Loading...
1/*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
15#include <errno.h>
16#include <inttypes.h>
17#include <traceevent/event-parse.h>
18
19#include "builtin.h"
20
21#include "util/util.h"
22
23#include "util/color.h"
24#include <linux/list.h>
25#include "util/cache.h"
26#include "util/evlist.h"
27#include "util/evsel.h"
28#include <linux/kernel.h>
29#include <linux/rbtree.h>
30#include <linux/time64.h>
31#include "util/symbol.h"
32#include "util/thread.h"
33#include "util/callchain.h"
34
35#include "perf.h"
36#include "util/header.h"
37#include <subcmd/parse-options.h>
38#include "util/parse-events.h"
39#include "util/event.h"
40#include "util/session.h"
41#include "util/svghelper.h"
42#include "util/tool.h"
43#include "util/data.h"
44#include "util/debug.h"
45
46#define SUPPORT_OLD_POWER_EVENTS 1
47#define PWR_EVENT_EXIT -1
48
49struct per_pid;
50struct power_event;
51struct wake_event;
52
53struct timechart {
54 struct perf_tool tool;
55 struct per_pid *all_data;
56 struct power_event *power_events;
57 struct wake_event *wake_events;
58 int proc_num;
59 unsigned int numcpus;
60 u64 min_freq, /* Lowest CPU frequency seen */
61 max_freq, /* Highest CPU frequency seen */
62 turbo_frequency,
63 first_time, last_time;
64 bool power_only,
65 tasks_only,
66 with_backtrace,
67 topology;
68 bool force;
69 /* IO related settings */
70 bool io_only,
71 skip_eagain;
72 u64 io_events;
73 u64 min_time,
74 merge_dist;
75};
76
77struct per_pidcomm;
78struct cpu_sample;
79struct io_sample;
80
81/*
82 * Datastructure layout:
83 * We keep an list of "pid"s, matching the kernels notion of a task struct.
84 * Each "pid" entry, has a list of "comm"s.
85 * this is because we want to track different programs different, while
86 * exec will reuse the original pid (by design).
87 * Each comm has a list of samples that will be used to draw
88 * final graph.
89 */
90
91struct per_pid {
92 struct per_pid *next;
93
94 int pid;
95 int ppid;
96
97 u64 start_time;
98 u64 end_time;
99 u64 total_time;
100 u64 total_bytes;
101 int display;
102
103 struct per_pidcomm *all;
104 struct per_pidcomm *current;
105};
106
107
108struct per_pidcomm {
109 struct per_pidcomm *next;
110
111 u64 start_time;
112 u64 end_time;
113 u64 total_time;
114 u64 max_bytes;
115 u64 total_bytes;
116
117 int Y;
118 int display;
119
120 long state;
121 u64 state_since;
122
123 char *comm;
124
125 struct cpu_sample *samples;
126 struct io_sample *io_samples;
127};
128
129struct sample_wrapper {
130 struct sample_wrapper *next;
131
132 u64 timestamp;
133 unsigned char data[0];
134};
135
136#define TYPE_NONE 0
137#define TYPE_RUNNING 1
138#define TYPE_WAITING 2
139#define TYPE_BLOCKED 3
140
141struct cpu_sample {
142 struct cpu_sample *next;
143
144 u64 start_time;
145 u64 end_time;
146 int type;
147 int cpu;
148 const char *backtrace;
149};
150
151enum {
152 IOTYPE_READ,
153 IOTYPE_WRITE,
154 IOTYPE_SYNC,
155 IOTYPE_TX,
156 IOTYPE_RX,
157 IOTYPE_POLL,
158};
159
160struct io_sample {
161 struct io_sample *next;
162
163 u64 start_time;
164 u64 end_time;
165 u64 bytes;
166 int type;
167 int fd;
168 int err;
169 int merges;
170};
171
172#define CSTATE 1
173#define PSTATE 2
174
175struct power_event {
176 struct power_event *next;
177 int type;
178 int state;
179 u64 start_time;
180 u64 end_time;
181 int cpu;
182};
183
184struct wake_event {
185 struct wake_event *next;
186 int waker;
187 int wakee;
188 u64 time;
189 const char *backtrace;
190};
191
192struct process_filter {
193 char *name;
194 int pid;
195 struct process_filter *next;
196};
197
198static struct process_filter *process_filter;
199
200
201static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
202{
203 struct per_pid *cursor = tchart->all_data;
204
205 while (cursor) {
206 if (cursor->pid == pid)
207 return cursor;
208 cursor = cursor->next;
209 }
210 cursor = zalloc(sizeof(*cursor));
211 assert(cursor != NULL);
212 cursor->pid = pid;
213 cursor->next = tchart->all_data;
214 tchart->all_data = cursor;
215 return cursor;
216}
217
218static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
219{
220 struct per_pid *p;
221 struct per_pidcomm *c;
222 p = find_create_pid(tchart, pid);
223 c = p->all;
224 while (c) {
225 if (c->comm && strcmp(c->comm, comm) == 0) {
226 p->current = c;
227 return;
228 }
229 if (!c->comm) {
230 c->comm = strdup(comm);
231 p->current = c;
232 return;
233 }
234 c = c->next;
235 }
236 c = zalloc(sizeof(*c));
237 assert(c != NULL);
238 c->comm = strdup(comm);
239 p->current = c;
240 c->next = p->all;
241 p->all = c;
242}
243
244static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
245{
246 struct per_pid *p, *pp;
247 p = find_create_pid(tchart, pid);
248 pp = find_create_pid(tchart, ppid);
249 p->ppid = ppid;
250 if (pp->current && pp->current->comm && !p->current)
251 pid_set_comm(tchart, pid, pp->current->comm);
252
253 p->start_time = timestamp;
254 if (p->current && !p->current->start_time) {
255 p->current->start_time = timestamp;
256 p->current->state_since = timestamp;
257 }
258}
259
260static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
261{
262 struct per_pid *p;
263 p = find_create_pid(tchart, pid);
264 p->end_time = timestamp;
265 if (p->current)
266 p->current->end_time = timestamp;
267}
268
269static void pid_put_sample(struct timechart *tchart, int pid, int type,
270 unsigned int cpu, u64 start, u64 end,
271 const char *backtrace)
272{
273 struct per_pid *p;
274 struct per_pidcomm *c;
275 struct cpu_sample *sample;
276
277 p = find_create_pid(tchart, pid);
278 c = p->current;
279 if (!c) {
280 c = zalloc(sizeof(*c));
281 assert(c != NULL);
282 p->current = c;
283 c->next = p->all;
284 p->all = c;
285 }
286
287 sample = zalloc(sizeof(*sample));
288 assert(sample != NULL);
289 sample->start_time = start;
290 sample->end_time = end;
291 sample->type = type;
292 sample->next = c->samples;
293 sample->cpu = cpu;
294 sample->backtrace = backtrace;
295 c->samples = sample;
296
297 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
298 c->total_time += (end-start);
299 p->total_time += (end-start);
300 }
301
302 if (c->start_time == 0 || c->start_time > start)
303 c->start_time = start;
304 if (p->start_time == 0 || p->start_time > start)
305 p->start_time = start;
306}
307
308#define MAX_CPUS 4096
309
310static u64 cpus_cstate_start_times[MAX_CPUS];
311static int cpus_cstate_state[MAX_CPUS];
312static u64 cpus_pstate_start_times[MAX_CPUS];
313static u64 cpus_pstate_state[MAX_CPUS];
314
315static int process_comm_event(struct perf_tool *tool,
316 union perf_event *event,
317 struct perf_sample *sample __maybe_unused,
318 struct machine *machine __maybe_unused)
319{
320 struct timechart *tchart = container_of(tool, struct timechart, tool);
321 pid_set_comm(tchart, event->comm.tid, event->comm.comm);
322 return 0;
323}
324
325static int process_fork_event(struct perf_tool *tool,
326 union perf_event *event,
327 struct perf_sample *sample __maybe_unused,
328 struct machine *machine __maybe_unused)
329{
330 struct timechart *tchart = container_of(tool, struct timechart, tool);
331 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
332 return 0;
333}
334
335static int process_exit_event(struct perf_tool *tool,
336 union perf_event *event,
337 struct perf_sample *sample __maybe_unused,
338 struct machine *machine __maybe_unused)
339{
340 struct timechart *tchart = container_of(tool, struct timechart, tool);
341 pid_exit(tchart, event->fork.pid, event->fork.time);
342 return 0;
343}
344
345#ifdef SUPPORT_OLD_POWER_EVENTS
346static int use_old_power_events;
347#endif
348
349static void c_state_start(int cpu, u64 timestamp, int state)
350{
351 cpus_cstate_start_times[cpu] = timestamp;
352 cpus_cstate_state[cpu] = state;
353}
354
355static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
356{
357 struct power_event *pwr = zalloc(sizeof(*pwr));
358
359 if (!pwr)
360 return;
361
362 pwr->state = cpus_cstate_state[cpu];
363 pwr->start_time = cpus_cstate_start_times[cpu];
364 pwr->end_time = timestamp;
365 pwr->cpu = cpu;
366 pwr->type = CSTATE;
367 pwr->next = tchart->power_events;
368
369 tchart->power_events = pwr;
370}
371
372static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
373{
374 struct power_event *pwr;
375
376 if (new_freq > 8000000) /* detect invalid data */
377 return;
378
379 pwr = zalloc(sizeof(*pwr));
380 if (!pwr)
381 return;
382
383 pwr->state = cpus_pstate_state[cpu];
384 pwr->start_time = cpus_pstate_start_times[cpu];
385 pwr->end_time = timestamp;
386 pwr->cpu = cpu;
387 pwr->type = PSTATE;
388 pwr->next = tchart->power_events;
389
390 if (!pwr->start_time)
391 pwr->start_time = tchart->first_time;
392
393 tchart->power_events = pwr;
394
395 cpus_pstate_state[cpu] = new_freq;
396 cpus_pstate_start_times[cpu] = timestamp;
397
398 if ((u64)new_freq > tchart->max_freq)
399 tchart->max_freq = new_freq;
400
401 if (new_freq < tchart->min_freq || tchart->min_freq == 0)
402 tchart->min_freq = new_freq;
403
404 if (new_freq == tchart->max_freq - 1000)
405 tchart->turbo_frequency = tchart->max_freq;
406}
407
408static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
409 int waker, int wakee, u8 flags, const char *backtrace)
410{
411 struct per_pid *p;
412 struct wake_event *we = zalloc(sizeof(*we));
413
414 if (!we)
415 return;
416
417 we->time = timestamp;
418 we->waker = waker;
419 we->backtrace = backtrace;
420
421 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
422 we->waker = -1;
423
424 we->wakee = wakee;
425 we->next = tchart->wake_events;
426 tchart->wake_events = we;
427 p = find_create_pid(tchart, we->wakee);
428
429 if (p && p->current && p->current->state == TYPE_NONE) {
430 p->current->state_since = timestamp;
431 p->current->state = TYPE_WAITING;
432 }
433 if (p && p->current && p->current->state == TYPE_BLOCKED) {
434 pid_put_sample(tchart, p->pid, p->current->state, cpu,
435 p->current->state_since, timestamp, NULL);
436 p->current->state_since = timestamp;
437 p->current->state = TYPE_WAITING;
438 }
439}
440
441static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
442 int prev_pid, int next_pid, u64 prev_state,
443 const char *backtrace)
444{
445 struct per_pid *p = NULL, *prev_p;
446
447 prev_p = find_create_pid(tchart, prev_pid);
448
449 p = find_create_pid(tchart, next_pid);
450
451 if (prev_p->current && prev_p->current->state != TYPE_NONE)
452 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
453 prev_p->current->state_since, timestamp,
454 backtrace);
455 if (p && p->current) {
456 if (p->current->state != TYPE_NONE)
457 pid_put_sample(tchart, next_pid, p->current->state, cpu,
458 p->current->state_since, timestamp,
459 backtrace);
460
461 p->current->state_since = timestamp;
462 p->current->state = TYPE_RUNNING;
463 }
464
465 if (prev_p->current) {
466 prev_p->current->state = TYPE_NONE;
467 prev_p->current->state_since = timestamp;
468 if (prev_state & 2)
469 prev_p->current->state = TYPE_BLOCKED;
470 if (prev_state == 0)
471 prev_p->current->state = TYPE_WAITING;
472 }
473}
474
475static const char *cat_backtrace(union perf_event *event,
476 struct perf_sample *sample,
477 struct machine *machine)
478{
479 struct addr_location al;
480 unsigned int i;
481 char *p = NULL;
482 size_t p_len;
483 u8 cpumode = PERF_RECORD_MISC_USER;
484 struct addr_location tal;
485 struct ip_callchain *chain = sample->callchain;
486 FILE *f = open_memstream(&p, &p_len);
487
488 if (!f) {
489 perror("open_memstream error");
490 return NULL;
491 }
492
493 if (!chain)
494 goto exit;
495
496 if (machine__resolve(machine, &al, sample) < 0) {
497 fprintf(stderr, "problem processing %d event, skipping it.\n",
498 event->header.type);
499 goto exit;
500 }
501
502 for (i = 0; i < chain->nr; i++) {
503 u64 ip;
504
505 if (callchain_param.order == ORDER_CALLEE)
506 ip = chain->ips[i];
507 else
508 ip = chain->ips[chain->nr - i - 1];
509
510 if (ip >= PERF_CONTEXT_MAX) {
511 switch (ip) {
512 case PERF_CONTEXT_HV:
513 cpumode = PERF_RECORD_MISC_HYPERVISOR;
514 break;
515 case PERF_CONTEXT_KERNEL:
516 cpumode = PERF_RECORD_MISC_KERNEL;
517 break;
518 case PERF_CONTEXT_USER:
519 cpumode = PERF_RECORD_MISC_USER;
520 break;
521 default:
522 pr_debug("invalid callchain context: "
523 "%"PRId64"\n", (s64) ip);
524
525 /*
526 * It seems the callchain is corrupted.
527 * Discard all.
528 */
529 zfree(&p);
530 goto exit_put;
531 }
532 continue;
533 }
534
535 tal.filtered = 0;
536 thread__find_addr_location(al.thread, cpumode,
537 MAP__FUNCTION, ip, &tal);
538
539 if (tal.sym)
540 fprintf(f, "..... %016" PRIx64 " %s\n", ip,
541 tal.sym->name);
542 else
543 fprintf(f, "..... %016" PRIx64 "\n", ip);
544 }
545exit_put:
546 addr_location__put(&al);
547exit:
548 fclose(f);
549
550 return p;
551}
552
553typedef int (*tracepoint_handler)(struct timechart *tchart,
554 struct perf_evsel *evsel,
555 struct perf_sample *sample,
556 const char *backtrace);
557
558static int process_sample_event(struct perf_tool *tool,
559 union perf_event *event,
560 struct perf_sample *sample,
561 struct perf_evsel *evsel,
562 struct machine *machine)
563{
564 struct timechart *tchart = container_of(tool, struct timechart, tool);
565
566 if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
567 if (!tchart->first_time || tchart->first_time > sample->time)
568 tchart->first_time = sample->time;
569 if (tchart->last_time < sample->time)
570 tchart->last_time = sample->time;
571 }
572
573 if (evsel->handler != NULL) {
574 tracepoint_handler f = evsel->handler;
575 return f(tchart, evsel, sample,
576 cat_backtrace(event, sample, machine));
577 }
578
579 return 0;
580}
581
582static int
583process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
584 struct perf_evsel *evsel,
585 struct perf_sample *sample,
586 const char *backtrace __maybe_unused)
587{
588 u32 state = perf_evsel__intval(evsel, sample, "state");
589 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
590
591 if (state == (u32)PWR_EVENT_EXIT)
592 c_state_end(tchart, cpu_id, sample->time);
593 else
594 c_state_start(cpu_id, sample->time, state);
595 return 0;
596}
597
598static int
599process_sample_cpu_frequency(struct timechart *tchart,
600 struct perf_evsel *evsel,
601 struct perf_sample *sample,
602 const char *backtrace __maybe_unused)
603{
604 u32 state = perf_evsel__intval(evsel, sample, "state");
605 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
606
607 p_state_change(tchart, cpu_id, sample->time, state);
608 return 0;
609}
610
611static int
612process_sample_sched_wakeup(struct timechart *tchart,
613 struct perf_evsel *evsel,
614 struct perf_sample *sample,
615 const char *backtrace)
616{
617 u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
618 int waker = perf_evsel__intval(evsel, sample, "common_pid");
619 int wakee = perf_evsel__intval(evsel, sample, "pid");
620
621 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
622 return 0;
623}
624
625static int
626process_sample_sched_switch(struct timechart *tchart,
627 struct perf_evsel *evsel,
628 struct perf_sample *sample,
629 const char *backtrace)
630{
631 int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
632 int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
633 u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
634
635 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
636 prev_state, backtrace);
637 return 0;
638}
639
640#ifdef SUPPORT_OLD_POWER_EVENTS
641static int
642process_sample_power_start(struct timechart *tchart __maybe_unused,
643 struct perf_evsel *evsel,
644 struct perf_sample *sample,
645 const char *backtrace __maybe_unused)
646{
647 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
648 u64 value = perf_evsel__intval(evsel, sample, "value");
649
650 c_state_start(cpu_id, sample->time, value);
651 return 0;
652}
653
654static int
655process_sample_power_end(struct timechart *tchart,
656 struct perf_evsel *evsel __maybe_unused,
657 struct perf_sample *sample,
658 const char *backtrace __maybe_unused)
659{
660 c_state_end(tchart, sample->cpu, sample->time);
661 return 0;
662}
663
664static int
665process_sample_power_frequency(struct timechart *tchart,
666 struct perf_evsel *evsel,
667 struct perf_sample *sample,
668 const char *backtrace __maybe_unused)
669{
670 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
671 u64 value = perf_evsel__intval(evsel, sample, "value");
672
673 p_state_change(tchart, cpu_id, sample->time, value);
674 return 0;
675}
676#endif /* SUPPORT_OLD_POWER_EVENTS */
677
678/*
679 * After the last sample we need to wrap up the current C/P state
680 * and close out each CPU for these.
681 */
682static void end_sample_processing(struct timechart *tchart)
683{
684 u64 cpu;
685 struct power_event *pwr;
686
687 for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
688 /* C state */
689#if 0
690 pwr = zalloc(sizeof(*pwr));
691 if (!pwr)
692 return;
693
694 pwr->state = cpus_cstate_state[cpu];
695 pwr->start_time = cpus_cstate_start_times[cpu];
696 pwr->end_time = tchart->last_time;
697 pwr->cpu = cpu;
698 pwr->type = CSTATE;
699 pwr->next = tchart->power_events;
700
701 tchart->power_events = pwr;
702#endif
703 /* P state */
704
705 pwr = zalloc(sizeof(*pwr));
706 if (!pwr)
707 return;
708
709 pwr->state = cpus_pstate_state[cpu];
710 pwr->start_time = cpus_pstate_start_times[cpu];
711 pwr->end_time = tchart->last_time;
712 pwr->cpu = cpu;
713 pwr->type = PSTATE;
714 pwr->next = tchart->power_events;
715
716 if (!pwr->start_time)
717 pwr->start_time = tchart->first_time;
718 if (!pwr->state)
719 pwr->state = tchart->min_freq;
720 tchart->power_events = pwr;
721 }
722}
723
724static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
725 u64 start, int fd)
726{
727 struct per_pid *p = find_create_pid(tchart, pid);
728 struct per_pidcomm *c = p->current;
729 struct io_sample *sample;
730 struct io_sample *prev;
731
732 if (!c) {
733 c = zalloc(sizeof(*c));
734 if (!c)
735 return -ENOMEM;
736 p->current = c;
737 c->next = p->all;
738 p->all = c;
739 }
740
741 prev = c->io_samples;
742
743 if (prev && prev->start_time && !prev->end_time) {
744 pr_warning("Skip invalid start event: "
745 "previous event already started!\n");
746
747 /* remove previous event that has been started,
748 * we are not sure we will ever get an end for it */
749 c->io_samples = prev->next;
750 free(prev);
751 return 0;
752 }
753
754 sample = zalloc(sizeof(*sample));
755 if (!sample)
756 return -ENOMEM;
757 sample->start_time = start;
758 sample->type = type;
759 sample->fd = fd;
760 sample->next = c->io_samples;
761 c->io_samples = sample;
762
763 if (c->start_time == 0 || c->start_time > start)
764 c->start_time = start;
765
766 return 0;
767}
768
769static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
770 u64 end, long ret)
771{
772 struct per_pid *p = find_create_pid(tchart, pid);
773 struct per_pidcomm *c = p->current;
774 struct io_sample *sample, *prev;
775
776 if (!c) {
777 pr_warning("Invalid pidcomm!\n");
778 return -1;
779 }
780
781 sample = c->io_samples;
782
783 if (!sample) /* skip partially captured events */
784 return 0;
785
786 if (sample->end_time) {
787 pr_warning("Skip invalid end event: "
788 "previous event already ended!\n");
789 return 0;
790 }
791
792 if (sample->type != type) {
793 pr_warning("Skip invalid end event: invalid event type!\n");
794 return 0;
795 }
796
797 sample->end_time = end;
798 prev = sample->next;
799
800 /* we want to be able to see small and fast transfers, so make them
801 * at least min_time long, but don't overlap them */
802 if (sample->end_time - sample->start_time < tchart->min_time)
803 sample->end_time = sample->start_time + tchart->min_time;
804 if (prev && sample->start_time < prev->end_time) {
805 if (prev->err) /* try to make errors more visible */
806 sample->start_time = prev->end_time;
807 else
808 prev->end_time = sample->start_time;
809 }
810
811 if (ret < 0) {
812 sample->err = ret;
813 } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
814 type == IOTYPE_TX || type == IOTYPE_RX) {
815
816 if ((u64)ret > c->max_bytes)
817 c->max_bytes = ret;
818
819 c->total_bytes += ret;
820 p->total_bytes += ret;
821 sample->bytes = ret;
822 }
823
824 /* merge two requests to make svg smaller and render-friendly */
825 if (prev &&
826 prev->type == sample->type &&
827 prev->err == sample->err &&
828 prev->fd == sample->fd &&
829 prev->end_time + tchart->merge_dist >= sample->start_time) {
830
831 sample->bytes += prev->bytes;
832 sample->merges += prev->merges + 1;
833
834 sample->start_time = prev->start_time;
835 sample->next = prev->next;
836 free(prev);
837
838 if (!sample->err && sample->bytes > c->max_bytes)
839 c->max_bytes = sample->bytes;
840 }
841
842 tchart->io_events++;
843
844 return 0;
845}
846
847static int
848process_enter_read(struct timechart *tchart,
849 struct perf_evsel *evsel,
850 struct perf_sample *sample)
851{
852 long fd = perf_evsel__intval(evsel, sample, "fd");
853 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
854 sample->time, fd);
855}
856
857static int
858process_exit_read(struct timechart *tchart,
859 struct perf_evsel *evsel,
860 struct perf_sample *sample)
861{
862 long ret = perf_evsel__intval(evsel, sample, "ret");
863 return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
864 sample->time, ret);
865}
866
867static int
868process_enter_write(struct timechart *tchart,
869 struct perf_evsel *evsel,
870 struct perf_sample *sample)
871{
872 long fd = perf_evsel__intval(evsel, sample, "fd");
873 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
874 sample->time, fd);
875}
876
877static int
878process_exit_write(struct timechart *tchart,
879 struct perf_evsel *evsel,
880 struct perf_sample *sample)
881{
882 long ret = perf_evsel__intval(evsel, sample, "ret");
883 return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
884 sample->time, ret);
885}
886
887static int
888process_enter_sync(struct timechart *tchart,
889 struct perf_evsel *evsel,
890 struct perf_sample *sample)
891{
892 long fd = perf_evsel__intval(evsel, sample, "fd");
893 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
894 sample->time, fd);
895}
896
897static int
898process_exit_sync(struct timechart *tchart,
899 struct perf_evsel *evsel,
900 struct perf_sample *sample)
901{
902 long ret = perf_evsel__intval(evsel, sample, "ret");
903 return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
904 sample->time, ret);
905}
906
907static int
908process_enter_tx(struct timechart *tchart,
909 struct perf_evsel *evsel,
910 struct perf_sample *sample)
911{
912 long fd = perf_evsel__intval(evsel, sample, "fd");
913 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
914 sample->time, fd);
915}
916
917static int
918process_exit_tx(struct timechart *tchart,
919 struct perf_evsel *evsel,
920 struct perf_sample *sample)
921{
922 long ret = perf_evsel__intval(evsel, sample, "ret");
923 return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
924 sample->time, ret);
925}
926
927static int
928process_enter_rx(struct timechart *tchart,
929 struct perf_evsel *evsel,
930 struct perf_sample *sample)
931{
932 long fd = perf_evsel__intval(evsel, sample, "fd");
933 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
934 sample->time, fd);
935}
936
937static int
938process_exit_rx(struct timechart *tchart,
939 struct perf_evsel *evsel,
940 struct perf_sample *sample)
941{
942 long ret = perf_evsel__intval(evsel, sample, "ret");
943 return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
944 sample->time, ret);
945}
946
947static int
948process_enter_poll(struct timechart *tchart,
949 struct perf_evsel *evsel,
950 struct perf_sample *sample)
951{
952 long fd = perf_evsel__intval(evsel, sample, "fd");
953 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
954 sample->time, fd);
955}
956
957static int
958process_exit_poll(struct timechart *tchart,
959 struct perf_evsel *evsel,
960 struct perf_sample *sample)
961{
962 long ret = perf_evsel__intval(evsel, sample, "ret");
963 return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
964 sample->time, ret);
965}
966
967/*
968 * Sort the pid datastructure
969 */
970static void sort_pids(struct timechart *tchart)
971{
972 struct per_pid *new_list, *p, *cursor, *prev;
973 /* sort by ppid first, then by pid, lowest to highest */
974
975 new_list = NULL;
976
977 while (tchart->all_data) {
978 p = tchart->all_data;
979 tchart->all_data = p->next;
980 p->next = NULL;
981
982 if (new_list == NULL) {
983 new_list = p;
984 p->next = NULL;
985 continue;
986 }
987 prev = NULL;
988 cursor = new_list;
989 while (cursor) {
990 if (cursor->ppid > p->ppid ||
991 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
992 /* must insert before */
993 if (prev) {
994 p->next = prev->next;
995 prev->next = p;
996 cursor = NULL;
997 continue;
998 } else {
999 p->next = new_list;
1000 new_list = p;
1001 cursor = NULL;
1002 continue;
1003 }
1004 }
1005
1006 prev = cursor;
1007 cursor = cursor->next;
1008 if (!cursor)
1009 prev->next = p;
1010 }
1011 }
1012 tchart->all_data = new_list;
1013}
1014
1015
1016static void draw_c_p_states(struct timechart *tchart)
1017{
1018 struct power_event *pwr;
1019 pwr = tchart->power_events;
1020
1021 /*
1022 * two pass drawing so that the P state bars are on top of the C state blocks
1023 */
1024 while (pwr) {
1025 if (pwr->type == CSTATE)
1026 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1027 pwr = pwr->next;
1028 }
1029
1030 pwr = tchart->power_events;
1031 while (pwr) {
1032 if (pwr->type == PSTATE) {
1033 if (!pwr->state)
1034 pwr->state = tchart->min_freq;
1035 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1036 }
1037 pwr = pwr->next;
1038 }
1039}
1040
1041static void draw_wakeups(struct timechart *tchart)
1042{
1043 struct wake_event *we;
1044 struct per_pid *p;
1045 struct per_pidcomm *c;
1046
1047 we = tchart->wake_events;
1048 while (we) {
1049 int from = 0, to = 0;
1050 char *task_from = NULL, *task_to = NULL;
1051
1052 /* locate the column of the waker and wakee */
1053 p = tchart->all_data;
1054 while (p) {
1055 if (p->pid == we->waker || p->pid == we->wakee) {
1056 c = p->all;
1057 while (c) {
1058 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1059 if (p->pid == we->waker && !from) {
1060 from = c->Y;
1061 task_from = strdup(c->comm);
1062 }
1063 if (p->pid == we->wakee && !to) {
1064 to = c->Y;
1065 task_to = strdup(c->comm);
1066 }
1067 }
1068 c = c->next;
1069 }
1070 c = p->all;
1071 while (c) {
1072 if (p->pid == we->waker && !from) {
1073 from = c->Y;
1074 task_from = strdup(c->comm);
1075 }
1076 if (p->pid == we->wakee && !to) {
1077 to = c->Y;
1078 task_to = strdup(c->comm);
1079 }
1080 c = c->next;
1081 }
1082 }
1083 p = p->next;
1084 }
1085
1086 if (!task_from) {
1087 task_from = malloc(40);
1088 sprintf(task_from, "[%i]", we->waker);
1089 }
1090 if (!task_to) {
1091 task_to = malloc(40);
1092 sprintf(task_to, "[%i]", we->wakee);
1093 }
1094
1095 if (we->waker == -1)
1096 svg_interrupt(we->time, to, we->backtrace);
1097 else if (from && to && abs(from - to) == 1)
1098 svg_wakeline(we->time, from, to, we->backtrace);
1099 else
1100 svg_partial_wakeline(we->time, from, task_from, to,
1101 task_to, we->backtrace);
1102 we = we->next;
1103
1104 free(task_from);
1105 free(task_to);
1106 }
1107}
1108
1109static void draw_cpu_usage(struct timechart *tchart)
1110{
1111 struct per_pid *p;
1112 struct per_pidcomm *c;
1113 struct cpu_sample *sample;
1114 p = tchart->all_data;
1115 while (p) {
1116 c = p->all;
1117 while (c) {
1118 sample = c->samples;
1119 while (sample) {
1120 if (sample->type == TYPE_RUNNING) {
1121 svg_process(sample->cpu,
1122 sample->start_time,
1123 sample->end_time,
1124 p->pid,
1125 c->comm,
1126 sample->backtrace);
1127 }
1128
1129 sample = sample->next;
1130 }
1131 c = c->next;
1132 }
1133 p = p->next;
1134 }
1135}
1136
1137static void draw_io_bars(struct timechart *tchart)
1138{
1139 const char *suf;
1140 double bytes;
1141 char comm[256];
1142 struct per_pid *p;
1143 struct per_pidcomm *c;
1144 struct io_sample *sample;
1145 int Y = 1;
1146
1147 p = tchart->all_data;
1148 while (p) {
1149 c = p->all;
1150 while (c) {
1151 if (!c->display) {
1152 c->Y = 0;
1153 c = c->next;
1154 continue;
1155 }
1156
1157 svg_box(Y, c->start_time, c->end_time, "process3");
1158 sample = c->io_samples;
1159 for (sample = c->io_samples; sample; sample = sample->next) {
1160 double h = (double)sample->bytes / c->max_bytes;
1161
1162 if (tchart->skip_eagain &&
1163 sample->err == -EAGAIN)
1164 continue;
1165
1166 if (sample->err)
1167 h = 1;
1168
1169 if (sample->type == IOTYPE_SYNC)
1170 svg_fbox(Y,
1171 sample->start_time,
1172 sample->end_time,
1173 1,
1174 sample->err ? "error" : "sync",
1175 sample->fd,
1176 sample->err,
1177 sample->merges);
1178 else if (sample->type == IOTYPE_POLL)
1179 svg_fbox(Y,
1180 sample->start_time,
1181 sample->end_time,
1182 1,
1183 sample->err ? "error" : "poll",
1184 sample->fd,
1185 sample->err,
1186 sample->merges);
1187 else if (sample->type == IOTYPE_READ)
1188 svg_ubox(Y,
1189 sample->start_time,
1190 sample->end_time,
1191 h,
1192 sample->err ? "error" : "disk",
1193 sample->fd,
1194 sample->err,
1195 sample->merges);
1196 else if (sample->type == IOTYPE_WRITE)
1197 svg_lbox(Y,
1198 sample->start_time,
1199 sample->end_time,
1200 h,
1201 sample->err ? "error" : "disk",
1202 sample->fd,
1203 sample->err,
1204 sample->merges);
1205 else if (sample->type == IOTYPE_RX)
1206 svg_ubox(Y,
1207 sample->start_time,
1208 sample->end_time,
1209 h,
1210 sample->err ? "error" : "net",
1211 sample->fd,
1212 sample->err,
1213 sample->merges);
1214 else if (sample->type == IOTYPE_TX)
1215 svg_lbox(Y,
1216 sample->start_time,
1217 sample->end_time,
1218 h,
1219 sample->err ? "error" : "net",
1220 sample->fd,
1221 sample->err,
1222 sample->merges);
1223 }
1224
1225 suf = "";
1226 bytes = c->total_bytes;
1227 if (bytes > 1024) {
1228 bytes = bytes / 1024;
1229 suf = "K";
1230 }
1231 if (bytes > 1024) {
1232 bytes = bytes / 1024;
1233 suf = "M";
1234 }
1235 if (bytes > 1024) {
1236 bytes = bytes / 1024;
1237 suf = "G";
1238 }
1239
1240
1241 sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1242 svg_text(Y, c->start_time, comm);
1243
1244 c->Y = Y;
1245 Y++;
1246 c = c->next;
1247 }
1248 p = p->next;
1249 }
1250}
1251
1252static void draw_process_bars(struct timechart *tchart)
1253{
1254 struct per_pid *p;
1255 struct per_pidcomm *c;
1256 struct cpu_sample *sample;
1257 int Y = 0;
1258
1259 Y = 2 * tchart->numcpus + 2;
1260
1261 p = tchart->all_data;
1262 while (p) {
1263 c = p->all;
1264 while (c) {
1265 if (!c->display) {
1266 c->Y = 0;
1267 c = c->next;
1268 continue;
1269 }
1270
1271 svg_box(Y, c->start_time, c->end_time, "process");
1272 sample = c->samples;
1273 while (sample) {
1274 if (sample->type == TYPE_RUNNING)
1275 svg_running(Y, sample->cpu,
1276 sample->start_time,
1277 sample->end_time,
1278 sample->backtrace);
1279 if (sample->type == TYPE_BLOCKED)
1280 svg_blocked(Y, sample->cpu,
1281 sample->start_time,
1282 sample->end_time,
1283 sample->backtrace);
1284 if (sample->type == TYPE_WAITING)
1285 svg_waiting(Y, sample->cpu,
1286 sample->start_time,
1287 sample->end_time,
1288 sample->backtrace);
1289 sample = sample->next;
1290 }
1291
1292 if (c->comm) {
1293 char comm[256];
1294 if (c->total_time > 5000000000) /* 5 seconds */
1295 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1296 else
1297 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1298
1299 svg_text(Y, c->start_time, comm);
1300 }
1301 c->Y = Y;
1302 Y++;
1303 c = c->next;
1304 }
1305 p = p->next;
1306 }
1307}
1308
1309static void add_process_filter(const char *string)
1310{
1311 int pid = strtoull(string, NULL, 10);
1312 struct process_filter *filt = malloc(sizeof(*filt));
1313
1314 if (!filt)
1315 return;
1316
1317 filt->name = strdup(string);
1318 filt->pid = pid;
1319 filt->next = process_filter;
1320
1321 process_filter = filt;
1322}
1323
1324static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1325{
1326 struct process_filter *filt;
1327 if (!process_filter)
1328 return 1;
1329
1330 filt = process_filter;
1331 while (filt) {
1332 if (filt->pid && p->pid == filt->pid)
1333 return 1;
1334 if (strcmp(filt->name, c->comm) == 0)
1335 return 1;
1336 filt = filt->next;
1337 }
1338 return 0;
1339}
1340
1341static int determine_display_tasks_filtered(struct timechart *tchart)
1342{
1343 struct per_pid *p;
1344 struct per_pidcomm *c;
1345 int count = 0;
1346
1347 p = tchart->all_data;
1348 while (p) {
1349 p->display = 0;
1350 if (p->start_time == 1)
1351 p->start_time = tchart->first_time;
1352
1353 /* no exit marker, task kept running to the end */
1354 if (p->end_time == 0)
1355 p->end_time = tchart->last_time;
1356
1357 c = p->all;
1358
1359 while (c) {
1360 c->display = 0;
1361
1362 if (c->start_time == 1)
1363 c->start_time = tchart->first_time;
1364
1365 if (passes_filter(p, c)) {
1366 c->display = 1;
1367 p->display = 1;
1368 count++;
1369 }
1370
1371 if (c->end_time == 0)
1372 c->end_time = tchart->last_time;
1373
1374 c = c->next;
1375 }
1376 p = p->next;
1377 }
1378 return count;
1379}
1380
1381static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1382{
1383 struct per_pid *p;
1384 struct per_pidcomm *c;
1385 int count = 0;
1386
1387 p = tchart->all_data;
1388 while (p) {
1389 p->display = 0;
1390 if (p->start_time == 1)
1391 p->start_time = tchart->first_time;
1392
1393 /* no exit marker, task kept running to the end */
1394 if (p->end_time == 0)
1395 p->end_time = tchart->last_time;
1396 if (p->total_time >= threshold)
1397 p->display = 1;
1398
1399 c = p->all;
1400
1401 while (c) {
1402 c->display = 0;
1403
1404 if (c->start_time == 1)
1405 c->start_time = tchart->first_time;
1406
1407 if (c->total_time >= threshold) {
1408 c->display = 1;
1409 count++;
1410 }
1411
1412 if (c->end_time == 0)
1413 c->end_time = tchart->last_time;
1414
1415 c = c->next;
1416 }
1417 p = p->next;
1418 }
1419 return count;
1420}
1421
1422static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1423{
1424 struct per_pid *p;
1425 struct per_pidcomm *c;
1426 int count = 0;
1427
1428 p = timechart->all_data;
1429 while (p) {
1430 /* no exit marker, task kept running to the end */
1431 if (p->end_time == 0)
1432 p->end_time = timechart->last_time;
1433
1434 c = p->all;
1435
1436 while (c) {
1437 c->display = 0;
1438
1439 if (c->total_bytes >= threshold) {
1440 c->display = 1;
1441 count++;
1442 }
1443
1444 if (c->end_time == 0)
1445 c->end_time = timechart->last_time;
1446
1447 c = c->next;
1448 }
1449 p = p->next;
1450 }
1451 return count;
1452}
1453
1454#define BYTES_THRESH (1 * 1024 * 1024)
1455#define TIME_THRESH 10000000
1456
1457static void write_svg_file(struct timechart *tchart, const char *filename)
1458{
1459 u64 i;
1460 int count;
1461 int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1462
1463 if (tchart->power_only)
1464 tchart->proc_num = 0;
1465
1466 /* We'd like to show at least proc_num tasks;
1467 * be less picky if we have fewer */
1468 do {
1469 if (process_filter)
1470 count = determine_display_tasks_filtered(tchart);
1471 else if (tchart->io_events)
1472 count = determine_display_io_tasks(tchart, thresh);
1473 else
1474 count = determine_display_tasks(tchart, thresh);
1475 thresh /= 10;
1476 } while (!process_filter && thresh && count < tchart->proc_num);
1477
1478 if (!tchart->proc_num)
1479 count = 0;
1480
1481 if (tchart->io_events) {
1482 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1483
1484 svg_time_grid(0.5);
1485 svg_io_legenda();
1486
1487 draw_io_bars(tchart);
1488 } else {
1489 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1490
1491 svg_time_grid(0);
1492
1493 svg_legenda();
1494
1495 for (i = 0; i < tchart->numcpus; i++)
1496 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1497
1498 draw_cpu_usage(tchart);
1499 if (tchart->proc_num)
1500 draw_process_bars(tchart);
1501 if (!tchart->tasks_only)
1502 draw_c_p_states(tchart);
1503 if (tchart->proc_num)
1504 draw_wakeups(tchart);
1505 }
1506
1507 svg_close();
1508}
1509
1510static int process_header(struct perf_file_section *section __maybe_unused,
1511 struct perf_header *ph,
1512 int feat,
1513 int fd __maybe_unused,
1514 void *data)
1515{
1516 struct timechart *tchart = data;
1517
1518 switch (feat) {
1519 case HEADER_NRCPUS:
1520 tchart->numcpus = ph->env.nr_cpus_avail;
1521 break;
1522
1523 case HEADER_CPU_TOPOLOGY:
1524 if (!tchart->topology)
1525 break;
1526
1527 if (svg_build_topology_map(ph->env.sibling_cores,
1528 ph->env.nr_sibling_cores,
1529 ph->env.sibling_threads,
1530 ph->env.nr_sibling_threads))
1531 fprintf(stderr, "problem building topology\n");
1532 break;
1533
1534 default:
1535 break;
1536 }
1537
1538 return 0;
1539}
1540
1541static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1542{
1543 const struct perf_evsel_str_handler power_tracepoints[] = {
1544 { "power:cpu_idle", process_sample_cpu_idle },
1545 { "power:cpu_frequency", process_sample_cpu_frequency },
1546 { "sched:sched_wakeup", process_sample_sched_wakeup },
1547 { "sched:sched_switch", process_sample_sched_switch },
1548#ifdef SUPPORT_OLD_POWER_EVENTS
1549 { "power:power_start", process_sample_power_start },
1550 { "power:power_end", process_sample_power_end },
1551 { "power:power_frequency", process_sample_power_frequency },
1552#endif
1553
1554 { "syscalls:sys_enter_read", process_enter_read },
1555 { "syscalls:sys_enter_pread64", process_enter_read },
1556 { "syscalls:sys_enter_readv", process_enter_read },
1557 { "syscalls:sys_enter_preadv", process_enter_read },
1558 { "syscalls:sys_enter_write", process_enter_write },
1559 { "syscalls:sys_enter_pwrite64", process_enter_write },
1560 { "syscalls:sys_enter_writev", process_enter_write },
1561 { "syscalls:sys_enter_pwritev", process_enter_write },
1562 { "syscalls:sys_enter_sync", process_enter_sync },
1563 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1564 { "syscalls:sys_enter_fsync", process_enter_sync },
1565 { "syscalls:sys_enter_msync", process_enter_sync },
1566 { "syscalls:sys_enter_recvfrom", process_enter_rx },
1567 { "syscalls:sys_enter_recvmmsg", process_enter_rx },
1568 { "syscalls:sys_enter_recvmsg", process_enter_rx },
1569 { "syscalls:sys_enter_sendto", process_enter_tx },
1570 { "syscalls:sys_enter_sendmsg", process_enter_tx },
1571 { "syscalls:sys_enter_sendmmsg", process_enter_tx },
1572 { "syscalls:sys_enter_epoll_pwait", process_enter_poll },
1573 { "syscalls:sys_enter_epoll_wait", process_enter_poll },
1574 { "syscalls:sys_enter_poll", process_enter_poll },
1575 { "syscalls:sys_enter_ppoll", process_enter_poll },
1576 { "syscalls:sys_enter_pselect6", process_enter_poll },
1577 { "syscalls:sys_enter_select", process_enter_poll },
1578
1579 { "syscalls:sys_exit_read", process_exit_read },
1580 { "syscalls:sys_exit_pread64", process_exit_read },
1581 { "syscalls:sys_exit_readv", process_exit_read },
1582 { "syscalls:sys_exit_preadv", process_exit_read },
1583 { "syscalls:sys_exit_write", process_exit_write },
1584 { "syscalls:sys_exit_pwrite64", process_exit_write },
1585 { "syscalls:sys_exit_writev", process_exit_write },
1586 { "syscalls:sys_exit_pwritev", process_exit_write },
1587 { "syscalls:sys_exit_sync", process_exit_sync },
1588 { "syscalls:sys_exit_sync_file_range", process_exit_sync },
1589 { "syscalls:sys_exit_fsync", process_exit_sync },
1590 { "syscalls:sys_exit_msync", process_exit_sync },
1591 { "syscalls:sys_exit_recvfrom", process_exit_rx },
1592 { "syscalls:sys_exit_recvmmsg", process_exit_rx },
1593 { "syscalls:sys_exit_recvmsg", process_exit_rx },
1594 { "syscalls:sys_exit_sendto", process_exit_tx },
1595 { "syscalls:sys_exit_sendmsg", process_exit_tx },
1596 { "syscalls:sys_exit_sendmmsg", process_exit_tx },
1597 { "syscalls:sys_exit_epoll_pwait", process_exit_poll },
1598 { "syscalls:sys_exit_epoll_wait", process_exit_poll },
1599 { "syscalls:sys_exit_poll", process_exit_poll },
1600 { "syscalls:sys_exit_ppoll", process_exit_poll },
1601 { "syscalls:sys_exit_pselect6", process_exit_poll },
1602 { "syscalls:sys_exit_select", process_exit_poll },
1603 };
1604 struct perf_data data = {
1605 .file = {
1606 .path = input_name,
1607 },
1608 .mode = PERF_DATA_MODE_READ,
1609 .force = tchart->force,
1610 };
1611
1612 struct perf_session *session = perf_session__new(&data, false,
1613 &tchart->tool);
1614 int ret = -EINVAL;
1615
1616 if (session == NULL)
1617 return -1;
1618
1619 symbol__init(&session->header.env);
1620
1621 (void)perf_header__process_sections(&session->header,
1622 perf_data__fd(session->data),
1623 tchart,
1624 process_header);
1625
1626 if (!perf_session__has_traces(session, "timechart record"))
1627 goto out_delete;
1628
1629 if (perf_session__set_tracepoints_handlers(session,
1630 power_tracepoints)) {
1631 pr_err("Initializing session tracepoint handlers failed\n");
1632 goto out_delete;
1633 }
1634
1635 ret = perf_session__process_events(session);
1636 if (ret)
1637 goto out_delete;
1638
1639 end_sample_processing(tchart);
1640
1641 sort_pids(tchart);
1642
1643 write_svg_file(tchart, output_name);
1644
1645 pr_info("Written %2.1f seconds of trace to %s.\n",
1646 (tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1647out_delete:
1648 perf_session__delete(session);
1649 return ret;
1650}
1651
1652static int timechart__io_record(int argc, const char **argv)
1653{
1654 unsigned int rec_argc, i;
1655 const char **rec_argv;
1656 const char **p;
1657 char *filter = NULL;
1658
1659 const char * const common_args[] = {
1660 "record", "-a", "-R", "-c", "1",
1661 };
1662 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1663
1664 const char * const disk_events[] = {
1665 "syscalls:sys_enter_read",
1666 "syscalls:sys_enter_pread64",
1667 "syscalls:sys_enter_readv",
1668 "syscalls:sys_enter_preadv",
1669 "syscalls:sys_enter_write",
1670 "syscalls:sys_enter_pwrite64",
1671 "syscalls:sys_enter_writev",
1672 "syscalls:sys_enter_pwritev",
1673 "syscalls:sys_enter_sync",
1674 "syscalls:sys_enter_sync_file_range",
1675 "syscalls:sys_enter_fsync",
1676 "syscalls:sys_enter_msync",
1677
1678 "syscalls:sys_exit_read",
1679 "syscalls:sys_exit_pread64",
1680 "syscalls:sys_exit_readv",
1681 "syscalls:sys_exit_preadv",
1682 "syscalls:sys_exit_write",
1683 "syscalls:sys_exit_pwrite64",
1684 "syscalls:sys_exit_writev",
1685 "syscalls:sys_exit_pwritev",
1686 "syscalls:sys_exit_sync",
1687 "syscalls:sys_exit_sync_file_range",
1688 "syscalls:sys_exit_fsync",
1689 "syscalls:sys_exit_msync",
1690 };
1691 unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1692
1693 const char * const net_events[] = {
1694 "syscalls:sys_enter_recvfrom",
1695 "syscalls:sys_enter_recvmmsg",
1696 "syscalls:sys_enter_recvmsg",
1697 "syscalls:sys_enter_sendto",
1698 "syscalls:sys_enter_sendmsg",
1699 "syscalls:sys_enter_sendmmsg",
1700
1701 "syscalls:sys_exit_recvfrom",
1702 "syscalls:sys_exit_recvmmsg",
1703 "syscalls:sys_exit_recvmsg",
1704 "syscalls:sys_exit_sendto",
1705 "syscalls:sys_exit_sendmsg",
1706 "syscalls:sys_exit_sendmmsg",
1707 };
1708 unsigned int net_events_nr = ARRAY_SIZE(net_events);
1709
1710 const char * const poll_events[] = {
1711 "syscalls:sys_enter_epoll_pwait",
1712 "syscalls:sys_enter_epoll_wait",
1713 "syscalls:sys_enter_poll",
1714 "syscalls:sys_enter_ppoll",
1715 "syscalls:sys_enter_pselect6",
1716 "syscalls:sys_enter_select",
1717
1718 "syscalls:sys_exit_epoll_pwait",
1719 "syscalls:sys_exit_epoll_wait",
1720 "syscalls:sys_exit_poll",
1721 "syscalls:sys_exit_ppoll",
1722 "syscalls:sys_exit_pselect6",
1723 "syscalls:sys_exit_select",
1724 };
1725 unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1726
1727 rec_argc = common_args_nr +
1728 disk_events_nr * 4 +
1729 net_events_nr * 4 +
1730 poll_events_nr * 4 +
1731 argc;
1732 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1733
1734 if (rec_argv == NULL)
1735 return -ENOMEM;
1736
1737 if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1738 free(rec_argv);
1739 return -ENOMEM;
1740 }
1741
1742 p = rec_argv;
1743 for (i = 0; i < common_args_nr; i++)
1744 *p++ = strdup(common_args[i]);
1745
1746 for (i = 0; i < disk_events_nr; i++) {
1747 if (!is_valid_tracepoint(disk_events[i])) {
1748 rec_argc -= 4;
1749 continue;
1750 }
1751
1752 *p++ = "-e";
1753 *p++ = strdup(disk_events[i]);
1754 *p++ = "--filter";
1755 *p++ = filter;
1756 }
1757 for (i = 0; i < net_events_nr; i++) {
1758 if (!is_valid_tracepoint(net_events[i])) {
1759 rec_argc -= 4;
1760 continue;
1761 }
1762
1763 *p++ = "-e";
1764 *p++ = strdup(net_events[i]);
1765 *p++ = "--filter";
1766 *p++ = filter;
1767 }
1768 for (i = 0; i < poll_events_nr; i++) {
1769 if (!is_valid_tracepoint(poll_events[i])) {
1770 rec_argc -= 4;
1771 continue;
1772 }
1773
1774 *p++ = "-e";
1775 *p++ = strdup(poll_events[i]);
1776 *p++ = "--filter";
1777 *p++ = filter;
1778 }
1779
1780 for (i = 0; i < (unsigned int)argc; i++)
1781 *p++ = argv[i];
1782
1783 return cmd_record(rec_argc, rec_argv);
1784}
1785
1786
1787static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1788{
1789 unsigned int rec_argc, i, j;
1790 const char **rec_argv;
1791 const char **p;
1792 unsigned int record_elems;
1793
1794 const char * const common_args[] = {
1795 "record", "-a", "-R", "-c", "1",
1796 };
1797 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1798
1799 const char * const backtrace_args[] = {
1800 "-g",
1801 };
1802 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1803
1804 const char * const power_args[] = {
1805 "-e", "power:cpu_frequency",
1806 "-e", "power:cpu_idle",
1807 };
1808 unsigned int power_args_nr = ARRAY_SIZE(power_args);
1809
1810 const char * const old_power_args[] = {
1811#ifdef SUPPORT_OLD_POWER_EVENTS
1812 "-e", "power:power_start",
1813 "-e", "power:power_end",
1814 "-e", "power:power_frequency",
1815#endif
1816 };
1817 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1818
1819 const char * const tasks_args[] = {
1820 "-e", "sched:sched_wakeup",
1821 "-e", "sched:sched_switch",
1822 };
1823 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1824
1825#ifdef SUPPORT_OLD_POWER_EVENTS
1826 if (!is_valid_tracepoint("power:cpu_idle") &&
1827 is_valid_tracepoint("power:power_start")) {
1828 use_old_power_events = 1;
1829 power_args_nr = 0;
1830 } else {
1831 old_power_args_nr = 0;
1832 }
1833#endif
1834
1835 if (tchart->power_only)
1836 tasks_args_nr = 0;
1837
1838 if (tchart->tasks_only) {
1839 power_args_nr = 0;
1840 old_power_args_nr = 0;
1841 }
1842
1843 if (!tchart->with_backtrace)
1844 backtrace_args_no = 0;
1845
1846 record_elems = common_args_nr + tasks_args_nr +
1847 power_args_nr + old_power_args_nr + backtrace_args_no;
1848
1849 rec_argc = record_elems + argc;
1850 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1851
1852 if (rec_argv == NULL)
1853 return -ENOMEM;
1854
1855 p = rec_argv;
1856 for (i = 0; i < common_args_nr; i++)
1857 *p++ = strdup(common_args[i]);
1858
1859 for (i = 0; i < backtrace_args_no; i++)
1860 *p++ = strdup(backtrace_args[i]);
1861
1862 for (i = 0; i < tasks_args_nr; i++)
1863 *p++ = strdup(tasks_args[i]);
1864
1865 for (i = 0; i < power_args_nr; i++)
1866 *p++ = strdup(power_args[i]);
1867
1868 for (i = 0; i < old_power_args_nr; i++)
1869 *p++ = strdup(old_power_args[i]);
1870
1871 for (j = 0; j < (unsigned int)argc; j++)
1872 *p++ = argv[j];
1873
1874 return cmd_record(rec_argc, rec_argv);
1875}
1876
1877static int
1878parse_process(const struct option *opt __maybe_unused, const char *arg,
1879 int __maybe_unused unset)
1880{
1881 if (arg)
1882 add_process_filter(arg);
1883 return 0;
1884}
1885
1886static int
1887parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1888 int __maybe_unused unset)
1889{
1890 unsigned long duration = strtoul(arg, NULL, 0);
1891
1892 if (svg_highlight || svg_highlight_name)
1893 return -1;
1894
1895 if (duration)
1896 svg_highlight = duration;
1897 else
1898 svg_highlight_name = strdup(arg);
1899
1900 return 0;
1901}
1902
1903static int
1904parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1905{
1906 char unit = 'n';
1907 u64 *value = opt->value;
1908
1909 if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1910 switch (unit) {
1911 case 'm':
1912 *value *= NSEC_PER_MSEC;
1913 break;
1914 case 'u':
1915 *value *= NSEC_PER_USEC;
1916 break;
1917 case 'n':
1918 break;
1919 default:
1920 return -1;
1921 }
1922 }
1923
1924 return 0;
1925}
1926
1927int cmd_timechart(int argc, const char **argv)
1928{
1929 struct timechart tchart = {
1930 .tool = {
1931 .comm = process_comm_event,
1932 .fork = process_fork_event,
1933 .exit = process_exit_event,
1934 .sample = process_sample_event,
1935 .ordered_events = true,
1936 },
1937 .proc_num = 15,
1938 .min_time = NSEC_PER_MSEC,
1939 .merge_dist = 1000,
1940 };
1941 const char *output_name = "output.svg";
1942 const struct option timechart_common_options[] = {
1943 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1944 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1945 OPT_END()
1946 };
1947 const struct option timechart_options[] = {
1948 OPT_STRING('i', "input", &input_name, "file", "input file name"),
1949 OPT_STRING('o', "output", &output_name, "file", "output file name"),
1950 OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1951 OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1952 "highlight tasks. Pass duration in ns or process name.",
1953 parse_highlight),
1954 OPT_CALLBACK('p', "process", NULL, "process",
1955 "process selector. Pass a pid or process name.",
1956 parse_process),
1957 OPT_CALLBACK(0, "symfs", NULL, "directory",
1958 "Look for files with symbols relative to this directory",
1959 symbol__config_symfs),
1960 OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1961 "min. number of tasks to print"),
1962 OPT_BOOLEAN('t', "topology", &tchart.topology,
1963 "sort CPUs according to topology"),
1964 OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1965 "skip EAGAIN errors"),
1966 OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1967 "all IO faster than min-time will visually appear longer",
1968 parse_time),
1969 OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1970 "merge events that are merge-dist us apart",
1971 parse_time),
1972 OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1973 OPT_PARENT(timechart_common_options),
1974 };
1975 const char * const timechart_subcommands[] = { "record", NULL };
1976 const char *timechart_usage[] = {
1977 "perf timechart [<options>] {record}",
1978 NULL
1979 };
1980 const struct option timechart_record_options[] = {
1981 OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1982 "record only IO data"),
1983 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1984 OPT_PARENT(timechart_common_options),
1985 };
1986 const char * const timechart_record_usage[] = {
1987 "perf timechart record [<options>]",
1988 NULL
1989 };
1990 argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1991 timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1992
1993 if (tchart.power_only && tchart.tasks_only) {
1994 pr_err("-P and -T options cannot be used at the same time.\n");
1995 return -1;
1996 }
1997
1998 if (argc && !strncmp(argv[0], "rec", 3)) {
1999 argc = parse_options(argc, argv, timechart_record_options,
2000 timechart_record_usage,
2001 PARSE_OPT_STOP_AT_NON_OPTION);
2002
2003 if (tchart.power_only && tchart.tasks_only) {
2004 pr_err("-P and -T options cannot be used at the same time.\n");
2005 return -1;
2006 }
2007
2008 if (tchart.io_only)
2009 return timechart__io_record(argc, argv);
2010 else
2011 return timechart__record(&tchart, argc, argv);
2012 } else if (argc)
2013 usage_with_options(timechart_usage, timechart_options);
2014
2015 setup_pager();
2016
2017 return __cmd_timechart(&tchart, output_name);
2018}
1/*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
15#include <traceevent/event-parse.h>
16
17#include "builtin.h"
18
19#include "util/util.h"
20
21#include "util/color.h"
22#include <linux/list.h>
23#include "util/cache.h"
24#include "util/evlist.h"
25#include "util/evsel.h"
26#include <linux/rbtree.h>
27#include <linux/time64.h>
28#include "util/symbol.h"
29#include "util/callchain.h"
30#include "util/strlist.h"
31
32#include "perf.h"
33#include "util/header.h"
34#include <subcmd/parse-options.h>
35#include "util/parse-events.h"
36#include "util/event.h"
37#include "util/session.h"
38#include "util/svghelper.h"
39#include "util/tool.h"
40#include "util/data.h"
41#include "util/debug.h"
42
43#define SUPPORT_OLD_POWER_EVENTS 1
44#define PWR_EVENT_EXIT -1
45
46struct per_pid;
47struct power_event;
48struct wake_event;
49
50struct timechart {
51 struct perf_tool tool;
52 struct per_pid *all_data;
53 struct power_event *power_events;
54 struct wake_event *wake_events;
55 int proc_num;
56 unsigned int numcpus;
57 u64 min_freq, /* Lowest CPU frequency seen */
58 max_freq, /* Highest CPU frequency seen */
59 turbo_frequency,
60 first_time, last_time;
61 bool power_only,
62 tasks_only,
63 with_backtrace,
64 topology;
65 bool force;
66 /* IO related settings */
67 bool io_only,
68 skip_eagain;
69 u64 io_events;
70 u64 min_time,
71 merge_dist;
72};
73
74struct per_pidcomm;
75struct cpu_sample;
76struct io_sample;
77
78/*
79 * Datastructure layout:
80 * We keep an list of "pid"s, matching the kernels notion of a task struct.
81 * Each "pid" entry, has a list of "comm"s.
82 * this is because we want to track different programs different, while
83 * exec will reuse the original pid (by design).
84 * Each comm has a list of samples that will be used to draw
85 * final graph.
86 */
87
88struct per_pid {
89 struct per_pid *next;
90
91 int pid;
92 int ppid;
93
94 u64 start_time;
95 u64 end_time;
96 u64 total_time;
97 u64 total_bytes;
98 int display;
99
100 struct per_pidcomm *all;
101 struct per_pidcomm *current;
102};
103
104
105struct per_pidcomm {
106 struct per_pidcomm *next;
107
108 u64 start_time;
109 u64 end_time;
110 u64 total_time;
111 u64 max_bytes;
112 u64 total_bytes;
113
114 int Y;
115 int display;
116
117 long state;
118 u64 state_since;
119
120 char *comm;
121
122 struct cpu_sample *samples;
123 struct io_sample *io_samples;
124};
125
126struct sample_wrapper {
127 struct sample_wrapper *next;
128
129 u64 timestamp;
130 unsigned char data[0];
131};
132
133#define TYPE_NONE 0
134#define TYPE_RUNNING 1
135#define TYPE_WAITING 2
136#define TYPE_BLOCKED 3
137
138struct cpu_sample {
139 struct cpu_sample *next;
140
141 u64 start_time;
142 u64 end_time;
143 int type;
144 int cpu;
145 const char *backtrace;
146};
147
148enum {
149 IOTYPE_READ,
150 IOTYPE_WRITE,
151 IOTYPE_SYNC,
152 IOTYPE_TX,
153 IOTYPE_RX,
154 IOTYPE_POLL,
155};
156
157struct io_sample {
158 struct io_sample *next;
159
160 u64 start_time;
161 u64 end_time;
162 u64 bytes;
163 int type;
164 int fd;
165 int err;
166 int merges;
167};
168
169#define CSTATE 1
170#define PSTATE 2
171
172struct power_event {
173 struct power_event *next;
174 int type;
175 int state;
176 u64 start_time;
177 u64 end_time;
178 int cpu;
179};
180
181struct wake_event {
182 struct wake_event *next;
183 int waker;
184 int wakee;
185 u64 time;
186 const char *backtrace;
187};
188
189struct process_filter {
190 char *name;
191 int pid;
192 struct process_filter *next;
193};
194
195static struct process_filter *process_filter;
196
197
198static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
199{
200 struct per_pid *cursor = tchart->all_data;
201
202 while (cursor) {
203 if (cursor->pid == pid)
204 return cursor;
205 cursor = cursor->next;
206 }
207 cursor = zalloc(sizeof(*cursor));
208 assert(cursor != NULL);
209 cursor->pid = pid;
210 cursor->next = tchart->all_data;
211 tchart->all_data = cursor;
212 return cursor;
213}
214
215static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
216{
217 struct per_pid *p;
218 struct per_pidcomm *c;
219 p = find_create_pid(tchart, pid);
220 c = p->all;
221 while (c) {
222 if (c->comm && strcmp(c->comm, comm) == 0) {
223 p->current = c;
224 return;
225 }
226 if (!c->comm) {
227 c->comm = strdup(comm);
228 p->current = c;
229 return;
230 }
231 c = c->next;
232 }
233 c = zalloc(sizeof(*c));
234 assert(c != NULL);
235 c->comm = strdup(comm);
236 p->current = c;
237 c->next = p->all;
238 p->all = c;
239}
240
241static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
242{
243 struct per_pid *p, *pp;
244 p = find_create_pid(tchart, pid);
245 pp = find_create_pid(tchart, ppid);
246 p->ppid = ppid;
247 if (pp->current && pp->current->comm && !p->current)
248 pid_set_comm(tchart, pid, pp->current->comm);
249
250 p->start_time = timestamp;
251 if (p->current && !p->current->start_time) {
252 p->current->start_time = timestamp;
253 p->current->state_since = timestamp;
254 }
255}
256
257static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
258{
259 struct per_pid *p;
260 p = find_create_pid(tchart, pid);
261 p->end_time = timestamp;
262 if (p->current)
263 p->current->end_time = timestamp;
264}
265
266static void pid_put_sample(struct timechart *tchart, int pid, int type,
267 unsigned int cpu, u64 start, u64 end,
268 const char *backtrace)
269{
270 struct per_pid *p;
271 struct per_pidcomm *c;
272 struct cpu_sample *sample;
273
274 p = find_create_pid(tchart, pid);
275 c = p->current;
276 if (!c) {
277 c = zalloc(sizeof(*c));
278 assert(c != NULL);
279 p->current = c;
280 c->next = p->all;
281 p->all = c;
282 }
283
284 sample = zalloc(sizeof(*sample));
285 assert(sample != NULL);
286 sample->start_time = start;
287 sample->end_time = end;
288 sample->type = type;
289 sample->next = c->samples;
290 sample->cpu = cpu;
291 sample->backtrace = backtrace;
292 c->samples = sample;
293
294 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
295 c->total_time += (end-start);
296 p->total_time += (end-start);
297 }
298
299 if (c->start_time == 0 || c->start_time > start)
300 c->start_time = start;
301 if (p->start_time == 0 || p->start_time > start)
302 p->start_time = start;
303}
304
305#define MAX_CPUS 4096
306
307static u64 cpus_cstate_start_times[MAX_CPUS];
308static int cpus_cstate_state[MAX_CPUS];
309static u64 cpus_pstate_start_times[MAX_CPUS];
310static u64 cpus_pstate_state[MAX_CPUS];
311
312static int process_comm_event(struct perf_tool *tool,
313 union perf_event *event,
314 struct perf_sample *sample __maybe_unused,
315 struct machine *machine __maybe_unused)
316{
317 struct timechart *tchart = container_of(tool, struct timechart, tool);
318 pid_set_comm(tchart, event->comm.tid, event->comm.comm);
319 return 0;
320}
321
322static int process_fork_event(struct perf_tool *tool,
323 union perf_event *event,
324 struct perf_sample *sample __maybe_unused,
325 struct machine *machine __maybe_unused)
326{
327 struct timechart *tchart = container_of(tool, struct timechart, tool);
328 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
329 return 0;
330}
331
332static int process_exit_event(struct perf_tool *tool,
333 union perf_event *event,
334 struct perf_sample *sample __maybe_unused,
335 struct machine *machine __maybe_unused)
336{
337 struct timechart *tchart = container_of(tool, struct timechart, tool);
338 pid_exit(tchart, event->fork.pid, event->fork.time);
339 return 0;
340}
341
342#ifdef SUPPORT_OLD_POWER_EVENTS
343static int use_old_power_events;
344#endif
345
346static void c_state_start(int cpu, u64 timestamp, int state)
347{
348 cpus_cstate_start_times[cpu] = timestamp;
349 cpus_cstate_state[cpu] = state;
350}
351
352static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
353{
354 struct power_event *pwr = zalloc(sizeof(*pwr));
355
356 if (!pwr)
357 return;
358
359 pwr->state = cpus_cstate_state[cpu];
360 pwr->start_time = cpus_cstate_start_times[cpu];
361 pwr->end_time = timestamp;
362 pwr->cpu = cpu;
363 pwr->type = CSTATE;
364 pwr->next = tchart->power_events;
365
366 tchart->power_events = pwr;
367}
368
369static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
370{
371 struct power_event *pwr;
372
373 if (new_freq > 8000000) /* detect invalid data */
374 return;
375
376 pwr = zalloc(sizeof(*pwr));
377 if (!pwr)
378 return;
379
380 pwr->state = cpus_pstate_state[cpu];
381 pwr->start_time = cpus_pstate_start_times[cpu];
382 pwr->end_time = timestamp;
383 pwr->cpu = cpu;
384 pwr->type = PSTATE;
385 pwr->next = tchart->power_events;
386
387 if (!pwr->start_time)
388 pwr->start_time = tchart->first_time;
389
390 tchart->power_events = pwr;
391
392 cpus_pstate_state[cpu] = new_freq;
393 cpus_pstate_start_times[cpu] = timestamp;
394
395 if ((u64)new_freq > tchart->max_freq)
396 tchart->max_freq = new_freq;
397
398 if (new_freq < tchart->min_freq || tchart->min_freq == 0)
399 tchart->min_freq = new_freq;
400
401 if (new_freq == tchart->max_freq - 1000)
402 tchart->turbo_frequency = tchart->max_freq;
403}
404
405static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
406 int waker, int wakee, u8 flags, const char *backtrace)
407{
408 struct per_pid *p;
409 struct wake_event *we = zalloc(sizeof(*we));
410
411 if (!we)
412 return;
413
414 we->time = timestamp;
415 we->waker = waker;
416 we->backtrace = backtrace;
417
418 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
419 we->waker = -1;
420
421 we->wakee = wakee;
422 we->next = tchart->wake_events;
423 tchart->wake_events = we;
424 p = find_create_pid(tchart, we->wakee);
425
426 if (p && p->current && p->current->state == TYPE_NONE) {
427 p->current->state_since = timestamp;
428 p->current->state = TYPE_WAITING;
429 }
430 if (p && p->current && p->current->state == TYPE_BLOCKED) {
431 pid_put_sample(tchart, p->pid, p->current->state, cpu,
432 p->current->state_since, timestamp, NULL);
433 p->current->state_since = timestamp;
434 p->current->state = TYPE_WAITING;
435 }
436}
437
438static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
439 int prev_pid, int next_pid, u64 prev_state,
440 const char *backtrace)
441{
442 struct per_pid *p = NULL, *prev_p;
443
444 prev_p = find_create_pid(tchart, prev_pid);
445
446 p = find_create_pid(tchart, next_pid);
447
448 if (prev_p->current && prev_p->current->state != TYPE_NONE)
449 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
450 prev_p->current->state_since, timestamp,
451 backtrace);
452 if (p && p->current) {
453 if (p->current->state != TYPE_NONE)
454 pid_put_sample(tchart, next_pid, p->current->state, cpu,
455 p->current->state_since, timestamp,
456 backtrace);
457
458 p->current->state_since = timestamp;
459 p->current->state = TYPE_RUNNING;
460 }
461
462 if (prev_p->current) {
463 prev_p->current->state = TYPE_NONE;
464 prev_p->current->state_since = timestamp;
465 if (prev_state & 2)
466 prev_p->current->state = TYPE_BLOCKED;
467 if (prev_state == 0)
468 prev_p->current->state = TYPE_WAITING;
469 }
470}
471
472static const char *cat_backtrace(union perf_event *event,
473 struct perf_sample *sample,
474 struct machine *machine)
475{
476 struct addr_location al;
477 unsigned int i;
478 char *p = NULL;
479 size_t p_len;
480 u8 cpumode = PERF_RECORD_MISC_USER;
481 struct addr_location tal;
482 struct ip_callchain *chain = sample->callchain;
483 FILE *f = open_memstream(&p, &p_len);
484
485 if (!f) {
486 perror("open_memstream error");
487 return NULL;
488 }
489
490 if (!chain)
491 goto exit;
492
493 if (machine__resolve(machine, &al, sample) < 0) {
494 fprintf(stderr, "problem processing %d event, skipping it.\n",
495 event->header.type);
496 goto exit;
497 }
498
499 for (i = 0; i < chain->nr; i++) {
500 u64 ip;
501
502 if (callchain_param.order == ORDER_CALLEE)
503 ip = chain->ips[i];
504 else
505 ip = chain->ips[chain->nr - i - 1];
506
507 if (ip >= PERF_CONTEXT_MAX) {
508 switch (ip) {
509 case PERF_CONTEXT_HV:
510 cpumode = PERF_RECORD_MISC_HYPERVISOR;
511 break;
512 case PERF_CONTEXT_KERNEL:
513 cpumode = PERF_RECORD_MISC_KERNEL;
514 break;
515 case PERF_CONTEXT_USER:
516 cpumode = PERF_RECORD_MISC_USER;
517 break;
518 default:
519 pr_debug("invalid callchain context: "
520 "%"PRId64"\n", (s64) ip);
521
522 /*
523 * It seems the callchain is corrupted.
524 * Discard all.
525 */
526 zfree(&p);
527 goto exit_put;
528 }
529 continue;
530 }
531
532 tal.filtered = 0;
533 thread__find_addr_location(al.thread, cpumode,
534 MAP__FUNCTION, ip, &tal);
535
536 if (tal.sym)
537 fprintf(f, "..... %016" PRIx64 " %s\n", ip,
538 tal.sym->name);
539 else
540 fprintf(f, "..... %016" PRIx64 "\n", ip);
541 }
542exit_put:
543 addr_location__put(&al);
544exit:
545 fclose(f);
546
547 return p;
548}
549
550typedef int (*tracepoint_handler)(struct timechart *tchart,
551 struct perf_evsel *evsel,
552 struct perf_sample *sample,
553 const char *backtrace);
554
555static int process_sample_event(struct perf_tool *tool,
556 union perf_event *event,
557 struct perf_sample *sample,
558 struct perf_evsel *evsel,
559 struct machine *machine)
560{
561 struct timechart *tchart = container_of(tool, struct timechart, tool);
562
563 if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
564 if (!tchart->first_time || tchart->first_time > sample->time)
565 tchart->first_time = sample->time;
566 if (tchart->last_time < sample->time)
567 tchart->last_time = sample->time;
568 }
569
570 if (evsel->handler != NULL) {
571 tracepoint_handler f = evsel->handler;
572 return f(tchart, evsel, sample,
573 cat_backtrace(event, sample, machine));
574 }
575
576 return 0;
577}
578
579static int
580process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
581 struct perf_evsel *evsel,
582 struct perf_sample *sample,
583 const char *backtrace __maybe_unused)
584{
585 u32 state = perf_evsel__intval(evsel, sample, "state");
586 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
587
588 if (state == (u32)PWR_EVENT_EXIT)
589 c_state_end(tchart, cpu_id, sample->time);
590 else
591 c_state_start(cpu_id, sample->time, state);
592 return 0;
593}
594
595static int
596process_sample_cpu_frequency(struct timechart *tchart,
597 struct perf_evsel *evsel,
598 struct perf_sample *sample,
599 const char *backtrace __maybe_unused)
600{
601 u32 state = perf_evsel__intval(evsel, sample, "state");
602 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
603
604 p_state_change(tchart, cpu_id, sample->time, state);
605 return 0;
606}
607
608static int
609process_sample_sched_wakeup(struct timechart *tchart,
610 struct perf_evsel *evsel,
611 struct perf_sample *sample,
612 const char *backtrace)
613{
614 u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
615 int waker = perf_evsel__intval(evsel, sample, "common_pid");
616 int wakee = perf_evsel__intval(evsel, sample, "pid");
617
618 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
619 return 0;
620}
621
622static int
623process_sample_sched_switch(struct timechart *tchart,
624 struct perf_evsel *evsel,
625 struct perf_sample *sample,
626 const char *backtrace)
627{
628 int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
629 int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
630 u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
631
632 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
633 prev_state, backtrace);
634 return 0;
635}
636
637#ifdef SUPPORT_OLD_POWER_EVENTS
638static int
639process_sample_power_start(struct timechart *tchart __maybe_unused,
640 struct perf_evsel *evsel,
641 struct perf_sample *sample,
642 const char *backtrace __maybe_unused)
643{
644 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
645 u64 value = perf_evsel__intval(evsel, sample, "value");
646
647 c_state_start(cpu_id, sample->time, value);
648 return 0;
649}
650
651static int
652process_sample_power_end(struct timechart *tchart,
653 struct perf_evsel *evsel __maybe_unused,
654 struct perf_sample *sample,
655 const char *backtrace __maybe_unused)
656{
657 c_state_end(tchart, sample->cpu, sample->time);
658 return 0;
659}
660
661static int
662process_sample_power_frequency(struct timechart *tchart,
663 struct perf_evsel *evsel,
664 struct perf_sample *sample,
665 const char *backtrace __maybe_unused)
666{
667 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
668 u64 value = perf_evsel__intval(evsel, sample, "value");
669
670 p_state_change(tchart, cpu_id, sample->time, value);
671 return 0;
672}
673#endif /* SUPPORT_OLD_POWER_EVENTS */
674
675/*
676 * After the last sample we need to wrap up the current C/P state
677 * and close out each CPU for these.
678 */
679static void end_sample_processing(struct timechart *tchart)
680{
681 u64 cpu;
682 struct power_event *pwr;
683
684 for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
685 /* C state */
686#if 0
687 pwr = zalloc(sizeof(*pwr));
688 if (!pwr)
689 return;
690
691 pwr->state = cpus_cstate_state[cpu];
692 pwr->start_time = cpus_cstate_start_times[cpu];
693 pwr->end_time = tchart->last_time;
694 pwr->cpu = cpu;
695 pwr->type = CSTATE;
696 pwr->next = tchart->power_events;
697
698 tchart->power_events = pwr;
699#endif
700 /* P state */
701
702 pwr = zalloc(sizeof(*pwr));
703 if (!pwr)
704 return;
705
706 pwr->state = cpus_pstate_state[cpu];
707 pwr->start_time = cpus_pstate_start_times[cpu];
708 pwr->end_time = tchart->last_time;
709 pwr->cpu = cpu;
710 pwr->type = PSTATE;
711 pwr->next = tchart->power_events;
712
713 if (!pwr->start_time)
714 pwr->start_time = tchart->first_time;
715 if (!pwr->state)
716 pwr->state = tchart->min_freq;
717 tchart->power_events = pwr;
718 }
719}
720
721static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
722 u64 start, int fd)
723{
724 struct per_pid *p = find_create_pid(tchart, pid);
725 struct per_pidcomm *c = p->current;
726 struct io_sample *sample;
727 struct io_sample *prev;
728
729 if (!c) {
730 c = zalloc(sizeof(*c));
731 if (!c)
732 return -ENOMEM;
733 p->current = c;
734 c->next = p->all;
735 p->all = c;
736 }
737
738 prev = c->io_samples;
739
740 if (prev && prev->start_time && !prev->end_time) {
741 pr_warning("Skip invalid start event: "
742 "previous event already started!\n");
743
744 /* remove previous event that has been started,
745 * we are not sure we will ever get an end for it */
746 c->io_samples = prev->next;
747 free(prev);
748 return 0;
749 }
750
751 sample = zalloc(sizeof(*sample));
752 if (!sample)
753 return -ENOMEM;
754 sample->start_time = start;
755 sample->type = type;
756 sample->fd = fd;
757 sample->next = c->io_samples;
758 c->io_samples = sample;
759
760 if (c->start_time == 0 || c->start_time > start)
761 c->start_time = start;
762
763 return 0;
764}
765
766static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
767 u64 end, long ret)
768{
769 struct per_pid *p = find_create_pid(tchart, pid);
770 struct per_pidcomm *c = p->current;
771 struct io_sample *sample, *prev;
772
773 if (!c) {
774 pr_warning("Invalid pidcomm!\n");
775 return -1;
776 }
777
778 sample = c->io_samples;
779
780 if (!sample) /* skip partially captured events */
781 return 0;
782
783 if (sample->end_time) {
784 pr_warning("Skip invalid end event: "
785 "previous event already ended!\n");
786 return 0;
787 }
788
789 if (sample->type != type) {
790 pr_warning("Skip invalid end event: invalid event type!\n");
791 return 0;
792 }
793
794 sample->end_time = end;
795 prev = sample->next;
796
797 /* we want to be able to see small and fast transfers, so make them
798 * at least min_time long, but don't overlap them */
799 if (sample->end_time - sample->start_time < tchart->min_time)
800 sample->end_time = sample->start_time + tchart->min_time;
801 if (prev && sample->start_time < prev->end_time) {
802 if (prev->err) /* try to make errors more visible */
803 sample->start_time = prev->end_time;
804 else
805 prev->end_time = sample->start_time;
806 }
807
808 if (ret < 0) {
809 sample->err = ret;
810 } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
811 type == IOTYPE_TX || type == IOTYPE_RX) {
812
813 if ((u64)ret > c->max_bytes)
814 c->max_bytes = ret;
815
816 c->total_bytes += ret;
817 p->total_bytes += ret;
818 sample->bytes = ret;
819 }
820
821 /* merge two requests to make svg smaller and render-friendly */
822 if (prev &&
823 prev->type == sample->type &&
824 prev->err == sample->err &&
825 prev->fd == sample->fd &&
826 prev->end_time + tchart->merge_dist >= sample->start_time) {
827
828 sample->bytes += prev->bytes;
829 sample->merges += prev->merges + 1;
830
831 sample->start_time = prev->start_time;
832 sample->next = prev->next;
833 free(prev);
834
835 if (!sample->err && sample->bytes > c->max_bytes)
836 c->max_bytes = sample->bytes;
837 }
838
839 tchart->io_events++;
840
841 return 0;
842}
843
844static int
845process_enter_read(struct timechart *tchart,
846 struct perf_evsel *evsel,
847 struct perf_sample *sample)
848{
849 long fd = perf_evsel__intval(evsel, sample, "fd");
850 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
851 sample->time, fd);
852}
853
854static int
855process_exit_read(struct timechart *tchart,
856 struct perf_evsel *evsel,
857 struct perf_sample *sample)
858{
859 long ret = perf_evsel__intval(evsel, sample, "ret");
860 return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
861 sample->time, ret);
862}
863
864static int
865process_enter_write(struct timechart *tchart,
866 struct perf_evsel *evsel,
867 struct perf_sample *sample)
868{
869 long fd = perf_evsel__intval(evsel, sample, "fd");
870 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
871 sample->time, fd);
872}
873
874static int
875process_exit_write(struct timechart *tchart,
876 struct perf_evsel *evsel,
877 struct perf_sample *sample)
878{
879 long ret = perf_evsel__intval(evsel, sample, "ret");
880 return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
881 sample->time, ret);
882}
883
884static int
885process_enter_sync(struct timechart *tchart,
886 struct perf_evsel *evsel,
887 struct perf_sample *sample)
888{
889 long fd = perf_evsel__intval(evsel, sample, "fd");
890 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
891 sample->time, fd);
892}
893
894static int
895process_exit_sync(struct timechart *tchart,
896 struct perf_evsel *evsel,
897 struct perf_sample *sample)
898{
899 long ret = perf_evsel__intval(evsel, sample, "ret");
900 return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
901 sample->time, ret);
902}
903
904static int
905process_enter_tx(struct timechart *tchart,
906 struct perf_evsel *evsel,
907 struct perf_sample *sample)
908{
909 long fd = perf_evsel__intval(evsel, sample, "fd");
910 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
911 sample->time, fd);
912}
913
914static int
915process_exit_tx(struct timechart *tchart,
916 struct perf_evsel *evsel,
917 struct perf_sample *sample)
918{
919 long ret = perf_evsel__intval(evsel, sample, "ret");
920 return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
921 sample->time, ret);
922}
923
924static int
925process_enter_rx(struct timechart *tchart,
926 struct perf_evsel *evsel,
927 struct perf_sample *sample)
928{
929 long fd = perf_evsel__intval(evsel, sample, "fd");
930 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
931 sample->time, fd);
932}
933
934static int
935process_exit_rx(struct timechart *tchart,
936 struct perf_evsel *evsel,
937 struct perf_sample *sample)
938{
939 long ret = perf_evsel__intval(evsel, sample, "ret");
940 return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
941 sample->time, ret);
942}
943
944static int
945process_enter_poll(struct timechart *tchart,
946 struct perf_evsel *evsel,
947 struct perf_sample *sample)
948{
949 long fd = perf_evsel__intval(evsel, sample, "fd");
950 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
951 sample->time, fd);
952}
953
954static int
955process_exit_poll(struct timechart *tchart,
956 struct perf_evsel *evsel,
957 struct perf_sample *sample)
958{
959 long ret = perf_evsel__intval(evsel, sample, "ret");
960 return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
961 sample->time, ret);
962}
963
964/*
965 * Sort the pid datastructure
966 */
967static void sort_pids(struct timechart *tchart)
968{
969 struct per_pid *new_list, *p, *cursor, *prev;
970 /* sort by ppid first, then by pid, lowest to highest */
971
972 new_list = NULL;
973
974 while (tchart->all_data) {
975 p = tchart->all_data;
976 tchart->all_data = p->next;
977 p->next = NULL;
978
979 if (new_list == NULL) {
980 new_list = p;
981 p->next = NULL;
982 continue;
983 }
984 prev = NULL;
985 cursor = new_list;
986 while (cursor) {
987 if (cursor->ppid > p->ppid ||
988 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
989 /* must insert before */
990 if (prev) {
991 p->next = prev->next;
992 prev->next = p;
993 cursor = NULL;
994 continue;
995 } else {
996 p->next = new_list;
997 new_list = p;
998 cursor = NULL;
999 continue;
1000 }
1001 }
1002
1003 prev = cursor;
1004 cursor = cursor->next;
1005 if (!cursor)
1006 prev->next = p;
1007 }
1008 }
1009 tchart->all_data = new_list;
1010}
1011
1012
1013static void draw_c_p_states(struct timechart *tchart)
1014{
1015 struct power_event *pwr;
1016 pwr = tchart->power_events;
1017
1018 /*
1019 * two pass drawing so that the P state bars are on top of the C state blocks
1020 */
1021 while (pwr) {
1022 if (pwr->type == CSTATE)
1023 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1024 pwr = pwr->next;
1025 }
1026
1027 pwr = tchart->power_events;
1028 while (pwr) {
1029 if (pwr->type == PSTATE) {
1030 if (!pwr->state)
1031 pwr->state = tchart->min_freq;
1032 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1033 }
1034 pwr = pwr->next;
1035 }
1036}
1037
1038static void draw_wakeups(struct timechart *tchart)
1039{
1040 struct wake_event *we;
1041 struct per_pid *p;
1042 struct per_pidcomm *c;
1043
1044 we = tchart->wake_events;
1045 while (we) {
1046 int from = 0, to = 0;
1047 char *task_from = NULL, *task_to = NULL;
1048
1049 /* locate the column of the waker and wakee */
1050 p = tchart->all_data;
1051 while (p) {
1052 if (p->pid == we->waker || p->pid == we->wakee) {
1053 c = p->all;
1054 while (c) {
1055 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1056 if (p->pid == we->waker && !from) {
1057 from = c->Y;
1058 task_from = strdup(c->comm);
1059 }
1060 if (p->pid == we->wakee && !to) {
1061 to = c->Y;
1062 task_to = strdup(c->comm);
1063 }
1064 }
1065 c = c->next;
1066 }
1067 c = p->all;
1068 while (c) {
1069 if (p->pid == we->waker && !from) {
1070 from = c->Y;
1071 task_from = strdup(c->comm);
1072 }
1073 if (p->pid == we->wakee && !to) {
1074 to = c->Y;
1075 task_to = strdup(c->comm);
1076 }
1077 c = c->next;
1078 }
1079 }
1080 p = p->next;
1081 }
1082
1083 if (!task_from) {
1084 task_from = malloc(40);
1085 sprintf(task_from, "[%i]", we->waker);
1086 }
1087 if (!task_to) {
1088 task_to = malloc(40);
1089 sprintf(task_to, "[%i]", we->wakee);
1090 }
1091
1092 if (we->waker == -1)
1093 svg_interrupt(we->time, to, we->backtrace);
1094 else if (from && to && abs(from - to) == 1)
1095 svg_wakeline(we->time, from, to, we->backtrace);
1096 else
1097 svg_partial_wakeline(we->time, from, task_from, to,
1098 task_to, we->backtrace);
1099 we = we->next;
1100
1101 free(task_from);
1102 free(task_to);
1103 }
1104}
1105
1106static void draw_cpu_usage(struct timechart *tchart)
1107{
1108 struct per_pid *p;
1109 struct per_pidcomm *c;
1110 struct cpu_sample *sample;
1111 p = tchart->all_data;
1112 while (p) {
1113 c = p->all;
1114 while (c) {
1115 sample = c->samples;
1116 while (sample) {
1117 if (sample->type == TYPE_RUNNING) {
1118 svg_process(sample->cpu,
1119 sample->start_time,
1120 sample->end_time,
1121 p->pid,
1122 c->comm,
1123 sample->backtrace);
1124 }
1125
1126 sample = sample->next;
1127 }
1128 c = c->next;
1129 }
1130 p = p->next;
1131 }
1132}
1133
1134static void draw_io_bars(struct timechart *tchart)
1135{
1136 const char *suf;
1137 double bytes;
1138 char comm[256];
1139 struct per_pid *p;
1140 struct per_pidcomm *c;
1141 struct io_sample *sample;
1142 int Y = 1;
1143
1144 p = tchart->all_data;
1145 while (p) {
1146 c = p->all;
1147 while (c) {
1148 if (!c->display) {
1149 c->Y = 0;
1150 c = c->next;
1151 continue;
1152 }
1153
1154 svg_box(Y, c->start_time, c->end_time, "process3");
1155 sample = c->io_samples;
1156 for (sample = c->io_samples; sample; sample = sample->next) {
1157 double h = (double)sample->bytes / c->max_bytes;
1158
1159 if (tchart->skip_eagain &&
1160 sample->err == -EAGAIN)
1161 continue;
1162
1163 if (sample->err)
1164 h = 1;
1165
1166 if (sample->type == IOTYPE_SYNC)
1167 svg_fbox(Y,
1168 sample->start_time,
1169 sample->end_time,
1170 1,
1171 sample->err ? "error" : "sync",
1172 sample->fd,
1173 sample->err,
1174 sample->merges);
1175 else if (sample->type == IOTYPE_POLL)
1176 svg_fbox(Y,
1177 sample->start_time,
1178 sample->end_time,
1179 1,
1180 sample->err ? "error" : "poll",
1181 sample->fd,
1182 sample->err,
1183 sample->merges);
1184 else if (sample->type == IOTYPE_READ)
1185 svg_ubox(Y,
1186 sample->start_time,
1187 sample->end_time,
1188 h,
1189 sample->err ? "error" : "disk",
1190 sample->fd,
1191 sample->err,
1192 sample->merges);
1193 else if (sample->type == IOTYPE_WRITE)
1194 svg_lbox(Y,
1195 sample->start_time,
1196 sample->end_time,
1197 h,
1198 sample->err ? "error" : "disk",
1199 sample->fd,
1200 sample->err,
1201 sample->merges);
1202 else if (sample->type == IOTYPE_RX)
1203 svg_ubox(Y,
1204 sample->start_time,
1205 sample->end_time,
1206 h,
1207 sample->err ? "error" : "net",
1208 sample->fd,
1209 sample->err,
1210 sample->merges);
1211 else if (sample->type == IOTYPE_TX)
1212 svg_lbox(Y,
1213 sample->start_time,
1214 sample->end_time,
1215 h,
1216 sample->err ? "error" : "net",
1217 sample->fd,
1218 sample->err,
1219 sample->merges);
1220 }
1221
1222 suf = "";
1223 bytes = c->total_bytes;
1224 if (bytes > 1024) {
1225 bytes = bytes / 1024;
1226 suf = "K";
1227 }
1228 if (bytes > 1024) {
1229 bytes = bytes / 1024;
1230 suf = "M";
1231 }
1232 if (bytes > 1024) {
1233 bytes = bytes / 1024;
1234 suf = "G";
1235 }
1236
1237
1238 sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1239 svg_text(Y, c->start_time, comm);
1240
1241 c->Y = Y;
1242 Y++;
1243 c = c->next;
1244 }
1245 p = p->next;
1246 }
1247}
1248
1249static void draw_process_bars(struct timechart *tchart)
1250{
1251 struct per_pid *p;
1252 struct per_pidcomm *c;
1253 struct cpu_sample *sample;
1254 int Y = 0;
1255
1256 Y = 2 * tchart->numcpus + 2;
1257
1258 p = tchart->all_data;
1259 while (p) {
1260 c = p->all;
1261 while (c) {
1262 if (!c->display) {
1263 c->Y = 0;
1264 c = c->next;
1265 continue;
1266 }
1267
1268 svg_box(Y, c->start_time, c->end_time, "process");
1269 sample = c->samples;
1270 while (sample) {
1271 if (sample->type == TYPE_RUNNING)
1272 svg_running(Y, sample->cpu,
1273 sample->start_time,
1274 sample->end_time,
1275 sample->backtrace);
1276 if (sample->type == TYPE_BLOCKED)
1277 svg_blocked(Y, sample->cpu,
1278 sample->start_time,
1279 sample->end_time,
1280 sample->backtrace);
1281 if (sample->type == TYPE_WAITING)
1282 svg_waiting(Y, sample->cpu,
1283 sample->start_time,
1284 sample->end_time,
1285 sample->backtrace);
1286 sample = sample->next;
1287 }
1288
1289 if (c->comm) {
1290 char comm[256];
1291 if (c->total_time > 5000000000) /* 5 seconds */
1292 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1293 else
1294 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1295
1296 svg_text(Y, c->start_time, comm);
1297 }
1298 c->Y = Y;
1299 Y++;
1300 c = c->next;
1301 }
1302 p = p->next;
1303 }
1304}
1305
1306static void add_process_filter(const char *string)
1307{
1308 int pid = strtoull(string, NULL, 10);
1309 struct process_filter *filt = malloc(sizeof(*filt));
1310
1311 if (!filt)
1312 return;
1313
1314 filt->name = strdup(string);
1315 filt->pid = pid;
1316 filt->next = process_filter;
1317
1318 process_filter = filt;
1319}
1320
1321static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1322{
1323 struct process_filter *filt;
1324 if (!process_filter)
1325 return 1;
1326
1327 filt = process_filter;
1328 while (filt) {
1329 if (filt->pid && p->pid == filt->pid)
1330 return 1;
1331 if (strcmp(filt->name, c->comm) == 0)
1332 return 1;
1333 filt = filt->next;
1334 }
1335 return 0;
1336}
1337
1338static int determine_display_tasks_filtered(struct timechart *tchart)
1339{
1340 struct per_pid *p;
1341 struct per_pidcomm *c;
1342 int count = 0;
1343
1344 p = tchart->all_data;
1345 while (p) {
1346 p->display = 0;
1347 if (p->start_time == 1)
1348 p->start_time = tchart->first_time;
1349
1350 /* no exit marker, task kept running to the end */
1351 if (p->end_time == 0)
1352 p->end_time = tchart->last_time;
1353
1354 c = p->all;
1355
1356 while (c) {
1357 c->display = 0;
1358
1359 if (c->start_time == 1)
1360 c->start_time = tchart->first_time;
1361
1362 if (passes_filter(p, c)) {
1363 c->display = 1;
1364 p->display = 1;
1365 count++;
1366 }
1367
1368 if (c->end_time == 0)
1369 c->end_time = tchart->last_time;
1370
1371 c = c->next;
1372 }
1373 p = p->next;
1374 }
1375 return count;
1376}
1377
1378static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1379{
1380 struct per_pid *p;
1381 struct per_pidcomm *c;
1382 int count = 0;
1383
1384 p = tchart->all_data;
1385 while (p) {
1386 p->display = 0;
1387 if (p->start_time == 1)
1388 p->start_time = tchart->first_time;
1389
1390 /* no exit marker, task kept running to the end */
1391 if (p->end_time == 0)
1392 p->end_time = tchart->last_time;
1393 if (p->total_time >= threshold)
1394 p->display = 1;
1395
1396 c = p->all;
1397
1398 while (c) {
1399 c->display = 0;
1400
1401 if (c->start_time == 1)
1402 c->start_time = tchart->first_time;
1403
1404 if (c->total_time >= threshold) {
1405 c->display = 1;
1406 count++;
1407 }
1408
1409 if (c->end_time == 0)
1410 c->end_time = tchart->last_time;
1411
1412 c = c->next;
1413 }
1414 p = p->next;
1415 }
1416 return count;
1417}
1418
1419static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1420{
1421 struct per_pid *p;
1422 struct per_pidcomm *c;
1423 int count = 0;
1424
1425 p = timechart->all_data;
1426 while (p) {
1427 /* no exit marker, task kept running to the end */
1428 if (p->end_time == 0)
1429 p->end_time = timechart->last_time;
1430
1431 c = p->all;
1432
1433 while (c) {
1434 c->display = 0;
1435
1436 if (c->total_bytes >= threshold) {
1437 c->display = 1;
1438 count++;
1439 }
1440
1441 if (c->end_time == 0)
1442 c->end_time = timechart->last_time;
1443
1444 c = c->next;
1445 }
1446 p = p->next;
1447 }
1448 return count;
1449}
1450
1451#define BYTES_THRESH (1 * 1024 * 1024)
1452#define TIME_THRESH 10000000
1453
1454static void write_svg_file(struct timechart *tchart, const char *filename)
1455{
1456 u64 i;
1457 int count;
1458 int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1459
1460 if (tchart->power_only)
1461 tchart->proc_num = 0;
1462
1463 /* We'd like to show at least proc_num tasks;
1464 * be less picky if we have fewer */
1465 do {
1466 if (process_filter)
1467 count = determine_display_tasks_filtered(tchart);
1468 else if (tchart->io_events)
1469 count = determine_display_io_tasks(tchart, thresh);
1470 else
1471 count = determine_display_tasks(tchart, thresh);
1472 thresh /= 10;
1473 } while (!process_filter && thresh && count < tchart->proc_num);
1474
1475 if (!tchart->proc_num)
1476 count = 0;
1477
1478 if (tchart->io_events) {
1479 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1480
1481 svg_time_grid(0.5);
1482 svg_io_legenda();
1483
1484 draw_io_bars(tchart);
1485 } else {
1486 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1487
1488 svg_time_grid(0);
1489
1490 svg_legenda();
1491
1492 for (i = 0; i < tchart->numcpus; i++)
1493 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1494
1495 draw_cpu_usage(tchart);
1496 if (tchart->proc_num)
1497 draw_process_bars(tchart);
1498 if (!tchart->tasks_only)
1499 draw_c_p_states(tchart);
1500 if (tchart->proc_num)
1501 draw_wakeups(tchart);
1502 }
1503
1504 svg_close();
1505}
1506
1507static int process_header(struct perf_file_section *section __maybe_unused,
1508 struct perf_header *ph,
1509 int feat,
1510 int fd __maybe_unused,
1511 void *data)
1512{
1513 struct timechart *tchart = data;
1514
1515 switch (feat) {
1516 case HEADER_NRCPUS:
1517 tchart->numcpus = ph->env.nr_cpus_avail;
1518 break;
1519
1520 case HEADER_CPU_TOPOLOGY:
1521 if (!tchart->topology)
1522 break;
1523
1524 if (svg_build_topology_map(ph->env.sibling_cores,
1525 ph->env.nr_sibling_cores,
1526 ph->env.sibling_threads,
1527 ph->env.nr_sibling_threads))
1528 fprintf(stderr, "problem building topology\n");
1529 break;
1530
1531 default:
1532 break;
1533 }
1534
1535 return 0;
1536}
1537
1538static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1539{
1540 const struct perf_evsel_str_handler power_tracepoints[] = {
1541 { "power:cpu_idle", process_sample_cpu_idle },
1542 { "power:cpu_frequency", process_sample_cpu_frequency },
1543 { "sched:sched_wakeup", process_sample_sched_wakeup },
1544 { "sched:sched_switch", process_sample_sched_switch },
1545#ifdef SUPPORT_OLD_POWER_EVENTS
1546 { "power:power_start", process_sample_power_start },
1547 { "power:power_end", process_sample_power_end },
1548 { "power:power_frequency", process_sample_power_frequency },
1549#endif
1550
1551 { "syscalls:sys_enter_read", process_enter_read },
1552 { "syscalls:sys_enter_pread64", process_enter_read },
1553 { "syscalls:sys_enter_readv", process_enter_read },
1554 { "syscalls:sys_enter_preadv", process_enter_read },
1555 { "syscalls:sys_enter_write", process_enter_write },
1556 { "syscalls:sys_enter_pwrite64", process_enter_write },
1557 { "syscalls:sys_enter_writev", process_enter_write },
1558 { "syscalls:sys_enter_pwritev", process_enter_write },
1559 { "syscalls:sys_enter_sync", process_enter_sync },
1560 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1561 { "syscalls:sys_enter_fsync", process_enter_sync },
1562 { "syscalls:sys_enter_msync", process_enter_sync },
1563 { "syscalls:sys_enter_recvfrom", process_enter_rx },
1564 { "syscalls:sys_enter_recvmmsg", process_enter_rx },
1565 { "syscalls:sys_enter_recvmsg", process_enter_rx },
1566 { "syscalls:sys_enter_sendto", process_enter_tx },
1567 { "syscalls:sys_enter_sendmsg", process_enter_tx },
1568 { "syscalls:sys_enter_sendmmsg", process_enter_tx },
1569 { "syscalls:sys_enter_epoll_pwait", process_enter_poll },
1570 { "syscalls:sys_enter_epoll_wait", process_enter_poll },
1571 { "syscalls:sys_enter_poll", process_enter_poll },
1572 { "syscalls:sys_enter_ppoll", process_enter_poll },
1573 { "syscalls:sys_enter_pselect6", process_enter_poll },
1574 { "syscalls:sys_enter_select", process_enter_poll },
1575
1576 { "syscalls:sys_exit_read", process_exit_read },
1577 { "syscalls:sys_exit_pread64", process_exit_read },
1578 { "syscalls:sys_exit_readv", process_exit_read },
1579 { "syscalls:sys_exit_preadv", process_exit_read },
1580 { "syscalls:sys_exit_write", process_exit_write },
1581 { "syscalls:sys_exit_pwrite64", process_exit_write },
1582 { "syscalls:sys_exit_writev", process_exit_write },
1583 { "syscalls:sys_exit_pwritev", process_exit_write },
1584 { "syscalls:sys_exit_sync", process_exit_sync },
1585 { "syscalls:sys_exit_sync_file_range", process_exit_sync },
1586 { "syscalls:sys_exit_fsync", process_exit_sync },
1587 { "syscalls:sys_exit_msync", process_exit_sync },
1588 { "syscalls:sys_exit_recvfrom", process_exit_rx },
1589 { "syscalls:sys_exit_recvmmsg", process_exit_rx },
1590 { "syscalls:sys_exit_recvmsg", process_exit_rx },
1591 { "syscalls:sys_exit_sendto", process_exit_tx },
1592 { "syscalls:sys_exit_sendmsg", process_exit_tx },
1593 { "syscalls:sys_exit_sendmmsg", process_exit_tx },
1594 { "syscalls:sys_exit_epoll_pwait", process_exit_poll },
1595 { "syscalls:sys_exit_epoll_wait", process_exit_poll },
1596 { "syscalls:sys_exit_poll", process_exit_poll },
1597 { "syscalls:sys_exit_ppoll", process_exit_poll },
1598 { "syscalls:sys_exit_pselect6", process_exit_poll },
1599 { "syscalls:sys_exit_select", process_exit_poll },
1600 };
1601 struct perf_data_file file = {
1602 .path = input_name,
1603 .mode = PERF_DATA_MODE_READ,
1604 .force = tchart->force,
1605 };
1606
1607 struct perf_session *session = perf_session__new(&file, false,
1608 &tchart->tool);
1609 int ret = -EINVAL;
1610
1611 if (session == NULL)
1612 return -1;
1613
1614 symbol__init(&session->header.env);
1615
1616 (void)perf_header__process_sections(&session->header,
1617 perf_data_file__fd(session->file),
1618 tchart,
1619 process_header);
1620
1621 if (!perf_session__has_traces(session, "timechart record"))
1622 goto out_delete;
1623
1624 if (perf_session__set_tracepoints_handlers(session,
1625 power_tracepoints)) {
1626 pr_err("Initializing session tracepoint handlers failed\n");
1627 goto out_delete;
1628 }
1629
1630 ret = perf_session__process_events(session);
1631 if (ret)
1632 goto out_delete;
1633
1634 end_sample_processing(tchart);
1635
1636 sort_pids(tchart);
1637
1638 write_svg_file(tchart, output_name);
1639
1640 pr_info("Written %2.1f seconds of trace to %s.\n",
1641 (tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1642out_delete:
1643 perf_session__delete(session);
1644 return ret;
1645}
1646
1647static int timechart__io_record(int argc, const char **argv)
1648{
1649 unsigned int rec_argc, i;
1650 const char **rec_argv;
1651 const char **p;
1652 char *filter = NULL;
1653
1654 const char * const common_args[] = {
1655 "record", "-a", "-R", "-c", "1",
1656 };
1657 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1658
1659 const char * const disk_events[] = {
1660 "syscalls:sys_enter_read",
1661 "syscalls:sys_enter_pread64",
1662 "syscalls:sys_enter_readv",
1663 "syscalls:sys_enter_preadv",
1664 "syscalls:sys_enter_write",
1665 "syscalls:sys_enter_pwrite64",
1666 "syscalls:sys_enter_writev",
1667 "syscalls:sys_enter_pwritev",
1668 "syscalls:sys_enter_sync",
1669 "syscalls:sys_enter_sync_file_range",
1670 "syscalls:sys_enter_fsync",
1671 "syscalls:sys_enter_msync",
1672
1673 "syscalls:sys_exit_read",
1674 "syscalls:sys_exit_pread64",
1675 "syscalls:sys_exit_readv",
1676 "syscalls:sys_exit_preadv",
1677 "syscalls:sys_exit_write",
1678 "syscalls:sys_exit_pwrite64",
1679 "syscalls:sys_exit_writev",
1680 "syscalls:sys_exit_pwritev",
1681 "syscalls:sys_exit_sync",
1682 "syscalls:sys_exit_sync_file_range",
1683 "syscalls:sys_exit_fsync",
1684 "syscalls:sys_exit_msync",
1685 };
1686 unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1687
1688 const char * const net_events[] = {
1689 "syscalls:sys_enter_recvfrom",
1690 "syscalls:sys_enter_recvmmsg",
1691 "syscalls:sys_enter_recvmsg",
1692 "syscalls:sys_enter_sendto",
1693 "syscalls:sys_enter_sendmsg",
1694 "syscalls:sys_enter_sendmmsg",
1695
1696 "syscalls:sys_exit_recvfrom",
1697 "syscalls:sys_exit_recvmmsg",
1698 "syscalls:sys_exit_recvmsg",
1699 "syscalls:sys_exit_sendto",
1700 "syscalls:sys_exit_sendmsg",
1701 "syscalls:sys_exit_sendmmsg",
1702 };
1703 unsigned int net_events_nr = ARRAY_SIZE(net_events);
1704
1705 const char * const poll_events[] = {
1706 "syscalls:sys_enter_epoll_pwait",
1707 "syscalls:sys_enter_epoll_wait",
1708 "syscalls:sys_enter_poll",
1709 "syscalls:sys_enter_ppoll",
1710 "syscalls:sys_enter_pselect6",
1711 "syscalls:sys_enter_select",
1712
1713 "syscalls:sys_exit_epoll_pwait",
1714 "syscalls:sys_exit_epoll_wait",
1715 "syscalls:sys_exit_poll",
1716 "syscalls:sys_exit_ppoll",
1717 "syscalls:sys_exit_pselect6",
1718 "syscalls:sys_exit_select",
1719 };
1720 unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1721
1722 rec_argc = common_args_nr +
1723 disk_events_nr * 4 +
1724 net_events_nr * 4 +
1725 poll_events_nr * 4 +
1726 argc;
1727 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1728
1729 if (rec_argv == NULL)
1730 return -ENOMEM;
1731
1732 if (asprintf(&filter, "common_pid != %d", getpid()) < 0)
1733 return -ENOMEM;
1734
1735 p = rec_argv;
1736 for (i = 0; i < common_args_nr; i++)
1737 *p++ = strdup(common_args[i]);
1738
1739 for (i = 0; i < disk_events_nr; i++) {
1740 if (!is_valid_tracepoint(disk_events[i])) {
1741 rec_argc -= 4;
1742 continue;
1743 }
1744
1745 *p++ = "-e";
1746 *p++ = strdup(disk_events[i]);
1747 *p++ = "--filter";
1748 *p++ = filter;
1749 }
1750 for (i = 0; i < net_events_nr; i++) {
1751 if (!is_valid_tracepoint(net_events[i])) {
1752 rec_argc -= 4;
1753 continue;
1754 }
1755
1756 *p++ = "-e";
1757 *p++ = strdup(net_events[i]);
1758 *p++ = "--filter";
1759 *p++ = filter;
1760 }
1761 for (i = 0; i < poll_events_nr; i++) {
1762 if (!is_valid_tracepoint(poll_events[i])) {
1763 rec_argc -= 4;
1764 continue;
1765 }
1766
1767 *p++ = "-e";
1768 *p++ = strdup(poll_events[i]);
1769 *p++ = "--filter";
1770 *p++ = filter;
1771 }
1772
1773 for (i = 0; i < (unsigned int)argc; i++)
1774 *p++ = argv[i];
1775
1776 return cmd_record(rec_argc, rec_argv, NULL);
1777}
1778
1779
1780static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1781{
1782 unsigned int rec_argc, i, j;
1783 const char **rec_argv;
1784 const char **p;
1785 unsigned int record_elems;
1786
1787 const char * const common_args[] = {
1788 "record", "-a", "-R", "-c", "1",
1789 };
1790 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1791
1792 const char * const backtrace_args[] = {
1793 "-g",
1794 };
1795 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1796
1797 const char * const power_args[] = {
1798 "-e", "power:cpu_frequency",
1799 "-e", "power:cpu_idle",
1800 };
1801 unsigned int power_args_nr = ARRAY_SIZE(power_args);
1802
1803 const char * const old_power_args[] = {
1804#ifdef SUPPORT_OLD_POWER_EVENTS
1805 "-e", "power:power_start",
1806 "-e", "power:power_end",
1807 "-e", "power:power_frequency",
1808#endif
1809 };
1810 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1811
1812 const char * const tasks_args[] = {
1813 "-e", "sched:sched_wakeup",
1814 "-e", "sched:sched_switch",
1815 };
1816 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1817
1818#ifdef SUPPORT_OLD_POWER_EVENTS
1819 if (!is_valid_tracepoint("power:cpu_idle") &&
1820 is_valid_tracepoint("power:power_start")) {
1821 use_old_power_events = 1;
1822 power_args_nr = 0;
1823 } else {
1824 old_power_args_nr = 0;
1825 }
1826#endif
1827
1828 if (tchart->power_only)
1829 tasks_args_nr = 0;
1830
1831 if (tchart->tasks_only) {
1832 power_args_nr = 0;
1833 old_power_args_nr = 0;
1834 }
1835
1836 if (!tchart->with_backtrace)
1837 backtrace_args_no = 0;
1838
1839 record_elems = common_args_nr + tasks_args_nr +
1840 power_args_nr + old_power_args_nr + backtrace_args_no;
1841
1842 rec_argc = record_elems + argc;
1843 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1844
1845 if (rec_argv == NULL)
1846 return -ENOMEM;
1847
1848 p = rec_argv;
1849 for (i = 0; i < common_args_nr; i++)
1850 *p++ = strdup(common_args[i]);
1851
1852 for (i = 0; i < backtrace_args_no; i++)
1853 *p++ = strdup(backtrace_args[i]);
1854
1855 for (i = 0; i < tasks_args_nr; i++)
1856 *p++ = strdup(tasks_args[i]);
1857
1858 for (i = 0; i < power_args_nr; i++)
1859 *p++ = strdup(power_args[i]);
1860
1861 for (i = 0; i < old_power_args_nr; i++)
1862 *p++ = strdup(old_power_args[i]);
1863
1864 for (j = 0; j < (unsigned int)argc; j++)
1865 *p++ = argv[j];
1866
1867 return cmd_record(rec_argc, rec_argv, NULL);
1868}
1869
1870static int
1871parse_process(const struct option *opt __maybe_unused, const char *arg,
1872 int __maybe_unused unset)
1873{
1874 if (arg)
1875 add_process_filter(arg);
1876 return 0;
1877}
1878
1879static int
1880parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1881 int __maybe_unused unset)
1882{
1883 unsigned long duration = strtoul(arg, NULL, 0);
1884
1885 if (svg_highlight || svg_highlight_name)
1886 return -1;
1887
1888 if (duration)
1889 svg_highlight = duration;
1890 else
1891 svg_highlight_name = strdup(arg);
1892
1893 return 0;
1894}
1895
1896static int
1897parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1898{
1899 char unit = 'n';
1900 u64 *value = opt->value;
1901
1902 if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1903 switch (unit) {
1904 case 'm':
1905 *value *= NSEC_PER_MSEC;
1906 break;
1907 case 'u':
1908 *value *= NSEC_PER_USEC;
1909 break;
1910 case 'n':
1911 break;
1912 default:
1913 return -1;
1914 }
1915 }
1916
1917 return 0;
1918}
1919
1920int cmd_timechart(int argc, const char **argv,
1921 const char *prefix __maybe_unused)
1922{
1923 struct timechart tchart = {
1924 .tool = {
1925 .comm = process_comm_event,
1926 .fork = process_fork_event,
1927 .exit = process_exit_event,
1928 .sample = process_sample_event,
1929 .ordered_events = true,
1930 },
1931 .proc_num = 15,
1932 .min_time = NSEC_PER_MSEC,
1933 .merge_dist = 1000,
1934 };
1935 const char *output_name = "output.svg";
1936 const struct option timechart_options[] = {
1937 OPT_STRING('i', "input", &input_name, "file", "input file name"),
1938 OPT_STRING('o', "output", &output_name, "file", "output file name"),
1939 OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1940 OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1941 "highlight tasks. Pass duration in ns or process name.",
1942 parse_highlight),
1943 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1944 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1945 "output processes data only"),
1946 OPT_CALLBACK('p', "process", NULL, "process",
1947 "process selector. Pass a pid or process name.",
1948 parse_process),
1949 OPT_CALLBACK(0, "symfs", NULL, "directory",
1950 "Look for files with symbols relative to this directory",
1951 symbol__config_symfs),
1952 OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1953 "min. number of tasks to print"),
1954 OPT_BOOLEAN('t', "topology", &tchart.topology,
1955 "sort CPUs according to topology"),
1956 OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1957 "skip EAGAIN errors"),
1958 OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1959 "all IO faster than min-time will visually appear longer",
1960 parse_time),
1961 OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1962 "merge events that are merge-dist us apart",
1963 parse_time),
1964 OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1965 OPT_END()
1966 };
1967 const char * const timechart_subcommands[] = { "record", NULL };
1968 const char *timechart_usage[] = {
1969 "perf timechart [<options>] {record}",
1970 NULL
1971 };
1972
1973 const struct option timechart_record_options[] = {
1974 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1975 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1976 "output processes data only"),
1977 OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1978 "record only IO data"),
1979 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1980 OPT_END()
1981 };
1982 const char * const timechart_record_usage[] = {
1983 "perf timechart record [<options>]",
1984 NULL
1985 };
1986 argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1987 timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1988
1989 if (tchart.power_only && tchart.tasks_only) {
1990 pr_err("-P and -T options cannot be used at the same time.\n");
1991 return -1;
1992 }
1993
1994 if (argc && !strncmp(argv[0], "rec", 3)) {
1995 argc = parse_options(argc, argv, timechart_record_options,
1996 timechart_record_usage,
1997 PARSE_OPT_STOP_AT_NON_OPTION);
1998
1999 if (tchart.power_only && tchart.tasks_only) {
2000 pr_err("-P and -T options cannot be used at the same time.\n");
2001 return -1;
2002 }
2003
2004 if (tchart.io_only)
2005 return timechart__io_record(argc, argv);
2006 else
2007 return timechart__record(&tchart, argc, argv);
2008 } else if (argc)
2009 usage_with_options(timechart_usage, timechart_options);
2010
2011 setup_pager();
2012
2013 return __cmd_timechart(&tchart, output_name);
2014}