Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.10.11.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Scheduler topology setup/handling methods
   4 */
   5#include "sched.h"
   6
   7DEFINE_MUTEX(sched_domains_mutex);
   8
   9/* Protected by sched_domains_mutex: */
  10cpumask_var_t sched_domains_tmpmask;
  11cpumask_var_t sched_domains_tmpmask2;
  12
  13#ifdef CONFIG_SCHED_DEBUG
  14
  15static int __init sched_debug_setup(char *str)
  16{
  17	sched_debug_enabled = true;
  18
  19	return 0;
  20}
  21early_param("sched_debug", sched_debug_setup);
  22
  23static inline bool sched_debug(void)
  24{
  25	return sched_debug_enabled;
  26}
  27
  28static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  29				  struct cpumask *groupmask)
  30{
  31	struct sched_group *group = sd->groups;
  32
  33	cpumask_clear(groupmask);
  34
  35	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
  36
  37	if (!(sd->flags & SD_LOAD_BALANCE)) {
  38		printk("does not load-balance\n");
  39		if (sd->parent)
  40			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
  41		return -1;
  42	}
  43
  44	printk(KERN_CONT "span=%*pbl level=%s\n",
  45	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
  46
  47	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  48		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
  49	}
  50	if (!cpumask_test_cpu(cpu, sched_group_span(group))) {
  51		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
  52	}
  53
  54	printk(KERN_DEBUG "%*s groups:", level + 1, "");
  55	do {
  56		if (!group) {
  57			printk("\n");
  58			printk(KERN_ERR "ERROR: group is NULL\n");
  59			break;
  60		}
  61
  62		if (!cpumask_weight(sched_group_span(group))) {
  63			printk(KERN_CONT "\n");
  64			printk(KERN_ERR "ERROR: empty group\n");
  65			break;
  66		}
  67
  68		if (!(sd->flags & SD_OVERLAP) &&
  69		    cpumask_intersects(groupmask, sched_group_span(group))) {
  70			printk(KERN_CONT "\n");
  71			printk(KERN_ERR "ERROR: repeated CPUs\n");
  72			break;
  73		}
  74
  75		cpumask_or(groupmask, groupmask, sched_group_span(group));
  76
  77		printk(KERN_CONT " %d:{ span=%*pbl",
  78				group->sgc->id,
  79				cpumask_pr_args(sched_group_span(group)));
  80
  81		if ((sd->flags & SD_OVERLAP) &&
  82		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
  83			printk(KERN_CONT " mask=%*pbl",
  84				cpumask_pr_args(group_balance_mask(group)));
  85		}
  86
  87		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
  88			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
  89
  90		if (group == sd->groups && sd->child &&
  91		    !cpumask_equal(sched_domain_span(sd->child),
  92				   sched_group_span(group))) {
  93			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
  94		}
  95
  96		printk(KERN_CONT " }");
  97
  98		group = group->next;
  99
 100		if (group != sd->groups)
 101			printk(KERN_CONT ",");
 102
 103	} while (group != sd->groups);
 104	printk(KERN_CONT "\n");
 105
 106	if (!cpumask_equal(sched_domain_span(sd), groupmask))
 107		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
 108
 109	if (sd->parent &&
 110	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
 111		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
 112	return 0;
 113}
 114
 115static void sched_domain_debug(struct sched_domain *sd, int cpu)
 116{
 117	int level = 0;
 118
 119	if (!sched_debug_enabled)
 120		return;
 121
 122	if (!sd) {
 123		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
 124		return;
 125	}
 126
 127	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
 128
 129	for (;;) {
 130		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
 131			break;
 132		level++;
 133		sd = sd->parent;
 134		if (!sd)
 135			break;
 136	}
 137}
 138#else /* !CONFIG_SCHED_DEBUG */
 139
 140# define sched_debug_enabled 0
 141# define sched_domain_debug(sd, cpu) do { } while (0)
 142static inline bool sched_debug(void)
 143{
 144	return false;
 145}
 146#endif /* CONFIG_SCHED_DEBUG */
 147
 148static int sd_degenerate(struct sched_domain *sd)
 149{
 150	if (cpumask_weight(sched_domain_span(sd)) == 1)
 151		return 1;
 152
 153	/* Following flags need at least 2 groups */
 154	if (sd->flags & (SD_LOAD_BALANCE |
 155			 SD_BALANCE_NEWIDLE |
 156			 SD_BALANCE_FORK |
 157			 SD_BALANCE_EXEC |
 158			 SD_SHARE_CPUCAPACITY |
 159			 SD_ASYM_CPUCAPACITY |
 160			 SD_SHARE_PKG_RESOURCES |
 161			 SD_SHARE_POWERDOMAIN)) {
 162		if (sd->groups != sd->groups->next)
 163			return 0;
 164	}
 165
 166	/* Following flags don't use groups */
 167	if (sd->flags & (SD_WAKE_AFFINE))
 168		return 0;
 169
 170	return 1;
 171}
 172
 173static int
 174sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
 175{
 176	unsigned long cflags = sd->flags, pflags = parent->flags;
 177
 178	if (sd_degenerate(parent))
 179		return 1;
 180
 181	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
 182		return 0;
 183
 184	/* Flags needing groups don't count if only 1 group in parent */
 185	if (parent->groups == parent->groups->next) {
 186		pflags &= ~(SD_LOAD_BALANCE |
 187				SD_BALANCE_NEWIDLE |
 188				SD_BALANCE_FORK |
 189				SD_BALANCE_EXEC |
 190				SD_ASYM_CPUCAPACITY |
 191				SD_SHARE_CPUCAPACITY |
 192				SD_SHARE_PKG_RESOURCES |
 193				SD_PREFER_SIBLING |
 194				SD_SHARE_POWERDOMAIN);
 195		if (nr_node_ids == 1)
 196			pflags &= ~SD_SERIALIZE;
 197	}
 198	if (~cflags & pflags)
 199		return 0;
 200
 201	return 1;
 202}
 203
 204static void free_rootdomain(struct rcu_head *rcu)
 205{
 206	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
 207
 208	cpupri_cleanup(&rd->cpupri);
 209	cpudl_cleanup(&rd->cpudl);
 210	free_cpumask_var(rd->dlo_mask);
 211	free_cpumask_var(rd->rto_mask);
 212	free_cpumask_var(rd->online);
 213	free_cpumask_var(rd->span);
 214	kfree(rd);
 215}
 216
 217void rq_attach_root(struct rq *rq, struct root_domain *rd)
 218{
 219	struct root_domain *old_rd = NULL;
 220	unsigned long flags;
 221
 222	raw_spin_lock_irqsave(&rq->lock, flags);
 223
 224	if (rq->rd) {
 225		old_rd = rq->rd;
 226
 227		if (cpumask_test_cpu(rq->cpu, old_rd->online))
 228			set_rq_offline(rq);
 229
 230		cpumask_clear_cpu(rq->cpu, old_rd->span);
 231
 232		/*
 233		 * If we dont want to free the old_rd yet then
 234		 * set old_rd to NULL to skip the freeing later
 235		 * in this function:
 236		 */
 237		if (!atomic_dec_and_test(&old_rd->refcount))
 238			old_rd = NULL;
 239	}
 240
 241	atomic_inc(&rd->refcount);
 242	rq->rd = rd;
 243
 244	cpumask_set_cpu(rq->cpu, rd->span);
 245	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
 246		set_rq_online(rq);
 247
 248	raw_spin_unlock_irqrestore(&rq->lock, flags);
 249
 250	if (old_rd)
 251		call_rcu_sched(&old_rd->rcu, free_rootdomain);
 252}
 253
 254void sched_get_rd(struct root_domain *rd)
 255{
 256	atomic_inc(&rd->refcount);
 257}
 258
 259void sched_put_rd(struct root_domain *rd)
 260{
 261	if (!atomic_dec_and_test(&rd->refcount))
 262		return;
 263
 264	call_rcu_sched(&rd->rcu, free_rootdomain);
 265}
 266
 267static int init_rootdomain(struct root_domain *rd)
 268{
 269	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
 270		goto out;
 271	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
 272		goto free_span;
 273	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
 274		goto free_online;
 275	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
 276		goto free_dlo_mask;
 277
 278#ifdef HAVE_RT_PUSH_IPI
 279	rd->rto_cpu = -1;
 280	raw_spin_lock_init(&rd->rto_lock);
 281	init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
 282#endif
 283
 284	init_dl_bw(&rd->dl_bw);
 285	if (cpudl_init(&rd->cpudl) != 0)
 286		goto free_rto_mask;
 287
 288	if (cpupri_init(&rd->cpupri) != 0)
 289		goto free_cpudl;
 290	return 0;
 291
 292free_cpudl:
 293	cpudl_cleanup(&rd->cpudl);
 294free_rto_mask:
 295	free_cpumask_var(rd->rto_mask);
 296free_dlo_mask:
 297	free_cpumask_var(rd->dlo_mask);
 298free_online:
 299	free_cpumask_var(rd->online);
 300free_span:
 301	free_cpumask_var(rd->span);
 302out:
 303	return -ENOMEM;
 304}
 305
 306/*
 307 * By default the system creates a single root-domain with all CPUs as
 308 * members (mimicking the global state we have today).
 309 */
 310struct root_domain def_root_domain;
 311
 312void init_defrootdomain(void)
 313{
 314	init_rootdomain(&def_root_domain);
 315
 316	atomic_set(&def_root_domain.refcount, 1);
 317}
 318
 319static struct root_domain *alloc_rootdomain(void)
 320{
 321	struct root_domain *rd;
 322
 323	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
 324	if (!rd)
 325		return NULL;
 326
 327	if (init_rootdomain(rd) != 0) {
 328		kfree(rd);
 329		return NULL;
 330	}
 331
 332	return rd;
 333}
 334
 335static void free_sched_groups(struct sched_group *sg, int free_sgc)
 336{
 337	struct sched_group *tmp, *first;
 338
 339	if (!sg)
 340		return;
 341
 342	first = sg;
 343	do {
 344		tmp = sg->next;
 345
 346		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
 347			kfree(sg->sgc);
 348
 349		if (atomic_dec_and_test(&sg->ref))
 350			kfree(sg);
 351		sg = tmp;
 352	} while (sg != first);
 353}
 354
 355static void destroy_sched_domain(struct sched_domain *sd)
 356{
 357	/*
 358	 * A normal sched domain may have multiple group references, an
 359	 * overlapping domain, having private groups, only one.  Iterate,
 360	 * dropping group/capacity references, freeing where none remain.
 361	 */
 362	free_sched_groups(sd->groups, 1);
 363
 364	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
 365		kfree(sd->shared);
 366	kfree(sd);
 367}
 368
 369static void destroy_sched_domains_rcu(struct rcu_head *rcu)
 370{
 371	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
 372
 373	while (sd) {
 374		struct sched_domain *parent = sd->parent;
 375		destroy_sched_domain(sd);
 376		sd = parent;
 377	}
 378}
 379
 380static void destroy_sched_domains(struct sched_domain *sd)
 381{
 382	if (sd)
 383		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
 384}
 385
 386/*
 387 * Keep a special pointer to the highest sched_domain that has
 388 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 389 * allows us to avoid some pointer chasing select_idle_sibling().
 390 *
 391 * Also keep a unique ID per domain (we use the first CPU number in
 392 * the cpumask of the domain), this allows us to quickly tell if
 393 * two CPUs are in the same cache domain, see cpus_share_cache().
 394 */
 395DEFINE_PER_CPU(struct sched_domain *, sd_llc);
 396DEFINE_PER_CPU(int, sd_llc_size);
 397DEFINE_PER_CPU(int, sd_llc_id);
 398DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
 399DEFINE_PER_CPU(struct sched_domain *, sd_numa);
 400DEFINE_PER_CPU(struct sched_domain *, sd_asym);
 401
 402static void update_top_cache_domain(int cpu)
 403{
 404	struct sched_domain_shared *sds = NULL;
 405	struct sched_domain *sd;
 406	int id = cpu;
 407	int size = 1;
 408
 409	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
 410	if (sd) {
 411		id = cpumask_first(sched_domain_span(sd));
 412		size = cpumask_weight(sched_domain_span(sd));
 413		sds = sd->shared;
 414	}
 415
 416	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
 417	per_cpu(sd_llc_size, cpu) = size;
 418	per_cpu(sd_llc_id, cpu) = id;
 419	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
 420
 421	sd = lowest_flag_domain(cpu, SD_NUMA);
 422	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
 423
 424	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
 425	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
 426}
 427
 428/*
 429 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
 430 * hold the hotplug lock.
 431 */
 432static void
 433cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
 434{
 435	struct rq *rq = cpu_rq(cpu);
 436	struct sched_domain *tmp;
 437
 438	/* Remove the sched domains which do not contribute to scheduling. */
 439	for (tmp = sd; tmp; ) {
 440		struct sched_domain *parent = tmp->parent;
 441		if (!parent)
 442			break;
 443
 444		if (sd_parent_degenerate(tmp, parent)) {
 445			tmp->parent = parent->parent;
 446			if (parent->parent)
 447				parent->parent->child = tmp;
 448			/*
 449			 * Transfer SD_PREFER_SIBLING down in case of a
 450			 * degenerate parent; the spans match for this
 451			 * so the property transfers.
 452			 */
 453			if (parent->flags & SD_PREFER_SIBLING)
 454				tmp->flags |= SD_PREFER_SIBLING;
 455			destroy_sched_domain(parent);
 456		} else
 457			tmp = tmp->parent;
 458	}
 459
 460	if (sd && sd_degenerate(sd)) {
 461		tmp = sd;
 462		sd = sd->parent;
 463		destroy_sched_domain(tmp);
 464		if (sd)
 465			sd->child = NULL;
 466	}
 467
 468	sched_domain_debug(sd, cpu);
 469
 470	rq_attach_root(rq, rd);
 471	tmp = rq->sd;
 472	rcu_assign_pointer(rq->sd, sd);
 473	dirty_sched_domain_sysctl(cpu);
 474	destroy_sched_domains(tmp);
 475
 476	update_top_cache_domain(cpu);
 477}
 478
 479struct s_data {
 480	struct sched_domain ** __percpu sd;
 481	struct root_domain	*rd;
 482};
 483
 484enum s_alloc {
 485	sa_rootdomain,
 486	sa_sd,
 487	sa_sd_storage,
 488	sa_none,
 489};
 490
 491/*
 492 * Return the canonical balance CPU for this group, this is the first CPU
 493 * of this group that's also in the balance mask.
 494 *
 495 * The balance mask are all those CPUs that could actually end up at this
 496 * group. See build_balance_mask().
 497 *
 498 * Also see should_we_balance().
 499 */
 500int group_balance_cpu(struct sched_group *sg)
 501{
 502	return cpumask_first(group_balance_mask(sg));
 503}
 504
 505
 506/*
 507 * NUMA topology (first read the regular topology blurb below)
 508 *
 509 * Given a node-distance table, for example:
 510 *
 511 *   node   0   1   2   3
 512 *     0:  10  20  30  20
 513 *     1:  20  10  20  30
 514 *     2:  30  20  10  20
 515 *     3:  20  30  20  10
 516 *
 517 * which represents a 4 node ring topology like:
 518 *
 519 *   0 ----- 1
 520 *   |       |
 521 *   |       |
 522 *   |       |
 523 *   3 ----- 2
 524 *
 525 * We want to construct domains and groups to represent this. The way we go
 526 * about doing this is to build the domains on 'hops'. For each NUMA level we
 527 * construct the mask of all nodes reachable in @level hops.
 528 *
 529 * For the above NUMA topology that gives 3 levels:
 530 *
 531 * NUMA-2	0-3		0-3		0-3		0-3
 532 *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
 533 *
 534 * NUMA-1	0-1,3		0-2		1-3		0,2-3
 535 *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
 536 *
 537 * NUMA-0	0		1		2		3
 538 *
 539 *
 540 * As can be seen; things don't nicely line up as with the regular topology.
 541 * When we iterate a domain in child domain chunks some nodes can be
 542 * represented multiple times -- hence the "overlap" naming for this part of
 543 * the topology.
 544 *
 545 * In order to minimize this overlap, we only build enough groups to cover the
 546 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
 547 *
 548 * Because:
 549 *
 550 *  - the first group of each domain is its child domain; this
 551 *    gets us the first 0-1,3
 552 *  - the only uncovered node is 2, who's child domain is 1-3.
 553 *
 554 * However, because of the overlap, computing a unique CPU for each group is
 555 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
 556 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
 557 * end up at those groups (they would end up in group: 0-1,3).
 558 *
 559 * To correct this we have to introduce the group balance mask. This mask
 560 * will contain those CPUs in the group that can reach this group given the
 561 * (child) domain tree.
 562 *
 563 * With this we can once again compute balance_cpu and sched_group_capacity
 564 * relations.
 565 *
 566 * XXX include words on how balance_cpu is unique and therefore can be
 567 * used for sched_group_capacity links.
 568 *
 569 *
 570 * Another 'interesting' topology is:
 571 *
 572 *   node   0   1   2   3
 573 *     0:  10  20  20  30
 574 *     1:  20  10  20  20
 575 *     2:  20  20  10  20
 576 *     3:  30  20  20  10
 577 *
 578 * Which looks a little like:
 579 *
 580 *   0 ----- 1
 581 *   |     / |
 582 *   |   /   |
 583 *   | /     |
 584 *   2 ----- 3
 585 *
 586 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
 587 * are not.
 588 *
 589 * This leads to a few particularly weird cases where the sched_domain's are
 590 * not of the same number for each CPU. Consider:
 591 *
 592 * NUMA-2	0-3						0-3
 593 *  groups:	{0-2},{1-3}					{1-3},{0-2}
 594 *
 595 * NUMA-1	0-2		0-3		0-3		1-3
 596 *
 597 * NUMA-0	0		1		2		3
 598 *
 599 */
 600
 601
 602/*
 603 * Build the balance mask; it contains only those CPUs that can arrive at this
 604 * group and should be considered to continue balancing.
 605 *
 606 * We do this during the group creation pass, therefore the group information
 607 * isn't complete yet, however since each group represents a (child) domain we
 608 * can fully construct this using the sched_domain bits (which are already
 609 * complete).
 610 */
 611static void
 612build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
 613{
 614	const struct cpumask *sg_span = sched_group_span(sg);
 615	struct sd_data *sdd = sd->private;
 616	struct sched_domain *sibling;
 617	int i;
 618
 619	cpumask_clear(mask);
 620
 621	for_each_cpu(i, sg_span) {
 622		sibling = *per_cpu_ptr(sdd->sd, i);
 623
 624		/*
 625		 * Can happen in the asymmetric case, where these siblings are
 626		 * unused. The mask will not be empty because those CPUs that
 627		 * do have the top domain _should_ span the domain.
 628		 */
 629		if (!sibling->child)
 630			continue;
 631
 632		/* If we would not end up here, we can't continue from here */
 633		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
 634			continue;
 635
 636		cpumask_set_cpu(i, mask);
 637	}
 638
 639	/* We must not have empty masks here */
 640	WARN_ON_ONCE(cpumask_empty(mask));
 641}
 642
 643/*
 644 * XXX: This creates per-node group entries; since the load-balancer will
 645 * immediately access remote memory to construct this group's load-balance
 646 * statistics having the groups node local is of dubious benefit.
 647 */
 648static struct sched_group *
 649build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
 650{
 651	struct sched_group *sg;
 652	struct cpumask *sg_span;
 653
 654	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
 655			GFP_KERNEL, cpu_to_node(cpu));
 656
 657	if (!sg)
 658		return NULL;
 659
 660	sg_span = sched_group_span(sg);
 661	if (sd->child)
 662		cpumask_copy(sg_span, sched_domain_span(sd->child));
 663	else
 664		cpumask_copy(sg_span, sched_domain_span(sd));
 665
 666	atomic_inc(&sg->ref);
 667	return sg;
 668}
 669
 670static void init_overlap_sched_group(struct sched_domain *sd,
 671				     struct sched_group *sg)
 672{
 673	struct cpumask *mask = sched_domains_tmpmask2;
 674	struct sd_data *sdd = sd->private;
 675	struct cpumask *sg_span;
 676	int cpu;
 677
 678	build_balance_mask(sd, sg, mask);
 679	cpu = cpumask_first_and(sched_group_span(sg), mask);
 680
 681	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
 682	if (atomic_inc_return(&sg->sgc->ref) == 1)
 683		cpumask_copy(group_balance_mask(sg), mask);
 684	else
 685		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
 686
 687	/*
 688	 * Initialize sgc->capacity such that even if we mess up the
 689	 * domains and no possible iteration will get us here, we won't
 690	 * die on a /0 trap.
 691	 */
 692	sg_span = sched_group_span(sg);
 693	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
 694	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
 695}
 696
 697static int
 698build_overlap_sched_groups(struct sched_domain *sd, int cpu)
 699{
 700	struct sched_group *first = NULL, *last = NULL, *sg;
 701	const struct cpumask *span = sched_domain_span(sd);
 702	struct cpumask *covered = sched_domains_tmpmask;
 703	struct sd_data *sdd = sd->private;
 704	struct sched_domain *sibling;
 705	int i;
 706
 707	cpumask_clear(covered);
 708
 709	for_each_cpu_wrap(i, span, cpu) {
 710		struct cpumask *sg_span;
 711
 712		if (cpumask_test_cpu(i, covered))
 713			continue;
 714
 715		sibling = *per_cpu_ptr(sdd->sd, i);
 716
 717		/*
 718		 * Asymmetric node setups can result in situations where the
 719		 * domain tree is of unequal depth, make sure to skip domains
 720		 * that already cover the entire range.
 721		 *
 722		 * In that case build_sched_domains() will have terminated the
 723		 * iteration early and our sibling sd spans will be empty.
 724		 * Domains should always include the CPU they're built on, so
 725		 * check that.
 726		 */
 727		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
 728			continue;
 729
 730		sg = build_group_from_child_sched_domain(sibling, cpu);
 731		if (!sg)
 732			goto fail;
 733
 734		sg_span = sched_group_span(sg);
 735		cpumask_or(covered, covered, sg_span);
 736
 737		init_overlap_sched_group(sd, sg);
 738
 739		if (!first)
 740			first = sg;
 741		if (last)
 742			last->next = sg;
 743		last = sg;
 744		last->next = first;
 745	}
 746	sd->groups = first;
 747
 748	return 0;
 749
 750fail:
 751	free_sched_groups(first, 0);
 752
 753	return -ENOMEM;
 754}
 755
 756
 757/*
 758 * Package topology (also see the load-balance blurb in fair.c)
 759 *
 760 * The scheduler builds a tree structure to represent a number of important
 761 * topology features. By default (default_topology[]) these include:
 762 *
 763 *  - Simultaneous multithreading (SMT)
 764 *  - Multi-Core Cache (MC)
 765 *  - Package (DIE)
 766 *
 767 * Where the last one more or less denotes everything up to a NUMA node.
 768 *
 769 * The tree consists of 3 primary data structures:
 770 *
 771 *	sched_domain -> sched_group -> sched_group_capacity
 772 *	    ^ ^             ^ ^
 773 *          `-'             `-'
 774 *
 775 * The sched_domains are per-CPU and have a two way link (parent & child) and
 776 * denote the ever growing mask of CPUs belonging to that level of topology.
 777 *
 778 * Each sched_domain has a circular (double) linked list of sched_group's, each
 779 * denoting the domains of the level below (or individual CPUs in case of the
 780 * first domain level). The sched_group linked by a sched_domain includes the
 781 * CPU of that sched_domain [*].
 782 *
 783 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
 784 *
 785 * CPU   0   1   2   3   4   5   6   7
 786 *
 787 * DIE  [                             ]
 788 * MC   [             ] [             ]
 789 * SMT  [     ] [     ] [     ] [     ]
 790 *
 791 *  - or -
 792 *
 793 * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
 794 * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
 795 * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
 796 *
 797 * CPU   0   1   2   3   4   5   6   7
 798 *
 799 * One way to think about it is: sched_domain moves you up and down among these
 800 * topology levels, while sched_group moves you sideways through it, at child
 801 * domain granularity.
 802 *
 803 * sched_group_capacity ensures each unique sched_group has shared storage.
 804 *
 805 * There are two related construction problems, both require a CPU that
 806 * uniquely identify each group (for a given domain):
 807 *
 808 *  - The first is the balance_cpu (see should_we_balance() and the
 809 *    load-balance blub in fair.c); for each group we only want 1 CPU to
 810 *    continue balancing at a higher domain.
 811 *
 812 *  - The second is the sched_group_capacity; we want all identical groups
 813 *    to share a single sched_group_capacity.
 814 *
 815 * Since these topologies are exclusive by construction. That is, its
 816 * impossible for an SMT thread to belong to multiple cores, and cores to
 817 * be part of multiple caches. There is a very clear and unique location
 818 * for each CPU in the hierarchy.
 819 *
 820 * Therefore computing a unique CPU for each group is trivial (the iteration
 821 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
 822 * group), we can simply pick the first CPU in each group.
 823 *
 824 *
 825 * [*] in other words, the first group of each domain is its child domain.
 826 */
 827
 828static struct sched_group *get_group(int cpu, struct sd_data *sdd)
 829{
 830	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
 831	struct sched_domain *child = sd->child;
 832	struct sched_group *sg;
 833
 834	if (child)
 835		cpu = cpumask_first(sched_domain_span(child));
 836
 837	sg = *per_cpu_ptr(sdd->sg, cpu);
 838	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
 839
 840	/* For claim_allocations: */
 841	atomic_inc(&sg->ref);
 842	atomic_inc(&sg->sgc->ref);
 843
 844	if (child) {
 845		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
 846		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
 847	} else {
 848		cpumask_set_cpu(cpu, sched_group_span(sg));
 849		cpumask_set_cpu(cpu, group_balance_mask(sg));
 850	}
 851
 852	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
 853	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
 854
 855	return sg;
 856}
 857
 858/*
 859 * build_sched_groups will build a circular linked list of the groups
 860 * covered by the given span, and will set each group's ->cpumask correctly,
 861 * and ->cpu_capacity to 0.
 862 *
 863 * Assumes the sched_domain tree is fully constructed
 864 */
 865static int
 866build_sched_groups(struct sched_domain *sd, int cpu)
 867{
 868	struct sched_group *first = NULL, *last = NULL;
 869	struct sd_data *sdd = sd->private;
 870	const struct cpumask *span = sched_domain_span(sd);
 871	struct cpumask *covered;
 872	int i;
 873
 874	lockdep_assert_held(&sched_domains_mutex);
 875	covered = sched_domains_tmpmask;
 876
 877	cpumask_clear(covered);
 878
 879	for_each_cpu_wrap(i, span, cpu) {
 880		struct sched_group *sg;
 881
 882		if (cpumask_test_cpu(i, covered))
 883			continue;
 884
 885		sg = get_group(i, sdd);
 886
 887		cpumask_or(covered, covered, sched_group_span(sg));
 888
 889		if (!first)
 890			first = sg;
 891		if (last)
 892			last->next = sg;
 893		last = sg;
 894	}
 895	last->next = first;
 896	sd->groups = first;
 897
 898	return 0;
 899}
 900
 901/*
 902 * Initialize sched groups cpu_capacity.
 903 *
 904 * cpu_capacity indicates the capacity of sched group, which is used while
 905 * distributing the load between different sched groups in a sched domain.
 906 * Typically cpu_capacity for all the groups in a sched domain will be same
 907 * unless there are asymmetries in the topology. If there are asymmetries,
 908 * group having more cpu_capacity will pickup more load compared to the
 909 * group having less cpu_capacity.
 910 */
 911static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
 912{
 913	struct sched_group *sg = sd->groups;
 914
 915	WARN_ON(!sg);
 916
 917	do {
 918		int cpu, max_cpu = -1;
 919
 920		sg->group_weight = cpumask_weight(sched_group_span(sg));
 921
 922		if (!(sd->flags & SD_ASYM_PACKING))
 923			goto next;
 924
 925		for_each_cpu(cpu, sched_group_span(sg)) {
 926			if (max_cpu < 0)
 927				max_cpu = cpu;
 928			else if (sched_asym_prefer(cpu, max_cpu))
 929				max_cpu = cpu;
 930		}
 931		sg->asym_prefer_cpu = max_cpu;
 932
 933next:
 934		sg = sg->next;
 935	} while (sg != sd->groups);
 936
 937	if (cpu != group_balance_cpu(sg))
 938		return;
 939
 940	update_group_capacity(sd, cpu);
 941}
 942
 943/*
 944 * Initializers for schedule domains
 945 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 946 */
 947
 948static int default_relax_domain_level = -1;
 949int sched_domain_level_max;
 950
 951static int __init setup_relax_domain_level(char *str)
 952{
 953	if (kstrtoint(str, 0, &default_relax_domain_level))
 954		pr_warn("Unable to set relax_domain_level\n");
 955
 956	return 1;
 957}
 958__setup("relax_domain_level=", setup_relax_domain_level);
 959
 960static void set_domain_attribute(struct sched_domain *sd,
 961				 struct sched_domain_attr *attr)
 962{
 963	int request;
 964
 965	if (!attr || attr->relax_domain_level < 0) {
 966		if (default_relax_domain_level < 0)
 967			return;
 968		else
 969			request = default_relax_domain_level;
 970	} else
 971		request = attr->relax_domain_level;
 972	if (request < sd->level) {
 973		/* Turn off idle balance on this domain: */
 974		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
 975	} else {
 976		/* Turn on idle balance on this domain: */
 977		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
 978	}
 979}
 980
 981static void __sdt_free(const struct cpumask *cpu_map);
 982static int __sdt_alloc(const struct cpumask *cpu_map);
 983
 984static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
 985				 const struct cpumask *cpu_map)
 986{
 987	switch (what) {
 988	case sa_rootdomain:
 989		if (!atomic_read(&d->rd->refcount))
 990			free_rootdomain(&d->rd->rcu);
 991		/* Fall through */
 992	case sa_sd:
 993		free_percpu(d->sd);
 994		/* Fall through */
 995	case sa_sd_storage:
 996		__sdt_free(cpu_map);
 997		/* Fall through */
 998	case sa_none:
 999		break;
1000	}
1001}
1002
1003static enum s_alloc
1004__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1005{
1006	memset(d, 0, sizeof(*d));
1007
1008	if (__sdt_alloc(cpu_map))
1009		return sa_sd_storage;
1010	d->sd = alloc_percpu(struct sched_domain *);
1011	if (!d->sd)
1012		return sa_sd_storage;
1013	d->rd = alloc_rootdomain();
1014	if (!d->rd)
1015		return sa_sd;
1016
1017	return sa_rootdomain;
1018}
1019
1020/*
1021 * NULL the sd_data elements we've used to build the sched_domain and
1022 * sched_group structure so that the subsequent __free_domain_allocs()
1023 * will not free the data we're using.
1024 */
1025static void claim_allocations(int cpu, struct sched_domain *sd)
1026{
1027	struct sd_data *sdd = sd->private;
1028
1029	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1030	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1031
1032	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1033		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1034
1035	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1036		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1037
1038	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1039		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1040}
1041
1042#ifdef CONFIG_NUMA
1043enum numa_topology_type sched_numa_topology_type;
1044
1045static int			sched_domains_numa_levels;
1046static int			sched_domains_curr_level;
1047
1048int				sched_max_numa_distance;
1049static int			*sched_domains_numa_distance;
1050static struct cpumask		***sched_domains_numa_masks;
1051#endif
1052
1053/*
1054 * SD_flags allowed in topology descriptions.
1055 *
1056 * These flags are purely descriptive of the topology and do not prescribe
1057 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1058 * function:
1059 *
1060 *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1061 *   SD_SHARE_PKG_RESOURCES - describes shared caches
1062 *   SD_NUMA                - describes NUMA topologies
1063 *   SD_SHARE_POWERDOMAIN   - describes shared power domain
1064 *   SD_ASYM_CPUCAPACITY    - describes mixed capacity topologies
1065 *
1066 * Odd one out, which beside describing the topology has a quirk also
1067 * prescribes the desired behaviour that goes along with it:
1068 *
1069 *   SD_ASYM_PACKING        - describes SMT quirks
1070 */
1071#define TOPOLOGY_SD_FLAGS		\
1072	(SD_SHARE_CPUCAPACITY	|	\
1073	 SD_SHARE_PKG_RESOURCES |	\
1074	 SD_NUMA		|	\
1075	 SD_ASYM_PACKING	|	\
1076	 SD_ASYM_CPUCAPACITY	|	\
1077	 SD_SHARE_POWERDOMAIN)
1078
1079static struct sched_domain *
1080sd_init(struct sched_domain_topology_level *tl,
1081	const struct cpumask *cpu_map,
1082	struct sched_domain *child, int cpu)
1083{
1084	struct sd_data *sdd = &tl->data;
1085	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1086	int sd_id, sd_weight, sd_flags = 0;
1087
1088#ifdef CONFIG_NUMA
1089	/*
1090	 * Ugly hack to pass state to sd_numa_mask()...
1091	 */
1092	sched_domains_curr_level = tl->numa_level;
1093#endif
1094
1095	sd_weight = cpumask_weight(tl->mask(cpu));
1096
1097	if (tl->sd_flags)
1098		sd_flags = (*tl->sd_flags)();
1099	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1100			"wrong sd_flags in topology description\n"))
1101		sd_flags &= ~TOPOLOGY_SD_FLAGS;
1102
1103	*sd = (struct sched_domain){
1104		.min_interval		= sd_weight,
1105		.max_interval		= 2*sd_weight,
1106		.busy_factor		= 32,
1107		.imbalance_pct		= 125,
1108
1109		.cache_nice_tries	= 0,
1110		.busy_idx		= 0,
1111		.idle_idx		= 0,
1112		.newidle_idx		= 0,
1113		.wake_idx		= 0,
1114		.forkexec_idx		= 0,
1115
1116		.flags			= 1*SD_LOAD_BALANCE
1117					| 1*SD_BALANCE_NEWIDLE
1118					| 1*SD_BALANCE_EXEC
1119					| 1*SD_BALANCE_FORK
1120					| 0*SD_BALANCE_WAKE
1121					| 1*SD_WAKE_AFFINE
1122					| 0*SD_SHARE_CPUCAPACITY
1123					| 0*SD_SHARE_PKG_RESOURCES
1124					| 0*SD_SERIALIZE
1125					| 0*SD_PREFER_SIBLING
1126					| 0*SD_NUMA
1127					| sd_flags
1128					,
1129
1130		.last_balance		= jiffies,
1131		.balance_interval	= sd_weight,
1132		.smt_gain		= 0,
1133		.max_newidle_lb_cost	= 0,
1134		.next_decay_max_lb_cost	= jiffies,
1135		.child			= child,
1136#ifdef CONFIG_SCHED_DEBUG
1137		.name			= tl->name,
1138#endif
1139	};
1140
1141	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1142	sd_id = cpumask_first(sched_domain_span(sd));
1143
1144	/*
1145	 * Convert topological properties into behaviour.
1146	 */
1147
1148	if (sd->flags & SD_ASYM_CPUCAPACITY) {
1149		struct sched_domain *t = sd;
1150
1151		for_each_lower_domain(t)
1152			t->flags |= SD_BALANCE_WAKE;
1153	}
1154
1155	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1156		sd->flags |= SD_PREFER_SIBLING;
1157		sd->imbalance_pct = 110;
1158		sd->smt_gain = 1178; /* ~15% */
1159
1160	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1161		sd->flags |= SD_PREFER_SIBLING;
1162		sd->imbalance_pct = 117;
1163		sd->cache_nice_tries = 1;
1164		sd->busy_idx = 2;
1165
1166#ifdef CONFIG_NUMA
1167	} else if (sd->flags & SD_NUMA) {
1168		sd->cache_nice_tries = 2;
1169		sd->busy_idx = 3;
1170		sd->idle_idx = 2;
1171
1172		sd->flags |= SD_SERIALIZE;
1173		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
1174			sd->flags &= ~(SD_BALANCE_EXEC |
1175				       SD_BALANCE_FORK |
1176				       SD_WAKE_AFFINE);
1177		}
1178
1179#endif
1180	} else {
1181		sd->flags |= SD_PREFER_SIBLING;
1182		sd->cache_nice_tries = 1;
1183		sd->busy_idx = 2;
1184		sd->idle_idx = 1;
1185	}
1186
1187	/*
1188	 * For all levels sharing cache; connect a sched_domain_shared
1189	 * instance.
1190	 */
1191	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1192		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1193		atomic_inc(&sd->shared->ref);
1194		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1195	}
1196
1197	sd->private = sdd;
1198
1199	return sd;
1200}
1201
1202/*
1203 * Topology list, bottom-up.
1204 */
1205static struct sched_domain_topology_level default_topology[] = {
1206#ifdef CONFIG_SCHED_SMT
1207	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1208#endif
1209#ifdef CONFIG_SCHED_MC
1210	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1211#endif
1212	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1213	{ NULL, },
1214};
1215
1216static struct sched_domain_topology_level *sched_domain_topology =
1217	default_topology;
1218
1219#define for_each_sd_topology(tl)			\
1220	for (tl = sched_domain_topology; tl->mask; tl++)
1221
1222void set_sched_topology(struct sched_domain_topology_level *tl)
1223{
1224	if (WARN_ON_ONCE(sched_smp_initialized))
1225		return;
1226
1227	sched_domain_topology = tl;
1228}
1229
1230#ifdef CONFIG_NUMA
1231
1232static const struct cpumask *sd_numa_mask(int cpu)
1233{
1234	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1235}
1236
1237static void sched_numa_warn(const char *str)
1238{
1239	static int done = false;
1240	int i,j;
1241
1242	if (done)
1243		return;
1244
1245	done = true;
1246
1247	printk(KERN_WARNING "ERROR: %s\n\n", str);
1248
1249	for (i = 0; i < nr_node_ids; i++) {
1250		printk(KERN_WARNING "  ");
1251		for (j = 0; j < nr_node_ids; j++)
1252			printk(KERN_CONT "%02d ", node_distance(i,j));
1253		printk(KERN_CONT "\n");
1254	}
1255	printk(KERN_WARNING "\n");
1256}
1257
1258bool find_numa_distance(int distance)
1259{
1260	int i;
1261
1262	if (distance == node_distance(0, 0))
1263		return true;
1264
1265	for (i = 0; i < sched_domains_numa_levels; i++) {
1266		if (sched_domains_numa_distance[i] == distance)
1267			return true;
1268	}
1269
1270	return false;
1271}
1272
1273/*
1274 * A system can have three types of NUMA topology:
1275 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1276 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1277 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1278 *
1279 * The difference between a glueless mesh topology and a backplane
1280 * topology lies in whether communication between not directly
1281 * connected nodes goes through intermediary nodes (where programs
1282 * could run), or through backplane controllers. This affects
1283 * placement of programs.
1284 *
1285 * The type of topology can be discerned with the following tests:
1286 * - If the maximum distance between any nodes is 1 hop, the system
1287 *   is directly connected.
1288 * - If for two nodes A and B, located N > 1 hops away from each other,
1289 *   there is an intermediary node C, which is < N hops away from both
1290 *   nodes A and B, the system is a glueless mesh.
1291 */
1292static void init_numa_topology_type(void)
1293{
1294	int a, b, c, n;
1295
1296	n = sched_max_numa_distance;
1297
1298	if (sched_domains_numa_levels <= 1) {
1299		sched_numa_topology_type = NUMA_DIRECT;
1300		return;
1301	}
1302
1303	for_each_online_node(a) {
1304		for_each_online_node(b) {
1305			/* Find two nodes furthest removed from each other. */
1306			if (node_distance(a, b) < n)
1307				continue;
1308
1309			/* Is there an intermediary node between a and b? */
1310			for_each_online_node(c) {
1311				if (node_distance(a, c) < n &&
1312				    node_distance(b, c) < n) {
1313					sched_numa_topology_type =
1314							NUMA_GLUELESS_MESH;
1315					return;
1316				}
1317			}
1318
1319			sched_numa_topology_type = NUMA_BACKPLANE;
1320			return;
1321		}
1322	}
1323}
1324
1325void sched_init_numa(void)
1326{
1327	int next_distance, curr_distance = node_distance(0, 0);
1328	struct sched_domain_topology_level *tl;
1329	int level = 0;
1330	int i, j, k;
1331
1332	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
1333	if (!sched_domains_numa_distance)
1334		return;
1335
1336	/* Includes NUMA identity node at level 0. */
1337	sched_domains_numa_distance[level++] = curr_distance;
1338	sched_domains_numa_levels = level;
1339
1340	/*
1341	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1342	 * unique distances in the node_distance() table.
1343	 *
1344	 * Assumes node_distance(0,j) includes all distances in
1345	 * node_distance(i,j) in order to avoid cubic time.
1346	 */
1347	next_distance = curr_distance;
1348	for (i = 0; i < nr_node_ids; i++) {
1349		for (j = 0; j < nr_node_ids; j++) {
1350			for (k = 0; k < nr_node_ids; k++) {
1351				int distance = node_distance(i, k);
1352
1353				if (distance > curr_distance &&
1354				    (distance < next_distance ||
1355				     next_distance == curr_distance))
1356					next_distance = distance;
1357
1358				/*
1359				 * While not a strong assumption it would be nice to know
1360				 * about cases where if node A is connected to B, B is not
1361				 * equally connected to A.
1362				 */
1363				if (sched_debug() && node_distance(k, i) != distance)
1364					sched_numa_warn("Node-distance not symmetric");
1365
1366				if (sched_debug() && i && !find_numa_distance(distance))
1367					sched_numa_warn("Node-0 not representative");
1368			}
1369			if (next_distance != curr_distance) {
1370				sched_domains_numa_distance[level++] = next_distance;
1371				sched_domains_numa_levels = level;
1372				curr_distance = next_distance;
1373			} else break;
1374		}
1375
1376		/*
1377		 * In case of sched_debug() we verify the above assumption.
1378		 */
1379		if (!sched_debug())
1380			break;
1381	}
1382
1383	if (!level)
1384		return;
1385
1386	/*
1387	 * 'level' contains the number of unique distances
1388	 *
1389	 * The sched_domains_numa_distance[] array includes the actual distance
1390	 * numbers.
1391	 */
1392
1393	/*
1394	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1395	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1396	 * the array will contain less then 'level' members. This could be
1397	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1398	 * in other functions.
1399	 *
1400	 * We reset it to 'level' at the end of this function.
1401	 */
1402	sched_domains_numa_levels = 0;
1403
1404	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1405	if (!sched_domains_numa_masks)
1406		return;
1407
1408	/*
1409	 * Now for each level, construct a mask per node which contains all
1410	 * CPUs of nodes that are that many hops away from us.
1411	 */
1412	for (i = 0; i < level; i++) {
1413		sched_domains_numa_masks[i] =
1414			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1415		if (!sched_domains_numa_masks[i])
1416			return;
1417
1418		for (j = 0; j < nr_node_ids; j++) {
1419			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1420			if (!mask)
1421				return;
1422
1423			sched_domains_numa_masks[i][j] = mask;
1424
1425			for_each_node(k) {
1426				if (node_distance(j, k) > sched_domains_numa_distance[i])
1427					continue;
1428
1429				cpumask_or(mask, mask, cpumask_of_node(k));
1430			}
1431		}
1432	}
1433
1434	/* Compute default topology size */
1435	for (i = 0; sched_domain_topology[i].mask; i++);
1436
1437	tl = kzalloc((i + level + 1) *
1438			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1439	if (!tl)
1440		return;
1441
1442	/*
1443	 * Copy the default topology bits..
1444	 */
1445	for (i = 0; sched_domain_topology[i].mask; i++)
1446		tl[i] = sched_domain_topology[i];
1447
1448	/*
1449	 * Add the NUMA identity distance, aka single NODE.
1450	 */
1451	tl[i++] = (struct sched_domain_topology_level){
1452		.mask = sd_numa_mask,
1453		.numa_level = 0,
1454		SD_INIT_NAME(NODE)
1455	};
1456
1457	/*
1458	 * .. and append 'j' levels of NUMA goodness.
1459	 */
1460	for (j = 1; j < level; i++, j++) {
1461		tl[i] = (struct sched_domain_topology_level){
1462			.mask = sd_numa_mask,
1463			.sd_flags = cpu_numa_flags,
1464			.flags = SDTL_OVERLAP,
1465			.numa_level = j,
1466			SD_INIT_NAME(NUMA)
1467		};
1468	}
1469
1470	sched_domain_topology = tl;
1471
1472	sched_domains_numa_levels = level;
1473	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1474
1475	init_numa_topology_type();
1476}
1477
1478void sched_domains_numa_masks_set(unsigned int cpu)
1479{
1480	int node = cpu_to_node(cpu);
1481	int i, j;
1482
1483	for (i = 0; i < sched_domains_numa_levels; i++) {
1484		for (j = 0; j < nr_node_ids; j++) {
1485			if (node_distance(j, node) <= sched_domains_numa_distance[i])
1486				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1487		}
1488	}
1489}
1490
1491void sched_domains_numa_masks_clear(unsigned int cpu)
1492{
1493	int i, j;
1494
1495	for (i = 0; i < sched_domains_numa_levels; i++) {
1496		for (j = 0; j < nr_node_ids; j++)
1497			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1498	}
1499}
1500
1501#endif /* CONFIG_NUMA */
1502
1503static int __sdt_alloc(const struct cpumask *cpu_map)
1504{
1505	struct sched_domain_topology_level *tl;
1506	int j;
1507
1508	for_each_sd_topology(tl) {
1509		struct sd_data *sdd = &tl->data;
1510
1511		sdd->sd = alloc_percpu(struct sched_domain *);
1512		if (!sdd->sd)
1513			return -ENOMEM;
1514
1515		sdd->sds = alloc_percpu(struct sched_domain_shared *);
1516		if (!sdd->sds)
1517			return -ENOMEM;
1518
1519		sdd->sg = alloc_percpu(struct sched_group *);
1520		if (!sdd->sg)
1521			return -ENOMEM;
1522
1523		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1524		if (!sdd->sgc)
1525			return -ENOMEM;
1526
1527		for_each_cpu(j, cpu_map) {
1528			struct sched_domain *sd;
1529			struct sched_domain_shared *sds;
1530			struct sched_group *sg;
1531			struct sched_group_capacity *sgc;
1532
1533			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1534					GFP_KERNEL, cpu_to_node(j));
1535			if (!sd)
1536				return -ENOMEM;
1537
1538			*per_cpu_ptr(sdd->sd, j) = sd;
1539
1540			sds = kzalloc_node(sizeof(struct sched_domain_shared),
1541					GFP_KERNEL, cpu_to_node(j));
1542			if (!sds)
1543				return -ENOMEM;
1544
1545			*per_cpu_ptr(sdd->sds, j) = sds;
1546
1547			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1548					GFP_KERNEL, cpu_to_node(j));
1549			if (!sg)
1550				return -ENOMEM;
1551
1552			sg->next = sg;
1553
1554			*per_cpu_ptr(sdd->sg, j) = sg;
1555
1556			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1557					GFP_KERNEL, cpu_to_node(j));
1558			if (!sgc)
1559				return -ENOMEM;
1560
1561#ifdef CONFIG_SCHED_DEBUG
1562			sgc->id = j;
1563#endif
1564
1565			*per_cpu_ptr(sdd->sgc, j) = sgc;
1566		}
1567	}
1568
1569	return 0;
1570}
1571
1572static void __sdt_free(const struct cpumask *cpu_map)
1573{
1574	struct sched_domain_topology_level *tl;
1575	int j;
1576
1577	for_each_sd_topology(tl) {
1578		struct sd_data *sdd = &tl->data;
1579
1580		for_each_cpu(j, cpu_map) {
1581			struct sched_domain *sd;
1582
1583			if (sdd->sd) {
1584				sd = *per_cpu_ptr(sdd->sd, j);
1585				if (sd && (sd->flags & SD_OVERLAP))
1586					free_sched_groups(sd->groups, 0);
1587				kfree(*per_cpu_ptr(sdd->sd, j));
1588			}
1589
1590			if (sdd->sds)
1591				kfree(*per_cpu_ptr(sdd->sds, j));
1592			if (sdd->sg)
1593				kfree(*per_cpu_ptr(sdd->sg, j));
1594			if (sdd->sgc)
1595				kfree(*per_cpu_ptr(sdd->sgc, j));
1596		}
1597		free_percpu(sdd->sd);
1598		sdd->sd = NULL;
1599		free_percpu(sdd->sds);
1600		sdd->sds = NULL;
1601		free_percpu(sdd->sg);
1602		sdd->sg = NULL;
1603		free_percpu(sdd->sgc);
1604		sdd->sgc = NULL;
1605	}
1606}
1607
1608static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1609		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1610		struct sched_domain *child, int cpu)
1611{
1612	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
1613
1614	if (child) {
1615		sd->level = child->level + 1;
1616		sched_domain_level_max = max(sched_domain_level_max, sd->level);
1617		child->parent = sd;
1618
1619		if (!cpumask_subset(sched_domain_span(child),
1620				    sched_domain_span(sd))) {
1621			pr_err("BUG: arch topology borken\n");
1622#ifdef CONFIG_SCHED_DEBUG
1623			pr_err("     the %s domain not a subset of the %s domain\n",
1624					child->name, sd->name);
1625#endif
1626			/* Fixup, ensure @sd has at least @child CPUs. */
1627			cpumask_or(sched_domain_span(sd),
1628				   sched_domain_span(sd),
1629				   sched_domain_span(child));
1630		}
1631
1632	}
1633	set_domain_attribute(sd, attr);
1634
1635	return sd;
1636}
1637
1638/*
1639 * Build sched domains for a given set of CPUs and attach the sched domains
1640 * to the individual CPUs
1641 */
1642static int
1643build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1644{
1645	enum s_alloc alloc_state;
1646	struct sched_domain *sd;
1647	struct s_data d;
1648	struct rq *rq = NULL;
1649	int i, ret = -ENOMEM;
1650
1651	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1652	if (alloc_state != sa_rootdomain)
1653		goto error;
1654
1655	/* Set up domains for CPUs specified by the cpu_map: */
1656	for_each_cpu(i, cpu_map) {
1657		struct sched_domain_topology_level *tl;
1658
1659		sd = NULL;
1660		for_each_sd_topology(tl) {
1661			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
1662			if (tl == sched_domain_topology)
1663				*per_cpu_ptr(d.sd, i) = sd;
1664			if (tl->flags & SDTL_OVERLAP)
1665				sd->flags |= SD_OVERLAP;
1666			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
1667				break;
1668		}
1669	}
1670
1671	/* Build the groups for the domains */
1672	for_each_cpu(i, cpu_map) {
1673		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1674			sd->span_weight = cpumask_weight(sched_domain_span(sd));
1675			if (sd->flags & SD_OVERLAP) {
1676				if (build_overlap_sched_groups(sd, i))
1677					goto error;
1678			} else {
1679				if (build_sched_groups(sd, i))
1680					goto error;
1681			}
1682		}
1683	}
1684
1685	/* Calculate CPU capacity for physical packages and nodes */
1686	for (i = nr_cpumask_bits-1; i >= 0; i--) {
1687		if (!cpumask_test_cpu(i, cpu_map))
1688			continue;
1689
1690		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1691			claim_allocations(i, sd);
1692			init_sched_groups_capacity(i, sd);
1693		}
1694	}
1695
1696	/* Attach the domains */
1697	rcu_read_lock();
1698	for_each_cpu(i, cpu_map) {
1699		rq = cpu_rq(i);
1700		sd = *per_cpu_ptr(d.sd, i);
1701
1702		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
1703		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
1704			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
1705
1706		cpu_attach_domain(sd, d.rd, i);
1707	}
1708	rcu_read_unlock();
1709
1710	if (rq && sched_debug_enabled) {
1711		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
1712			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
1713	}
1714
1715	ret = 0;
1716error:
1717	__free_domain_allocs(&d, alloc_state, cpu_map);
1718
1719	return ret;
1720}
1721
1722/* Current sched domains: */
1723static cpumask_var_t			*doms_cur;
1724
1725/* Number of sched domains in 'doms_cur': */
1726static int				ndoms_cur;
1727
1728/* Attribues of custom domains in 'doms_cur' */
1729static struct sched_domain_attr		*dattr_cur;
1730
1731/*
1732 * Special case: If a kmalloc() of a doms_cur partition (array of
1733 * cpumask) fails, then fallback to a single sched domain,
1734 * as determined by the single cpumask fallback_doms.
1735 */
1736static cpumask_var_t			fallback_doms;
1737
1738/*
1739 * arch_update_cpu_topology lets virtualized architectures update the
1740 * CPU core maps. It is supposed to return 1 if the topology changed
1741 * or 0 if it stayed the same.
1742 */
1743int __weak arch_update_cpu_topology(void)
1744{
1745	return 0;
1746}
1747
1748cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
1749{
1750	int i;
1751	cpumask_var_t *doms;
1752
1753	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
1754	if (!doms)
1755		return NULL;
1756	for (i = 0; i < ndoms; i++) {
1757		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
1758			free_sched_domains(doms, i);
1759			return NULL;
1760		}
1761	}
1762	return doms;
1763}
1764
1765void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
1766{
1767	unsigned int i;
1768	for (i = 0; i < ndoms; i++)
1769		free_cpumask_var(doms[i]);
1770	kfree(doms);
1771}
1772
1773/*
1774 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
1775 * For now this just excludes isolated CPUs, but could be used to
1776 * exclude other special cases in the future.
1777 */
1778int sched_init_domains(const struct cpumask *cpu_map)
1779{
1780	int err;
1781
1782	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
1783	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
1784	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
1785
1786	arch_update_cpu_topology();
1787	ndoms_cur = 1;
1788	doms_cur = alloc_sched_domains(ndoms_cur);
1789	if (!doms_cur)
1790		doms_cur = &fallback_doms;
1791	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
1792	err = build_sched_domains(doms_cur[0], NULL);
1793	register_sched_domain_sysctl();
1794
1795	return err;
1796}
1797
1798/*
1799 * Detach sched domains from a group of CPUs specified in cpu_map
1800 * These CPUs will now be attached to the NULL domain
1801 */
1802static void detach_destroy_domains(const struct cpumask *cpu_map)
1803{
1804	int i;
1805
1806	rcu_read_lock();
1807	for_each_cpu(i, cpu_map)
1808		cpu_attach_domain(NULL, &def_root_domain, i);
1809	rcu_read_unlock();
1810}
1811
1812/* handle null as "default" */
1813static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
1814			struct sched_domain_attr *new, int idx_new)
1815{
1816	struct sched_domain_attr tmp;
1817
1818	/* Fast path: */
1819	if (!new && !cur)
1820		return 1;
1821
1822	tmp = SD_ATTR_INIT;
1823
1824	return !memcmp(cur ? (cur + idx_cur) : &tmp,
1825			new ? (new + idx_new) : &tmp,
1826			sizeof(struct sched_domain_attr));
1827}
1828
1829/*
1830 * Partition sched domains as specified by the 'ndoms_new'
1831 * cpumasks in the array doms_new[] of cpumasks. This compares
1832 * doms_new[] to the current sched domain partitioning, doms_cur[].
1833 * It destroys each deleted domain and builds each new domain.
1834 *
1835 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
1836 * The masks don't intersect (don't overlap.) We should setup one
1837 * sched domain for each mask. CPUs not in any of the cpumasks will
1838 * not be load balanced. If the same cpumask appears both in the
1839 * current 'doms_cur' domains and in the new 'doms_new', we can leave
1840 * it as it is.
1841 *
1842 * The passed in 'doms_new' should be allocated using
1843 * alloc_sched_domains.  This routine takes ownership of it and will
1844 * free_sched_domains it when done with it. If the caller failed the
1845 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
1846 * and partition_sched_domains() will fallback to the single partition
1847 * 'fallback_doms', it also forces the domains to be rebuilt.
1848 *
1849 * If doms_new == NULL it will be replaced with cpu_online_mask.
1850 * ndoms_new == 0 is a special case for destroying existing domains,
1851 * and it will not create the default domain.
1852 *
1853 * Call with hotplug lock held
1854 */
1855void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1856			     struct sched_domain_attr *dattr_new)
1857{
1858	int i, j, n;
1859	int new_topology;
1860
1861	mutex_lock(&sched_domains_mutex);
1862
1863	/* Always unregister in case we don't destroy any domains: */
1864	unregister_sched_domain_sysctl();
1865
1866	/* Let the architecture update CPU core mappings: */
1867	new_topology = arch_update_cpu_topology();
1868
1869	if (!doms_new) {
1870		WARN_ON_ONCE(dattr_new);
1871		n = 0;
1872		doms_new = alloc_sched_domains(1);
1873		if (doms_new) {
1874			n = 1;
1875			cpumask_and(doms_new[0], cpu_active_mask,
1876				    housekeeping_cpumask(HK_FLAG_DOMAIN));
1877		}
1878	} else {
1879		n = ndoms_new;
1880	}
1881
1882	/* Destroy deleted domains: */
1883	for (i = 0; i < ndoms_cur; i++) {
1884		for (j = 0; j < n && !new_topology; j++) {
1885			if (cpumask_equal(doms_cur[i], doms_new[j])
1886			    && dattrs_equal(dattr_cur, i, dattr_new, j))
1887				goto match1;
1888		}
1889		/* No match - a current sched domain not in new doms_new[] */
1890		detach_destroy_domains(doms_cur[i]);
1891match1:
1892		;
1893	}
1894
1895	n = ndoms_cur;
1896	if (!doms_new) {
1897		n = 0;
1898		doms_new = &fallback_doms;
1899		cpumask_and(doms_new[0], cpu_active_mask,
1900			    housekeeping_cpumask(HK_FLAG_DOMAIN));
1901	}
1902
1903	/* Build new domains: */
1904	for (i = 0; i < ndoms_new; i++) {
1905		for (j = 0; j < n && !new_topology; j++) {
1906			if (cpumask_equal(doms_new[i], doms_cur[j])
1907			    && dattrs_equal(dattr_new, i, dattr_cur, j))
1908				goto match2;
1909		}
1910		/* No match - add a new doms_new */
1911		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
1912match2:
1913		;
1914	}
1915
1916	/* Remember the new sched domains: */
1917	if (doms_cur != &fallback_doms)
1918		free_sched_domains(doms_cur, ndoms_cur);
1919
1920	kfree(dattr_cur);
1921	doms_cur = doms_new;
1922	dattr_cur = dattr_new;
1923	ndoms_cur = ndoms_new;
1924
1925	register_sched_domain_sysctl();
1926
1927	mutex_unlock(&sched_domains_mutex);
1928}