Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
   3 *
   4 * Parts came from builtin-{top,stat,record}.c, see those files for further
   5 * copyright notes.
   6 *
   7 * Released under the GPL v2. (and only v2, not any later version)
   8 */
   9
  10#include <byteswap.h>
  11#include <errno.h>
  12#include <inttypes.h>
  13#include <linux/bitops.h>
  14#include <api/fs/fs.h>
  15#include <api/fs/tracing_path.h>
  16#include <traceevent/event-parse.h>
  17#include <linux/hw_breakpoint.h>
  18#include <linux/perf_event.h>
  19#include <linux/compiler.h>
  20#include <linux/err.h>
  21#include <sys/ioctl.h>
  22#include <sys/resource.h>
  23#include <sys/types.h>
  24#include <dirent.h>
  25#include "asm/bug.h"
  26#include "callchain.h"
  27#include "cgroup.h"
  28#include "event.h"
  29#include "evsel.h"
  30#include "evlist.h"
  31#include "util.h"
  32#include "cpumap.h"
  33#include "thread_map.h"
  34#include "target.h"
  35#include "perf_regs.h"
  36#include "debug.h"
  37#include "trace-event.h"
  38#include "stat.h"
  39#include "memswap.h"
  40#include "util/parse-branch-options.h"
  41
  42#include "sane_ctype.h"
  43
  44struct perf_missing_features perf_missing_features;
 
 
 
 
 
 
 
  45
  46static clockid_t clockid;
  47
  48static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
  49{
  50	return 0;
  51}
  52
  53void __weak test_attr__ready(void) { }
  54
  55static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
  56{
  57}
  58
  59static struct {
  60	size_t	size;
  61	int	(*init)(struct perf_evsel *evsel);
  62	void	(*fini)(struct perf_evsel *evsel);
  63} perf_evsel__object = {
  64	.size = sizeof(struct perf_evsel),
  65	.init = perf_evsel__no_extra_init,
  66	.fini = perf_evsel__no_extra_fini,
  67};
  68
  69int perf_evsel__object_config(size_t object_size,
  70			      int (*init)(struct perf_evsel *evsel),
  71			      void (*fini)(struct perf_evsel *evsel))
  72{
  73
  74	if (object_size == 0)
  75		goto set_methods;
  76
  77	if (perf_evsel__object.size > object_size)
  78		return -EINVAL;
  79
  80	perf_evsel__object.size = object_size;
  81
  82set_methods:
  83	if (init != NULL)
  84		perf_evsel__object.init = init;
  85
  86	if (fini != NULL)
  87		perf_evsel__object.fini = fini;
  88
  89	return 0;
  90}
  91
  92#define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
  93
  94int __perf_evsel__sample_size(u64 sample_type)
  95{
  96	u64 mask = sample_type & PERF_SAMPLE_MASK;
  97	int size = 0;
  98	int i;
  99
 100	for (i = 0; i < 64; i++) {
 101		if (mask & (1ULL << i))
 102			size++;
 103	}
 104
 105	size *= sizeof(u64);
 106
 107	return size;
 108}
 109
 110/**
 111 * __perf_evsel__calc_id_pos - calculate id_pos.
 112 * @sample_type: sample type
 113 *
 114 * This function returns the position of the event id (PERF_SAMPLE_ID or
 115 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
 116 * sample_event.
 117 */
 118static int __perf_evsel__calc_id_pos(u64 sample_type)
 119{
 120	int idx = 0;
 121
 122	if (sample_type & PERF_SAMPLE_IDENTIFIER)
 123		return 0;
 124
 125	if (!(sample_type & PERF_SAMPLE_ID))
 126		return -1;
 127
 128	if (sample_type & PERF_SAMPLE_IP)
 129		idx += 1;
 130
 131	if (sample_type & PERF_SAMPLE_TID)
 132		idx += 1;
 133
 134	if (sample_type & PERF_SAMPLE_TIME)
 135		idx += 1;
 136
 137	if (sample_type & PERF_SAMPLE_ADDR)
 138		idx += 1;
 139
 140	return idx;
 141}
 142
 143/**
 144 * __perf_evsel__calc_is_pos - calculate is_pos.
 145 * @sample_type: sample type
 146 *
 147 * This function returns the position (counting backwards) of the event id
 148 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
 149 * sample_id_all is used there is an id sample appended to non-sample events.
 150 */
 151static int __perf_evsel__calc_is_pos(u64 sample_type)
 152{
 153	int idx = 1;
 154
 155	if (sample_type & PERF_SAMPLE_IDENTIFIER)
 156		return 1;
 157
 158	if (!(sample_type & PERF_SAMPLE_ID))
 159		return -1;
 160
 161	if (sample_type & PERF_SAMPLE_CPU)
 162		idx += 1;
 163
 164	if (sample_type & PERF_SAMPLE_STREAM_ID)
 165		idx += 1;
 166
 167	return idx;
 168}
 169
 170void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
 171{
 172	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
 173	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
 174}
 175
 176void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
 177				  enum perf_event_sample_format bit)
 178{
 179	if (!(evsel->attr.sample_type & bit)) {
 180		evsel->attr.sample_type |= bit;
 181		evsel->sample_size += sizeof(u64);
 182		perf_evsel__calc_id_pos(evsel);
 183	}
 184}
 185
 186void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
 187				    enum perf_event_sample_format bit)
 188{
 189	if (evsel->attr.sample_type & bit) {
 190		evsel->attr.sample_type &= ~bit;
 191		evsel->sample_size -= sizeof(u64);
 192		perf_evsel__calc_id_pos(evsel);
 193	}
 194}
 195
 196void perf_evsel__set_sample_id(struct perf_evsel *evsel,
 197			       bool can_sample_identifier)
 198{
 199	if (can_sample_identifier) {
 200		perf_evsel__reset_sample_bit(evsel, ID);
 201		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
 202	} else {
 203		perf_evsel__set_sample_bit(evsel, ID);
 204	}
 205	evsel->attr.read_format |= PERF_FORMAT_ID;
 206}
 207
 208/**
 209 * perf_evsel__is_function_event - Return whether given evsel is a function
 210 * trace event
 211 *
 212 * @evsel - evsel selector to be tested
 213 *
 214 * Return %true if event is function trace event
 215 */
 216bool perf_evsel__is_function_event(struct perf_evsel *evsel)
 217{
 218#define FUNCTION_EVENT "ftrace:function"
 219
 220	return evsel->name &&
 221	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
 222
 223#undef FUNCTION_EVENT
 224}
 225
 226void perf_evsel__init(struct perf_evsel *evsel,
 227		      struct perf_event_attr *attr, int idx)
 228{
 229	evsel->idx	   = idx;
 230	evsel->tracking	   = !idx;
 231	evsel->attr	   = *attr;
 232	evsel->leader	   = evsel;
 233	evsel->unit	   = "";
 234	evsel->scale	   = 1.0;
 235	evsel->evlist	   = NULL;
 236	evsel->bpf_fd	   = -1;
 237	INIT_LIST_HEAD(&evsel->node);
 238	INIT_LIST_HEAD(&evsel->config_terms);
 239	perf_evsel__object.init(evsel);
 240	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
 241	perf_evsel__calc_id_pos(evsel);
 242	evsel->cmdline_group_boundary = false;
 243	evsel->metric_expr   = NULL;
 244	evsel->metric_name   = NULL;
 245	evsel->metric_events = NULL;
 246	evsel->collect_stat  = false;
 247	evsel->pmu_name      = NULL;
 248}
 249
 250struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
 251{
 252	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
 253
 254	if (evsel != NULL)
 255		perf_evsel__init(evsel, attr, idx);
 256
 257	if (perf_evsel__is_bpf_output(evsel)) {
 258		evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
 259					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
 260		evsel->attr.sample_period = 1;
 261	}
 262
 263	return evsel;
 264}
 265
 266static bool perf_event_can_profile_kernel(void)
 267{
 268	return geteuid() == 0 || perf_event_paranoid() == -1;
 269}
 270
 271struct perf_evsel *perf_evsel__new_cycles(bool precise)
 272{
 273	struct perf_event_attr attr = {
 274		.type	= PERF_TYPE_HARDWARE,
 275		.config	= PERF_COUNT_HW_CPU_CYCLES,
 276		.exclude_kernel	= !perf_event_can_profile_kernel(),
 277	};
 278	struct perf_evsel *evsel;
 279
 280	event_attr_init(&attr);
 281
 282	if (!precise)
 283		goto new_event;
 284	/*
 285	 * Unnamed union member, not supported as struct member named
 286	 * initializer in older compilers such as gcc 4.4.7
 287	 *
 288	 * Just for probing the precise_ip:
 289	 */
 290	attr.sample_period = 1;
 291
 292	perf_event_attr__set_max_precise_ip(&attr);
 293	/*
 294	 * Now let the usual logic to set up the perf_event_attr defaults
 295	 * to kick in when we return and before perf_evsel__open() is called.
 296	 */
 297	attr.sample_period = 0;
 298new_event:
 299	evsel = perf_evsel__new(&attr);
 300	if (evsel == NULL)
 301		goto out;
 302
 303	/* use asprintf() because free(evsel) assumes name is allocated */
 304	if (asprintf(&evsel->name, "cycles%s%s%.*s",
 305		     (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
 306		     attr.exclude_kernel ? "u" : "",
 307		     attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
 308		goto error_free;
 309out:
 310	return evsel;
 311error_free:
 312	perf_evsel__delete(evsel);
 313	evsel = NULL;
 314	goto out;
 315}
 316
 317/*
 318 * Returns pointer with encoded error via <linux/err.h> interface.
 319 */
 320struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
 321{
 322	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
 323	int err = -ENOMEM;
 324
 325	if (evsel == NULL) {
 326		goto out_err;
 327	} else {
 328		struct perf_event_attr attr = {
 329			.type	       = PERF_TYPE_TRACEPOINT,
 330			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
 331					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
 332		};
 333
 334		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
 335			goto out_free;
 336
 337		evsel->tp_format = trace_event__tp_format(sys, name);
 338		if (IS_ERR(evsel->tp_format)) {
 339			err = PTR_ERR(evsel->tp_format);
 340			goto out_free;
 341		}
 342
 343		event_attr_init(&attr);
 344		attr.config = evsel->tp_format->id;
 345		attr.sample_period = 1;
 346		perf_evsel__init(evsel, &attr, idx);
 347	}
 348
 349	return evsel;
 350
 351out_free:
 352	zfree(&evsel->name);
 353	free(evsel);
 354out_err:
 355	return ERR_PTR(err);
 356}
 357
 358const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
 359	"cycles",
 360	"instructions",
 361	"cache-references",
 362	"cache-misses",
 363	"branches",
 364	"branch-misses",
 365	"bus-cycles",
 366	"stalled-cycles-frontend",
 367	"stalled-cycles-backend",
 368	"ref-cycles",
 369};
 370
 371static const char *__perf_evsel__hw_name(u64 config)
 372{
 373	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
 374		return perf_evsel__hw_names[config];
 375
 376	return "unknown-hardware";
 377}
 378
 379static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
 380{
 381	int colon = 0, r = 0;
 382	struct perf_event_attr *attr = &evsel->attr;
 383	bool exclude_guest_default = false;
 384
 385#define MOD_PRINT(context, mod)	do {					\
 386		if (!attr->exclude_##context) {				\
 387			if (!colon) colon = ++r;			\
 388			r += scnprintf(bf + r, size - r, "%c", mod);	\
 389		} } while(0)
 390
 391	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
 392		MOD_PRINT(kernel, 'k');
 393		MOD_PRINT(user, 'u');
 394		MOD_PRINT(hv, 'h');
 395		exclude_guest_default = true;
 396	}
 397
 398	if (attr->precise_ip) {
 399		if (!colon)
 400			colon = ++r;
 401		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
 402		exclude_guest_default = true;
 403	}
 404
 405	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
 406		MOD_PRINT(host, 'H');
 407		MOD_PRINT(guest, 'G');
 408	}
 409#undef MOD_PRINT
 410	if (colon)
 411		bf[colon - 1] = ':';
 412	return r;
 413}
 414
 415static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
 416{
 417	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
 418	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
 419}
 420
 421const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
 422	"cpu-clock",
 423	"task-clock",
 424	"page-faults",
 425	"context-switches",
 426	"cpu-migrations",
 427	"minor-faults",
 428	"major-faults",
 429	"alignment-faults",
 430	"emulation-faults",
 431	"dummy",
 432};
 433
 434static const char *__perf_evsel__sw_name(u64 config)
 435{
 436	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
 437		return perf_evsel__sw_names[config];
 438	return "unknown-software";
 439}
 440
 441static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
 442{
 443	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
 444	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
 445}
 446
 447static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
 448{
 449	int r;
 450
 451	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
 452
 453	if (type & HW_BREAKPOINT_R)
 454		r += scnprintf(bf + r, size - r, "r");
 455
 456	if (type & HW_BREAKPOINT_W)
 457		r += scnprintf(bf + r, size - r, "w");
 458
 459	if (type & HW_BREAKPOINT_X)
 460		r += scnprintf(bf + r, size - r, "x");
 461
 462	return r;
 463}
 464
 465static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
 466{
 467	struct perf_event_attr *attr = &evsel->attr;
 468	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
 469	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
 470}
 471
 472const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
 473				[PERF_EVSEL__MAX_ALIASES] = {
 474 { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
 475 { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
 476 { "LLC",	"L2",							},
 477 { "dTLB",	"d-tlb",	"Data-TLB",				},
 478 { "iTLB",	"i-tlb",	"Instruction-TLB",			},
 479 { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
 480 { "node",								},
 481};
 482
 483const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
 484				   [PERF_EVSEL__MAX_ALIASES] = {
 485 { "load",	"loads",	"read",					},
 486 { "store",	"stores",	"write",				},
 487 { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
 488};
 489
 490const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
 491				       [PERF_EVSEL__MAX_ALIASES] = {
 492 { "refs",	"Reference",	"ops",		"access",		},
 493 { "misses",	"miss",							},
 494};
 495
 496#define C(x)		PERF_COUNT_HW_CACHE_##x
 497#define CACHE_READ	(1 << C(OP_READ))
 498#define CACHE_WRITE	(1 << C(OP_WRITE))
 499#define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
 500#define COP(x)		(1 << x)
 501
 502/*
 503 * cache operartion stat
 504 * L1I : Read and prefetch only
 505 * ITLB and BPU : Read-only
 506 */
 507static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
 508 [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
 509 [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
 510 [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
 511 [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
 512 [C(ITLB)]	= (CACHE_READ),
 513 [C(BPU)]	= (CACHE_READ),
 514 [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
 515};
 516
 517bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
 518{
 519	if (perf_evsel__hw_cache_stat[type] & COP(op))
 520		return true;	/* valid */
 521	else
 522		return false;	/* invalid */
 523}
 524
 525int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
 526					    char *bf, size_t size)
 527{
 528	if (result) {
 529		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
 530				 perf_evsel__hw_cache_op[op][0],
 531				 perf_evsel__hw_cache_result[result][0]);
 532	}
 533
 534	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
 535			 perf_evsel__hw_cache_op[op][1]);
 536}
 537
 538static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
 539{
 540	u8 op, result, type = (config >>  0) & 0xff;
 541	const char *err = "unknown-ext-hardware-cache-type";
 542
 543	if (type >= PERF_COUNT_HW_CACHE_MAX)
 544		goto out_err;
 545
 546	op = (config >>  8) & 0xff;
 547	err = "unknown-ext-hardware-cache-op";
 548	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
 549		goto out_err;
 550
 551	result = (config >> 16) & 0xff;
 552	err = "unknown-ext-hardware-cache-result";
 553	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 554		goto out_err;
 555
 556	err = "invalid-cache";
 557	if (!perf_evsel__is_cache_op_valid(type, op))
 558		goto out_err;
 559
 560	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
 561out_err:
 562	return scnprintf(bf, size, "%s", err);
 563}
 564
 565static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
 566{
 567	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
 568	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
 569}
 570
 571static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
 572{
 573	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
 574	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
 575}
 576
 577const char *perf_evsel__name(struct perf_evsel *evsel)
 578{
 579	char bf[128];
 580
 581	if (evsel->name)
 582		return evsel->name;
 583
 584	switch (evsel->attr.type) {
 585	case PERF_TYPE_RAW:
 586		perf_evsel__raw_name(evsel, bf, sizeof(bf));
 587		break;
 588
 589	case PERF_TYPE_HARDWARE:
 590		perf_evsel__hw_name(evsel, bf, sizeof(bf));
 591		break;
 592
 593	case PERF_TYPE_HW_CACHE:
 594		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
 595		break;
 596
 597	case PERF_TYPE_SOFTWARE:
 598		perf_evsel__sw_name(evsel, bf, sizeof(bf));
 599		break;
 600
 601	case PERF_TYPE_TRACEPOINT:
 602		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
 603		break;
 604
 605	case PERF_TYPE_BREAKPOINT:
 606		perf_evsel__bp_name(evsel, bf, sizeof(bf));
 607		break;
 608
 609	default:
 610		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
 611			  evsel->attr.type);
 612		break;
 613	}
 614
 615	evsel->name = strdup(bf);
 616
 617	return evsel->name ?: "unknown";
 618}
 619
 620const char *perf_evsel__group_name(struct perf_evsel *evsel)
 621{
 622	return evsel->group_name ?: "anon group";
 623}
 624
 625/*
 626 * Returns the group details for the specified leader,
 627 * with following rules.
 628 *
 629 *  For record -e '{cycles,instructions}'
 630 *    'anon group { cycles:u, instructions:u }'
 631 *
 632 *  For record -e 'cycles,instructions' and report --group
 633 *    'cycles:u, instructions:u'
 634 */
 635int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
 636{
 637	int ret = 0;
 638	struct perf_evsel *pos;
 639	const char *group_name = perf_evsel__group_name(evsel);
 640
 641	if (!evsel->forced_leader)
 642		ret = scnprintf(buf, size, "%s { ", group_name);
 643
 644	ret += scnprintf(buf + ret, size - ret, "%s",
 645			 perf_evsel__name(evsel));
 646
 647	for_each_group_member(pos, evsel)
 648		ret += scnprintf(buf + ret, size - ret, ", %s",
 649				 perf_evsel__name(pos));
 650
 651	if (!evsel->forced_leader)
 652		ret += scnprintf(buf + ret, size - ret, " }");
 653
 654	return ret;
 655}
 656
 657static void __perf_evsel__config_callchain(struct perf_evsel *evsel,
 658					   struct record_opts *opts,
 659					   struct callchain_param *param)
 660{
 661	bool function = perf_evsel__is_function_event(evsel);
 662	struct perf_event_attr *attr = &evsel->attr;
 663
 664	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
 665
 666	attr->sample_max_stack = param->max_stack;
 667
 668	if (param->record_mode == CALLCHAIN_LBR) {
 669		if (!opts->branch_stack) {
 670			if (attr->exclude_user) {
 671				pr_warning("LBR callstack option is only available "
 672					   "to get user callchain information. "
 673					   "Falling back to framepointers.\n");
 674			} else {
 675				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
 676				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
 677							PERF_SAMPLE_BRANCH_CALL_STACK |
 678							PERF_SAMPLE_BRANCH_NO_CYCLES |
 679							PERF_SAMPLE_BRANCH_NO_FLAGS;
 680			}
 681		} else
 682			 pr_warning("Cannot use LBR callstack with branch stack. "
 683				    "Falling back to framepointers.\n");
 684	}
 685
 686	if (param->record_mode == CALLCHAIN_DWARF) {
 687		if (!function) {
 688			perf_evsel__set_sample_bit(evsel, REGS_USER);
 689			perf_evsel__set_sample_bit(evsel, STACK_USER);
 690			attr->sample_regs_user |= PERF_REGS_MASK;
 691			attr->sample_stack_user = param->dump_size;
 692			attr->exclude_callchain_user = 1;
 693		} else {
 694			pr_info("Cannot use DWARF unwind for function trace event,"
 695				" falling back to framepointers.\n");
 696		}
 697	}
 698
 699	if (function) {
 700		pr_info("Disabling user space callchains for function trace event.\n");
 701		attr->exclude_callchain_user = 1;
 702	}
 703}
 704
 705void perf_evsel__config_callchain(struct perf_evsel *evsel,
 706				  struct record_opts *opts,
 707				  struct callchain_param *param)
 708{
 709	if (param->enabled)
 710		return __perf_evsel__config_callchain(evsel, opts, param);
 711}
 712
 713static void
 714perf_evsel__reset_callgraph(struct perf_evsel *evsel,
 715			    struct callchain_param *param)
 716{
 717	struct perf_event_attr *attr = &evsel->attr;
 718
 719	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
 720	if (param->record_mode == CALLCHAIN_LBR) {
 721		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
 722		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
 723					      PERF_SAMPLE_BRANCH_CALL_STACK);
 724	}
 725	if (param->record_mode == CALLCHAIN_DWARF) {
 726		perf_evsel__reset_sample_bit(evsel, REGS_USER);
 727		perf_evsel__reset_sample_bit(evsel, STACK_USER);
 728	}
 729}
 730
 731static void apply_config_terms(struct perf_evsel *evsel,
 732			       struct record_opts *opts, bool track)
 733{
 734	struct perf_evsel_config_term *term;
 735	struct list_head *config_terms = &evsel->config_terms;
 736	struct perf_event_attr *attr = &evsel->attr;
 737	/* callgraph default */
 738	struct callchain_param param = {
 739		.record_mode = callchain_param.record_mode,
 740	};
 741	u32 dump_size = 0;
 742	int max_stack = 0;
 743	const char *callgraph_buf = NULL;
 744
 
 
 
 745	list_for_each_entry(term, config_terms, list) {
 746		switch (term->type) {
 747		case PERF_EVSEL__CONFIG_TERM_PERIOD:
 748			if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
 749				attr->sample_period = term->val.period;
 750				attr->freq = 0;
 751				perf_evsel__reset_sample_bit(evsel, PERIOD);
 752			}
 753			break;
 754		case PERF_EVSEL__CONFIG_TERM_FREQ:
 755			if (!(term->weak && opts->user_freq != UINT_MAX)) {
 756				attr->sample_freq = term->val.freq;
 757				attr->freq = 1;
 758				perf_evsel__set_sample_bit(evsel, PERIOD);
 759			}
 760			break;
 761		case PERF_EVSEL__CONFIG_TERM_TIME:
 762			if (term->val.time)
 763				perf_evsel__set_sample_bit(evsel, TIME);
 764			else
 765				perf_evsel__reset_sample_bit(evsel, TIME);
 766			break;
 767		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
 768			callgraph_buf = term->val.callgraph;
 769			break;
 770		case PERF_EVSEL__CONFIG_TERM_BRANCH:
 771			if (term->val.branch && strcmp(term->val.branch, "no")) {
 772				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
 773				parse_branch_str(term->val.branch,
 774						 &attr->branch_sample_type);
 775			} else
 776				perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
 777			break;
 778		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
 779			dump_size = term->val.stack_user;
 780			break;
 781		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
 782			max_stack = term->val.max_stack;
 783			break;
 784		case PERF_EVSEL__CONFIG_TERM_INHERIT:
 785			/*
 786			 * attr->inherit should has already been set by
 787			 * perf_evsel__config. If user explicitly set
 788			 * inherit using config terms, override global
 789			 * opt->no_inherit setting.
 790			 */
 791			attr->inherit = term->val.inherit ? 1 : 0;
 792			break;
 793		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
 794			attr->write_backward = term->val.overwrite ? 1 : 0;
 795			break;
 796		case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
 797			break;
 798		default:
 799			break;
 800		}
 801	}
 802
 803	/* User explicitly set per-event callgraph, clear the old setting and reset. */
 804	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
 805		bool sample_address = false;
 806
 807		if (max_stack) {
 808			param.max_stack = max_stack;
 809			if (callgraph_buf == NULL)
 810				callgraph_buf = "fp";
 811		}
 812
 813		/* parse callgraph parameters */
 814		if (callgraph_buf != NULL) {
 815			if (!strcmp(callgraph_buf, "no")) {
 816				param.enabled = false;
 817				param.record_mode = CALLCHAIN_NONE;
 818			} else {
 819				param.enabled = true;
 820				if (parse_callchain_record(callgraph_buf, &param)) {
 821					pr_err("per-event callgraph setting for %s failed. "
 822					       "Apply callgraph global setting for it\n",
 823					       evsel->name);
 824					return;
 825				}
 826				if (param.record_mode == CALLCHAIN_DWARF)
 827					sample_address = true;
 828			}
 829		}
 830		if (dump_size > 0) {
 831			dump_size = round_up(dump_size, sizeof(u64));
 832			param.dump_size = dump_size;
 833		}
 834
 835		/* If global callgraph set, clear it */
 836		if (callchain_param.enabled)
 837			perf_evsel__reset_callgraph(evsel, &callchain_param);
 838
 839		/* set perf-event callgraph */
 840		if (param.enabled) {
 841			if (sample_address) {
 842				perf_evsel__set_sample_bit(evsel, ADDR);
 843				perf_evsel__set_sample_bit(evsel, DATA_SRC);
 844				evsel->attr.mmap_data = track;
 845			}
 846			perf_evsel__config_callchain(evsel, opts, &param);
 847		}
 848	}
 849}
 850
 851/*
 852 * The enable_on_exec/disabled value strategy:
 853 *
 854 *  1) For any type of traced program:
 855 *    - all independent events and group leaders are disabled
 856 *    - all group members are enabled
 857 *
 858 *     Group members are ruled by group leaders. They need to
 859 *     be enabled, because the group scheduling relies on that.
 860 *
 861 *  2) For traced programs executed by perf:
 862 *     - all independent events and group leaders have
 863 *       enable_on_exec set
 864 *     - we don't specifically enable or disable any event during
 865 *       the record command
 866 *
 867 *     Independent events and group leaders are initially disabled
 868 *     and get enabled by exec. Group members are ruled by group
 869 *     leaders as stated in 1).
 870 *
 871 *  3) For traced programs attached by perf (pid/tid):
 872 *     - we specifically enable or disable all events during
 873 *       the record command
 874 *
 875 *     When attaching events to already running traced we
 876 *     enable/disable events specifically, as there's no
 877 *     initial traced exec call.
 878 */
 879void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
 880			struct callchain_param *callchain)
 881{
 882	struct perf_evsel *leader = evsel->leader;
 883	struct perf_event_attr *attr = &evsel->attr;
 884	int track = evsel->tracking;
 885	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
 886
 887	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
 888	attr->inherit	    = !opts->no_inherit;
 889	attr->write_backward = opts->overwrite ? 1 : 0;
 890
 891	perf_evsel__set_sample_bit(evsel, IP);
 892	perf_evsel__set_sample_bit(evsel, TID);
 893
 894	if (evsel->sample_read) {
 895		perf_evsel__set_sample_bit(evsel, READ);
 896
 897		/*
 898		 * We need ID even in case of single event, because
 899		 * PERF_SAMPLE_READ process ID specific data.
 900		 */
 901		perf_evsel__set_sample_id(evsel, false);
 902
 903		/*
 904		 * Apply group format only if we belong to group
 905		 * with more than one members.
 906		 */
 907		if (leader->nr_members > 1) {
 908			attr->read_format |= PERF_FORMAT_GROUP;
 909			attr->inherit = 0;
 910		}
 911	}
 912
 913	/*
 914	 * We default some events to have a default interval. But keep
 915	 * it a weak assumption overridable by the user.
 916	 */
 917	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
 918				     opts->user_interval != ULLONG_MAX)) {
 919		if (opts->freq) {
 920			perf_evsel__set_sample_bit(evsel, PERIOD);
 921			attr->freq		= 1;
 922			attr->sample_freq	= opts->freq;
 923		} else {
 924			attr->sample_period = opts->default_interval;
 925		}
 926	}
 927
 928	/*
 929	 * Disable sampling for all group members other
 930	 * than leader in case leader 'leads' the sampling.
 931	 */
 932	if ((leader != evsel) && leader->sample_read) {
 933		attr->freq           = 0;
 934		attr->sample_freq    = 0;
 935		attr->sample_period  = 0;
 936		attr->write_backward = 0;
 937		attr->sample_id_all  = 0;
 938	}
 939
 940	if (opts->no_samples)
 941		attr->sample_freq = 0;
 942
 943	if (opts->inherit_stat) {
 944		evsel->attr.read_format |=
 945			PERF_FORMAT_TOTAL_TIME_ENABLED |
 946			PERF_FORMAT_TOTAL_TIME_RUNNING |
 947			PERF_FORMAT_ID;
 948		attr->inherit_stat = 1;
 949	}
 950
 951	if (opts->sample_address) {
 952		perf_evsel__set_sample_bit(evsel, ADDR);
 953		attr->mmap_data = track;
 954	}
 955
 956	/*
 957	 * We don't allow user space callchains for  function trace
 958	 * event, due to issues with page faults while tracing page
 959	 * fault handler and its overall trickiness nature.
 960	 */
 961	if (perf_evsel__is_function_event(evsel))
 962		evsel->attr.exclude_callchain_user = 1;
 963
 964	if (callchain && callchain->enabled && !evsel->no_aux_samples)
 965		perf_evsel__config_callchain(evsel, opts, callchain);
 966
 967	if (opts->sample_intr_regs) {
 968		attr->sample_regs_intr = opts->sample_intr_regs;
 969		perf_evsel__set_sample_bit(evsel, REGS_INTR);
 970	}
 971
 972	if (opts->sample_user_regs) {
 973		attr->sample_regs_user |= opts->sample_user_regs;
 974		perf_evsel__set_sample_bit(evsel, REGS_USER);
 975	}
 976
 977	if (target__has_cpu(&opts->target) || opts->sample_cpu)
 978		perf_evsel__set_sample_bit(evsel, CPU);
 979
 
 
 
 980	/*
 981	 * When the user explicitly disabled time don't force it here.
 982	 */
 983	if (opts->sample_time &&
 984	    (!perf_missing_features.sample_id_all &&
 985	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
 986	     opts->sample_time_set)))
 987		perf_evsel__set_sample_bit(evsel, TIME);
 988
 989	if (opts->raw_samples && !evsel->no_aux_samples) {
 990		perf_evsel__set_sample_bit(evsel, TIME);
 991		perf_evsel__set_sample_bit(evsel, RAW);
 992		perf_evsel__set_sample_bit(evsel, CPU);
 993	}
 994
 995	if (opts->sample_address)
 996		perf_evsel__set_sample_bit(evsel, DATA_SRC);
 997
 998	if (opts->sample_phys_addr)
 999		perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
1000
1001	if (opts->no_buffering) {
1002		attr->watermark = 0;
1003		attr->wakeup_events = 1;
1004	}
1005	if (opts->branch_stack && !evsel->no_aux_samples) {
1006		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
1007		attr->branch_sample_type = opts->branch_stack;
1008	}
1009
1010	if (opts->sample_weight)
1011		perf_evsel__set_sample_bit(evsel, WEIGHT);
1012
1013	attr->task  = track;
1014	attr->mmap  = track;
1015	attr->mmap2 = track && !perf_missing_features.mmap2;
1016	attr->comm  = track;
1017
1018	if (opts->record_namespaces)
1019		attr->namespaces  = track;
1020
1021	if (opts->record_switch_events)
1022		attr->context_switch = track;
1023
1024	if (opts->sample_transaction)
1025		perf_evsel__set_sample_bit(evsel, TRANSACTION);
1026
1027	if (opts->running_time) {
1028		evsel->attr.read_format |=
1029			PERF_FORMAT_TOTAL_TIME_ENABLED |
1030			PERF_FORMAT_TOTAL_TIME_RUNNING;
1031	}
1032
1033	/*
1034	 * XXX see the function comment above
1035	 *
1036	 * Disabling only independent events or group leaders,
1037	 * keeping group members enabled.
1038	 */
1039	if (perf_evsel__is_group_leader(evsel))
1040		attr->disabled = 1;
1041
1042	/*
1043	 * Setting enable_on_exec for independent events and
1044	 * group leaders for traced executed by perf.
1045	 */
1046	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1047		!opts->initial_delay)
1048		attr->enable_on_exec = 1;
1049
1050	if (evsel->immediate) {
1051		attr->disabled = 0;
1052		attr->enable_on_exec = 0;
1053	}
1054
1055	clockid = opts->clockid;
1056	if (opts->use_clockid) {
1057		attr->use_clockid = 1;
1058		attr->clockid = opts->clockid;
1059	}
1060
1061	if (evsel->precise_max)
1062		perf_event_attr__set_max_precise_ip(attr);
1063
1064	if (opts->all_user) {
1065		attr->exclude_kernel = 1;
1066		attr->exclude_user   = 0;
1067	}
1068
1069	if (opts->all_kernel) {
1070		attr->exclude_kernel = 0;
1071		attr->exclude_user   = 1;
1072	}
1073
1074	/*
1075	 * Apply event specific term settings,
1076	 * it overloads any global configuration.
1077	 */
1078	apply_config_terms(evsel, opts, track);
1079
1080	evsel->ignore_missing_thread = opts->ignore_missing_thread;
1081
1082	/* The --period option takes the precedence. */
1083	if (opts->period_set) {
1084		if (opts->period)
1085			perf_evsel__set_sample_bit(evsel, PERIOD);
1086		else
1087			perf_evsel__reset_sample_bit(evsel, PERIOD);
1088	}
1089}
1090
1091static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1092{
1093	if (evsel->system_wide)
1094		nthreads = 1;
1095
1096	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1097
1098	if (evsel->fd) {
1099		int cpu, thread;
1100		for (cpu = 0; cpu < ncpus; cpu++) {
1101			for (thread = 0; thread < nthreads; thread++) {
1102				FD(evsel, cpu, thread) = -1;
1103			}
1104		}
1105	}
1106
1107	return evsel->fd != NULL ? 0 : -ENOMEM;
1108}
1109
1110static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1111			  int ioc,  void *arg)
1112{
1113	int cpu, thread;
1114
1115	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1116		for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
 
 
 
1117			int fd = FD(evsel, cpu, thread),
1118			    err = ioctl(fd, ioc, arg);
1119
1120			if (err)
1121				return err;
1122		}
1123	}
1124
1125	return 0;
1126}
1127
1128int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
 
1129{
1130	return perf_evsel__run_ioctl(evsel,
1131				     PERF_EVENT_IOC_SET_FILTER,
1132				     (void *)filter);
1133}
1134
1135int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1136{
1137	char *new_filter = strdup(filter);
1138
1139	if (new_filter != NULL) {
1140		free(evsel->filter);
1141		evsel->filter = new_filter;
1142		return 0;
1143	}
1144
1145	return -1;
1146}
1147
1148static int perf_evsel__append_filter(struct perf_evsel *evsel,
1149				     const char *fmt, const char *filter)
1150{
1151	char *new_filter;
1152
1153	if (evsel->filter == NULL)
1154		return perf_evsel__set_filter(evsel, filter);
1155
1156	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1157		free(evsel->filter);
1158		evsel->filter = new_filter;
1159		return 0;
1160	}
1161
1162	return -1;
1163}
1164
1165int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1166{
1167	return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1168}
1169
1170int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1171{
1172	return perf_evsel__append_filter(evsel, "%s,%s", filter);
1173}
1174
1175int perf_evsel__enable(struct perf_evsel *evsel)
1176{
1177	return perf_evsel__run_ioctl(evsel,
 
 
 
1178				     PERF_EVENT_IOC_ENABLE,
1179				     0);
1180}
1181
1182int perf_evsel__disable(struct perf_evsel *evsel)
1183{
1184	return perf_evsel__run_ioctl(evsel,
 
 
 
1185				     PERF_EVENT_IOC_DISABLE,
1186				     0);
1187}
1188
1189int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1190{
1191	if (ncpus == 0 || nthreads == 0)
1192		return 0;
1193
1194	if (evsel->system_wide)
1195		nthreads = 1;
1196
1197	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1198	if (evsel->sample_id == NULL)
1199		return -ENOMEM;
1200
1201	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1202	if (evsel->id == NULL) {
1203		xyarray__delete(evsel->sample_id);
1204		evsel->sample_id = NULL;
1205		return -ENOMEM;
1206	}
1207
1208	return 0;
1209}
1210
1211static void perf_evsel__free_fd(struct perf_evsel *evsel)
1212{
1213	xyarray__delete(evsel->fd);
1214	evsel->fd = NULL;
1215}
1216
1217static void perf_evsel__free_id(struct perf_evsel *evsel)
1218{
1219	xyarray__delete(evsel->sample_id);
1220	evsel->sample_id = NULL;
1221	zfree(&evsel->id);
1222}
1223
1224static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1225{
1226	struct perf_evsel_config_term *term, *h;
1227
1228	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1229		list_del(&term->list);
1230		free(term);
1231	}
1232}
1233
1234void perf_evsel__close_fd(struct perf_evsel *evsel)
1235{
1236	int cpu, thread;
1237
1238	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1239		for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
 
 
 
1240			close(FD(evsel, cpu, thread));
1241			FD(evsel, cpu, thread) = -1;
1242		}
1243}
1244
1245void perf_evsel__exit(struct perf_evsel *evsel)
1246{
1247	assert(list_empty(&evsel->node));
1248	assert(evsel->evlist == NULL);
1249	perf_evsel__free_fd(evsel);
1250	perf_evsel__free_id(evsel);
1251	perf_evsel__free_config_terms(evsel);
1252	cgroup__put(evsel->cgrp);
1253	cpu_map__put(evsel->cpus);
1254	cpu_map__put(evsel->own_cpus);
1255	thread_map__put(evsel->threads);
1256	zfree(&evsel->group_name);
1257	zfree(&evsel->name);
1258	perf_evsel__object.fini(evsel);
1259}
1260
1261void perf_evsel__delete(struct perf_evsel *evsel)
1262{
1263	perf_evsel__exit(evsel);
1264	free(evsel);
1265}
1266
1267void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1268				struct perf_counts_values *count)
1269{
1270	struct perf_counts_values tmp;
1271
1272	if (!evsel->prev_raw_counts)
1273		return;
1274
1275	if (cpu == -1) {
1276		tmp = evsel->prev_raw_counts->aggr;
1277		evsel->prev_raw_counts->aggr = *count;
1278	} else {
1279		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1280		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1281	}
1282
1283	count->val = count->val - tmp.val;
1284	count->ena = count->ena - tmp.ena;
1285	count->run = count->run - tmp.run;
1286}
1287
1288void perf_counts_values__scale(struct perf_counts_values *count,
1289			       bool scale, s8 *pscaled)
1290{
1291	s8 scaled = 0;
1292
1293	if (scale) {
1294		if (count->run == 0) {
1295			scaled = -1;
1296			count->val = 0;
1297		} else if (count->run < count->ena) {
1298			scaled = 1;
1299			count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1300		}
1301	} else
1302		count->ena = count->run = 0;
1303
1304	if (pscaled)
1305		*pscaled = scaled;
1306}
1307
1308static int perf_evsel__read_size(struct perf_evsel *evsel)
1309{
1310	u64 read_format = evsel->attr.read_format;
1311	int entry = sizeof(u64); /* value */
1312	int size = 0;
1313	int nr = 1;
1314
1315	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1316		size += sizeof(u64);
1317
1318	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1319		size += sizeof(u64);
1320
1321	if (read_format & PERF_FORMAT_ID)
1322		entry += sizeof(u64);
1323
1324	if (read_format & PERF_FORMAT_GROUP) {
1325		nr = evsel->nr_members;
1326		size += sizeof(u64);
1327	}
1328
1329	size += entry * nr;
1330	return size;
1331}
1332
1333int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1334		     struct perf_counts_values *count)
1335{
1336	size_t size = perf_evsel__read_size(evsel);
1337
1338	memset(count, 0, sizeof(*count));
1339
1340	if (FD(evsel, cpu, thread) < 0)
1341		return -EINVAL;
1342
1343	if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1344		return -errno;
1345
1346	return 0;
1347}
1348
1349static int
1350perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1351{
1352	struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1353
1354	return perf_evsel__read(evsel, cpu, thread, count);
1355}
1356
1357static void
1358perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1359		      u64 val, u64 ena, u64 run)
1360{
1361	struct perf_counts_values *count;
1362
1363	count = perf_counts(counter->counts, cpu, thread);
1364
1365	count->val    = val;
1366	count->ena    = ena;
1367	count->run    = run;
1368	count->loaded = true;
1369}
1370
1371static int
1372perf_evsel__process_group_data(struct perf_evsel *leader,
1373			       int cpu, int thread, u64 *data)
1374{
1375	u64 read_format = leader->attr.read_format;
1376	struct sample_read_value *v;
1377	u64 nr, ena = 0, run = 0, i;
1378
1379	nr = *data++;
1380
1381	if (nr != (u64) leader->nr_members)
1382		return -EINVAL;
1383
1384	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1385		ena = *data++;
1386
1387	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1388		run = *data++;
1389
1390	v = (struct sample_read_value *) data;
1391
1392	perf_evsel__set_count(leader, cpu, thread,
1393			      v[0].value, ena, run);
1394
1395	for (i = 1; i < nr; i++) {
1396		struct perf_evsel *counter;
1397
1398		counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1399		if (!counter)
1400			return -EINVAL;
1401
1402		perf_evsel__set_count(counter, cpu, thread,
1403				      v[i].value, ena, run);
1404	}
1405
1406	return 0;
1407}
1408
1409static int
1410perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1411{
1412	struct perf_stat_evsel *ps = leader->stats;
1413	u64 read_format = leader->attr.read_format;
1414	int size = perf_evsel__read_size(leader);
1415	u64 *data = ps->group_data;
1416
1417	if (!(read_format & PERF_FORMAT_ID))
1418		return -EINVAL;
1419
1420	if (!perf_evsel__is_group_leader(leader))
1421		return -EINVAL;
1422
1423	if (!data) {
1424		data = zalloc(size);
1425		if (!data)
1426			return -ENOMEM;
1427
1428		ps->group_data = data;
1429	}
1430
1431	if (FD(leader, cpu, thread) < 0)
1432		return -EINVAL;
1433
1434	if (readn(FD(leader, cpu, thread), data, size) <= 0)
1435		return -errno;
1436
1437	return perf_evsel__process_group_data(leader, cpu, thread, data);
1438}
1439
1440int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1441{
1442	u64 read_format = evsel->attr.read_format;
1443
1444	if (read_format & PERF_FORMAT_GROUP)
1445		return perf_evsel__read_group(evsel, cpu, thread);
1446	else
1447		return perf_evsel__read_one(evsel, cpu, thread);
1448}
1449
1450int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1451			      int cpu, int thread, bool scale)
1452{
1453	struct perf_counts_values count;
1454	size_t nv = scale ? 3 : 1;
1455
1456	if (FD(evsel, cpu, thread) < 0)
1457		return -EINVAL;
1458
1459	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1460		return -ENOMEM;
1461
1462	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1463		return -errno;
1464
1465	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1466	perf_counts_values__scale(&count, scale, NULL);
1467	*perf_counts(evsel->counts, cpu, thread) = count;
1468	return 0;
1469}
1470
1471static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1472{
1473	struct perf_evsel *leader = evsel->leader;
1474	int fd;
1475
1476	if (perf_evsel__is_group_leader(evsel))
1477		return -1;
1478
1479	/*
1480	 * Leader must be already processed/open,
1481	 * if not it's a bug.
1482	 */
1483	BUG_ON(!leader->fd);
1484
1485	fd = FD(leader, cpu, thread);
1486	BUG_ON(fd == -1);
1487
1488	return fd;
1489}
1490
1491struct bit_names {
1492	int bit;
1493	const char *name;
1494};
1495
1496static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1497{
1498	bool first_bit = true;
1499	int i = 0;
1500
1501	do {
1502		if (value & bits[i].bit) {
1503			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1504			first_bit = false;
1505		}
1506	} while (bits[++i].name != NULL);
1507}
1508
1509static void __p_sample_type(char *buf, size_t size, u64 value)
1510{
1511#define bit_name(n) { PERF_SAMPLE_##n, #n }
1512	struct bit_names bits[] = {
1513		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1514		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1515		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1516		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1517		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1518		bit_name(WEIGHT), bit_name(PHYS_ADDR),
1519		{ .name = NULL, }
1520	};
1521#undef bit_name
1522	__p_bits(buf, size, value, bits);
1523}
1524
1525static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1526{
1527#define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1528	struct bit_names bits[] = {
1529		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1530		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1531		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1532		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1533		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1534		{ .name = NULL, }
1535	};
1536#undef bit_name
1537	__p_bits(buf, size, value, bits);
1538}
1539
1540static void __p_read_format(char *buf, size_t size, u64 value)
1541{
1542#define bit_name(n) { PERF_FORMAT_##n, #n }
1543	struct bit_names bits[] = {
1544		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1545		bit_name(ID), bit_name(GROUP),
1546		{ .name = NULL, }
1547	};
1548#undef bit_name
1549	__p_bits(buf, size, value, bits);
1550}
1551
1552#define BUF_SIZE		1024
1553
1554#define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1555#define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1556#define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1557#define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1558#define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1559#define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1560
1561#define PRINT_ATTRn(_n, _f, _p)				\
1562do {							\
1563	if (attr->_f) {					\
1564		_p(attr->_f);				\
1565		ret += attr__fprintf(fp, _n, buf, priv);\
1566	}						\
1567} while (0)
1568
1569#define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1570
1571int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1572			     attr__fprintf_f attr__fprintf, void *priv)
1573{
1574	char buf[BUF_SIZE];
1575	int ret = 0;
1576
1577	PRINT_ATTRf(type, p_unsigned);
1578	PRINT_ATTRf(size, p_unsigned);
1579	PRINT_ATTRf(config, p_hex);
1580	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1581	PRINT_ATTRf(sample_type, p_sample_type);
1582	PRINT_ATTRf(read_format, p_read_format);
1583
1584	PRINT_ATTRf(disabled, p_unsigned);
1585	PRINT_ATTRf(inherit, p_unsigned);
1586	PRINT_ATTRf(pinned, p_unsigned);
1587	PRINT_ATTRf(exclusive, p_unsigned);
1588	PRINT_ATTRf(exclude_user, p_unsigned);
1589	PRINT_ATTRf(exclude_kernel, p_unsigned);
1590	PRINT_ATTRf(exclude_hv, p_unsigned);
1591	PRINT_ATTRf(exclude_idle, p_unsigned);
1592	PRINT_ATTRf(mmap, p_unsigned);
1593	PRINT_ATTRf(comm, p_unsigned);
1594	PRINT_ATTRf(freq, p_unsigned);
1595	PRINT_ATTRf(inherit_stat, p_unsigned);
1596	PRINT_ATTRf(enable_on_exec, p_unsigned);
1597	PRINT_ATTRf(task, p_unsigned);
1598	PRINT_ATTRf(watermark, p_unsigned);
1599	PRINT_ATTRf(precise_ip, p_unsigned);
1600	PRINT_ATTRf(mmap_data, p_unsigned);
1601	PRINT_ATTRf(sample_id_all, p_unsigned);
1602	PRINT_ATTRf(exclude_host, p_unsigned);
1603	PRINT_ATTRf(exclude_guest, p_unsigned);
1604	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1605	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1606	PRINT_ATTRf(mmap2, p_unsigned);
1607	PRINT_ATTRf(comm_exec, p_unsigned);
1608	PRINT_ATTRf(use_clockid, p_unsigned);
1609	PRINT_ATTRf(context_switch, p_unsigned);
1610	PRINT_ATTRf(write_backward, p_unsigned);
1611	PRINT_ATTRf(namespaces, p_unsigned);
1612
1613	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1614	PRINT_ATTRf(bp_type, p_unsigned);
1615	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1616	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1617	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1618	PRINT_ATTRf(sample_regs_user, p_hex);
1619	PRINT_ATTRf(sample_stack_user, p_unsigned);
1620	PRINT_ATTRf(clockid, p_signed);
1621	PRINT_ATTRf(sample_regs_intr, p_hex);
1622	PRINT_ATTRf(aux_watermark, p_unsigned);
1623	PRINT_ATTRf(sample_max_stack, p_unsigned);
1624
1625	return ret;
1626}
1627
1628static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1629				void *priv __maybe_unused)
1630{
1631	return fprintf(fp, "  %-32s %s\n", name, val);
1632}
1633
1634static void perf_evsel__remove_fd(struct perf_evsel *pos,
1635				  int nr_cpus, int nr_threads,
1636				  int thread_idx)
1637{
1638	for (int cpu = 0; cpu < nr_cpus; cpu++)
1639		for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1640			FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1641}
1642
1643static int update_fds(struct perf_evsel *evsel,
1644		      int nr_cpus, int cpu_idx,
1645		      int nr_threads, int thread_idx)
1646{
1647	struct perf_evsel *pos;
1648
1649	if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1650		return -EINVAL;
1651
1652	evlist__for_each_entry(evsel->evlist, pos) {
1653		nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1654
1655		perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1656
1657		/*
1658		 * Since fds for next evsel has not been created,
1659		 * there is no need to iterate whole event list.
1660		 */
1661		if (pos == evsel)
1662			break;
1663	}
1664	return 0;
1665}
1666
1667static bool ignore_missing_thread(struct perf_evsel *evsel,
1668				  int nr_cpus, int cpu,
1669				  struct thread_map *threads,
1670				  int thread, int err)
1671{
1672	pid_t ignore_pid = thread_map__pid(threads, thread);
1673
1674	if (!evsel->ignore_missing_thread)
1675		return false;
1676
1677	/* The system wide setup does not work with threads. */
1678	if (evsel->system_wide)
1679		return false;
1680
1681	/* The -ESRCH is perf event syscall errno for pid's not found. */
1682	if (err != -ESRCH)
1683		return false;
1684
1685	/* If there's only one thread, let it fail. */
1686	if (threads->nr == 1)
1687		return false;
1688
1689	/*
1690	 * We should remove fd for missing_thread first
1691	 * because thread_map__remove() will decrease threads->nr.
1692	 */
1693	if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1694		return false;
1695
1696	if (thread_map__remove(threads, thread))
1697		return false;
1698
1699	pr_warning("WARNING: Ignored open failure for pid %d\n",
1700		   ignore_pid);
1701	return true;
1702}
1703
1704int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1705		     struct thread_map *threads)
1706{
1707	int cpu, thread, nthreads;
1708	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1709	int pid = -1, err;
1710	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1711
1712	if (perf_missing_features.write_backward && evsel->attr.write_backward)
1713		return -EINVAL;
1714
1715	if (cpus == NULL) {
1716		static struct cpu_map *empty_cpu_map;
1717
1718		if (empty_cpu_map == NULL) {
1719			empty_cpu_map = cpu_map__dummy_new();
1720			if (empty_cpu_map == NULL)
1721				return -ENOMEM;
1722		}
1723
1724		cpus = empty_cpu_map;
1725	}
1726
1727	if (threads == NULL) {
1728		static struct thread_map *empty_thread_map;
1729
1730		if (empty_thread_map == NULL) {
1731			empty_thread_map = thread_map__new_by_tid(-1);
1732			if (empty_thread_map == NULL)
1733				return -ENOMEM;
1734		}
1735
1736		threads = empty_thread_map;
1737	}
1738
1739	if (evsel->system_wide)
1740		nthreads = 1;
1741	else
1742		nthreads = threads->nr;
1743
1744	if (evsel->fd == NULL &&
1745	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1746		return -ENOMEM;
1747
1748	if (evsel->cgrp) {
1749		flags |= PERF_FLAG_PID_CGROUP;
1750		pid = evsel->cgrp->fd;
1751	}
1752
1753fallback_missing_features:
1754	if (perf_missing_features.clockid_wrong)
1755		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1756	if (perf_missing_features.clockid) {
1757		evsel->attr.use_clockid = 0;
1758		evsel->attr.clockid = 0;
1759	}
1760	if (perf_missing_features.cloexec)
1761		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1762	if (perf_missing_features.mmap2)
1763		evsel->attr.mmap2 = 0;
1764	if (perf_missing_features.exclude_guest)
1765		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1766	if (perf_missing_features.lbr_flags)
1767		evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1768				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1769	if (perf_missing_features.group_read && evsel->attr.inherit)
1770		evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1771retry_sample_id:
1772	if (perf_missing_features.sample_id_all)
1773		evsel->attr.sample_id_all = 0;
1774
1775	if (verbose >= 2) {
1776		fprintf(stderr, "%.60s\n", graph_dotted_line);
1777		fprintf(stderr, "perf_event_attr:\n");
1778		perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1779		fprintf(stderr, "%.60s\n", graph_dotted_line);
1780	}
1781
1782	for (cpu = 0; cpu < cpus->nr; cpu++) {
1783
1784		for (thread = 0; thread < nthreads; thread++) {
1785			int fd, group_fd;
1786
1787			if (!evsel->cgrp && !evsel->system_wide)
1788				pid = thread_map__pid(threads, thread);
1789
1790			group_fd = get_group_fd(evsel, cpu, thread);
1791retry_open:
1792			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1793				  pid, cpus->map[cpu], group_fd, flags);
1794
1795			test_attr__ready();
1796
1797			fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1798						 group_fd, flags);
1799
1800			FD(evsel, cpu, thread) = fd;
1801
1802			if (fd < 0) {
1803				err = -errno;
1804
1805				if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1806					/*
1807					 * We just removed 1 thread, so take a step
1808					 * back on thread index and lower the upper
1809					 * nthreads limit.
1810					 */
1811					nthreads--;
1812					thread--;
1813
1814					/* ... and pretend like nothing have happened. */
1815					err = 0;
1816					continue;
1817				}
1818
1819				pr_debug2("\nsys_perf_event_open failed, error %d\n",
1820					  err);
1821				goto try_fallback;
1822			}
1823
1824			pr_debug2(" = %d\n", fd);
1825
1826			if (evsel->bpf_fd >= 0) {
1827				int evt_fd = fd;
1828				int bpf_fd = evsel->bpf_fd;
1829
1830				err = ioctl(evt_fd,
1831					    PERF_EVENT_IOC_SET_BPF,
1832					    bpf_fd);
1833				if (err && errno != EEXIST) {
1834					pr_err("failed to attach bpf fd %d: %s\n",
1835					       bpf_fd, strerror(errno));
1836					err = -EINVAL;
1837					goto out_close;
1838				}
1839			}
1840
1841			set_rlimit = NO_CHANGE;
1842
1843			/*
1844			 * If we succeeded but had to kill clockid, fail and
1845			 * have perf_evsel__open_strerror() print us a nice
1846			 * error.
1847			 */
1848			if (perf_missing_features.clockid ||
1849			    perf_missing_features.clockid_wrong) {
1850				err = -EINVAL;
1851				goto out_close;
1852			}
1853		}
1854	}
1855
1856	return 0;
1857
1858try_fallback:
1859	/*
1860	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1861	 * of them try to increase the limits.
1862	 */
1863	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1864		struct rlimit l;
1865		int old_errno = errno;
1866
1867		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1868			if (set_rlimit == NO_CHANGE)
1869				l.rlim_cur = l.rlim_max;
1870			else {
1871				l.rlim_cur = l.rlim_max + 1000;
1872				l.rlim_max = l.rlim_cur;
1873			}
1874			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1875				set_rlimit++;
1876				errno = old_errno;
1877				goto retry_open;
1878			}
1879		}
1880		errno = old_errno;
1881	}
1882
1883	if (err != -EINVAL || cpu > 0 || thread > 0)
1884		goto out_close;
1885
1886	/*
1887	 * Must probe features in the order they were added to the
1888	 * perf_event_attr interface.
1889	 */
1890	if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1891		perf_missing_features.write_backward = true;
1892		pr_debug2("switching off write_backward\n");
1893		goto out_close;
1894	} else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1895		perf_missing_features.clockid_wrong = true;
1896		pr_debug2("switching off clockid\n");
1897		goto fallback_missing_features;
1898	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1899		perf_missing_features.clockid = true;
1900		pr_debug2("switching off use_clockid\n");
1901		goto fallback_missing_features;
1902	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1903		perf_missing_features.cloexec = true;
1904		pr_debug2("switching off cloexec flag\n");
1905		goto fallback_missing_features;
1906	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1907		perf_missing_features.mmap2 = true;
1908		pr_debug2("switching off mmap2\n");
1909		goto fallback_missing_features;
1910	} else if (!perf_missing_features.exclude_guest &&
1911		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1912		perf_missing_features.exclude_guest = true;
1913		pr_debug2("switching off exclude_guest, exclude_host\n");
1914		goto fallback_missing_features;
1915	} else if (!perf_missing_features.sample_id_all) {
1916		perf_missing_features.sample_id_all = true;
1917		pr_debug2("switching off sample_id_all\n");
1918		goto retry_sample_id;
1919	} else if (!perf_missing_features.lbr_flags &&
1920			(evsel->attr.branch_sample_type &
1921			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1922			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1923		perf_missing_features.lbr_flags = true;
1924		pr_debug2("switching off branch sample type no (cycles/flags)\n");
1925		goto fallback_missing_features;
1926	} else if (!perf_missing_features.group_read &&
1927		    evsel->attr.inherit &&
1928		   (evsel->attr.read_format & PERF_FORMAT_GROUP) &&
1929		   perf_evsel__is_group_leader(evsel)) {
1930		perf_missing_features.group_read = true;
1931		pr_debug2("switching off group read\n");
1932		goto fallback_missing_features;
1933	}
1934out_close:
1935	if (err)
1936		threads->err_thread = thread;
1937
1938	do {
1939		while (--thread >= 0) {
1940			close(FD(evsel, cpu, thread));
1941			FD(evsel, cpu, thread) = -1;
1942		}
1943		thread = nthreads;
1944	} while (--cpu >= 0);
1945	return err;
1946}
1947
1948void perf_evsel__close(struct perf_evsel *evsel)
1949{
1950	if (evsel->fd == NULL)
1951		return;
1952
1953	perf_evsel__close_fd(evsel);
1954	perf_evsel__free_fd(evsel);
1955}
1956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1957int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1958			     struct cpu_map *cpus)
1959{
1960	return perf_evsel__open(evsel, cpus, NULL);
1961}
1962
1963int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1964				struct thread_map *threads)
1965{
1966	return perf_evsel__open(evsel, NULL, threads);
1967}
1968
1969static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1970				       const union perf_event *event,
1971				       struct perf_sample *sample)
1972{
1973	u64 type = evsel->attr.sample_type;
1974	const u64 *array = event->sample.array;
1975	bool swapped = evsel->needs_swap;
1976	union u64_swap u;
1977
1978	array += ((event->header.size -
1979		   sizeof(event->header)) / sizeof(u64)) - 1;
1980
1981	if (type & PERF_SAMPLE_IDENTIFIER) {
1982		sample->id = *array;
1983		array--;
1984	}
1985
1986	if (type & PERF_SAMPLE_CPU) {
1987		u.val64 = *array;
1988		if (swapped) {
1989			/* undo swap of u64, then swap on individual u32s */
1990			u.val64 = bswap_64(u.val64);
1991			u.val32[0] = bswap_32(u.val32[0]);
1992		}
1993
1994		sample->cpu = u.val32[0];
1995		array--;
1996	}
1997
1998	if (type & PERF_SAMPLE_STREAM_ID) {
1999		sample->stream_id = *array;
2000		array--;
2001	}
2002
2003	if (type & PERF_SAMPLE_ID) {
2004		sample->id = *array;
2005		array--;
2006	}
2007
2008	if (type & PERF_SAMPLE_TIME) {
2009		sample->time = *array;
2010		array--;
2011	}
2012
2013	if (type & PERF_SAMPLE_TID) {
2014		u.val64 = *array;
2015		if (swapped) {
2016			/* undo swap of u64, then swap on individual u32s */
2017			u.val64 = bswap_64(u.val64);
2018			u.val32[0] = bswap_32(u.val32[0]);
2019			u.val32[1] = bswap_32(u.val32[1]);
2020		}
2021
2022		sample->pid = u.val32[0];
2023		sample->tid = u.val32[1];
2024		array--;
2025	}
2026
2027	return 0;
2028}
2029
2030static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2031			    u64 size)
2032{
2033	return size > max_size || offset + size > endp;
2034}
2035
2036#define OVERFLOW_CHECK(offset, size, max_size)				\
2037	do {								\
2038		if (overflow(endp, (max_size), (offset), (size)))	\
2039			return -EFAULT;					\
2040	} while (0)
2041
2042#define OVERFLOW_CHECK_u64(offset) \
2043	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2044
2045static int
2046perf_event__check_size(union perf_event *event, unsigned int sample_size)
2047{
2048	/*
2049	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2050	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
2051	 * check the format does not go past the end of the event.
2052	 */
2053	if (sample_size + sizeof(event->header) > event->header.size)
2054		return -EFAULT;
2055
2056	return 0;
2057}
2058
2059int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
2060			     struct perf_sample *data)
2061{
2062	u64 type = evsel->attr.sample_type;
2063	bool swapped = evsel->needs_swap;
2064	const u64 *array;
2065	u16 max_size = event->header.size;
2066	const void *endp = (void *)event + max_size;
2067	u64 sz;
2068
2069	/*
2070	 * used for cross-endian analysis. See git commit 65014ab3
2071	 * for why this goofiness is needed.
2072	 */
2073	union u64_swap u;
2074
2075	memset(data, 0, sizeof(*data));
2076	data->cpu = data->pid = data->tid = -1;
2077	data->stream_id = data->id = data->time = -1ULL;
2078	data->period = evsel->attr.sample_period;
2079	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2080	data->misc    = event->header.misc;
2081	data->id = -1ULL;
2082	data->data_src = PERF_MEM_DATA_SRC_NONE;
2083
2084	if (event->header.type != PERF_RECORD_SAMPLE) {
2085		if (!evsel->attr.sample_id_all)
2086			return 0;
2087		return perf_evsel__parse_id_sample(evsel, event, data);
2088	}
2089
2090	array = event->sample.array;
2091
2092	if (perf_event__check_size(event, evsel->sample_size))
 
 
 
 
 
2093		return -EFAULT;
2094
 
2095	if (type & PERF_SAMPLE_IDENTIFIER) {
2096		data->id = *array;
2097		array++;
2098	}
2099
2100	if (type & PERF_SAMPLE_IP) {
2101		data->ip = *array;
2102		array++;
2103	}
2104
2105	if (type & PERF_SAMPLE_TID) {
2106		u.val64 = *array;
2107		if (swapped) {
2108			/* undo swap of u64, then swap on individual u32s */
2109			u.val64 = bswap_64(u.val64);
2110			u.val32[0] = bswap_32(u.val32[0]);
2111			u.val32[1] = bswap_32(u.val32[1]);
2112		}
2113
2114		data->pid = u.val32[0];
2115		data->tid = u.val32[1];
2116		array++;
2117	}
2118
2119	if (type & PERF_SAMPLE_TIME) {
2120		data->time = *array;
2121		array++;
2122	}
2123
 
2124	if (type & PERF_SAMPLE_ADDR) {
2125		data->addr = *array;
2126		array++;
2127	}
2128
2129	if (type & PERF_SAMPLE_ID) {
2130		data->id = *array;
2131		array++;
2132	}
2133
2134	if (type & PERF_SAMPLE_STREAM_ID) {
2135		data->stream_id = *array;
2136		array++;
2137	}
2138
2139	if (type & PERF_SAMPLE_CPU) {
2140
2141		u.val64 = *array;
2142		if (swapped) {
2143			/* undo swap of u64, then swap on individual u32s */
2144			u.val64 = bswap_64(u.val64);
2145			u.val32[0] = bswap_32(u.val32[0]);
2146		}
2147
2148		data->cpu = u.val32[0];
2149		array++;
2150	}
2151
2152	if (type & PERF_SAMPLE_PERIOD) {
2153		data->period = *array;
2154		array++;
2155	}
2156
2157	if (type & PERF_SAMPLE_READ) {
2158		u64 read_format = evsel->attr.read_format;
2159
2160		OVERFLOW_CHECK_u64(array);
2161		if (read_format & PERF_FORMAT_GROUP)
2162			data->read.group.nr = *array;
2163		else
2164			data->read.one.value = *array;
2165
2166		array++;
2167
2168		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2169			OVERFLOW_CHECK_u64(array);
2170			data->read.time_enabled = *array;
2171			array++;
2172		}
2173
2174		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2175			OVERFLOW_CHECK_u64(array);
2176			data->read.time_running = *array;
2177			array++;
2178		}
2179
2180		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2181		if (read_format & PERF_FORMAT_GROUP) {
2182			const u64 max_group_nr = UINT64_MAX /
2183					sizeof(struct sample_read_value);
2184
2185			if (data->read.group.nr > max_group_nr)
2186				return -EFAULT;
2187			sz = data->read.group.nr *
2188			     sizeof(struct sample_read_value);
2189			OVERFLOW_CHECK(array, sz, max_size);
2190			data->read.group.values =
2191					(struct sample_read_value *)array;
2192			array = (void *)array + sz;
2193		} else {
2194			OVERFLOW_CHECK_u64(array);
2195			data->read.one.id = *array;
2196			array++;
2197		}
2198	}
2199
2200	if (type & PERF_SAMPLE_CALLCHAIN) {
2201		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2202
2203		OVERFLOW_CHECK_u64(array);
2204		data->callchain = (struct ip_callchain *)array++;
2205		if (data->callchain->nr > max_callchain_nr)
2206			return -EFAULT;
2207		sz = data->callchain->nr * sizeof(u64);
2208		OVERFLOW_CHECK(array, sz, max_size);
2209		array = (void *)array + sz;
2210	}
2211
2212	if (type & PERF_SAMPLE_RAW) {
2213		OVERFLOW_CHECK_u64(array);
2214		u.val64 = *array;
2215
2216		/*
2217		 * Undo swap of u64, then swap on individual u32s,
2218		 * get the size of the raw area and undo all of the
2219		 * swap. The pevent interface handles endianity by
2220		 * itself.
2221		 */
2222		if (swapped) {
2223			u.val64 = bswap_64(u.val64);
2224			u.val32[0] = bswap_32(u.val32[0]);
2225			u.val32[1] = bswap_32(u.val32[1]);
2226		}
2227		data->raw_size = u.val32[0];
2228
2229		/*
2230		 * The raw data is aligned on 64bits including the
2231		 * u32 size, so it's safe to use mem_bswap_64.
2232		 */
2233		if (swapped)
2234			mem_bswap_64((void *) array, data->raw_size);
2235
2236		array = (void *)array + sizeof(u32);
2237
2238		OVERFLOW_CHECK(array, data->raw_size, max_size);
2239		data->raw_data = (void *)array;
2240		array = (void *)array + data->raw_size;
2241	}
2242
2243	if (type & PERF_SAMPLE_BRANCH_STACK) {
2244		const u64 max_branch_nr = UINT64_MAX /
2245					  sizeof(struct branch_entry);
2246
2247		OVERFLOW_CHECK_u64(array);
2248		data->branch_stack = (struct branch_stack *)array++;
2249
2250		if (data->branch_stack->nr > max_branch_nr)
2251			return -EFAULT;
2252		sz = data->branch_stack->nr * sizeof(struct branch_entry);
2253		OVERFLOW_CHECK(array, sz, max_size);
2254		array = (void *)array + sz;
2255	}
2256
2257	if (type & PERF_SAMPLE_REGS_USER) {
2258		OVERFLOW_CHECK_u64(array);
2259		data->user_regs.abi = *array;
2260		array++;
2261
2262		if (data->user_regs.abi) {
2263			u64 mask = evsel->attr.sample_regs_user;
2264
2265			sz = hweight_long(mask) * sizeof(u64);
2266			OVERFLOW_CHECK(array, sz, max_size);
2267			data->user_regs.mask = mask;
2268			data->user_regs.regs = (u64 *)array;
2269			array = (void *)array + sz;
2270		}
2271	}
2272
2273	if (type & PERF_SAMPLE_STACK_USER) {
2274		OVERFLOW_CHECK_u64(array);
2275		sz = *array++;
2276
2277		data->user_stack.offset = ((char *)(array - 1)
2278					  - (char *) event);
2279
2280		if (!sz) {
2281			data->user_stack.size = 0;
2282		} else {
2283			OVERFLOW_CHECK(array, sz, max_size);
2284			data->user_stack.data = (char *)array;
2285			array = (void *)array + sz;
2286			OVERFLOW_CHECK_u64(array);
2287			data->user_stack.size = *array++;
2288			if (WARN_ONCE(data->user_stack.size > sz,
2289				      "user stack dump failure\n"))
2290				return -EFAULT;
2291		}
2292	}
2293
2294	if (type & PERF_SAMPLE_WEIGHT) {
2295		OVERFLOW_CHECK_u64(array);
2296		data->weight = *array;
2297		array++;
2298	}
2299
 
2300	if (type & PERF_SAMPLE_DATA_SRC) {
2301		OVERFLOW_CHECK_u64(array);
2302		data->data_src = *array;
2303		array++;
2304	}
2305
 
2306	if (type & PERF_SAMPLE_TRANSACTION) {
2307		OVERFLOW_CHECK_u64(array);
2308		data->transaction = *array;
2309		array++;
2310	}
2311
2312	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2313	if (type & PERF_SAMPLE_REGS_INTR) {
2314		OVERFLOW_CHECK_u64(array);
2315		data->intr_regs.abi = *array;
2316		array++;
2317
2318		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2319			u64 mask = evsel->attr.sample_regs_intr;
2320
2321			sz = hweight_long(mask) * sizeof(u64);
2322			OVERFLOW_CHECK(array, sz, max_size);
2323			data->intr_regs.mask = mask;
2324			data->intr_regs.regs = (u64 *)array;
2325			array = (void *)array + sz;
2326		}
2327	}
2328
2329	data->phys_addr = 0;
2330	if (type & PERF_SAMPLE_PHYS_ADDR) {
2331		data->phys_addr = *array;
2332		array++;
2333	}
2334
2335	return 0;
2336}
2337
2338int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel,
2339				       union perf_event *event,
2340				       u64 *timestamp)
2341{
2342	u64 type = evsel->attr.sample_type;
2343	const u64 *array;
2344
2345	if (!(type & PERF_SAMPLE_TIME))
2346		return -1;
2347
2348	if (event->header.type != PERF_RECORD_SAMPLE) {
2349		struct perf_sample data = {
2350			.time = -1ULL,
2351		};
2352
2353		if (!evsel->attr.sample_id_all)
2354			return -1;
2355		if (perf_evsel__parse_id_sample(evsel, event, &data))
2356			return -1;
2357
2358		*timestamp = data.time;
2359		return 0;
2360	}
2361
2362	array = event->sample.array;
2363
2364	if (perf_event__check_size(event, evsel->sample_size))
2365		return -EFAULT;
2366
2367	if (type & PERF_SAMPLE_IDENTIFIER)
2368		array++;
2369
2370	if (type & PERF_SAMPLE_IP)
2371		array++;
2372
2373	if (type & PERF_SAMPLE_TID)
2374		array++;
2375
2376	if (type & PERF_SAMPLE_TIME)
2377		*timestamp = *array;
2378
2379	return 0;
2380}
2381
2382size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2383				     u64 read_format)
2384{
2385	size_t sz, result = sizeof(struct sample_event);
2386
2387	if (type & PERF_SAMPLE_IDENTIFIER)
2388		result += sizeof(u64);
2389
2390	if (type & PERF_SAMPLE_IP)
2391		result += sizeof(u64);
2392
2393	if (type & PERF_SAMPLE_TID)
2394		result += sizeof(u64);
2395
2396	if (type & PERF_SAMPLE_TIME)
2397		result += sizeof(u64);
2398
2399	if (type & PERF_SAMPLE_ADDR)
2400		result += sizeof(u64);
2401
2402	if (type & PERF_SAMPLE_ID)
2403		result += sizeof(u64);
2404
2405	if (type & PERF_SAMPLE_STREAM_ID)
2406		result += sizeof(u64);
2407
2408	if (type & PERF_SAMPLE_CPU)
2409		result += sizeof(u64);
2410
2411	if (type & PERF_SAMPLE_PERIOD)
2412		result += sizeof(u64);
2413
2414	if (type & PERF_SAMPLE_READ) {
2415		result += sizeof(u64);
2416		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2417			result += sizeof(u64);
2418		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2419			result += sizeof(u64);
2420		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2421		if (read_format & PERF_FORMAT_GROUP) {
2422			sz = sample->read.group.nr *
2423			     sizeof(struct sample_read_value);
2424			result += sz;
2425		} else {
2426			result += sizeof(u64);
2427		}
2428	}
2429
2430	if (type & PERF_SAMPLE_CALLCHAIN) {
2431		sz = (sample->callchain->nr + 1) * sizeof(u64);
2432		result += sz;
2433	}
2434
2435	if (type & PERF_SAMPLE_RAW) {
2436		result += sizeof(u32);
2437		result += sample->raw_size;
2438	}
2439
2440	if (type & PERF_SAMPLE_BRANCH_STACK) {
2441		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2442		sz += sizeof(u64);
2443		result += sz;
2444	}
2445
2446	if (type & PERF_SAMPLE_REGS_USER) {
2447		if (sample->user_regs.abi) {
2448			result += sizeof(u64);
2449			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2450			result += sz;
2451		} else {
2452			result += sizeof(u64);
2453		}
2454	}
2455
2456	if (type & PERF_SAMPLE_STACK_USER) {
2457		sz = sample->user_stack.size;
2458		result += sizeof(u64);
2459		if (sz) {
2460			result += sz;
2461			result += sizeof(u64);
2462		}
2463	}
2464
2465	if (type & PERF_SAMPLE_WEIGHT)
2466		result += sizeof(u64);
2467
2468	if (type & PERF_SAMPLE_DATA_SRC)
2469		result += sizeof(u64);
2470
2471	if (type & PERF_SAMPLE_TRANSACTION)
2472		result += sizeof(u64);
2473
2474	if (type & PERF_SAMPLE_REGS_INTR) {
2475		if (sample->intr_regs.abi) {
2476			result += sizeof(u64);
2477			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2478			result += sz;
2479		} else {
2480			result += sizeof(u64);
2481		}
2482	}
2483
2484	if (type & PERF_SAMPLE_PHYS_ADDR)
2485		result += sizeof(u64);
2486
2487	return result;
2488}
2489
2490int perf_event__synthesize_sample(union perf_event *event, u64 type,
2491				  u64 read_format,
2492				  const struct perf_sample *sample)
 
2493{
2494	u64 *array;
2495	size_t sz;
2496	/*
2497	 * used for cross-endian analysis. See git commit 65014ab3
2498	 * for why this goofiness is needed.
2499	 */
2500	union u64_swap u;
2501
2502	array = event->sample.array;
2503
2504	if (type & PERF_SAMPLE_IDENTIFIER) {
2505		*array = sample->id;
2506		array++;
2507	}
2508
2509	if (type & PERF_SAMPLE_IP) {
2510		*array = sample->ip;
2511		array++;
2512	}
2513
2514	if (type & PERF_SAMPLE_TID) {
2515		u.val32[0] = sample->pid;
2516		u.val32[1] = sample->tid;
 
 
 
 
 
 
 
 
 
2517		*array = u.val64;
2518		array++;
2519	}
2520
2521	if (type & PERF_SAMPLE_TIME) {
2522		*array = sample->time;
2523		array++;
2524	}
2525
2526	if (type & PERF_SAMPLE_ADDR) {
2527		*array = sample->addr;
2528		array++;
2529	}
2530
2531	if (type & PERF_SAMPLE_ID) {
2532		*array = sample->id;
2533		array++;
2534	}
2535
2536	if (type & PERF_SAMPLE_STREAM_ID) {
2537		*array = sample->stream_id;
2538		array++;
2539	}
2540
2541	if (type & PERF_SAMPLE_CPU) {
2542		u.val32[0] = sample->cpu;
2543		u.val32[1] = 0;
 
 
 
 
 
 
2544		*array = u.val64;
2545		array++;
2546	}
2547
2548	if (type & PERF_SAMPLE_PERIOD) {
2549		*array = sample->period;
2550		array++;
2551	}
2552
2553	if (type & PERF_SAMPLE_READ) {
2554		if (read_format & PERF_FORMAT_GROUP)
2555			*array = sample->read.group.nr;
2556		else
2557			*array = sample->read.one.value;
2558		array++;
2559
2560		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2561			*array = sample->read.time_enabled;
2562			array++;
2563		}
2564
2565		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2566			*array = sample->read.time_running;
2567			array++;
2568		}
2569
2570		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2571		if (read_format & PERF_FORMAT_GROUP) {
2572			sz = sample->read.group.nr *
2573			     sizeof(struct sample_read_value);
2574			memcpy(array, sample->read.group.values, sz);
2575			array = (void *)array + sz;
2576		} else {
2577			*array = sample->read.one.id;
2578			array++;
2579		}
2580	}
2581
2582	if (type & PERF_SAMPLE_CALLCHAIN) {
2583		sz = (sample->callchain->nr + 1) * sizeof(u64);
2584		memcpy(array, sample->callchain, sz);
2585		array = (void *)array + sz;
2586	}
2587
2588	if (type & PERF_SAMPLE_RAW) {
2589		u.val32[0] = sample->raw_size;
 
 
 
 
 
 
 
 
 
2590		*array = u.val64;
2591		array = (void *)array + sizeof(u32);
2592
2593		memcpy(array, sample->raw_data, sample->raw_size);
2594		array = (void *)array + sample->raw_size;
2595	}
2596
2597	if (type & PERF_SAMPLE_BRANCH_STACK) {
2598		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2599		sz += sizeof(u64);
2600		memcpy(array, sample->branch_stack, sz);
2601		array = (void *)array + sz;
2602	}
2603
2604	if (type & PERF_SAMPLE_REGS_USER) {
2605		if (sample->user_regs.abi) {
2606			*array++ = sample->user_regs.abi;
2607			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2608			memcpy(array, sample->user_regs.regs, sz);
2609			array = (void *)array + sz;
2610		} else {
2611			*array++ = 0;
2612		}
2613	}
2614
2615	if (type & PERF_SAMPLE_STACK_USER) {
2616		sz = sample->user_stack.size;
2617		*array++ = sz;
2618		if (sz) {
2619			memcpy(array, sample->user_stack.data, sz);
2620			array = (void *)array + sz;
2621			*array++ = sz;
2622		}
2623	}
2624
2625	if (type & PERF_SAMPLE_WEIGHT) {
2626		*array = sample->weight;
2627		array++;
2628	}
2629
2630	if (type & PERF_SAMPLE_DATA_SRC) {
2631		*array = sample->data_src;
2632		array++;
2633	}
2634
2635	if (type & PERF_SAMPLE_TRANSACTION) {
2636		*array = sample->transaction;
2637		array++;
2638	}
2639
2640	if (type & PERF_SAMPLE_REGS_INTR) {
2641		if (sample->intr_regs.abi) {
2642			*array++ = sample->intr_regs.abi;
2643			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2644			memcpy(array, sample->intr_regs.regs, sz);
2645			array = (void *)array + sz;
2646		} else {
2647			*array++ = 0;
2648		}
2649	}
2650
2651	if (type & PERF_SAMPLE_PHYS_ADDR) {
2652		*array = sample->phys_addr;
2653		array++;
2654	}
2655
2656	return 0;
2657}
2658
2659struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2660{
2661	return pevent_find_field(evsel->tp_format, name);
2662}
2663
2664void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2665			 const char *name)
2666{
2667	struct format_field *field = perf_evsel__field(evsel, name);
2668	int offset;
2669
2670	if (!field)
2671		return NULL;
2672
2673	offset = field->offset;
2674
2675	if (field->flags & FIELD_IS_DYNAMIC) {
2676		offset = *(int *)(sample->raw_data + field->offset);
2677		offset &= 0xffff;
2678	}
2679
2680	return sample->raw_data + offset;
2681}
2682
2683u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2684			 bool needs_swap)
2685{
2686	u64 value;
2687	void *ptr = sample->raw_data + field->offset;
2688
2689	switch (field->size) {
2690	case 1:
2691		return *(u8 *)ptr;
2692	case 2:
2693		value = *(u16 *)ptr;
2694		break;
2695	case 4:
2696		value = *(u32 *)ptr;
2697		break;
2698	case 8:
2699		memcpy(&value, ptr, sizeof(u64));
2700		break;
2701	default:
2702		return 0;
2703	}
2704
2705	if (!needs_swap)
2706		return value;
2707
2708	switch (field->size) {
2709	case 2:
2710		return bswap_16(value);
2711	case 4:
2712		return bswap_32(value);
2713	case 8:
2714		return bswap_64(value);
2715	default:
2716		return 0;
2717	}
2718
2719	return 0;
2720}
2721
2722u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2723		       const char *name)
2724{
2725	struct format_field *field = perf_evsel__field(evsel, name);
2726
2727	if (!field)
2728		return 0;
2729
2730	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2731}
2732
2733bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2734			  char *msg, size_t msgsize)
2735{
2736	int paranoid;
2737
2738	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2739	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2740	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2741		/*
2742		 * If it's cycles then fall back to hrtimer based
2743		 * cpu-clock-tick sw counter, which is always available even if
2744		 * no PMU support.
2745		 *
2746		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2747		 * b0a873e).
2748		 */
2749		scnprintf(msg, msgsize, "%s",
2750"The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2751
2752		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2753		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2754
2755		zfree(&evsel->name);
2756		return true;
2757	} else if (err == EACCES && !evsel->attr.exclude_kernel &&
2758		   (paranoid = perf_event_paranoid()) > 1) {
2759		const char *name = perf_evsel__name(evsel);
2760		char *new_name;
2761		const char *sep = ":";
2762
2763		/* Is there already the separator in the name. */
2764		if (strchr(name, '/') ||
2765		    strchr(name, ':'))
2766			sep = "";
2767
2768		if (asprintf(&new_name, "%s%su", name, sep) < 0)
2769			return false;
2770
2771		if (evsel->name)
2772			free(evsel->name);
2773		evsel->name = new_name;
2774		scnprintf(msg, msgsize,
2775"kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2776		evsel->attr.exclude_kernel = 1;
2777
2778		return true;
2779	}
2780
2781	return false;
2782}
2783
2784static bool find_process(const char *name)
2785{
2786	size_t len = strlen(name);
2787	DIR *dir;
2788	struct dirent *d;
2789	int ret = -1;
2790
2791	dir = opendir(procfs__mountpoint());
2792	if (!dir)
2793		return false;
2794
2795	/* Walk through the directory. */
2796	while (ret && (d = readdir(dir)) != NULL) {
2797		char path[PATH_MAX];
2798		char *data;
2799		size_t size;
2800
2801		if ((d->d_type != DT_DIR) ||
2802		     !strcmp(".", d->d_name) ||
2803		     !strcmp("..", d->d_name))
2804			continue;
2805
2806		scnprintf(path, sizeof(path), "%s/%s/comm",
2807			  procfs__mountpoint(), d->d_name);
2808
2809		if (filename__read_str(path, &data, &size))
2810			continue;
2811
2812		ret = strncmp(name, data, len);
2813		free(data);
2814	}
2815
2816	closedir(dir);
2817	return ret ? false : true;
2818}
2819
2820int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2821			      int err, char *msg, size_t size)
2822{
2823	char sbuf[STRERR_BUFSIZE];
2824	int printed = 0;
2825
2826	switch (err) {
2827	case EPERM:
2828	case EACCES:
2829		if (err == EPERM)
2830			printed = scnprintf(msg, size,
2831				"No permission to enable %s event.\n\n",
2832				perf_evsel__name(evsel));
2833
2834		return scnprintf(msg + printed, size - printed,
2835		 "You may not have permission to collect %sstats.\n\n"
2836		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2837		 "which controls use of the performance events system by\n"
2838		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2839		 "The current value is %d:\n\n"
2840		 "  -1: Allow use of (almost) all events by all users\n"
2841		 "      Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2842		 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2843		 "      Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2844		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2845		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2846		 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2847		 "	kernel.perf_event_paranoid = -1\n" ,
2848				 target->system_wide ? "system-wide " : "",
2849				 perf_event_paranoid());
2850	case ENOENT:
2851		return scnprintf(msg, size, "The %s event is not supported.",
2852				 perf_evsel__name(evsel));
2853	case EMFILE:
2854		return scnprintf(msg, size, "%s",
2855			 "Too many events are opened.\n"
2856			 "Probably the maximum number of open file descriptors has been reached.\n"
2857			 "Hint: Try again after reducing the number of events.\n"
2858			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2859	case ENOMEM:
2860		if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2861		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2862			return scnprintf(msg, size,
2863					 "Not enough memory to setup event with callchain.\n"
2864					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2865					 "Hint: Current value: %d", sysctl_perf_event_max_stack);
2866		break;
2867	case ENODEV:
2868		if (target->cpu_list)
2869			return scnprintf(msg, size, "%s",
2870	 "No such device - did you specify an out-of-range profile CPU?");
2871		break;
2872	case EOPNOTSUPP:
2873		if (evsel->attr.sample_period != 0)
2874			return scnprintf(msg, size,
2875	"%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2876					 perf_evsel__name(evsel));
2877		if (evsel->attr.precise_ip)
2878			return scnprintf(msg, size, "%s",
2879	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2880#if defined(__i386__) || defined(__x86_64__)
2881		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2882			return scnprintf(msg, size, "%s",
2883	"No hardware sampling interrupt available.\n");
 
2884#endif
2885		break;
2886	case EBUSY:
2887		if (find_process("oprofiled"))
2888			return scnprintf(msg, size,
2889	"The PMU counters are busy/taken by another profiler.\n"
2890	"We found oprofile daemon running, please stop it and try again.");
2891		break;
2892	case EINVAL:
2893		if (evsel->attr.write_backward && perf_missing_features.write_backward)
2894			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2895		if (perf_missing_features.clockid)
2896			return scnprintf(msg, size, "clockid feature not supported.");
2897		if (perf_missing_features.clockid_wrong)
2898			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2899		break;
2900	default:
2901		break;
2902	}
2903
2904	return scnprintf(msg, size,
2905	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2906	"/bin/dmesg | grep -i perf may provide additional information.\n",
 
2907			 err, str_error_r(err, sbuf, sizeof(sbuf)),
2908			 perf_evsel__name(evsel));
2909}
2910
2911struct perf_env *perf_evsel__env(struct perf_evsel *evsel)
2912{
2913	if (evsel && evsel->evlist)
2914		return evsel->evlist->env;
2915	return NULL;
2916}
v4.10.11
   1/*
   2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
   3 *
   4 * Parts came from builtin-{top,stat,record}.c, see those files for further
   5 * copyright notes.
   6 *
   7 * Released under the GPL v2. (and only v2, not any later version)
   8 */
   9
  10#include <byteswap.h>
 
 
  11#include <linux/bitops.h>
 
  12#include <api/fs/tracing_path.h>
  13#include <traceevent/event-parse.h>
  14#include <linux/hw_breakpoint.h>
  15#include <linux/perf_event.h>
 
  16#include <linux/err.h>
 
  17#include <sys/resource.h>
 
 
  18#include "asm/bug.h"
  19#include "callchain.h"
  20#include "cgroup.h"
 
  21#include "evsel.h"
  22#include "evlist.h"
  23#include "util.h"
  24#include "cpumap.h"
  25#include "thread_map.h"
  26#include "target.h"
  27#include "perf_regs.h"
  28#include "debug.h"
  29#include "trace-event.h"
  30#include "stat.h"
 
  31#include "util/parse-branch-options.h"
  32
  33static struct {
  34	bool sample_id_all;
  35	bool exclude_guest;
  36	bool mmap2;
  37	bool cloexec;
  38	bool clockid;
  39	bool clockid_wrong;
  40	bool lbr_flags;
  41	bool write_backward;
  42} perf_missing_features;
  43
  44static clockid_t clockid;
  45
  46static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
  47{
  48	return 0;
  49}
  50
 
 
  51static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
  52{
  53}
  54
  55static struct {
  56	size_t	size;
  57	int	(*init)(struct perf_evsel *evsel);
  58	void	(*fini)(struct perf_evsel *evsel);
  59} perf_evsel__object = {
  60	.size = sizeof(struct perf_evsel),
  61	.init = perf_evsel__no_extra_init,
  62	.fini = perf_evsel__no_extra_fini,
  63};
  64
  65int perf_evsel__object_config(size_t object_size,
  66			      int (*init)(struct perf_evsel *evsel),
  67			      void (*fini)(struct perf_evsel *evsel))
  68{
  69
  70	if (object_size == 0)
  71		goto set_methods;
  72
  73	if (perf_evsel__object.size > object_size)
  74		return -EINVAL;
  75
  76	perf_evsel__object.size = object_size;
  77
  78set_methods:
  79	if (init != NULL)
  80		perf_evsel__object.init = init;
  81
  82	if (fini != NULL)
  83		perf_evsel__object.fini = fini;
  84
  85	return 0;
  86}
  87
  88#define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
  89
  90int __perf_evsel__sample_size(u64 sample_type)
  91{
  92	u64 mask = sample_type & PERF_SAMPLE_MASK;
  93	int size = 0;
  94	int i;
  95
  96	for (i = 0; i < 64; i++) {
  97		if (mask & (1ULL << i))
  98			size++;
  99	}
 100
 101	size *= sizeof(u64);
 102
 103	return size;
 104}
 105
 106/**
 107 * __perf_evsel__calc_id_pos - calculate id_pos.
 108 * @sample_type: sample type
 109 *
 110 * This function returns the position of the event id (PERF_SAMPLE_ID or
 111 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
 112 * sample_event.
 113 */
 114static int __perf_evsel__calc_id_pos(u64 sample_type)
 115{
 116	int idx = 0;
 117
 118	if (sample_type & PERF_SAMPLE_IDENTIFIER)
 119		return 0;
 120
 121	if (!(sample_type & PERF_SAMPLE_ID))
 122		return -1;
 123
 124	if (sample_type & PERF_SAMPLE_IP)
 125		idx += 1;
 126
 127	if (sample_type & PERF_SAMPLE_TID)
 128		idx += 1;
 129
 130	if (sample_type & PERF_SAMPLE_TIME)
 131		idx += 1;
 132
 133	if (sample_type & PERF_SAMPLE_ADDR)
 134		idx += 1;
 135
 136	return idx;
 137}
 138
 139/**
 140 * __perf_evsel__calc_is_pos - calculate is_pos.
 141 * @sample_type: sample type
 142 *
 143 * This function returns the position (counting backwards) of the event id
 144 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
 145 * sample_id_all is used there is an id sample appended to non-sample events.
 146 */
 147static int __perf_evsel__calc_is_pos(u64 sample_type)
 148{
 149	int idx = 1;
 150
 151	if (sample_type & PERF_SAMPLE_IDENTIFIER)
 152		return 1;
 153
 154	if (!(sample_type & PERF_SAMPLE_ID))
 155		return -1;
 156
 157	if (sample_type & PERF_SAMPLE_CPU)
 158		idx += 1;
 159
 160	if (sample_type & PERF_SAMPLE_STREAM_ID)
 161		idx += 1;
 162
 163	return idx;
 164}
 165
 166void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
 167{
 168	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
 169	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
 170}
 171
 172void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
 173				  enum perf_event_sample_format bit)
 174{
 175	if (!(evsel->attr.sample_type & bit)) {
 176		evsel->attr.sample_type |= bit;
 177		evsel->sample_size += sizeof(u64);
 178		perf_evsel__calc_id_pos(evsel);
 179	}
 180}
 181
 182void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
 183				    enum perf_event_sample_format bit)
 184{
 185	if (evsel->attr.sample_type & bit) {
 186		evsel->attr.sample_type &= ~bit;
 187		evsel->sample_size -= sizeof(u64);
 188		perf_evsel__calc_id_pos(evsel);
 189	}
 190}
 191
 192void perf_evsel__set_sample_id(struct perf_evsel *evsel,
 193			       bool can_sample_identifier)
 194{
 195	if (can_sample_identifier) {
 196		perf_evsel__reset_sample_bit(evsel, ID);
 197		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
 198	} else {
 199		perf_evsel__set_sample_bit(evsel, ID);
 200	}
 201	evsel->attr.read_format |= PERF_FORMAT_ID;
 202}
 203
 204/**
 205 * perf_evsel__is_function_event - Return whether given evsel is a function
 206 * trace event
 207 *
 208 * @evsel - evsel selector to be tested
 209 *
 210 * Return %true if event is function trace event
 211 */
 212bool perf_evsel__is_function_event(struct perf_evsel *evsel)
 213{
 214#define FUNCTION_EVENT "ftrace:function"
 215
 216	return evsel->name &&
 217	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
 218
 219#undef FUNCTION_EVENT
 220}
 221
 222void perf_evsel__init(struct perf_evsel *evsel,
 223		      struct perf_event_attr *attr, int idx)
 224{
 225	evsel->idx	   = idx;
 226	evsel->tracking	   = !idx;
 227	evsel->attr	   = *attr;
 228	evsel->leader	   = evsel;
 229	evsel->unit	   = "";
 230	evsel->scale	   = 1.0;
 231	evsel->evlist	   = NULL;
 232	evsel->bpf_fd	   = -1;
 233	INIT_LIST_HEAD(&evsel->node);
 234	INIT_LIST_HEAD(&evsel->config_terms);
 235	perf_evsel__object.init(evsel);
 236	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
 237	perf_evsel__calc_id_pos(evsel);
 238	evsel->cmdline_group_boundary = false;
 
 
 
 
 
 239}
 240
 241struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
 242{
 243	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
 244
 245	if (evsel != NULL)
 246		perf_evsel__init(evsel, attr, idx);
 247
 248	if (perf_evsel__is_bpf_output(evsel)) {
 249		evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
 250					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
 251		evsel->attr.sample_period = 1;
 252	}
 253
 254	return evsel;
 255}
 256
 257struct perf_evsel *perf_evsel__new_cycles(void)
 
 
 
 
 
 258{
 259	struct perf_event_attr attr = {
 260		.type	= PERF_TYPE_HARDWARE,
 261		.config	= PERF_COUNT_HW_CPU_CYCLES,
 
 262	};
 263	struct perf_evsel *evsel;
 264
 265	event_attr_init(&attr);
 266
 
 
 
 
 
 
 
 
 
 
 267	perf_event_attr__set_max_precise_ip(&attr);
 268
 
 
 
 
 
 269	evsel = perf_evsel__new(&attr);
 270	if (evsel == NULL)
 271		goto out;
 272
 273	/* use asprintf() because free(evsel) assumes name is allocated */
 274	if (asprintf(&evsel->name, "cycles%.*s",
 275		     attr.precise_ip ? attr.precise_ip + 1 : 0, ":ppp") < 0)
 
 
 276		goto error_free;
 277out:
 278	return evsel;
 279error_free:
 280	perf_evsel__delete(evsel);
 281	evsel = NULL;
 282	goto out;
 283}
 284
 285/*
 286 * Returns pointer with encoded error via <linux/err.h> interface.
 287 */
 288struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
 289{
 290	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
 291	int err = -ENOMEM;
 292
 293	if (evsel == NULL) {
 294		goto out_err;
 295	} else {
 296		struct perf_event_attr attr = {
 297			.type	       = PERF_TYPE_TRACEPOINT,
 298			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
 299					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
 300		};
 301
 302		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
 303			goto out_free;
 304
 305		evsel->tp_format = trace_event__tp_format(sys, name);
 306		if (IS_ERR(evsel->tp_format)) {
 307			err = PTR_ERR(evsel->tp_format);
 308			goto out_free;
 309		}
 310
 311		event_attr_init(&attr);
 312		attr.config = evsel->tp_format->id;
 313		attr.sample_period = 1;
 314		perf_evsel__init(evsel, &attr, idx);
 315	}
 316
 317	return evsel;
 318
 319out_free:
 320	zfree(&evsel->name);
 321	free(evsel);
 322out_err:
 323	return ERR_PTR(err);
 324}
 325
 326const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
 327	"cycles",
 328	"instructions",
 329	"cache-references",
 330	"cache-misses",
 331	"branches",
 332	"branch-misses",
 333	"bus-cycles",
 334	"stalled-cycles-frontend",
 335	"stalled-cycles-backend",
 336	"ref-cycles",
 337};
 338
 339static const char *__perf_evsel__hw_name(u64 config)
 340{
 341	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
 342		return perf_evsel__hw_names[config];
 343
 344	return "unknown-hardware";
 345}
 346
 347static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
 348{
 349	int colon = 0, r = 0;
 350	struct perf_event_attr *attr = &evsel->attr;
 351	bool exclude_guest_default = false;
 352
 353#define MOD_PRINT(context, mod)	do {					\
 354		if (!attr->exclude_##context) {				\
 355			if (!colon) colon = ++r;			\
 356			r += scnprintf(bf + r, size - r, "%c", mod);	\
 357		} } while(0)
 358
 359	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
 360		MOD_PRINT(kernel, 'k');
 361		MOD_PRINT(user, 'u');
 362		MOD_PRINT(hv, 'h');
 363		exclude_guest_default = true;
 364	}
 365
 366	if (attr->precise_ip) {
 367		if (!colon)
 368			colon = ++r;
 369		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
 370		exclude_guest_default = true;
 371	}
 372
 373	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
 374		MOD_PRINT(host, 'H');
 375		MOD_PRINT(guest, 'G');
 376	}
 377#undef MOD_PRINT
 378	if (colon)
 379		bf[colon - 1] = ':';
 380	return r;
 381}
 382
 383static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
 384{
 385	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
 386	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
 387}
 388
 389const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
 390	"cpu-clock",
 391	"task-clock",
 392	"page-faults",
 393	"context-switches",
 394	"cpu-migrations",
 395	"minor-faults",
 396	"major-faults",
 397	"alignment-faults",
 398	"emulation-faults",
 399	"dummy",
 400};
 401
 402static const char *__perf_evsel__sw_name(u64 config)
 403{
 404	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
 405		return perf_evsel__sw_names[config];
 406	return "unknown-software";
 407}
 408
 409static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
 410{
 411	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
 412	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
 413}
 414
 415static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
 416{
 417	int r;
 418
 419	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
 420
 421	if (type & HW_BREAKPOINT_R)
 422		r += scnprintf(bf + r, size - r, "r");
 423
 424	if (type & HW_BREAKPOINT_W)
 425		r += scnprintf(bf + r, size - r, "w");
 426
 427	if (type & HW_BREAKPOINT_X)
 428		r += scnprintf(bf + r, size - r, "x");
 429
 430	return r;
 431}
 432
 433static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
 434{
 435	struct perf_event_attr *attr = &evsel->attr;
 436	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
 437	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
 438}
 439
 440const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
 441				[PERF_EVSEL__MAX_ALIASES] = {
 442 { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
 443 { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
 444 { "LLC",	"L2",							},
 445 { "dTLB",	"d-tlb",	"Data-TLB",				},
 446 { "iTLB",	"i-tlb",	"Instruction-TLB",			},
 447 { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
 448 { "node",								},
 449};
 450
 451const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
 452				   [PERF_EVSEL__MAX_ALIASES] = {
 453 { "load",	"loads",	"read",					},
 454 { "store",	"stores",	"write",				},
 455 { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
 456};
 457
 458const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
 459				       [PERF_EVSEL__MAX_ALIASES] = {
 460 { "refs",	"Reference",	"ops",		"access",		},
 461 { "misses",	"miss",							},
 462};
 463
 464#define C(x)		PERF_COUNT_HW_CACHE_##x
 465#define CACHE_READ	(1 << C(OP_READ))
 466#define CACHE_WRITE	(1 << C(OP_WRITE))
 467#define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
 468#define COP(x)		(1 << x)
 469
 470/*
 471 * cache operartion stat
 472 * L1I : Read and prefetch only
 473 * ITLB and BPU : Read-only
 474 */
 475static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
 476 [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
 477 [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
 478 [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
 479 [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
 480 [C(ITLB)]	= (CACHE_READ),
 481 [C(BPU)]	= (CACHE_READ),
 482 [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
 483};
 484
 485bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
 486{
 487	if (perf_evsel__hw_cache_stat[type] & COP(op))
 488		return true;	/* valid */
 489	else
 490		return false;	/* invalid */
 491}
 492
 493int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
 494					    char *bf, size_t size)
 495{
 496	if (result) {
 497		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
 498				 perf_evsel__hw_cache_op[op][0],
 499				 perf_evsel__hw_cache_result[result][0]);
 500	}
 501
 502	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
 503			 perf_evsel__hw_cache_op[op][1]);
 504}
 505
 506static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
 507{
 508	u8 op, result, type = (config >>  0) & 0xff;
 509	const char *err = "unknown-ext-hardware-cache-type";
 510
 511	if (type >= PERF_COUNT_HW_CACHE_MAX)
 512		goto out_err;
 513
 514	op = (config >>  8) & 0xff;
 515	err = "unknown-ext-hardware-cache-op";
 516	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
 517		goto out_err;
 518
 519	result = (config >> 16) & 0xff;
 520	err = "unknown-ext-hardware-cache-result";
 521	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 522		goto out_err;
 523
 524	err = "invalid-cache";
 525	if (!perf_evsel__is_cache_op_valid(type, op))
 526		goto out_err;
 527
 528	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
 529out_err:
 530	return scnprintf(bf, size, "%s", err);
 531}
 532
 533static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
 534{
 535	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
 536	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
 537}
 538
 539static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
 540{
 541	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
 542	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
 543}
 544
 545const char *perf_evsel__name(struct perf_evsel *evsel)
 546{
 547	char bf[128];
 548
 549	if (evsel->name)
 550		return evsel->name;
 551
 552	switch (evsel->attr.type) {
 553	case PERF_TYPE_RAW:
 554		perf_evsel__raw_name(evsel, bf, sizeof(bf));
 555		break;
 556
 557	case PERF_TYPE_HARDWARE:
 558		perf_evsel__hw_name(evsel, bf, sizeof(bf));
 559		break;
 560
 561	case PERF_TYPE_HW_CACHE:
 562		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
 563		break;
 564
 565	case PERF_TYPE_SOFTWARE:
 566		perf_evsel__sw_name(evsel, bf, sizeof(bf));
 567		break;
 568
 569	case PERF_TYPE_TRACEPOINT:
 570		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
 571		break;
 572
 573	case PERF_TYPE_BREAKPOINT:
 574		perf_evsel__bp_name(evsel, bf, sizeof(bf));
 575		break;
 576
 577	default:
 578		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
 579			  evsel->attr.type);
 580		break;
 581	}
 582
 583	evsel->name = strdup(bf);
 584
 585	return evsel->name ?: "unknown";
 586}
 587
 588const char *perf_evsel__group_name(struct perf_evsel *evsel)
 589{
 590	return evsel->group_name ?: "anon group";
 591}
 592
 
 
 
 
 
 
 
 
 
 
 593int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
 594{
 595	int ret;
 596	struct perf_evsel *pos;
 597	const char *group_name = perf_evsel__group_name(evsel);
 598
 599	ret = scnprintf(buf, size, "%s", group_name);
 
 600
 601	ret += scnprintf(buf + ret, size - ret, " { %s",
 602			 perf_evsel__name(evsel));
 603
 604	for_each_group_member(pos, evsel)
 605		ret += scnprintf(buf + ret, size - ret, ", %s",
 606				 perf_evsel__name(pos));
 607
 608	ret += scnprintf(buf + ret, size - ret, " }");
 
 609
 610	return ret;
 611}
 612
 613void perf_evsel__config_callchain(struct perf_evsel *evsel,
 614				  struct record_opts *opts,
 615				  struct callchain_param *param)
 616{
 617	bool function = perf_evsel__is_function_event(evsel);
 618	struct perf_event_attr *attr = &evsel->attr;
 619
 620	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
 621
 622	attr->sample_max_stack = param->max_stack;
 623
 624	if (param->record_mode == CALLCHAIN_LBR) {
 625		if (!opts->branch_stack) {
 626			if (attr->exclude_user) {
 627				pr_warning("LBR callstack option is only available "
 628					   "to get user callchain information. "
 629					   "Falling back to framepointers.\n");
 630			} else {
 631				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
 632				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
 633							PERF_SAMPLE_BRANCH_CALL_STACK |
 634							PERF_SAMPLE_BRANCH_NO_CYCLES |
 635							PERF_SAMPLE_BRANCH_NO_FLAGS;
 636			}
 637		} else
 638			 pr_warning("Cannot use LBR callstack with branch stack. "
 639				    "Falling back to framepointers.\n");
 640	}
 641
 642	if (param->record_mode == CALLCHAIN_DWARF) {
 643		if (!function) {
 644			perf_evsel__set_sample_bit(evsel, REGS_USER);
 645			perf_evsel__set_sample_bit(evsel, STACK_USER);
 646			attr->sample_regs_user = PERF_REGS_MASK;
 647			attr->sample_stack_user = param->dump_size;
 648			attr->exclude_callchain_user = 1;
 649		} else {
 650			pr_info("Cannot use DWARF unwind for function trace event,"
 651				" falling back to framepointers.\n");
 652		}
 653	}
 654
 655	if (function) {
 656		pr_info("Disabling user space callchains for function trace event.\n");
 657		attr->exclude_callchain_user = 1;
 658	}
 659}
 660
 
 
 
 
 
 
 
 
 661static void
 662perf_evsel__reset_callgraph(struct perf_evsel *evsel,
 663			    struct callchain_param *param)
 664{
 665	struct perf_event_attr *attr = &evsel->attr;
 666
 667	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
 668	if (param->record_mode == CALLCHAIN_LBR) {
 669		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
 670		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
 671					      PERF_SAMPLE_BRANCH_CALL_STACK);
 672	}
 673	if (param->record_mode == CALLCHAIN_DWARF) {
 674		perf_evsel__reset_sample_bit(evsel, REGS_USER);
 675		perf_evsel__reset_sample_bit(evsel, STACK_USER);
 676	}
 677}
 678
 679static void apply_config_terms(struct perf_evsel *evsel,
 680			       struct record_opts *opts)
 681{
 682	struct perf_evsel_config_term *term;
 683	struct list_head *config_terms = &evsel->config_terms;
 684	struct perf_event_attr *attr = &evsel->attr;
 685	struct callchain_param param;
 
 
 
 686	u32 dump_size = 0;
 687	int max_stack = 0;
 688	const char *callgraph_buf = NULL;
 689
 690	/* callgraph default */
 691	param.record_mode = callchain_param.record_mode;
 692
 693	list_for_each_entry(term, config_terms, list) {
 694		switch (term->type) {
 695		case PERF_EVSEL__CONFIG_TERM_PERIOD:
 696			attr->sample_period = term->val.period;
 697			attr->freq = 0;
 
 
 
 698			break;
 699		case PERF_EVSEL__CONFIG_TERM_FREQ:
 700			attr->sample_freq = term->val.freq;
 701			attr->freq = 1;
 
 
 
 702			break;
 703		case PERF_EVSEL__CONFIG_TERM_TIME:
 704			if (term->val.time)
 705				perf_evsel__set_sample_bit(evsel, TIME);
 706			else
 707				perf_evsel__reset_sample_bit(evsel, TIME);
 708			break;
 709		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
 710			callgraph_buf = term->val.callgraph;
 711			break;
 712		case PERF_EVSEL__CONFIG_TERM_BRANCH:
 713			if (term->val.branch && strcmp(term->val.branch, "no")) {
 714				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
 715				parse_branch_str(term->val.branch,
 716						 &attr->branch_sample_type);
 717			} else
 718				perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
 719			break;
 720		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
 721			dump_size = term->val.stack_user;
 722			break;
 723		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
 724			max_stack = term->val.max_stack;
 725			break;
 726		case PERF_EVSEL__CONFIG_TERM_INHERIT:
 727			/*
 728			 * attr->inherit should has already been set by
 729			 * perf_evsel__config. If user explicitly set
 730			 * inherit using config terms, override global
 731			 * opt->no_inherit setting.
 732			 */
 733			attr->inherit = term->val.inherit ? 1 : 0;
 734			break;
 735		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
 736			attr->write_backward = term->val.overwrite ? 1 : 0;
 737			break;
 
 
 738		default:
 739			break;
 740		}
 741	}
 742
 743	/* User explicitly set per-event callgraph, clear the old setting and reset. */
 744	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
 
 
 745		if (max_stack) {
 746			param.max_stack = max_stack;
 747			if (callgraph_buf == NULL)
 748				callgraph_buf = "fp";
 749		}
 750
 751		/* parse callgraph parameters */
 752		if (callgraph_buf != NULL) {
 753			if (!strcmp(callgraph_buf, "no")) {
 754				param.enabled = false;
 755				param.record_mode = CALLCHAIN_NONE;
 756			} else {
 757				param.enabled = true;
 758				if (parse_callchain_record(callgraph_buf, &param)) {
 759					pr_err("per-event callgraph setting for %s failed. "
 760					       "Apply callgraph global setting for it\n",
 761					       evsel->name);
 762					return;
 763				}
 
 
 764			}
 765		}
 766		if (dump_size > 0) {
 767			dump_size = round_up(dump_size, sizeof(u64));
 768			param.dump_size = dump_size;
 769		}
 770
 771		/* If global callgraph set, clear it */
 772		if (callchain_param.enabled)
 773			perf_evsel__reset_callgraph(evsel, &callchain_param);
 774
 775		/* set perf-event callgraph */
 776		if (param.enabled)
 
 
 
 
 
 777			perf_evsel__config_callchain(evsel, opts, &param);
 
 778	}
 779}
 780
 781/*
 782 * The enable_on_exec/disabled value strategy:
 783 *
 784 *  1) For any type of traced program:
 785 *    - all independent events and group leaders are disabled
 786 *    - all group members are enabled
 787 *
 788 *     Group members are ruled by group leaders. They need to
 789 *     be enabled, because the group scheduling relies on that.
 790 *
 791 *  2) For traced programs executed by perf:
 792 *     - all independent events and group leaders have
 793 *       enable_on_exec set
 794 *     - we don't specifically enable or disable any event during
 795 *       the record command
 796 *
 797 *     Independent events and group leaders are initially disabled
 798 *     and get enabled by exec. Group members are ruled by group
 799 *     leaders as stated in 1).
 800 *
 801 *  3) For traced programs attached by perf (pid/tid):
 802 *     - we specifically enable or disable all events during
 803 *       the record command
 804 *
 805 *     When attaching events to already running traced we
 806 *     enable/disable events specifically, as there's no
 807 *     initial traced exec call.
 808 */
 809void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
 810			struct callchain_param *callchain)
 811{
 812	struct perf_evsel *leader = evsel->leader;
 813	struct perf_event_attr *attr = &evsel->attr;
 814	int track = evsel->tracking;
 815	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
 816
 817	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
 818	attr->inherit	    = !opts->no_inherit;
 819	attr->write_backward = opts->overwrite ? 1 : 0;
 820
 821	perf_evsel__set_sample_bit(evsel, IP);
 822	perf_evsel__set_sample_bit(evsel, TID);
 823
 824	if (evsel->sample_read) {
 825		perf_evsel__set_sample_bit(evsel, READ);
 826
 827		/*
 828		 * We need ID even in case of single event, because
 829		 * PERF_SAMPLE_READ process ID specific data.
 830		 */
 831		perf_evsel__set_sample_id(evsel, false);
 832
 833		/*
 834		 * Apply group format only if we belong to group
 835		 * with more than one members.
 836		 */
 837		if (leader->nr_members > 1) {
 838			attr->read_format |= PERF_FORMAT_GROUP;
 839			attr->inherit = 0;
 840		}
 841	}
 842
 843	/*
 844	 * We default some events to have a default interval. But keep
 845	 * it a weak assumption overridable by the user.
 846	 */
 847	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
 848				     opts->user_interval != ULLONG_MAX)) {
 849		if (opts->freq) {
 850			perf_evsel__set_sample_bit(evsel, PERIOD);
 851			attr->freq		= 1;
 852			attr->sample_freq	= opts->freq;
 853		} else {
 854			attr->sample_period = opts->default_interval;
 855		}
 856	}
 857
 858	/*
 859	 * Disable sampling for all group members other
 860	 * than leader in case leader 'leads' the sampling.
 861	 */
 862	if ((leader != evsel) && leader->sample_read) {
 863		attr->sample_freq   = 0;
 864		attr->sample_period = 0;
 
 
 
 865	}
 866
 867	if (opts->no_samples)
 868		attr->sample_freq = 0;
 869
 870	if (opts->inherit_stat)
 
 
 
 
 871		attr->inherit_stat = 1;
 
 872
 873	if (opts->sample_address) {
 874		perf_evsel__set_sample_bit(evsel, ADDR);
 875		attr->mmap_data = track;
 876	}
 877
 878	/*
 879	 * We don't allow user space callchains for  function trace
 880	 * event, due to issues with page faults while tracing page
 881	 * fault handler and its overall trickiness nature.
 882	 */
 883	if (perf_evsel__is_function_event(evsel))
 884		evsel->attr.exclude_callchain_user = 1;
 885
 886	if (callchain && callchain->enabled && !evsel->no_aux_samples)
 887		perf_evsel__config_callchain(evsel, opts, callchain);
 888
 889	if (opts->sample_intr_regs) {
 890		attr->sample_regs_intr = opts->sample_intr_regs;
 891		perf_evsel__set_sample_bit(evsel, REGS_INTR);
 892	}
 893
 
 
 
 
 
 894	if (target__has_cpu(&opts->target) || opts->sample_cpu)
 895		perf_evsel__set_sample_bit(evsel, CPU);
 896
 897	if (opts->period)
 898		perf_evsel__set_sample_bit(evsel, PERIOD);
 899
 900	/*
 901	 * When the user explicitly disabled time don't force it here.
 902	 */
 903	if (opts->sample_time &&
 904	    (!perf_missing_features.sample_id_all &&
 905	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
 906	     opts->sample_time_set)))
 907		perf_evsel__set_sample_bit(evsel, TIME);
 908
 909	if (opts->raw_samples && !evsel->no_aux_samples) {
 910		perf_evsel__set_sample_bit(evsel, TIME);
 911		perf_evsel__set_sample_bit(evsel, RAW);
 912		perf_evsel__set_sample_bit(evsel, CPU);
 913	}
 914
 915	if (opts->sample_address)
 916		perf_evsel__set_sample_bit(evsel, DATA_SRC);
 917
 
 
 
 918	if (opts->no_buffering) {
 919		attr->watermark = 0;
 920		attr->wakeup_events = 1;
 921	}
 922	if (opts->branch_stack && !evsel->no_aux_samples) {
 923		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
 924		attr->branch_sample_type = opts->branch_stack;
 925	}
 926
 927	if (opts->sample_weight)
 928		perf_evsel__set_sample_bit(evsel, WEIGHT);
 929
 930	attr->task  = track;
 931	attr->mmap  = track;
 932	attr->mmap2 = track && !perf_missing_features.mmap2;
 933	attr->comm  = track;
 934
 
 
 
 935	if (opts->record_switch_events)
 936		attr->context_switch = track;
 937
 938	if (opts->sample_transaction)
 939		perf_evsel__set_sample_bit(evsel, TRANSACTION);
 940
 941	if (opts->running_time) {
 942		evsel->attr.read_format |=
 943			PERF_FORMAT_TOTAL_TIME_ENABLED |
 944			PERF_FORMAT_TOTAL_TIME_RUNNING;
 945	}
 946
 947	/*
 948	 * XXX see the function comment above
 949	 *
 950	 * Disabling only independent events or group leaders,
 951	 * keeping group members enabled.
 952	 */
 953	if (perf_evsel__is_group_leader(evsel))
 954		attr->disabled = 1;
 955
 956	/*
 957	 * Setting enable_on_exec for independent events and
 958	 * group leaders for traced executed by perf.
 959	 */
 960	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
 961		!opts->initial_delay)
 962		attr->enable_on_exec = 1;
 963
 964	if (evsel->immediate) {
 965		attr->disabled = 0;
 966		attr->enable_on_exec = 0;
 967	}
 968
 969	clockid = opts->clockid;
 970	if (opts->use_clockid) {
 971		attr->use_clockid = 1;
 972		attr->clockid = opts->clockid;
 973	}
 974
 975	if (evsel->precise_max)
 976		perf_event_attr__set_max_precise_ip(attr);
 977
 978	if (opts->all_user) {
 979		attr->exclude_kernel = 1;
 980		attr->exclude_user   = 0;
 981	}
 982
 983	if (opts->all_kernel) {
 984		attr->exclude_kernel = 0;
 985		attr->exclude_user   = 1;
 986	}
 987
 988	/*
 989	 * Apply event specific term settings,
 990	 * it overloads any global configuration.
 991	 */
 992	apply_config_terms(evsel, opts);
 993
 994	evsel->ignore_missing_thread = opts->ignore_missing_thread;
 
 
 
 
 
 
 
 
 995}
 996
 997static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
 998{
 999	if (evsel->system_wide)
1000		nthreads = 1;
1001
1002	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1003
1004	if (evsel->fd) {
1005		int cpu, thread;
1006		for (cpu = 0; cpu < ncpus; cpu++) {
1007			for (thread = 0; thread < nthreads; thread++) {
1008				FD(evsel, cpu, thread) = -1;
1009			}
1010		}
1011	}
1012
1013	return evsel->fd != NULL ? 0 : -ENOMEM;
1014}
1015
1016static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
1017			  int ioc,  void *arg)
1018{
1019	int cpu, thread;
1020
1021	if (evsel->system_wide)
1022		nthreads = 1;
1023
1024	for (cpu = 0; cpu < ncpus; cpu++) {
1025		for (thread = 0; thread < nthreads; thread++) {
1026			int fd = FD(evsel, cpu, thread),
1027			    err = ioctl(fd, ioc, arg);
1028
1029			if (err)
1030				return err;
1031		}
1032	}
1033
1034	return 0;
1035}
1036
1037int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
1038			     const char *filter)
1039{
1040	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1041				     PERF_EVENT_IOC_SET_FILTER,
1042				     (void *)filter);
1043}
1044
1045int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1046{
1047	char *new_filter = strdup(filter);
1048
1049	if (new_filter != NULL) {
1050		free(evsel->filter);
1051		evsel->filter = new_filter;
1052		return 0;
1053	}
1054
1055	return -1;
1056}
1057
1058static int perf_evsel__append_filter(struct perf_evsel *evsel,
1059				     const char *fmt, const char *filter)
1060{
1061	char *new_filter;
1062
1063	if (evsel->filter == NULL)
1064		return perf_evsel__set_filter(evsel, filter);
1065
1066	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1067		free(evsel->filter);
1068		evsel->filter = new_filter;
1069		return 0;
1070	}
1071
1072	return -1;
1073}
1074
1075int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1076{
1077	return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1078}
1079
1080int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1081{
1082	return perf_evsel__append_filter(evsel, "%s,%s", filter);
1083}
1084
1085int perf_evsel__enable(struct perf_evsel *evsel)
1086{
1087	int nthreads = thread_map__nr(evsel->threads);
1088	int ncpus = cpu_map__nr(evsel->cpus);
1089
1090	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1091				     PERF_EVENT_IOC_ENABLE,
1092				     0);
1093}
1094
1095int perf_evsel__disable(struct perf_evsel *evsel)
1096{
1097	int nthreads = thread_map__nr(evsel->threads);
1098	int ncpus = cpu_map__nr(evsel->cpus);
1099
1100	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1101				     PERF_EVENT_IOC_DISABLE,
1102				     0);
1103}
1104
1105int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1106{
1107	if (ncpus == 0 || nthreads == 0)
1108		return 0;
1109
1110	if (evsel->system_wide)
1111		nthreads = 1;
1112
1113	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1114	if (evsel->sample_id == NULL)
1115		return -ENOMEM;
1116
1117	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1118	if (evsel->id == NULL) {
1119		xyarray__delete(evsel->sample_id);
1120		evsel->sample_id = NULL;
1121		return -ENOMEM;
1122	}
1123
1124	return 0;
1125}
1126
1127static void perf_evsel__free_fd(struct perf_evsel *evsel)
1128{
1129	xyarray__delete(evsel->fd);
1130	evsel->fd = NULL;
1131}
1132
1133static void perf_evsel__free_id(struct perf_evsel *evsel)
1134{
1135	xyarray__delete(evsel->sample_id);
1136	evsel->sample_id = NULL;
1137	zfree(&evsel->id);
1138}
1139
1140static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1141{
1142	struct perf_evsel_config_term *term, *h;
1143
1144	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1145		list_del(&term->list);
1146		free(term);
1147	}
1148}
1149
1150void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1151{
1152	int cpu, thread;
1153
1154	if (evsel->system_wide)
1155		nthreads = 1;
1156
1157	for (cpu = 0; cpu < ncpus; cpu++)
1158		for (thread = 0; thread < nthreads; ++thread) {
1159			close(FD(evsel, cpu, thread));
1160			FD(evsel, cpu, thread) = -1;
1161		}
1162}
1163
1164void perf_evsel__exit(struct perf_evsel *evsel)
1165{
1166	assert(list_empty(&evsel->node));
1167	assert(evsel->evlist == NULL);
1168	perf_evsel__free_fd(evsel);
1169	perf_evsel__free_id(evsel);
1170	perf_evsel__free_config_terms(evsel);
1171	close_cgroup(evsel->cgrp);
1172	cpu_map__put(evsel->cpus);
1173	cpu_map__put(evsel->own_cpus);
1174	thread_map__put(evsel->threads);
1175	zfree(&evsel->group_name);
1176	zfree(&evsel->name);
1177	perf_evsel__object.fini(evsel);
1178}
1179
1180void perf_evsel__delete(struct perf_evsel *evsel)
1181{
1182	perf_evsel__exit(evsel);
1183	free(evsel);
1184}
1185
1186void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1187				struct perf_counts_values *count)
1188{
1189	struct perf_counts_values tmp;
1190
1191	if (!evsel->prev_raw_counts)
1192		return;
1193
1194	if (cpu == -1) {
1195		tmp = evsel->prev_raw_counts->aggr;
1196		evsel->prev_raw_counts->aggr = *count;
1197	} else {
1198		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1199		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1200	}
1201
1202	count->val = count->val - tmp.val;
1203	count->ena = count->ena - tmp.ena;
1204	count->run = count->run - tmp.run;
1205}
1206
1207void perf_counts_values__scale(struct perf_counts_values *count,
1208			       bool scale, s8 *pscaled)
1209{
1210	s8 scaled = 0;
1211
1212	if (scale) {
1213		if (count->run == 0) {
1214			scaled = -1;
1215			count->val = 0;
1216		} else if (count->run < count->ena) {
1217			scaled = 1;
1218			count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1219		}
1220	} else
1221		count->ena = count->run = 0;
1222
1223	if (pscaled)
1224		*pscaled = scaled;
1225}
1226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1227int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1228		     struct perf_counts_values *count)
1229{
 
 
1230	memset(count, 0, sizeof(*count));
1231
1232	if (FD(evsel, cpu, thread) < 0)
1233		return -EINVAL;
1234
1235	if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) < 0)
1236		return -errno;
1237
1238	return 0;
1239}
1240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1241int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1242			      int cpu, int thread, bool scale)
1243{
1244	struct perf_counts_values count;
1245	size_t nv = scale ? 3 : 1;
1246
1247	if (FD(evsel, cpu, thread) < 0)
1248		return -EINVAL;
1249
1250	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1251		return -ENOMEM;
1252
1253	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
1254		return -errno;
1255
1256	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1257	perf_counts_values__scale(&count, scale, NULL);
1258	*perf_counts(evsel->counts, cpu, thread) = count;
1259	return 0;
1260}
1261
1262static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1263{
1264	struct perf_evsel *leader = evsel->leader;
1265	int fd;
1266
1267	if (perf_evsel__is_group_leader(evsel))
1268		return -1;
1269
1270	/*
1271	 * Leader must be already processed/open,
1272	 * if not it's a bug.
1273	 */
1274	BUG_ON(!leader->fd);
1275
1276	fd = FD(leader, cpu, thread);
1277	BUG_ON(fd == -1);
1278
1279	return fd;
1280}
1281
1282struct bit_names {
1283	int bit;
1284	const char *name;
1285};
1286
1287static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1288{
1289	bool first_bit = true;
1290	int i = 0;
1291
1292	do {
1293		if (value & bits[i].bit) {
1294			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1295			first_bit = false;
1296		}
1297	} while (bits[++i].name != NULL);
1298}
1299
1300static void __p_sample_type(char *buf, size_t size, u64 value)
1301{
1302#define bit_name(n) { PERF_SAMPLE_##n, #n }
1303	struct bit_names bits[] = {
1304		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1305		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1306		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1307		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1308		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1309		bit_name(WEIGHT),
1310		{ .name = NULL, }
1311	};
1312#undef bit_name
1313	__p_bits(buf, size, value, bits);
1314}
1315
1316static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1317{
1318#define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1319	struct bit_names bits[] = {
1320		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1321		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1322		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1323		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1324		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1325		{ .name = NULL, }
1326	};
1327#undef bit_name
1328	__p_bits(buf, size, value, bits);
1329}
1330
1331static void __p_read_format(char *buf, size_t size, u64 value)
1332{
1333#define bit_name(n) { PERF_FORMAT_##n, #n }
1334	struct bit_names bits[] = {
1335		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1336		bit_name(ID), bit_name(GROUP),
1337		{ .name = NULL, }
1338	};
1339#undef bit_name
1340	__p_bits(buf, size, value, bits);
1341}
1342
1343#define BUF_SIZE		1024
1344
1345#define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1346#define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1347#define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1348#define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1349#define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1350#define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1351
1352#define PRINT_ATTRn(_n, _f, _p)				\
1353do {							\
1354	if (attr->_f) {					\
1355		_p(attr->_f);				\
1356		ret += attr__fprintf(fp, _n, buf, priv);\
1357	}						\
1358} while (0)
1359
1360#define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1361
1362int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1363			     attr__fprintf_f attr__fprintf, void *priv)
1364{
1365	char buf[BUF_SIZE];
1366	int ret = 0;
1367
1368	PRINT_ATTRf(type, p_unsigned);
1369	PRINT_ATTRf(size, p_unsigned);
1370	PRINT_ATTRf(config, p_hex);
1371	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1372	PRINT_ATTRf(sample_type, p_sample_type);
1373	PRINT_ATTRf(read_format, p_read_format);
1374
1375	PRINT_ATTRf(disabled, p_unsigned);
1376	PRINT_ATTRf(inherit, p_unsigned);
1377	PRINT_ATTRf(pinned, p_unsigned);
1378	PRINT_ATTRf(exclusive, p_unsigned);
1379	PRINT_ATTRf(exclude_user, p_unsigned);
1380	PRINT_ATTRf(exclude_kernel, p_unsigned);
1381	PRINT_ATTRf(exclude_hv, p_unsigned);
1382	PRINT_ATTRf(exclude_idle, p_unsigned);
1383	PRINT_ATTRf(mmap, p_unsigned);
1384	PRINT_ATTRf(comm, p_unsigned);
1385	PRINT_ATTRf(freq, p_unsigned);
1386	PRINT_ATTRf(inherit_stat, p_unsigned);
1387	PRINT_ATTRf(enable_on_exec, p_unsigned);
1388	PRINT_ATTRf(task, p_unsigned);
1389	PRINT_ATTRf(watermark, p_unsigned);
1390	PRINT_ATTRf(precise_ip, p_unsigned);
1391	PRINT_ATTRf(mmap_data, p_unsigned);
1392	PRINT_ATTRf(sample_id_all, p_unsigned);
1393	PRINT_ATTRf(exclude_host, p_unsigned);
1394	PRINT_ATTRf(exclude_guest, p_unsigned);
1395	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1396	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1397	PRINT_ATTRf(mmap2, p_unsigned);
1398	PRINT_ATTRf(comm_exec, p_unsigned);
1399	PRINT_ATTRf(use_clockid, p_unsigned);
1400	PRINT_ATTRf(context_switch, p_unsigned);
1401	PRINT_ATTRf(write_backward, p_unsigned);
 
1402
1403	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1404	PRINT_ATTRf(bp_type, p_unsigned);
1405	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1406	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1407	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1408	PRINT_ATTRf(sample_regs_user, p_hex);
1409	PRINT_ATTRf(sample_stack_user, p_unsigned);
1410	PRINT_ATTRf(clockid, p_signed);
1411	PRINT_ATTRf(sample_regs_intr, p_hex);
1412	PRINT_ATTRf(aux_watermark, p_unsigned);
1413	PRINT_ATTRf(sample_max_stack, p_unsigned);
1414
1415	return ret;
1416}
1417
1418static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1419				void *priv __attribute__((unused)))
1420{
1421	return fprintf(fp, "  %-32s %s\n", name, val);
1422}
1423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1424static bool ignore_missing_thread(struct perf_evsel *evsel,
 
1425				  struct thread_map *threads,
1426				  int thread, int err)
1427{
 
 
1428	if (!evsel->ignore_missing_thread)
1429		return false;
1430
1431	/* The system wide setup does not work with threads. */
1432	if (evsel->system_wide)
1433		return false;
1434
1435	/* The -ESRCH is perf event syscall errno for pid's not found. */
1436	if (err != -ESRCH)
1437		return false;
1438
1439	/* If there's only one thread, let it fail. */
1440	if (threads->nr == 1)
1441		return false;
1442
 
 
 
 
 
 
 
1443	if (thread_map__remove(threads, thread))
1444		return false;
1445
1446	pr_warning("WARNING: Ignored open failure for pid %d\n",
1447		   thread_map__pid(threads, thread));
1448	return true;
1449}
1450
1451static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1452			      struct thread_map *threads)
1453{
1454	int cpu, thread, nthreads;
1455	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1456	int pid = -1, err;
1457	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1458
1459	if (perf_missing_features.write_backward && evsel->attr.write_backward)
1460		return -EINVAL;
1461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1462	if (evsel->system_wide)
1463		nthreads = 1;
1464	else
1465		nthreads = threads->nr;
1466
1467	if (evsel->fd == NULL &&
1468	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1469		return -ENOMEM;
1470
1471	if (evsel->cgrp) {
1472		flags |= PERF_FLAG_PID_CGROUP;
1473		pid = evsel->cgrp->fd;
1474	}
1475
1476fallback_missing_features:
1477	if (perf_missing_features.clockid_wrong)
1478		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1479	if (perf_missing_features.clockid) {
1480		evsel->attr.use_clockid = 0;
1481		evsel->attr.clockid = 0;
1482	}
1483	if (perf_missing_features.cloexec)
1484		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1485	if (perf_missing_features.mmap2)
1486		evsel->attr.mmap2 = 0;
1487	if (perf_missing_features.exclude_guest)
1488		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1489	if (perf_missing_features.lbr_flags)
1490		evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1491				     PERF_SAMPLE_BRANCH_NO_CYCLES);
 
 
1492retry_sample_id:
1493	if (perf_missing_features.sample_id_all)
1494		evsel->attr.sample_id_all = 0;
1495
1496	if (verbose >= 2) {
1497		fprintf(stderr, "%.60s\n", graph_dotted_line);
1498		fprintf(stderr, "perf_event_attr:\n");
1499		perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1500		fprintf(stderr, "%.60s\n", graph_dotted_line);
1501	}
1502
1503	for (cpu = 0; cpu < cpus->nr; cpu++) {
1504
1505		for (thread = 0; thread < nthreads; thread++) {
1506			int fd, group_fd;
1507
1508			if (!evsel->cgrp && !evsel->system_wide)
1509				pid = thread_map__pid(threads, thread);
1510
1511			group_fd = get_group_fd(evsel, cpu, thread);
1512retry_open:
1513			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1514				  pid, cpus->map[cpu], group_fd, flags);
1515
 
 
1516			fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1517						 group_fd, flags);
1518
1519			FD(evsel, cpu, thread) = fd;
1520
1521			if (fd < 0) {
1522				err = -errno;
1523
1524				if (ignore_missing_thread(evsel, threads, thread, err)) {
1525					/*
1526					 * We just removed 1 thread, so take a step
1527					 * back on thread index and lower the upper
1528					 * nthreads limit.
1529					 */
1530					nthreads--;
1531					thread--;
1532
1533					/* ... and pretend like nothing have happened. */
1534					err = 0;
1535					continue;
1536				}
1537
1538				pr_debug2("\nsys_perf_event_open failed, error %d\n",
1539					  err);
1540				goto try_fallback;
1541			}
1542
1543			pr_debug2(" = %d\n", fd);
1544
1545			if (evsel->bpf_fd >= 0) {
1546				int evt_fd = fd;
1547				int bpf_fd = evsel->bpf_fd;
1548
1549				err = ioctl(evt_fd,
1550					    PERF_EVENT_IOC_SET_BPF,
1551					    bpf_fd);
1552				if (err && errno != EEXIST) {
1553					pr_err("failed to attach bpf fd %d: %s\n",
1554					       bpf_fd, strerror(errno));
1555					err = -EINVAL;
1556					goto out_close;
1557				}
1558			}
1559
1560			set_rlimit = NO_CHANGE;
1561
1562			/*
1563			 * If we succeeded but had to kill clockid, fail and
1564			 * have perf_evsel__open_strerror() print us a nice
1565			 * error.
1566			 */
1567			if (perf_missing_features.clockid ||
1568			    perf_missing_features.clockid_wrong) {
1569				err = -EINVAL;
1570				goto out_close;
1571			}
1572		}
1573	}
1574
1575	return 0;
1576
1577try_fallback:
1578	/*
1579	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1580	 * of them try to increase the limits.
1581	 */
1582	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1583		struct rlimit l;
1584		int old_errno = errno;
1585
1586		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1587			if (set_rlimit == NO_CHANGE)
1588				l.rlim_cur = l.rlim_max;
1589			else {
1590				l.rlim_cur = l.rlim_max + 1000;
1591				l.rlim_max = l.rlim_cur;
1592			}
1593			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1594				set_rlimit++;
1595				errno = old_errno;
1596				goto retry_open;
1597			}
1598		}
1599		errno = old_errno;
1600	}
1601
1602	if (err != -EINVAL || cpu > 0 || thread > 0)
1603		goto out_close;
1604
1605	/*
1606	 * Must probe features in the order they were added to the
1607	 * perf_event_attr interface.
1608	 */
1609	if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1610		perf_missing_features.write_backward = true;
 
1611		goto out_close;
1612	} else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1613		perf_missing_features.clockid_wrong = true;
 
1614		goto fallback_missing_features;
1615	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1616		perf_missing_features.clockid = true;
 
1617		goto fallback_missing_features;
1618	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1619		perf_missing_features.cloexec = true;
 
1620		goto fallback_missing_features;
1621	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1622		perf_missing_features.mmap2 = true;
 
1623		goto fallback_missing_features;
1624	} else if (!perf_missing_features.exclude_guest &&
1625		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1626		perf_missing_features.exclude_guest = true;
 
1627		goto fallback_missing_features;
1628	} else if (!perf_missing_features.sample_id_all) {
1629		perf_missing_features.sample_id_all = true;
 
1630		goto retry_sample_id;
1631	} else if (!perf_missing_features.lbr_flags &&
1632			(evsel->attr.branch_sample_type &
1633			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1634			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1635		perf_missing_features.lbr_flags = true;
 
 
 
 
 
 
 
 
1636		goto fallback_missing_features;
1637	}
1638out_close:
 
 
 
1639	do {
1640		while (--thread >= 0) {
1641			close(FD(evsel, cpu, thread));
1642			FD(evsel, cpu, thread) = -1;
1643		}
1644		thread = nthreads;
1645	} while (--cpu >= 0);
1646	return err;
1647}
1648
1649void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1650{
1651	if (evsel->fd == NULL)
1652		return;
1653
1654	perf_evsel__close_fd(evsel, ncpus, nthreads);
1655	perf_evsel__free_fd(evsel);
1656}
1657
1658static struct {
1659	struct cpu_map map;
1660	int cpus[1];
1661} empty_cpu_map = {
1662	.map.nr	= 1,
1663	.cpus	= { -1, },
1664};
1665
1666static struct {
1667	struct thread_map map;
1668	int threads[1];
1669} empty_thread_map = {
1670	.map.nr	 = 1,
1671	.threads = { -1, },
1672};
1673
1674int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1675		     struct thread_map *threads)
1676{
1677	if (cpus == NULL) {
1678		/* Work around old compiler warnings about strict aliasing */
1679		cpus = &empty_cpu_map.map;
1680	}
1681
1682	if (threads == NULL)
1683		threads = &empty_thread_map.map;
1684
1685	return __perf_evsel__open(evsel, cpus, threads);
1686}
1687
1688int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1689			     struct cpu_map *cpus)
1690{
1691	return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1692}
1693
1694int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1695				struct thread_map *threads)
1696{
1697	return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1698}
1699
1700static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1701				       const union perf_event *event,
1702				       struct perf_sample *sample)
1703{
1704	u64 type = evsel->attr.sample_type;
1705	const u64 *array = event->sample.array;
1706	bool swapped = evsel->needs_swap;
1707	union u64_swap u;
1708
1709	array += ((event->header.size -
1710		   sizeof(event->header)) / sizeof(u64)) - 1;
1711
1712	if (type & PERF_SAMPLE_IDENTIFIER) {
1713		sample->id = *array;
1714		array--;
1715	}
1716
1717	if (type & PERF_SAMPLE_CPU) {
1718		u.val64 = *array;
1719		if (swapped) {
1720			/* undo swap of u64, then swap on individual u32s */
1721			u.val64 = bswap_64(u.val64);
1722			u.val32[0] = bswap_32(u.val32[0]);
1723		}
1724
1725		sample->cpu = u.val32[0];
1726		array--;
1727	}
1728
1729	if (type & PERF_SAMPLE_STREAM_ID) {
1730		sample->stream_id = *array;
1731		array--;
1732	}
1733
1734	if (type & PERF_SAMPLE_ID) {
1735		sample->id = *array;
1736		array--;
1737	}
1738
1739	if (type & PERF_SAMPLE_TIME) {
1740		sample->time = *array;
1741		array--;
1742	}
1743
1744	if (type & PERF_SAMPLE_TID) {
1745		u.val64 = *array;
1746		if (swapped) {
1747			/* undo swap of u64, then swap on individual u32s */
1748			u.val64 = bswap_64(u.val64);
1749			u.val32[0] = bswap_32(u.val32[0]);
1750			u.val32[1] = bswap_32(u.val32[1]);
1751		}
1752
1753		sample->pid = u.val32[0];
1754		sample->tid = u.val32[1];
1755		array--;
1756	}
1757
1758	return 0;
1759}
1760
1761static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1762			    u64 size)
1763{
1764	return size > max_size || offset + size > endp;
1765}
1766
1767#define OVERFLOW_CHECK(offset, size, max_size)				\
1768	do {								\
1769		if (overflow(endp, (max_size), (offset), (size)))	\
1770			return -EFAULT;					\
1771	} while (0)
1772
1773#define OVERFLOW_CHECK_u64(offset) \
1774	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1776int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1777			     struct perf_sample *data)
1778{
1779	u64 type = evsel->attr.sample_type;
1780	bool swapped = evsel->needs_swap;
1781	const u64 *array;
1782	u16 max_size = event->header.size;
1783	const void *endp = (void *)event + max_size;
1784	u64 sz;
1785
1786	/*
1787	 * used for cross-endian analysis. See git commit 65014ab3
1788	 * for why this goofiness is needed.
1789	 */
1790	union u64_swap u;
1791
1792	memset(data, 0, sizeof(*data));
1793	data->cpu = data->pid = data->tid = -1;
1794	data->stream_id = data->id = data->time = -1ULL;
1795	data->period = evsel->attr.sample_period;
1796	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
 
 
 
1797
1798	if (event->header.type != PERF_RECORD_SAMPLE) {
1799		if (!evsel->attr.sample_id_all)
1800			return 0;
1801		return perf_evsel__parse_id_sample(evsel, event, data);
1802	}
1803
1804	array = event->sample.array;
1805
1806	/*
1807	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1808	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1809	 * check the format does not go past the end of the event.
1810	 */
1811	if (evsel->sample_size + sizeof(event->header) > event->header.size)
1812		return -EFAULT;
1813
1814	data->id = -1ULL;
1815	if (type & PERF_SAMPLE_IDENTIFIER) {
1816		data->id = *array;
1817		array++;
1818	}
1819
1820	if (type & PERF_SAMPLE_IP) {
1821		data->ip = *array;
1822		array++;
1823	}
1824
1825	if (type & PERF_SAMPLE_TID) {
1826		u.val64 = *array;
1827		if (swapped) {
1828			/* undo swap of u64, then swap on individual u32s */
1829			u.val64 = bswap_64(u.val64);
1830			u.val32[0] = bswap_32(u.val32[0]);
1831			u.val32[1] = bswap_32(u.val32[1]);
1832		}
1833
1834		data->pid = u.val32[0];
1835		data->tid = u.val32[1];
1836		array++;
1837	}
1838
1839	if (type & PERF_SAMPLE_TIME) {
1840		data->time = *array;
1841		array++;
1842	}
1843
1844	data->addr = 0;
1845	if (type & PERF_SAMPLE_ADDR) {
1846		data->addr = *array;
1847		array++;
1848	}
1849
1850	if (type & PERF_SAMPLE_ID) {
1851		data->id = *array;
1852		array++;
1853	}
1854
1855	if (type & PERF_SAMPLE_STREAM_ID) {
1856		data->stream_id = *array;
1857		array++;
1858	}
1859
1860	if (type & PERF_SAMPLE_CPU) {
1861
1862		u.val64 = *array;
1863		if (swapped) {
1864			/* undo swap of u64, then swap on individual u32s */
1865			u.val64 = bswap_64(u.val64);
1866			u.val32[0] = bswap_32(u.val32[0]);
1867		}
1868
1869		data->cpu = u.val32[0];
1870		array++;
1871	}
1872
1873	if (type & PERF_SAMPLE_PERIOD) {
1874		data->period = *array;
1875		array++;
1876	}
1877
1878	if (type & PERF_SAMPLE_READ) {
1879		u64 read_format = evsel->attr.read_format;
1880
1881		OVERFLOW_CHECK_u64(array);
1882		if (read_format & PERF_FORMAT_GROUP)
1883			data->read.group.nr = *array;
1884		else
1885			data->read.one.value = *array;
1886
1887		array++;
1888
1889		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1890			OVERFLOW_CHECK_u64(array);
1891			data->read.time_enabled = *array;
1892			array++;
1893		}
1894
1895		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1896			OVERFLOW_CHECK_u64(array);
1897			data->read.time_running = *array;
1898			array++;
1899		}
1900
1901		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1902		if (read_format & PERF_FORMAT_GROUP) {
1903			const u64 max_group_nr = UINT64_MAX /
1904					sizeof(struct sample_read_value);
1905
1906			if (data->read.group.nr > max_group_nr)
1907				return -EFAULT;
1908			sz = data->read.group.nr *
1909			     sizeof(struct sample_read_value);
1910			OVERFLOW_CHECK(array, sz, max_size);
1911			data->read.group.values =
1912					(struct sample_read_value *)array;
1913			array = (void *)array + sz;
1914		} else {
1915			OVERFLOW_CHECK_u64(array);
1916			data->read.one.id = *array;
1917			array++;
1918		}
1919	}
1920
1921	if (type & PERF_SAMPLE_CALLCHAIN) {
1922		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1923
1924		OVERFLOW_CHECK_u64(array);
1925		data->callchain = (struct ip_callchain *)array++;
1926		if (data->callchain->nr > max_callchain_nr)
1927			return -EFAULT;
1928		sz = data->callchain->nr * sizeof(u64);
1929		OVERFLOW_CHECK(array, sz, max_size);
1930		array = (void *)array + sz;
1931	}
1932
1933	if (type & PERF_SAMPLE_RAW) {
1934		OVERFLOW_CHECK_u64(array);
1935		u.val64 = *array;
1936		if (WARN_ONCE(swapped,
1937			      "Endianness of raw data not corrected!\n")) {
1938			/* undo swap of u64, then swap on individual u32s */
 
 
 
 
 
1939			u.val64 = bswap_64(u.val64);
1940			u.val32[0] = bswap_32(u.val32[0]);
1941			u.val32[1] = bswap_32(u.val32[1]);
1942		}
1943		data->raw_size = u.val32[0];
 
 
 
 
 
 
 
 
1944		array = (void *)array + sizeof(u32);
1945
1946		OVERFLOW_CHECK(array, data->raw_size, max_size);
1947		data->raw_data = (void *)array;
1948		array = (void *)array + data->raw_size;
1949	}
1950
1951	if (type & PERF_SAMPLE_BRANCH_STACK) {
1952		const u64 max_branch_nr = UINT64_MAX /
1953					  sizeof(struct branch_entry);
1954
1955		OVERFLOW_CHECK_u64(array);
1956		data->branch_stack = (struct branch_stack *)array++;
1957
1958		if (data->branch_stack->nr > max_branch_nr)
1959			return -EFAULT;
1960		sz = data->branch_stack->nr * sizeof(struct branch_entry);
1961		OVERFLOW_CHECK(array, sz, max_size);
1962		array = (void *)array + sz;
1963	}
1964
1965	if (type & PERF_SAMPLE_REGS_USER) {
1966		OVERFLOW_CHECK_u64(array);
1967		data->user_regs.abi = *array;
1968		array++;
1969
1970		if (data->user_regs.abi) {
1971			u64 mask = evsel->attr.sample_regs_user;
1972
1973			sz = hweight_long(mask) * sizeof(u64);
1974			OVERFLOW_CHECK(array, sz, max_size);
1975			data->user_regs.mask = mask;
1976			data->user_regs.regs = (u64 *)array;
1977			array = (void *)array + sz;
1978		}
1979	}
1980
1981	if (type & PERF_SAMPLE_STACK_USER) {
1982		OVERFLOW_CHECK_u64(array);
1983		sz = *array++;
1984
1985		data->user_stack.offset = ((char *)(array - 1)
1986					  - (char *) event);
1987
1988		if (!sz) {
1989			data->user_stack.size = 0;
1990		} else {
1991			OVERFLOW_CHECK(array, sz, max_size);
1992			data->user_stack.data = (char *)array;
1993			array = (void *)array + sz;
1994			OVERFLOW_CHECK_u64(array);
1995			data->user_stack.size = *array++;
1996			if (WARN_ONCE(data->user_stack.size > sz,
1997				      "user stack dump failure\n"))
1998				return -EFAULT;
1999		}
2000	}
2001
2002	if (type & PERF_SAMPLE_WEIGHT) {
2003		OVERFLOW_CHECK_u64(array);
2004		data->weight = *array;
2005		array++;
2006	}
2007
2008	data->data_src = PERF_MEM_DATA_SRC_NONE;
2009	if (type & PERF_SAMPLE_DATA_SRC) {
2010		OVERFLOW_CHECK_u64(array);
2011		data->data_src = *array;
2012		array++;
2013	}
2014
2015	data->transaction = 0;
2016	if (type & PERF_SAMPLE_TRANSACTION) {
2017		OVERFLOW_CHECK_u64(array);
2018		data->transaction = *array;
2019		array++;
2020	}
2021
2022	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2023	if (type & PERF_SAMPLE_REGS_INTR) {
2024		OVERFLOW_CHECK_u64(array);
2025		data->intr_regs.abi = *array;
2026		array++;
2027
2028		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2029			u64 mask = evsel->attr.sample_regs_intr;
2030
2031			sz = hweight_long(mask) * sizeof(u64);
2032			OVERFLOW_CHECK(array, sz, max_size);
2033			data->intr_regs.mask = mask;
2034			data->intr_regs.regs = (u64 *)array;
2035			array = (void *)array + sz;
2036		}
2037	}
2038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2039	return 0;
2040}
2041
2042size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2043				     u64 read_format)
2044{
2045	size_t sz, result = sizeof(struct sample_event);
2046
2047	if (type & PERF_SAMPLE_IDENTIFIER)
2048		result += sizeof(u64);
2049
2050	if (type & PERF_SAMPLE_IP)
2051		result += sizeof(u64);
2052
2053	if (type & PERF_SAMPLE_TID)
2054		result += sizeof(u64);
2055
2056	if (type & PERF_SAMPLE_TIME)
2057		result += sizeof(u64);
2058
2059	if (type & PERF_SAMPLE_ADDR)
2060		result += sizeof(u64);
2061
2062	if (type & PERF_SAMPLE_ID)
2063		result += sizeof(u64);
2064
2065	if (type & PERF_SAMPLE_STREAM_ID)
2066		result += sizeof(u64);
2067
2068	if (type & PERF_SAMPLE_CPU)
2069		result += sizeof(u64);
2070
2071	if (type & PERF_SAMPLE_PERIOD)
2072		result += sizeof(u64);
2073
2074	if (type & PERF_SAMPLE_READ) {
2075		result += sizeof(u64);
2076		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2077			result += sizeof(u64);
2078		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2079			result += sizeof(u64);
2080		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2081		if (read_format & PERF_FORMAT_GROUP) {
2082			sz = sample->read.group.nr *
2083			     sizeof(struct sample_read_value);
2084			result += sz;
2085		} else {
2086			result += sizeof(u64);
2087		}
2088	}
2089
2090	if (type & PERF_SAMPLE_CALLCHAIN) {
2091		sz = (sample->callchain->nr + 1) * sizeof(u64);
2092		result += sz;
2093	}
2094
2095	if (type & PERF_SAMPLE_RAW) {
2096		result += sizeof(u32);
2097		result += sample->raw_size;
2098	}
2099
2100	if (type & PERF_SAMPLE_BRANCH_STACK) {
2101		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2102		sz += sizeof(u64);
2103		result += sz;
2104	}
2105
2106	if (type & PERF_SAMPLE_REGS_USER) {
2107		if (sample->user_regs.abi) {
2108			result += sizeof(u64);
2109			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2110			result += sz;
2111		} else {
2112			result += sizeof(u64);
2113		}
2114	}
2115
2116	if (type & PERF_SAMPLE_STACK_USER) {
2117		sz = sample->user_stack.size;
2118		result += sizeof(u64);
2119		if (sz) {
2120			result += sz;
2121			result += sizeof(u64);
2122		}
2123	}
2124
2125	if (type & PERF_SAMPLE_WEIGHT)
2126		result += sizeof(u64);
2127
2128	if (type & PERF_SAMPLE_DATA_SRC)
2129		result += sizeof(u64);
2130
2131	if (type & PERF_SAMPLE_TRANSACTION)
2132		result += sizeof(u64);
2133
2134	if (type & PERF_SAMPLE_REGS_INTR) {
2135		if (sample->intr_regs.abi) {
2136			result += sizeof(u64);
2137			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2138			result += sz;
2139		} else {
2140			result += sizeof(u64);
2141		}
2142	}
2143
 
 
 
2144	return result;
2145}
2146
2147int perf_event__synthesize_sample(union perf_event *event, u64 type,
2148				  u64 read_format,
2149				  const struct perf_sample *sample,
2150				  bool swapped)
2151{
2152	u64 *array;
2153	size_t sz;
2154	/*
2155	 * used for cross-endian analysis. See git commit 65014ab3
2156	 * for why this goofiness is needed.
2157	 */
2158	union u64_swap u;
2159
2160	array = event->sample.array;
2161
2162	if (type & PERF_SAMPLE_IDENTIFIER) {
2163		*array = sample->id;
2164		array++;
2165	}
2166
2167	if (type & PERF_SAMPLE_IP) {
2168		*array = sample->ip;
2169		array++;
2170	}
2171
2172	if (type & PERF_SAMPLE_TID) {
2173		u.val32[0] = sample->pid;
2174		u.val32[1] = sample->tid;
2175		if (swapped) {
2176			/*
2177			 * Inverse of what is done in perf_evsel__parse_sample
2178			 */
2179			u.val32[0] = bswap_32(u.val32[0]);
2180			u.val32[1] = bswap_32(u.val32[1]);
2181			u.val64 = bswap_64(u.val64);
2182		}
2183
2184		*array = u.val64;
2185		array++;
2186	}
2187
2188	if (type & PERF_SAMPLE_TIME) {
2189		*array = sample->time;
2190		array++;
2191	}
2192
2193	if (type & PERF_SAMPLE_ADDR) {
2194		*array = sample->addr;
2195		array++;
2196	}
2197
2198	if (type & PERF_SAMPLE_ID) {
2199		*array = sample->id;
2200		array++;
2201	}
2202
2203	if (type & PERF_SAMPLE_STREAM_ID) {
2204		*array = sample->stream_id;
2205		array++;
2206	}
2207
2208	if (type & PERF_SAMPLE_CPU) {
2209		u.val32[0] = sample->cpu;
2210		if (swapped) {
2211			/*
2212			 * Inverse of what is done in perf_evsel__parse_sample
2213			 */
2214			u.val32[0] = bswap_32(u.val32[0]);
2215			u.val64 = bswap_64(u.val64);
2216		}
2217		*array = u.val64;
2218		array++;
2219	}
2220
2221	if (type & PERF_SAMPLE_PERIOD) {
2222		*array = sample->period;
2223		array++;
2224	}
2225
2226	if (type & PERF_SAMPLE_READ) {
2227		if (read_format & PERF_FORMAT_GROUP)
2228			*array = sample->read.group.nr;
2229		else
2230			*array = sample->read.one.value;
2231		array++;
2232
2233		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2234			*array = sample->read.time_enabled;
2235			array++;
2236		}
2237
2238		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2239			*array = sample->read.time_running;
2240			array++;
2241		}
2242
2243		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2244		if (read_format & PERF_FORMAT_GROUP) {
2245			sz = sample->read.group.nr *
2246			     sizeof(struct sample_read_value);
2247			memcpy(array, sample->read.group.values, sz);
2248			array = (void *)array + sz;
2249		} else {
2250			*array = sample->read.one.id;
2251			array++;
2252		}
2253	}
2254
2255	if (type & PERF_SAMPLE_CALLCHAIN) {
2256		sz = (sample->callchain->nr + 1) * sizeof(u64);
2257		memcpy(array, sample->callchain, sz);
2258		array = (void *)array + sz;
2259	}
2260
2261	if (type & PERF_SAMPLE_RAW) {
2262		u.val32[0] = sample->raw_size;
2263		if (WARN_ONCE(swapped,
2264			      "Endianness of raw data not corrected!\n")) {
2265			/*
2266			 * Inverse of what is done in perf_evsel__parse_sample
2267			 */
2268			u.val32[0] = bswap_32(u.val32[0]);
2269			u.val32[1] = bswap_32(u.val32[1]);
2270			u.val64 = bswap_64(u.val64);
2271		}
2272		*array = u.val64;
2273		array = (void *)array + sizeof(u32);
2274
2275		memcpy(array, sample->raw_data, sample->raw_size);
2276		array = (void *)array + sample->raw_size;
2277	}
2278
2279	if (type & PERF_SAMPLE_BRANCH_STACK) {
2280		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2281		sz += sizeof(u64);
2282		memcpy(array, sample->branch_stack, sz);
2283		array = (void *)array + sz;
2284	}
2285
2286	if (type & PERF_SAMPLE_REGS_USER) {
2287		if (sample->user_regs.abi) {
2288			*array++ = sample->user_regs.abi;
2289			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2290			memcpy(array, sample->user_regs.regs, sz);
2291			array = (void *)array + sz;
2292		} else {
2293			*array++ = 0;
2294		}
2295	}
2296
2297	if (type & PERF_SAMPLE_STACK_USER) {
2298		sz = sample->user_stack.size;
2299		*array++ = sz;
2300		if (sz) {
2301			memcpy(array, sample->user_stack.data, sz);
2302			array = (void *)array + sz;
2303			*array++ = sz;
2304		}
2305	}
2306
2307	if (type & PERF_SAMPLE_WEIGHT) {
2308		*array = sample->weight;
2309		array++;
2310	}
2311
2312	if (type & PERF_SAMPLE_DATA_SRC) {
2313		*array = sample->data_src;
2314		array++;
2315	}
2316
2317	if (type & PERF_SAMPLE_TRANSACTION) {
2318		*array = sample->transaction;
2319		array++;
2320	}
2321
2322	if (type & PERF_SAMPLE_REGS_INTR) {
2323		if (sample->intr_regs.abi) {
2324			*array++ = sample->intr_regs.abi;
2325			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2326			memcpy(array, sample->intr_regs.regs, sz);
2327			array = (void *)array + sz;
2328		} else {
2329			*array++ = 0;
2330		}
2331	}
2332
 
 
 
 
 
2333	return 0;
2334}
2335
2336struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2337{
2338	return pevent_find_field(evsel->tp_format, name);
2339}
2340
2341void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2342			 const char *name)
2343{
2344	struct format_field *field = perf_evsel__field(evsel, name);
2345	int offset;
2346
2347	if (!field)
2348		return NULL;
2349
2350	offset = field->offset;
2351
2352	if (field->flags & FIELD_IS_DYNAMIC) {
2353		offset = *(int *)(sample->raw_data + field->offset);
2354		offset &= 0xffff;
2355	}
2356
2357	return sample->raw_data + offset;
2358}
2359
2360u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2361			 bool needs_swap)
2362{
2363	u64 value;
2364	void *ptr = sample->raw_data + field->offset;
2365
2366	switch (field->size) {
2367	case 1:
2368		return *(u8 *)ptr;
2369	case 2:
2370		value = *(u16 *)ptr;
2371		break;
2372	case 4:
2373		value = *(u32 *)ptr;
2374		break;
2375	case 8:
2376		memcpy(&value, ptr, sizeof(u64));
2377		break;
2378	default:
2379		return 0;
2380	}
2381
2382	if (!needs_swap)
2383		return value;
2384
2385	switch (field->size) {
2386	case 2:
2387		return bswap_16(value);
2388	case 4:
2389		return bswap_32(value);
2390	case 8:
2391		return bswap_64(value);
2392	default:
2393		return 0;
2394	}
2395
2396	return 0;
2397}
2398
2399u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2400		       const char *name)
2401{
2402	struct format_field *field = perf_evsel__field(evsel, name);
2403
2404	if (!field)
2405		return 0;
2406
2407	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2408}
2409
2410bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2411			  char *msg, size_t msgsize)
2412{
2413	int paranoid;
2414
2415	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2416	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2417	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2418		/*
2419		 * If it's cycles then fall back to hrtimer based
2420		 * cpu-clock-tick sw counter, which is always available even if
2421		 * no PMU support.
2422		 *
2423		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2424		 * b0a873e).
2425		 */
2426		scnprintf(msg, msgsize, "%s",
2427"The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2428
2429		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2430		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2431
2432		zfree(&evsel->name);
2433		return true;
2434	} else if (err == EACCES && !evsel->attr.exclude_kernel &&
2435		   (paranoid = perf_event_paranoid()) > 1) {
2436		const char *name = perf_evsel__name(evsel);
2437		char *new_name;
 
 
 
 
 
 
2438
2439		if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
2440			return false;
2441
2442		if (evsel->name)
2443			free(evsel->name);
2444		evsel->name = new_name;
2445		scnprintf(msg, msgsize,
2446"kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2447		evsel->attr.exclude_kernel = 1;
2448
2449		return true;
2450	}
2451
2452	return false;
2453}
2454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2455int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2456			      int err, char *msg, size_t size)
2457{
2458	char sbuf[STRERR_BUFSIZE];
 
2459
2460	switch (err) {
2461	case EPERM:
2462	case EACCES:
2463		return scnprintf(msg, size,
 
 
 
 
 
2464		 "You may not have permission to collect %sstats.\n\n"
2465		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2466		 "which controls use of the performance events system by\n"
2467		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2468		 "The current value is %d:\n\n"
2469		 "  -1: Allow use of (almost) all events by all users\n"
2470		 ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n"
 
 
2471		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2472		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN",
 
 
2473				 target->system_wide ? "system-wide " : "",
2474				 perf_event_paranoid());
2475	case ENOENT:
2476		return scnprintf(msg, size, "The %s event is not supported.",
2477				 perf_evsel__name(evsel));
2478	case EMFILE:
2479		return scnprintf(msg, size, "%s",
2480			 "Too many events are opened.\n"
2481			 "Probably the maximum number of open file descriptors has been reached.\n"
2482			 "Hint: Try again after reducing the number of events.\n"
2483			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2484	case ENOMEM:
2485		if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2486		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2487			return scnprintf(msg, size,
2488					 "Not enough memory to setup event with callchain.\n"
2489					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2490					 "Hint: Current value: %d", sysctl_perf_event_max_stack);
2491		break;
2492	case ENODEV:
2493		if (target->cpu_list)
2494			return scnprintf(msg, size, "%s",
2495	 "No such device - did you specify an out-of-range profile CPU?");
2496		break;
2497	case EOPNOTSUPP:
2498		if (evsel->attr.sample_period != 0)
2499			return scnprintf(msg, size, "%s",
2500	"PMU Hardware doesn't support sampling/overflow-interrupts.");
 
2501		if (evsel->attr.precise_ip)
2502			return scnprintf(msg, size, "%s",
2503	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2504#if defined(__i386__) || defined(__x86_64__)
2505		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2506			return scnprintf(msg, size, "%s",
2507	"No hardware sampling interrupt available.\n"
2508	"No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2509#endif
2510		break;
2511	case EBUSY:
2512		if (find_process("oprofiled"))
2513			return scnprintf(msg, size,
2514	"The PMU counters are busy/taken by another profiler.\n"
2515	"We found oprofile daemon running, please stop it and try again.");
2516		break;
2517	case EINVAL:
2518		if (evsel->attr.write_backward && perf_missing_features.write_backward)
2519			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2520		if (perf_missing_features.clockid)
2521			return scnprintf(msg, size, "clockid feature not supported.");
2522		if (perf_missing_features.clockid_wrong)
2523			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2524		break;
2525	default:
2526		break;
2527	}
2528
2529	return scnprintf(msg, size,
2530	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2531	"/bin/dmesg may provide additional information.\n"
2532	"No CONFIG_PERF_EVENTS=y kernel support configured?",
2533			 err, str_error_r(err, sbuf, sizeof(sbuf)),
2534			 perf_evsel__name(evsel));
2535}
2536
2537char *perf_evsel__env_arch(struct perf_evsel *evsel)
2538{
2539	if (evsel && evsel->evlist && evsel->evlist->env)
2540		return evsel->evlist->env->arch;
2541	return NULL;
2542}