Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include "builtin.h"
3#include "perf.h"
4
5#include "util/util.h"
6#include "util/evlist.h"
7#include "util/cache.h"
8#include "util/evsel.h"
9#include "util/symbol.h"
10#include "util/thread.h"
11#include "util/header.h"
12#include "util/session.h"
13#include "util/tool.h"
14#include "util/cloexec.h"
15#include "util/thread_map.h"
16#include "util/color.h"
17#include "util/stat.h"
18#include "util/callchain.h"
19#include "util/time-utils.h"
20
21#include <subcmd/parse-options.h>
22#include "util/trace-event.h"
23
24#include "util/debug.h"
25
26#include <linux/kernel.h>
27#include <linux/log2.h>
28#include <sys/prctl.h>
29#include <sys/resource.h>
30#include <inttypes.h>
31
32#include <errno.h>
33#include <semaphore.h>
34#include <pthread.h>
35#include <math.h>
36#include <api/fs/fs.h>
37#include <linux/time64.h>
38
39#include "sane_ctype.h"
40
41#define PR_SET_NAME 15 /* Set process name */
42#define MAX_CPUS 4096
43#define COMM_LEN 20
44#define SYM_LEN 129
45#define MAX_PID 1024000
46
47struct sched_atom;
48
49struct task_desc {
50 unsigned long nr;
51 unsigned long pid;
52 char comm[COMM_LEN];
53
54 unsigned long nr_events;
55 unsigned long curr_event;
56 struct sched_atom **atoms;
57
58 pthread_t thread;
59 sem_t sleep_sem;
60
61 sem_t ready_for_work;
62 sem_t work_done_sem;
63
64 u64 cpu_usage;
65};
66
67enum sched_event_type {
68 SCHED_EVENT_RUN,
69 SCHED_EVENT_SLEEP,
70 SCHED_EVENT_WAKEUP,
71 SCHED_EVENT_MIGRATION,
72};
73
74struct sched_atom {
75 enum sched_event_type type;
76 int specific_wait;
77 u64 timestamp;
78 u64 duration;
79 unsigned long nr;
80 sem_t *wait_sem;
81 struct task_desc *wakee;
82};
83
84#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
85
86/* task state bitmask, copied from include/linux/sched.h */
87#define TASK_RUNNING 0
88#define TASK_INTERRUPTIBLE 1
89#define TASK_UNINTERRUPTIBLE 2
90#define __TASK_STOPPED 4
91#define __TASK_TRACED 8
92/* in tsk->exit_state */
93#define EXIT_DEAD 16
94#define EXIT_ZOMBIE 32
95#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
96/* in tsk->state again */
97#define TASK_DEAD 64
98#define TASK_WAKEKILL 128
99#define TASK_WAKING 256
100#define TASK_PARKED 512
101
102enum thread_state {
103 THREAD_SLEEPING = 0,
104 THREAD_WAIT_CPU,
105 THREAD_SCHED_IN,
106 THREAD_IGNORE
107};
108
109struct work_atom {
110 struct list_head list;
111 enum thread_state state;
112 u64 sched_out_time;
113 u64 wake_up_time;
114 u64 sched_in_time;
115 u64 runtime;
116};
117
118struct work_atoms {
119 struct list_head work_list;
120 struct thread *thread;
121 struct rb_node node;
122 u64 max_lat;
123 u64 max_lat_at;
124 u64 total_lat;
125 u64 nb_atoms;
126 u64 total_runtime;
127 int num_merged;
128};
129
130typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
131
132struct perf_sched;
133
134struct trace_sched_handler {
135 int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
136 struct perf_sample *sample, struct machine *machine);
137
138 int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
139 struct perf_sample *sample, struct machine *machine);
140
141 int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
142 struct perf_sample *sample, struct machine *machine);
143
144 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
145 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
146 struct machine *machine);
147
148 int (*migrate_task_event)(struct perf_sched *sched,
149 struct perf_evsel *evsel,
150 struct perf_sample *sample,
151 struct machine *machine);
152};
153
154#define COLOR_PIDS PERF_COLOR_BLUE
155#define COLOR_CPUS PERF_COLOR_BG_RED
156
157struct perf_sched_map {
158 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
159 int *comp_cpus;
160 bool comp;
161 struct thread_map *color_pids;
162 const char *color_pids_str;
163 struct cpu_map *color_cpus;
164 const char *color_cpus_str;
165 struct cpu_map *cpus;
166 const char *cpus_str;
167};
168
169struct perf_sched {
170 struct perf_tool tool;
171 const char *sort_order;
172 unsigned long nr_tasks;
173 struct task_desc **pid_to_task;
174 struct task_desc **tasks;
175 const struct trace_sched_handler *tp_handler;
176 pthread_mutex_t start_work_mutex;
177 pthread_mutex_t work_done_wait_mutex;
178 int profile_cpu;
179/*
180 * Track the current task - that way we can know whether there's any
181 * weird events, such as a task being switched away that is not current.
182 */
183 int max_cpu;
184 u32 curr_pid[MAX_CPUS];
185 struct thread *curr_thread[MAX_CPUS];
186 char next_shortname1;
187 char next_shortname2;
188 unsigned int replay_repeat;
189 unsigned long nr_run_events;
190 unsigned long nr_sleep_events;
191 unsigned long nr_wakeup_events;
192 unsigned long nr_sleep_corrections;
193 unsigned long nr_run_events_optimized;
194 unsigned long targetless_wakeups;
195 unsigned long multitarget_wakeups;
196 unsigned long nr_runs;
197 unsigned long nr_timestamps;
198 unsigned long nr_unordered_timestamps;
199 unsigned long nr_context_switch_bugs;
200 unsigned long nr_events;
201 unsigned long nr_lost_chunks;
202 unsigned long nr_lost_events;
203 u64 run_measurement_overhead;
204 u64 sleep_measurement_overhead;
205 u64 start_time;
206 u64 cpu_usage;
207 u64 runavg_cpu_usage;
208 u64 parent_cpu_usage;
209 u64 runavg_parent_cpu_usage;
210 u64 sum_runtime;
211 u64 sum_fluct;
212 u64 run_avg;
213 u64 all_runtime;
214 u64 all_count;
215 u64 cpu_last_switched[MAX_CPUS];
216 struct rb_root atom_root, sorted_atom_root, merged_atom_root;
217 struct list_head sort_list, cmp_pid;
218 bool force;
219 bool skip_merge;
220 struct perf_sched_map map;
221
222 /* options for timehist command */
223 bool summary;
224 bool summary_only;
225 bool idle_hist;
226 bool show_callchain;
227 unsigned int max_stack;
228 bool show_cpu_visual;
229 bool show_wakeups;
230 bool show_next;
231 bool show_migrations;
232 bool show_state;
233 u64 skipped_samples;
234 const char *time_str;
235 struct perf_time_interval ptime;
236 struct perf_time_interval hist_time;
237};
238
239/* per thread run time data */
240struct thread_runtime {
241 u64 last_time; /* time of previous sched in/out event */
242 u64 dt_run; /* run time */
243 u64 dt_sleep; /* time between CPU access by sleep (off cpu) */
244 u64 dt_iowait; /* time between CPU access by iowait (off cpu) */
245 u64 dt_preempt; /* time between CPU access by preempt (off cpu) */
246 u64 dt_delay; /* time between wakeup and sched-in */
247 u64 ready_to_run; /* time of wakeup */
248
249 struct stats run_stats;
250 u64 total_run_time;
251 u64 total_sleep_time;
252 u64 total_iowait_time;
253 u64 total_preempt_time;
254 u64 total_delay_time;
255
256 int last_state;
257
258 char shortname[3];
259 bool comm_changed;
260
261 u64 migrations;
262};
263
264/* per event run time data */
265struct evsel_runtime {
266 u64 *last_time; /* time this event was last seen per cpu */
267 u32 ncpu; /* highest cpu slot allocated */
268};
269
270/* per cpu idle time data */
271struct idle_thread_runtime {
272 struct thread_runtime tr;
273 struct thread *last_thread;
274 struct rb_root sorted_root;
275 struct callchain_root callchain;
276 struct callchain_cursor cursor;
277};
278
279/* track idle times per cpu */
280static struct thread **idle_threads;
281static int idle_max_cpu;
282static char idle_comm[] = "<idle>";
283
284static u64 get_nsecs(void)
285{
286 struct timespec ts;
287
288 clock_gettime(CLOCK_MONOTONIC, &ts);
289
290 return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
291}
292
293static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
294{
295 u64 T0 = get_nsecs(), T1;
296
297 do {
298 T1 = get_nsecs();
299 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
300}
301
302static void sleep_nsecs(u64 nsecs)
303{
304 struct timespec ts;
305
306 ts.tv_nsec = nsecs % 999999999;
307 ts.tv_sec = nsecs / 999999999;
308
309 nanosleep(&ts, NULL);
310}
311
312static void calibrate_run_measurement_overhead(struct perf_sched *sched)
313{
314 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
315 int i;
316
317 for (i = 0; i < 10; i++) {
318 T0 = get_nsecs();
319 burn_nsecs(sched, 0);
320 T1 = get_nsecs();
321 delta = T1-T0;
322 min_delta = min(min_delta, delta);
323 }
324 sched->run_measurement_overhead = min_delta;
325
326 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
327}
328
329static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
330{
331 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
332 int i;
333
334 for (i = 0; i < 10; i++) {
335 T0 = get_nsecs();
336 sleep_nsecs(10000);
337 T1 = get_nsecs();
338 delta = T1-T0;
339 min_delta = min(min_delta, delta);
340 }
341 min_delta -= 10000;
342 sched->sleep_measurement_overhead = min_delta;
343
344 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
345}
346
347static struct sched_atom *
348get_new_event(struct task_desc *task, u64 timestamp)
349{
350 struct sched_atom *event = zalloc(sizeof(*event));
351 unsigned long idx = task->nr_events;
352 size_t size;
353
354 event->timestamp = timestamp;
355 event->nr = idx;
356
357 task->nr_events++;
358 size = sizeof(struct sched_atom *) * task->nr_events;
359 task->atoms = realloc(task->atoms, size);
360 BUG_ON(!task->atoms);
361
362 task->atoms[idx] = event;
363
364 return event;
365}
366
367static struct sched_atom *last_event(struct task_desc *task)
368{
369 if (!task->nr_events)
370 return NULL;
371
372 return task->atoms[task->nr_events - 1];
373}
374
375static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
376 u64 timestamp, u64 duration)
377{
378 struct sched_atom *event, *curr_event = last_event(task);
379
380 /*
381 * optimize an existing RUN event by merging this one
382 * to it:
383 */
384 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
385 sched->nr_run_events_optimized++;
386 curr_event->duration += duration;
387 return;
388 }
389
390 event = get_new_event(task, timestamp);
391
392 event->type = SCHED_EVENT_RUN;
393 event->duration = duration;
394
395 sched->nr_run_events++;
396}
397
398static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
399 u64 timestamp, struct task_desc *wakee)
400{
401 struct sched_atom *event, *wakee_event;
402
403 event = get_new_event(task, timestamp);
404 event->type = SCHED_EVENT_WAKEUP;
405 event->wakee = wakee;
406
407 wakee_event = last_event(wakee);
408 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
409 sched->targetless_wakeups++;
410 return;
411 }
412 if (wakee_event->wait_sem) {
413 sched->multitarget_wakeups++;
414 return;
415 }
416
417 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
418 sem_init(wakee_event->wait_sem, 0, 0);
419 wakee_event->specific_wait = 1;
420 event->wait_sem = wakee_event->wait_sem;
421
422 sched->nr_wakeup_events++;
423}
424
425static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
426 u64 timestamp, u64 task_state __maybe_unused)
427{
428 struct sched_atom *event = get_new_event(task, timestamp);
429
430 event->type = SCHED_EVENT_SLEEP;
431
432 sched->nr_sleep_events++;
433}
434
435static struct task_desc *register_pid(struct perf_sched *sched,
436 unsigned long pid, const char *comm)
437{
438 struct task_desc *task;
439 static int pid_max;
440
441 if (sched->pid_to_task == NULL) {
442 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
443 pid_max = MAX_PID;
444 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
445 }
446 if (pid >= (unsigned long)pid_max) {
447 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
448 sizeof(struct task_desc *))) == NULL);
449 while (pid >= (unsigned long)pid_max)
450 sched->pid_to_task[pid_max++] = NULL;
451 }
452
453 task = sched->pid_to_task[pid];
454
455 if (task)
456 return task;
457
458 task = zalloc(sizeof(*task));
459 task->pid = pid;
460 task->nr = sched->nr_tasks;
461 strcpy(task->comm, comm);
462 /*
463 * every task starts in sleeping state - this gets ignored
464 * if there's no wakeup pointing to this sleep state:
465 */
466 add_sched_event_sleep(sched, task, 0, 0);
467
468 sched->pid_to_task[pid] = task;
469 sched->nr_tasks++;
470 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
471 BUG_ON(!sched->tasks);
472 sched->tasks[task->nr] = task;
473
474 if (verbose > 0)
475 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
476
477 return task;
478}
479
480
481static void print_task_traces(struct perf_sched *sched)
482{
483 struct task_desc *task;
484 unsigned long i;
485
486 for (i = 0; i < sched->nr_tasks; i++) {
487 task = sched->tasks[i];
488 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
489 task->nr, task->comm, task->pid, task->nr_events);
490 }
491}
492
493static void add_cross_task_wakeups(struct perf_sched *sched)
494{
495 struct task_desc *task1, *task2;
496 unsigned long i, j;
497
498 for (i = 0; i < sched->nr_tasks; i++) {
499 task1 = sched->tasks[i];
500 j = i + 1;
501 if (j == sched->nr_tasks)
502 j = 0;
503 task2 = sched->tasks[j];
504 add_sched_event_wakeup(sched, task1, 0, task2);
505 }
506}
507
508static void perf_sched__process_event(struct perf_sched *sched,
509 struct sched_atom *atom)
510{
511 int ret = 0;
512
513 switch (atom->type) {
514 case SCHED_EVENT_RUN:
515 burn_nsecs(sched, atom->duration);
516 break;
517 case SCHED_EVENT_SLEEP:
518 if (atom->wait_sem)
519 ret = sem_wait(atom->wait_sem);
520 BUG_ON(ret);
521 break;
522 case SCHED_EVENT_WAKEUP:
523 if (atom->wait_sem)
524 ret = sem_post(atom->wait_sem);
525 BUG_ON(ret);
526 break;
527 case SCHED_EVENT_MIGRATION:
528 break;
529 default:
530 BUG_ON(1);
531 }
532}
533
534static u64 get_cpu_usage_nsec_parent(void)
535{
536 struct rusage ru;
537 u64 sum;
538 int err;
539
540 err = getrusage(RUSAGE_SELF, &ru);
541 BUG_ON(err);
542
543 sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
544 sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
545
546 return sum;
547}
548
549static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
550{
551 struct perf_event_attr attr;
552 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
553 int fd;
554 struct rlimit limit;
555 bool need_privilege = false;
556
557 memset(&attr, 0, sizeof(attr));
558
559 attr.type = PERF_TYPE_SOFTWARE;
560 attr.config = PERF_COUNT_SW_TASK_CLOCK;
561
562force_again:
563 fd = sys_perf_event_open(&attr, 0, -1, -1,
564 perf_event_open_cloexec_flag());
565
566 if (fd < 0) {
567 if (errno == EMFILE) {
568 if (sched->force) {
569 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
570 limit.rlim_cur += sched->nr_tasks - cur_task;
571 if (limit.rlim_cur > limit.rlim_max) {
572 limit.rlim_max = limit.rlim_cur;
573 need_privilege = true;
574 }
575 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
576 if (need_privilege && errno == EPERM)
577 strcpy(info, "Need privilege\n");
578 } else
579 goto force_again;
580 } else
581 strcpy(info, "Have a try with -f option\n");
582 }
583 pr_err("Error: sys_perf_event_open() syscall returned "
584 "with %d (%s)\n%s", fd,
585 str_error_r(errno, sbuf, sizeof(sbuf)), info);
586 exit(EXIT_FAILURE);
587 }
588 return fd;
589}
590
591static u64 get_cpu_usage_nsec_self(int fd)
592{
593 u64 runtime;
594 int ret;
595
596 ret = read(fd, &runtime, sizeof(runtime));
597 BUG_ON(ret != sizeof(runtime));
598
599 return runtime;
600}
601
602struct sched_thread_parms {
603 struct task_desc *task;
604 struct perf_sched *sched;
605 int fd;
606};
607
608static void *thread_func(void *ctx)
609{
610 struct sched_thread_parms *parms = ctx;
611 struct task_desc *this_task = parms->task;
612 struct perf_sched *sched = parms->sched;
613 u64 cpu_usage_0, cpu_usage_1;
614 unsigned long i, ret;
615 char comm2[22];
616 int fd = parms->fd;
617
618 zfree(&parms);
619
620 sprintf(comm2, ":%s", this_task->comm);
621 prctl(PR_SET_NAME, comm2);
622 if (fd < 0)
623 return NULL;
624again:
625 ret = sem_post(&this_task->ready_for_work);
626 BUG_ON(ret);
627 ret = pthread_mutex_lock(&sched->start_work_mutex);
628 BUG_ON(ret);
629 ret = pthread_mutex_unlock(&sched->start_work_mutex);
630 BUG_ON(ret);
631
632 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
633
634 for (i = 0; i < this_task->nr_events; i++) {
635 this_task->curr_event = i;
636 perf_sched__process_event(sched, this_task->atoms[i]);
637 }
638
639 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
640 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
641 ret = sem_post(&this_task->work_done_sem);
642 BUG_ON(ret);
643
644 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
645 BUG_ON(ret);
646 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
647 BUG_ON(ret);
648
649 goto again;
650}
651
652static void create_tasks(struct perf_sched *sched)
653{
654 struct task_desc *task;
655 pthread_attr_t attr;
656 unsigned long i;
657 int err;
658
659 err = pthread_attr_init(&attr);
660 BUG_ON(err);
661 err = pthread_attr_setstacksize(&attr,
662 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
663 BUG_ON(err);
664 err = pthread_mutex_lock(&sched->start_work_mutex);
665 BUG_ON(err);
666 err = pthread_mutex_lock(&sched->work_done_wait_mutex);
667 BUG_ON(err);
668 for (i = 0; i < sched->nr_tasks; i++) {
669 struct sched_thread_parms *parms = malloc(sizeof(*parms));
670 BUG_ON(parms == NULL);
671 parms->task = task = sched->tasks[i];
672 parms->sched = sched;
673 parms->fd = self_open_counters(sched, i);
674 sem_init(&task->sleep_sem, 0, 0);
675 sem_init(&task->ready_for_work, 0, 0);
676 sem_init(&task->work_done_sem, 0, 0);
677 task->curr_event = 0;
678 err = pthread_create(&task->thread, &attr, thread_func, parms);
679 BUG_ON(err);
680 }
681}
682
683static void wait_for_tasks(struct perf_sched *sched)
684{
685 u64 cpu_usage_0, cpu_usage_1;
686 struct task_desc *task;
687 unsigned long i, ret;
688
689 sched->start_time = get_nsecs();
690 sched->cpu_usage = 0;
691 pthread_mutex_unlock(&sched->work_done_wait_mutex);
692
693 for (i = 0; i < sched->nr_tasks; i++) {
694 task = sched->tasks[i];
695 ret = sem_wait(&task->ready_for_work);
696 BUG_ON(ret);
697 sem_init(&task->ready_for_work, 0, 0);
698 }
699 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
700 BUG_ON(ret);
701
702 cpu_usage_0 = get_cpu_usage_nsec_parent();
703
704 pthread_mutex_unlock(&sched->start_work_mutex);
705
706 for (i = 0; i < sched->nr_tasks; i++) {
707 task = sched->tasks[i];
708 ret = sem_wait(&task->work_done_sem);
709 BUG_ON(ret);
710 sem_init(&task->work_done_sem, 0, 0);
711 sched->cpu_usage += task->cpu_usage;
712 task->cpu_usage = 0;
713 }
714
715 cpu_usage_1 = get_cpu_usage_nsec_parent();
716 if (!sched->runavg_cpu_usage)
717 sched->runavg_cpu_usage = sched->cpu_usage;
718 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
719
720 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
721 if (!sched->runavg_parent_cpu_usage)
722 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
723 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
724 sched->parent_cpu_usage)/sched->replay_repeat;
725
726 ret = pthread_mutex_lock(&sched->start_work_mutex);
727 BUG_ON(ret);
728
729 for (i = 0; i < sched->nr_tasks; i++) {
730 task = sched->tasks[i];
731 sem_init(&task->sleep_sem, 0, 0);
732 task->curr_event = 0;
733 }
734}
735
736static void run_one_test(struct perf_sched *sched)
737{
738 u64 T0, T1, delta, avg_delta, fluct;
739
740 T0 = get_nsecs();
741 wait_for_tasks(sched);
742 T1 = get_nsecs();
743
744 delta = T1 - T0;
745 sched->sum_runtime += delta;
746 sched->nr_runs++;
747
748 avg_delta = sched->sum_runtime / sched->nr_runs;
749 if (delta < avg_delta)
750 fluct = avg_delta - delta;
751 else
752 fluct = delta - avg_delta;
753 sched->sum_fluct += fluct;
754 if (!sched->run_avg)
755 sched->run_avg = delta;
756 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
757
758 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
759
760 printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
761
762 printf("cpu: %0.2f / %0.2f",
763 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
764
765#if 0
766 /*
767 * rusage statistics done by the parent, these are less
768 * accurate than the sched->sum_exec_runtime based statistics:
769 */
770 printf(" [%0.2f / %0.2f]",
771 (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
772 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
773#endif
774
775 printf("\n");
776
777 if (sched->nr_sleep_corrections)
778 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
779 sched->nr_sleep_corrections = 0;
780}
781
782static void test_calibrations(struct perf_sched *sched)
783{
784 u64 T0, T1;
785
786 T0 = get_nsecs();
787 burn_nsecs(sched, NSEC_PER_MSEC);
788 T1 = get_nsecs();
789
790 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
791
792 T0 = get_nsecs();
793 sleep_nsecs(NSEC_PER_MSEC);
794 T1 = get_nsecs();
795
796 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
797}
798
799static int
800replay_wakeup_event(struct perf_sched *sched,
801 struct perf_evsel *evsel, struct perf_sample *sample,
802 struct machine *machine __maybe_unused)
803{
804 const char *comm = perf_evsel__strval(evsel, sample, "comm");
805 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
806 struct task_desc *waker, *wakee;
807
808 if (verbose > 0) {
809 printf("sched_wakeup event %p\n", evsel);
810
811 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
812 }
813
814 waker = register_pid(sched, sample->tid, "<unknown>");
815 wakee = register_pid(sched, pid, comm);
816
817 add_sched_event_wakeup(sched, waker, sample->time, wakee);
818 return 0;
819}
820
821static int replay_switch_event(struct perf_sched *sched,
822 struct perf_evsel *evsel,
823 struct perf_sample *sample,
824 struct machine *machine __maybe_unused)
825{
826 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"),
827 *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
828 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
829 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
830 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
831 struct task_desc *prev, __maybe_unused *next;
832 u64 timestamp0, timestamp = sample->time;
833 int cpu = sample->cpu;
834 s64 delta;
835
836 if (verbose > 0)
837 printf("sched_switch event %p\n", evsel);
838
839 if (cpu >= MAX_CPUS || cpu < 0)
840 return 0;
841
842 timestamp0 = sched->cpu_last_switched[cpu];
843 if (timestamp0)
844 delta = timestamp - timestamp0;
845 else
846 delta = 0;
847
848 if (delta < 0) {
849 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
850 return -1;
851 }
852
853 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
854 prev_comm, prev_pid, next_comm, next_pid, delta);
855
856 prev = register_pid(sched, prev_pid, prev_comm);
857 next = register_pid(sched, next_pid, next_comm);
858
859 sched->cpu_last_switched[cpu] = timestamp;
860
861 add_sched_event_run(sched, prev, timestamp, delta);
862 add_sched_event_sleep(sched, prev, timestamp, prev_state);
863
864 return 0;
865}
866
867static int replay_fork_event(struct perf_sched *sched,
868 union perf_event *event,
869 struct machine *machine)
870{
871 struct thread *child, *parent;
872
873 child = machine__findnew_thread(machine, event->fork.pid,
874 event->fork.tid);
875 parent = machine__findnew_thread(machine, event->fork.ppid,
876 event->fork.ptid);
877
878 if (child == NULL || parent == NULL) {
879 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
880 child, parent);
881 goto out_put;
882 }
883
884 if (verbose > 0) {
885 printf("fork event\n");
886 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
887 printf("... child: %s/%d\n", thread__comm_str(child), child->tid);
888 }
889
890 register_pid(sched, parent->tid, thread__comm_str(parent));
891 register_pid(sched, child->tid, thread__comm_str(child));
892out_put:
893 thread__put(child);
894 thread__put(parent);
895 return 0;
896}
897
898struct sort_dimension {
899 const char *name;
900 sort_fn_t cmp;
901 struct list_head list;
902};
903
904/*
905 * handle runtime stats saved per thread
906 */
907static struct thread_runtime *thread__init_runtime(struct thread *thread)
908{
909 struct thread_runtime *r;
910
911 r = zalloc(sizeof(struct thread_runtime));
912 if (!r)
913 return NULL;
914
915 init_stats(&r->run_stats);
916 thread__set_priv(thread, r);
917
918 return r;
919}
920
921static struct thread_runtime *thread__get_runtime(struct thread *thread)
922{
923 struct thread_runtime *tr;
924
925 tr = thread__priv(thread);
926 if (tr == NULL) {
927 tr = thread__init_runtime(thread);
928 if (tr == NULL)
929 pr_debug("Failed to malloc memory for runtime data.\n");
930 }
931
932 return tr;
933}
934
935static int
936thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
937{
938 struct sort_dimension *sort;
939 int ret = 0;
940
941 BUG_ON(list_empty(list));
942
943 list_for_each_entry(sort, list, list) {
944 ret = sort->cmp(l, r);
945 if (ret)
946 return ret;
947 }
948
949 return ret;
950}
951
952static struct work_atoms *
953thread_atoms_search(struct rb_root *root, struct thread *thread,
954 struct list_head *sort_list)
955{
956 struct rb_node *node = root->rb_node;
957 struct work_atoms key = { .thread = thread };
958
959 while (node) {
960 struct work_atoms *atoms;
961 int cmp;
962
963 atoms = container_of(node, struct work_atoms, node);
964
965 cmp = thread_lat_cmp(sort_list, &key, atoms);
966 if (cmp > 0)
967 node = node->rb_left;
968 else if (cmp < 0)
969 node = node->rb_right;
970 else {
971 BUG_ON(thread != atoms->thread);
972 return atoms;
973 }
974 }
975 return NULL;
976}
977
978static void
979__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
980 struct list_head *sort_list)
981{
982 struct rb_node **new = &(root->rb_node), *parent = NULL;
983
984 while (*new) {
985 struct work_atoms *this;
986 int cmp;
987
988 this = container_of(*new, struct work_atoms, node);
989 parent = *new;
990
991 cmp = thread_lat_cmp(sort_list, data, this);
992
993 if (cmp > 0)
994 new = &((*new)->rb_left);
995 else
996 new = &((*new)->rb_right);
997 }
998
999 rb_link_node(&data->node, parent, new);
1000 rb_insert_color(&data->node, root);
1001}
1002
1003static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1004{
1005 struct work_atoms *atoms = zalloc(sizeof(*atoms));
1006 if (!atoms) {
1007 pr_err("No memory at %s\n", __func__);
1008 return -1;
1009 }
1010
1011 atoms->thread = thread__get(thread);
1012 INIT_LIST_HEAD(&atoms->work_list);
1013 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1014 return 0;
1015}
1016
1017static char sched_out_state(u64 prev_state)
1018{
1019 const char *str = TASK_STATE_TO_CHAR_STR;
1020
1021 return str[prev_state];
1022}
1023
1024static int
1025add_sched_out_event(struct work_atoms *atoms,
1026 char run_state,
1027 u64 timestamp)
1028{
1029 struct work_atom *atom = zalloc(sizeof(*atom));
1030 if (!atom) {
1031 pr_err("Non memory at %s", __func__);
1032 return -1;
1033 }
1034
1035 atom->sched_out_time = timestamp;
1036
1037 if (run_state == 'R') {
1038 atom->state = THREAD_WAIT_CPU;
1039 atom->wake_up_time = atom->sched_out_time;
1040 }
1041
1042 list_add_tail(&atom->list, &atoms->work_list);
1043 return 0;
1044}
1045
1046static void
1047add_runtime_event(struct work_atoms *atoms, u64 delta,
1048 u64 timestamp __maybe_unused)
1049{
1050 struct work_atom *atom;
1051
1052 BUG_ON(list_empty(&atoms->work_list));
1053
1054 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1055
1056 atom->runtime += delta;
1057 atoms->total_runtime += delta;
1058}
1059
1060static void
1061add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1062{
1063 struct work_atom *atom;
1064 u64 delta;
1065
1066 if (list_empty(&atoms->work_list))
1067 return;
1068
1069 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1070
1071 if (atom->state != THREAD_WAIT_CPU)
1072 return;
1073
1074 if (timestamp < atom->wake_up_time) {
1075 atom->state = THREAD_IGNORE;
1076 return;
1077 }
1078
1079 atom->state = THREAD_SCHED_IN;
1080 atom->sched_in_time = timestamp;
1081
1082 delta = atom->sched_in_time - atom->wake_up_time;
1083 atoms->total_lat += delta;
1084 if (delta > atoms->max_lat) {
1085 atoms->max_lat = delta;
1086 atoms->max_lat_at = timestamp;
1087 }
1088 atoms->nb_atoms++;
1089}
1090
1091static int latency_switch_event(struct perf_sched *sched,
1092 struct perf_evsel *evsel,
1093 struct perf_sample *sample,
1094 struct machine *machine)
1095{
1096 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1097 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1098 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
1099 struct work_atoms *out_events, *in_events;
1100 struct thread *sched_out, *sched_in;
1101 u64 timestamp0, timestamp = sample->time;
1102 int cpu = sample->cpu, err = -1;
1103 s64 delta;
1104
1105 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1106
1107 timestamp0 = sched->cpu_last_switched[cpu];
1108 sched->cpu_last_switched[cpu] = timestamp;
1109 if (timestamp0)
1110 delta = timestamp - timestamp0;
1111 else
1112 delta = 0;
1113
1114 if (delta < 0) {
1115 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1116 return -1;
1117 }
1118
1119 sched_out = machine__findnew_thread(machine, -1, prev_pid);
1120 sched_in = machine__findnew_thread(machine, -1, next_pid);
1121 if (sched_out == NULL || sched_in == NULL)
1122 goto out_put;
1123
1124 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1125 if (!out_events) {
1126 if (thread_atoms_insert(sched, sched_out))
1127 goto out_put;
1128 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1129 if (!out_events) {
1130 pr_err("out-event: Internal tree error");
1131 goto out_put;
1132 }
1133 }
1134 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1135 return -1;
1136
1137 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1138 if (!in_events) {
1139 if (thread_atoms_insert(sched, sched_in))
1140 goto out_put;
1141 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1142 if (!in_events) {
1143 pr_err("in-event: Internal tree error");
1144 goto out_put;
1145 }
1146 /*
1147 * Take came in we have not heard about yet,
1148 * add in an initial atom in runnable state:
1149 */
1150 if (add_sched_out_event(in_events, 'R', timestamp))
1151 goto out_put;
1152 }
1153 add_sched_in_event(in_events, timestamp);
1154 err = 0;
1155out_put:
1156 thread__put(sched_out);
1157 thread__put(sched_in);
1158 return err;
1159}
1160
1161static int latency_runtime_event(struct perf_sched *sched,
1162 struct perf_evsel *evsel,
1163 struct perf_sample *sample,
1164 struct machine *machine)
1165{
1166 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1167 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime");
1168 struct thread *thread = machine__findnew_thread(machine, -1, pid);
1169 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1170 u64 timestamp = sample->time;
1171 int cpu = sample->cpu, err = -1;
1172
1173 if (thread == NULL)
1174 return -1;
1175
1176 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1177 if (!atoms) {
1178 if (thread_atoms_insert(sched, thread))
1179 goto out_put;
1180 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1181 if (!atoms) {
1182 pr_err("in-event: Internal tree error");
1183 goto out_put;
1184 }
1185 if (add_sched_out_event(atoms, 'R', timestamp))
1186 goto out_put;
1187 }
1188
1189 add_runtime_event(atoms, runtime, timestamp);
1190 err = 0;
1191out_put:
1192 thread__put(thread);
1193 return err;
1194}
1195
1196static int latency_wakeup_event(struct perf_sched *sched,
1197 struct perf_evsel *evsel,
1198 struct perf_sample *sample,
1199 struct machine *machine)
1200{
1201 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1202 struct work_atoms *atoms;
1203 struct work_atom *atom;
1204 struct thread *wakee;
1205 u64 timestamp = sample->time;
1206 int err = -1;
1207
1208 wakee = machine__findnew_thread(machine, -1, pid);
1209 if (wakee == NULL)
1210 return -1;
1211 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1212 if (!atoms) {
1213 if (thread_atoms_insert(sched, wakee))
1214 goto out_put;
1215 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1216 if (!atoms) {
1217 pr_err("wakeup-event: Internal tree error");
1218 goto out_put;
1219 }
1220 if (add_sched_out_event(atoms, 'S', timestamp))
1221 goto out_put;
1222 }
1223
1224 BUG_ON(list_empty(&atoms->work_list));
1225
1226 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1227
1228 /*
1229 * As we do not guarantee the wakeup event happens when
1230 * task is out of run queue, also may happen when task is
1231 * on run queue and wakeup only change ->state to TASK_RUNNING,
1232 * then we should not set the ->wake_up_time when wake up a
1233 * task which is on run queue.
1234 *
1235 * You WILL be missing events if you've recorded only
1236 * one CPU, or are only looking at only one, so don't
1237 * skip in this case.
1238 */
1239 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1240 goto out_ok;
1241
1242 sched->nr_timestamps++;
1243 if (atom->sched_out_time > timestamp) {
1244 sched->nr_unordered_timestamps++;
1245 goto out_ok;
1246 }
1247
1248 atom->state = THREAD_WAIT_CPU;
1249 atom->wake_up_time = timestamp;
1250out_ok:
1251 err = 0;
1252out_put:
1253 thread__put(wakee);
1254 return err;
1255}
1256
1257static int latency_migrate_task_event(struct perf_sched *sched,
1258 struct perf_evsel *evsel,
1259 struct perf_sample *sample,
1260 struct machine *machine)
1261{
1262 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1263 u64 timestamp = sample->time;
1264 struct work_atoms *atoms;
1265 struct work_atom *atom;
1266 struct thread *migrant;
1267 int err = -1;
1268
1269 /*
1270 * Only need to worry about migration when profiling one CPU.
1271 */
1272 if (sched->profile_cpu == -1)
1273 return 0;
1274
1275 migrant = machine__findnew_thread(machine, -1, pid);
1276 if (migrant == NULL)
1277 return -1;
1278 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1279 if (!atoms) {
1280 if (thread_atoms_insert(sched, migrant))
1281 goto out_put;
1282 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1283 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1284 if (!atoms) {
1285 pr_err("migration-event: Internal tree error");
1286 goto out_put;
1287 }
1288 if (add_sched_out_event(atoms, 'R', timestamp))
1289 goto out_put;
1290 }
1291
1292 BUG_ON(list_empty(&atoms->work_list));
1293
1294 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1295 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1296
1297 sched->nr_timestamps++;
1298
1299 if (atom->sched_out_time > timestamp)
1300 sched->nr_unordered_timestamps++;
1301 err = 0;
1302out_put:
1303 thread__put(migrant);
1304 return err;
1305}
1306
1307static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1308{
1309 int i;
1310 int ret;
1311 u64 avg;
1312 char max_lat_at[32];
1313
1314 if (!work_list->nb_atoms)
1315 return;
1316 /*
1317 * Ignore idle threads:
1318 */
1319 if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1320 return;
1321
1322 sched->all_runtime += work_list->total_runtime;
1323 sched->all_count += work_list->nb_atoms;
1324
1325 if (work_list->num_merged > 1)
1326 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1327 else
1328 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1329
1330 for (i = 0; i < 24 - ret; i++)
1331 printf(" ");
1332
1333 avg = work_list->total_lat / work_list->nb_atoms;
1334 timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
1335
1336 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1337 (double)work_list->total_runtime / NSEC_PER_MSEC,
1338 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1339 (double)work_list->max_lat / NSEC_PER_MSEC,
1340 max_lat_at);
1341}
1342
1343static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1344{
1345 if (l->thread == r->thread)
1346 return 0;
1347 if (l->thread->tid < r->thread->tid)
1348 return -1;
1349 if (l->thread->tid > r->thread->tid)
1350 return 1;
1351 return (int)(l->thread - r->thread);
1352}
1353
1354static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1355{
1356 u64 avgl, avgr;
1357
1358 if (!l->nb_atoms)
1359 return -1;
1360
1361 if (!r->nb_atoms)
1362 return 1;
1363
1364 avgl = l->total_lat / l->nb_atoms;
1365 avgr = r->total_lat / r->nb_atoms;
1366
1367 if (avgl < avgr)
1368 return -1;
1369 if (avgl > avgr)
1370 return 1;
1371
1372 return 0;
1373}
1374
1375static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1376{
1377 if (l->max_lat < r->max_lat)
1378 return -1;
1379 if (l->max_lat > r->max_lat)
1380 return 1;
1381
1382 return 0;
1383}
1384
1385static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1386{
1387 if (l->nb_atoms < r->nb_atoms)
1388 return -1;
1389 if (l->nb_atoms > r->nb_atoms)
1390 return 1;
1391
1392 return 0;
1393}
1394
1395static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1396{
1397 if (l->total_runtime < r->total_runtime)
1398 return -1;
1399 if (l->total_runtime > r->total_runtime)
1400 return 1;
1401
1402 return 0;
1403}
1404
1405static int sort_dimension__add(const char *tok, struct list_head *list)
1406{
1407 size_t i;
1408 static struct sort_dimension avg_sort_dimension = {
1409 .name = "avg",
1410 .cmp = avg_cmp,
1411 };
1412 static struct sort_dimension max_sort_dimension = {
1413 .name = "max",
1414 .cmp = max_cmp,
1415 };
1416 static struct sort_dimension pid_sort_dimension = {
1417 .name = "pid",
1418 .cmp = pid_cmp,
1419 };
1420 static struct sort_dimension runtime_sort_dimension = {
1421 .name = "runtime",
1422 .cmp = runtime_cmp,
1423 };
1424 static struct sort_dimension switch_sort_dimension = {
1425 .name = "switch",
1426 .cmp = switch_cmp,
1427 };
1428 struct sort_dimension *available_sorts[] = {
1429 &pid_sort_dimension,
1430 &avg_sort_dimension,
1431 &max_sort_dimension,
1432 &switch_sort_dimension,
1433 &runtime_sort_dimension,
1434 };
1435
1436 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1437 if (!strcmp(available_sorts[i]->name, tok)) {
1438 list_add_tail(&available_sorts[i]->list, list);
1439
1440 return 0;
1441 }
1442 }
1443
1444 return -1;
1445}
1446
1447static void perf_sched__sort_lat(struct perf_sched *sched)
1448{
1449 struct rb_node *node;
1450 struct rb_root *root = &sched->atom_root;
1451again:
1452 for (;;) {
1453 struct work_atoms *data;
1454 node = rb_first(root);
1455 if (!node)
1456 break;
1457
1458 rb_erase(node, root);
1459 data = rb_entry(node, struct work_atoms, node);
1460 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1461 }
1462 if (root == &sched->atom_root) {
1463 root = &sched->merged_atom_root;
1464 goto again;
1465 }
1466}
1467
1468static int process_sched_wakeup_event(struct perf_tool *tool,
1469 struct perf_evsel *evsel,
1470 struct perf_sample *sample,
1471 struct machine *machine)
1472{
1473 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1474
1475 if (sched->tp_handler->wakeup_event)
1476 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1477
1478 return 0;
1479}
1480
1481union map_priv {
1482 void *ptr;
1483 bool color;
1484};
1485
1486static bool thread__has_color(struct thread *thread)
1487{
1488 union map_priv priv = {
1489 .ptr = thread__priv(thread),
1490 };
1491
1492 return priv.color;
1493}
1494
1495static struct thread*
1496map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1497{
1498 struct thread *thread = machine__findnew_thread(machine, pid, tid);
1499 union map_priv priv = {
1500 .color = false,
1501 };
1502
1503 if (!sched->map.color_pids || !thread || thread__priv(thread))
1504 return thread;
1505
1506 if (thread_map__has(sched->map.color_pids, tid))
1507 priv.color = true;
1508
1509 thread__set_priv(thread, priv.ptr);
1510 return thread;
1511}
1512
1513static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1514 struct perf_sample *sample, struct machine *machine)
1515{
1516 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1517 struct thread *sched_in;
1518 struct thread_runtime *tr;
1519 int new_shortname;
1520 u64 timestamp0, timestamp = sample->time;
1521 s64 delta;
1522 int i, this_cpu = sample->cpu;
1523 int cpus_nr;
1524 bool new_cpu = false;
1525 const char *color = PERF_COLOR_NORMAL;
1526 char stimestamp[32];
1527
1528 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1529
1530 if (this_cpu > sched->max_cpu)
1531 sched->max_cpu = this_cpu;
1532
1533 if (sched->map.comp) {
1534 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1535 if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1536 sched->map.comp_cpus[cpus_nr++] = this_cpu;
1537 new_cpu = true;
1538 }
1539 } else
1540 cpus_nr = sched->max_cpu;
1541
1542 timestamp0 = sched->cpu_last_switched[this_cpu];
1543 sched->cpu_last_switched[this_cpu] = timestamp;
1544 if (timestamp0)
1545 delta = timestamp - timestamp0;
1546 else
1547 delta = 0;
1548
1549 if (delta < 0) {
1550 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1551 return -1;
1552 }
1553
1554 sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1555 if (sched_in == NULL)
1556 return -1;
1557
1558 tr = thread__get_runtime(sched_in);
1559 if (tr == NULL) {
1560 thread__put(sched_in);
1561 return -1;
1562 }
1563
1564 sched->curr_thread[this_cpu] = thread__get(sched_in);
1565
1566 printf(" ");
1567
1568 new_shortname = 0;
1569 if (!tr->shortname[0]) {
1570 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1571 /*
1572 * Don't allocate a letter-number for swapper:0
1573 * as a shortname. Instead, we use '.' for it.
1574 */
1575 tr->shortname[0] = '.';
1576 tr->shortname[1] = ' ';
1577 } else {
1578 tr->shortname[0] = sched->next_shortname1;
1579 tr->shortname[1] = sched->next_shortname2;
1580
1581 if (sched->next_shortname1 < 'Z') {
1582 sched->next_shortname1++;
1583 } else {
1584 sched->next_shortname1 = 'A';
1585 if (sched->next_shortname2 < '9')
1586 sched->next_shortname2++;
1587 else
1588 sched->next_shortname2 = '0';
1589 }
1590 }
1591 new_shortname = 1;
1592 }
1593
1594 for (i = 0; i < cpus_nr; i++) {
1595 int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1596 struct thread *curr_thread = sched->curr_thread[cpu];
1597 struct thread_runtime *curr_tr;
1598 const char *pid_color = color;
1599 const char *cpu_color = color;
1600
1601 if (curr_thread && thread__has_color(curr_thread))
1602 pid_color = COLOR_PIDS;
1603
1604 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1605 continue;
1606
1607 if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1608 cpu_color = COLOR_CPUS;
1609
1610 if (cpu != this_cpu)
1611 color_fprintf(stdout, color, " ");
1612 else
1613 color_fprintf(stdout, cpu_color, "*");
1614
1615 if (sched->curr_thread[cpu]) {
1616 curr_tr = thread__get_runtime(sched->curr_thread[cpu]);
1617 if (curr_tr == NULL) {
1618 thread__put(sched_in);
1619 return -1;
1620 }
1621 color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1622 } else
1623 color_fprintf(stdout, color, " ");
1624 }
1625
1626 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1627 goto out;
1628
1629 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1630 color_fprintf(stdout, color, " %12s secs ", stimestamp);
1631 if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) {
1632 const char *pid_color = color;
1633
1634 if (thread__has_color(sched_in))
1635 pid_color = COLOR_PIDS;
1636
1637 color_fprintf(stdout, pid_color, "%s => %s:%d",
1638 tr->shortname, thread__comm_str(sched_in), sched_in->tid);
1639 tr->comm_changed = false;
1640 }
1641
1642 if (sched->map.comp && new_cpu)
1643 color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1644
1645out:
1646 color_fprintf(stdout, color, "\n");
1647
1648 thread__put(sched_in);
1649
1650 return 0;
1651}
1652
1653static int process_sched_switch_event(struct perf_tool *tool,
1654 struct perf_evsel *evsel,
1655 struct perf_sample *sample,
1656 struct machine *machine)
1657{
1658 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1659 int this_cpu = sample->cpu, err = 0;
1660 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1661 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1662
1663 if (sched->curr_pid[this_cpu] != (u32)-1) {
1664 /*
1665 * Are we trying to switch away a PID that is
1666 * not current?
1667 */
1668 if (sched->curr_pid[this_cpu] != prev_pid)
1669 sched->nr_context_switch_bugs++;
1670 }
1671
1672 if (sched->tp_handler->switch_event)
1673 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1674
1675 sched->curr_pid[this_cpu] = next_pid;
1676 return err;
1677}
1678
1679static int process_sched_runtime_event(struct perf_tool *tool,
1680 struct perf_evsel *evsel,
1681 struct perf_sample *sample,
1682 struct machine *machine)
1683{
1684 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1685
1686 if (sched->tp_handler->runtime_event)
1687 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1688
1689 return 0;
1690}
1691
1692static int perf_sched__process_fork_event(struct perf_tool *tool,
1693 union perf_event *event,
1694 struct perf_sample *sample,
1695 struct machine *machine)
1696{
1697 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1698
1699 /* run the fork event through the perf machineruy */
1700 perf_event__process_fork(tool, event, sample, machine);
1701
1702 /* and then run additional processing needed for this command */
1703 if (sched->tp_handler->fork_event)
1704 return sched->tp_handler->fork_event(sched, event, machine);
1705
1706 return 0;
1707}
1708
1709static int process_sched_migrate_task_event(struct perf_tool *tool,
1710 struct perf_evsel *evsel,
1711 struct perf_sample *sample,
1712 struct machine *machine)
1713{
1714 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1715
1716 if (sched->tp_handler->migrate_task_event)
1717 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1718
1719 return 0;
1720}
1721
1722typedef int (*tracepoint_handler)(struct perf_tool *tool,
1723 struct perf_evsel *evsel,
1724 struct perf_sample *sample,
1725 struct machine *machine);
1726
1727static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1728 union perf_event *event __maybe_unused,
1729 struct perf_sample *sample,
1730 struct perf_evsel *evsel,
1731 struct machine *machine)
1732{
1733 int err = 0;
1734
1735 if (evsel->handler != NULL) {
1736 tracepoint_handler f = evsel->handler;
1737 err = f(tool, evsel, sample, machine);
1738 }
1739
1740 return err;
1741}
1742
1743static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1744 union perf_event *event,
1745 struct perf_sample *sample,
1746 struct machine *machine)
1747{
1748 struct thread *thread;
1749 struct thread_runtime *tr;
1750 int err;
1751
1752 err = perf_event__process_comm(tool, event, sample, machine);
1753 if (err)
1754 return err;
1755
1756 thread = machine__find_thread(machine, sample->pid, sample->tid);
1757 if (!thread) {
1758 pr_err("Internal error: can't find thread\n");
1759 return -1;
1760 }
1761
1762 tr = thread__get_runtime(thread);
1763 if (tr == NULL) {
1764 thread__put(thread);
1765 return -1;
1766 }
1767
1768 tr->comm_changed = true;
1769 thread__put(thread);
1770
1771 return 0;
1772}
1773
1774static int perf_sched__read_events(struct perf_sched *sched)
1775{
1776 const struct perf_evsel_str_handler handlers[] = {
1777 { "sched:sched_switch", process_sched_switch_event, },
1778 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1779 { "sched:sched_wakeup", process_sched_wakeup_event, },
1780 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1781 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1782 };
1783 struct perf_session *session;
1784 struct perf_data data = {
1785 .file = {
1786 .path = input_name,
1787 },
1788 .mode = PERF_DATA_MODE_READ,
1789 .force = sched->force,
1790 };
1791 int rc = -1;
1792
1793 session = perf_session__new(&data, false, &sched->tool);
1794 if (session == NULL) {
1795 pr_debug("No Memory for session\n");
1796 return -1;
1797 }
1798
1799 symbol__init(&session->header.env);
1800
1801 if (perf_session__set_tracepoints_handlers(session, handlers))
1802 goto out_delete;
1803
1804 if (perf_session__has_traces(session, "record -R")) {
1805 int err = perf_session__process_events(session);
1806 if (err) {
1807 pr_err("Failed to process events, error %d", err);
1808 goto out_delete;
1809 }
1810
1811 sched->nr_events = session->evlist->stats.nr_events[0];
1812 sched->nr_lost_events = session->evlist->stats.total_lost;
1813 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1814 }
1815
1816 rc = 0;
1817out_delete:
1818 perf_session__delete(session);
1819 return rc;
1820}
1821
1822/*
1823 * scheduling times are printed as msec.usec
1824 */
1825static inline void print_sched_time(unsigned long long nsecs, int width)
1826{
1827 unsigned long msecs;
1828 unsigned long usecs;
1829
1830 msecs = nsecs / NSEC_PER_MSEC;
1831 nsecs -= msecs * NSEC_PER_MSEC;
1832 usecs = nsecs / NSEC_PER_USEC;
1833 printf("%*lu.%03lu ", width, msecs, usecs);
1834}
1835
1836/*
1837 * returns runtime data for event, allocating memory for it the
1838 * first time it is used.
1839 */
1840static struct evsel_runtime *perf_evsel__get_runtime(struct perf_evsel *evsel)
1841{
1842 struct evsel_runtime *r = evsel->priv;
1843
1844 if (r == NULL) {
1845 r = zalloc(sizeof(struct evsel_runtime));
1846 evsel->priv = r;
1847 }
1848
1849 return r;
1850}
1851
1852/*
1853 * save last time event was seen per cpu
1854 */
1855static void perf_evsel__save_time(struct perf_evsel *evsel,
1856 u64 timestamp, u32 cpu)
1857{
1858 struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1859
1860 if (r == NULL)
1861 return;
1862
1863 if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1864 int i, n = __roundup_pow_of_two(cpu+1);
1865 void *p = r->last_time;
1866
1867 p = realloc(r->last_time, n * sizeof(u64));
1868 if (!p)
1869 return;
1870
1871 r->last_time = p;
1872 for (i = r->ncpu; i < n; ++i)
1873 r->last_time[i] = (u64) 0;
1874
1875 r->ncpu = n;
1876 }
1877
1878 r->last_time[cpu] = timestamp;
1879}
1880
1881/* returns last time this event was seen on the given cpu */
1882static u64 perf_evsel__get_time(struct perf_evsel *evsel, u32 cpu)
1883{
1884 struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1885
1886 if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1887 return 0;
1888
1889 return r->last_time[cpu];
1890}
1891
1892static int comm_width = 30;
1893
1894static char *timehist_get_commstr(struct thread *thread)
1895{
1896 static char str[32];
1897 const char *comm = thread__comm_str(thread);
1898 pid_t tid = thread->tid;
1899 pid_t pid = thread->pid_;
1900 int n;
1901
1902 if (pid == 0)
1903 n = scnprintf(str, sizeof(str), "%s", comm);
1904
1905 else if (tid != pid)
1906 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1907
1908 else
1909 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1910
1911 if (n > comm_width)
1912 comm_width = n;
1913
1914 return str;
1915}
1916
1917static void timehist_header(struct perf_sched *sched)
1918{
1919 u32 ncpus = sched->max_cpu + 1;
1920 u32 i, j;
1921
1922 printf("%15s %6s ", "time", "cpu");
1923
1924 if (sched->show_cpu_visual) {
1925 printf(" ");
1926 for (i = 0, j = 0; i < ncpus; ++i) {
1927 printf("%x", j++);
1928 if (j > 15)
1929 j = 0;
1930 }
1931 printf(" ");
1932 }
1933
1934 printf(" %-*s %9s %9s %9s", comm_width,
1935 "task name", "wait time", "sch delay", "run time");
1936
1937 if (sched->show_state)
1938 printf(" %s", "state");
1939
1940 printf("\n");
1941
1942 /*
1943 * units row
1944 */
1945 printf("%15s %-6s ", "", "");
1946
1947 if (sched->show_cpu_visual)
1948 printf(" %*s ", ncpus, "");
1949
1950 printf(" %-*s %9s %9s %9s", comm_width,
1951 "[tid/pid]", "(msec)", "(msec)", "(msec)");
1952
1953 if (sched->show_state)
1954 printf(" %5s", "");
1955
1956 printf("\n");
1957
1958 /*
1959 * separator
1960 */
1961 printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1962
1963 if (sched->show_cpu_visual)
1964 printf(" %.*s ", ncpus, graph_dotted_line);
1965
1966 printf(" %.*s %.9s %.9s %.9s", comm_width,
1967 graph_dotted_line, graph_dotted_line, graph_dotted_line,
1968 graph_dotted_line);
1969
1970 if (sched->show_state)
1971 printf(" %.5s", graph_dotted_line);
1972
1973 printf("\n");
1974}
1975
1976static char task_state_char(struct thread *thread, int state)
1977{
1978 static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
1979 unsigned bit = state ? ffs(state) : 0;
1980
1981 /* 'I' for idle */
1982 if (thread->tid == 0)
1983 return 'I';
1984
1985 return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
1986}
1987
1988static void timehist_print_sample(struct perf_sched *sched,
1989 struct perf_evsel *evsel,
1990 struct perf_sample *sample,
1991 struct addr_location *al,
1992 struct thread *thread,
1993 u64 t, int state)
1994{
1995 struct thread_runtime *tr = thread__priv(thread);
1996 const char *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
1997 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1998 u32 max_cpus = sched->max_cpu + 1;
1999 char tstr[64];
2000 char nstr[30];
2001 u64 wait_time;
2002
2003 timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2004 printf("%15s [%04d] ", tstr, sample->cpu);
2005
2006 if (sched->show_cpu_visual) {
2007 u32 i;
2008 char c;
2009
2010 printf(" ");
2011 for (i = 0; i < max_cpus; ++i) {
2012 /* flag idle times with 'i'; others are sched events */
2013 if (i == sample->cpu)
2014 c = (thread->tid == 0) ? 'i' : 's';
2015 else
2016 c = ' ';
2017 printf("%c", c);
2018 }
2019 printf(" ");
2020 }
2021
2022 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2023
2024 wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2025 print_sched_time(wait_time, 6);
2026
2027 print_sched_time(tr->dt_delay, 6);
2028 print_sched_time(tr->dt_run, 6);
2029
2030 if (sched->show_state)
2031 printf(" %5c ", task_state_char(thread, state));
2032
2033 if (sched->show_next) {
2034 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2035 printf(" %-*s", comm_width, nstr);
2036 }
2037
2038 if (sched->show_wakeups && !sched->show_next)
2039 printf(" %-*s", comm_width, "");
2040
2041 if (thread->tid == 0)
2042 goto out;
2043
2044 if (sched->show_callchain)
2045 printf(" ");
2046
2047 sample__fprintf_sym(sample, al, 0,
2048 EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2049 EVSEL__PRINT_CALLCHAIN_ARROW |
2050 EVSEL__PRINT_SKIP_IGNORED,
2051 &callchain_cursor, stdout);
2052
2053out:
2054 printf("\n");
2055}
2056
2057/*
2058 * Explanation of delta-time stats:
2059 *
2060 * t = time of current schedule out event
2061 * tprev = time of previous sched out event
2062 * also time of schedule-in event for current task
2063 * last_time = time of last sched change event for current task
2064 * (i.e, time process was last scheduled out)
2065 * ready_to_run = time of wakeup for current task
2066 *
2067 * -----|------------|------------|------------|------
2068 * last ready tprev t
2069 * time to run
2070 *
2071 * |-------- dt_wait --------|
2072 * |- dt_delay -|-- dt_run --|
2073 *
2074 * dt_run = run time of current task
2075 * dt_wait = time between last schedule out event for task and tprev
2076 * represents time spent off the cpu
2077 * dt_delay = time between wakeup and schedule-in of task
2078 */
2079
2080static void timehist_update_runtime_stats(struct thread_runtime *r,
2081 u64 t, u64 tprev)
2082{
2083 r->dt_delay = 0;
2084 r->dt_sleep = 0;
2085 r->dt_iowait = 0;
2086 r->dt_preempt = 0;
2087 r->dt_run = 0;
2088
2089 if (tprev) {
2090 r->dt_run = t - tprev;
2091 if (r->ready_to_run) {
2092 if (r->ready_to_run > tprev)
2093 pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2094 else
2095 r->dt_delay = tprev - r->ready_to_run;
2096 }
2097
2098 if (r->last_time > tprev)
2099 pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2100 else if (r->last_time) {
2101 u64 dt_wait = tprev - r->last_time;
2102
2103 if (r->last_state == TASK_RUNNING)
2104 r->dt_preempt = dt_wait;
2105 else if (r->last_state == TASK_UNINTERRUPTIBLE)
2106 r->dt_iowait = dt_wait;
2107 else
2108 r->dt_sleep = dt_wait;
2109 }
2110 }
2111
2112 update_stats(&r->run_stats, r->dt_run);
2113
2114 r->total_run_time += r->dt_run;
2115 r->total_delay_time += r->dt_delay;
2116 r->total_sleep_time += r->dt_sleep;
2117 r->total_iowait_time += r->dt_iowait;
2118 r->total_preempt_time += r->dt_preempt;
2119}
2120
2121static bool is_idle_sample(struct perf_sample *sample,
2122 struct perf_evsel *evsel)
2123{
2124 /* pid 0 == swapper == idle task */
2125 if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0)
2126 return perf_evsel__intval(evsel, sample, "prev_pid") == 0;
2127
2128 return sample->pid == 0;
2129}
2130
2131static void save_task_callchain(struct perf_sched *sched,
2132 struct perf_sample *sample,
2133 struct perf_evsel *evsel,
2134 struct machine *machine)
2135{
2136 struct callchain_cursor *cursor = &callchain_cursor;
2137 struct thread *thread;
2138
2139 /* want main thread for process - has maps */
2140 thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2141 if (thread == NULL) {
2142 pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2143 return;
2144 }
2145
2146 if (!symbol_conf.use_callchain || sample->callchain == NULL)
2147 return;
2148
2149 if (thread__resolve_callchain(thread, cursor, evsel, sample,
2150 NULL, NULL, sched->max_stack + 2) != 0) {
2151 if (verbose > 0)
2152 pr_err("Failed to resolve callchain. Skipping\n");
2153
2154 return;
2155 }
2156
2157 callchain_cursor_commit(cursor);
2158
2159 while (true) {
2160 struct callchain_cursor_node *node;
2161 struct symbol *sym;
2162
2163 node = callchain_cursor_current(cursor);
2164 if (node == NULL)
2165 break;
2166
2167 sym = node->sym;
2168 if (sym) {
2169 if (!strcmp(sym->name, "schedule") ||
2170 !strcmp(sym->name, "__schedule") ||
2171 !strcmp(sym->name, "preempt_schedule"))
2172 sym->ignore = 1;
2173 }
2174
2175 callchain_cursor_advance(cursor);
2176 }
2177}
2178
2179static int init_idle_thread(struct thread *thread)
2180{
2181 struct idle_thread_runtime *itr;
2182
2183 thread__set_comm(thread, idle_comm, 0);
2184
2185 itr = zalloc(sizeof(*itr));
2186 if (itr == NULL)
2187 return -ENOMEM;
2188
2189 init_stats(&itr->tr.run_stats);
2190 callchain_init(&itr->callchain);
2191 callchain_cursor_reset(&itr->cursor);
2192 thread__set_priv(thread, itr);
2193
2194 return 0;
2195}
2196
2197/*
2198 * Track idle stats per cpu by maintaining a local thread
2199 * struct for the idle task on each cpu.
2200 */
2201static int init_idle_threads(int ncpu)
2202{
2203 int i, ret;
2204
2205 idle_threads = zalloc(ncpu * sizeof(struct thread *));
2206 if (!idle_threads)
2207 return -ENOMEM;
2208
2209 idle_max_cpu = ncpu;
2210
2211 /* allocate the actual thread struct if needed */
2212 for (i = 0; i < ncpu; ++i) {
2213 idle_threads[i] = thread__new(0, 0);
2214 if (idle_threads[i] == NULL)
2215 return -ENOMEM;
2216
2217 ret = init_idle_thread(idle_threads[i]);
2218 if (ret < 0)
2219 return ret;
2220 }
2221
2222 return 0;
2223}
2224
2225static void free_idle_threads(void)
2226{
2227 int i;
2228
2229 if (idle_threads == NULL)
2230 return;
2231
2232 for (i = 0; i < idle_max_cpu; ++i) {
2233 if ((idle_threads[i]))
2234 thread__delete(idle_threads[i]);
2235 }
2236
2237 free(idle_threads);
2238}
2239
2240static struct thread *get_idle_thread(int cpu)
2241{
2242 /*
2243 * expand/allocate array of pointers to local thread
2244 * structs if needed
2245 */
2246 if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2247 int i, j = __roundup_pow_of_two(cpu+1);
2248 void *p;
2249
2250 p = realloc(idle_threads, j * sizeof(struct thread *));
2251 if (!p)
2252 return NULL;
2253
2254 idle_threads = (struct thread **) p;
2255 for (i = idle_max_cpu; i < j; ++i)
2256 idle_threads[i] = NULL;
2257
2258 idle_max_cpu = j;
2259 }
2260
2261 /* allocate a new thread struct if needed */
2262 if (idle_threads[cpu] == NULL) {
2263 idle_threads[cpu] = thread__new(0, 0);
2264
2265 if (idle_threads[cpu]) {
2266 if (init_idle_thread(idle_threads[cpu]) < 0)
2267 return NULL;
2268 }
2269 }
2270
2271 return idle_threads[cpu];
2272}
2273
2274static void save_idle_callchain(struct idle_thread_runtime *itr,
2275 struct perf_sample *sample)
2276{
2277 if (!symbol_conf.use_callchain || sample->callchain == NULL)
2278 return;
2279
2280 callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2281}
2282
2283static struct thread *timehist_get_thread(struct perf_sched *sched,
2284 struct perf_sample *sample,
2285 struct machine *machine,
2286 struct perf_evsel *evsel)
2287{
2288 struct thread *thread;
2289
2290 if (is_idle_sample(sample, evsel)) {
2291 thread = get_idle_thread(sample->cpu);
2292 if (thread == NULL)
2293 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2294
2295 } else {
2296 /* there were samples with tid 0 but non-zero pid */
2297 thread = machine__findnew_thread(machine, sample->pid,
2298 sample->tid ?: sample->pid);
2299 if (thread == NULL) {
2300 pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2301 sample->tid);
2302 }
2303
2304 save_task_callchain(sched, sample, evsel, machine);
2305 if (sched->idle_hist) {
2306 struct thread *idle;
2307 struct idle_thread_runtime *itr;
2308
2309 idle = get_idle_thread(sample->cpu);
2310 if (idle == NULL) {
2311 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2312 return NULL;
2313 }
2314
2315 itr = thread__priv(idle);
2316 if (itr == NULL)
2317 return NULL;
2318
2319 itr->last_thread = thread;
2320
2321 /* copy task callchain when entering to idle */
2322 if (perf_evsel__intval(evsel, sample, "next_pid") == 0)
2323 save_idle_callchain(itr, sample);
2324 }
2325 }
2326
2327 return thread;
2328}
2329
2330static bool timehist_skip_sample(struct perf_sched *sched,
2331 struct thread *thread,
2332 struct perf_evsel *evsel,
2333 struct perf_sample *sample)
2334{
2335 bool rc = false;
2336
2337 if (thread__is_filtered(thread)) {
2338 rc = true;
2339 sched->skipped_samples++;
2340 }
2341
2342 if (sched->idle_hist) {
2343 if (strcmp(perf_evsel__name(evsel), "sched:sched_switch"))
2344 rc = true;
2345 else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 &&
2346 perf_evsel__intval(evsel, sample, "next_pid") != 0)
2347 rc = true;
2348 }
2349
2350 return rc;
2351}
2352
2353static void timehist_print_wakeup_event(struct perf_sched *sched,
2354 struct perf_evsel *evsel,
2355 struct perf_sample *sample,
2356 struct machine *machine,
2357 struct thread *awakened)
2358{
2359 struct thread *thread;
2360 char tstr[64];
2361
2362 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2363 if (thread == NULL)
2364 return;
2365
2366 /* show wakeup unless both awakee and awaker are filtered */
2367 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2368 timehist_skip_sample(sched, awakened, evsel, sample)) {
2369 return;
2370 }
2371
2372 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2373 printf("%15s [%04d] ", tstr, sample->cpu);
2374 if (sched->show_cpu_visual)
2375 printf(" %*s ", sched->max_cpu + 1, "");
2376
2377 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2378
2379 /* dt spacer */
2380 printf(" %9s %9s %9s ", "", "", "");
2381
2382 printf("awakened: %s", timehist_get_commstr(awakened));
2383
2384 printf("\n");
2385}
2386
2387static int timehist_sched_wakeup_event(struct perf_tool *tool,
2388 union perf_event *event __maybe_unused,
2389 struct perf_evsel *evsel,
2390 struct perf_sample *sample,
2391 struct machine *machine)
2392{
2393 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2394 struct thread *thread;
2395 struct thread_runtime *tr = NULL;
2396 /* want pid of awakened task not pid in sample */
2397 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2398
2399 thread = machine__findnew_thread(machine, 0, pid);
2400 if (thread == NULL)
2401 return -1;
2402
2403 tr = thread__get_runtime(thread);
2404 if (tr == NULL)
2405 return -1;
2406
2407 if (tr->ready_to_run == 0)
2408 tr->ready_to_run = sample->time;
2409
2410 /* show wakeups if requested */
2411 if (sched->show_wakeups &&
2412 !perf_time__skip_sample(&sched->ptime, sample->time))
2413 timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2414
2415 return 0;
2416}
2417
2418static void timehist_print_migration_event(struct perf_sched *sched,
2419 struct perf_evsel *evsel,
2420 struct perf_sample *sample,
2421 struct machine *machine,
2422 struct thread *migrated)
2423{
2424 struct thread *thread;
2425 char tstr[64];
2426 u32 max_cpus = sched->max_cpu + 1;
2427 u32 ocpu, dcpu;
2428
2429 if (sched->summary_only)
2430 return;
2431
2432 max_cpus = sched->max_cpu + 1;
2433 ocpu = perf_evsel__intval(evsel, sample, "orig_cpu");
2434 dcpu = perf_evsel__intval(evsel, sample, "dest_cpu");
2435
2436 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2437 if (thread == NULL)
2438 return;
2439
2440 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2441 timehist_skip_sample(sched, migrated, evsel, sample)) {
2442 return;
2443 }
2444
2445 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2446 printf("%15s [%04d] ", tstr, sample->cpu);
2447
2448 if (sched->show_cpu_visual) {
2449 u32 i;
2450 char c;
2451
2452 printf(" ");
2453 for (i = 0; i < max_cpus; ++i) {
2454 c = (i == sample->cpu) ? 'm' : ' ';
2455 printf("%c", c);
2456 }
2457 printf(" ");
2458 }
2459
2460 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2461
2462 /* dt spacer */
2463 printf(" %9s %9s %9s ", "", "", "");
2464
2465 printf("migrated: %s", timehist_get_commstr(migrated));
2466 printf(" cpu %d => %d", ocpu, dcpu);
2467
2468 printf("\n");
2469}
2470
2471static int timehist_migrate_task_event(struct perf_tool *tool,
2472 union perf_event *event __maybe_unused,
2473 struct perf_evsel *evsel,
2474 struct perf_sample *sample,
2475 struct machine *machine)
2476{
2477 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2478 struct thread *thread;
2479 struct thread_runtime *tr = NULL;
2480 /* want pid of migrated task not pid in sample */
2481 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2482
2483 thread = machine__findnew_thread(machine, 0, pid);
2484 if (thread == NULL)
2485 return -1;
2486
2487 tr = thread__get_runtime(thread);
2488 if (tr == NULL)
2489 return -1;
2490
2491 tr->migrations++;
2492
2493 /* show migrations if requested */
2494 timehist_print_migration_event(sched, evsel, sample, machine, thread);
2495
2496 return 0;
2497}
2498
2499static int timehist_sched_change_event(struct perf_tool *tool,
2500 union perf_event *event,
2501 struct perf_evsel *evsel,
2502 struct perf_sample *sample,
2503 struct machine *machine)
2504{
2505 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2506 struct perf_time_interval *ptime = &sched->ptime;
2507 struct addr_location al;
2508 struct thread *thread;
2509 struct thread_runtime *tr = NULL;
2510 u64 tprev, t = sample->time;
2511 int rc = 0;
2512 int state = perf_evsel__intval(evsel, sample, "prev_state");
2513
2514
2515 if (machine__resolve(machine, &al, sample) < 0) {
2516 pr_err("problem processing %d event. skipping it\n",
2517 event->header.type);
2518 rc = -1;
2519 goto out;
2520 }
2521
2522 thread = timehist_get_thread(sched, sample, machine, evsel);
2523 if (thread == NULL) {
2524 rc = -1;
2525 goto out;
2526 }
2527
2528 if (timehist_skip_sample(sched, thread, evsel, sample))
2529 goto out;
2530
2531 tr = thread__get_runtime(thread);
2532 if (tr == NULL) {
2533 rc = -1;
2534 goto out;
2535 }
2536
2537 tprev = perf_evsel__get_time(evsel, sample->cpu);
2538
2539 /*
2540 * If start time given:
2541 * - sample time is under window user cares about - skip sample
2542 * - tprev is under window user cares about - reset to start of window
2543 */
2544 if (ptime->start && ptime->start > t)
2545 goto out;
2546
2547 if (tprev && ptime->start > tprev)
2548 tprev = ptime->start;
2549
2550 /*
2551 * If end time given:
2552 * - previous sched event is out of window - we are done
2553 * - sample time is beyond window user cares about - reset it
2554 * to close out stats for time window interest
2555 */
2556 if (ptime->end) {
2557 if (tprev > ptime->end)
2558 goto out;
2559
2560 if (t > ptime->end)
2561 t = ptime->end;
2562 }
2563
2564 if (!sched->idle_hist || thread->tid == 0) {
2565 timehist_update_runtime_stats(tr, t, tprev);
2566
2567 if (sched->idle_hist) {
2568 struct idle_thread_runtime *itr = (void *)tr;
2569 struct thread_runtime *last_tr;
2570
2571 BUG_ON(thread->tid != 0);
2572
2573 if (itr->last_thread == NULL)
2574 goto out;
2575
2576 /* add current idle time as last thread's runtime */
2577 last_tr = thread__get_runtime(itr->last_thread);
2578 if (last_tr == NULL)
2579 goto out;
2580
2581 timehist_update_runtime_stats(last_tr, t, tprev);
2582 /*
2583 * remove delta time of last thread as it's not updated
2584 * and otherwise it will show an invalid value next
2585 * time. we only care total run time and run stat.
2586 */
2587 last_tr->dt_run = 0;
2588 last_tr->dt_delay = 0;
2589 last_tr->dt_sleep = 0;
2590 last_tr->dt_iowait = 0;
2591 last_tr->dt_preempt = 0;
2592
2593 if (itr->cursor.nr)
2594 callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2595
2596 itr->last_thread = NULL;
2597 }
2598 }
2599
2600 if (!sched->summary_only)
2601 timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2602
2603out:
2604 if (sched->hist_time.start == 0 && t >= ptime->start)
2605 sched->hist_time.start = t;
2606 if (ptime->end == 0 || t <= ptime->end)
2607 sched->hist_time.end = t;
2608
2609 if (tr) {
2610 /* time of this sched_switch event becomes last time task seen */
2611 tr->last_time = sample->time;
2612
2613 /* last state is used to determine where to account wait time */
2614 tr->last_state = state;
2615
2616 /* sched out event for task so reset ready to run time */
2617 tr->ready_to_run = 0;
2618 }
2619
2620 perf_evsel__save_time(evsel, sample->time, sample->cpu);
2621
2622 return rc;
2623}
2624
2625static int timehist_sched_switch_event(struct perf_tool *tool,
2626 union perf_event *event,
2627 struct perf_evsel *evsel,
2628 struct perf_sample *sample,
2629 struct machine *machine __maybe_unused)
2630{
2631 return timehist_sched_change_event(tool, event, evsel, sample, machine);
2632}
2633
2634static int process_lost(struct perf_tool *tool __maybe_unused,
2635 union perf_event *event,
2636 struct perf_sample *sample,
2637 struct machine *machine __maybe_unused)
2638{
2639 char tstr[64];
2640
2641 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2642 printf("%15s ", tstr);
2643 printf("lost %" PRIu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2644
2645 return 0;
2646}
2647
2648
2649static void print_thread_runtime(struct thread *t,
2650 struct thread_runtime *r)
2651{
2652 double mean = avg_stats(&r->run_stats);
2653 float stddev;
2654
2655 printf("%*s %5d %9" PRIu64 " ",
2656 comm_width, timehist_get_commstr(t), t->ppid,
2657 (u64) r->run_stats.n);
2658
2659 print_sched_time(r->total_run_time, 8);
2660 stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2661 print_sched_time(r->run_stats.min, 6);
2662 printf(" ");
2663 print_sched_time((u64) mean, 6);
2664 printf(" ");
2665 print_sched_time(r->run_stats.max, 6);
2666 printf(" ");
2667 printf("%5.2f", stddev);
2668 printf(" %5" PRIu64, r->migrations);
2669 printf("\n");
2670}
2671
2672static void print_thread_waittime(struct thread *t,
2673 struct thread_runtime *r)
2674{
2675 printf("%*s %5d %9" PRIu64 " ",
2676 comm_width, timehist_get_commstr(t), t->ppid,
2677 (u64) r->run_stats.n);
2678
2679 print_sched_time(r->total_run_time, 8);
2680 print_sched_time(r->total_sleep_time, 6);
2681 printf(" ");
2682 print_sched_time(r->total_iowait_time, 6);
2683 printf(" ");
2684 print_sched_time(r->total_preempt_time, 6);
2685 printf(" ");
2686 print_sched_time(r->total_delay_time, 6);
2687 printf("\n");
2688}
2689
2690struct total_run_stats {
2691 struct perf_sched *sched;
2692 u64 sched_count;
2693 u64 task_count;
2694 u64 total_run_time;
2695};
2696
2697static int __show_thread_runtime(struct thread *t, void *priv)
2698{
2699 struct total_run_stats *stats = priv;
2700 struct thread_runtime *r;
2701
2702 if (thread__is_filtered(t))
2703 return 0;
2704
2705 r = thread__priv(t);
2706 if (r && r->run_stats.n) {
2707 stats->task_count++;
2708 stats->sched_count += r->run_stats.n;
2709 stats->total_run_time += r->total_run_time;
2710
2711 if (stats->sched->show_state)
2712 print_thread_waittime(t, r);
2713 else
2714 print_thread_runtime(t, r);
2715 }
2716
2717 return 0;
2718}
2719
2720static int show_thread_runtime(struct thread *t, void *priv)
2721{
2722 if (t->dead)
2723 return 0;
2724
2725 return __show_thread_runtime(t, priv);
2726}
2727
2728static int show_deadthread_runtime(struct thread *t, void *priv)
2729{
2730 if (!t->dead)
2731 return 0;
2732
2733 return __show_thread_runtime(t, priv);
2734}
2735
2736static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2737{
2738 const char *sep = " <- ";
2739 struct callchain_list *chain;
2740 size_t ret = 0;
2741 char bf[1024];
2742 bool first;
2743
2744 if (node == NULL)
2745 return 0;
2746
2747 ret = callchain__fprintf_folded(fp, node->parent);
2748 first = (ret == 0);
2749
2750 list_for_each_entry(chain, &node->val, list) {
2751 if (chain->ip >= PERF_CONTEXT_MAX)
2752 continue;
2753 if (chain->ms.sym && chain->ms.sym->ignore)
2754 continue;
2755 ret += fprintf(fp, "%s%s", first ? "" : sep,
2756 callchain_list__sym_name(chain, bf, sizeof(bf),
2757 false));
2758 first = false;
2759 }
2760
2761 return ret;
2762}
2763
2764static size_t timehist_print_idlehist_callchain(struct rb_root *root)
2765{
2766 size_t ret = 0;
2767 FILE *fp = stdout;
2768 struct callchain_node *chain;
2769 struct rb_node *rb_node = rb_first(root);
2770
2771 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains");
2772 printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line,
2773 graph_dotted_line);
2774
2775 while (rb_node) {
2776 chain = rb_entry(rb_node, struct callchain_node, rb_node);
2777 rb_node = rb_next(rb_node);
2778
2779 ret += fprintf(fp, " ");
2780 print_sched_time(chain->hit, 12);
2781 ret += 16; /* print_sched_time returns 2nd arg + 4 */
2782 ret += fprintf(fp, " %8d ", chain->count);
2783 ret += callchain__fprintf_folded(fp, chain);
2784 ret += fprintf(fp, "\n");
2785 }
2786
2787 return ret;
2788}
2789
2790static void timehist_print_summary(struct perf_sched *sched,
2791 struct perf_session *session)
2792{
2793 struct machine *m = &session->machines.host;
2794 struct total_run_stats totals;
2795 u64 task_count;
2796 struct thread *t;
2797 struct thread_runtime *r;
2798 int i;
2799 u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2800
2801 memset(&totals, 0, sizeof(totals));
2802 totals.sched = sched;
2803
2804 if (sched->idle_hist) {
2805 printf("\nIdle-time summary\n");
2806 printf("%*s parent sched-out ", comm_width, "comm");
2807 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n");
2808 } else if (sched->show_state) {
2809 printf("\nWait-time summary\n");
2810 printf("%*s parent sched-in ", comm_width, "comm");
2811 printf(" run-time sleep iowait preempt delay\n");
2812 } else {
2813 printf("\nRuntime summary\n");
2814 printf("%*s parent sched-in ", comm_width, "comm");
2815 printf(" run-time min-run avg-run max-run stddev migrations\n");
2816 }
2817 printf("%*s (count) ", comm_width, "");
2818 printf(" (msec) (msec) (msec) (msec) %s\n",
2819 sched->show_state ? "(msec)" : "%");
2820 printf("%.117s\n", graph_dotted_line);
2821
2822 machine__for_each_thread(m, show_thread_runtime, &totals);
2823 task_count = totals.task_count;
2824 if (!task_count)
2825 printf("<no still running tasks>\n");
2826
2827 printf("\nTerminated tasks:\n");
2828 machine__for_each_thread(m, show_deadthread_runtime, &totals);
2829 if (task_count == totals.task_count)
2830 printf("<no terminated tasks>\n");
2831
2832 /* CPU idle stats not tracked when samples were skipped */
2833 if (sched->skipped_samples && !sched->idle_hist)
2834 return;
2835
2836 printf("\nIdle stats:\n");
2837 for (i = 0; i < idle_max_cpu; ++i) {
2838 t = idle_threads[i];
2839 if (!t)
2840 continue;
2841
2842 r = thread__priv(t);
2843 if (r && r->run_stats.n) {
2844 totals.sched_count += r->run_stats.n;
2845 printf(" CPU %2d idle for ", i);
2846 print_sched_time(r->total_run_time, 6);
2847 printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2848 } else
2849 printf(" CPU %2d idle entire time window\n", i);
2850 }
2851
2852 if (sched->idle_hist && symbol_conf.use_callchain) {
2853 callchain_param.mode = CHAIN_FOLDED;
2854 callchain_param.value = CCVAL_PERIOD;
2855
2856 callchain_register_param(&callchain_param);
2857
2858 printf("\nIdle stats by callchain:\n");
2859 for (i = 0; i < idle_max_cpu; ++i) {
2860 struct idle_thread_runtime *itr;
2861
2862 t = idle_threads[i];
2863 if (!t)
2864 continue;
2865
2866 itr = thread__priv(t);
2867 if (itr == NULL)
2868 continue;
2869
2870 callchain_param.sort(&itr->sorted_root, &itr->callchain,
2871 0, &callchain_param);
2872
2873 printf(" CPU %2d:", i);
2874 print_sched_time(itr->tr.total_run_time, 6);
2875 printf(" msec\n");
2876 timehist_print_idlehist_callchain(&itr->sorted_root);
2877 printf("\n");
2878 }
2879 }
2880
2881 printf("\n"
2882 " Total number of unique tasks: %" PRIu64 "\n"
2883 "Total number of context switches: %" PRIu64 "\n",
2884 totals.task_count, totals.sched_count);
2885
2886 printf(" Total run time (msec): ");
2887 print_sched_time(totals.total_run_time, 2);
2888 printf("\n");
2889
2890 printf(" Total scheduling time (msec): ");
2891 print_sched_time(hist_time, 2);
2892 printf(" (x %d)\n", sched->max_cpu);
2893}
2894
2895typedef int (*sched_handler)(struct perf_tool *tool,
2896 union perf_event *event,
2897 struct perf_evsel *evsel,
2898 struct perf_sample *sample,
2899 struct machine *machine);
2900
2901static int perf_timehist__process_sample(struct perf_tool *tool,
2902 union perf_event *event,
2903 struct perf_sample *sample,
2904 struct perf_evsel *evsel,
2905 struct machine *machine)
2906{
2907 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2908 int err = 0;
2909 int this_cpu = sample->cpu;
2910
2911 if (this_cpu > sched->max_cpu)
2912 sched->max_cpu = this_cpu;
2913
2914 if (evsel->handler != NULL) {
2915 sched_handler f = evsel->handler;
2916
2917 err = f(tool, event, evsel, sample, machine);
2918 }
2919
2920 return err;
2921}
2922
2923static int timehist_check_attr(struct perf_sched *sched,
2924 struct perf_evlist *evlist)
2925{
2926 struct perf_evsel *evsel;
2927 struct evsel_runtime *er;
2928
2929 list_for_each_entry(evsel, &evlist->entries, node) {
2930 er = perf_evsel__get_runtime(evsel);
2931 if (er == NULL) {
2932 pr_err("Failed to allocate memory for evsel runtime data\n");
2933 return -1;
2934 }
2935
2936 if (sched->show_callchain &&
2937 !(evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN)) {
2938 pr_info("Samples do not have callchains.\n");
2939 sched->show_callchain = 0;
2940 symbol_conf.use_callchain = 0;
2941 }
2942 }
2943
2944 return 0;
2945}
2946
2947static int perf_sched__timehist(struct perf_sched *sched)
2948{
2949 const struct perf_evsel_str_handler handlers[] = {
2950 { "sched:sched_switch", timehist_sched_switch_event, },
2951 { "sched:sched_wakeup", timehist_sched_wakeup_event, },
2952 { "sched:sched_wakeup_new", timehist_sched_wakeup_event, },
2953 };
2954 const struct perf_evsel_str_handler migrate_handlers[] = {
2955 { "sched:sched_migrate_task", timehist_migrate_task_event, },
2956 };
2957 struct perf_data data = {
2958 .file = {
2959 .path = input_name,
2960 },
2961 .mode = PERF_DATA_MODE_READ,
2962 .force = sched->force,
2963 };
2964
2965 struct perf_session *session;
2966 struct perf_evlist *evlist;
2967 int err = -1;
2968
2969 /*
2970 * event handlers for timehist option
2971 */
2972 sched->tool.sample = perf_timehist__process_sample;
2973 sched->tool.mmap = perf_event__process_mmap;
2974 sched->tool.comm = perf_event__process_comm;
2975 sched->tool.exit = perf_event__process_exit;
2976 sched->tool.fork = perf_event__process_fork;
2977 sched->tool.lost = process_lost;
2978 sched->tool.attr = perf_event__process_attr;
2979 sched->tool.tracing_data = perf_event__process_tracing_data;
2980 sched->tool.build_id = perf_event__process_build_id;
2981
2982 sched->tool.ordered_events = true;
2983 sched->tool.ordering_requires_timestamps = true;
2984
2985 symbol_conf.use_callchain = sched->show_callchain;
2986
2987 session = perf_session__new(&data, false, &sched->tool);
2988 if (session == NULL)
2989 return -ENOMEM;
2990
2991 evlist = session->evlist;
2992
2993 symbol__init(&session->header.env);
2994
2995 if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
2996 pr_err("Invalid time string\n");
2997 return -EINVAL;
2998 }
2999
3000 if (timehist_check_attr(sched, evlist) != 0)
3001 goto out;
3002
3003 setup_pager();
3004
3005 /* setup per-evsel handlers */
3006 if (perf_session__set_tracepoints_handlers(session, handlers))
3007 goto out;
3008
3009 /* sched_switch event at a minimum needs to exist */
3010 if (!perf_evlist__find_tracepoint_by_name(session->evlist,
3011 "sched:sched_switch")) {
3012 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3013 goto out;
3014 }
3015
3016 if (sched->show_migrations &&
3017 perf_session__set_tracepoints_handlers(session, migrate_handlers))
3018 goto out;
3019
3020 /* pre-allocate struct for per-CPU idle stats */
3021 sched->max_cpu = session->header.env.nr_cpus_online;
3022 if (sched->max_cpu == 0)
3023 sched->max_cpu = 4;
3024 if (init_idle_threads(sched->max_cpu))
3025 goto out;
3026
3027 /* summary_only implies summary option, but don't overwrite summary if set */
3028 if (sched->summary_only)
3029 sched->summary = sched->summary_only;
3030
3031 if (!sched->summary_only)
3032 timehist_header(sched);
3033
3034 err = perf_session__process_events(session);
3035 if (err) {
3036 pr_err("Failed to process events, error %d", err);
3037 goto out;
3038 }
3039
3040 sched->nr_events = evlist->stats.nr_events[0];
3041 sched->nr_lost_events = evlist->stats.total_lost;
3042 sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3043
3044 if (sched->summary)
3045 timehist_print_summary(sched, session);
3046
3047out:
3048 free_idle_threads();
3049 perf_session__delete(session);
3050
3051 return err;
3052}
3053
3054
3055static void print_bad_events(struct perf_sched *sched)
3056{
3057 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3058 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3059 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3060 sched->nr_unordered_timestamps, sched->nr_timestamps);
3061 }
3062 if (sched->nr_lost_events && sched->nr_events) {
3063 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3064 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3065 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3066 }
3067 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3068 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
3069 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3070 sched->nr_context_switch_bugs, sched->nr_timestamps);
3071 if (sched->nr_lost_events)
3072 printf(" (due to lost events?)");
3073 printf("\n");
3074 }
3075}
3076
3077static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data)
3078{
3079 struct rb_node **new = &(root->rb_node), *parent = NULL;
3080 struct work_atoms *this;
3081 const char *comm = thread__comm_str(data->thread), *this_comm;
3082
3083 while (*new) {
3084 int cmp;
3085
3086 this = container_of(*new, struct work_atoms, node);
3087 parent = *new;
3088
3089 this_comm = thread__comm_str(this->thread);
3090 cmp = strcmp(comm, this_comm);
3091 if (cmp > 0) {
3092 new = &((*new)->rb_left);
3093 } else if (cmp < 0) {
3094 new = &((*new)->rb_right);
3095 } else {
3096 this->num_merged++;
3097 this->total_runtime += data->total_runtime;
3098 this->nb_atoms += data->nb_atoms;
3099 this->total_lat += data->total_lat;
3100 list_splice(&data->work_list, &this->work_list);
3101 if (this->max_lat < data->max_lat) {
3102 this->max_lat = data->max_lat;
3103 this->max_lat_at = data->max_lat_at;
3104 }
3105 zfree(&data);
3106 return;
3107 }
3108 }
3109
3110 data->num_merged++;
3111 rb_link_node(&data->node, parent, new);
3112 rb_insert_color(&data->node, root);
3113}
3114
3115static void perf_sched__merge_lat(struct perf_sched *sched)
3116{
3117 struct work_atoms *data;
3118 struct rb_node *node;
3119
3120 if (sched->skip_merge)
3121 return;
3122
3123 while ((node = rb_first(&sched->atom_root))) {
3124 rb_erase(node, &sched->atom_root);
3125 data = rb_entry(node, struct work_atoms, node);
3126 __merge_work_atoms(&sched->merged_atom_root, data);
3127 }
3128}
3129
3130static int perf_sched__lat(struct perf_sched *sched)
3131{
3132 struct rb_node *next;
3133
3134 setup_pager();
3135
3136 if (perf_sched__read_events(sched))
3137 return -1;
3138
3139 perf_sched__merge_lat(sched);
3140 perf_sched__sort_lat(sched);
3141
3142 printf("\n -----------------------------------------------------------------------------------------------------------------\n");
3143 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
3144 printf(" -----------------------------------------------------------------------------------------------------------------\n");
3145
3146 next = rb_first(&sched->sorted_atom_root);
3147
3148 while (next) {
3149 struct work_atoms *work_list;
3150
3151 work_list = rb_entry(next, struct work_atoms, node);
3152 output_lat_thread(sched, work_list);
3153 next = rb_next(next);
3154 thread__zput(work_list->thread);
3155 }
3156
3157 printf(" -----------------------------------------------------------------------------------------------------------------\n");
3158 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
3159 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3160
3161 printf(" ---------------------------------------------------\n");
3162
3163 print_bad_events(sched);
3164 printf("\n");
3165
3166 return 0;
3167}
3168
3169static int setup_map_cpus(struct perf_sched *sched)
3170{
3171 struct cpu_map *map;
3172
3173 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
3174
3175 if (sched->map.comp) {
3176 sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3177 if (!sched->map.comp_cpus)
3178 return -1;
3179 }
3180
3181 if (!sched->map.cpus_str)
3182 return 0;
3183
3184 map = cpu_map__new(sched->map.cpus_str);
3185 if (!map) {
3186 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3187 return -1;
3188 }
3189
3190 sched->map.cpus = map;
3191 return 0;
3192}
3193
3194static int setup_color_pids(struct perf_sched *sched)
3195{
3196 struct thread_map *map;
3197
3198 if (!sched->map.color_pids_str)
3199 return 0;
3200
3201 map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3202 if (!map) {
3203 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3204 return -1;
3205 }
3206
3207 sched->map.color_pids = map;
3208 return 0;
3209}
3210
3211static int setup_color_cpus(struct perf_sched *sched)
3212{
3213 struct cpu_map *map;
3214
3215 if (!sched->map.color_cpus_str)
3216 return 0;
3217
3218 map = cpu_map__new(sched->map.color_cpus_str);
3219 if (!map) {
3220 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3221 return -1;
3222 }
3223
3224 sched->map.color_cpus = map;
3225 return 0;
3226}
3227
3228static int perf_sched__map(struct perf_sched *sched)
3229{
3230 if (setup_map_cpus(sched))
3231 return -1;
3232
3233 if (setup_color_pids(sched))
3234 return -1;
3235
3236 if (setup_color_cpus(sched))
3237 return -1;
3238
3239 setup_pager();
3240 if (perf_sched__read_events(sched))
3241 return -1;
3242 print_bad_events(sched);
3243 return 0;
3244}
3245
3246static int perf_sched__replay(struct perf_sched *sched)
3247{
3248 unsigned long i;
3249
3250 calibrate_run_measurement_overhead(sched);
3251 calibrate_sleep_measurement_overhead(sched);
3252
3253 test_calibrations(sched);
3254
3255 if (perf_sched__read_events(sched))
3256 return -1;
3257
3258 printf("nr_run_events: %ld\n", sched->nr_run_events);
3259 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
3260 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
3261
3262 if (sched->targetless_wakeups)
3263 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
3264 if (sched->multitarget_wakeups)
3265 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3266 if (sched->nr_run_events_optimized)
3267 printf("run atoms optimized: %ld\n",
3268 sched->nr_run_events_optimized);
3269
3270 print_task_traces(sched);
3271 add_cross_task_wakeups(sched);
3272
3273 create_tasks(sched);
3274 printf("------------------------------------------------------------\n");
3275 for (i = 0; i < sched->replay_repeat; i++)
3276 run_one_test(sched);
3277
3278 return 0;
3279}
3280
3281static void setup_sorting(struct perf_sched *sched, const struct option *options,
3282 const char * const usage_msg[])
3283{
3284 char *tmp, *tok, *str = strdup(sched->sort_order);
3285
3286 for (tok = strtok_r(str, ", ", &tmp);
3287 tok; tok = strtok_r(NULL, ", ", &tmp)) {
3288 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3289 usage_with_options_msg(usage_msg, options,
3290 "Unknown --sort key: `%s'", tok);
3291 }
3292 }
3293
3294 free(str);
3295
3296 sort_dimension__add("pid", &sched->cmp_pid);
3297}
3298
3299static int __cmd_record(int argc, const char **argv)
3300{
3301 unsigned int rec_argc, i, j;
3302 const char **rec_argv;
3303 const char * const record_args[] = {
3304 "record",
3305 "-a",
3306 "-R",
3307 "-m", "1024",
3308 "-c", "1",
3309 "-e", "sched:sched_switch",
3310 "-e", "sched:sched_stat_wait",
3311 "-e", "sched:sched_stat_sleep",
3312 "-e", "sched:sched_stat_iowait",
3313 "-e", "sched:sched_stat_runtime",
3314 "-e", "sched:sched_process_fork",
3315 "-e", "sched:sched_wakeup",
3316 "-e", "sched:sched_wakeup_new",
3317 "-e", "sched:sched_migrate_task",
3318 };
3319
3320 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
3321 rec_argv = calloc(rec_argc + 1, sizeof(char *));
3322
3323 if (rec_argv == NULL)
3324 return -ENOMEM;
3325
3326 for (i = 0; i < ARRAY_SIZE(record_args); i++)
3327 rec_argv[i] = strdup(record_args[i]);
3328
3329 for (j = 1; j < (unsigned int)argc; j++, i++)
3330 rec_argv[i] = argv[j];
3331
3332 BUG_ON(i != rec_argc);
3333
3334 return cmd_record(i, rec_argv);
3335}
3336
3337int cmd_sched(int argc, const char **argv)
3338{
3339 const char default_sort_order[] = "avg, max, switch, runtime";
3340 struct perf_sched sched = {
3341 .tool = {
3342 .sample = perf_sched__process_tracepoint_sample,
3343 .comm = perf_sched__process_comm,
3344 .namespaces = perf_event__process_namespaces,
3345 .lost = perf_event__process_lost,
3346 .fork = perf_sched__process_fork_event,
3347 .ordered_events = true,
3348 },
3349 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
3350 .sort_list = LIST_HEAD_INIT(sched.sort_list),
3351 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
3352 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3353 .sort_order = default_sort_order,
3354 .replay_repeat = 10,
3355 .profile_cpu = -1,
3356 .next_shortname1 = 'A',
3357 .next_shortname2 = '0',
3358 .skip_merge = 0,
3359 .show_callchain = 1,
3360 .max_stack = 5,
3361 };
3362 const struct option sched_options[] = {
3363 OPT_STRING('i', "input", &input_name, "file",
3364 "input file name"),
3365 OPT_INCR('v', "verbose", &verbose,
3366 "be more verbose (show symbol address, etc)"),
3367 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3368 "dump raw trace in ASCII"),
3369 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3370 OPT_END()
3371 };
3372 const struct option latency_options[] = {
3373 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3374 "sort by key(s): runtime, switch, avg, max"),
3375 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3376 "CPU to profile on"),
3377 OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3378 "latency stats per pid instead of per comm"),
3379 OPT_PARENT(sched_options)
3380 };
3381 const struct option replay_options[] = {
3382 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3383 "repeat the workload replay N times (-1: infinite)"),
3384 OPT_PARENT(sched_options)
3385 };
3386 const struct option map_options[] = {
3387 OPT_BOOLEAN(0, "compact", &sched.map.comp,
3388 "map output in compact mode"),
3389 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3390 "highlight given pids in map"),
3391 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3392 "highlight given CPUs in map"),
3393 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3394 "display given CPUs in map"),
3395 OPT_PARENT(sched_options)
3396 };
3397 const struct option timehist_options[] = {
3398 OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3399 "file", "vmlinux pathname"),
3400 OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3401 "file", "kallsyms pathname"),
3402 OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3403 "Display call chains if present (default on)"),
3404 OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3405 "Maximum number of functions to display backtrace."),
3406 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3407 "Look for files with symbols relative to this directory"),
3408 OPT_BOOLEAN('s', "summary", &sched.summary_only,
3409 "Show only syscall summary with statistics"),
3410 OPT_BOOLEAN('S', "with-summary", &sched.summary,
3411 "Show all syscalls and summary with statistics"),
3412 OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3413 OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3414 OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3415 OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3416 OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3417 OPT_STRING(0, "time", &sched.time_str, "str",
3418 "Time span for analysis (start,stop)"),
3419 OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3420 OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3421 "analyze events only for given process id(s)"),
3422 OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3423 "analyze events only for given thread id(s)"),
3424 OPT_PARENT(sched_options)
3425 };
3426
3427 const char * const latency_usage[] = {
3428 "perf sched latency [<options>]",
3429 NULL
3430 };
3431 const char * const replay_usage[] = {
3432 "perf sched replay [<options>]",
3433 NULL
3434 };
3435 const char * const map_usage[] = {
3436 "perf sched map [<options>]",
3437 NULL
3438 };
3439 const char * const timehist_usage[] = {
3440 "perf sched timehist [<options>]",
3441 NULL
3442 };
3443 const char *const sched_subcommands[] = { "record", "latency", "map",
3444 "replay", "script",
3445 "timehist", NULL };
3446 const char *sched_usage[] = {
3447 NULL,
3448 NULL
3449 };
3450 struct trace_sched_handler lat_ops = {
3451 .wakeup_event = latency_wakeup_event,
3452 .switch_event = latency_switch_event,
3453 .runtime_event = latency_runtime_event,
3454 .migrate_task_event = latency_migrate_task_event,
3455 };
3456 struct trace_sched_handler map_ops = {
3457 .switch_event = map_switch_event,
3458 };
3459 struct trace_sched_handler replay_ops = {
3460 .wakeup_event = replay_wakeup_event,
3461 .switch_event = replay_switch_event,
3462 .fork_event = replay_fork_event,
3463 };
3464 unsigned int i;
3465
3466 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3467 sched.curr_pid[i] = -1;
3468
3469 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3470 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3471 if (!argc)
3472 usage_with_options(sched_usage, sched_options);
3473
3474 /*
3475 * Aliased to 'perf script' for now:
3476 */
3477 if (!strcmp(argv[0], "script"))
3478 return cmd_script(argc, argv);
3479
3480 if (!strncmp(argv[0], "rec", 3)) {
3481 return __cmd_record(argc, argv);
3482 } else if (!strncmp(argv[0], "lat", 3)) {
3483 sched.tp_handler = &lat_ops;
3484 if (argc > 1) {
3485 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3486 if (argc)
3487 usage_with_options(latency_usage, latency_options);
3488 }
3489 setup_sorting(&sched, latency_options, latency_usage);
3490 return perf_sched__lat(&sched);
3491 } else if (!strcmp(argv[0], "map")) {
3492 if (argc) {
3493 argc = parse_options(argc, argv, map_options, map_usage, 0);
3494 if (argc)
3495 usage_with_options(map_usage, map_options);
3496 }
3497 sched.tp_handler = &map_ops;
3498 setup_sorting(&sched, latency_options, latency_usage);
3499 return perf_sched__map(&sched);
3500 } else if (!strncmp(argv[0], "rep", 3)) {
3501 sched.tp_handler = &replay_ops;
3502 if (argc) {
3503 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3504 if (argc)
3505 usage_with_options(replay_usage, replay_options);
3506 }
3507 return perf_sched__replay(&sched);
3508 } else if (!strcmp(argv[0], "timehist")) {
3509 if (argc) {
3510 argc = parse_options(argc, argv, timehist_options,
3511 timehist_usage, 0);
3512 if (argc)
3513 usage_with_options(timehist_usage, timehist_options);
3514 }
3515 if ((sched.show_wakeups || sched.show_next) &&
3516 sched.summary_only) {
3517 pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3518 parse_options_usage(timehist_usage, timehist_options, "s", true);
3519 if (sched.show_wakeups)
3520 parse_options_usage(NULL, timehist_options, "w", true);
3521 if (sched.show_next)
3522 parse_options_usage(NULL, timehist_options, "n", true);
3523 return -EINVAL;
3524 }
3525
3526 return perf_sched__timehist(&sched);
3527 } else {
3528 usage_with_options(sched_usage, sched_options);
3529 }
3530
3531 return 0;
3532}
1#include "builtin.h"
2#include "perf.h"
3
4#include "util/util.h"
5#include "util/evlist.h"
6#include "util/cache.h"
7#include "util/evsel.h"
8#include "util/symbol.h"
9#include "util/thread.h"
10#include "util/header.h"
11#include "util/session.h"
12#include "util/tool.h"
13#include "util/cloexec.h"
14#include "util/thread_map.h"
15#include "util/color.h"
16#include "util/stat.h"
17#include "util/callchain.h"
18#include "util/time-utils.h"
19
20#include <subcmd/parse-options.h>
21#include "util/trace-event.h"
22
23#include "util/debug.h"
24
25#include <linux/log2.h>
26#include <sys/prctl.h>
27#include <sys/resource.h>
28
29#include <semaphore.h>
30#include <pthread.h>
31#include <math.h>
32#include <api/fs/fs.h>
33#include <linux/time64.h>
34
35#define PR_SET_NAME 15 /* Set process name */
36#define MAX_CPUS 4096
37#define COMM_LEN 20
38#define SYM_LEN 129
39#define MAX_PID 1024000
40
41struct sched_atom;
42
43struct task_desc {
44 unsigned long nr;
45 unsigned long pid;
46 char comm[COMM_LEN];
47
48 unsigned long nr_events;
49 unsigned long curr_event;
50 struct sched_atom **atoms;
51
52 pthread_t thread;
53 sem_t sleep_sem;
54
55 sem_t ready_for_work;
56 sem_t work_done_sem;
57
58 u64 cpu_usage;
59};
60
61enum sched_event_type {
62 SCHED_EVENT_RUN,
63 SCHED_EVENT_SLEEP,
64 SCHED_EVENT_WAKEUP,
65 SCHED_EVENT_MIGRATION,
66};
67
68struct sched_atom {
69 enum sched_event_type type;
70 int specific_wait;
71 u64 timestamp;
72 u64 duration;
73 unsigned long nr;
74 sem_t *wait_sem;
75 struct task_desc *wakee;
76};
77
78#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
79
80enum thread_state {
81 THREAD_SLEEPING = 0,
82 THREAD_WAIT_CPU,
83 THREAD_SCHED_IN,
84 THREAD_IGNORE
85};
86
87struct work_atom {
88 struct list_head list;
89 enum thread_state state;
90 u64 sched_out_time;
91 u64 wake_up_time;
92 u64 sched_in_time;
93 u64 runtime;
94};
95
96struct work_atoms {
97 struct list_head work_list;
98 struct thread *thread;
99 struct rb_node node;
100 u64 max_lat;
101 u64 max_lat_at;
102 u64 total_lat;
103 u64 nb_atoms;
104 u64 total_runtime;
105 int num_merged;
106};
107
108typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
109
110struct perf_sched;
111
112struct trace_sched_handler {
113 int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
114 struct perf_sample *sample, struct machine *machine);
115
116 int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
117 struct perf_sample *sample, struct machine *machine);
118
119 int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
120 struct perf_sample *sample, struct machine *machine);
121
122 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
123 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
124 struct machine *machine);
125
126 int (*migrate_task_event)(struct perf_sched *sched,
127 struct perf_evsel *evsel,
128 struct perf_sample *sample,
129 struct machine *machine);
130};
131
132#define COLOR_PIDS PERF_COLOR_BLUE
133#define COLOR_CPUS PERF_COLOR_BG_RED
134
135struct perf_sched_map {
136 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
137 int *comp_cpus;
138 bool comp;
139 struct thread_map *color_pids;
140 const char *color_pids_str;
141 struct cpu_map *color_cpus;
142 const char *color_cpus_str;
143 struct cpu_map *cpus;
144 const char *cpus_str;
145};
146
147struct perf_sched {
148 struct perf_tool tool;
149 const char *sort_order;
150 unsigned long nr_tasks;
151 struct task_desc **pid_to_task;
152 struct task_desc **tasks;
153 const struct trace_sched_handler *tp_handler;
154 pthread_mutex_t start_work_mutex;
155 pthread_mutex_t work_done_wait_mutex;
156 int profile_cpu;
157/*
158 * Track the current task - that way we can know whether there's any
159 * weird events, such as a task being switched away that is not current.
160 */
161 int max_cpu;
162 u32 curr_pid[MAX_CPUS];
163 struct thread *curr_thread[MAX_CPUS];
164 char next_shortname1;
165 char next_shortname2;
166 unsigned int replay_repeat;
167 unsigned long nr_run_events;
168 unsigned long nr_sleep_events;
169 unsigned long nr_wakeup_events;
170 unsigned long nr_sleep_corrections;
171 unsigned long nr_run_events_optimized;
172 unsigned long targetless_wakeups;
173 unsigned long multitarget_wakeups;
174 unsigned long nr_runs;
175 unsigned long nr_timestamps;
176 unsigned long nr_unordered_timestamps;
177 unsigned long nr_context_switch_bugs;
178 unsigned long nr_events;
179 unsigned long nr_lost_chunks;
180 unsigned long nr_lost_events;
181 u64 run_measurement_overhead;
182 u64 sleep_measurement_overhead;
183 u64 start_time;
184 u64 cpu_usage;
185 u64 runavg_cpu_usage;
186 u64 parent_cpu_usage;
187 u64 runavg_parent_cpu_usage;
188 u64 sum_runtime;
189 u64 sum_fluct;
190 u64 run_avg;
191 u64 all_runtime;
192 u64 all_count;
193 u64 cpu_last_switched[MAX_CPUS];
194 struct rb_root atom_root, sorted_atom_root, merged_atom_root;
195 struct list_head sort_list, cmp_pid;
196 bool force;
197 bool skip_merge;
198 struct perf_sched_map map;
199
200 /* options for timehist command */
201 bool summary;
202 bool summary_only;
203 bool idle_hist;
204 bool show_callchain;
205 unsigned int max_stack;
206 bool show_cpu_visual;
207 bool show_wakeups;
208 bool show_migrations;
209 u64 skipped_samples;
210 const char *time_str;
211 struct perf_time_interval ptime;
212 struct perf_time_interval hist_time;
213};
214
215/* per thread run time data */
216struct thread_runtime {
217 u64 last_time; /* time of previous sched in/out event */
218 u64 dt_run; /* run time */
219 u64 dt_wait; /* time between CPU access (off cpu) */
220 u64 dt_delay; /* time between wakeup and sched-in */
221 u64 ready_to_run; /* time of wakeup */
222
223 struct stats run_stats;
224 u64 total_run_time;
225
226 u64 migrations;
227};
228
229/* per event run time data */
230struct evsel_runtime {
231 u64 *last_time; /* time this event was last seen per cpu */
232 u32 ncpu; /* highest cpu slot allocated */
233};
234
235/* per cpu idle time data */
236struct idle_thread_runtime {
237 struct thread_runtime tr;
238 struct thread *last_thread;
239 struct rb_root sorted_root;
240 struct callchain_root callchain;
241 struct callchain_cursor cursor;
242};
243
244/* track idle times per cpu */
245static struct thread **idle_threads;
246static int idle_max_cpu;
247static char idle_comm[] = "<idle>";
248
249static u64 get_nsecs(void)
250{
251 struct timespec ts;
252
253 clock_gettime(CLOCK_MONOTONIC, &ts);
254
255 return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
256}
257
258static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
259{
260 u64 T0 = get_nsecs(), T1;
261
262 do {
263 T1 = get_nsecs();
264 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
265}
266
267static void sleep_nsecs(u64 nsecs)
268{
269 struct timespec ts;
270
271 ts.tv_nsec = nsecs % 999999999;
272 ts.tv_sec = nsecs / 999999999;
273
274 nanosleep(&ts, NULL);
275}
276
277static void calibrate_run_measurement_overhead(struct perf_sched *sched)
278{
279 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
280 int i;
281
282 for (i = 0; i < 10; i++) {
283 T0 = get_nsecs();
284 burn_nsecs(sched, 0);
285 T1 = get_nsecs();
286 delta = T1-T0;
287 min_delta = min(min_delta, delta);
288 }
289 sched->run_measurement_overhead = min_delta;
290
291 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
292}
293
294static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
295{
296 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
297 int i;
298
299 for (i = 0; i < 10; i++) {
300 T0 = get_nsecs();
301 sleep_nsecs(10000);
302 T1 = get_nsecs();
303 delta = T1-T0;
304 min_delta = min(min_delta, delta);
305 }
306 min_delta -= 10000;
307 sched->sleep_measurement_overhead = min_delta;
308
309 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
310}
311
312static struct sched_atom *
313get_new_event(struct task_desc *task, u64 timestamp)
314{
315 struct sched_atom *event = zalloc(sizeof(*event));
316 unsigned long idx = task->nr_events;
317 size_t size;
318
319 event->timestamp = timestamp;
320 event->nr = idx;
321
322 task->nr_events++;
323 size = sizeof(struct sched_atom *) * task->nr_events;
324 task->atoms = realloc(task->atoms, size);
325 BUG_ON(!task->atoms);
326
327 task->atoms[idx] = event;
328
329 return event;
330}
331
332static struct sched_atom *last_event(struct task_desc *task)
333{
334 if (!task->nr_events)
335 return NULL;
336
337 return task->atoms[task->nr_events - 1];
338}
339
340static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
341 u64 timestamp, u64 duration)
342{
343 struct sched_atom *event, *curr_event = last_event(task);
344
345 /*
346 * optimize an existing RUN event by merging this one
347 * to it:
348 */
349 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
350 sched->nr_run_events_optimized++;
351 curr_event->duration += duration;
352 return;
353 }
354
355 event = get_new_event(task, timestamp);
356
357 event->type = SCHED_EVENT_RUN;
358 event->duration = duration;
359
360 sched->nr_run_events++;
361}
362
363static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
364 u64 timestamp, struct task_desc *wakee)
365{
366 struct sched_atom *event, *wakee_event;
367
368 event = get_new_event(task, timestamp);
369 event->type = SCHED_EVENT_WAKEUP;
370 event->wakee = wakee;
371
372 wakee_event = last_event(wakee);
373 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
374 sched->targetless_wakeups++;
375 return;
376 }
377 if (wakee_event->wait_sem) {
378 sched->multitarget_wakeups++;
379 return;
380 }
381
382 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
383 sem_init(wakee_event->wait_sem, 0, 0);
384 wakee_event->specific_wait = 1;
385 event->wait_sem = wakee_event->wait_sem;
386
387 sched->nr_wakeup_events++;
388}
389
390static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
391 u64 timestamp, u64 task_state __maybe_unused)
392{
393 struct sched_atom *event = get_new_event(task, timestamp);
394
395 event->type = SCHED_EVENT_SLEEP;
396
397 sched->nr_sleep_events++;
398}
399
400static struct task_desc *register_pid(struct perf_sched *sched,
401 unsigned long pid, const char *comm)
402{
403 struct task_desc *task;
404 static int pid_max;
405
406 if (sched->pid_to_task == NULL) {
407 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
408 pid_max = MAX_PID;
409 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
410 }
411 if (pid >= (unsigned long)pid_max) {
412 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
413 sizeof(struct task_desc *))) == NULL);
414 while (pid >= (unsigned long)pid_max)
415 sched->pid_to_task[pid_max++] = NULL;
416 }
417
418 task = sched->pid_to_task[pid];
419
420 if (task)
421 return task;
422
423 task = zalloc(sizeof(*task));
424 task->pid = pid;
425 task->nr = sched->nr_tasks;
426 strcpy(task->comm, comm);
427 /*
428 * every task starts in sleeping state - this gets ignored
429 * if there's no wakeup pointing to this sleep state:
430 */
431 add_sched_event_sleep(sched, task, 0, 0);
432
433 sched->pid_to_task[pid] = task;
434 sched->nr_tasks++;
435 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
436 BUG_ON(!sched->tasks);
437 sched->tasks[task->nr] = task;
438
439 if (verbose)
440 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
441
442 return task;
443}
444
445
446static void print_task_traces(struct perf_sched *sched)
447{
448 struct task_desc *task;
449 unsigned long i;
450
451 for (i = 0; i < sched->nr_tasks; i++) {
452 task = sched->tasks[i];
453 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
454 task->nr, task->comm, task->pid, task->nr_events);
455 }
456}
457
458static void add_cross_task_wakeups(struct perf_sched *sched)
459{
460 struct task_desc *task1, *task2;
461 unsigned long i, j;
462
463 for (i = 0; i < sched->nr_tasks; i++) {
464 task1 = sched->tasks[i];
465 j = i + 1;
466 if (j == sched->nr_tasks)
467 j = 0;
468 task2 = sched->tasks[j];
469 add_sched_event_wakeup(sched, task1, 0, task2);
470 }
471}
472
473static void perf_sched__process_event(struct perf_sched *sched,
474 struct sched_atom *atom)
475{
476 int ret = 0;
477
478 switch (atom->type) {
479 case SCHED_EVENT_RUN:
480 burn_nsecs(sched, atom->duration);
481 break;
482 case SCHED_EVENT_SLEEP:
483 if (atom->wait_sem)
484 ret = sem_wait(atom->wait_sem);
485 BUG_ON(ret);
486 break;
487 case SCHED_EVENT_WAKEUP:
488 if (atom->wait_sem)
489 ret = sem_post(atom->wait_sem);
490 BUG_ON(ret);
491 break;
492 case SCHED_EVENT_MIGRATION:
493 break;
494 default:
495 BUG_ON(1);
496 }
497}
498
499static u64 get_cpu_usage_nsec_parent(void)
500{
501 struct rusage ru;
502 u64 sum;
503 int err;
504
505 err = getrusage(RUSAGE_SELF, &ru);
506 BUG_ON(err);
507
508 sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
509 sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
510
511 return sum;
512}
513
514static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
515{
516 struct perf_event_attr attr;
517 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
518 int fd;
519 struct rlimit limit;
520 bool need_privilege = false;
521
522 memset(&attr, 0, sizeof(attr));
523
524 attr.type = PERF_TYPE_SOFTWARE;
525 attr.config = PERF_COUNT_SW_TASK_CLOCK;
526
527force_again:
528 fd = sys_perf_event_open(&attr, 0, -1, -1,
529 perf_event_open_cloexec_flag());
530
531 if (fd < 0) {
532 if (errno == EMFILE) {
533 if (sched->force) {
534 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
535 limit.rlim_cur += sched->nr_tasks - cur_task;
536 if (limit.rlim_cur > limit.rlim_max) {
537 limit.rlim_max = limit.rlim_cur;
538 need_privilege = true;
539 }
540 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
541 if (need_privilege && errno == EPERM)
542 strcpy(info, "Need privilege\n");
543 } else
544 goto force_again;
545 } else
546 strcpy(info, "Have a try with -f option\n");
547 }
548 pr_err("Error: sys_perf_event_open() syscall returned "
549 "with %d (%s)\n%s", fd,
550 str_error_r(errno, sbuf, sizeof(sbuf)), info);
551 exit(EXIT_FAILURE);
552 }
553 return fd;
554}
555
556static u64 get_cpu_usage_nsec_self(int fd)
557{
558 u64 runtime;
559 int ret;
560
561 ret = read(fd, &runtime, sizeof(runtime));
562 BUG_ON(ret != sizeof(runtime));
563
564 return runtime;
565}
566
567struct sched_thread_parms {
568 struct task_desc *task;
569 struct perf_sched *sched;
570 int fd;
571};
572
573static void *thread_func(void *ctx)
574{
575 struct sched_thread_parms *parms = ctx;
576 struct task_desc *this_task = parms->task;
577 struct perf_sched *sched = parms->sched;
578 u64 cpu_usage_0, cpu_usage_1;
579 unsigned long i, ret;
580 char comm2[22];
581 int fd = parms->fd;
582
583 zfree(&parms);
584
585 sprintf(comm2, ":%s", this_task->comm);
586 prctl(PR_SET_NAME, comm2);
587 if (fd < 0)
588 return NULL;
589again:
590 ret = sem_post(&this_task->ready_for_work);
591 BUG_ON(ret);
592 ret = pthread_mutex_lock(&sched->start_work_mutex);
593 BUG_ON(ret);
594 ret = pthread_mutex_unlock(&sched->start_work_mutex);
595 BUG_ON(ret);
596
597 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
598
599 for (i = 0; i < this_task->nr_events; i++) {
600 this_task->curr_event = i;
601 perf_sched__process_event(sched, this_task->atoms[i]);
602 }
603
604 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
605 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
606 ret = sem_post(&this_task->work_done_sem);
607 BUG_ON(ret);
608
609 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
610 BUG_ON(ret);
611 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
612 BUG_ON(ret);
613
614 goto again;
615}
616
617static void create_tasks(struct perf_sched *sched)
618{
619 struct task_desc *task;
620 pthread_attr_t attr;
621 unsigned long i;
622 int err;
623
624 err = pthread_attr_init(&attr);
625 BUG_ON(err);
626 err = pthread_attr_setstacksize(&attr,
627 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
628 BUG_ON(err);
629 err = pthread_mutex_lock(&sched->start_work_mutex);
630 BUG_ON(err);
631 err = pthread_mutex_lock(&sched->work_done_wait_mutex);
632 BUG_ON(err);
633 for (i = 0; i < sched->nr_tasks; i++) {
634 struct sched_thread_parms *parms = malloc(sizeof(*parms));
635 BUG_ON(parms == NULL);
636 parms->task = task = sched->tasks[i];
637 parms->sched = sched;
638 parms->fd = self_open_counters(sched, i);
639 sem_init(&task->sleep_sem, 0, 0);
640 sem_init(&task->ready_for_work, 0, 0);
641 sem_init(&task->work_done_sem, 0, 0);
642 task->curr_event = 0;
643 err = pthread_create(&task->thread, &attr, thread_func, parms);
644 BUG_ON(err);
645 }
646}
647
648static void wait_for_tasks(struct perf_sched *sched)
649{
650 u64 cpu_usage_0, cpu_usage_1;
651 struct task_desc *task;
652 unsigned long i, ret;
653
654 sched->start_time = get_nsecs();
655 sched->cpu_usage = 0;
656 pthread_mutex_unlock(&sched->work_done_wait_mutex);
657
658 for (i = 0; i < sched->nr_tasks; i++) {
659 task = sched->tasks[i];
660 ret = sem_wait(&task->ready_for_work);
661 BUG_ON(ret);
662 sem_init(&task->ready_for_work, 0, 0);
663 }
664 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
665 BUG_ON(ret);
666
667 cpu_usage_0 = get_cpu_usage_nsec_parent();
668
669 pthread_mutex_unlock(&sched->start_work_mutex);
670
671 for (i = 0; i < sched->nr_tasks; i++) {
672 task = sched->tasks[i];
673 ret = sem_wait(&task->work_done_sem);
674 BUG_ON(ret);
675 sem_init(&task->work_done_sem, 0, 0);
676 sched->cpu_usage += task->cpu_usage;
677 task->cpu_usage = 0;
678 }
679
680 cpu_usage_1 = get_cpu_usage_nsec_parent();
681 if (!sched->runavg_cpu_usage)
682 sched->runavg_cpu_usage = sched->cpu_usage;
683 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
684
685 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
686 if (!sched->runavg_parent_cpu_usage)
687 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
688 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
689 sched->parent_cpu_usage)/sched->replay_repeat;
690
691 ret = pthread_mutex_lock(&sched->start_work_mutex);
692 BUG_ON(ret);
693
694 for (i = 0; i < sched->nr_tasks; i++) {
695 task = sched->tasks[i];
696 sem_init(&task->sleep_sem, 0, 0);
697 task->curr_event = 0;
698 }
699}
700
701static void run_one_test(struct perf_sched *sched)
702{
703 u64 T0, T1, delta, avg_delta, fluct;
704
705 T0 = get_nsecs();
706 wait_for_tasks(sched);
707 T1 = get_nsecs();
708
709 delta = T1 - T0;
710 sched->sum_runtime += delta;
711 sched->nr_runs++;
712
713 avg_delta = sched->sum_runtime / sched->nr_runs;
714 if (delta < avg_delta)
715 fluct = avg_delta - delta;
716 else
717 fluct = delta - avg_delta;
718 sched->sum_fluct += fluct;
719 if (!sched->run_avg)
720 sched->run_avg = delta;
721 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
722
723 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
724
725 printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
726
727 printf("cpu: %0.2f / %0.2f",
728 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
729
730#if 0
731 /*
732 * rusage statistics done by the parent, these are less
733 * accurate than the sched->sum_exec_runtime based statistics:
734 */
735 printf(" [%0.2f / %0.2f]",
736 (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
737 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
738#endif
739
740 printf("\n");
741
742 if (sched->nr_sleep_corrections)
743 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
744 sched->nr_sleep_corrections = 0;
745}
746
747static void test_calibrations(struct perf_sched *sched)
748{
749 u64 T0, T1;
750
751 T0 = get_nsecs();
752 burn_nsecs(sched, NSEC_PER_MSEC);
753 T1 = get_nsecs();
754
755 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
756
757 T0 = get_nsecs();
758 sleep_nsecs(NSEC_PER_MSEC);
759 T1 = get_nsecs();
760
761 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
762}
763
764static int
765replay_wakeup_event(struct perf_sched *sched,
766 struct perf_evsel *evsel, struct perf_sample *sample,
767 struct machine *machine __maybe_unused)
768{
769 const char *comm = perf_evsel__strval(evsel, sample, "comm");
770 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
771 struct task_desc *waker, *wakee;
772
773 if (verbose) {
774 printf("sched_wakeup event %p\n", evsel);
775
776 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
777 }
778
779 waker = register_pid(sched, sample->tid, "<unknown>");
780 wakee = register_pid(sched, pid, comm);
781
782 add_sched_event_wakeup(sched, waker, sample->time, wakee);
783 return 0;
784}
785
786static int replay_switch_event(struct perf_sched *sched,
787 struct perf_evsel *evsel,
788 struct perf_sample *sample,
789 struct machine *machine __maybe_unused)
790{
791 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"),
792 *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
793 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
794 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
795 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
796 struct task_desc *prev, __maybe_unused *next;
797 u64 timestamp0, timestamp = sample->time;
798 int cpu = sample->cpu;
799 s64 delta;
800
801 if (verbose)
802 printf("sched_switch event %p\n", evsel);
803
804 if (cpu >= MAX_CPUS || cpu < 0)
805 return 0;
806
807 timestamp0 = sched->cpu_last_switched[cpu];
808 if (timestamp0)
809 delta = timestamp - timestamp0;
810 else
811 delta = 0;
812
813 if (delta < 0) {
814 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
815 return -1;
816 }
817
818 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
819 prev_comm, prev_pid, next_comm, next_pid, delta);
820
821 prev = register_pid(sched, prev_pid, prev_comm);
822 next = register_pid(sched, next_pid, next_comm);
823
824 sched->cpu_last_switched[cpu] = timestamp;
825
826 add_sched_event_run(sched, prev, timestamp, delta);
827 add_sched_event_sleep(sched, prev, timestamp, prev_state);
828
829 return 0;
830}
831
832static int replay_fork_event(struct perf_sched *sched,
833 union perf_event *event,
834 struct machine *machine)
835{
836 struct thread *child, *parent;
837
838 child = machine__findnew_thread(machine, event->fork.pid,
839 event->fork.tid);
840 parent = machine__findnew_thread(machine, event->fork.ppid,
841 event->fork.ptid);
842
843 if (child == NULL || parent == NULL) {
844 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
845 child, parent);
846 goto out_put;
847 }
848
849 if (verbose) {
850 printf("fork event\n");
851 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
852 printf("... child: %s/%d\n", thread__comm_str(child), child->tid);
853 }
854
855 register_pid(sched, parent->tid, thread__comm_str(parent));
856 register_pid(sched, child->tid, thread__comm_str(child));
857out_put:
858 thread__put(child);
859 thread__put(parent);
860 return 0;
861}
862
863struct sort_dimension {
864 const char *name;
865 sort_fn_t cmp;
866 struct list_head list;
867};
868
869static int
870thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
871{
872 struct sort_dimension *sort;
873 int ret = 0;
874
875 BUG_ON(list_empty(list));
876
877 list_for_each_entry(sort, list, list) {
878 ret = sort->cmp(l, r);
879 if (ret)
880 return ret;
881 }
882
883 return ret;
884}
885
886static struct work_atoms *
887thread_atoms_search(struct rb_root *root, struct thread *thread,
888 struct list_head *sort_list)
889{
890 struct rb_node *node = root->rb_node;
891 struct work_atoms key = { .thread = thread };
892
893 while (node) {
894 struct work_atoms *atoms;
895 int cmp;
896
897 atoms = container_of(node, struct work_atoms, node);
898
899 cmp = thread_lat_cmp(sort_list, &key, atoms);
900 if (cmp > 0)
901 node = node->rb_left;
902 else if (cmp < 0)
903 node = node->rb_right;
904 else {
905 BUG_ON(thread != atoms->thread);
906 return atoms;
907 }
908 }
909 return NULL;
910}
911
912static void
913__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
914 struct list_head *sort_list)
915{
916 struct rb_node **new = &(root->rb_node), *parent = NULL;
917
918 while (*new) {
919 struct work_atoms *this;
920 int cmp;
921
922 this = container_of(*new, struct work_atoms, node);
923 parent = *new;
924
925 cmp = thread_lat_cmp(sort_list, data, this);
926
927 if (cmp > 0)
928 new = &((*new)->rb_left);
929 else
930 new = &((*new)->rb_right);
931 }
932
933 rb_link_node(&data->node, parent, new);
934 rb_insert_color(&data->node, root);
935}
936
937static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
938{
939 struct work_atoms *atoms = zalloc(sizeof(*atoms));
940 if (!atoms) {
941 pr_err("No memory at %s\n", __func__);
942 return -1;
943 }
944
945 atoms->thread = thread__get(thread);
946 INIT_LIST_HEAD(&atoms->work_list);
947 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
948 return 0;
949}
950
951static char sched_out_state(u64 prev_state)
952{
953 const char *str = TASK_STATE_TO_CHAR_STR;
954
955 return str[prev_state];
956}
957
958static int
959add_sched_out_event(struct work_atoms *atoms,
960 char run_state,
961 u64 timestamp)
962{
963 struct work_atom *atom = zalloc(sizeof(*atom));
964 if (!atom) {
965 pr_err("Non memory at %s", __func__);
966 return -1;
967 }
968
969 atom->sched_out_time = timestamp;
970
971 if (run_state == 'R') {
972 atom->state = THREAD_WAIT_CPU;
973 atom->wake_up_time = atom->sched_out_time;
974 }
975
976 list_add_tail(&atom->list, &atoms->work_list);
977 return 0;
978}
979
980static void
981add_runtime_event(struct work_atoms *atoms, u64 delta,
982 u64 timestamp __maybe_unused)
983{
984 struct work_atom *atom;
985
986 BUG_ON(list_empty(&atoms->work_list));
987
988 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
989
990 atom->runtime += delta;
991 atoms->total_runtime += delta;
992}
993
994static void
995add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
996{
997 struct work_atom *atom;
998 u64 delta;
999
1000 if (list_empty(&atoms->work_list))
1001 return;
1002
1003 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1004
1005 if (atom->state != THREAD_WAIT_CPU)
1006 return;
1007
1008 if (timestamp < atom->wake_up_time) {
1009 atom->state = THREAD_IGNORE;
1010 return;
1011 }
1012
1013 atom->state = THREAD_SCHED_IN;
1014 atom->sched_in_time = timestamp;
1015
1016 delta = atom->sched_in_time - atom->wake_up_time;
1017 atoms->total_lat += delta;
1018 if (delta > atoms->max_lat) {
1019 atoms->max_lat = delta;
1020 atoms->max_lat_at = timestamp;
1021 }
1022 atoms->nb_atoms++;
1023}
1024
1025static int latency_switch_event(struct perf_sched *sched,
1026 struct perf_evsel *evsel,
1027 struct perf_sample *sample,
1028 struct machine *machine)
1029{
1030 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1031 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1032 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
1033 struct work_atoms *out_events, *in_events;
1034 struct thread *sched_out, *sched_in;
1035 u64 timestamp0, timestamp = sample->time;
1036 int cpu = sample->cpu, err = -1;
1037 s64 delta;
1038
1039 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1040
1041 timestamp0 = sched->cpu_last_switched[cpu];
1042 sched->cpu_last_switched[cpu] = timestamp;
1043 if (timestamp0)
1044 delta = timestamp - timestamp0;
1045 else
1046 delta = 0;
1047
1048 if (delta < 0) {
1049 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1050 return -1;
1051 }
1052
1053 sched_out = machine__findnew_thread(machine, -1, prev_pid);
1054 sched_in = machine__findnew_thread(machine, -1, next_pid);
1055 if (sched_out == NULL || sched_in == NULL)
1056 goto out_put;
1057
1058 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1059 if (!out_events) {
1060 if (thread_atoms_insert(sched, sched_out))
1061 goto out_put;
1062 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1063 if (!out_events) {
1064 pr_err("out-event: Internal tree error");
1065 goto out_put;
1066 }
1067 }
1068 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1069 return -1;
1070
1071 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1072 if (!in_events) {
1073 if (thread_atoms_insert(sched, sched_in))
1074 goto out_put;
1075 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1076 if (!in_events) {
1077 pr_err("in-event: Internal tree error");
1078 goto out_put;
1079 }
1080 /*
1081 * Take came in we have not heard about yet,
1082 * add in an initial atom in runnable state:
1083 */
1084 if (add_sched_out_event(in_events, 'R', timestamp))
1085 goto out_put;
1086 }
1087 add_sched_in_event(in_events, timestamp);
1088 err = 0;
1089out_put:
1090 thread__put(sched_out);
1091 thread__put(sched_in);
1092 return err;
1093}
1094
1095static int latency_runtime_event(struct perf_sched *sched,
1096 struct perf_evsel *evsel,
1097 struct perf_sample *sample,
1098 struct machine *machine)
1099{
1100 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1101 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime");
1102 struct thread *thread = machine__findnew_thread(machine, -1, pid);
1103 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1104 u64 timestamp = sample->time;
1105 int cpu = sample->cpu, err = -1;
1106
1107 if (thread == NULL)
1108 return -1;
1109
1110 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1111 if (!atoms) {
1112 if (thread_atoms_insert(sched, thread))
1113 goto out_put;
1114 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1115 if (!atoms) {
1116 pr_err("in-event: Internal tree error");
1117 goto out_put;
1118 }
1119 if (add_sched_out_event(atoms, 'R', timestamp))
1120 goto out_put;
1121 }
1122
1123 add_runtime_event(atoms, runtime, timestamp);
1124 err = 0;
1125out_put:
1126 thread__put(thread);
1127 return err;
1128}
1129
1130static int latency_wakeup_event(struct perf_sched *sched,
1131 struct perf_evsel *evsel,
1132 struct perf_sample *sample,
1133 struct machine *machine)
1134{
1135 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1136 struct work_atoms *atoms;
1137 struct work_atom *atom;
1138 struct thread *wakee;
1139 u64 timestamp = sample->time;
1140 int err = -1;
1141
1142 wakee = machine__findnew_thread(machine, -1, pid);
1143 if (wakee == NULL)
1144 return -1;
1145 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1146 if (!atoms) {
1147 if (thread_atoms_insert(sched, wakee))
1148 goto out_put;
1149 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1150 if (!atoms) {
1151 pr_err("wakeup-event: Internal tree error");
1152 goto out_put;
1153 }
1154 if (add_sched_out_event(atoms, 'S', timestamp))
1155 goto out_put;
1156 }
1157
1158 BUG_ON(list_empty(&atoms->work_list));
1159
1160 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1161
1162 /*
1163 * As we do not guarantee the wakeup event happens when
1164 * task is out of run queue, also may happen when task is
1165 * on run queue and wakeup only change ->state to TASK_RUNNING,
1166 * then we should not set the ->wake_up_time when wake up a
1167 * task which is on run queue.
1168 *
1169 * You WILL be missing events if you've recorded only
1170 * one CPU, or are only looking at only one, so don't
1171 * skip in this case.
1172 */
1173 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1174 goto out_ok;
1175
1176 sched->nr_timestamps++;
1177 if (atom->sched_out_time > timestamp) {
1178 sched->nr_unordered_timestamps++;
1179 goto out_ok;
1180 }
1181
1182 atom->state = THREAD_WAIT_CPU;
1183 atom->wake_up_time = timestamp;
1184out_ok:
1185 err = 0;
1186out_put:
1187 thread__put(wakee);
1188 return err;
1189}
1190
1191static int latency_migrate_task_event(struct perf_sched *sched,
1192 struct perf_evsel *evsel,
1193 struct perf_sample *sample,
1194 struct machine *machine)
1195{
1196 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1197 u64 timestamp = sample->time;
1198 struct work_atoms *atoms;
1199 struct work_atom *atom;
1200 struct thread *migrant;
1201 int err = -1;
1202
1203 /*
1204 * Only need to worry about migration when profiling one CPU.
1205 */
1206 if (sched->profile_cpu == -1)
1207 return 0;
1208
1209 migrant = machine__findnew_thread(machine, -1, pid);
1210 if (migrant == NULL)
1211 return -1;
1212 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1213 if (!atoms) {
1214 if (thread_atoms_insert(sched, migrant))
1215 goto out_put;
1216 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1217 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1218 if (!atoms) {
1219 pr_err("migration-event: Internal tree error");
1220 goto out_put;
1221 }
1222 if (add_sched_out_event(atoms, 'R', timestamp))
1223 goto out_put;
1224 }
1225
1226 BUG_ON(list_empty(&atoms->work_list));
1227
1228 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1229 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1230
1231 sched->nr_timestamps++;
1232
1233 if (atom->sched_out_time > timestamp)
1234 sched->nr_unordered_timestamps++;
1235 err = 0;
1236out_put:
1237 thread__put(migrant);
1238 return err;
1239}
1240
1241static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1242{
1243 int i;
1244 int ret;
1245 u64 avg;
1246 char max_lat_at[32];
1247
1248 if (!work_list->nb_atoms)
1249 return;
1250 /*
1251 * Ignore idle threads:
1252 */
1253 if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1254 return;
1255
1256 sched->all_runtime += work_list->total_runtime;
1257 sched->all_count += work_list->nb_atoms;
1258
1259 if (work_list->num_merged > 1)
1260 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1261 else
1262 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1263
1264 for (i = 0; i < 24 - ret; i++)
1265 printf(" ");
1266
1267 avg = work_list->total_lat / work_list->nb_atoms;
1268 timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
1269
1270 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1271 (double)work_list->total_runtime / NSEC_PER_MSEC,
1272 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1273 (double)work_list->max_lat / NSEC_PER_MSEC,
1274 max_lat_at);
1275}
1276
1277static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1278{
1279 if (l->thread == r->thread)
1280 return 0;
1281 if (l->thread->tid < r->thread->tid)
1282 return -1;
1283 if (l->thread->tid > r->thread->tid)
1284 return 1;
1285 return (int)(l->thread - r->thread);
1286}
1287
1288static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1289{
1290 u64 avgl, avgr;
1291
1292 if (!l->nb_atoms)
1293 return -1;
1294
1295 if (!r->nb_atoms)
1296 return 1;
1297
1298 avgl = l->total_lat / l->nb_atoms;
1299 avgr = r->total_lat / r->nb_atoms;
1300
1301 if (avgl < avgr)
1302 return -1;
1303 if (avgl > avgr)
1304 return 1;
1305
1306 return 0;
1307}
1308
1309static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1310{
1311 if (l->max_lat < r->max_lat)
1312 return -1;
1313 if (l->max_lat > r->max_lat)
1314 return 1;
1315
1316 return 0;
1317}
1318
1319static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1320{
1321 if (l->nb_atoms < r->nb_atoms)
1322 return -1;
1323 if (l->nb_atoms > r->nb_atoms)
1324 return 1;
1325
1326 return 0;
1327}
1328
1329static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1330{
1331 if (l->total_runtime < r->total_runtime)
1332 return -1;
1333 if (l->total_runtime > r->total_runtime)
1334 return 1;
1335
1336 return 0;
1337}
1338
1339static int sort_dimension__add(const char *tok, struct list_head *list)
1340{
1341 size_t i;
1342 static struct sort_dimension avg_sort_dimension = {
1343 .name = "avg",
1344 .cmp = avg_cmp,
1345 };
1346 static struct sort_dimension max_sort_dimension = {
1347 .name = "max",
1348 .cmp = max_cmp,
1349 };
1350 static struct sort_dimension pid_sort_dimension = {
1351 .name = "pid",
1352 .cmp = pid_cmp,
1353 };
1354 static struct sort_dimension runtime_sort_dimension = {
1355 .name = "runtime",
1356 .cmp = runtime_cmp,
1357 };
1358 static struct sort_dimension switch_sort_dimension = {
1359 .name = "switch",
1360 .cmp = switch_cmp,
1361 };
1362 struct sort_dimension *available_sorts[] = {
1363 &pid_sort_dimension,
1364 &avg_sort_dimension,
1365 &max_sort_dimension,
1366 &switch_sort_dimension,
1367 &runtime_sort_dimension,
1368 };
1369
1370 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1371 if (!strcmp(available_sorts[i]->name, tok)) {
1372 list_add_tail(&available_sorts[i]->list, list);
1373
1374 return 0;
1375 }
1376 }
1377
1378 return -1;
1379}
1380
1381static void perf_sched__sort_lat(struct perf_sched *sched)
1382{
1383 struct rb_node *node;
1384 struct rb_root *root = &sched->atom_root;
1385again:
1386 for (;;) {
1387 struct work_atoms *data;
1388 node = rb_first(root);
1389 if (!node)
1390 break;
1391
1392 rb_erase(node, root);
1393 data = rb_entry(node, struct work_atoms, node);
1394 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1395 }
1396 if (root == &sched->atom_root) {
1397 root = &sched->merged_atom_root;
1398 goto again;
1399 }
1400}
1401
1402static int process_sched_wakeup_event(struct perf_tool *tool,
1403 struct perf_evsel *evsel,
1404 struct perf_sample *sample,
1405 struct machine *machine)
1406{
1407 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1408
1409 if (sched->tp_handler->wakeup_event)
1410 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1411
1412 return 0;
1413}
1414
1415union map_priv {
1416 void *ptr;
1417 bool color;
1418};
1419
1420static bool thread__has_color(struct thread *thread)
1421{
1422 union map_priv priv = {
1423 .ptr = thread__priv(thread),
1424 };
1425
1426 return priv.color;
1427}
1428
1429static struct thread*
1430map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1431{
1432 struct thread *thread = machine__findnew_thread(machine, pid, tid);
1433 union map_priv priv = {
1434 .color = false,
1435 };
1436
1437 if (!sched->map.color_pids || !thread || thread__priv(thread))
1438 return thread;
1439
1440 if (thread_map__has(sched->map.color_pids, tid))
1441 priv.color = true;
1442
1443 thread__set_priv(thread, priv.ptr);
1444 return thread;
1445}
1446
1447static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1448 struct perf_sample *sample, struct machine *machine)
1449{
1450 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1451 struct thread *sched_in;
1452 int new_shortname;
1453 u64 timestamp0, timestamp = sample->time;
1454 s64 delta;
1455 int i, this_cpu = sample->cpu;
1456 int cpus_nr;
1457 bool new_cpu = false;
1458 const char *color = PERF_COLOR_NORMAL;
1459 char stimestamp[32];
1460
1461 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1462
1463 if (this_cpu > sched->max_cpu)
1464 sched->max_cpu = this_cpu;
1465
1466 if (sched->map.comp) {
1467 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1468 if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1469 sched->map.comp_cpus[cpus_nr++] = this_cpu;
1470 new_cpu = true;
1471 }
1472 } else
1473 cpus_nr = sched->max_cpu;
1474
1475 timestamp0 = sched->cpu_last_switched[this_cpu];
1476 sched->cpu_last_switched[this_cpu] = timestamp;
1477 if (timestamp0)
1478 delta = timestamp - timestamp0;
1479 else
1480 delta = 0;
1481
1482 if (delta < 0) {
1483 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1484 return -1;
1485 }
1486
1487 sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1488 if (sched_in == NULL)
1489 return -1;
1490
1491 sched->curr_thread[this_cpu] = thread__get(sched_in);
1492
1493 printf(" ");
1494
1495 new_shortname = 0;
1496 if (!sched_in->shortname[0]) {
1497 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1498 /*
1499 * Don't allocate a letter-number for swapper:0
1500 * as a shortname. Instead, we use '.' for it.
1501 */
1502 sched_in->shortname[0] = '.';
1503 sched_in->shortname[1] = ' ';
1504 } else {
1505 sched_in->shortname[0] = sched->next_shortname1;
1506 sched_in->shortname[1] = sched->next_shortname2;
1507
1508 if (sched->next_shortname1 < 'Z') {
1509 sched->next_shortname1++;
1510 } else {
1511 sched->next_shortname1 = 'A';
1512 if (sched->next_shortname2 < '9')
1513 sched->next_shortname2++;
1514 else
1515 sched->next_shortname2 = '0';
1516 }
1517 }
1518 new_shortname = 1;
1519 }
1520
1521 for (i = 0; i < cpus_nr; i++) {
1522 int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1523 struct thread *curr_thread = sched->curr_thread[cpu];
1524 const char *pid_color = color;
1525 const char *cpu_color = color;
1526
1527 if (curr_thread && thread__has_color(curr_thread))
1528 pid_color = COLOR_PIDS;
1529
1530 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1531 continue;
1532
1533 if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1534 cpu_color = COLOR_CPUS;
1535
1536 if (cpu != this_cpu)
1537 color_fprintf(stdout, color, " ");
1538 else
1539 color_fprintf(stdout, cpu_color, "*");
1540
1541 if (sched->curr_thread[cpu])
1542 color_fprintf(stdout, pid_color, "%2s ", sched->curr_thread[cpu]->shortname);
1543 else
1544 color_fprintf(stdout, color, " ");
1545 }
1546
1547 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1548 goto out;
1549
1550 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1551 color_fprintf(stdout, color, " %12s secs ", stimestamp);
1552 if (new_shortname || (verbose && sched_in->tid)) {
1553 const char *pid_color = color;
1554
1555 if (thread__has_color(sched_in))
1556 pid_color = COLOR_PIDS;
1557
1558 color_fprintf(stdout, pid_color, "%s => %s:%d",
1559 sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1560 }
1561
1562 if (sched->map.comp && new_cpu)
1563 color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1564
1565out:
1566 color_fprintf(stdout, color, "\n");
1567
1568 thread__put(sched_in);
1569
1570 return 0;
1571}
1572
1573static int process_sched_switch_event(struct perf_tool *tool,
1574 struct perf_evsel *evsel,
1575 struct perf_sample *sample,
1576 struct machine *machine)
1577{
1578 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1579 int this_cpu = sample->cpu, err = 0;
1580 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1581 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1582
1583 if (sched->curr_pid[this_cpu] != (u32)-1) {
1584 /*
1585 * Are we trying to switch away a PID that is
1586 * not current?
1587 */
1588 if (sched->curr_pid[this_cpu] != prev_pid)
1589 sched->nr_context_switch_bugs++;
1590 }
1591
1592 if (sched->tp_handler->switch_event)
1593 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1594
1595 sched->curr_pid[this_cpu] = next_pid;
1596 return err;
1597}
1598
1599static int process_sched_runtime_event(struct perf_tool *tool,
1600 struct perf_evsel *evsel,
1601 struct perf_sample *sample,
1602 struct machine *machine)
1603{
1604 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1605
1606 if (sched->tp_handler->runtime_event)
1607 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1608
1609 return 0;
1610}
1611
1612static int perf_sched__process_fork_event(struct perf_tool *tool,
1613 union perf_event *event,
1614 struct perf_sample *sample,
1615 struct machine *machine)
1616{
1617 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1618
1619 /* run the fork event through the perf machineruy */
1620 perf_event__process_fork(tool, event, sample, machine);
1621
1622 /* and then run additional processing needed for this command */
1623 if (sched->tp_handler->fork_event)
1624 return sched->tp_handler->fork_event(sched, event, machine);
1625
1626 return 0;
1627}
1628
1629static int process_sched_migrate_task_event(struct perf_tool *tool,
1630 struct perf_evsel *evsel,
1631 struct perf_sample *sample,
1632 struct machine *machine)
1633{
1634 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1635
1636 if (sched->tp_handler->migrate_task_event)
1637 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1638
1639 return 0;
1640}
1641
1642typedef int (*tracepoint_handler)(struct perf_tool *tool,
1643 struct perf_evsel *evsel,
1644 struct perf_sample *sample,
1645 struct machine *machine);
1646
1647static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1648 union perf_event *event __maybe_unused,
1649 struct perf_sample *sample,
1650 struct perf_evsel *evsel,
1651 struct machine *machine)
1652{
1653 int err = 0;
1654
1655 if (evsel->handler != NULL) {
1656 tracepoint_handler f = evsel->handler;
1657 err = f(tool, evsel, sample, machine);
1658 }
1659
1660 return err;
1661}
1662
1663static int perf_sched__read_events(struct perf_sched *sched)
1664{
1665 const struct perf_evsel_str_handler handlers[] = {
1666 { "sched:sched_switch", process_sched_switch_event, },
1667 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1668 { "sched:sched_wakeup", process_sched_wakeup_event, },
1669 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1670 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1671 };
1672 struct perf_session *session;
1673 struct perf_data_file file = {
1674 .path = input_name,
1675 .mode = PERF_DATA_MODE_READ,
1676 .force = sched->force,
1677 };
1678 int rc = -1;
1679
1680 session = perf_session__new(&file, false, &sched->tool);
1681 if (session == NULL) {
1682 pr_debug("No Memory for session\n");
1683 return -1;
1684 }
1685
1686 symbol__init(&session->header.env);
1687
1688 if (perf_session__set_tracepoints_handlers(session, handlers))
1689 goto out_delete;
1690
1691 if (perf_session__has_traces(session, "record -R")) {
1692 int err = perf_session__process_events(session);
1693 if (err) {
1694 pr_err("Failed to process events, error %d", err);
1695 goto out_delete;
1696 }
1697
1698 sched->nr_events = session->evlist->stats.nr_events[0];
1699 sched->nr_lost_events = session->evlist->stats.total_lost;
1700 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1701 }
1702
1703 rc = 0;
1704out_delete:
1705 perf_session__delete(session);
1706 return rc;
1707}
1708
1709/*
1710 * scheduling times are printed as msec.usec
1711 */
1712static inline void print_sched_time(unsigned long long nsecs, int width)
1713{
1714 unsigned long msecs;
1715 unsigned long usecs;
1716
1717 msecs = nsecs / NSEC_PER_MSEC;
1718 nsecs -= msecs * NSEC_PER_MSEC;
1719 usecs = nsecs / NSEC_PER_USEC;
1720 printf("%*lu.%03lu ", width, msecs, usecs);
1721}
1722
1723/*
1724 * returns runtime data for event, allocating memory for it the
1725 * first time it is used.
1726 */
1727static struct evsel_runtime *perf_evsel__get_runtime(struct perf_evsel *evsel)
1728{
1729 struct evsel_runtime *r = evsel->priv;
1730
1731 if (r == NULL) {
1732 r = zalloc(sizeof(struct evsel_runtime));
1733 evsel->priv = r;
1734 }
1735
1736 return r;
1737}
1738
1739/*
1740 * save last time event was seen per cpu
1741 */
1742static void perf_evsel__save_time(struct perf_evsel *evsel,
1743 u64 timestamp, u32 cpu)
1744{
1745 struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1746
1747 if (r == NULL)
1748 return;
1749
1750 if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1751 int i, n = __roundup_pow_of_two(cpu+1);
1752 void *p = r->last_time;
1753
1754 p = realloc(r->last_time, n * sizeof(u64));
1755 if (!p)
1756 return;
1757
1758 r->last_time = p;
1759 for (i = r->ncpu; i < n; ++i)
1760 r->last_time[i] = (u64) 0;
1761
1762 r->ncpu = n;
1763 }
1764
1765 r->last_time[cpu] = timestamp;
1766}
1767
1768/* returns last time this event was seen on the given cpu */
1769static u64 perf_evsel__get_time(struct perf_evsel *evsel, u32 cpu)
1770{
1771 struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1772
1773 if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1774 return 0;
1775
1776 return r->last_time[cpu];
1777}
1778
1779static int comm_width = 30;
1780
1781static char *timehist_get_commstr(struct thread *thread)
1782{
1783 static char str[32];
1784 const char *comm = thread__comm_str(thread);
1785 pid_t tid = thread->tid;
1786 pid_t pid = thread->pid_;
1787 int n;
1788
1789 if (pid == 0)
1790 n = scnprintf(str, sizeof(str), "%s", comm);
1791
1792 else if (tid != pid)
1793 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1794
1795 else
1796 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1797
1798 if (n > comm_width)
1799 comm_width = n;
1800
1801 return str;
1802}
1803
1804static void timehist_header(struct perf_sched *sched)
1805{
1806 u32 ncpus = sched->max_cpu + 1;
1807 u32 i, j;
1808
1809 printf("%15s %6s ", "time", "cpu");
1810
1811 if (sched->show_cpu_visual) {
1812 printf(" ");
1813 for (i = 0, j = 0; i < ncpus; ++i) {
1814 printf("%x", j++);
1815 if (j > 15)
1816 j = 0;
1817 }
1818 printf(" ");
1819 }
1820
1821 printf(" %-*s %9s %9s %9s", comm_width,
1822 "task name", "wait time", "sch delay", "run time");
1823
1824 printf("\n");
1825
1826 /*
1827 * units row
1828 */
1829 printf("%15s %-6s ", "", "");
1830
1831 if (sched->show_cpu_visual)
1832 printf(" %*s ", ncpus, "");
1833
1834 printf(" %-*s %9s %9s %9s\n", comm_width,
1835 "[tid/pid]", "(msec)", "(msec)", "(msec)");
1836
1837 /*
1838 * separator
1839 */
1840 printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1841
1842 if (sched->show_cpu_visual)
1843 printf(" %.*s ", ncpus, graph_dotted_line);
1844
1845 printf(" %.*s %.9s %.9s %.9s", comm_width,
1846 graph_dotted_line, graph_dotted_line, graph_dotted_line,
1847 graph_dotted_line);
1848
1849 printf("\n");
1850}
1851
1852static void timehist_print_sample(struct perf_sched *sched,
1853 struct perf_sample *sample,
1854 struct addr_location *al,
1855 struct thread *thread,
1856 u64 t)
1857{
1858 struct thread_runtime *tr = thread__priv(thread);
1859 u32 max_cpus = sched->max_cpu + 1;
1860 char tstr[64];
1861
1862 timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
1863 printf("%15s [%04d] ", tstr, sample->cpu);
1864
1865 if (sched->show_cpu_visual) {
1866 u32 i;
1867 char c;
1868
1869 printf(" ");
1870 for (i = 0; i < max_cpus; ++i) {
1871 /* flag idle times with 'i'; others are sched events */
1872 if (i == sample->cpu)
1873 c = (thread->tid == 0) ? 'i' : 's';
1874 else
1875 c = ' ';
1876 printf("%c", c);
1877 }
1878 printf(" ");
1879 }
1880
1881 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
1882
1883 print_sched_time(tr->dt_wait, 6);
1884 print_sched_time(tr->dt_delay, 6);
1885 print_sched_time(tr->dt_run, 6);
1886
1887 if (sched->show_wakeups)
1888 printf(" %-*s", comm_width, "");
1889
1890 if (thread->tid == 0)
1891 goto out;
1892
1893 if (sched->show_callchain)
1894 printf(" ");
1895
1896 sample__fprintf_sym(sample, al, 0,
1897 EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
1898 EVSEL__PRINT_CALLCHAIN_ARROW |
1899 EVSEL__PRINT_SKIP_IGNORED,
1900 &callchain_cursor, stdout);
1901
1902out:
1903 printf("\n");
1904}
1905
1906/*
1907 * Explanation of delta-time stats:
1908 *
1909 * t = time of current schedule out event
1910 * tprev = time of previous sched out event
1911 * also time of schedule-in event for current task
1912 * last_time = time of last sched change event for current task
1913 * (i.e, time process was last scheduled out)
1914 * ready_to_run = time of wakeup for current task
1915 *
1916 * -----|------------|------------|------------|------
1917 * last ready tprev t
1918 * time to run
1919 *
1920 * |-------- dt_wait --------|
1921 * |- dt_delay -|-- dt_run --|
1922 *
1923 * dt_run = run time of current task
1924 * dt_wait = time between last schedule out event for task and tprev
1925 * represents time spent off the cpu
1926 * dt_delay = time between wakeup and schedule-in of task
1927 */
1928
1929static void timehist_update_runtime_stats(struct thread_runtime *r,
1930 u64 t, u64 tprev)
1931{
1932 r->dt_delay = 0;
1933 r->dt_wait = 0;
1934 r->dt_run = 0;
1935 if (tprev) {
1936 r->dt_run = t - tprev;
1937 if (r->ready_to_run) {
1938 if (r->ready_to_run > tprev)
1939 pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
1940 else
1941 r->dt_delay = tprev - r->ready_to_run;
1942 }
1943
1944 if (r->last_time > tprev)
1945 pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
1946 else if (r->last_time)
1947 r->dt_wait = tprev - r->last_time;
1948 }
1949
1950 update_stats(&r->run_stats, r->dt_run);
1951 r->total_run_time += r->dt_run;
1952}
1953
1954static bool is_idle_sample(struct perf_sample *sample,
1955 struct perf_evsel *evsel)
1956{
1957 /* pid 0 == swapper == idle task */
1958 if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0)
1959 return perf_evsel__intval(evsel, sample, "prev_pid") == 0;
1960
1961 return sample->pid == 0;
1962}
1963
1964static void save_task_callchain(struct perf_sched *sched,
1965 struct perf_sample *sample,
1966 struct perf_evsel *evsel,
1967 struct machine *machine)
1968{
1969 struct callchain_cursor *cursor = &callchain_cursor;
1970 struct thread *thread;
1971
1972 /* want main thread for process - has maps */
1973 thread = machine__findnew_thread(machine, sample->pid, sample->pid);
1974 if (thread == NULL) {
1975 pr_debug("Failed to get thread for pid %d.\n", sample->pid);
1976 return;
1977 }
1978
1979 if (!symbol_conf.use_callchain || sample->callchain == NULL)
1980 return;
1981
1982 if (thread__resolve_callchain(thread, cursor, evsel, sample,
1983 NULL, NULL, sched->max_stack + 2) != 0) {
1984 if (verbose)
1985 error("Failed to resolve callchain. Skipping\n");
1986
1987 return;
1988 }
1989
1990 callchain_cursor_commit(cursor);
1991
1992 while (true) {
1993 struct callchain_cursor_node *node;
1994 struct symbol *sym;
1995
1996 node = callchain_cursor_current(cursor);
1997 if (node == NULL)
1998 break;
1999
2000 sym = node->sym;
2001 if (sym && sym->name) {
2002 if (!strcmp(sym->name, "schedule") ||
2003 !strcmp(sym->name, "__schedule") ||
2004 !strcmp(sym->name, "preempt_schedule"))
2005 sym->ignore = 1;
2006 }
2007
2008 callchain_cursor_advance(cursor);
2009 }
2010}
2011
2012static int init_idle_thread(struct thread *thread)
2013{
2014 struct idle_thread_runtime *itr;
2015
2016 thread__set_comm(thread, idle_comm, 0);
2017
2018 itr = zalloc(sizeof(*itr));
2019 if (itr == NULL)
2020 return -ENOMEM;
2021
2022 init_stats(&itr->tr.run_stats);
2023 callchain_init(&itr->callchain);
2024 callchain_cursor_reset(&itr->cursor);
2025 thread__set_priv(thread, itr);
2026
2027 return 0;
2028}
2029
2030/*
2031 * Track idle stats per cpu by maintaining a local thread
2032 * struct for the idle task on each cpu.
2033 */
2034static int init_idle_threads(int ncpu)
2035{
2036 int i, ret;
2037
2038 idle_threads = zalloc(ncpu * sizeof(struct thread *));
2039 if (!idle_threads)
2040 return -ENOMEM;
2041
2042 idle_max_cpu = ncpu;
2043
2044 /* allocate the actual thread struct if needed */
2045 for (i = 0; i < ncpu; ++i) {
2046 idle_threads[i] = thread__new(0, 0);
2047 if (idle_threads[i] == NULL)
2048 return -ENOMEM;
2049
2050 ret = init_idle_thread(idle_threads[i]);
2051 if (ret < 0)
2052 return ret;
2053 }
2054
2055 return 0;
2056}
2057
2058static void free_idle_threads(void)
2059{
2060 int i;
2061
2062 if (idle_threads == NULL)
2063 return;
2064
2065 for (i = 0; i < idle_max_cpu; ++i) {
2066 if ((idle_threads[i]))
2067 thread__delete(idle_threads[i]);
2068 }
2069
2070 free(idle_threads);
2071}
2072
2073static struct thread *get_idle_thread(int cpu)
2074{
2075 /*
2076 * expand/allocate array of pointers to local thread
2077 * structs if needed
2078 */
2079 if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2080 int i, j = __roundup_pow_of_two(cpu+1);
2081 void *p;
2082
2083 p = realloc(idle_threads, j * sizeof(struct thread *));
2084 if (!p)
2085 return NULL;
2086
2087 idle_threads = (struct thread **) p;
2088 for (i = idle_max_cpu; i < j; ++i)
2089 idle_threads[i] = NULL;
2090
2091 idle_max_cpu = j;
2092 }
2093
2094 /* allocate a new thread struct if needed */
2095 if (idle_threads[cpu] == NULL) {
2096 idle_threads[cpu] = thread__new(0, 0);
2097
2098 if (idle_threads[cpu]) {
2099 if (init_idle_thread(idle_threads[cpu]) < 0)
2100 return NULL;
2101 }
2102 }
2103
2104 return idle_threads[cpu];
2105}
2106
2107static void save_idle_callchain(struct idle_thread_runtime *itr,
2108 struct perf_sample *sample)
2109{
2110 if (!symbol_conf.use_callchain || sample->callchain == NULL)
2111 return;
2112
2113 callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2114}
2115
2116/*
2117 * handle runtime stats saved per thread
2118 */
2119static struct thread_runtime *thread__init_runtime(struct thread *thread)
2120{
2121 struct thread_runtime *r;
2122
2123 r = zalloc(sizeof(struct thread_runtime));
2124 if (!r)
2125 return NULL;
2126
2127 init_stats(&r->run_stats);
2128 thread__set_priv(thread, r);
2129
2130 return r;
2131}
2132
2133static struct thread_runtime *thread__get_runtime(struct thread *thread)
2134{
2135 struct thread_runtime *tr;
2136
2137 tr = thread__priv(thread);
2138 if (tr == NULL) {
2139 tr = thread__init_runtime(thread);
2140 if (tr == NULL)
2141 pr_debug("Failed to malloc memory for runtime data.\n");
2142 }
2143
2144 return tr;
2145}
2146
2147static struct thread *timehist_get_thread(struct perf_sched *sched,
2148 struct perf_sample *sample,
2149 struct machine *machine,
2150 struct perf_evsel *evsel)
2151{
2152 struct thread *thread;
2153
2154 if (is_idle_sample(sample, evsel)) {
2155 thread = get_idle_thread(sample->cpu);
2156 if (thread == NULL)
2157 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2158
2159 } else {
2160 /* there were samples with tid 0 but non-zero pid */
2161 thread = machine__findnew_thread(machine, sample->pid,
2162 sample->tid ?: sample->pid);
2163 if (thread == NULL) {
2164 pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2165 sample->tid);
2166 }
2167
2168 save_task_callchain(sched, sample, evsel, machine);
2169 if (sched->idle_hist) {
2170 struct thread *idle;
2171 struct idle_thread_runtime *itr;
2172
2173 idle = get_idle_thread(sample->cpu);
2174 if (idle == NULL) {
2175 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2176 return NULL;
2177 }
2178
2179 itr = thread__priv(idle);
2180 if (itr == NULL)
2181 return NULL;
2182
2183 itr->last_thread = thread;
2184
2185 /* copy task callchain when entering to idle */
2186 if (perf_evsel__intval(evsel, sample, "next_pid") == 0)
2187 save_idle_callchain(itr, sample);
2188 }
2189 }
2190
2191 return thread;
2192}
2193
2194static bool timehist_skip_sample(struct perf_sched *sched,
2195 struct thread *thread,
2196 struct perf_evsel *evsel,
2197 struct perf_sample *sample)
2198{
2199 bool rc = false;
2200
2201 if (thread__is_filtered(thread)) {
2202 rc = true;
2203 sched->skipped_samples++;
2204 }
2205
2206 if (sched->idle_hist) {
2207 if (strcmp(perf_evsel__name(evsel), "sched:sched_switch"))
2208 rc = true;
2209 else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 &&
2210 perf_evsel__intval(evsel, sample, "next_pid") != 0)
2211 rc = true;
2212 }
2213
2214 return rc;
2215}
2216
2217static void timehist_print_wakeup_event(struct perf_sched *sched,
2218 struct perf_evsel *evsel,
2219 struct perf_sample *sample,
2220 struct machine *machine,
2221 struct thread *awakened)
2222{
2223 struct thread *thread;
2224 char tstr[64];
2225
2226 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2227 if (thread == NULL)
2228 return;
2229
2230 /* show wakeup unless both awakee and awaker are filtered */
2231 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2232 timehist_skip_sample(sched, awakened, evsel, sample)) {
2233 return;
2234 }
2235
2236 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2237 printf("%15s [%04d] ", tstr, sample->cpu);
2238 if (sched->show_cpu_visual)
2239 printf(" %*s ", sched->max_cpu + 1, "");
2240
2241 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2242
2243 /* dt spacer */
2244 printf(" %9s %9s %9s ", "", "", "");
2245
2246 printf("awakened: %s", timehist_get_commstr(awakened));
2247
2248 printf("\n");
2249}
2250
2251static int timehist_sched_wakeup_event(struct perf_tool *tool,
2252 union perf_event *event __maybe_unused,
2253 struct perf_evsel *evsel,
2254 struct perf_sample *sample,
2255 struct machine *machine)
2256{
2257 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2258 struct thread *thread;
2259 struct thread_runtime *tr = NULL;
2260 /* want pid of awakened task not pid in sample */
2261 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2262
2263 thread = machine__findnew_thread(machine, 0, pid);
2264 if (thread == NULL)
2265 return -1;
2266
2267 tr = thread__get_runtime(thread);
2268 if (tr == NULL)
2269 return -1;
2270
2271 if (tr->ready_to_run == 0)
2272 tr->ready_to_run = sample->time;
2273
2274 /* show wakeups if requested */
2275 if (sched->show_wakeups &&
2276 !perf_time__skip_sample(&sched->ptime, sample->time))
2277 timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2278
2279 return 0;
2280}
2281
2282static void timehist_print_migration_event(struct perf_sched *sched,
2283 struct perf_evsel *evsel,
2284 struct perf_sample *sample,
2285 struct machine *machine,
2286 struct thread *migrated)
2287{
2288 struct thread *thread;
2289 char tstr[64];
2290 u32 max_cpus = sched->max_cpu + 1;
2291 u32 ocpu, dcpu;
2292
2293 if (sched->summary_only)
2294 return;
2295
2296 max_cpus = sched->max_cpu + 1;
2297 ocpu = perf_evsel__intval(evsel, sample, "orig_cpu");
2298 dcpu = perf_evsel__intval(evsel, sample, "dest_cpu");
2299
2300 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2301 if (thread == NULL)
2302 return;
2303
2304 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2305 timehist_skip_sample(sched, migrated, evsel, sample)) {
2306 return;
2307 }
2308
2309 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2310 printf("%15s [%04d] ", tstr, sample->cpu);
2311
2312 if (sched->show_cpu_visual) {
2313 u32 i;
2314 char c;
2315
2316 printf(" ");
2317 for (i = 0; i < max_cpus; ++i) {
2318 c = (i == sample->cpu) ? 'm' : ' ';
2319 printf("%c", c);
2320 }
2321 printf(" ");
2322 }
2323
2324 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2325
2326 /* dt spacer */
2327 printf(" %9s %9s %9s ", "", "", "");
2328
2329 printf("migrated: %s", timehist_get_commstr(migrated));
2330 printf(" cpu %d => %d", ocpu, dcpu);
2331
2332 printf("\n");
2333}
2334
2335static int timehist_migrate_task_event(struct perf_tool *tool,
2336 union perf_event *event __maybe_unused,
2337 struct perf_evsel *evsel,
2338 struct perf_sample *sample,
2339 struct machine *machine)
2340{
2341 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2342 struct thread *thread;
2343 struct thread_runtime *tr = NULL;
2344 /* want pid of migrated task not pid in sample */
2345 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2346
2347 thread = machine__findnew_thread(machine, 0, pid);
2348 if (thread == NULL)
2349 return -1;
2350
2351 tr = thread__get_runtime(thread);
2352 if (tr == NULL)
2353 return -1;
2354
2355 tr->migrations++;
2356
2357 /* show migrations if requested */
2358 timehist_print_migration_event(sched, evsel, sample, machine, thread);
2359
2360 return 0;
2361}
2362
2363static int timehist_sched_change_event(struct perf_tool *tool,
2364 union perf_event *event,
2365 struct perf_evsel *evsel,
2366 struct perf_sample *sample,
2367 struct machine *machine)
2368{
2369 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2370 struct perf_time_interval *ptime = &sched->ptime;
2371 struct addr_location al;
2372 struct thread *thread;
2373 struct thread_runtime *tr = NULL;
2374 u64 tprev, t = sample->time;
2375 int rc = 0;
2376
2377 if (machine__resolve(machine, &al, sample) < 0) {
2378 pr_err("problem processing %d event. skipping it\n",
2379 event->header.type);
2380 rc = -1;
2381 goto out;
2382 }
2383
2384 thread = timehist_get_thread(sched, sample, machine, evsel);
2385 if (thread == NULL) {
2386 rc = -1;
2387 goto out;
2388 }
2389
2390 if (timehist_skip_sample(sched, thread, evsel, sample))
2391 goto out;
2392
2393 tr = thread__get_runtime(thread);
2394 if (tr == NULL) {
2395 rc = -1;
2396 goto out;
2397 }
2398
2399 tprev = perf_evsel__get_time(evsel, sample->cpu);
2400
2401 /*
2402 * If start time given:
2403 * - sample time is under window user cares about - skip sample
2404 * - tprev is under window user cares about - reset to start of window
2405 */
2406 if (ptime->start && ptime->start > t)
2407 goto out;
2408
2409 if (tprev && ptime->start > tprev)
2410 tprev = ptime->start;
2411
2412 /*
2413 * If end time given:
2414 * - previous sched event is out of window - we are done
2415 * - sample time is beyond window user cares about - reset it
2416 * to close out stats for time window interest
2417 */
2418 if (ptime->end) {
2419 if (tprev > ptime->end)
2420 goto out;
2421
2422 if (t > ptime->end)
2423 t = ptime->end;
2424 }
2425
2426 if (!sched->idle_hist || thread->tid == 0) {
2427 timehist_update_runtime_stats(tr, t, tprev);
2428
2429 if (sched->idle_hist) {
2430 struct idle_thread_runtime *itr = (void *)tr;
2431 struct thread_runtime *last_tr;
2432
2433 BUG_ON(thread->tid != 0);
2434
2435 if (itr->last_thread == NULL)
2436 goto out;
2437
2438 /* add current idle time as last thread's runtime */
2439 last_tr = thread__get_runtime(itr->last_thread);
2440 if (last_tr == NULL)
2441 goto out;
2442
2443 timehist_update_runtime_stats(last_tr, t, tprev);
2444 /*
2445 * remove delta time of last thread as it's not updated
2446 * and otherwise it will show an invalid value next
2447 * time. we only care total run time and run stat.
2448 */
2449 last_tr->dt_run = 0;
2450 last_tr->dt_wait = 0;
2451 last_tr->dt_delay = 0;
2452
2453 if (itr->cursor.nr)
2454 callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2455
2456 itr->last_thread = NULL;
2457 }
2458 }
2459
2460 if (!sched->summary_only)
2461 timehist_print_sample(sched, sample, &al, thread, t);
2462
2463out:
2464 if (sched->hist_time.start == 0 && t >= ptime->start)
2465 sched->hist_time.start = t;
2466 if (ptime->end == 0 || t <= ptime->end)
2467 sched->hist_time.end = t;
2468
2469 if (tr) {
2470 /* time of this sched_switch event becomes last time task seen */
2471 tr->last_time = sample->time;
2472
2473 /* sched out event for task so reset ready to run time */
2474 tr->ready_to_run = 0;
2475 }
2476
2477 perf_evsel__save_time(evsel, sample->time, sample->cpu);
2478
2479 return rc;
2480}
2481
2482static int timehist_sched_switch_event(struct perf_tool *tool,
2483 union perf_event *event,
2484 struct perf_evsel *evsel,
2485 struct perf_sample *sample,
2486 struct machine *machine __maybe_unused)
2487{
2488 return timehist_sched_change_event(tool, event, evsel, sample, machine);
2489}
2490
2491static int process_lost(struct perf_tool *tool __maybe_unused,
2492 union perf_event *event,
2493 struct perf_sample *sample,
2494 struct machine *machine __maybe_unused)
2495{
2496 char tstr[64];
2497
2498 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2499 printf("%15s ", tstr);
2500 printf("lost %" PRIu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2501
2502 return 0;
2503}
2504
2505
2506static void print_thread_runtime(struct thread *t,
2507 struct thread_runtime *r)
2508{
2509 double mean = avg_stats(&r->run_stats);
2510 float stddev;
2511
2512 printf("%*s %5d %9" PRIu64 " ",
2513 comm_width, timehist_get_commstr(t), t->ppid,
2514 (u64) r->run_stats.n);
2515
2516 print_sched_time(r->total_run_time, 8);
2517 stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2518 print_sched_time(r->run_stats.min, 6);
2519 printf(" ");
2520 print_sched_time((u64) mean, 6);
2521 printf(" ");
2522 print_sched_time(r->run_stats.max, 6);
2523 printf(" ");
2524 printf("%5.2f", stddev);
2525 printf(" %5" PRIu64, r->migrations);
2526 printf("\n");
2527}
2528
2529struct total_run_stats {
2530 u64 sched_count;
2531 u64 task_count;
2532 u64 total_run_time;
2533};
2534
2535static int __show_thread_runtime(struct thread *t, void *priv)
2536{
2537 struct total_run_stats *stats = priv;
2538 struct thread_runtime *r;
2539
2540 if (thread__is_filtered(t))
2541 return 0;
2542
2543 r = thread__priv(t);
2544 if (r && r->run_stats.n) {
2545 stats->task_count++;
2546 stats->sched_count += r->run_stats.n;
2547 stats->total_run_time += r->total_run_time;
2548 print_thread_runtime(t, r);
2549 }
2550
2551 return 0;
2552}
2553
2554static int show_thread_runtime(struct thread *t, void *priv)
2555{
2556 if (t->dead)
2557 return 0;
2558
2559 return __show_thread_runtime(t, priv);
2560}
2561
2562static int show_deadthread_runtime(struct thread *t, void *priv)
2563{
2564 if (!t->dead)
2565 return 0;
2566
2567 return __show_thread_runtime(t, priv);
2568}
2569
2570static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2571{
2572 const char *sep = " <- ";
2573 struct callchain_list *chain;
2574 size_t ret = 0;
2575 char bf[1024];
2576 bool first;
2577
2578 if (node == NULL)
2579 return 0;
2580
2581 ret = callchain__fprintf_folded(fp, node->parent);
2582 first = (ret == 0);
2583
2584 list_for_each_entry(chain, &node->val, list) {
2585 if (chain->ip >= PERF_CONTEXT_MAX)
2586 continue;
2587 if (chain->ms.sym && chain->ms.sym->ignore)
2588 continue;
2589 ret += fprintf(fp, "%s%s", first ? "" : sep,
2590 callchain_list__sym_name(chain, bf, sizeof(bf),
2591 false));
2592 first = false;
2593 }
2594
2595 return ret;
2596}
2597
2598static size_t timehist_print_idlehist_callchain(struct rb_root *root)
2599{
2600 size_t ret = 0;
2601 FILE *fp = stdout;
2602 struct callchain_node *chain;
2603 struct rb_node *rb_node = rb_first(root);
2604
2605 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains");
2606 printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line,
2607 graph_dotted_line);
2608
2609 while (rb_node) {
2610 chain = rb_entry(rb_node, struct callchain_node, rb_node);
2611 rb_node = rb_next(rb_node);
2612
2613 ret += fprintf(fp, " ");
2614 print_sched_time(chain->hit, 12);
2615 ret += 16; /* print_sched_time returns 2nd arg + 4 */
2616 ret += fprintf(fp, " %8d ", chain->count);
2617 ret += callchain__fprintf_folded(fp, chain);
2618 ret += fprintf(fp, "\n");
2619 }
2620
2621 return ret;
2622}
2623
2624static void timehist_print_summary(struct perf_sched *sched,
2625 struct perf_session *session)
2626{
2627 struct machine *m = &session->machines.host;
2628 struct total_run_stats totals;
2629 u64 task_count;
2630 struct thread *t;
2631 struct thread_runtime *r;
2632 int i;
2633 u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2634
2635 memset(&totals, 0, sizeof(totals));
2636
2637 if (sched->idle_hist) {
2638 printf("\nIdle-time summary\n");
2639 printf("%*s parent sched-out ", comm_width, "comm");
2640 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n");
2641 } else {
2642 printf("\nRuntime summary\n");
2643 printf("%*s parent sched-in ", comm_width, "comm");
2644 printf(" run-time min-run avg-run max-run stddev migrations\n");
2645 }
2646 printf("%*s (count) ", comm_width, "");
2647 printf(" (msec) (msec) (msec) (msec) %%\n");
2648 printf("%.117s\n", graph_dotted_line);
2649
2650 machine__for_each_thread(m, show_thread_runtime, &totals);
2651 task_count = totals.task_count;
2652 if (!task_count)
2653 printf("<no still running tasks>\n");
2654
2655 printf("\nTerminated tasks:\n");
2656 machine__for_each_thread(m, show_deadthread_runtime, &totals);
2657 if (task_count == totals.task_count)
2658 printf("<no terminated tasks>\n");
2659
2660 /* CPU idle stats not tracked when samples were skipped */
2661 if (sched->skipped_samples && !sched->idle_hist)
2662 return;
2663
2664 printf("\nIdle stats:\n");
2665 for (i = 0; i < idle_max_cpu; ++i) {
2666 t = idle_threads[i];
2667 if (!t)
2668 continue;
2669
2670 r = thread__priv(t);
2671 if (r && r->run_stats.n) {
2672 totals.sched_count += r->run_stats.n;
2673 printf(" CPU %2d idle for ", i);
2674 print_sched_time(r->total_run_time, 6);
2675 printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2676 } else
2677 printf(" CPU %2d idle entire time window\n", i);
2678 }
2679
2680 if (sched->idle_hist && symbol_conf.use_callchain) {
2681 callchain_param.mode = CHAIN_FOLDED;
2682 callchain_param.value = CCVAL_PERIOD;
2683
2684 callchain_register_param(&callchain_param);
2685
2686 printf("\nIdle stats by callchain:\n");
2687 for (i = 0; i < idle_max_cpu; ++i) {
2688 struct idle_thread_runtime *itr;
2689
2690 t = idle_threads[i];
2691 if (!t)
2692 continue;
2693
2694 itr = thread__priv(t);
2695 if (itr == NULL)
2696 continue;
2697
2698 callchain_param.sort(&itr->sorted_root, &itr->callchain,
2699 0, &callchain_param);
2700
2701 printf(" CPU %2d:", i);
2702 print_sched_time(itr->tr.total_run_time, 6);
2703 printf(" msec\n");
2704 timehist_print_idlehist_callchain(&itr->sorted_root);
2705 printf("\n");
2706 }
2707 }
2708
2709 printf("\n"
2710 " Total number of unique tasks: %" PRIu64 "\n"
2711 "Total number of context switches: %" PRIu64 "\n",
2712 totals.task_count, totals.sched_count);
2713
2714 printf(" Total run time (msec): ");
2715 print_sched_time(totals.total_run_time, 2);
2716 printf("\n");
2717
2718 printf(" Total scheduling time (msec): ");
2719 print_sched_time(hist_time, 2);
2720 printf(" (x %d)\n", sched->max_cpu);
2721}
2722
2723typedef int (*sched_handler)(struct perf_tool *tool,
2724 union perf_event *event,
2725 struct perf_evsel *evsel,
2726 struct perf_sample *sample,
2727 struct machine *machine);
2728
2729static int perf_timehist__process_sample(struct perf_tool *tool,
2730 union perf_event *event,
2731 struct perf_sample *sample,
2732 struct perf_evsel *evsel,
2733 struct machine *machine)
2734{
2735 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2736 int err = 0;
2737 int this_cpu = sample->cpu;
2738
2739 if (this_cpu > sched->max_cpu)
2740 sched->max_cpu = this_cpu;
2741
2742 if (evsel->handler != NULL) {
2743 sched_handler f = evsel->handler;
2744
2745 err = f(tool, event, evsel, sample, machine);
2746 }
2747
2748 return err;
2749}
2750
2751static int timehist_check_attr(struct perf_sched *sched,
2752 struct perf_evlist *evlist)
2753{
2754 struct perf_evsel *evsel;
2755 struct evsel_runtime *er;
2756
2757 list_for_each_entry(evsel, &evlist->entries, node) {
2758 er = perf_evsel__get_runtime(evsel);
2759 if (er == NULL) {
2760 pr_err("Failed to allocate memory for evsel runtime data\n");
2761 return -1;
2762 }
2763
2764 if (sched->show_callchain &&
2765 !(evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN)) {
2766 pr_info("Samples do not have callchains.\n");
2767 sched->show_callchain = 0;
2768 symbol_conf.use_callchain = 0;
2769 }
2770 }
2771
2772 return 0;
2773}
2774
2775static int perf_sched__timehist(struct perf_sched *sched)
2776{
2777 const struct perf_evsel_str_handler handlers[] = {
2778 { "sched:sched_switch", timehist_sched_switch_event, },
2779 { "sched:sched_wakeup", timehist_sched_wakeup_event, },
2780 { "sched:sched_wakeup_new", timehist_sched_wakeup_event, },
2781 };
2782 const struct perf_evsel_str_handler migrate_handlers[] = {
2783 { "sched:sched_migrate_task", timehist_migrate_task_event, },
2784 };
2785 struct perf_data_file file = {
2786 .path = input_name,
2787 .mode = PERF_DATA_MODE_READ,
2788 .force = sched->force,
2789 };
2790
2791 struct perf_session *session;
2792 struct perf_evlist *evlist;
2793 int err = -1;
2794
2795 /*
2796 * event handlers for timehist option
2797 */
2798 sched->tool.sample = perf_timehist__process_sample;
2799 sched->tool.mmap = perf_event__process_mmap;
2800 sched->tool.comm = perf_event__process_comm;
2801 sched->tool.exit = perf_event__process_exit;
2802 sched->tool.fork = perf_event__process_fork;
2803 sched->tool.lost = process_lost;
2804 sched->tool.attr = perf_event__process_attr;
2805 sched->tool.tracing_data = perf_event__process_tracing_data;
2806 sched->tool.build_id = perf_event__process_build_id;
2807
2808 sched->tool.ordered_events = true;
2809 sched->tool.ordering_requires_timestamps = true;
2810
2811 symbol_conf.use_callchain = sched->show_callchain;
2812
2813 session = perf_session__new(&file, false, &sched->tool);
2814 if (session == NULL)
2815 return -ENOMEM;
2816
2817 evlist = session->evlist;
2818
2819 symbol__init(&session->header.env);
2820
2821 if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
2822 pr_err("Invalid time string\n");
2823 return -EINVAL;
2824 }
2825
2826 if (timehist_check_attr(sched, evlist) != 0)
2827 goto out;
2828
2829 setup_pager();
2830
2831 /* setup per-evsel handlers */
2832 if (perf_session__set_tracepoints_handlers(session, handlers))
2833 goto out;
2834
2835 /* sched_switch event at a minimum needs to exist */
2836 if (!perf_evlist__find_tracepoint_by_name(session->evlist,
2837 "sched:sched_switch")) {
2838 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
2839 goto out;
2840 }
2841
2842 if (sched->show_migrations &&
2843 perf_session__set_tracepoints_handlers(session, migrate_handlers))
2844 goto out;
2845
2846 /* pre-allocate struct for per-CPU idle stats */
2847 sched->max_cpu = session->header.env.nr_cpus_online;
2848 if (sched->max_cpu == 0)
2849 sched->max_cpu = 4;
2850 if (init_idle_threads(sched->max_cpu))
2851 goto out;
2852
2853 /* summary_only implies summary option, but don't overwrite summary if set */
2854 if (sched->summary_only)
2855 sched->summary = sched->summary_only;
2856
2857 if (!sched->summary_only)
2858 timehist_header(sched);
2859
2860 err = perf_session__process_events(session);
2861 if (err) {
2862 pr_err("Failed to process events, error %d", err);
2863 goto out;
2864 }
2865
2866 sched->nr_events = evlist->stats.nr_events[0];
2867 sched->nr_lost_events = evlist->stats.total_lost;
2868 sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
2869
2870 if (sched->summary)
2871 timehist_print_summary(sched, session);
2872
2873out:
2874 free_idle_threads();
2875 perf_session__delete(session);
2876
2877 return err;
2878}
2879
2880
2881static void print_bad_events(struct perf_sched *sched)
2882{
2883 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
2884 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
2885 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
2886 sched->nr_unordered_timestamps, sched->nr_timestamps);
2887 }
2888 if (sched->nr_lost_events && sched->nr_events) {
2889 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
2890 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
2891 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
2892 }
2893 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
2894 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
2895 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
2896 sched->nr_context_switch_bugs, sched->nr_timestamps);
2897 if (sched->nr_lost_events)
2898 printf(" (due to lost events?)");
2899 printf("\n");
2900 }
2901}
2902
2903static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data)
2904{
2905 struct rb_node **new = &(root->rb_node), *parent = NULL;
2906 struct work_atoms *this;
2907 const char *comm = thread__comm_str(data->thread), *this_comm;
2908
2909 while (*new) {
2910 int cmp;
2911
2912 this = container_of(*new, struct work_atoms, node);
2913 parent = *new;
2914
2915 this_comm = thread__comm_str(this->thread);
2916 cmp = strcmp(comm, this_comm);
2917 if (cmp > 0) {
2918 new = &((*new)->rb_left);
2919 } else if (cmp < 0) {
2920 new = &((*new)->rb_right);
2921 } else {
2922 this->num_merged++;
2923 this->total_runtime += data->total_runtime;
2924 this->nb_atoms += data->nb_atoms;
2925 this->total_lat += data->total_lat;
2926 list_splice(&data->work_list, &this->work_list);
2927 if (this->max_lat < data->max_lat) {
2928 this->max_lat = data->max_lat;
2929 this->max_lat_at = data->max_lat_at;
2930 }
2931 zfree(&data);
2932 return;
2933 }
2934 }
2935
2936 data->num_merged++;
2937 rb_link_node(&data->node, parent, new);
2938 rb_insert_color(&data->node, root);
2939}
2940
2941static void perf_sched__merge_lat(struct perf_sched *sched)
2942{
2943 struct work_atoms *data;
2944 struct rb_node *node;
2945
2946 if (sched->skip_merge)
2947 return;
2948
2949 while ((node = rb_first(&sched->atom_root))) {
2950 rb_erase(node, &sched->atom_root);
2951 data = rb_entry(node, struct work_atoms, node);
2952 __merge_work_atoms(&sched->merged_atom_root, data);
2953 }
2954}
2955
2956static int perf_sched__lat(struct perf_sched *sched)
2957{
2958 struct rb_node *next;
2959
2960 setup_pager();
2961
2962 if (perf_sched__read_events(sched))
2963 return -1;
2964
2965 perf_sched__merge_lat(sched);
2966 perf_sched__sort_lat(sched);
2967
2968 printf("\n -----------------------------------------------------------------------------------------------------------------\n");
2969 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
2970 printf(" -----------------------------------------------------------------------------------------------------------------\n");
2971
2972 next = rb_first(&sched->sorted_atom_root);
2973
2974 while (next) {
2975 struct work_atoms *work_list;
2976
2977 work_list = rb_entry(next, struct work_atoms, node);
2978 output_lat_thread(sched, work_list);
2979 next = rb_next(next);
2980 thread__zput(work_list->thread);
2981 }
2982
2983 printf(" -----------------------------------------------------------------------------------------------------------------\n");
2984 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
2985 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
2986
2987 printf(" ---------------------------------------------------\n");
2988
2989 print_bad_events(sched);
2990 printf("\n");
2991
2992 return 0;
2993}
2994
2995static int setup_map_cpus(struct perf_sched *sched)
2996{
2997 struct cpu_map *map;
2998
2999 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
3000
3001 if (sched->map.comp) {
3002 sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3003 if (!sched->map.comp_cpus)
3004 return -1;
3005 }
3006
3007 if (!sched->map.cpus_str)
3008 return 0;
3009
3010 map = cpu_map__new(sched->map.cpus_str);
3011 if (!map) {
3012 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3013 return -1;
3014 }
3015
3016 sched->map.cpus = map;
3017 return 0;
3018}
3019
3020static int setup_color_pids(struct perf_sched *sched)
3021{
3022 struct thread_map *map;
3023
3024 if (!sched->map.color_pids_str)
3025 return 0;
3026
3027 map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3028 if (!map) {
3029 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3030 return -1;
3031 }
3032
3033 sched->map.color_pids = map;
3034 return 0;
3035}
3036
3037static int setup_color_cpus(struct perf_sched *sched)
3038{
3039 struct cpu_map *map;
3040
3041 if (!sched->map.color_cpus_str)
3042 return 0;
3043
3044 map = cpu_map__new(sched->map.color_cpus_str);
3045 if (!map) {
3046 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3047 return -1;
3048 }
3049
3050 sched->map.color_cpus = map;
3051 return 0;
3052}
3053
3054static int perf_sched__map(struct perf_sched *sched)
3055{
3056 if (setup_map_cpus(sched))
3057 return -1;
3058
3059 if (setup_color_pids(sched))
3060 return -1;
3061
3062 if (setup_color_cpus(sched))
3063 return -1;
3064
3065 setup_pager();
3066 if (perf_sched__read_events(sched))
3067 return -1;
3068 print_bad_events(sched);
3069 return 0;
3070}
3071
3072static int perf_sched__replay(struct perf_sched *sched)
3073{
3074 unsigned long i;
3075
3076 calibrate_run_measurement_overhead(sched);
3077 calibrate_sleep_measurement_overhead(sched);
3078
3079 test_calibrations(sched);
3080
3081 if (perf_sched__read_events(sched))
3082 return -1;
3083
3084 printf("nr_run_events: %ld\n", sched->nr_run_events);
3085 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
3086 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
3087
3088 if (sched->targetless_wakeups)
3089 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
3090 if (sched->multitarget_wakeups)
3091 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3092 if (sched->nr_run_events_optimized)
3093 printf("run atoms optimized: %ld\n",
3094 sched->nr_run_events_optimized);
3095
3096 print_task_traces(sched);
3097 add_cross_task_wakeups(sched);
3098
3099 create_tasks(sched);
3100 printf("------------------------------------------------------------\n");
3101 for (i = 0; i < sched->replay_repeat; i++)
3102 run_one_test(sched);
3103
3104 return 0;
3105}
3106
3107static void setup_sorting(struct perf_sched *sched, const struct option *options,
3108 const char * const usage_msg[])
3109{
3110 char *tmp, *tok, *str = strdup(sched->sort_order);
3111
3112 for (tok = strtok_r(str, ", ", &tmp);
3113 tok; tok = strtok_r(NULL, ", ", &tmp)) {
3114 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3115 usage_with_options_msg(usage_msg, options,
3116 "Unknown --sort key: `%s'", tok);
3117 }
3118 }
3119
3120 free(str);
3121
3122 sort_dimension__add("pid", &sched->cmp_pid);
3123}
3124
3125static int __cmd_record(int argc, const char **argv)
3126{
3127 unsigned int rec_argc, i, j;
3128 const char **rec_argv;
3129 const char * const record_args[] = {
3130 "record",
3131 "-a",
3132 "-R",
3133 "-m", "1024",
3134 "-c", "1",
3135 "-e", "sched:sched_switch",
3136 "-e", "sched:sched_stat_wait",
3137 "-e", "sched:sched_stat_sleep",
3138 "-e", "sched:sched_stat_iowait",
3139 "-e", "sched:sched_stat_runtime",
3140 "-e", "sched:sched_process_fork",
3141 "-e", "sched:sched_wakeup",
3142 "-e", "sched:sched_wakeup_new",
3143 "-e", "sched:sched_migrate_task",
3144 };
3145
3146 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
3147 rec_argv = calloc(rec_argc + 1, sizeof(char *));
3148
3149 if (rec_argv == NULL)
3150 return -ENOMEM;
3151
3152 for (i = 0; i < ARRAY_SIZE(record_args); i++)
3153 rec_argv[i] = strdup(record_args[i]);
3154
3155 for (j = 1; j < (unsigned int)argc; j++, i++)
3156 rec_argv[i] = argv[j];
3157
3158 BUG_ON(i != rec_argc);
3159
3160 return cmd_record(i, rec_argv, NULL);
3161}
3162
3163int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
3164{
3165 const char default_sort_order[] = "avg, max, switch, runtime";
3166 struct perf_sched sched = {
3167 .tool = {
3168 .sample = perf_sched__process_tracepoint_sample,
3169 .comm = perf_event__process_comm,
3170 .lost = perf_event__process_lost,
3171 .fork = perf_sched__process_fork_event,
3172 .ordered_events = true,
3173 },
3174 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
3175 .sort_list = LIST_HEAD_INIT(sched.sort_list),
3176 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
3177 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3178 .sort_order = default_sort_order,
3179 .replay_repeat = 10,
3180 .profile_cpu = -1,
3181 .next_shortname1 = 'A',
3182 .next_shortname2 = '0',
3183 .skip_merge = 0,
3184 .show_callchain = 1,
3185 .max_stack = 5,
3186 };
3187 const struct option sched_options[] = {
3188 OPT_STRING('i', "input", &input_name, "file",
3189 "input file name"),
3190 OPT_INCR('v', "verbose", &verbose,
3191 "be more verbose (show symbol address, etc)"),
3192 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3193 "dump raw trace in ASCII"),
3194 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3195 OPT_END()
3196 };
3197 const struct option latency_options[] = {
3198 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3199 "sort by key(s): runtime, switch, avg, max"),
3200 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3201 "CPU to profile on"),
3202 OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3203 "latency stats per pid instead of per comm"),
3204 OPT_PARENT(sched_options)
3205 };
3206 const struct option replay_options[] = {
3207 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3208 "repeat the workload replay N times (-1: infinite)"),
3209 OPT_PARENT(sched_options)
3210 };
3211 const struct option map_options[] = {
3212 OPT_BOOLEAN(0, "compact", &sched.map.comp,
3213 "map output in compact mode"),
3214 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3215 "highlight given pids in map"),
3216 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3217 "highlight given CPUs in map"),
3218 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3219 "display given CPUs in map"),
3220 OPT_PARENT(sched_options)
3221 };
3222 const struct option timehist_options[] = {
3223 OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3224 "file", "vmlinux pathname"),
3225 OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3226 "file", "kallsyms pathname"),
3227 OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3228 "Display call chains if present (default on)"),
3229 OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3230 "Maximum number of functions to display backtrace."),
3231 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3232 "Look for files with symbols relative to this directory"),
3233 OPT_BOOLEAN('s', "summary", &sched.summary_only,
3234 "Show only syscall summary with statistics"),
3235 OPT_BOOLEAN('S', "with-summary", &sched.summary,
3236 "Show all syscalls and summary with statistics"),
3237 OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3238 OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3239 OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3240 OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3241 OPT_STRING(0, "time", &sched.time_str, "str",
3242 "Time span for analysis (start,stop)"),
3243 OPT_PARENT(sched_options)
3244 };
3245
3246 const char * const latency_usage[] = {
3247 "perf sched latency [<options>]",
3248 NULL
3249 };
3250 const char * const replay_usage[] = {
3251 "perf sched replay [<options>]",
3252 NULL
3253 };
3254 const char * const map_usage[] = {
3255 "perf sched map [<options>]",
3256 NULL
3257 };
3258 const char * const timehist_usage[] = {
3259 "perf sched timehist [<options>]",
3260 NULL
3261 };
3262 const char *const sched_subcommands[] = { "record", "latency", "map",
3263 "replay", "script",
3264 "timehist", NULL };
3265 const char *sched_usage[] = {
3266 NULL,
3267 NULL
3268 };
3269 struct trace_sched_handler lat_ops = {
3270 .wakeup_event = latency_wakeup_event,
3271 .switch_event = latency_switch_event,
3272 .runtime_event = latency_runtime_event,
3273 .migrate_task_event = latency_migrate_task_event,
3274 };
3275 struct trace_sched_handler map_ops = {
3276 .switch_event = map_switch_event,
3277 };
3278 struct trace_sched_handler replay_ops = {
3279 .wakeup_event = replay_wakeup_event,
3280 .switch_event = replay_switch_event,
3281 .fork_event = replay_fork_event,
3282 };
3283 unsigned int i;
3284
3285 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3286 sched.curr_pid[i] = -1;
3287
3288 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3289 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3290 if (!argc)
3291 usage_with_options(sched_usage, sched_options);
3292
3293 /*
3294 * Aliased to 'perf script' for now:
3295 */
3296 if (!strcmp(argv[0], "script"))
3297 return cmd_script(argc, argv, prefix);
3298
3299 if (!strncmp(argv[0], "rec", 3)) {
3300 return __cmd_record(argc, argv);
3301 } else if (!strncmp(argv[0], "lat", 3)) {
3302 sched.tp_handler = &lat_ops;
3303 if (argc > 1) {
3304 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3305 if (argc)
3306 usage_with_options(latency_usage, latency_options);
3307 }
3308 setup_sorting(&sched, latency_options, latency_usage);
3309 return perf_sched__lat(&sched);
3310 } else if (!strcmp(argv[0], "map")) {
3311 if (argc) {
3312 argc = parse_options(argc, argv, map_options, map_usage, 0);
3313 if (argc)
3314 usage_with_options(map_usage, map_options);
3315 }
3316 sched.tp_handler = &map_ops;
3317 setup_sorting(&sched, latency_options, latency_usage);
3318 return perf_sched__map(&sched);
3319 } else if (!strncmp(argv[0], "rep", 3)) {
3320 sched.tp_handler = &replay_ops;
3321 if (argc) {
3322 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3323 if (argc)
3324 usage_with_options(replay_usage, replay_options);
3325 }
3326 return perf_sched__replay(&sched);
3327 } else if (!strcmp(argv[0], "timehist")) {
3328 if (argc) {
3329 argc = parse_options(argc, argv, timehist_options,
3330 timehist_usage, 0);
3331 if (argc)
3332 usage_with_options(timehist_usage, timehist_options);
3333 }
3334 if (sched.show_wakeups && sched.summary_only) {
3335 pr_err(" Error: -s and -w are mutually exclusive.\n");
3336 parse_options_usage(timehist_usage, timehist_options, "s", true);
3337 parse_options_usage(NULL, timehist_options, "w", true);
3338 return -EINVAL;
3339 }
3340
3341 return perf_sched__timehist(&sched);
3342 } else {
3343 usage_with_options(sched_usage, sched_options);
3344 }
3345
3346 return 0;
3347}