Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * Divide a 64-bit unsigned number by a 32-bit unsigned number.
  3 * This routine assumes that the top 32 bits of the dividend are
  4 * non-zero to start with.
  5 * On entry, r3 points to the dividend, which get overwritten with
  6 * the 64-bit quotient, and r4 contains the divisor.
  7 * On exit, r3 contains the remainder.
  8 *
  9 * Copyright (C) 2002 Paul Mackerras, IBM Corp.
 10 *
 11 * This program is free software; you can redistribute it and/or
 12 * modify it under the terms of the GNU General Public License
 13 * as published by the Free Software Foundation; either version
 14 * 2 of the License, or (at your option) any later version.
 15 */
 16#include "ppc_asm.h"
 17
 18	.globl __div64_32
 19__div64_32:
 20	lwz	r5,0(r3)	# get the dividend into r5/r6
 21	lwz	r6,4(r3)
 22	cmplw	r5,r4
 23	li	r7,0
 24	li	r8,0
 25	blt	1f
 26	divwu	r7,r5,r4	# if dividend.hi >= divisor,
 27	mullw	r0,r7,r4	# quotient.hi = dividend.hi / divisor
 28	subf.	r5,r0,r5	# dividend.hi %= divisor
 29	beq	3f
 301:	mr	r11,r5		# here dividend.hi != 0
 31	andis.	r0,r5,0xc000
 32	bne	2f
 33	cntlzw	r0,r5		# we are shifting the dividend right
 34	li	r10,-1		# to make it < 2^32, and shifting
 35	srw	r10,r10,r0	# the divisor right the same amount,
 36	addc	r9,r4,r10	# rounding up (so the estimate cannot
 37	andc	r11,r6,r10	# ever be too large, only too small)
 38	andc	r9,r9,r10
 39	addze	r9,r9
 40	or	r11,r5,r11
 41	rotlw	r9,r9,r0
 42	rotlw	r11,r11,r0
 43	divwu	r11,r11,r9	# then we divide the shifted quantities
 442:	mullw	r10,r11,r4	# to get an estimate of the quotient,
 45	mulhwu	r9,r11,r4	# multiply the estimate by the divisor,
 46	subfc	r6,r10,r6	# take the product from the divisor,
 47	add	r8,r8,r11	# and add the estimate to the accumulated
 48	subfe.	r5,r9,r5	# quotient
 49	bne	1b
 503:	cmplw	r6,r4
 51	blt	4f
 52	divwu	r0,r6,r4	# perform the remaining 32-bit division
 53	mullw	r10,r0,r4	# and get the remainder
 54	add	r8,r8,r0
 55	subf	r6,r10,r6
 564:	stw	r7,0(r3)	# return the quotient in *r3
 57	stw	r8,4(r3)
 58	mr	r3,r6		# return the remainder in r3
 59	blr
 60
 61/*
 62 * Extended precision shifts.
 63 *
 64 * Updated to be valid for shift counts from 0 to 63 inclusive.
 65 * -- Gabriel
 66 *
 67 * R3/R4 has 64 bit value
 68 * R5    has shift count
 69 * result in R3/R4
 70 *
 71 *  ashrdi3: arithmetic right shift (sign propagation)	
 72 *  lshrdi3: logical right shift
 73 *  ashldi3: left shift
 74 */
 75	.globl __ashrdi3
 76__ashrdi3:
 77	subfic	r6,r5,32
 78	srw	r4,r4,r5	# LSW = count > 31 ? 0 : LSW >> count
 79	addi	r7,r5,32	# could be xori, or addi with -32
 80	slw	r6,r3,r6	# t1 = count > 31 ? 0 : MSW << (32-count)
 81	rlwinm	r8,r7,0,32	# t3 = (count < 32) ? 32 : 0
 82	sraw	r7,r3,r7	# t2 = MSW >> (count-32)
 83	or	r4,r4,r6	# LSW |= t1
 84	slw	r7,r7,r8	# t2 = (count < 32) ? 0 : t2
 85	sraw	r3,r3,r5	# MSW = MSW >> count
 86	or	r4,r4,r7	# LSW |= t2
 87	blr
 88
 89	.globl __ashldi3
 90__ashldi3:
 91	subfic	r6,r5,32
 92	slw	r3,r3,r5	# MSW = count > 31 ? 0 : MSW << count
 93	addi	r7,r5,32	# could be xori, or addi with -32
 94	srw	r6,r4,r6	# t1 = count > 31 ? 0 : LSW >> (32-count)
 95	slw	r7,r4,r7	# t2 = count < 32 ? 0 : LSW << (count-32)
 96	or	r3,r3,r6	# MSW |= t1
 97	slw	r4,r4,r5	# LSW = LSW << count
 98	or	r3,r3,r7	# MSW |= t2
 99	blr
100
101	.globl __lshrdi3
102__lshrdi3:
103	subfic	r6,r5,32
104	srw	r4,r4,r5	# LSW = count > 31 ? 0 : LSW >> count
105	addi	r7,r5,32	# could be xori, or addi with -32
106	slw	r6,r3,r6	# t1 = count > 31 ? 0 : MSW << (32-count)
107	srw	r7,r3,r7	# t2 = count < 32 ? 0 : MSW >> (count-32)
108	or	r4,r4,r6	# LSW |= t1
109	srw	r3,r3,r5	# MSW = MSW >> count
110	or	r4,r4,r7	# LSW |= t2
111	blr
v4.17
  1/*
  2 * Divide a 64-bit unsigned number by a 32-bit unsigned number.
  3 * This routine assumes that the top 32 bits of the dividend are
  4 * non-zero to start with.
  5 * On entry, r3 points to the dividend, which get overwritten with
  6 * the 64-bit quotient, and r4 contains the divisor.
  7 * On exit, r3 contains the remainder.
  8 *
  9 * Copyright (C) 2002 Paul Mackerras, IBM Corp.
 10 *
 11 * This program is free software; you can redistribute it and/or
 12 * modify it under the terms of the GNU General Public License
 13 * as published by the Free Software Foundation; either version
 14 * 2 of the License, or (at your option) any later version.
 15 */
 16#include "ppc_asm.h"
 17
 18	.globl __div64_32
 19__div64_32:
 20	lwz	r5,0(r3)	# get the dividend into r5/r6
 21	lwz	r6,4(r3)
 22	cmplw	r5,r4
 23	li	r7,0
 24	li	r8,0
 25	blt	1f
 26	divwu	r7,r5,r4	# if dividend.hi >= divisor,
 27	mullw	r0,r7,r4	# quotient.hi = dividend.hi / divisor
 28	subf.	r5,r0,r5	# dividend.hi %= divisor
 29	beq	3f
 301:	mr	r11,r5		# here dividend.hi != 0
 31	andis.	r0,r5,0xc000
 32	bne	2f
 33	cntlzw	r0,r5		# we are shifting the dividend right
 34	li	r10,-1		# to make it < 2^32, and shifting
 35	srw	r10,r10,r0	# the divisor right the same amount,
 36	addc	r9,r4,r10	# rounding up (so the estimate cannot
 37	andc	r11,r6,r10	# ever be too large, only too small)
 38	andc	r9,r9,r10
 39	addze	r9,r9
 40	or	r11,r5,r11
 41	rotlw	r9,r9,r0
 42	rotlw	r11,r11,r0
 43	divwu	r11,r11,r9	# then we divide the shifted quantities
 442:	mullw	r10,r11,r4	# to get an estimate of the quotient,
 45	mulhwu	r9,r11,r4	# multiply the estimate by the divisor,
 46	subfc	r6,r10,r6	# take the product from the divisor,
 47	add	r8,r8,r11	# and add the estimate to the accumulated
 48	subfe.	r5,r9,r5	# quotient
 49	bne	1b
 503:	cmplw	r6,r4
 51	blt	4f
 52	divwu	r0,r6,r4	# perform the remaining 32-bit division
 53	mullw	r10,r0,r4	# and get the remainder
 54	add	r8,r8,r0
 55	subf	r6,r10,r6
 564:	stw	r7,0(r3)	# return the quotient in *r3
 57	stw	r8,4(r3)
 58	mr	r3,r6		# return the remainder in r3
 59	blr
 60
 61/*
 62 * Extended precision shifts.
 63 *
 64 * Updated to be valid for shift counts from 0 to 63 inclusive.
 65 * -- Gabriel
 66 *
 67 * R3/R4 has 64 bit value
 68 * R5    has shift count
 69 * result in R3/R4
 70 *
 71 *  ashrdi3: arithmetic right shift (sign propagation)	
 72 *  lshrdi3: logical right shift
 73 *  ashldi3: left shift
 74 */
 75	.globl __ashrdi3
 76__ashrdi3:
 77	subfic	r6,r5,32
 78	srw	r4,r4,r5	# LSW = count > 31 ? 0 : LSW >> count
 79	addi	r7,r5,32	# could be xori, or addi with -32
 80	slw	r6,r3,r6	# t1 = count > 31 ? 0 : MSW << (32-count)
 81	rlwinm	r8,r7,0,32	# t3 = (count < 32) ? 32 : 0
 82	sraw	r7,r3,r7	# t2 = MSW >> (count-32)
 83	or	r4,r4,r6	# LSW |= t1
 84	slw	r7,r7,r8	# t2 = (count < 32) ? 0 : t2
 85	sraw	r3,r3,r5	# MSW = MSW >> count
 86	or	r4,r4,r7	# LSW |= t2
 87	blr
 88
 89	.globl __ashldi3
 90__ashldi3:
 91	subfic	r6,r5,32
 92	slw	r3,r3,r5	# MSW = count > 31 ? 0 : MSW << count
 93	addi	r7,r5,32	# could be xori, or addi with -32
 94	srw	r6,r4,r6	# t1 = count > 31 ? 0 : LSW >> (32-count)
 95	slw	r7,r4,r7	# t2 = count < 32 ? 0 : LSW << (count-32)
 96	or	r3,r3,r6	# MSW |= t1
 97	slw	r4,r4,r5	# LSW = LSW << count
 98	or	r3,r3,r7	# MSW |= t2
 99	blr
100
101	.globl __lshrdi3
102__lshrdi3:
103	subfic	r6,r5,32
104	srw	r4,r4,r5	# LSW = count > 31 ? 0 : LSW >> count
105	addi	r7,r5,32	# could be xori, or addi with -32
106	slw	r6,r3,r6	# t1 = count > 31 ? 0 : MSW << (32-count)
107	srw	r7,r3,r7	# t2 = count < 32 ? 0 : MSW >> (count-32)
108	or	r4,r4,r6	# LSW |= t1
109	srw	r3,r3,r5	# MSW = MSW >> count
110	or	r4,r4,r7	# LSW |= t2
111	blr