Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * multiorder.c: Multi-order radix tree entry testing
  3 * Copyright (c) 2016 Intel Corporation
  4 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
  5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
  6 *
  7 * This program is free software; you can redistribute it and/or modify it
  8 * under the terms and conditions of the GNU General Public License,
  9 * version 2, as published by the Free Software Foundation.
 10 *
 11 * This program is distributed in the hope it will be useful, but WITHOUT
 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 14 * more details.
 15 */
 16#include <linux/radix-tree.h>
 17#include <linux/slab.h>
 18#include <linux/errno.h>
 19#include <pthread.h>
 20
 21#include "test.h"
 22
 23#define for_each_index(i, base, order) \
 24	for (i = base; i < base + (1 << order); i++)
 25
 26static void __multiorder_tag_test(int index, int order)
 27{
 28	RADIX_TREE(tree, GFP_KERNEL);
 29	int base, err, i;
 30
 31	/* our canonical entry */
 32	base = index & ~((1 << order) - 1);
 33
 34	printv(2, "Multiorder tag test with index %d, canonical entry %d\n",
 35			index, base);
 36
 37	err = item_insert_order(&tree, index, order);
 38	assert(!err);
 39
 40	/*
 41	 * Verify we get collisions for covered indices.  We try and fail to
 42	 * insert an exceptional entry so we don't leak memory via
 43	 * item_insert_order().
 44	 */
 45	for_each_index(i, base, order) {
 46		err = __radix_tree_insert(&tree, i, order,
 47				(void *)(0xA0 | RADIX_TREE_EXCEPTIONAL_ENTRY));
 48		assert(err == -EEXIST);
 49	}
 50
 51	for_each_index(i, base, order) {
 52		assert(!radix_tree_tag_get(&tree, i, 0));
 53		assert(!radix_tree_tag_get(&tree, i, 1));
 54	}
 55
 56	assert(radix_tree_tag_set(&tree, index, 0));
 57
 58	for_each_index(i, base, order) {
 59		assert(radix_tree_tag_get(&tree, i, 0));
 60		assert(!radix_tree_tag_get(&tree, i, 1));
 61	}
 62
 63	assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 1);
 64	assert(radix_tree_tag_clear(&tree, index, 0));
 65
 66	for_each_index(i, base, order) {
 67		assert(!radix_tree_tag_get(&tree, i, 0));
 68		assert(radix_tree_tag_get(&tree, i, 1));
 69	}
 70
 71	assert(radix_tree_tag_clear(&tree, index, 1));
 72
 73	assert(!radix_tree_tagged(&tree, 0));
 74	assert(!radix_tree_tagged(&tree, 1));
 75
 76	item_kill_tree(&tree);
 77}
 78
 79static void __multiorder_tag_test2(unsigned order, unsigned long index2)
 80{
 81	RADIX_TREE(tree, GFP_KERNEL);
 82	unsigned long index = (1 << order);
 83	index2 += index;
 84
 85	assert(item_insert_order(&tree, 0, order) == 0);
 86	assert(item_insert(&tree, index2) == 0);
 87
 88	assert(radix_tree_tag_set(&tree, 0, 0));
 89	assert(radix_tree_tag_set(&tree, index2, 0));
 90
 91	assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 2);
 92
 93	item_kill_tree(&tree);
 94}
 95
 96static void multiorder_tag_tests(void)
 97{
 98	int i, j;
 99
100	/* test multi-order entry for indices 0-7 with no sibling pointers */
101	__multiorder_tag_test(0, 3);
102	__multiorder_tag_test(5, 3);
103
104	/* test multi-order entry for indices 8-15 with no sibling pointers */
105	__multiorder_tag_test(8, 3);
106	__multiorder_tag_test(15, 3);
107
108	/*
109	 * Our order 5 entry covers indices 0-31 in a tree with height=2.
110	 * This is broken up as follows:
111	 * 0-7:		canonical entry
112	 * 8-15:	sibling 1
113	 * 16-23:	sibling 2
114	 * 24-31:	sibling 3
115	 */
116	__multiorder_tag_test(0, 5);
117	__multiorder_tag_test(29, 5);
118
119	/* same test, but with indices 32-63 */
120	__multiorder_tag_test(32, 5);
121	__multiorder_tag_test(44, 5);
122
123	/*
124	 * Our order 8 entry covers indices 0-255 in a tree with height=3.
125	 * This is broken up as follows:
126	 * 0-63:	canonical entry
127	 * 64-127:	sibling 1
128	 * 128-191:	sibling 2
129	 * 192-255:	sibling 3
130	 */
131	__multiorder_tag_test(0, 8);
132	__multiorder_tag_test(190, 8);
133
134	/* same test, but with indices 256-511 */
135	__multiorder_tag_test(256, 8);
136	__multiorder_tag_test(300, 8);
137
138	__multiorder_tag_test(0x12345678UL, 8);
139
140	for (i = 1; i < 10; i++)
141		for (j = 0; j < (10 << i); j++)
142			__multiorder_tag_test2(i, j);
143}
144
145static void multiorder_check(unsigned long index, int order)
146{
147	unsigned long i;
148	unsigned long min = index & ~((1UL << order) - 1);
149	unsigned long max = min + (1UL << order);
150	void **slot;
151	struct item *item2 = item_create(min, order);
152	RADIX_TREE(tree, GFP_KERNEL);
153
154	printv(2, "Multiorder index %ld, order %d\n", index, order);
155
156	assert(item_insert_order(&tree, index, order) == 0);
157
158	for (i = min; i < max; i++) {
159		struct item *item = item_lookup(&tree, i);
160		assert(item != 0);
161		assert(item->index == index);
162	}
163	for (i = 0; i < min; i++)
164		item_check_absent(&tree, i);
165	for (i = max; i < 2*max; i++)
166		item_check_absent(&tree, i);
167	for (i = min; i < max; i++)
168		assert(radix_tree_insert(&tree, i, item2) == -EEXIST);
169
170	slot = radix_tree_lookup_slot(&tree, index);
171	free(*slot);
172	radix_tree_replace_slot(&tree, slot, item2);
173	for (i = min; i < max; i++) {
174		struct item *item = item_lookup(&tree, i);
175		assert(item != 0);
176		assert(item->index == min);
177	}
178
179	assert(item_delete(&tree, min) != 0);
180
181	for (i = 0; i < 2*max; i++)
182		item_check_absent(&tree, i);
183}
184
185static void multiorder_shrink(unsigned long index, int order)
186{
187	unsigned long i;
188	unsigned long max = 1 << order;
189	RADIX_TREE(tree, GFP_KERNEL);
190	struct radix_tree_node *node;
191
192	printv(2, "Multiorder shrink index %ld, order %d\n", index, order);
193
194	assert(item_insert_order(&tree, 0, order) == 0);
195
196	node = tree.rnode;
197
198	assert(item_insert(&tree, index) == 0);
199	assert(node != tree.rnode);
200
201	assert(item_delete(&tree, index) != 0);
202	assert(node == tree.rnode);
203
204	for (i = 0; i < max; i++) {
205		struct item *item = item_lookup(&tree, i);
206		assert(item != 0);
207		assert(item->index == 0);
208	}
209	for (i = max; i < 2*max; i++)
210		item_check_absent(&tree, i);
211
212	if (!item_delete(&tree, 0)) {
213		printv(2, "failed to delete index %ld (order %d)\n", index, order);
214		abort();
215	}
216
217	for (i = 0; i < 2*max; i++)
218		item_check_absent(&tree, i);
219}
220
221static void multiorder_insert_bug(void)
222{
223	RADIX_TREE(tree, GFP_KERNEL);
224
225	item_insert(&tree, 0);
226	radix_tree_tag_set(&tree, 0, 0);
227	item_insert_order(&tree, 3 << 6, 6);
228
229	item_kill_tree(&tree);
230}
231
232void multiorder_iteration(void)
233{
234	RADIX_TREE(tree, GFP_KERNEL);
235	struct radix_tree_iter iter;
236	void **slot;
237	int i, j, err;
238
239	printv(1, "Multiorder iteration test\n");
240
241#define NUM_ENTRIES 11
242	int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128};
243	int order[NUM_ENTRIES] = {1, 1, 2, 3,  4,  1,  0,  1,  3,  0, 7};
244
245	for (i = 0; i < NUM_ENTRIES; i++) {
246		err = item_insert_order(&tree, index[i], order[i]);
247		assert(!err);
248	}
249
250	for (j = 0; j < 256; j++) {
251		for (i = 0; i < NUM_ENTRIES; i++)
252			if (j <= (index[i] | ((1 << order[i]) - 1)))
253				break;
254
255		radix_tree_for_each_slot(slot, &tree, &iter, j) {
256			int height = order[i] / RADIX_TREE_MAP_SHIFT;
257			int shift = height * RADIX_TREE_MAP_SHIFT;
258			unsigned long mask = (1UL << order[i]) - 1;
259			struct item *item = *slot;
260
261			assert((iter.index | mask) == (index[i] | mask));
262			assert(iter.shift == shift);
263			assert(!radix_tree_is_internal_node(item));
264			assert((item->index | mask) == (index[i] | mask));
265			assert(item->order == order[i]);
266			i++;
267		}
268	}
269
270	item_kill_tree(&tree);
271}
272
273void multiorder_tagged_iteration(void)
274{
275	RADIX_TREE(tree, GFP_KERNEL);
276	struct radix_tree_iter iter;
277	void **slot;
278	int i, j;
279
280	printv(1, "Multiorder tagged iteration test\n");
281
282#define MT_NUM_ENTRIES 9
283	int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128};
284	int order[MT_NUM_ENTRIES] = {1, 0, 2, 4,  3,  1,  3,  0,   7};
285
286#define TAG_ENTRIES 7
287	int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128};
288
289	for (i = 0; i < MT_NUM_ENTRIES; i++)
290		assert(!item_insert_order(&tree, index[i], order[i]));
291
292	assert(!radix_tree_tagged(&tree, 1));
293
294	for (i = 0; i < TAG_ENTRIES; i++)
295		assert(radix_tree_tag_set(&tree, tag_index[i], 1));
296
297	for (j = 0; j < 256; j++) {
298		int k;
299
300		for (i = 0; i < TAG_ENTRIES; i++) {
301			for (k = i; index[k] < tag_index[i]; k++)
302				;
303			if (j <= (index[k] | ((1 << order[k]) - 1)))
304				break;
305		}
306
307		radix_tree_for_each_tagged(slot, &tree, &iter, j, 1) {
308			unsigned long mask;
309			struct item *item = *slot;
310			for (k = i; index[k] < tag_index[i]; k++)
311				;
312			mask = (1UL << order[k]) - 1;
313
314			assert((iter.index | mask) == (tag_index[i] | mask));
315			assert(!radix_tree_is_internal_node(item));
316			assert((item->index | mask) == (tag_index[i] | mask));
317			assert(item->order == order[k]);
318			i++;
319		}
320	}
321
322	assert(tag_tagged_items(&tree, NULL, 0, ~0UL, TAG_ENTRIES, 1, 2) ==
323				TAG_ENTRIES);
324
325	for (j = 0; j < 256; j++) {
326		int mask, k;
327
328		for (i = 0; i < TAG_ENTRIES; i++) {
329			for (k = i; index[k] < tag_index[i]; k++)
330				;
331			if (j <= (index[k] | ((1 << order[k]) - 1)))
332				break;
333		}
334
335		radix_tree_for_each_tagged(slot, &tree, &iter, j, 2) {
336			struct item *item = *slot;
337			for (k = i; index[k] < tag_index[i]; k++)
338				;
339			mask = (1 << order[k]) - 1;
340
341			assert((iter.index | mask) == (tag_index[i] | mask));
342			assert(!radix_tree_is_internal_node(item));
343			assert((item->index | mask) == (tag_index[i] | mask));
344			assert(item->order == order[k]);
345			i++;
346		}
347	}
348
349	assert(tag_tagged_items(&tree, NULL, 1, ~0UL, MT_NUM_ENTRIES * 2, 1, 0)
350			== TAG_ENTRIES);
351	i = 0;
352	radix_tree_for_each_tagged(slot, &tree, &iter, 0, 0) {
353		assert(iter.index == tag_index[i]);
354		i++;
355	}
356
357	item_kill_tree(&tree);
358}
359
360/*
361 * Basic join checks: make sure we can't find an entry in the tree after
362 * a larger entry has replaced it
363 */
364static void multiorder_join1(unsigned long index,
365				unsigned order1, unsigned order2)
366{
367	unsigned long loc;
368	void *item, *item2 = item_create(index + 1, order1);
369	RADIX_TREE(tree, GFP_KERNEL);
370
371	item_insert_order(&tree, index, order2);
372	item = radix_tree_lookup(&tree, index);
373	radix_tree_join(&tree, index + 1, order1, item2);
374	loc = find_item(&tree, item);
375	if (loc == -1)
376		free(item);
377	item = radix_tree_lookup(&tree, index + 1);
378	assert(item == item2);
379	item_kill_tree(&tree);
380}
381
382/*
383 * Check that the accounting of exceptional entries is handled correctly
384 * by joining an exceptional entry to a normal pointer.
385 */
386static void multiorder_join2(unsigned order1, unsigned order2)
387{
388	RADIX_TREE(tree, GFP_KERNEL);
389	struct radix_tree_node *node;
390	void *item1 = item_create(0, order1);
391	void *item2;
392
393	item_insert_order(&tree, 0, order2);
394	radix_tree_insert(&tree, 1 << order2, (void *)0x12UL);
395	item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL);
396	assert(item2 == (void *)0x12UL);
397	assert(node->exceptional == 1);
398
399	item2 = radix_tree_lookup(&tree, 0);
400	free(item2);
401
402	radix_tree_join(&tree, 0, order1, item1);
403	item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL);
404	assert(item2 == item1);
405	assert(node->exceptional == 0);
406	item_kill_tree(&tree);
407}
408
409/*
410 * This test revealed an accounting bug for exceptional entries at one point.
411 * Nodes were being freed back into the pool with an elevated exception count
412 * by radix_tree_join() and then radix_tree_split() was failing to zero the
413 * count of exceptional entries.
414 */
415static void multiorder_join3(unsigned int order)
416{
417	RADIX_TREE(tree, GFP_KERNEL);
418	struct radix_tree_node *node;
419	void **slot;
420	struct radix_tree_iter iter;
421	unsigned long i;
422
423	for (i = 0; i < (1 << order); i++) {
424		radix_tree_insert(&tree, i, (void *)0x12UL);
425	}
426
427	radix_tree_join(&tree, 0, order, (void *)0x16UL);
428	rcu_barrier();
429
430	radix_tree_split(&tree, 0, 0);
431
432	radix_tree_for_each_slot(slot, &tree, &iter, 0) {
433		radix_tree_iter_replace(&tree, &iter, slot, (void *)0x12UL);
434	}
435
436	__radix_tree_lookup(&tree, 0, &node, NULL);
437	assert(node->exceptional == node->count);
438
439	item_kill_tree(&tree);
440}
441
442static void multiorder_join(void)
443{
444	int i, j, idx;
445
446	for (idx = 0; idx < 1024; idx = idx * 2 + 3) {
447		for (i = 1; i < 15; i++) {
448			for (j = 0; j < i; j++) {
449				multiorder_join1(idx, i, j);
450			}
451		}
452	}
453
454	for (i = 1; i < 15; i++) {
455		for (j = 0; j < i; j++) {
456			multiorder_join2(i, j);
457		}
458	}
459
460	for (i = 3; i < 10; i++) {
461		multiorder_join3(i);
462	}
463}
464
465static void check_mem(unsigned old_order, unsigned new_order, unsigned alloc)
466{
467	struct radix_tree_preload *rtp = &radix_tree_preloads;
468	if (rtp->nr != 0)
469		printv(2, "split(%u %u) remaining %u\n", old_order, new_order,
470							rtp->nr);
471	/*
472	 * Can't check for equality here as some nodes may have been
473	 * RCU-freed while we ran.  But we should never finish with more
474	 * nodes allocated since they should have all been preloaded.
475	 */
476	if (nr_allocated > alloc)
477		printv(2, "split(%u %u) allocated %u %u\n", old_order, new_order,
478							alloc, nr_allocated);
479}
480
481static void __multiorder_split(int old_order, int new_order)
482{
483	RADIX_TREE(tree, GFP_ATOMIC);
484	void **slot;
485	struct radix_tree_iter iter;
486	unsigned alloc;
487	struct item *item;
488
489	radix_tree_preload(GFP_KERNEL);
490	assert(item_insert_order(&tree, 0, old_order) == 0);
491	radix_tree_preload_end();
492
493	/* Wipe out the preloaded cache or it'll confuse check_mem() */
494	radix_tree_cpu_dead(0);
495
496	item = radix_tree_tag_set(&tree, 0, 2);
497
498	radix_tree_split_preload(old_order, new_order, GFP_KERNEL);
499	alloc = nr_allocated;
500	radix_tree_split(&tree, 0, new_order);
501	check_mem(old_order, new_order, alloc);
502	radix_tree_for_each_slot(slot, &tree, &iter, 0) {
503		radix_tree_iter_replace(&tree, &iter, slot,
504					item_create(iter.index, new_order));
505	}
506	radix_tree_preload_end();
507
508	item_kill_tree(&tree);
509	free(item);
510}
511
512static void __multiorder_split2(int old_order, int new_order)
513{
514	RADIX_TREE(tree, GFP_KERNEL);
515	void **slot;
516	struct radix_tree_iter iter;
517	struct radix_tree_node *node;
518	void *item;
519
520	__radix_tree_insert(&tree, 0, old_order, (void *)0x12);
521
522	item = __radix_tree_lookup(&tree, 0, &node, NULL);
523	assert(item == (void *)0x12);
524	assert(node->exceptional > 0);
525
526	radix_tree_split(&tree, 0, new_order);
527	radix_tree_for_each_slot(slot, &tree, &iter, 0) {
528		radix_tree_iter_replace(&tree, &iter, slot,
529					item_create(iter.index, new_order));
530	}
531
532	item = __radix_tree_lookup(&tree, 0, &node, NULL);
533	assert(item != (void *)0x12);
534	assert(node->exceptional == 0);
535
536	item_kill_tree(&tree);
537}
538
539static void __multiorder_split3(int old_order, int new_order)
540{
541	RADIX_TREE(tree, GFP_KERNEL);
542	void **slot;
543	struct radix_tree_iter iter;
544	struct radix_tree_node *node;
545	void *item;
546
547	__radix_tree_insert(&tree, 0, old_order, (void *)0x12);
548
549	item = __radix_tree_lookup(&tree, 0, &node, NULL);
550	assert(item == (void *)0x12);
551	assert(node->exceptional > 0);
552
553	radix_tree_split(&tree, 0, new_order);
554	radix_tree_for_each_slot(slot, &tree, &iter, 0) {
555		radix_tree_iter_replace(&tree, &iter, slot, (void *)0x16);
556	}
557
558	item = __radix_tree_lookup(&tree, 0, &node, NULL);
559	assert(item == (void *)0x16);
560	assert(node->exceptional > 0);
561
562	item_kill_tree(&tree);
563
564	__radix_tree_insert(&tree, 0, old_order, (void *)0x12);
565
566	item = __radix_tree_lookup(&tree, 0, &node, NULL);
567	assert(item == (void *)0x12);
568	assert(node->exceptional > 0);
569
570	radix_tree_split(&tree, 0, new_order);
571	radix_tree_for_each_slot(slot, &tree, &iter, 0) {
572		if (iter.index == (1 << new_order))
573			radix_tree_iter_replace(&tree, &iter, slot,
574						(void *)0x16);
575		else
576			radix_tree_iter_replace(&tree, &iter, slot, NULL);
577	}
578
579	item = __radix_tree_lookup(&tree, 1 << new_order, &node, NULL);
580	assert(item == (void *)0x16);
581	assert(node->count == node->exceptional);
582	do {
583		node = node->parent;
584		if (!node)
585			break;
586		assert(node->count == 1);
587		assert(node->exceptional == 0);
588	} while (1);
589
590	item_kill_tree(&tree);
591}
592
593static void multiorder_split(void)
594{
595	int i, j;
596
597	for (i = 3; i < 11; i++)
598		for (j = 0; j < i; j++) {
599			__multiorder_split(i, j);
600			__multiorder_split2(i, j);
601			__multiorder_split3(i, j);
602		}
603}
604
605static void multiorder_account(void)
606{
607	RADIX_TREE(tree, GFP_KERNEL);
608	struct radix_tree_node *node;
609	void **slot;
610
611	item_insert_order(&tree, 0, 5);
612
613	__radix_tree_insert(&tree, 1 << 5, 5, (void *)0x12);
614	__radix_tree_lookup(&tree, 0, &node, NULL);
615	assert(node->count == node->exceptional * 2);
616	radix_tree_delete(&tree, 1 << 5);
617	assert(node->exceptional == 0);
618
619	__radix_tree_insert(&tree, 1 << 5, 5, (void *)0x12);
620	__radix_tree_lookup(&tree, 1 << 5, &node, &slot);
621	assert(node->count == node->exceptional * 2);
622	__radix_tree_replace(&tree, node, slot, NULL, NULL);
623	assert(node->exceptional == 0);
624
625	item_kill_tree(&tree);
626}
627
628bool stop_iteration = false;
629
630static void *creator_func(void *ptr)
631{
632	/* 'order' is set up to ensure we have sibling entries */
633	unsigned int order = RADIX_TREE_MAP_SHIFT - 1;
634	struct radix_tree_root *tree = ptr;
635	int i;
636
637	for (i = 0; i < 10000; i++) {
638		item_insert_order(tree, 0, order);
639		item_delete_rcu(tree, 0);
640	}
641
642	stop_iteration = true;
643	return NULL;
644}
645
646static void *iterator_func(void *ptr)
647{
648	struct radix_tree_root *tree = ptr;
649	struct radix_tree_iter iter;
650	struct item *item;
651	void **slot;
652
653	while (!stop_iteration) {
654		rcu_read_lock();
655		radix_tree_for_each_slot(slot, tree, &iter, 0) {
656			item = radix_tree_deref_slot(slot);
657
658			if (!item)
659				continue;
660			if (radix_tree_deref_retry(item)) {
661				slot = radix_tree_iter_retry(&iter);
662				continue;
663			}
664
665			item_sanity(item, iter.index);
666		}
667		rcu_read_unlock();
668	}
669	return NULL;
670}
671
672static void multiorder_iteration_race(void)
673{
674	const int num_threads = sysconf(_SC_NPROCESSORS_ONLN);
675	pthread_t worker_thread[num_threads];
676	RADIX_TREE(tree, GFP_KERNEL);
677	int i;
678
679	pthread_create(&worker_thread[0], NULL, &creator_func, &tree);
680	for (i = 1; i < num_threads; i++)
681		pthread_create(&worker_thread[i], NULL, &iterator_func, &tree);
682
683	for (i = 0; i < num_threads; i++)
684		pthread_join(worker_thread[i], NULL);
685
686	item_kill_tree(&tree);
687}
688
689void multiorder_checks(void)
690{
691	int i;
692
693	for (i = 0; i < 20; i++) {
694		multiorder_check(200, i);
695		multiorder_check(0, i);
696		multiorder_check((1UL << i) + 1, i);
697	}
698
699	for (i = 0; i < 15; i++)
700		multiorder_shrink((1UL << (i + RADIX_TREE_MAP_SHIFT)), i);
701
702	multiorder_insert_bug();
703	multiorder_tag_tests();
704	multiorder_iteration();
705	multiorder_tagged_iteration();
706	multiorder_join();
707	multiorder_split();
708	multiorder_account();
709	multiorder_iteration_race();
710
711	radix_tree_cpu_dead(0);
712}
713
714int __weak main(void)
715{
716	radix_tree_init();
717	multiorder_checks();
718	return 0;
719}
v4.10.11
  1/*
  2 * multiorder.c: Multi-order radix tree entry testing
  3 * Copyright (c) 2016 Intel Corporation
  4 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
  5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
  6 *
  7 * This program is free software; you can redistribute it and/or modify it
  8 * under the terms and conditions of the GNU General Public License,
  9 * version 2, as published by the Free Software Foundation.
 10 *
 11 * This program is distributed in the hope it will be useful, but WITHOUT
 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 14 * more details.
 15 */
 16#include <linux/radix-tree.h>
 17#include <linux/slab.h>
 18#include <linux/errno.h>
 
 19
 20#include "test.h"
 21
 22#define for_each_index(i, base, order) \
 23	for (i = base; i < base + (1 << order); i++)
 24
 25static void __multiorder_tag_test(int index, int order)
 26{
 27	RADIX_TREE(tree, GFP_KERNEL);
 28	int base, err, i;
 29
 30	/* our canonical entry */
 31	base = index & ~((1 << order) - 1);
 32
 33	printf("Multiorder tag test with index %d, canonical entry %d\n",
 34			index, base);
 35
 36	err = item_insert_order(&tree, index, order);
 37	assert(!err);
 38
 39	/*
 40	 * Verify we get collisions for covered indices.  We try and fail to
 41	 * insert an exceptional entry so we don't leak memory via
 42	 * item_insert_order().
 43	 */
 44	for_each_index(i, base, order) {
 45		err = __radix_tree_insert(&tree, i, order,
 46				(void *)(0xA0 | RADIX_TREE_EXCEPTIONAL_ENTRY));
 47		assert(err == -EEXIST);
 48	}
 49
 50	for_each_index(i, base, order) {
 51		assert(!radix_tree_tag_get(&tree, i, 0));
 52		assert(!radix_tree_tag_get(&tree, i, 1));
 53	}
 54
 55	assert(radix_tree_tag_set(&tree, index, 0));
 56
 57	for_each_index(i, base, order) {
 58		assert(radix_tree_tag_get(&tree, i, 0));
 59		assert(!radix_tree_tag_get(&tree, i, 1));
 60	}
 61
 62	assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 1);
 63	assert(radix_tree_tag_clear(&tree, index, 0));
 64
 65	for_each_index(i, base, order) {
 66		assert(!radix_tree_tag_get(&tree, i, 0));
 67		assert(radix_tree_tag_get(&tree, i, 1));
 68	}
 69
 70	assert(radix_tree_tag_clear(&tree, index, 1));
 71
 72	assert(!radix_tree_tagged(&tree, 0));
 73	assert(!radix_tree_tagged(&tree, 1));
 74
 75	item_kill_tree(&tree);
 76}
 77
 78static void __multiorder_tag_test2(unsigned order, unsigned long index2)
 79{
 80	RADIX_TREE(tree, GFP_KERNEL);
 81	unsigned long index = (1 << order);
 82	index2 += index;
 83
 84	assert(item_insert_order(&tree, 0, order) == 0);
 85	assert(item_insert(&tree, index2) == 0);
 86
 87	assert(radix_tree_tag_set(&tree, 0, 0));
 88	assert(radix_tree_tag_set(&tree, index2, 0));
 89
 90	assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 2);
 91
 92	item_kill_tree(&tree);
 93}
 94
 95static void multiorder_tag_tests(void)
 96{
 97	int i, j;
 98
 99	/* test multi-order entry for indices 0-7 with no sibling pointers */
100	__multiorder_tag_test(0, 3);
101	__multiorder_tag_test(5, 3);
102
103	/* test multi-order entry for indices 8-15 with no sibling pointers */
104	__multiorder_tag_test(8, 3);
105	__multiorder_tag_test(15, 3);
106
107	/*
108	 * Our order 5 entry covers indices 0-31 in a tree with height=2.
109	 * This is broken up as follows:
110	 * 0-7:		canonical entry
111	 * 8-15:	sibling 1
112	 * 16-23:	sibling 2
113	 * 24-31:	sibling 3
114	 */
115	__multiorder_tag_test(0, 5);
116	__multiorder_tag_test(29, 5);
117
118	/* same test, but with indices 32-63 */
119	__multiorder_tag_test(32, 5);
120	__multiorder_tag_test(44, 5);
121
122	/*
123	 * Our order 8 entry covers indices 0-255 in a tree with height=3.
124	 * This is broken up as follows:
125	 * 0-63:	canonical entry
126	 * 64-127:	sibling 1
127	 * 128-191:	sibling 2
128	 * 192-255:	sibling 3
129	 */
130	__multiorder_tag_test(0, 8);
131	__multiorder_tag_test(190, 8);
132
133	/* same test, but with indices 256-511 */
134	__multiorder_tag_test(256, 8);
135	__multiorder_tag_test(300, 8);
136
137	__multiorder_tag_test(0x12345678UL, 8);
138
139	for (i = 1; i < 10; i++)
140		for (j = 0; j < (10 << i); j++)
141			__multiorder_tag_test2(i, j);
142}
143
144static void multiorder_check(unsigned long index, int order)
145{
146	unsigned long i;
147	unsigned long min = index & ~((1UL << order) - 1);
148	unsigned long max = min + (1UL << order);
149	void **slot;
150	struct item *item2 = item_create(min, order);
151	RADIX_TREE(tree, GFP_KERNEL);
152
153	printf("Multiorder index %ld, order %d\n", index, order);
154
155	assert(item_insert_order(&tree, index, order) == 0);
156
157	for (i = min; i < max; i++) {
158		struct item *item = item_lookup(&tree, i);
159		assert(item != 0);
160		assert(item->index == index);
161	}
162	for (i = 0; i < min; i++)
163		item_check_absent(&tree, i);
164	for (i = max; i < 2*max; i++)
165		item_check_absent(&tree, i);
166	for (i = min; i < max; i++)
167		assert(radix_tree_insert(&tree, i, item2) == -EEXIST);
168
169	slot = radix_tree_lookup_slot(&tree, index);
170	free(*slot);
171	radix_tree_replace_slot(&tree, slot, item2);
172	for (i = min; i < max; i++) {
173		struct item *item = item_lookup(&tree, i);
174		assert(item != 0);
175		assert(item->index == min);
176	}
177
178	assert(item_delete(&tree, min) != 0);
179
180	for (i = 0; i < 2*max; i++)
181		item_check_absent(&tree, i);
182}
183
184static void multiorder_shrink(unsigned long index, int order)
185{
186	unsigned long i;
187	unsigned long max = 1 << order;
188	RADIX_TREE(tree, GFP_KERNEL);
189	struct radix_tree_node *node;
190
191	printf("Multiorder shrink index %ld, order %d\n", index, order);
192
193	assert(item_insert_order(&tree, 0, order) == 0);
194
195	node = tree.rnode;
196
197	assert(item_insert(&tree, index) == 0);
198	assert(node != tree.rnode);
199
200	assert(item_delete(&tree, index) != 0);
201	assert(node == tree.rnode);
202
203	for (i = 0; i < max; i++) {
204		struct item *item = item_lookup(&tree, i);
205		assert(item != 0);
206		assert(item->index == 0);
207	}
208	for (i = max; i < 2*max; i++)
209		item_check_absent(&tree, i);
210
211	if (!item_delete(&tree, 0)) {
212		printf("failed to delete index %ld (order %d)\n", index, order);		abort();
 
213	}
214
215	for (i = 0; i < 2*max; i++)
216		item_check_absent(&tree, i);
217}
218
219static void multiorder_insert_bug(void)
220{
221	RADIX_TREE(tree, GFP_KERNEL);
222
223	item_insert(&tree, 0);
224	radix_tree_tag_set(&tree, 0, 0);
225	item_insert_order(&tree, 3 << 6, 6);
226
227	item_kill_tree(&tree);
228}
229
230void multiorder_iteration(void)
231{
232	RADIX_TREE(tree, GFP_KERNEL);
233	struct radix_tree_iter iter;
234	void **slot;
235	int i, j, err;
236
237	printf("Multiorder iteration test\n");
238
239#define NUM_ENTRIES 11
240	int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128};
241	int order[NUM_ENTRIES] = {1, 1, 2, 3,  4,  1,  0,  1,  3,  0, 7};
242
243	for (i = 0; i < NUM_ENTRIES; i++) {
244		err = item_insert_order(&tree, index[i], order[i]);
245		assert(!err);
246	}
247
248	for (j = 0; j < 256; j++) {
249		for (i = 0; i < NUM_ENTRIES; i++)
250			if (j <= (index[i] | ((1 << order[i]) - 1)))
251				break;
252
253		radix_tree_for_each_slot(slot, &tree, &iter, j) {
254			int height = order[i] / RADIX_TREE_MAP_SHIFT;
255			int shift = height * RADIX_TREE_MAP_SHIFT;
256			unsigned long mask = (1UL << order[i]) - 1;
257			struct item *item = *slot;
258
259			assert((iter.index | mask) == (index[i] | mask));
260			assert(iter.shift == shift);
261			assert(!radix_tree_is_internal_node(item));
262			assert((item->index | mask) == (index[i] | mask));
263			assert(item->order == order[i]);
264			i++;
265		}
266	}
267
268	item_kill_tree(&tree);
269}
270
271void multiorder_tagged_iteration(void)
272{
273	RADIX_TREE(tree, GFP_KERNEL);
274	struct radix_tree_iter iter;
275	void **slot;
276	int i, j;
277
278	printf("Multiorder tagged iteration test\n");
279
280#define MT_NUM_ENTRIES 9
281	int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128};
282	int order[MT_NUM_ENTRIES] = {1, 0, 2, 4,  3,  1,  3,  0,   7};
283
284#define TAG_ENTRIES 7
285	int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128};
286
287	for (i = 0; i < MT_NUM_ENTRIES; i++)
288		assert(!item_insert_order(&tree, index[i], order[i]));
289
290	assert(!radix_tree_tagged(&tree, 1));
291
292	for (i = 0; i < TAG_ENTRIES; i++)
293		assert(radix_tree_tag_set(&tree, tag_index[i], 1));
294
295	for (j = 0; j < 256; j++) {
296		int k;
297
298		for (i = 0; i < TAG_ENTRIES; i++) {
299			for (k = i; index[k] < tag_index[i]; k++)
300				;
301			if (j <= (index[k] | ((1 << order[k]) - 1)))
302				break;
303		}
304
305		radix_tree_for_each_tagged(slot, &tree, &iter, j, 1) {
306			unsigned long mask;
307			struct item *item = *slot;
308			for (k = i; index[k] < tag_index[i]; k++)
309				;
310			mask = (1UL << order[k]) - 1;
311
312			assert((iter.index | mask) == (tag_index[i] | mask));
313			assert(!radix_tree_is_internal_node(item));
314			assert((item->index | mask) == (tag_index[i] | mask));
315			assert(item->order == order[k]);
316			i++;
317		}
318	}
319
320	assert(tag_tagged_items(&tree, NULL, 0, ~0UL, TAG_ENTRIES, 1, 2) ==
321				TAG_ENTRIES);
322
323	for (j = 0; j < 256; j++) {
324		int mask, k;
325
326		for (i = 0; i < TAG_ENTRIES; i++) {
327			for (k = i; index[k] < tag_index[i]; k++)
328				;
329			if (j <= (index[k] | ((1 << order[k]) - 1)))
330				break;
331		}
332
333		radix_tree_for_each_tagged(slot, &tree, &iter, j, 2) {
334			struct item *item = *slot;
335			for (k = i; index[k] < tag_index[i]; k++)
336				;
337			mask = (1 << order[k]) - 1;
338
339			assert((iter.index | mask) == (tag_index[i] | mask));
340			assert(!radix_tree_is_internal_node(item));
341			assert((item->index | mask) == (tag_index[i] | mask));
342			assert(item->order == order[k]);
343			i++;
344		}
345	}
346
347	assert(tag_tagged_items(&tree, NULL, 1, ~0UL, MT_NUM_ENTRIES * 2, 1, 0)
348			== TAG_ENTRIES);
349	i = 0;
350	radix_tree_for_each_tagged(slot, &tree, &iter, 0, 0) {
351		assert(iter.index == tag_index[i]);
352		i++;
353	}
354
355	item_kill_tree(&tree);
356}
357
 
 
 
 
358static void multiorder_join1(unsigned long index,
359				unsigned order1, unsigned order2)
360{
361	unsigned long loc;
362	void *item, *item2 = item_create(index + 1, order1);
363	RADIX_TREE(tree, GFP_KERNEL);
364
365	item_insert_order(&tree, index, order2);
366	item = radix_tree_lookup(&tree, index);
367	radix_tree_join(&tree, index + 1, order1, item2);
368	loc = find_item(&tree, item);
369	if (loc == -1)
370		free(item);
371	item = radix_tree_lookup(&tree, index + 1);
372	assert(item == item2);
373	item_kill_tree(&tree);
374}
375
 
 
 
 
376static void multiorder_join2(unsigned order1, unsigned order2)
377{
378	RADIX_TREE(tree, GFP_KERNEL);
379	struct radix_tree_node *node;
380	void *item1 = item_create(0, order1);
381	void *item2;
382
383	item_insert_order(&tree, 0, order2);
384	radix_tree_insert(&tree, 1 << order2, (void *)0x12UL);
385	item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL);
386	assert(item2 == (void *)0x12UL);
387	assert(node->exceptional == 1);
388
 
 
 
389	radix_tree_join(&tree, 0, order1, item1);
390	item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL);
391	assert(item2 == item1);
392	assert(node->exceptional == 0);
393	item_kill_tree(&tree);
394}
395
396/*
397 * This test revealed an accounting bug for exceptional entries at one point.
398 * Nodes were being freed back into the pool with an elevated exception count
399 * by radix_tree_join() and then radix_tree_split() was failing to zero the
400 * count of exceptional entries.
401 */
402static void multiorder_join3(unsigned int order)
403{
404	RADIX_TREE(tree, GFP_KERNEL);
405	struct radix_tree_node *node;
406	void **slot;
407	struct radix_tree_iter iter;
408	unsigned long i;
409
410	for (i = 0; i < (1 << order); i++) {
411		radix_tree_insert(&tree, i, (void *)0x12UL);
412	}
413
414	radix_tree_join(&tree, 0, order, (void *)0x16UL);
415	rcu_barrier();
416
417	radix_tree_split(&tree, 0, 0);
418
419	radix_tree_for_each_slot(slot, &tree, &iter, 0) {
420		radix_tree_iter_replace(&tree, &iter, slot, (void *)0x12UL);
421	}
422
423	__radix_tree_lookup(&tree, 0, &node, NULL);
424	assert(node->exceptional == node->count);
425
426	item_kill_tree(&tree);
427}
428
429static void multiorder_join(void)
430{
431	int i, j, idx;
432
433	for (idx = 0; idx < 1024; idx = idx * 2 + 3) {
434		for (i = 1; i < 15; i++) {
435			for (j = 0; j < i; j++) {
436				multiorder_join1(idx, i, j);
437			}
438		}
439	}
440
441	for (i = 1; i < 15; i++) {
442		for (j = 0; j < i; j++) {
443			multiorder_join2(i, j);
444		}
445	}
446
447	for (i = 3; i < 10; i++) {
448		multiorder_join3(i);
449	}
450}
451
452static void check_mem(unsigned old_order, unsigned new_order, unsigned alloc)
453{
454	struct radix_tree_preload *rtp = &radix_tree_preloads;
455	if (rtp->nr != 0)
456		printf("split(%u %u) remaining %u\n", old_order, new_order,
457							rtp->nr);
458	/*
459	 * Can't check for equality here as some nodes may have been
460	 * RCU-freed while we ran.  But we should never finish with more
461	 * nodes allocated since they should have all been preloaded.
462	 */
463	if (nr_allocated > alloc)
464		printf("split(%u %u) allocated %u %u\n", old_order, new_order,
465							alloc, nr_allocated);
466}
467
468static void __multiorder_split(int old_order, int new_order)
469{
470	RADIX_TREE(tree, GFP_ATOMIC);
471	void **slot;
472	struct radix_tree_iter iter;
473	unsigned alloc;
 
474
475	radix_tree_preload(GFP_KERNEL);
476	assert(item_insert_order(&tree, 0, old_order) == 0);
477	radix_tree_preload_end();
478
479	/* Wipe out the preloaded cache or it'll confuse check_mem() */
480	radix_tree_cpu_dead(0);
481
482	radix_tree_tag_set(&tree, 0, 2);
483
484	radix_tree_split_preload(old_order, new_order, GFP_KERNEL);
485	alloc = nr_allocated;
486	radix_tree_split(&tree, 0, new_order);
487	check_mem(old_order, new_order, alloc);
488	radix_tree_for_each_slot(slot, &tree, &iter, 0) {
489		radix_tree_iter_replace(&tree, &iter, slot,
490					item_create(iter.index, new_order));
491	}
492	radix_tree_preload_end();
493
494	item_kill_tree(&tree);
 
495}
496
497static void __multiorder_split2(int old_order, int new_order)
498{
499	RADIX_TREE(tree, GFP_KERNEL);
500	void **slot;
501	struct radix_tree_iter iter;
502	struct radix_tree_node *node;
503	void *item;
504
505	__radix_tree_insert(&tree, 0, old_order, (void *)0x12);
506
507	item = __radix_tree_lookup(&tree, 0, &node, NULL);
508	assert(item == (void *)0x12);
509	assert(node->exceptional > 0);
510
511	radix_tree_split(&tree, 0, new_order);
512	radix_tree_for_each_slot(slot, &tree, &iter, 0) {
513		radix_tree_iter_replace(&tree, &iter, slot,
514					item_create(iter.index, new_order));
515	}
516
517	item = __radix_tree_lookup(&tree, 0, &node, NULL);
518	assert(item != (void *)0x12);
519	assert(node->exceptional == 0);
520
521	item_kill_tree(&tree);
522}
523
524static void __multiorder_split3(int old_order, int new_order)
525{
526	RADIX_TREE(tree, GFP_KERNEL);
527	void **slot;
528	struct radix_tree_iter iter;
529	struct radix_tree_node *node;
530	void *item;
531
532	__radix_tree_insert(&tree, 0, old_order, (void *)0x12);
533
534	item = __radix_tree_lookup(&tree, 0, &node, NULL);
535	assert(item == (void *)0x12);
536	assert(node->exceptional > 0);
537
538	radix_tree_split(&tree, 0, new_order);
539	radix_tree_for_each_slot(slot, &tree, &iter, 0) {
540		radix_tree_iter_replace(&tree, &iter, slot, (void *)0x16);
541	}
542
543	item = __radix_tree_lookup(&tree, 0, &node, NULL);
544	assert(item == (void *)0x16);
545	assert(node->exceptional > 0);
546
547	item_kill_tree(&tree);
548
549	__radix_tree_insert(&tree, 0, old_order, (void *)0x12);
550
551	item = __radix_tree_lookup(&tree, 0, &node, NULL);
552	assert(item == (void *)0x12);
553	assert(node->exceptional > 0);
554
555	radix_tree_split(&tree, 0, new_order);
556	radix_tree_for_each_slot(slot, &tree, &iter, 0) {
557		if (iter.index == (1 << new_order))
558			radix_tree_iter_replace(&tree, &iter, slot,
559						(void *)0x16);
560		else
561			radix_tree_iter_replace(&tree, &iter, slot, NULL);
562	}
563
564	item = __radix_tree_lookup(&tree, 1 << new_order, &node, NULL);
565	assert(item == (void *)0x16);
566	assert(node->count == node->exceptional);
567	do {
568		node = node->parent;
569		if (!node)
570			break;
571		assert(node->count == 1);
572		assert(node->exceptional == 0);
573	} while (1);
574
575	item_kill_tree(&tree);
576}
577
578static void multiorder_split(void)
579{
580	int i, j;
581
582	for (i = 3; i < 11; i++)
583		for (j = 0; j < i; j++) {
584			__multiorder_split(i, j);
585			__multiorder_split2(i, j);
586			__multiorder_split3(i, j);
587		}
588}
589
590static void multiorder_account(void)
591{
592	RADIX_TREE(tree, GFP_KERNEL);
593	struct radix_tree_node *node;
594	void **slot;
595
596	item_insert_order(&tree, 0, 5);
597
598	__radix_tree_insert(&tree, 1 << 5, 5, (void *)0x12);
599	__radix_tree_lookup(&tree, 0, &node, NULL);
600	assert(node->count == node->exceptional * 2);
601	radix_tree_delete(&tree, 1 << 5);
602	assert(node->exceptional == 0);
603
604	__radix_tree_insert(&tree, 1 << 5, 5, (void *)0x12);
605	__radix_tree_lookup(&tree, 1 << 5, &node, &slot);
606	assert(node->count == node->exceptional * 2);
607	__radix_tree_replace(&tree, node, slot, NULL, NULL, NULL);
608	assert(node->exceptional == 0);
609
610	item_kill_tree(&tree);
611}
612
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
613void multiorder_checks(void)
614{
615	int i;
616
617	for (i = 0; i < 20; i++) {
618		multiorder_check(200, i);
619		multiorder_check(0, i);
620		multiorder_check((1UL << i) + 1, i);
621	}
622
623	for (i = 0; i < 15; i++)
624		multiorder_shrink((1UL << (i + RADIX_TREE_MAP_SHIFT)), i);
625
626	multiorder_insert_bug();
627	multiorder_tag_tests();
628	multiorder_iteration();
629	multiorder_tagged_iteration();
630	multiorder_join();
631	multiorder_split();
632	multiorder_account();
 
633
634	radix_tree_cpu_dead(0);
 
 
 
 
 
 
 
635}