Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * mm/truncate.c - code for taking down pages from address_spaces
  3 *
  4 * Copyright (C) 2002, Linus Torvalds
  5 *
  6 * 10Sep2002	Andrew Morton
  7 *		Initial version.
  8 */
  9
 10#include <linux/kernel.h>
 11#include <linux/backing-dev.h>
 12#include <linux/dax.h>
 13#include <linux/gfp.h>
 14#include <linux/mm.h>
 15#include <linux/swap.h>
 16#include <linux/export.h>
 17#include <linux/pagemap.h>
 18#include <linux/highmem.h>
 19#include <linux/pagevec.h>
 20#include <linux/task_io_accounting_ops.h>
 21#include <linux/buffer_head.h>	/* grr. try_to_release_page,
 22				   do_invalidatepage */
 23#include <linux/shmem_fs.h>
 24#include <linux/cleancache.h>
 25#include <linux/rmap.h>
 26#include "internal.h"
 27
 28/*
 29 * Regular page slots are stabilized by the page lock even without the tree
 30 * itself locked.  These unlocked entries need verification under the tree
 31 * lock.
 32 */
 33static inline void __clear_shadow_entry(struct address_space *mapping,
 34				pgoff_t index, void *entry)
 35{
 36	struct radix_tree_node *node;
 37	void **slot;
 38
 39	if (!__radix_tree_lookup(&mapping->i_pages, index, &node, &slot))
 40		return;
 
 
 
 
 
 
 41	if (*slot != entry)
 42		return;
 43	__radix_tree_replace(&mapping->i_pages, node, slot, NULL,
 44			     workingset_update_node);
 45	mapping->nrexceptional--;
 46}
 47
 48static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
 49			       void *entry)
 50{
 51	xa_lock_irq(&mapping->i_pages);
 52	__clear_shadow_entry(mapping, index, entry);
 53	xa_unlock_irq(&mapping->i_pages);
 54}
 55
 56/*
 57 * Unconditionally remove exceptional entries. Usually called from truncate
 58 * path. Note that the pagevec may be altered by this function by removing
 59 * exceptional entries similar to what pagevec_remove_exceptionals does.
 60 */
 61static void truncate_exceptional_pvec_entries(struct address_space *mapping,
 62				struct pagevec *pvec, pgoff_t *indices,
 63				pgoff_t end)
 64{
 65	int i, j;
 66	bool dax, lock;
 67
 68	/* Handled by shmem itself */
 69	if (shmem_mapping(mapping))
 70		return;
 71
 72	for (j = 0; j < pagevec_count(pvec); j++)
 73		if (radix_tree_exceptional_entry(pvec->pages[j]))
 74			break;
 75
 76	if (j == pagevec_count(pvec))
 77		return;
 78
 79	dax = dax_mapping(mapping);
 80	lock = !dax && indices[j] < end;
 81	if (lock)
 82		xa_lock_irq(&mapping->i_pages);
 83
 84	for (i = j; i < pagevec_count(pvec); i++) {
 85		struct page *page = pvec->pages[i];
 86		pgoff_t index = indices[i];
 87
 88		if (!radix_tree_exceptional_entry(page)) {
 89			pvec->pages[j++] = page;
 90			continue;
 91		}
 92
 93		if (index >= end)
 94			continue;
 95
 96		if (unlikely(dax)) {
 97			dax_delete_mapping_entry(mapping, index);
 98			continue;
 99		}
100
101		__clear_shadow_entry(mapping, index, page);
102	}
103
104	if (lock)
105		xa_unlock_irq(&mapping->i_pages);
106	pvec->nr = j;
107}
108
109/*
110 * Invalidate exceptional entry if easily possible. This handles exceptional
111 * entries for invalidate_inode_pages().
 
112 */
113static int invalidate_exceptional_entry(struct address_space *mapping,
114					pgoff_t index, void *entry)
115{
116	/* Handled by shmem itself, or for DAX we do nothing. */
117	if (shmem_mapping(mapping) || dax_mapping(mapping))
118		return 1;
 
 
119	clear_shadow_entry(mapping, index, entry);
120	return 1;
121}
122
123/*
124 * Invalidate exceptional entry if clean. This handles exceptional entries for
125 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
126 */
127static int invalidate_exceptional_entry2(struct address_space *mapping,
128					 pgoff_t index, void *entry)
129{
130	/* Handled by shmem itself */
131	if (shmem_mapping(mapping))
132		return 1;
133	if (dax_mapping(mapping))
134		return dax_invalidate_mapping_entry_sync(mapping, index);
135	clear_shadow_entry(mapping, index, entry);
136	return 1;
137}
138
139/**
140 * do_invalidatepage - invalidate part or all of a page
141 * @page: the page which is affected
142 * @offset: start of the range to invalidate
143 * @length: length of the range to invalidate
144 *
145 * do_invalidatepage() is called when all or part of the page has become
146 * invalidated by a truncate operation.
147 *
148 * do_invalidatepage() does not have to release all buffers, but it must
149 * ensure that no dirty buffer is left outside @offset and that no I/O
150 * is underway against any of the blocks which are outside the truncation
151 * point.  Because the caller is about to free (and possibly reuse) those
152 * blocks on-disk.
153 */
154void do_invalidatepage(struct page *page, unsigned int offset,
155		       unsigned int length)
156{
157	void (*invalidatepage)(struct page *, unsigned int, unsigned int);
158
159	invalidatepage = page->mapping->a_ops->invalidatepage;
160#ifdef CONFIG_BLOCK
161	if (!invalidatepage)
162		invalidatepage = block_invalidatepage;
163#endif
164	if (invalidatepage)
165		(*invalidatepage)(page, offset, length);
166}
167
168/*
169 * If truncate cannot remove the fs-private metadata from the page, the page
170 * becomes orphaned.  It will be left on the LRU and may even be mapped into
171 * user pagetables if we're racing with filemap_fault().
172 *
173 * We need to bale out if page->mapping is no longer equal to the original
174 * mapping.  This happens a) when the VM reclaimed the page while we waited on
175 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
176 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
177 */
178static void
179truncate_cleanup_page(struct address_space *mapping, struct page *page)
180{
181	if (page_mapped(page)) {
182		pgoff_t nr = PageTransHuge(page) ? HPAGE_PMD_NR : 1;
183		unmap_mapping_pages(mapping, page->index, nr, false);
184	}
185
186	if (page_has_private(page))
187		do_invalidatepage(page, 0, PAGE_SIZE);
188
189	/*
190	 * Some filesystems seem to re-dirty the page even after
191	 * the VM has canceled the dirty bit (eg ext3 journaling).
192	 * Hence dirty accounting check is placed after invalidation.
193	 */
194	cancel_dirty_page(page);
195	ClearPageMappedToDisk(page);
 
 
196}
197
198/*
199 * This is for invalidate_mapping_pages().  That function can be called at
200 * any time, and is not supposed to throw away dirty pages.  But pages can
201 * be marked dirty at any time too, so use remove_mapping which safely
202 * discards clean, unused pages.
203 *
204 * Returns non-zero if the page was successfully invalidated.
205 */
206static int
207invalidate_complete_page(struct address_space *mapping, struct page *page)
208{
209	int ret;
210
211	if (page->mapping != mapping)
212		return 0;
213
214	if (page_has_private(page) && !try_to_release_page(page, 0))
215		return 0;
216
217	ret = remove_mapping(mapping, page);
218
219	return ret;
220}
221
222int truncate_inode_page(struct address_space *mapping, struct page *page)
223{
 
224	VM_BUG_ON_PAGE(PageTail(page), page);
225
226	if (page->mapping != mapping)
227		return -EIO;
228
229	truncate_cleanup_page(mapping, page);
230	delete_from_page_cache(page);
231	return 0;
 
232}
233
234/*
235 * Used to get rid of pages on hardware memory corruption.
236 */
237int generic_error_remove_page(struct address_space *mapping, struct page *page)
238{
239	if (!mapping)
240		return -EINVAL;
241	/*
242	 * Only punch for normal data pages for now.
243	 * Handling other types like directories would need more auditing.
244	 */
245	if (!S_ISREG(mapping->host->i_mode))
246		return -EIO;
247	return truncate_inode_page(mapping, page);
248}
249EXPORT_SYMBOL(generic_error_remove_page);
250
251/*
252 * Safely invalidate one page from its pagecache mapping.
253 * It only drops clean, unused pages. The page must be locked.
254 *
255 * Returns 1 if the page is successfully invalidated, otherwise 0.
256 */
257int invalidate_inode_page(struct page *page)
258{
259	struct address_space *mapping = page_mapping(page);
260	if (!mapping)
261		return 0;
262	if (PageDirty(page) || PageWriteback(page))
263		return 0;
264	if (page_mapped(page))
265		return 0;
266	return invalidate_complete_page(mapping, page);
267}
268
269/**
270 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
271 * @mapping: mapping to truncate
272 * @lstart: offset from which to truncate
273 * @lend: offset to which to truncate (inclusive)
274 *
275 * Truncate the page cache, removing the pages that are between
276 * specified offsets (and zeroing out partial pages
277 * if lstart or lend + 1 is not page aligned).
278 *
279 * Truncate takes two passes - the first pass is nonblocking.  It will not
280 * block on page locks and it will not block on writeback.  The second pass
281 * will wait.  This is to prevent as much IO as possible in the affected region.
282 * The first pass will remove most pages, so the search cost of the second pass
283 * is low.
284 *
285 * We pass down the cache-hot hint to the page freeing code.  Even if the
286 * mapping is large, it is probably the case that the final pages are the most
287 * recently touched, and freeing happens in ascending file offset order.
288 *
289 * Note that since ->invalidatepage() accepts range to invalidate
290 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
291 * page aligned properly.
292 */
293void truncate_inode_pages_range(struct address_space *mapping,
294				loff_t lstart, loff_t lend)
295{
296	pgoff_t		start;		/* inclusive */
297	pgoff_t		end;		/* exclusive */
298	unsigned int	partial_start;	/* inclusive */
299	unsigned int	partial_end;	/* exclusive */
300	struct pagevec	pvec;
301	pgoff_t		indices[PAGEVEC_SIZE];
302	pgoff_t		index;
303	int		i;
304
 
305	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
306		goto out;
307
308	/* Offsets within partial pages */
309	partial_start = lstart & (PAGE_SIZE - 1);
310	partial_end = (lend + 1) & (PAGE_SIZE - 1);
311
312	/*
313	 * 'start' and 'end' always covers the range of pages to be fully
314	 * truncated. Partial pages are covered with 'partial_start' at the
315	 * start of the range and 'partial_end' at the end of the range.
316	 * Note that 'end' is exclusive while 'lend' is inclusive.
317	 */
318	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
319	if (lend == -1)
320		/*
321		 * lend == -1 indicates end-of-file so we have to set 'end'
322		 * to the highest possible pgoff_t and since the type is
323		 * unsigned we're using -1.
324		 */
325		end = -1;
326	else
327		end = (lend + 1) >> PAGE_SHIFT;
328
329	pagevec_init(&pvec);
330	index = start;
331	while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
332			min(end - index, (pgoff_t)PAGEVEC_SIZE),
333			indices)) {
334		/*
335		 * Pagevec array has exceptional entries and we may also fail
336		 * to lock some pages. So we store pages that can be deleted
337		 * in a new pagevec.
338		 */
339		struct pagevec locked_pvec;
340
341		pagevec_init(&locked_pvec);
342		for (i = 0; i < pagevec_count(&pvec); i++) {
343			struct page *page = pvec.pages[i];
344
345			/* We rely upon deletion not changing page->index */
346			index = indices[i];
347			if (index >= end)
348				break;
349
350			if (radix_tree_exceptional_entry(page))
 
 
351				continue;
 
352
353			if (!trylock_page(page))
354				continue;
355			WARN_ON(page_to_index(page) != index);
356			if (PageWriteback(page)) {
357				unlock_page(page);
358				continue;
359			}
360			if (page->mapping != mapping) {
361				unlock_page(page);
362				continue;
363			}
364			pagevec_add(&locked_pvec, page);
365		}
366		for (i = 0; i < pagevec_count(&locked_pvec); i++)
367			truncate_cleanup_page(mapping, locked_pvec.pages[i]);
368		delete_from_page_cache_batch(mapping, &locked_pvec);
369		for (i = 0; i < pagevec_count(&locked_pvec); i++)
370			unlock_page(locked_pvec.pages[i]);
371		truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
372		pagevec_release(&pvec);
373		cond_resched();
374		index++;
375	}
 
376	if (partial_start) {
377		struct page *page = find_lock_page(mapping, start - 1);
378		if (page) {
379			unsigned int top = PAGE_SIZE;
380			if (start > end) {
381				/* Truncation within a single page */
382				top = partial_end;
383				partial_end = 0;
384			}
385			wait_on_page_writeback(page);
386			zero_user_segment(page, partial_start, top);
387			cleancache_invalidate_page(mapping, page);
388			if (page_has_private(page))
389				do_invalidatepage(page, partial_start,
390						  top - partial_start);
391			unlock_page(page);
392			put_page(page);
393		}
394	}
395	if (partial_end) {
396		struct page *page = find_lock_page(mapping, end);
397		if (page) {
398			wait_on_page_writeback(page);
399			zero_user_segment(page, 0, partial_end);
400			cleancache_invalidate_page(mapping, page);
401			if (page_has_private(page))
402				do_invalidatepage(page, 0,
403						  partial_end);
404			unlock_page(page);
405			put_page(page);
406		}
407	}
408	/*
409	 * If the truncation happened within a single page no pages
410	 * will be released, just zeroed, so we can bail out now.
411	 */
412	if (start >= end)
413		goto out;
414
415	index = start;
416	for ( ; ; ) {
417		cond_resched();
418		if (!pagevec_lookup_entries(&pvec, mapping, index,
419			min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
420			/* If all gone from start onwards, we're done */
421			if (index == start)
422				break;
423			/* Otherwise restart to make sure all gone */
424			index = start;
425			continue;
426		}
427		if (index == start && indices[0] >= end) {
428			/* All gone out of hole to be punched, we're done */
429			pagevec_remove_exceptionals(&pvec);
430			pagevec_release(&pvec);
431			break;
432		}
433
434		for (i = 0; i < pagevec_count(&pvec); i++) {
435			struct page *page = pvec.pages[i];
436
437			/* We rely upon deletion not changing page->index */
438			index = indices[i];
439			if (index >= end) {
440				/* Restart punch to make sure all gone */
441				index = start - 1;
442				break;
443			}
444
445			if (radix_tree_exceptional_entry(page))
 
 
446				continue;
 
447
448			lock_page(page);
449			WARN_ON(page_to_index(page) != index);
450			wait_on_page_writeback(page);
451			truncate_inode_page(mapping, page);
452			unlock_page(page);
453		}
454		truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
455		pagevec_release(&pvec);
456		index++;
457	}
458
459out:
460	cleancache_invalidate_inode(mapping);
461}
462EXPORT_SYMBOL(truncate_inode_pages_range);
463
464/**
465 * truncate_inode_pages - truncate *all* the pages from an offset
466 * @mapping: mapping to truncate
467 * @lstart: offset from which to truncate
468 *
469 * Called under (and serialised by) inode->i_mutex.
470 *
471 * Note: When this function returns, there can be a page in the process of
472 * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
473 * mapping->nrpages can be non-zero when this function returns even after
474 * truncation of the whole mapping.
475 */
476void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
477{
478	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
479}
480EXPORT_SYMBOL(truncate_inode_pages);
481
482/**
483 * truncate_inode_pages_final - truncate *all* pages before inode dies
484 * @mapping: mapping to truncate
485 *
486 * Called under (and serialized by) inode->i_mutex.
487 *
488 * Filesystems have to use this in the .evict_inode path to inform the
489 * VM that this is the final truncate and the inode is going away.
490 */
491void truncate_inode_pages_final(struct address_space *mapping)
492{
493	unsigned long nrexceptional;
494	unsigned long nrpages;
495
496	/*
497	 * Page reclaim can not participate in regular inode lifetime
498	 * management (can't call iput()) and thus can race with the
499	 * inode teardown.  Tell it when the address space is exiting,
500	 * so that it does not install eviction information after the
501	 * final truncate has begun.
502	 */
503	mapping_set_exiting(mapping);
504
505	/*
506	 * When reclaim installs eviction entries, it increases
507	 * nrexceptional first, then decreases nrpages.  Make sure we see
508	 * this in the right order or we might miss an entry.
509	 */
510	nrpages = mapping->nrpages;
511	smp_rmb();
512	nrexceptional = mapping->nrexceptional;
513
514	if (nrpages || nrexceptional) {
515		/*
516		 * As truncation uses a lockless tree lookup, cycle
517		 * the tree lock to make sure any ongoing tree
518		 * modification that does not see AS_EXITING is
519		 * completed before starting the final truncate.
520		 */
521		xa_lock_irq(&mapping->i_pages);
522		xa_unlock_irq(&mapping->i_pages);
523
524		truncate_inode_pages(mapping, 0);
525	}
526}
527EXPORT_SYMBOL(truncate_inode_pages_final);
528
529/**
530 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
531 * @mapping: the address_space which holds the pages to invalidate
532 * @start: the offset 'from' which to invalidate
533 * @end: the offset 'to' which to invalidate (inclusive)
534 *
535 * This function only removes the unlocked pages, if you want to
536 * remove all the pages of one inode, you must call truncate_inode_pages.
537 *
538 * invalidate_mapping_pages() will not block on IO activity. It will not
539 * invalidate pages which are dirty, locked, under writeback or mapped into
540 * pagetables.
541 */
542unsigned long invalidate_mapping_pages(struct address_space *mapping,
543		pgoff_t start, pgoff_t end)
544{
545	pgoff_t indices[PAGEVEC_SIZE];
546	struct pagevec pvec;
547	pgoff_t index = start;
548	unsigned long ret;
549	unsigned long count = 0;
550	int i;
551
552	pagevec_init(&pvec);
553	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
554			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
555			indices)) {
556		for (i = 0; i < pagevec_count(&pvec); i++) {
557			struct page *page = pvec.pages[i];
558
559			/* We rely upon deletion not changing page->index */
560			index = indices[i];
561			if (index > end)
562				break;
563
564			if (radix_tree_exceptional_entry(page)) {
565				invalidate_exceptional_entry(mapping, index,
566							     page);
567				continue;
568			}
569
570			if (!trylock_page(page))
571				continue;
572
573			WARN_ON(page_to_index(page) != index);
574
575			/* Middle of THP: skip */
576			if (PageTransTail(page)) {
577				unlock_page(page);
578				continue;
579			} else if (PageTransHuge(page)) {
580				index += HPAGE_PMD_NR - 1;
581				i += HPAGE_PMD_NR - 1;
582				/*
583				 * 'end' is in the middle of THP. Don't
584				 * invalidate the page as the part outside of
585				 * 'end' could be still useful.
586				 */
587				if (index > end) {
588					unlock_page(page);
589					continue;
590				}
591			}
592
593			ret = invalidate_inode_page(page);
594			unlock_page(page);
595			/*
596			 * Invalidation is a hint that the page is no longer
597			 * of interest and try to speed up its reclaim.
598			 */
599			if (!ret)
600				deactivate_file_page(page);
601			count += ret;
602		}
603		pagevec_remove_exceptionals(&pvec);
604		pagevec_release(&pvec);
605		cond_resched();
606		index++;
607	}
608	return count;
609}
610EXPORT_SYMBOL(invalidate_mapping_pages);
611
612/*
613 * This is like invalidate_complete_page(), except it ignores the page's
614 * refcount.  We do this because invalidate_inode_pages2() needs stronger
615 * invalidation guarantees, and cannot afford to leave pages behind because
616 * shrink_page_list() has a temp ref on them, or because they're transiently
617 * sitting in the lru_cache_add() pagevecs.
618 */
619static int
620invalidate_complete_page2(struct address_space *mapping, struct page *page)
621{
622	unsigned long flags;
623
624	if (page->mapping != mapping)
625		return 0;
626
627	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
628		return 0;
629
630	xa_lock_irqsave(&mapping->i_pages, flags);
631	if (PageDirty(page))
632		goto failed;
633
634	BUG_ON(page_has_private(page));
635	__delete_from_page_cache(page, NULL);
636	xa_unlock_irqrestore(&mapping->i_pages, flags);
637
638	if (mapping->a_ops->freepage)
639		mapping->a_ops->freepage(page);
640
641	put_page(page);	/* pagecache ref */
642	return 1;
643failed:
644	xa_unlock_irqrestore(&mapping->i_pages, flags);
645	return 0;
646}
647
648static int do_launder_page(struct address_space *mapping, struct page *page)
649{
650	if (!PageDirty(page))
651		return 0;
652	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
653		return 0;
654	return mapping->a_ops->launder_page(page);
655}
656
657/**
658 * invalidate_inode_pages2_range - remove range of pages from an address_space
659 * @mapping: the address_space
660 * @start: the page offset 'from' which to invalidate
661 * @end: the page offset 'to' which to invalidate (inclusive)
662 *
663 * Any pages which are found to be mapped into pagetables are unmapped prior to
664 * invalidation.
665 *
666 * Returns -EBUSY if any pages could not be invalidated.
667 */
668int invalidate_inode_pages2_range(struct address_space *mapping,
669				  pgoff_t start, pgoff_t end)
670{
671	pgoff_t indices[PAGEVEC_SIZE];
672	struct pagevec pvec;
673	pgoff_t index;
674	int i;
675	int ret = 0;
676	int ret2 = 0;
677	int did_range_unmap = 0;
678
679	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
680		goto out;
681
682	pagevec_init(&pvec);
683	index = start;
684	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
685			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
686			indices)) {
687		for (i = 0; i < pagevec_count(&pvec); i++) {
688			struct page *page = pvec.pages[i];
689
690			/* We rely upon deletion not changing page->index */
691			index = indices[i];
692			if (index > end)
693				break;
694
695			if (radix_tree_exceptional_entry(page)) {
696				if (!invalidate_exceptional_entry2(mapping,
697								   index, page))
698					ret = -EBUSY;
699				continue;
700			}
701
702			lock_page(page);
703			WARN_ON(page_to_index(page) != index);
704			if (page->mapping != mapping) {
705				unlock_page(page);
706				continue;
707			}
708			wait_on_page_writeback(page);
709			if (page_mapped(page)) {
710				if (!did_range_unmap) {
711					/*
712					 * Zap the rest of the file in one hit.
713					 */
714					unmap_mapping_pages(mapping, index,
715						(1 + end - index), false);
 
 
 
716					did_range_unmap = 1;
717				} else {
718					/*
719					 * Just zap this page
720					 */
721					unmap_mapping_pages(mapping, index,
722								1, false);
 
723				}
724			}
725			BUG_ON(page_mapped(page));
726			ret2 = do_launder_page(mapping, page);
727			if (ret2 == 0) {
728				if (!invalidate_complete_page2(mapping, page))
729					ret2 = -EBUSY;
730			}
731			if (ret2 < 0)
732				ret = ret2;
733			unlock_page(page);
734		}
735		pagevec_remove_exceptionals(&pvec);
736		pagevec_release(&pvec);
737		cond_resched();
738		index++;
739	}
740	/*
741	 * For DAX we invalidate page tables after invalidating radix tree.  We
742	 * could invalidate page tables while invalidating each entry however
743	 * that would be expensive. And doing range unmapping before doesn't
744	 * work as we have no cheap way to find whether radix tree entry didn't
745	 * get remapped later.
746	 */
747	if (dax_mapping(mapping)) {
748		unmap_mapping_pages(mapping, start, end - start + 1, false);
749	}
750out:
751	cleancache_invalidate_inode(mapping);
752	return ret;
753}
754EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
755
756/**
757 * invalidate_inode_pages2 - remove all pages from an address_space
758 * @mapping: the address_space
759 *
760 * Any pages which are found to be mapped into pagetables are unmapped prior to
761 * invalidation.
762 *
763 * Returns -EBUSY if any pages could not be invalidated.
764 */
765int invalidate_inode_pages2(struct address_space *mapping)
766{
767	return invalidate_inode_pages2_range(mapping, 0, -1);
768}
769EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
770
771/**
772 * truncate_pagecache - unmap and remove pagecache that has been truncated
773 * @inode: inode
774 * @newsize: new file size
775 *
776 * inode's new i_size must already be written before truncate_pagecache
777 * is called.
778 *
779 * This function should typically be called before the filesystem
780 * releases resources associated with the freed range (eg. deallocates
781 * blocks). This way, pagecache will always stay logically coherent
782 * with on-disk format, and the filesystem would not have to deal with
783 * situations such as writepage being called for a page that has already
784 * had its underlying blocks deallocated.
785 */
786void truncate_pagecache(struct inode *inode, loff_t newsize)
787{
788	struct address_space *mapping = inode->i_mapping;
789	loff_t holebegin = round_up(newsize, PAGE_SIZE);
790
791	/*
792	 * unmap_mapping_range is called twice, first simply for
793	 * efficiency so that truncate_inode_pages does fewer
794	 * single-page unmaps.  However after this first call, and
795	 * before truncate_inode_pages finishes, it is possible for
796	 * private pages to be COWed, which remain after
797	 * truncate_inode_pages finishes, hence the second
798	 * unmap_mapping_range call must be made for correctness.
799	 */
800	unmap_mapping_range(mapping, holebegin, 0, 1);
801	truncate_inode_pages(mapping, newsize);
802	unmap_mapping_range(mapping, holebegin, 0, 1);
803}
804EXPORT_SYMBOL(truncate_pagecache);
805
806/**
807 * truncate_setsize - update inode and pagecache for a new file size
808 * @inode: inode
809 * @newsize: new file size
810 *
811 * truncate_setsize updates i_size and performs pagecache truncation (if
812 * necessary) to @newsize. It will be typically be called from the filesystem's
813 * setattr function when ATTR_SIZE is passed in.
814 *
815 * Must be called with a lock serializing truncates and writes (generally
816 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
817 * specific block truncation has been performed.
818 */
819void truncate_setsize(struct inode *inode, loff_t newsize)
820{
821	loff_t oldsize = inode->i_size;
822
823	i_size_write(inode, newsize);
824	if (newsize > oldsize)
825		pagecache_isize_extended(inode, oldsize, newsize);
826	truncate_pagecache(inode, newsize);
827}
828EXPORT_SYMBOL(truncate_setsize);
829
830/**
831 * pagecache_isize_extended - update pagecache after extension of i_size
832 * @inode:	inode for which i_size was extended
833 * @from:	original inode size
834 * @to:		new inode size
835 *
836 * Handle extension of inode size either caused by extending truncate or by
837 * write starting after current i_size. We mark the page straddling current
838 * i_size RO so that page_mkwrite() is called on the nearest write access to
839 * the page.  This way filesystem can be sure that page_mkwrite() is called on
840 * the page before user writes to the page via mmap after the i_size has been
841 * changed.
842 *
843 * The function must be called after i_size is updated so that page fault
844 * coming after we unlock the page will already see the new i_size.
845 * The function must be called while we still hold i_mutex - this not only
846 * makes sure i_size is stable but also that userspace cannot observe new
847 * i_size value before we are prepared to store mmap writes at new inode size.
848 */
849void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
850{
851	int bsize = i_blocksize(inode);
852	loff_t rounded_from;
853	struct page *page;
854	pgoff_t index;
855
856	WARN_ON(to > inode->i_size);
857
858	if (from >= to || bsize == PAGE_SIZE)
859		return;
860	/* Page straddling @from will not have any hole block created? */
861	rounded_from = round_up(from, bsize);
862	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
863		return;
864
865	index = from >> PAGE_SHIFT;
866	page = find_lock_page(inode->i_mapping, index);
867	/* Page not cached? Nothing to do */
868	if (!page)
869		return;
870	/*
871	 * See clear_page_dirty_for_io() for details why set_page_dirty()
872	 * is needed.
873	 */
874	if (page_mkclean(page))
875		set_page_dirty(page);
876	unlock_page(page);
877	put_page(page);
878}
879EXPORT_SYMBOL(pagecache_isize_extended);
880
881/**
882 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
883 * @inode: inode
884 * @lstart: offset of beginning of hole
885 * @lend: offset of last byte of hole
886 *
887 * This function should typically be called before the filesystem
888 * releases resources associated with the freed range (eg. deallocates
889 * blocks). This way, pagecache will always stay logically coherent
890 * with on-disk format, and the filesystem would not have to deal with
891 * situations such as writepage being called for a page that has already
892 * had its underlying blocks deallocated.
893 */
894void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
895{
896	struct address_space *mapping = inode->i_mapping;
897	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
898	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
899	/*
900	 * This rounding is currently just for example: unmap_mapping_range
901	 * expands its hole outwards, whereas we want it to contract the hole
902	 * inwards.  However, existing callers of truncate_pagecache_range are
903	 * doing their own page rounding first.  Note that unmap_mapping_range
904	 * allows holelen 0 for all, and we allow lend -1 for end of file.
905	 */
906
907	/*
908	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
909	 * once (before truncating pagecache), and without "even_cows" flag:
910	 * hole-punching should not remove private COWed pages from the hole.
911	 */
912	if ((u64)unmap_end > (u64)unmap_start)
913		unmap_mapping_range(mapping, unmap_start,
914				    1 + unmap_end - unmap_start, 0);
915	truncate_inode_pages_range(mapping, lstart, lend);
916}
917EXPORT_SYMBOL(truncate_pagecache_range);
v4.10.11
  1/*
  2 * mm/truncate.c - code for taking down pages from address_spaces
  3 *
  4 * Copyright (C) 2002, Linus Torvalds
  5 *
  6 * 10Sep2002	Andrew Morton
  7 *		Initial version.
  8 */
  9
 10#include <linux/kernel.h>
 11#include <linux/backing-dev.h>
 12#include <linux/dax.h>
 13#include <linux/gfp.h>
 14#include <linux/mm.h>
 15#include <linux/swap.h>
 16#include <linux/export.h>
 17#include <linux/pagemap.h>
 18#include <linux/highmem.h>
 19#include <linux/pagevec.h>
 20#include <linux/task_io_accounting_ops.h>
 21#include <linux/buffer_head.h>	/* grr. try_to_release_page,
 22				   do_invalidatepage */
 
 23#include <linux/cleancache.h>
 24#include <linux/rmap.h>
 25#include "internal.h"
 26
 27static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
 28			       void *entry)
 
 
 
 
 
 29{
 30	struct radix_tree_node *node;
 31	void **slot;
 32
 33	spin_lock_irq(&mapping->tree_lock);
 34	/*
 35	 * Regular page slots are stabilized by the page lock even
 36	 * without the tree itself locked.  These unlocked entries
 37	 * need verification under the tree lock.
 38	 */
 39	if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot))
 40		goto unlock;
 41	if (*slot != entry)
 42		goto unlock;
 43	__radix_tree_replace(&mapping->page_tree, node, slot, NULL,
 44			     workingset_update_node, mapping);
 45	mapping->nrexceptional--;
 46unlock:
 47	spin_unlock_irq(&mapping->tree_lock);
 
 
 
 
 
 
 48}
 49
 50/*
 51 * Unconditionally remove exceptional entry. Usually called from truncate path.
 52 */
 53static void truncate_exceptional_entry(struct address_space *mapping,
 54				       pgoff_t index, void *entry)
 
 
 
 55{
 
 
 
 56	/* Handled by shmem itself */
 57	if (shmem_mapping(mapping))
 58		return;
 59
 60	if (dax_mapping(mapping)) {
 61		dax_delete_mapping_entry(mapping, index);
 
 
 
 62		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 63	}
 64	clear_shadow_entry(mapping, index, entry);
 
 
 
 65}
 66
 67/*
 68 * Invalidate exceptional entry if easily possible. This handles exceptional
 69 * entries for invalidate_inode_pages() so for DAX it evicts only unlocked and
 70 * clean entries.
 71 */
 72static int invalidate_exceptional_entry(struct address_space *mapping,
 73					pgoff_t index, void *entry)
 74{
 75	/* Handled by shmem itself */
 76	if (shmem_mapping(mapping))
 77		return 1;
 78	if (dax_mapping(mapping))
 79		return dax_invalidate_mapping_entry(mapping, index);
 80	clear_shadow_entry(mapping, index, entry);
 81	return 1;
 82}
 83
 84/*
 85 * Invalidate exceptional entry if clean. This handles exceptional entries for
 86 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
 87 */
 88static int invalidate_exceptional_entry2(struct address_space *mapping,
 89					 pgoff_t index, void *entry)
 90{
 91	/* Handled by shmem itself */
 92	if (shmem_mapping(mapping))
 93		return 1;
 94	if (dax_mapping(mapping))
 95		return dax_invalidate_mapping_entry_sync(mapping, index);
 96	clear_shadow_entry(mapping, index, entry);
 97	return 1;
 98}
 99
100/**
101 * do_invalidatepage - invalidate part or all of a page
102 * @page: the page which is affected
103 * @offset: start of the range to invalidate
104 * @length: length of the range to invalidate
105 *
106 * do_invalidatepage() is called when all or part of the page has become
107 * invalidated by a truncate operation.
108 *
109 * do_invalidatepage() does not have to release all buffers, but it must
110 * ensure that no dirty buffer is left outside @offset and that no I/O
111 * is underway against any of the blocks which are outside the truncation
112 * point.  Because the caller is about to free (and possibly reuse) those
113 * blocks on-disk.
114 */
115void do_invalidatepage(struct page *page, unsigned int offset,
116		       unsigned int length)
117{
118	void (*invalidatepage)(struct page *, unsigned int, unsigned int);
119
120	invalidatepage = page->mapping->a_ops->invalidatepage;
121#ifdef CONFIG_BLOCK
122	if (!invalidatepage)
123		invalidatepage = block_invalidatepage;
124#endif
125	if (invalidatepage)
126		(*invalidatepage)(page, offset, length);
127}
128
129/*
130 * If truncate cannot remove the fs-private metadata from the page, the page
131 * becomes orphaned.  It will be left on the LRU and may even be mapped into
132 * user pagetables if we're racing with filemap_fault().
133 *
134 * We need to bale out if page->mapping is no longer equal to the original
135 * mapping.  This happens a) when the VM reclaimed the page while we waited on
136 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
137 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
138 */
139static int
140truncate_complete_page(struct address_space *mapping, struct page *page)
141{
142	if (page->mapping != mapping)
143		return -EIO;
 
 
144
145	if (page_has_private(page))
146		do_invalidatepage(page, 0, PAGE_SIZE);
147
148	/*
149	 * Some filesystems seem to re-dirty the page even after
150	 * the VM has canceled the dirty bit (eg ext3 journaling).
151	 * Hence dirty accounting check is placed after invalidation.
152	 */
153	cancel_dirty_page(page);
154	ClearPageMappedToDisk(page);
155	delete_from_page_cache(page);
156	return 0;
157}
158
159/*
160 * This is for invalidate_mapping_pages().  That function can be called at
161 * any time, and is not supposed to throw away dirty pages.  But pages can
162 * be marked dirty at any time too, so use remove_mapping which safely
163 * discards clean, unused pages.
164 *
165 * Returns non-zero if the page was successfully invalidated.
166 */
167static int
168invalidate_complete_page(struct address_space *mapping, struct page *page)
169{
170	int ret;
171
172	if (page->mapping != mapping)
173		return 0;
174
175	if (page_has_private(page) && !try_to_release_page(page, 0))
176		return 0;
177
178	ret = remove_mapping(mapping, page);
179
180	return ret;
181}
182
183int truncate_inode_page(struct address_space *mapping, struct page *page)
184{
185	loff_t holelen;
186	VM_BUG_ON_PAGE(PageTail(page), page);
187
188	holelen = PageTransHuge(page) ? HPAGE_PMD_SIZE : PAGE_SIZE;
189	if (page_mapped(page)) {
190		unmap_mapping_range(mapping,
191				   (loff_t)page->index << PAGE_SHIFT,
192				   holelen, 0);
193	}
194	return truncate_complete_page(mapping, page);
195}
196
197/*
198 * Used to get rid of pages on hardware memory corruption.
199 */
200int generic_error_remove_page(struct address_space *mapping, struct page *page)
201{
202	if (!mapping)
203		return -EINVAL;
204	/*
205	 * Only punch for normal data pages for now.
206	 * Handling other types like directories would need more auditing.
207	 */
208	if (!S_ISREG(mapping->host->i_mode))
209		return -EIO;
210	return truncate_inode_page(mapping, page);
211}
212EXPORT_SYMBOL(generic_error_remove_page);
213
214/*
215 * Safely invalidate one page from its pagecache mapping.
216 * It only drops clean, unused pages. The page must be locked.
217 *
218 * Returns 1 if the page is successfully invalidated, otherwise 0.
219 */
220int invalidate_inode_page(struct page *page)
221{
222	struct address_space *mapping = page_mapping(page);
223	if (!mapping)
224		return 0;
225	if (PageDirty(page) || PageWriteback(page))
226		return 0;
227	if (page_mapped(page))
228		return 0;
229	return invalidate_complete_page(mapping, page);
230}
231
232/**
233 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
234 * @mapping: mapping to truncate
235 * @lstart: offset from which to truncate
236 * @lend: offset to which to truncate (inclusive)
237 *
238 * Truncate the page cache, removing the pages that are between
239 * specified offsets (and zeroing out partial pages
240 * if lstart or lend + 1 is not page aligned).
241 *
242 * Truncate takes two passes - the first pass is nonblocking.  It will not
243 * block on page locks and it will not block on writeback.  The second pass
244 * will wait.  This is to prevent as much IO as possible in the affected region.
245 * The first pass will remove most pages, so the search cost of the second pass
246 * is low.
247 *
248 * We pass down the cache-hot hint to the page freeing code.  Even if the
249 * mapping is large, it is probably the case that the final pages are the most
250 * recently touched, and freeing happens in ascending file offset order.
251 *
252 * Note that since ->invalidatepage() accepts range to invalidate
253 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
254 * page aligned properly.
255 */
256void truncate_inode_pages_range(struct address_space *mapping,
257				loff_t lstart, loff_t lend)
258{
259	pgoff_t		start;		/* inclusive */
260	pgoff_t		end;		/* exclusive */
261	unsigned int	partial_start;	/* inclusive */
262	unsigned int	partial_end;	/* exclusive */
263	struct pagevec	pvec;
264	pgoff_t		indices[PAGEVEC_SIZE];
265	pgoff_t		index;
266	int		i;
267
268	cleancache_invalidate_inode(mapping);
269	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
270		return;
271
272	/* Offsets within partial pages */
273	partial_start = lstart & (PAGE_SIZE - 1);
274	partial_end = (lend + 1) & (PAGE_SIZE - 1);
275
276	/*
277	 * 'start' and 'end' always covers the range of pages to be fully
278	 * truncated. Partial pages are covered with 'partial_start' at the
279	 * start of the range and 'partial_end' at the end of the range.
280	 * Note that 'end' is exclusive while 'lend' is inclusive.
281	 */
282	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
283	if (lend == -1)
284		/*
285		 * lend == -1 indicates end-of-file so we have to set 'end'
286		 * to the highest possible pgoff_t and since the type is
287		 * unsigned we're using -1.
288		 */
289		end = -1;
290	else
291		end = (lend + 1) >> PAGE_SHIFT;
292
293	pagevec_init(&pvec, 0);
294	index = start;
295	while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
296			min(end - index, (pgoff_t)PAGEVEC_SIZE),
297			indices)) {
 
 
 
 
 
 
 
 
298		for (i = 0; i < pagevec_count(&pvec); i++) {
299			struct page *page = pvec.pages[i];
300
301			/* We rely upon deletion not changing page->index */
302			index = indices[i];
303			if (index >= end)
304				break;
305
306			if (radix_tree_exceptional_entry(page)) {
307				truncate_exceptional_entry(mapping, index,
308							   page);
309				continue;
310			}
311
312			if (!trylock_page(page))
313				continue;
314			WARN_ON(page_to_index(page) != index);
315			if (PageWriteback(page)) {
316				unlock_page(page);
317				continue;
318			}
319			truncate_inode_page(mapping, page);
320			unlock_page(page);
 
 
 
321		}
322		pagevec_remove_exceptionals(&pvec);
 
 
 
 
 
323		pagevec_release(&pvec);
324		cond_resched();
325		index++;
326	}
327
328	if (partial_start) {
329		struct page *page = find_lock_page(mapping, start - 1);
330		if (page) {
331			unsigned int top = PAGE_SIZE;
332			if (start > end) {
333				/* Truncation within a single page */
334				top = partial_end;
335				partial_end = 0;
336			}
337			wait_on_page_writeback(page);
338			zero_user_segment(page, partial_start, top);
339			cleancache_invalidate_page(mapping, page);
340			if (page_has_private(page))
341				do_invalidatepage(page, partial_start,
342						  top - partial_start);
343			unlock_page(page);
344			put_page(page);
345		}
346	}
347	if (partial_end) {
348		struct page *page = find_lock_page(mapping, end);
349		if (page) {
350			wait_on_page_writeback(page);
351			zero_user_segment(page, 0, partial_end);
352			cleancache_invalidate_page(mapping, page);
353			if (page_has_private(page))
354				do_invalidatepage(page, 0,
355						  partial_end);
356			unlock_page(page);
357			put_page(page);
358		}
359	}
360	/*
361	 * If the truncation happened within a single page no pages
362	 * will be released, just zeroed, so we can bail out now.
363	 */
364	if (start >= end)
365		return;
366
367	index = start;
368	for ( ; ; ) {
369		cond_resched();
370		if (!pagevec_lookup_entries(&pvec, mapping, index,
371			min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
372			/* If all gone from start onwards, we're done */
373			if (index == start)
374				break;
375			/* Otherwise restart to make sure all gone */
376			index = start;
377			continue;
378		}
379		if (index == start && indices[0] >= end) {
380			/* All gone out of hole to be punched, we're done */
381			pagevec_remove_exceptionals(&pvec);
382			pagevec_release(&pvec);
383			break;
384		}
 
385		for (i = 0; i < pagevec_count(&pvec); i++) {
386			struct page *page = pvec.pages[i];
387
388			/* We rely upon deletion not changing page->index */
389			index = indices[i];
390			if (index >= end) {
391				/* Restart punch to make sure all gone */
392				index = start - 1;
393				break;
394			}
395
396			if (radix_tree_exceptional_entry(page)) {
397				truncate_exceptional_entry(mapping, index,
398							   page);
399				continue;
400			}
401
402			lock_page(page);
403			WARN_ON(page_to_index(page) != index);
404			wait_on_page_writeback(page);
405			truncate_inode_page(mapping, page);
406			unlock_page(page);
407		}
408		pagevec_remove_exceptionals(&pvec);
409		pagevec_release(&pvec);
410		index++;
411	}
 
 
412	cleancache_invalidate_inode(mapping);
413}
414EXPORT_SYMBOL(truncate_inode_pages_range);
415
416/**
417 * truncate_inode_pages - truncate *all* the pages from an offset
418 * @mapping: mapping to truncate
419 * @lstart: offset from which to truncate
420 *
421 * Called under (and serialised by) inode->i_mutex.
422 *
423 * Note: When this function returns, there can be a page in the process of
424 * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
425 * mapping->nrpages can be non-zero when this function returns even after
426 * truncation of the whole mapping.
427 */
428void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
429{
430	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
431}
432EXPORT_SYMBOL(truncate_inode_pages);
433
434/**
435 * truncate_inode_pages_final - truncate *all* pages before inode dies
436 * @mapping: mapping to truncate
437 *
438 * Called under (and serialized by) inode->i_mutex.
439 *
440 * Filesystems have to use this in the .evict_inode path to inform the
441 * VM that this is the final truncate and the inode is going away.
442 */
443void truncate_inode_pages_final(struct address_space *mapping)
444{
445	unsigned long nrexceptional;
446	unsigned long nrpages;
447
448	/*
449	 * Page reclaim can not participate in regular inode lifetime
450	 * management (can't call iput()) and thus can race with the
451	 * inode teardown.  Tell it when the address space is exiting,
452	 * so that it does not install eviction information after the
453	 * final truncate has begun.
454	 */
455	mapping_set_exiting(mapping);
456
457	/*
458	 * When reclaim installs eviction entries, it increases
459	 * nrexceptional first, then decreases nrpages.  Make sure we see
460	 * this in the right order or we might miss an entry.
461	 */
462	nrpages = mapping->nrpages;
463	smp_rmb();
464	nrexceptional = mapping->nrexceptional;
465
466	if (nrpages || nrexceptional) {
467		/*
468		 * As truncation uses a lockless tree lookup, cycle
469		 * the tree lock to make sure any ongoing tree
470		 * modification that does not see AS_EXITING is
471		 * completed before starting the final truncate.
472		 */
473		spin_lock_irq(&mapping->tree_lock);
474		spin_unlock_irq(&mapping->tree_lock);
475
476		truncate_inode_pages(mapping, 0);
477	}
478}
479EXPORT_SYMBOL(truncate_inode_pages_final);
480
481/**
482 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
483 * @mapping: the address_space which holds the pages to invalidate
484 * @start: the offset 'from' which to invalidate
485 * @end: the offset 'to' which to invalidate (inclusive)
486 *
487 * This function only removes the unlocked pages, if you want to
488 * remove all the pages of one inode, you must call truncate_inode_pages.
489 *
490 * invalidate_mapping_pages() will not block on IO activity. It will not
491 * invalidate pages which are dirty, locked, under writeback or mapped into
492 * pagetables.
493 */
494unsigned long invalidate_mapping_pages(struct address_space *mapping,
495		pgoff_t start, pgoff_t end)
496{
497	pgoff_t indices[PAGEVEC_SIZE];
498	struct pagevec pvec;
499	pgoff_t index = start;
500	unsigned long ret;
501	unsigned long count = 0;
502	int i;
503
504	pagevec_init(&pvec, 0);
505	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
506			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
507			indices)) {
508		for (i = 0; i < pagevec_count(&pvec); i++) {
509			struct page *page = pvec.pages[i];
510
511			/* We rely upon deletion not changing page->index */
512			index = indices[i];
513			if (index > end)
514				break;
515
516			if (radix_tree_exceptional_entry(page)) {
517				invalidate_exceptional_entry(mapping, index,
518							     page);
519				continue;
520			}
521
522			if (!trylock_page(page))
523				continue;
524
525			WARN_ON(page_to_index(page) != index);
526
527			/* Middle of THP: skip */
528			if (PageTransTail(page)) {
529				unlock_page(page);
530				continue;
531			} else if (PageTransHuge(page)) {
532				index += HPAGE_PMD_NR - 1;
533				i += HPAGE_PMD_NR - 1;
534				/* 'end' is in the middle of THP */
535				if (index ==  round_down(end, HPAGE_PMD_NR))
 
 
 
 
 
536					continue;
 
537			}
538
539			ret = invalidate_inode_page(page);
540			unlock_page(page);
541			/*
542			 * Invalidation is a hint that the page is no longer
543			 * of interest and try to speed up its reclaim.
544			 */
545			if (!ret)
546				deactivate_file_page(page);
547			count += ret;
548		}
549		pagevec_remove_exceptionals(&pvec);
550		pagevec_release(&pvec);
551		cond_resched();
552		index++;
553	}
554	return count;
555}
556EXPORT_SYMBOL(invalidate_mapping_pages);
557
558/*
559 * This is like invalidate_complete_page(), except it ignores the page's
560 * refcount.  We do this because invalidate_inode_pages2() needs stronger
561 * invalidation guarantees, and cannot afford to leave pages behind because
562 * shrink_page_list() has a temp ref on them, or because they're transiently
563 * sitting in the lru_cache_add() pagevecs.
564 */
565static int
566invalidate_complete_page2(struct address_space *mapping, struct page *page)
567{
568	unsigned long flags;
569
570	if (page->mapping != mapping)
571		return 0;
572
573	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
574		return 0;
575
576	spin_lock_irqsave(&mapping->tree_lock, flags);
577	if (PageDirty(page))
578		goto failed;
579
580	BUG_ON(page_has_private(page));
581	__delete_from_page_cache(page, NULL);
582	spin_unlock_irqrestore(&mapping->tree_lock, flags);
583
584	if (mapping->a_ops->freepage)
585		mapping->a_ops->freepage(page);
586
587	put_page(page);	/* pagecache ref */
588	return 1;
589failed:
590	spin_unlock_irqrestore(&mapping->tree_lock, flags);
591	return 0;
592}
593
594static int do_launder_page(struct address_space *mapping, struct page *page)
595{
596	if (!PageDirty(page))
597		return 0;
598	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
599		return 0;
600	return mapping->a_ops->launder_page(page);
601}
602
603/**
604 * invalidate_inode_pages2_range - remove range of pages from an address_space
605 * @mapping: the address_space
606 * @start: the page offset 'from' which to invalidate
607 * @end: the page offset 'to' which to invalidate (inclusive)
608 *
609 * Any pages which are found to be mapped into pagetables are unmapped prior to
610 * invalidation.
611 *
612 * Returns -EBUSY if any pages could not be invalidated.
613 */
614int invalidate_inode_pages2_range(struct address_space *mapping,
615				  pgoff_t start, pgoff_t end)
616{
617	pgoff_t indices[PAGEVEC_SIZE];
618	struct pagevec pvec;
619	pgoff_t index;
620	int i;
621	int ret = 0;
622	int ret2 = 0;
623	int did_range_unmap = 0;
624
625	cleancache_invalidate_inode(mapping);
626	pagevec_init(&pvec, 0);
 
 
627	index = start;
628	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
629			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
630			indices)) {
631		for (i = 0; i < pagevec_count(&pvec); i++) {
632			struct page *page = pvec.pages[i];
633
634			/* We rely upon deletion not changing page->index */
635			index = indices[i];
636			if (index > end)
637				break;
638
639			if (radix_tree_exceptional_entry(page)) {
640				if (!invalidate_exceptional_entry2(mapping,
641								   index, page))
642					ret = -EBUSY;
643				continue;
644			}
645
646			lock_page(page);
647			WARN_ON(page_to_index(page) != index);
648			if (page->mapping != mapping) {
649				unlock_page(page);
650				continue;
651			}
652			wait_on_page_writeback(page);
653			if (page_mapped(page)) {
654				if (!did_range_unmap) {
655					/*
656					 * Zap the rest of the file in one hit.
657					 */
658					unmap_mapping_range(mapping,
659					   (loff_t)index << PAGE_SHIFT,
660					   (loff_t)(1 + end - index)
661							 << PAGE_SHIFT,
662							 0);
663					did_range_unmap = 1;
664				} else {
665					/*
666					 * Just zap this page
667					 */
668					unmap_mapping_range(mapping,
669					   (loff_t)index << PAGE_SHIFT,
670					   PAGE_SIZE, 0);
671				}
672			}
673			BUG_ON(page_mapped(page));
674			ret2 = do_launder_page(mapping, page);
675			if (ret2 == 0) {
676				if (!invalidate_complete_page2(mapping, page))
677					ret2 = -EBUSY;
678			}
679			if (ret2 < 0)
680				ret = ret2;
681			unlock_page(page);
682		}
683		pagevec_remove_exceptionals(&pvec);
684		pagevec_release(&pvec);
685		cond_resched();
686		index++;
687	}
 
 
 
 
 
 
 
 
 
 
 
688	cleancache_invalidate_inode(mapping);
689	return ret;
690}
691EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
692
693/**
694 * invalidate_inode_pages2 - remove all pages from an address_space
695 * @mapping: the address_space
696 *
697 * Any pages which are found to be mapped into pagetables are unmapped prior to
698 * invalidation.
699 *
700 * Returns -EBUSY if any pages could not be invalidated.
701 */
702int invalidate_inode_pages2(struct address_space *mapping)
703{
704	return invalidate_inode_pages2_range(mapping, 0, -1);
705}
706EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
707
708/**
709 * truncate_pagecache - unmap and remove pagecache that has been truncated
710 * @inode: inode
711 * @newsize: new file size
712 *
713 * inode's new i_size must already be written before truncate_pagecache
714 * is called.
715 *
716 * This function should typically be called before the filesystem
717 * releases resources associated with the freed range (eg. deallocates
718 * blocks). This way, pagecache will always stay logically coherent
719 * with on-disk format, and the filesystem would not have to deal with
720 * situations such as writepage being called for a page that has already
721 * had its underlying blocks deallocated.
722 */
723void truncate_pagecache(struct inode *inode, loff_t newsize)
724{
725	struct address_space *mapping = inode->i_mapping;
726	loff_t holebegin = round_up(newsize, PAGE_SIZE);
727
728	/*
729	 * unmap_mapping_range is called twice, first simply for
730	 * efficiency so that truncate_inode_pages does fewer
731	 * single-page unmaps.  However after this first call, and
732	 * before truncate_inode_pages finishes, it is possible for
733	 * private pages to be COWed, which remain after
734	 * truncate_inode_pages finishes, hence the second
735	 * unmap_mapping_range call must be made for correctness.
736	 */
737	unmap_mapping_range(mapping, holebegin, 0, 1);
738	truncate_inode_pages(mapping, newsize);
739	unmap_mapping_range(mapping, holebegin, 0, 1);
740}
741EXPORT_SYMBOL(truncate_pagecache);
742
743/**
744 * truncate_setsize - update inode and pagecache for a new file size
745 * @inode: inode
746 * @newsize: new file size
747 *
748 * truncate_setsize updates i_size and performs pagecache truncation (if
749 * necessary) to @newsize. It will be typically be called from the filesystem's
750 * setattr function when ATTR_SIZE is passed in.
751 *
752 * Must be called with a lock serializing truncates and writes (generally
753 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
754 * specific block truncation has been performed.
755 */
756void truncate_setsize(struct inode *inode, loff_t newsize)
757{
758	loff_t oldsize = inode->i_size;
759
760	i_size_write(inode, newsize);
761	if (newsize > oldsize)
762		pagecache_isize_extended(inode, oldsize, newsize);
763	truncate_pagecache(inode, newsize);
764}
765EXPORT_SYMBOL(truncate_setsize);
766
767/**
768 * pagecache_isize_extended - update pagecache after extension of i_size
769 * @inode:	inode for which i_size was extended
770 * @from:	original inode size
771 * @to:		new inode size
772 *
773 * Handle extension of inode size either caused by extending truncate or by
774 * write starting after current i_size. We mark the page straddling current
775 * i_size RO so that page_mkwrite() is called on the nearest write access to
776 * the page.  This way filesystem can be sure that page_mkwrite() is called on
777 * the page before user writes to the page via mmap after the i_size has been
778 * changed.
779 *
780 * The function must be called after i_size is updated so that page fault
781 * coming after we unlock the page will already see the new i_size.
782 * The function must be called while we still hold i_mutex - this not only
783 * makes sure i_size is stable but also that userspace cannot observe new
784 * i_size value before we are prepared to store mmap writes at new inode size.
785 */
786void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
787{
788	int bsize = 1 << inode->i_blkbits;
789	loff_t rounded_from;
790	struct page *page;
791	pgoff_t index;
792
793	WARN_ON(to > inode->i_size);
794
795	if (from >= to || bsize == PAGE_SIZE)
796		return;
797	/* Page straddling @from will not have any hole block created? */
798	rounded_from = round_up(from, bsize);
799	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
800		return;
801
802	index = from >> PAGE_SHIFT;
803	page = find_lock_page(inode->i_mapping, index);
804	/* Page not cached? Nothing to do */
805	if (!page)
806		return;
807	/*
808	 * See clear_page_dirty_for_io() for details why set_page_dirty()
809	 * is needed.
810	 */
811	if (page_mkclean(page))
812		set_page_dirty(page);
813	unlock_page(page);
814	put_page(page);
815}
816EXPORT_SYMBOL(pagecache_isize_extended);
817
818/**
819 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
820 * @inode: inode
821 * @lstart: offset of beginning of hole
822 * @lend: offset of last byte of hole
823 *
824 * This function should typically be called before the filesystem
825 * releases resources associated with the freed range (eg. deallocates
826 * blocks). This way, pagecache will always stay logically coherent
827 * with on-disk format, and the filesystem would not have to deal with
828 * situations such as writepage being called for a page that has already
829 * had its underlying blocks deallocated.
830 */
831void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
832{
833	struct address_space *mapping = inode->i_mapping;
834	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
835	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
836	/*
837	 * This rounding is currently just for example: unmap_mapping_range
838	 * expands its hole outwards, whereas we want it to contract the hole
839	 * inwards.  However, existing callers of truncate_pagecache_range are
840	 * doing their own page rounding first.  Note that unmap_mapping_range
841	 * allows holelen 0 for all, and we allow lend -1 for end of file.
842	 */
843
844	/*
845	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
846	 * once (before truncating pagecache), and without "even_cows" flag:
847	 * hole-punching should not remove private COWed pages from the hole.
848	 */
849	if ((u64)unmap_end > (u64)unmap_start)
850		unmap_mapping_range(mapping, unmap_start,
851				    1 + unmap_end - unmap_start, 0);
852	truncate_inode_pages_range(mapping, lstart, lend);
853}
854EXPORT_SYMBOL(truncate_pagecache_range);