Linux Audio

Check our new training course

Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * kernel/sched/loadavg.c
  4 *
  5 * This file contains the magic bits required to compute the global loadavg
  6 * figure. Its a silly number but people think its important. We go through
  7 * great pains to make it work on big machines and tickless kernels.
  8 */
 
 
 
  9#include "sched.h"
 10
 11/*
 12 * Global load-average calculations
 13 *
 14 * We take a distributed and async approach to calculating the global load-avg
 15 * in order to minimize overhead.
 16 *
 17 * The global load average is an exponentially decaying average of nr_running +
 18 * nr_uninterruptible.
 19 *
 20 * Once every LOAD_FREQ:
 21 *
 22 *   nr_active = 0;
 23 *   for_each_possible_cpu(cpu)
 24 *	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
 25 *
 26 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
 27 *
 28 * Due to a number of reasons the above turns in the mess below:
 29 *
 30 *  - for_each_possible_cpu() is prohibitively expensive on machines with
 31 *    serious number of CPUs, therefore we need to take a distributed approach
 32 *    to calculating nr_active.
 33 *
 34 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
 35 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
 36 *
 37 *    So assuming nr_active := 0 when we start out -- true per definition, we
 38 *    can simply take per-CPU deltas and fold those into a global accumulate
 39 *    to obtain the same result. See calc_load_fold_active().
 40 *
 41 *    Furthermore, in order to avoid synchronizing all per-CPU delta folding
 42 *    across the machine, we assume 10 ticks is sufficient time for every
 43 *    CPU to have completed this task.
 44 *
 45 *    This places an upper-bound on the IRQ-off latency of the machine. Then
 46 *    again, being late doesn't loose the delta, just wrecks the sample.
 47 *
 48 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-CPU because
 49 *    this would add another cross-CPU cacheline miss and atomic operation
 50 *    to the wakeup path. Instead we increment on whatever CPU the task ran
 51 *    when it went into uninterruptible state and decrement on whatever CPU
 52 *    did the wakeup. This means that only the sum of nr_uninterruptible over
 53 *    all CPUs yields the correct result.
 54 *
 55 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
 56 */
 57
 58/* Variables and functions for calc_load */
 59atomic_long_t calc_load_tasks;
 60unsigned long calc_load_update;
 61unsigned long avenrun[3];
 62EXPORT_SYMBOL(avenrun); /* should be removed */
 63
 64/**
 65 * get_avenrun - get the load average array
 66 * @loads:	pointer to dest load array
 67 * @offset:	offset to add
 68 * @shift:	shift count to shift the result left
 69 *
 70 * These values are estimates at best, so no need for locking.
 71 */
 72void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
 73{
 74	loads[0] = (avenrun[0] + offset) << shift;
 75	loads[1] = (avenrun[1] + offset) << shift;
 76	loads[2] = (avenrun[2] + offset) << shift;
 77}
 78
 79long calc_load_fold_active(struct rq *this_rq, long adjust)
 80{
 81	long nr_active, delta = 0;
 82
 83	nr_active = this_rq->nr_running - adjust;
 84	nr_active += (long)this_rq->nr_uninterruptible;
 85
 86	if (nr_active != this_rq->calc_load_active) {
 87		delta = nr_active - this_rq->calc_load_active;
 88		this_rq->calc_load_active = nr_active;
 89	}
 90
 91	return delta;
 92}
 93
 94/*
 95 * a1 = a0 * e + a * (1 - e)
 96 */
 97static unsigned long
 98calc_load(unsigned long load, unsigned long exp, unsigned long active)
 99{
100	unsigned long newload;
101
102	newload = load * exp + active * (FIXED_1 - exp);
103	if (active >= load)
104		newload += FIXED_1-1;
105
106	return newload / FIXED_1;
107}
108
109#ifdef CONFIG_NO_HZ_COMMON
110/*
111 * Handle NO_HZ for the global load-average.
112 *
113 * Since the above described distributed algorithm to compute the global
114 * load-average relies on per-CPU sampling from the tick, it is affected by
115 * NO_HZ.
116 *
117 * The basic idea is to fold the nr_active delta into a global NO_HZ-delta upon
118 * entering NO_HZ state such that we can include this as an 'extra' CPU delta
119 * when we read the global state.
120 *
121 * Obviously reality has to ruin such a delightfully simple scheme:
122 *
123 *  - When we go NO_HZ idle during the window, we can negate our sample
124 *    contribution, causing under-accounting.
125 *
126 *    We avoid this by keeping two NO_HZ-delta counters and flipping them
127 *    when the window starts, thus separating old and new NO_HZ load.
128 *
129 *    The only trick is the slight shift in index flip for read vs write.
130 *
131 *        0s            5s            10s           15s
132 *          +10           +10           +10           +10
133 *        |-|-----------|-|-----------|-|-----------|-|
134 *    r:0 0 1           1 0           0 1           1 0
135 *    w:0 1 1           0 0           1 1           0 0
136 *
137 *    This ensures we'll fold the old NO_HZ contribution in this window while
138 *    accumlating the new one.
139 *
140 *  - When we wake up from NO_HZ during the window, we push up our
141 *    contribution, since we effectively move our sample point to a known
142 *    busy state.
143 *
144 *    This is solved by pushing the window forward, and thus skipping the
145 *    sample, for this CPU (effectively using the NO_HZ-delta for this CPU which
146 *    was in effect at the time the window opened). This also solves the issue
147 *    of having to deal with a CPU having been in NO_HZ for multiple LOAD_FREQ
148 *    intervals.
149 *
150 * When making the ILB scale, we should try to pull this in as well.
151 */
152static atomic_long_t calc_load_nohz[2];
153static int calc_load_idx;
154
155static inline int calc_load_write_idx(void)
156{
157	int idx = calc_load_idx;
158
159	/*
160	 * See calc_global_nohz(), if we observe the new index, we also
161	 * need to observe the new update time.
162	 */
163	smp_rmb();
164
165	/*
166	 * If the folding window started, make sure we start writing in the
167	 * next NO_HZ-delta.
168	 */
169	if (!time_before(jiffies, READ_ONCE(calc_load_update)))
170		idx++;
171
172	return idx & 1;
173}
174
175static inline int calc_load_read_idx(void)
176{
177	return calc_load_idx & 1;
178}
179
180void calc_load_nohz_start(void)
181{
182	struct rq *this_rq = this_rq();
183	long delta;
184
185	/*
186	 * We're going into NO_HZ mode, if there's any pending delta, fold it
187	 * into the pending NO_HZ delta.
188	 */
189	delta = calc_load_fold_active(this_rq, 0);
190	if (delta) {
191		int idx = calc_load_write_idx();
192
193		atomic_long_add(delta, &calc_load_nohz[idx]);
194	}
195}
196
197void calc_load_nohz_stop(void)
198{
199	struct rq *this_rq = this_rq();
200
201	/*
202	 * If we're still before the pending sample window, we're done.
203	 */
204	this_rq->calc_load_update = READ_ONCE(calc_load_update);
205	if (time_before(jiffies, this_rq->calc_load_update))
206		return;
207
208	/*
209	 * We woke inside or after the sample window, this means we're already
210	 * accounted through the nohz accounting, so skip the entire deal and
211	 * sync up for the next window.
212	 */
 
213	if (time_before(jiffies, this_rq->calc_load_update + 10))
214		this_rq->calc_load_update += LOAD_FREQ;
215}
216
217static long calc_load_nohz_fold(void)
218{
219	int idx = calc_load_read_idx();
220	long delta = 0;
221
222	if (atomic_long_read(&calc_load_nohz[idx]))
223		delta = atomic_long_xchg(&calc_load_nohz[idx], 0);
224
225	return delta;
226}
227
228/**
229 * fixed_power_int - compute: x^n, in O(log n) time
230 *
231 * @x:         base of the power
232 * @frac_bits: fractional bits of @x
233 * @n:         power to raise @x to.
234 *
235 * By exploiting the relation between the definition of the natural power
236 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
237 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
238 * (where: n_i \elem {0, 1}, the binary vector representing n),
239 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
240 * of course trivially computable in O(log_2 n), the length of our binary
241 * vector.
242 */
243static unsigned long
244fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
245{
246	unsigned long result = 1UL << frac_bits;
247
248	if (n) {
249		for (;;) {
250			if (n & 1) {
251				result *= x;
252				result += 1UL << (frac_bits - 1);
253				result >>= frac_bits;
254			}
255			n >>= 1;
256			if (!n)
257				break;
258			x *= x;
259			x += 1UL << (frac_bits - 1);
260			x >>= frac_bits;
261		}
262	}
263
264	return result;
265}
266
267/*
268 * a1 = a0 * e + a * (1 - e)
269 *
270 * a2 = a1 * e + a * (1 - e)
271 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
272 *    = a0 * e^2 + a * (1 - e) * (1 + e)
273 *
274 * a3 = a2 * e + a * (1 - e)
275 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
276 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
277 *
278 *  ...
279 *
280 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
281 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
282 *    = a0 * e^n + a * (1 - e^n)
283 *
284 * [1] application of the geometric series:
285 *
286 *              n         1 - x^(n+1)
287 *     S_n := \Sum x^i = -------------
288 *             i=0          1 - x
289 */
290static unsigned long
291calc_load_n(unsigned long load, unsigned long exp,
292	    unsigned long active, unsigned int n)
293{
294	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
295}
296
297/*
298 * NO_HZ can leave us missing all per-CPU ticks calling
299 * calc_load_fold_active(), but since a NO_HZ CPU folds its delta into
300 * calc_load_nohz per calc_load_nohz_start(), all we need to do is fold
301 * in the pending NO_HZ delta if our NO_HZ period crossed a load cycle boundary.
302 *
303 * Once we've updated the global active value, we need to apply the exponential
304 * weights adjusted to the number of cycles missed.
305 */
306static void calc_global_nohz(void)
307{
308	unsigned long sample_window;
309	long delta, active, n;
310
311	sample_window = READ_ONCE(calc_load_update);
312	if (!time_before(jiffies, sample_window + 10)) {
313		/*
314		 * Catch-up, fold however many we are behind still
315		 */
316		delta = jiffies - sample_window - 10;
317		n = 1 + (delta / LOAD_FREQ);
318
319		active = atomic_long_read(&calc_load_tasks);
320		active = active > 0 ? active * FIXED_1 : 0;
321
322		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
323		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
324		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
325
326		WRITE_ONCE(calc_load_update, sample_window + n * LOAD_FREQ);
327	}
328
329	/*
330	 * Flip the NO_HZ index...
331	 *
332	 * Make sure we first write the new time then flip the index, so that
333	 * calc_load_write_idx() will see the new time when it reads the new
334	 * index, this avoids a double flip messing things up.
335	 */
336	smp_wmb();
337	calc_load_idx++;
338}
339#else /* !CONFIG_NO_HZ_COMMON */
340
341static inline long calc_load_nohz_fold(void) { return 0; }
342static inline void calc_global_nohz(void) { }
343
344#endif /* CONFIG_NO_HZ_COMMON */
345
346/*
347 * calc_load - update the avenrun load estimates 10 ticks after the
348 * CPUs have updated calc_load_tasks.
349 *
350 * Called from the global timer code.
351 */
352void calc_global_load(unsigned long ticks)
353{
354	unsigned long sample_window;
355	long active, delta;
356
357	sample_window = READ_ONCE(calc_load_update);
358	if (time_before(jiffies, sample_window + 10))
359		return;
360
361	/*
362	 * Fold the 'old' NO_HZ-delta to include all NO_HZ CPUs.
363	 */
364	delta = calc_load_nohz_fold();
365	if (delta)
366		atomic_long_add(delta, &calc_load_tasks);
367
368	active = atomic_long_read(&calc_load_tasks);
369	active = active > 0 ? active * FIXED_1 : 0;
370
371	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
372	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
373	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
374
375	WRITE_ONCE(calc_load_update, sample_window + LOAD_FREQ);
376
377	/*
378	 * In case we went to NO_HZ for multiple LOAD_FREQ intervals
379	 * catch up in bulk.
380	 */
381	calc_global_nohz();
382}
383
384/*
385 * Called from scheduler_tick() to periodically update this CPU's
386 * active count.
387 */
388void calc_global_load_tick(struct rq *this_rq)
389{
390	long delta;
391
392	if (time_before(jiffies, this_rq->calc_load_update))
393		return;
394
395	delta  = calc_load_fold_active(this_rq, 0);
396	if (delta)
397		atomic_long_add(delta, &calc_load_tasks);
398
399	this_rq->calc_load_update += LOAD_FREQ;
400}
v4.10.11
 
  1/*
  2 * kernel/sched/loadavg.c
  3 *
  4 * This file contains the magic bits required to compute the global loadavg
  5 * figure. Its a silly number but people think its important. We go through
  6 * great pains to make it work on big machines and tickless kernels.
  7 */
  8
  9#include <linux/export.h>
 10
 11#include "sched.h"
 12
 13/*
 14 * Global load-average calculations
 15 *
 16 * We take a distributed and async approach to calculating the global load-avg
 17 * in order to minimize overhead.
 18 *
 19 * The global load average is an exponentially decaying average of nr_running +
 20 * nr_uninterruptible.
 21 *
 22 * Once every LOAD_FREQ:
 23 *
 24 *   nr_active = 0;
 25 *   for_each_possible_cpu(cpu)
 26 *	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
 27 *
 28 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
 29 *
 30 * Due to a number of reasons the above turns in the mess below:
 31 *
 32 *  - for_each_possible_cpu() is prohibitively expensive on machines with
 33 *    serious number of cpus, therefore we need to take a distributed approach
 34 *    to calculating nr_active.
 35 *
 36 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
 37 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
 38 *
 39 *    So assuming nr_active := 0 when we start out -- true per definition, we
 40 *    can simply take per-cpu deltas and fold those into a global accumulate
 41 *    to obtain the same result. See calc_load_fold_active().
 42 *
 43 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
 44 *    across the machine, we assume 10 ticks is sufficient time for every
 45 *    cpu to have completed this task.
 46 *
 47 *    This places an upper-bound on the IRQ-off latency of the machine. Then
 48 *    again, being late doesn't loose the delta, just wrecks the sample.
 49 *
 50 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
 51 *    this would add another cross-cpu cacheline miss and atomic operation
 52 *    to the wakeup path. Instead we increment on whatever cpu the task ran
 53 *    when it went into uninterruptible state and decrement on whatever cpu
 54 *    did the wakeup. This means that only the sum of nr_uninterruptible over
 55 *    all cpus yields the correct result.
 56 *
 57 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
 58 */
 59
 60/* Variables and functions for calc_load */
 61atomic_long_t calc_load_tasks;
 62unsigned long calc_load_update;
 63unsigned long avenrun[3];
 64EXPORT_SYMBOL(avenrun); /* should be removed */
 65
 66/**
 67 * get_avenrun - get the load average array
 68 * @loads:	pointer to dest load array
 69 * @offset:	offset to add
 70 * @shift:	shift count to shift the result left
 71 *
 72 * These values are estimates at best, so no need for locking.
 73 */
 74void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
 75{
 76	loads[0] = (avenrun[0] + offset) << shift;
 77	loads[1] = (avenrun[1] + offset) << shift;
 78	loads[2] = (avenrun[2] + offset) << shift;
 79}
 80
 81long calc_load_fold_active(struct rq *this_rq, long adjust)
 82{
 83	long nr_active, delta = 0;
 84
 85	nr_active = this_rq->nr_running - adjust;
 86	nr_active += (long)this_rq->nr_uninterruptible;
 87
 88	if (nr_active != this_rq->calc_load_active) {
 89		delta = nr_active - this_rq->calc_load_active;
 90		this_rq->calc_load_active = nr_active;
 91	}
 92
 93	return delta;
 94}
 95
 96/*
 97 * a1 = a0 * e + a * (1 - e)
 98 */
 99static unsigned long
100calc_load(unsigned long load, unsigned long exp, unsigned long active)
101{
102	unsigned long newload;
103
104	newload = load * exp + active * (FIXED_1 - exp);
105	if (active >= load)
106		newload += FIXED_1-1;
107
108	return newload / FIXED_1;
109}
110
111#ifdef CONFIG_NO_HZ_COMMON
112/*
113 * Handle NO_HZ for the global load-average.
114 *
115 * Since the above described distributed algorithm to compute the global
116 * load-average relies on per-cpu sampling from the tick, it is affected by
117 * NO_HZ.
118 *
119 * The basic idea is to fold the nr_active delta into a global idle-delta upon
120 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
121 * when we read the global state.
122 *
123 * Obviously reality has to ruin such a delightfully simple scheme:
124 *
125 *  - When we go NO_HZ idle during the window, we can negate our sample
126 *    contribution, causing under-accounting.
127 *
128 *    We avoid this by keeping two idle-delta counters and flipping them
129 *    when the window starts, thus separating old and new NO_HZ load.
130 *
131 *    The only trick is the slight shift in index flip for read vs write.
132 *
133 *        0s            5s            10s           15s
134 *          +10           +10           +10           +10
135 *        |-|-----------|-|-----------|-|-----------|-|
136 *    r:0 0 1           1 0           0 1           1 0
137 *    w:0 1 1           0 0           1 1           0 0
138 *
139 *    This ensures we'll fold the old idle contribution in this window while
140 *    accumlating the new one.
141 *
142 *  - When we wake up from NO_HZ idle during the window, we push up our
143 *    contribution, since we effectively move our sample point to a known
144 *    busy state.
145 *
146 *    This is solved by pushing the window forward, and thus skipping the
147 *    sample, for this cpu (effectively using the idle-delta for this cpu which
148 *    was in effect at the time the window opened). This also solves the issue
149 *    of having to deal with a cpu having been in NOHZ idle for multiple
150 *    LOAD_FREQ intervals.
151 *
152 * When making the ILB scale, we should try to pull this in as well.
153 */
154static atomic_long_t calc_load_idle[2];
155static int calc_load_idx;
156
157static inline int calc_load_write_idx(void)
158{
159	int idx = calc_load_idx;
160
161	/*
162	 * See calc_global_nohz(), if we observe the new index, we also
163	 * need to observe the new update time.
164	 */
165	smp_rmb();
166
167	/*
168	 * If the folding window started, make sure we start writing in the
169	 * next idle-delta.
170	 */
171	if (!time_before(jiffies, calc_load_update))
172		idx++;
173
174	return idx & 1;
175}
176
177static inline int calc_load_read_idx(void)
178{
179	return calc_load_idx & 1;
180}
181
182void calc_load_enter_idle(void)
183{
184	struct rq *this_rq = this_rq();
185	long delta;
186
187	/*
188	 * We're going into NOHZ mode, if there's any pending delta, fold it
189	 * into the pending idle delta.
190	 */
191	delta = calc_load_fold_active(this_rq, 0);
192	if (delta) {
193		int idx = calc_load_write_idx();
194
195		atomic_long_add(delta, &calc_load_idle[idx]);
196	}
197}
198
199void calc_load_exit_idle(void)
200{
201	struct rq *this_rq = this_rq();
202
203	/*
204	 * If we're still before the sample window, we're done.
205	 */
 
206	if (time_before(jiffies, this_rq->calc_load_update))
207		return;
208
209	/*
210	 * We woke inside or after the sample window, this means we're already
211	 * accounted through the nohz accounting, so skip the entire deal and
212	 * sync up for the next window.
213	 */
214	this_rq->calc_load_update = calc_load_update;
215	if (time_before(jiffies, this_rq->calc_load_update + 10))
216		this_rq->calc_load_update += LOAD_FREQ;
217}
218
219static long calc_load_fold_idle(void)
220{
221	int idx = calc_load_read_idx();
222	long delta = 0;
223
224	if (atomic_long_read(&calc_load_idle[idx]))
225		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
226
227	return delta;
228}
229
230/**
231 * fixed_power_int - compute: x^n, in O(log n) time
232 *
233 * @x:         base of the power
234 * @frac_bits: fractional bits of @x
235 * @n:         power to raise @x to.
236 *
237 * By exploiting the relation between the definition of the natural power
238 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
239 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
240 * (where: n_i \elem {0, 1}, the binary vector representing n),
241 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
242 * of course trivially computable in O(log_2 n), the length of our binary
243 * vector.
244 */
245static unsigned long
246fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
247{
248	unsigned long result = 1UL << frac_bits;
249
250	if (n) {
251		for (;;) {
252			if (n & 1) {
253				result *= x;
254				result += 1UL << (frac_bits - 1);
255				result >>= frac_bits;
256			}
257			n >>= 1;
258			if (!n)
259				break;
260			x *= x;
261			x += 1UL << (frac_bits - 1);
262			x >>= frac_bits;
263		}
264	}
265
266	return result;
267}
268
269/*
270 * a1 = a0 * e + a * (1 - e)
271 *
272 * a2 = a1 * e + a * (1 - e)
273 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
274 *    = a0 * e^2 + a * (1 - e) * (1 + e)
275 *
276 * a3 = a2 * e + a * (1 - e)
277 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
278 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
279 *
280 *  ...
281 *
282 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
283 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
284 *    = a0 * e^n + a * (1 - e^n)
285 *
286 * [1] application of the geometric series:
287 *
288 *              n         1 - x^(n+1)
289 *     S_n := \Sum x^i = -------------
290 *             i=0          1 - x
291 */
292static unsigned long
293calc_load_n(unsigned long load, unsigned long exp,
294	    unsigned long active, unsigned int n)
295{
296	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
297}
298
299/*
300 * NO_HZ can leave us missing all per-cpu ticks calling
301 * calc_load_account_active(), but since an idle CPU folds its delta into
302 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
303 * in the pending idle delta if our idle period crossed a load cycle boundary.
304 *
305 * Once we've updated the global active value, we need to apply the exponential
306 * weights adjusted to the number of cycles missed.
307 */
308static void calc_global_nohz(void)
309{
 
310	long delta, active, n;
311
312	if (!time_before(jiffies, calc_load_update + 10)) {
 
313		/*
314		 * Catch-up, fold however many we are behind still
315		 */
316		delta = jiffies - calc_load_update - 10;
317		n = 1 + (delta / LOAD_FREQ);
318
319		active = atomic_long_read(&calc_load_tasks);
320		active = active > 0 ? active * FIXED_1 : 0;
321
322		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
323		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
324		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
325
326		calc_load_update += n * LOAD_FREQ;
327	}
328
329	/*
330	 * Flip the idle index...
331	 *
332	 * Make sure we first write the new time then flip the index, so that
333	 * calc_load_write_idx() will see the new time when it reads the new
334	 * index, this avoids a double flip messing things up.
335	 */
336	smp_wmb();
337	calc_load_idx++;
338}
339#else /* !CONFIG_NO_HZ_COMMON */
340
341static inline long calc_load_fold_idle(void) { return 0; }
342static inline void calc_global_nohz(void) { }
343
344#endif /* CONFIG_NO_HZ_COMMON */
345
346/*
347 * calc_load - update the avenrun load estimates 10 ticks after the
348 * CPUs have updated calc_load_tasks.
349 *
350 * Called from the global timer code.
351 */
352void calc_global_load(unsigned long ticks)
353{
 
354	long active, delta;
355
356	if (time_before(jiffies, calc_load_update + 10))
 
357		return;
358
359	/*
360	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
361	 */
362	delta = calc_load_fold_idle();
363	if (delta)
364		atomic_long_add(delta, &calc_load_tasks);
365
366	active = atomic_long_read(&calc_load_tasks);
367	active = active > 0 ? active * FIXED_1 : 0;
368
369	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
370	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
371	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
372
373	calc_load_update += LOAD_FREQ;
374
375	/*
376	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
 
377	 */
378	calc_global_nohz();
379}
380
381/*
382 * Called from scheduler_tick() to periodically update this CPU's
383 * active count.
384 */
385void calc_global_load_tick(struct rq *this_rq)
386{
387	long delta;
388
389	if (time_before(jiffies, this_rq->calc_load_update))
390		return;
391
392	delta  = calc_load_fold_active(this_rq, 0);
393	if (delta)
394		atomic_long_add(delta, &calc_load_tasks);
395
396	this_rq->calc_load_update += LOAD_FREQ;
397}