\
 472{									\
 473	__asm__ __volatile__(						\
 474	"1:	"insn("%z2", "%3")"	# __put_data_asm	\n"	\
 475	"2:							\n"	\
 476	"	.insn						\n"	\
 477	"	.section	.fixup,\"ax\"			\n"	\
 478	"3:	li	%0, %4					\n"	\
 479	"	j	2b					\n"	\
 480	"	.previous					\n"	\
 481	"	.section	__ex_table,\"a\"		\n"	\
 482	"	" __UA_ADDR "	1b, 3b				\n"	\
 483	"	.previous					\n"	\
 484	: "=r" (__pu_err)						\
 485	: "0" (0), "Jr" (__pu_val), "o" (__m(ptr)),			\
 486	  "i" (-EFAULT));						\
 487}
 488
 489#define __put_data_asm_ll32(insn, ptr)					\
 490{									\
 491	__asm__ __volatile__(						\
 492	"1:	"insn("%2", "(%3)")"	# __put_data_asm_ll32	\n"	\
 493	"2:	"insn("%D2", "4(%3)")"				\n"	\
 494	"3:							\n"	\
 495	"	.insn						\n"	\
 496	"	.section	.fixup,\"ax\"			\n"	\
 497	"4:	li	%0, %4					\n"	\
 498	"	j	3b					\n"	\
 499	"	.previous					\n"	\
 500	"	.section	__ex_table,\"a\"		\n"	\
 501	"	" __UA_ADDR "	1b, 4b				\n"	\
 502	"	" __UA_ADDR "	2b, 4b				\n"	\
 503	"	.previous"						\
 504	: "=r" (__pu_err)						\
 505	: "0" (0), "r" (__pu_val), "r" (ptr),				\
 506	  "i" (-EFAULT));						\
 507}
 508
 509extern void __put_user_unknown(void);
 510
 511/*
 512 * ul{b,h,w} are macros and there are no equivalent macros for EVA.
 513 * EVA unaligned access is handled in the ADE exception handler.
 514 */
 515#ifndef CONFIG_EVA
 516/*
 517 * put_user_unaligned: - Write a simple value into user space.
 518 * @x:	 Value to copy to user space.
 519 * @ptr: Destination address, in user space.
 520 *
 521 * Context: User context only. This function may sleep if pagefaults are
 522 *          enabled.
 523 *
 524 * This macro copies a single simple value from kernel space to user
 525 * space.  It supports simple types like char and int, but not larger
 526 * data types like structures or arrays.
 527 *
 528 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 529 * to the result of dereferencing @ptr.
 530 *
 531 * Returns zero on success, or -EFAULT on error.
 532 */
 533#define put_user_unaligned(x,ptr)	\
 534	__put_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
 535
 536/*
 537 * get_user_unaligned: - Get a simple variable from user space.
 538 * @x:	 Variable to store result.
 539 * @ptr: Source address, in user space.
 540 *
 541 * Context: User context only. This function may sleep if pagefaults are
 542 *          enabled.
 543 *
 544 * This macro copies a single simple variable from user space to kernel
 545 * space.  It supports simple types like char and int, but not larger
 546 * data types like structures or arrays.
 547 *
 548 * @ptr must have pointer-to-simple-variable type, and the result of
 549 * dereferencing @ptr must be assignable to @x without a cast.
 550 *
 551 * Returns zero on success, or -EFAULT on error.
 552 * On error, the variable @x is set to zero.
 553 */
 554#define get_user_unaligned(x,ptr) \
 555	__get_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
 556
 557/*
 558 * __put_user_unaligned: - Write a simple value into user space, with less checking.
 559 * @x:	 Value to copy to user space.
 560 * @ptr: Destination address, in user space.
 561 *
 562 * Context: User context only. This function may sleep if pagefaults are
 563 *          enabled.
 564 *
 565 * This macro copies a single simple value from kernel space to user
 566 * space.  It supports simple types like char and int, but not larger
 567 * data types like structures or arrays.
 568 *
 569 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 570 * to the result of dereferencing @ptr.
 571 *
 572 * Caller must check the pointer with access_ok() before calling this
 573 * function.
 574 *
 575 * Returns zero on success, or -EFAULT on error.
 576 */
 577#define __put_user_unaligned(x,ptr) \
 578	__put_user_unaligned_nocheck((x),(ptr),sizeof(*(ptr)))
 579
 580/*
 581 * __get_user_unaligned: - Get a simple variable from user space, with less checking.
 582 * @x:	 Variable to store result.
 583 * @ptr: Source address, in user space.
 584 *
 585 * Context: User context only. This function may sleep if pagefaults are
 586 *          enabled.
 587 *
 588 * This macro copies a single simple variable from user space to kernel
 589 * space.  It supports simple types like char and int, but not larger
 590 * data types like structures or arrays.
 591 *
 592 * @ptr must have pointer-to-simple-variable type, and the result of
 593 * dereferencing @ptr must be assignable to @x without a cast.
 594 *
 595 * Caller must check the pointer with access_ok() before calling this
 596 * function.
 597 *
 598 * Returns zero on success, or -EFAULT on error.
 599 * On error, the variable @x is set to zero.
 600 */
 601#define __get_user_unaligned(x,ptr) \
 602	__get_user_unaligned_nocheck((x),(ptr),sizeof(*(ptr)))
 603
 604/*
 605 * Yuck.  We need two variants, one for 64bit operation and one
 606 * for 32 bit mode and old iron.
 607 */
 608#ifdef CONFIG_32BIT
 609#define __GET_USER_UNALIGNED_DW(val, ptr)				\
 610	__get_user_unaligned_asm_ll32(val, ptr)
 611#endif
 612#ifdef CONFIG_64BIT
 613#define __GET_USER_UNALIGNED_DW(val, ptr)				\
 614	__get_user_unaligned_asm(val, "uld", ptr)
 615#endif
 616
 617extern void __get_user_unaligned_unknown(void);
 618
 619#define __get_user_unaligned_common(val, size, ptr)			\
 620do {									\
 621	switch (size) {							\
 622	case 1: __get_data_asm(val, "lb", ptr); break;			\
 623	case 2: __get_data_unaligned_asm(val, "ulh", ptr); break;	\
 624	case 4: __get_data_unaligned_asm(val, "ulw", ptr); break;	\
 625	case 8: __GET_USER_UNALIGNED_DW(val, ptr); break;		\
 626	default: __get_user_unaligned_unknown(); break;			\
 627	}								\
 628} while (0)
 629
 630#define __get_user_unaligned_nocheck(x,ptr,size)			\
 631({									\
 632	int __gu_err;							\
 633									\
 634	__get_user_unaligned_common((x), size, ptr);			\
 635	__gu_err;							\
 636})
 637
 638#define __get_user_unaligned_check(x,ptr,size)				\
 639({									\
 640	int __gu_err = -EFAULT;						\
 641	const __typeof__(*(ptr)) __user * __gu_ptr = (ptr);		\
 642									\
 643	if (likely(access_ok(VERIFY_READ,  __gu_ptr, size)))		\
 644		__get_user_unaligned_common((x), size, __gu_ptr);	\
 645									\
 646	__gu_err;							\
 647})
 648
 649#define __get_data_unaligned_asm(val, insn, addr)			\
 650{									\
 651	long __gu_tmp;							\
 652									\
 653	__asm__ __volatile__(						\
 654	"1:	" insn "	%1, %3				\n"	\
 655	"2:							\n"	\
 656	"	.insn						\n"	\
 657	"	.section .fixup,\"ax\"				\n"	\
 658	"3:	li	%0, %4					\n"	\
 659	"	move	%1, $0					\n"	\
 660	"	j	2b					\n"	\
 661	"	.previous					\n"	\
 662	"	.section __ex_table,\"a\"			\n"	\
 663	"	"__UA_ADDR "\t1b, 3b				\n"	\
 664	"	"__UA_ADDR "\t1b + 4, 3b			\n"	\
 665	"	.previous					\n"	\
 666	: "=r" (__gu_err), "=r" (__gu_tmp)				\
 667	: "0" (0), "o" (__m(addr)), "i" (-EFAULT));			\
 668									\
 669	(val) = (__typeof__(*(addr))) __gu_tmp;				\
 670}
 671
 672/*
 673 * Get a long long 64 using 32 bit registers.
 674 */
 675#define __get_user_unaligned_asm_ll32(val, addr)			\
 676{									\
 677	unsigned long long __gu_tmp;					\
 678									\
 679	__asm__ __volatile__(						\
 680	"1:	ulw	%1, (%3)				\n"	\
 681	"2:	ulw	%D1, 4(%3)				\n"	\
 682	"	move	%0, $0					\n"	\
 683	"3:							\n"	\
 684	"	.insn						\n"	\
 685	"	.section	.fixup,\"ax\"			\n"	\
 686	"4:	li	%0, %4					\n"	\
 687	"	move	%1, $0					\n"	\
 688	"	move	%D1, $0					\n"	\
 689	"	j	3b					\n"	\
 690	"	.previous					\n"	\
 691	"	.section	__ex_table,\"a\"		\n"	\
 692	"	" __UA_ADDR "	1b, 4b				\n"	\
 693	"	" __UA_ADDR "	1b + 4, 4b			\n"	\
 694	"	" __UA_ADDR "	2b, 4b				\n"	\
 695	"	" __UA_ADDR "	2b + 4, 4b			\n"	\
 696	"	.previous					\n"	\
 697	: "=r" (__gu_err), "=&r" (__gu_tmp)				\
 698	: "0" (0), "r" (addr), "i" (-EFAULT));				\
 699	(val) = (__typeof__(*(addr))) __gu_tmp;				\
 700}
 701
 702/*
 703 * Yuck.  We need two variants, one for 64bit operation and one
 704 * for 32 bit mode and old iron.
 705 */
 706#ifdef CONFIG_32BIT
 707#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm_ll32(ptr)
 708#endif
 709#ifdef CONFIG_64BIT
 710#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm("usd", ptr)
 711#endif
 712
 713#define __put_user_unaligned_common(ptr, size)				\
 714do {									\
 715	switch (size) {							\
 716	case 1: __put_data_asm("sb", ptr); break;			\
 717	case 2: __put_user_unaligned_asm("ush", ptr); break;		\
 718	case 4: __put_user_unaligned_asm("usw", ptr); break;		\
 719	case 8: __PUT_USER_UNALIGNED_DW(ptr); break;			\
 720	default: __put_user_unaligned_unknown(); break;			\
 721} while (0)
 722
 723#define __put_user_unaligned_nocheck(x,ptr,size)			\
 724({									\
 725	__typeof__(*(ptr)) __pu_val;					\
 726	int __pu_err = 0;						\
 727									\
 728	__pu_val = (x);							\
 729	__put_user_unaligned_common(ptr, size);				\
 730	__pu_err;							\
 731})
 732
 733#define __put_user_unaligned_check(x,ptr,size)				\
 734({									\
 735	__typeof__(*(ptr)) __user *__pu_addr = (ptr);			\
 736	__typeof__(*(ptr)) __pu_val = (x);				\
 737	int __pu_err = -EFAULT;						\
 738									\
 739	if (likely(access_ok(VERIFY_WRITE,  __pu_addr, size)))		\
 740		__put_user_unaligned_common(__pu_addr, size);		\
 741									\
 742	__pu_err;							\
 743})
 744
 745#define __put_user_unaligned_asm(insn, ptr)				\
 746{									\
 747	__asm__ __volatile__(						\
 748	"1:	" insn "	%z2, %3		# __put_user_unaligned_asm\n" \
 749	"2:							\n"	\
 750	"	.insn						\n"	\
 751	"	.section	.fixup,\"ax\"			\n"	\
 752	"3:	li	%0, %4					\n"	\
 753	"	j	2b					\n"	\
 754	"	.previous					\n"	\
 755	"	.section	__ex_table,\"a\"		\n"	\
 756	"	" __UA_ADDR "	1b, 3b				\n"	\
 757	"	.previous					\n"	\
 758	: "=r" (__pu_err)						\
 759	: "0" (0), "Jr" (__pu_val), "o" (__m(ptr)),			\
 760	  "i" (-EFAULT));						\
 761}
 762
 763#define __put_user_unaligned_asm_ll32(ptr)				\
 764{									\
 765	__asm__ __volatile__(						\
 766	"1:	sw	%2, (%3)	# __put_user_unaligned_asm_ll32 \n" \
 767	"2:	sw	%D2, 4(%3)				\n"	\
 768	"3:							\n"	\
 769	"	.insn						\n"	\
 770	"	.section	.fixup,\"ax\"			\n"	\
 771	"4:	li	%0, %4					\n"	\
 772	"	j	3b					\n"	\
 773	"	.previous					\n"	\
 774	"	.section	__ex_table,\"a\"		\n"	\
 775	"	" __UA_ADDR "	1b, 4b				\n"	\
 776	"	" __UA_ADDR "	1b + 4, 4b			\n"	\
 777	"	" __UA_ADDR "	2b, 4b				\n"	\
 778	"	" __UA_ADDR "	2b + 4, 4b			\n"	\
 779	"	.previous"						\
 780	: "=r" (__pu_err)						\
 781	: "0" (0), "r" (__pu_val), "r" (ptr),				\
 782	  "i" (-EFAULT));						\
 783}
 784
 785extern void __put_user_unaligned_unknown(void);
 786#endif
 787
 788/*
 789 * We're generating jump to subroutines which will be outside the range of
 790 * jump instructions
 791 */
 792#ifdef MODULE
 793#define __MODULE_JAL(destination)					\
 794	".set\tnoat\n\t"						\
 795	__UA_LA "\t$1, " #destination "\n\t"				\
 796	"jalr\t$1\n\t"							\
 797	".set\tat\n\t"
 798#else
 799#define __MODULE_JAL(destination)					\
 800	"jal\t" #destination "\n\t"
 801#endif
 802
 803#if defined(CONFIG_CPU_DADDI_WORKAROUNDS) || (defined(CONFIG_EVA) &&	\
 804					      defined(CONFIG_CPU_HAS_PREFETCH))
 805#define DADDI_SCRATCH "$3"
 806#else
 807#define DADDI_SCRATCH "$0"
 808#endif
 809
 810extern size_t __copy_user(void *__to, const void *__from, size_t __n);
 811
 812#ifndef CONFIG_EVA
 813#define __invoke_copy_to_user(to, from, n)				\
 814({									\
 815	register void __user *__cu_to_r __asm__("$4");			\
 816	register const void *__cu_from_r __asm__("$5");			\
 817	register long __cu_len_r __asm__("$6");				\
 818									\
 819	__cu_to_r = (to);						\
 820	__cu_from_r = (from);						\
 821	__cu_len_r = (n);						\
 822	__asm__ __volatile__(						\
 823	__MODULE_JAL(__copy_user)					\
 824	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
 825	:								\
 826	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
 827	  DADDI_SCRATCH, "memory");					\
 828	__cu_len_r;							\
 829})
 830
 831#define __invoke_copy_to_kernel(to, from, n)				\
 832	__invoke_copy_to_user(to, from, n)
 833
 834#endif
 835
 836/*
 837 * __copy_to_user: - Copy a block of data into user space, with less checking.
 838 * @to:	  Destination address, in user space.
 839 * @from: Source address, in kernel space.
 840 * @n:	  Number of bytes to copy.
 841 *
 842 * Context: User context only. This function may sleep if pagefaults are
 843 *          enabled.
 844 *
 845 * Copy data from kernel space to user space.  Caller must check
 846 * the specified block with access_ok() before calling this function.
 847 *
 848 * Returns number of bytes that could not be copied.
 849 * On success, this will be zero.
 850 */
 851#define __copy_to_user(to, from, n)					\
 852({									\
 853	void __user *__cu_to;						\
 854	const void *__cu_from;						\
 855	long __cu_len;							\
 856									\
 857	__cu_to = (to);							\
 858	__cu_from = (from);						\
 859	__cu_len = (n);							\
 860	might_fault();							\
 861	if (eva_kernel_access())					\
 862		__cu_len = __invoke_copy_to_kernel(__cu_to, __cu_from,	\
 863						   __cu_len);		\
 864	else								\
 865		__cu_len = __invoke_copy_to_user(__cu_to, __cu_from,	\
 866						 __cu_len);		\
 867	__cu_len;							\
 868})
 869
 870extern size_t __copy_user_inatomic(void *__to, const void *__from, size_t __n);
 871
 872#define __copy_to_user_inatomic(to, from, n)				\
 873({									\
 874	void __user *__cu_to;						\
 875	const void *__cu_from;						\
 876	long __cu_len;							\
 877									\
 878	__cu_to = (to);							\
 879	__cu_from = (from);						\
 880	__cu_len = (n);							\
 881	if (eva_kernel_access())					\
 882		__cu_len = __invoke_copy_to_kernel(__cu_to, __cu_from,	\
 883						   __cu_len);		\
 884	else								\
 885		__cu_len = __invoke_copy_to_user(__cu_to, __cu_from,	\
 886						 __cu_len);		\
 887	__cu_len;							\
 888})
 889
 890#define __copy_from_user_inatomic(to, from, n)				\
 891({									\
 892	void *__cu_to;							\
 893	const void __user *__cu_from;					\
 894	long __cu_len;							\
 895									\
 896	__cu_to = (to);							\
 897	__cu_from = (from);						\
 898	__cu_len = (n);							\
 899	if (eva_kernel_access())					\
 900		__cu_len = __invoke_copy_from_kernel_inatomic(__cu_to,	\
 901							      __cu_from,\
 902							      __cu_len);\
 903	else								\
 904		__cu_len = __invoke_copy_from_user_inatomic(__cu_to,	\
 905							    __cu_from,	\
 906							    __cu_len);	\
 907	__cu_len;							\
 908})
 909
 910/*
 911 * copy_to_user: - Copy a block of data into user space.
 912 * @to:	  Destination address, in user space.
 913 * @from: Source address, in kernel space.
 914 * @n:	  Number of bytes to copy.
 915 *
 916 * Context: User context only. This function may sleep if pagefaults are
 917 *          enabled.
 918 *
 919 * Copy data from kernel space to user space.
 920 *
 921 * Returns number of bytes that could not be copied.
 922 * On success, this will be zero.
 923 */
 924#define copy_to_user(to, from, n)					\
 925({									\
 926	void __user *__cu_to;						\
 927	const void *__cu_from;						\
 928	long __cu_len;							\
 929									\
 930	__cu_to = (to);							\
 931	__cu_from = (from);						\
 932	__cu_len = (n);							\
 933	if (eva_kernel_access()) {					\
 934		__cu_len = __invoke_copy_to_kernel(__cu_to,		\
 935						   __cu_from,		\
 936						   __cu_len);		\
 937	} else {							\
 938		if (access_ok(VERIFY_WRITE, __cu_to, __cu_len)) {       \
 939			might_fault();                                  \
 940			__cu_len = __invoke_copy_to_user(__cu_to,	\
 941							 __cu_from,	\
 942							 __cu_len);     \
 943		}							\
 944	}								\
 945	__cu_len;							\
 946})
 947
 948#ifndef CONFIG_EVA
 949
 950#define __invoke_copy_from_user(to, from, n)				\
 951({									\
 952	register void *__cu_to_r __asm__("$4");				\
 953	register const void __user *__cu_from_r __asm__("$5");		\
 954	register long __cu_len_r __asm__("$6");				\
 955									\
 956	__cu_to_r = (to);						\
 957	__cu_from_r = (from);						\
 958	__cu_len_r = (n);						\
 959	__asm__ __volatile__(						\
 960	".set\tnoreorder\n\t"						\
 961	__MODULE_JAL(__copy_user)					\
 962	".set\tnoat\n\t"						\
 963	__UA_ADDU "\t$1, %1, %2\n\t"					\
 964	".set\tat\n\t"							\
 965	".set\treorder"							\
 966	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
 967	:								\
 968	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
 969	  DADDI_SCRATCH, "memory");					\
 970	__cu_len_r;							\
 971})
 972
 973#define __invoke_copy_from_kernel(to, from, n)				\
 974	__invoke_copy_from_user(to, from, n)
 975
 976/* For userland <-> userland operations */
 977#define ___invoke_copy_in_user(to, from, n)				\
 978	__invoke_copy_from_user(to, from, n)
 979
 980/* For kernel <-> kernel operations */
 981#define ___invoke_copy_in_kernel(to, from, n)				\
 982	__invoke_copy_from_user(to, from, n)
 983
 984#define __invoke_copy_from_user_inatomic(to, from, n)			\
 985({									\
 986	register void *__cu_to_r __asm__("$4");				\
 987	register const void __user *__cu_from_r __asm__("$5");		\
 988	register long __cu_len_r __asm__("$6");				\
 989									\
 990	__cu_to_r = (to);						\
 991	__cu_from_r = (from);						\
 992	__cu_len_r = (n);						\
 993	__asm__ __volatile__(						\
 994	".set\tnoreorder\n\t"						\
 995	__MODULE_JAL(__copy_user_inatomic)				\
 996	".set\tnoat\n\t"						\
 997	__UA_ADDU "\t$1, %1, %2\n\t"					\
 998	".set\tat\n\t"							\
 999	".set\treorder"							\
1000	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
1001	:								\
1002	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
1003	  DADDI_SCRATCH, "memory");					\
1004	__cu_len_r;							\
1005})
1006
1007#define __invoke_copy_from_kernel_inatomic(to, from, n)			\
1008	__invoke_copy_from_user_inatomic(to, from, n)			\
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1009
1010#else
1011
1012/* EVA specific functions */
1013
1014extern size_t __copy_user_inatomic_eva(void *__to, const void *__from,
1015				       size_t __n);
1016extern size_t __copy_from_user_eva(void *__to, const void *__from,
1017				   size_t __n);
1018extern size_t __copy_to_user_eva(void *__to, const void *__from,
1019				 size_t __n);
1020extern size_t __copy_in_user_eva(void *__to, const void *__from, size_t __n);
1021
1022#define __invoke_copy_from_user_eva_generic(to, from, n, func_ptr)	\
1023({									\
1024	register void *__cu_to_r __asm__("$4");				\
1025	register const void __user *__cu_from_r __asm__("$5");		\
1026	register long __cu_len_r __asm__("$6");				\
1027									\
1028	__cu_to_r = (to);						\
1029	__cu_from_r = (from);						\
1030	__cu_len_r = (n);						\
1031	__asm__ __volatile__(						\
1032	".set\tnoreorder\n\t"						\
1033	__MODULE_JAL(func_ptr)						\
1034	".set\tnoat\n\t"						\
1035	__UA_ADDU "\t$1, %1, %2\n\t"					\
1036	".set\tat\n\t"							\
1037	".set\treorder"							\
1038	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
1039	:								\
1040	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
1041	  DADDI_SCRATCH, "memory");					\
1042	__cu_len_r;							\
1043})
1044
1045#define __invoke_copy_to_user_eva_generic(to, from, n, func_ptr)	\
1046({									\
1047	register void *__cu_to_r __asm__("$4");				\
1048	register const void __user *__cu_from_r __asm__("$5");		\
1049	register long __cu_len_r __asm__("$6");				\
1050									\
1051	__cu_to_r = (to);						\
1052	__cu_from_r = (from);						\
1053	__cu_len_r = (n);						\
1054	__asm__ __volatile__(						\
1055	__MODULE_JAL(func_ptr)						\
1056	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
1057	:								\
1058	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
1059	  DADDI_SCRATCH, "memory");					\
1060	__cu_len_r;							\
1061})
1062
1063/*
1064 * Source or destination address is in userland. We need to go through
1065 * the TLB
1066 */
1067#define __invoke_copy_from_user(to, from, n)				\
1068	__invoke_copy_from_user_eva_generic(to, from, n, __copy_from_user_eva)
1069
1070#define __invoke_copy_from_user_inatomic(to, from, n)			\
1071	__invoke_copy_from_user_eva_generic(to, from, n,		\
1072					    __copy_user_inatomic_eva)
1073
1074#define __invoke_copy_to_user(to, from, n)				\
1075	__invoke_copy_to_user_eva_generic(to, from, n, __copy_to_user_eva)
1076
1077#define ___invoke_copy_in_user(to, from, n)				\
1078	__invoke_copy_from_user_eva_generic(to, from, n, __copy_in_user_eva)
1079
1080/*
1081 * Source or destination address in the kernel. We are not going through
1082 * the TLB
1083 */
1084#define __invoke_copy_from_kernel(to, from, n)				\
1085	__invoke_copy_from_user_eva_generic(to, from, n, __copy_user)
1086
1087#define __invoke_copy_from_kernel_inatomic(to, from, n)			\
1088	__invoke_copy_from_user_eva_generic(to, from, n, __copy_user_inatomic)
 
 
 
 
 
 
1089
1090#define __invoke_copy_to_kernel(to, from, n)				\
1091	__invoke_copy_to_user_eva_generic(to, from, n, __copy_user)
1092
1093#define ___invoke_copy_in_kernel(to, from, n)				\
1094	__invoke_copy_from_user_eva_generic(to, from, n, __copy_user)
 
 
 
1095
1096#endif /* CONFIG_EVA */
 
1097
1098/*
1099 * __copy_from_user: - Copy a block of data from user space, with less checking.
1100 * @to:	  Destination address, in kernel space.
1101 * @from: Source address, in user space.
1102 * @n:	  Number of bytes to copy.
1103 *
1104 * Context: User context only. This function may sleep if pagefaults are
1105 *          enabled.
1106 *
1107 * Copy data from user space to kernel space.  Caller must check
1108 * the specified block with access_ok() before calling this function.
1109 *
1110 * Returns number of bytes that could not be copied.
1111 * On success, this will be zero.
1112 *
1113 * If some data could not be copied, this function will pad the copied
1114 * data to the requested size using zero bytes.
1115 */
1116#define __copy_from_user(to, from, n)					\
1117({									\
1118	void *__cu_to;							\
1119	const void __user *__cu_from;					\
1120	long __cu_len;							\
1121									\
1122	__cu_to = (to);							\
1123	__cu_from = (from);						\
1124	__cu_len = (n);							\
1125	if (eva_kernel_access()) {					\
1126		__cu_len = __invoke_copy_from_kernel(__cu_to,		\
1127						     __cu_from,		\
1128						     __cu_len);		\
1129	} else {							\
1130		might_fault();						\
1131		__cu_len = __invoke_copy_from_user(__cu_to, __cu_from,	\
1132						   __cu_len);		\
1133	}								\
1134	__cu_len;							\
1135})
1136
1137/*
1138 * copy_from_user: - Copy a block of data from user space.
1139 * @to:	  Destination address, in kernel space.
1140 * @from: Source address, in user space.
1141 * @n:	  Number of bytes to copy.
1142 *
1143 * Context: User context only. This function may sleep if pagefaults are
1144 *          enabled.
1145 *
1146 * Copy data from user space to kernel space.
1147 *
1148 * Returns number of bytes that could not be copied.
1149 * On success, this will be zero.
1150 *
1151 * If some data could not be copied, this function will pad the copied
1152 * data to the requested size using zero bytes.
1153 */
1154#define copy_from_user(to, from, n)					\
1155({									\
1156	void *__cu_to;							\
1157	const void __user *__cu_from;					\
1158	long __cu_len;							\
1159									\
1160	__cu_to = (to);							\
1161	__cu_from = (from);						\
1162	__cu_len = (n);							\
1163	if (eva_kernel_access()) {					\
1164		__cu_len = __invoke_copy_from_kernel(__cu_to,		\
1165						     __cu_from,		\
1166						     __cu_len);		\
1167	} else {							\
1168		if (access_ok(VERIFY_READ, __cu_from, __cu_len)) {	\
1169			might_fault();                                  \
1170			__cu_len = __invoke_copy_from_user(__cu_to,	\
1171							   __cu_from,	\
1172							   __cu_len);   \
1173		}							\
1174	}								\
1175	__cu_len;							\
1176})
1177
1178#define __copy_in_user(to, from, n)					\
1179({									\
1180	void __user *__cu_to;						\
1181	const void __user *__cu_from;					\
1182	long __cu_len;							\
1183									\
1184	__cu_to = (to);							\
1185	__cu_from = (from);						\
1186	__cu_len = (n);							\
1187	if (eva_kernel_access()) {					\
1188		__cu_len = ___invoke_copy_in_kernel(__cu_to, __cu_from,	\
1189						    __cu_len);		\
1190	} else {							\
1191		might_fault();						\
1192		__cu_len = ___invoke_copy_in_user(__cu_to, __cu_from,	\
1193						  __cu_len);		\
1194	}								\
1195	__cu_len;							\
1196})
1197
1198#define copy_in_user(to, from, n)					\
1199({									\
1200	void __user *__cu_to;						\
1201	const void __user *__cu_from;					\
1202	long __cu_len;							\
1203									\
1204	__cu_to = (to);							\
1205	__cu_from = (from);						\
1206	__cu_len = (n);							\
1207	if (eva_kernel_access()) {					\
1208		__cu_len = ___invoke_copy_in_kernel(__cu_to,__cu_from,	\
1209						    __cu_len);		\
1210	} else {							\
1211		if (likely(access_ok(VERIFY_READ, __cu_from, __cu_len) &&\
1212			   access_ok(VERIFY_WRITE, __cu_to, __cu_len))) {\
1213			might_fault();					\
1214			__cu_len = ___invoke_copy_in_user(__cu_to,	\
1215							  __cu_from,	\
1216							  __cu_len);	\
1217		}							\
1218	}								\
1219	__cu_len;							\
1220})
1221
1222/*
1223 * __clear_user: - Zero a block of memory in user space, with less checking.
1224 * @to:	  Destination address, in user space.
1225 * @n:	  Number of bytes to zero.
1226 *
1227 * Zero a block of memory in user space.  Caller must check
1228 * the specified block with access_ok() before calling this function.
1229 *
1230 * Returns number of bytes that could not be cleared.
1231 * On success, this will be zero.
1232 */
1233static inline __kernel_size_t
1234__clear_user(void __user *addr, __kernel_size_t size)
1235{
1236	__kernel_size_t res;
1237
 
 
 
 
 
 
 
1238	if (eva_kernel_access()) {
1239		__asm__ __volatile__(
1240			"move\t$4, %1\n\t"
1241			"move\t$5, $0\n\t"
1242			"move\t$6, %2\n\t"
1243			__MODULE_JAL(__bzero_kernel)
1244			"move\t%0, $6"
1245			: "=r" (res)
1246			: "r" (addr), "r" (size)
1247			: "$4", "$5", "$6", __UA_t0, __UA_t1, "$31");
1248	} else {
1249		might_fault();
1250		__asm__ __volatile__(
1251			"move\t$4, %1\n\t"
1252			"move\t$5, $0\n\t"
1253			"move\t$6, %2\n\t"
1254			__MODULE_JAL(__bzero)
1255			"move\t%0, $6"
1256			: "=r" (res)
1257			: "r" (addr), "r" (size)
1258			: "$4", "$5", "$6", __UA_t0, __UA_t1, "$31");
1259	}
1260
1261	return res;
1262}
1263
1264#define clear_user(addr,n)						\
1265({									\
1266	void __user * __cl_addr = (addr);				\
1267	unsigned long __cl_size = (n);					\
1268	if (__cl_size && access_ok(VERIFY_WRITE,			\
1269					__cl_addr, __cl_size))		\
1270		__cl_size = __clear_user(__cl_addr, __cl_size);		\
1271	__cl_size;							\
1272})
1273
1274/*
1275 * __strncpy_from_user: - Copy a NUL terminated string from userspace, with less checking.
1276 * @dst:   Destination address, in kernel space.  This buffer must be at
1277 *	   least @count bytes long.
1278 * @src:   Source address, in user space.
1279 * @count: Maximum number of bytes to copy, including the trailing NUL.
1280 *
1281 * Copies a NUL-terminated string from userspace to kernel space.
1282 * Caller must check the specified block with access_ok() before calling
1283 * this function.
1284 *
1285 * On success, returns the length of the string (not including the trailing
1286 * NUL).
1287 *
1288 * If access to userspace fails, returns -EFAULT (some data may have been
1289 * copied).
1290 *
1291 * If @count is smaller than the length of the string, copies @count bytes
1292 * and returns @count.
1293 */
1294static inline long
1295__strncpy_from_user(char *__to, const char __user *__from, long __len)
1296{
1297	long res;
1298
1299	if (eva_kernel_access()) {
1300		__asm__ __volatile__(
1301			"move\t$4, %1\n\t"
1302			"move\t$5, %2\n\t"
1303			"move\t$6, %3\n\t"
1304			__MODULE_JAL(__strncpy_from_kernel_nocheck_asm)
1305			"move\t%0, $2"
1306			: "=r" (res)
1307			: "r" (__to), "r" (__from), "r" (__len)
1308			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1309	} else {
1310		might_fault();
1311		__asm__ __volatile__(
1312			"move\t$4, %1\n\t"
1313			"move\t$5, %2\n\t"
1314			"move\t$6, %3\n\t"
1315			__MODULE_JAL(__strncpy_from_user_nocheck_asm)
1316			"move\t%0, $2"
1317			: "=r" (res)
1318			: "r" (__to), "r" (__from), "r" (__len)
1319			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1320	}
1321
1322	return res;
1323}
1324
1325/*
1326 * strncpy_from_user: - Copy a NUL terminated string from userspace.
1327 * @dst:   Destination address, in kernel space.  This buffer must be at
1328 *	   least @count bytes long.
1329 * @src:   Source address, in user space.
1330 * @count: Maximum number of bytes to copy, including the trailing NUL.
1331 *
1332 * Copies a NUL-terminated string from userspace to kernel space.
1333 *
1334 * On success, returns the length of the string (not including the trailing
1335 * NUL).
1336 *
1337 * If access to userspace fails, returns -EFAULT (some data may have been
1338 * copied).
1339 *
1340 * If @count is smaller than the length of the string, copies @count bytes
1341 * and returns @count.
1342 */
1343static inline long
1344strncpy_from_user(char *__to, const char __user *__from, long __len)
1345{
1346	long res;
1347
1348	if (eva_kernel_access()) {
1349		__asm__ __volatile__(
1350			"move\t$4, %1\n\t"
1351			"move\t$5, %2\n\t"
1352			"move\t$6, %3\n\t"
1353			__MODULE_JAL(__strncpy_from_kernel_asm)
1354			"move\t%0, $2"
1355			: "=r" (res)
1356			: "r" (__to), "r" (__from), "r" (__len)
1357			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1358	} else {
1359		might_fault();
1360		__asm__ __volatile__(
1361			"move\t$4, %1\n\t"
1362			"move\t$5, %2\n\t"
1363			"move\t$6, %3\n\t"
1364			__MODULE_JAL(__strncpy_from_user_asm)
1365			"move\t%0, $2"
1366			: "=r" (res)
1367			: "r" (__to), "r" (__from), "r" (__len)
1368			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1369	}
1370
1371	return res;
1372}
1373
1374/*
1375 * strlen_user: - Get the size of a string in user space.
1376 * @str: The string to measure.
1377 *
1378 * Context: User context only. This function may sleep if pagefaults are
1379 *          enabled.
1380 *
1381 * Get the size of a NUL-terminated string in user space.
1382 *
1383 * Returns the size of the string INCLUDING the terminating NUL.
1384 * On exception, returns 0.
1385 *
1386 * If there is a limit on the length of a valid string, you may wish to
1387 * consider using strnlen_user() instead.
1388 */
1389static inline long strlen_user(const char __user *s)
1390{
1391	long res;
1392
1393	if (eva_kernel_access()) {
1394		__asm__ __volatile__(
1395			"move\t$4, %1\n\t"
1396			__MODULE_JAL(__strlen_kernel_asm)
1397			"move\t%0, $2"
1398			: "=r" (res)
1399			: "r" (s)
1400			: "$2", "$4", __UA_t0, "$31");
1401	} else {
1402		might_fault();
1403		__asm__ __volatile__(
1404			"move\t$4, %1\n\t"
1405			__MODULE_JAL(__strlen_user_asm)
1406			"move\t%0, $2"
1407			: "=r" (res)
1408			: "r" (s)
1409			: "$2", "$4", __UA_t0, "$31");
1410	}
1411
1412	return res;
1413}
1414
1415/* Returns: 0 if bad, string length+1 (memory size) of string if ok */
1416static inline long __strnlen_user(const char __user *s, long n)
1417{
1418	long res;
1419
1420	if (eva_kernel_access()) {
1421		__asm__ __volatile__(
1422			"move\t$4, %1\n\t"
1423			"move\t$5, %2\n\t"
1424			__MODULE_JAL(__strnlen_kernel_nocheck_asm)
1425			"move\t%0, $2"
1426			: "=r" (res)
1427			: "r" (s), "r" (n)
1428			: "$2", "$4", "$5", __UA_t0, "$31");
1429	} else {
1430		might_fault();
1431		__asm__ __volatile__(
1432			"move\t$4, %1\n\t"
1433			"move\t$5, %2\n\t"
1434			__MODULE_JAL(__strnlen_user_nocheck_asm)
1435			"move\t%0, $2"
1436			: "=r" (res)
1437			: "r" (s), "r" (n)
1438			: "$2", "$4", "$5", __UA_t0, "$31");
1439	}
1440
1441	return res;
1442}
1443
1444/*
1445 * strnlen_user: - Get the size of a string in user space.
1446 * @str: The string to measure.
1447 *
1448 * Context: User context only. This function may sleep if pagefaults are
1449 *          enabled.
1450 *
1451 * Get the size of a NUL-terminated string in user space.
1452 *
1453 * Returns the size of the string INCLUDING the terminating NUL.
1454 * On exception, returns 0.
1455 * If the string is too long, returns a value greater than @n.
1456 */
1457static inline long strnlen_user(const char __user *s, long n)
1458{
1459	long res;
1460
1461	might_fault();
1462	if (eva_kernel_access()) {
1463		__asm__ __volatile__(
1464			"move\t$4, %1\n\t"
1465			"move\t$5, %2\n\t"
1466			__MODULE_JAL(__strnlen_kernel_asm)
1467			"move\t%0, $2"
1468			: "=r" (res)
1469			: "r" (s), "r" (n)
1470			: "$2", "$4", "$5", __UA_t0, "$31");
1471	} else {
1472		__asm__ __volatile__(
1473			"move\t$4, %1\n\t"
1474			"move\t$5, %2\n\t"
1475			__MODULE_JAL(__strnlen_user_asm)
1476			"move\t%0, $2"
1477			: "=r" (res)
1478			: "r" (s), "r" (n)
1479			: "$2", "$4", "$5", __UA_t0, "$31");
1480	}
1481
1482	return res;
1483}
1484
1485struct exception_table_entry
1486{
1487	unsigned long insn;
1488	unsigned long nextinsn;
1489};
1490
1491extern int fixup_exception(struct pt_regs *regs);
1492
1493#endif /* _ASM_UACCESS_H */