Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Definitions for the TCP module.
   7 *
   8 * Version:	@(#)tcp.h	1.0.5	05/23/93
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *
  13 *		This program is free software; you can redistribute it and/or
  14 *		modify it under the terms of the GNU General Public License
  15 *		as published by the Free Software Foundation; either version
  16 *		2 of the License, or (at your option) any later version.
  17 */
  18#ifndef _TCP_H
  19#define _TCP_H
  20
  21#define FASTRETRANS_DEBUG 1
  22
  23#include <linux/list.h>
  24#include <linux/tcp.h>
  25#include <linux/bug.h>
  26#include <linux/slab.h>
  27#include <linux/cache.h>
  28#include <linux/percpu.h>
  29#include <linux/skbuff.h>
  30#include <linux/cryptohash.h>
  31#include <linux/kref.h>
  32#include <linux/ktime.h>
  33
  34#include <net/inet_connection_sock.h>
  35#include <net/inet_timewait_sock.h>
  36#include <net/inet_hashtables.h>
  37#include <net/checksum.h>
  38#include <net/request_sock.h>
  39#include <net/sock.h>
  40#include <net/snmp.h>
  41#include <net/ip.h>
  42#include <net/tcp_states.h>
  43#include <net/inet_ecn.h>
  44#include <net/dst.h>
  45
  46#include <linux/seq_file.h>
  47#include <linux/memcontrol.h>
  48#include <linux/bpf-cgroup.h>
  49
  50extern struct inet_hashinfo tcp_hashinfo;
  51
  52extern struct percpu_counter tcp_orphan_count;
  53void tcp_time_wait(struct sock *sk, int state, int timeo);
  54
  55#define MAX_TCP_HEADER	(128 + MAX_HEADER)
  56#define MAX_TCP_OPTION_SPACE 40
  57
  58/*
  59 * Never offer a window over 32767 without using window scaling. Some
  60 * poor stacks do signed 16bit maths!
  61 */
  62#define MAX_TCP_WINDOW		32767U
  63
  64/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
  65#define TCP_MIN_MSS		88U
  66
  67/* The least MTU to use for probing */
  68#define TCP_BASE_MSS		1024
  69
  70/* probing interval, default to 10 minutes as per RFC4821 */
  71#define TCP_PROBE_INTERVAL	600
  72
  73/* Specify interval when tcp mtu probing will stop */
  74#define TCP_PROBE_THRESHOLD	8
  75
  76/* After receiving this amount of duplicate ACKs fast retransmit starts. */
  77#define TCP_FASTRETRANS_THRESH 3
  78
  79/* Maximal number of ACKs sent quickly to accelerate slow-start. */
  80#define TCP_MAX_QUICKACKS	16U
  81
  82/* Maximal number of window scale according to RFC1323 */
  83#define TCP_MAX_WSCALE		14U
  84
  85/* urg_data states */
  86#define TCP_URG_VALID	0x0100
  87#define TCP_URG_NOTYET	0x0200
  88#define TCP_URG_READ	0x0400
  89
  90#define TCP_RETR1	3	/*
  91				 * This is how many retries it does before it
  92				 * tries to figure out if the gateway is
  93				 * down. Minimal RFC value is 3; it corresponds
  94				 * to ~3sec-8min depending on RTO.
  95				 */
  96
  97#define TCP_RETR2	15	/*
  98				 * This should take at least
  99				 * 90 minutes to time out.
 100				 * RFC1122 says that the limit is 100 sec.
 101				 * 15 is ~13-30min depending on RTO.
 102				 */
 103
 104#define TCP_SYN_RETRIES	 6	/* This is how many retries are done
 105				 * when active opening a connection.
 106				 * RFC1122 says the minimum retry MUST
 107				 * be at least 180secs.  Nevertheless
 108				 * this value is corresponding to
 109				 * 63secs of retransmission with the
 110				 * current initial RTO.
 111				 */
 112
 113#define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
 114				 * when passive opening a connection.
 115				 * This is corresponding to 31secs of
 116				 * retransmission with the current
 117				 * initial RTO.
 118				 */
 119
 120#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
 121				  * state, about 60 seconds	*/
 122#define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
 123                                 /* BSD style FIN_WAIT2 deadlock breaker.
 124				  * It used to be 3min, new value is 60sec,
 125				  * to combine FIN-WAIT-2 timeout with
 126				  * TIME-WAIT timer.
 127				  */
 128
 129#define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
 130#if HZ >= 100
 131#define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
 132#define TCP_ATO_MIN	((unsigned)(HZ/25))
 133#else
 134#define TCP_DELACK_MIN	4U
 135#define TCP_ATO_MIN	4U
 136#endif
 137#define TCP_RTO_MAX	((unsigned)(120*HZ))
 138#define TCP_RTO_MIN	((unsigned)(HZ/5))
 139#define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
 140#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
 141#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
 142						 * used as a fallback RTO for the
 143						 * initial data transmission if no
 144						 * valid RTT sample has been acquired,
 145						 * most likely due to retrans in 3WHS.
 146						 */
 147
 148#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
 149					                 * for local resources.
 150					                 */
 
 151#define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
 152#define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
 153#define TCP_KEEPALIVE_INTVL	(75*HZ)
 154
 155#define MAX_TCP_KEEPIDLE	32767
 156#define MAX_TCP_KEEPINTVL	32767
 157#define MAX_TCP_KEEPCNT		127
 158#define MAX_TCP_SYNCNT		127
 159
 160#define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
 161
 162#define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
 163#define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
 164					 * after this time. It should be equal
 165					 * (or greater than) TCP_TIMEWAIT_LEN
 166					 * to provide reliability equal to one
 167					 * provided by timewait state.
 168					 */
 169#define TCP_PAWS_WINDOW	1		/* Replay window for per-host
 170					 * timestamps. It must be less than
 171					 * minimal timewait lifetime.
 172					 */
 173/*
 174 *	TCP option
 175 */
 176
 177#define TCPOPT_NOP		1	/* Padding */
 178#define TCPOPT_EOL		0	/* End of options */
 179#define TCPOPT_MSS		2	/* Segment size negotiating */
 180#define TCPOPT_WINDOW		3	/* Window scaling */
 181#define TCPOPT_SACK_PERM        4       /* SACK Permitted */
 182#define TCPOPT_SACK             5       /* SACK Block */
 183#define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
 184#define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
 185#define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
 186#define TCPOPT_EXP		254	/* Experimental */
 187/* Magic number to be after the option value for sharing TCP
 188 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
 189 */
 190#define TCPOPT_FASTOPEN_MAGIC	0xF989
 191#define TCPOPT_SMC_MAGIC	0xE2D4C3D9
 192
 193/*
 194 *     TCP option lengths
 195 */
 196
 197#define TCPOLEN_MSS            4
 198#define TCPOLEN_WINDOW         3
 199#define TCPOLEN_SACK_PERM      2
 200#define TCPOLEN_TIMESTAMP      10
 201#define TCPOLEN_MD5SIG         18
 202#define TCPOLEN_FASTOPEN_BASE  2
 203#define TCPOLEN_EXP_FASTOPEN_BASE  4
 204#define TCPOLEN_EXP_SMC_BASE   6
 205
 206/* But this is what stacks really send out. */
 207#define TCPOLEN_TSTAMP_ALIGNED		12
 208#define TCPOLEN_WSCALE_ALIGNED		4
 209#define TCPOLEN_SACKPERM_ALIGNED	4
 210#define TCPOLEN_SACK_BASE		2
 211#define TCPOLEN_SACK_BASE_ALIGNED	4
 212#define TCPOLEN_SACK_PERBLOCK		8
 213#define TCPOLEN_MD5SIG_ALIGNED		20
 214#define TCPOLEN_MSS_ALIGNED		4
 215#define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
 216
 217/* Flags in tp->nonagle */
 218#define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
 219#define TCP_NAGLE_CORK		2	/* Socket is corked	    */
 220#define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
 221
 222/* TCP thin-stream limits */
 223#define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
 224
 225/* TCP initial congestion window as per rfc6928 */
 226#define TCP_INIT_CWND		10
 227
 228/* Bit Flags for sysctl_tcp_fastopen */
 229#define	TFO_CLIENT_ENABLE	1
 230#define	TFO_SERVER_ENABLE	2
 231#define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
 232
 233/* Accept SYN data w/o any cookie option */
 234#define	TFO_SERVER_COOKIE_NOT_REQD	0x200
 235
 236/* Force enable TFO on all listeners, i.e., not requiring the
 237 * TCP_FASTOPEN socket option.
 238 */
 239#define	TFO_SERVER_WO_SOCKOPT1	0x400
 240
 
 241
 242/* sysctl variables for tcp */
 
 
 
 
 
 
 
 
 243extern int sysctl_tcp_max_orphans;
 
 
 
 
 244extern long sysctl_tcp_mem[3];
 245
 246#define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
 247#define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 248
 249extern atomic_long_t tcp_memory_allocated;
 250extern struct percpu_counter tcp_sockets_allocated;
 251extern unsigned long tcp_memory_pressure;
 252
 253/* optimized version of sk_under_memory_pressure() for TCP sockets */
 254static inline bool tcp_under_memory_pressure(const struct sock *sk)
 255{
 256	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
 257	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
 258		return true;
 259
 260	return tcp_memory_pressure;
 261}
 262/*
 263 * The next routines deal with comparing 32 bit unsigned ints
 264 * and worry about wraparound (automatic with unsigned arithmetic).
 265 */
 266
 267static inline bool before(__u32 seq1, __u32 seq2)
 268{
 269        return (__s32)(seq1-seq2) < 0;
 270}
 271#define after(seq2, seq1) 	before(seq1, seq2)
 272
 273/* is s2<=s1<=s3 ? */
 274static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
 275{
 276	return seq3 - seq2 >= seq1 - seq2;
 277}
 278
 279static inline bool tcp_out_of_memory(struct sock *sk)
 280{
 281	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
 282	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
 283		return true;
 284	return false;
 285}
 286
 287void sk_forced_mem_schedule(struct sock *sk, int size);
 288
 289static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
 290{
 291	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
 292	int orphans = percpu_counter_read_positive(ocp);
 293
 294	if (orphans << shift > sysctl_tcp_max_orphans) {
 295		orphans = percpu_counter_sum_positive(ocp);
 296		if (orphans << shift > sysctl_tcp_max_orphans)
 297			return true;
 298	}
 299	return false;
 300}
 301
 302bool tcp_check_oom(struct sock *sk, int shift);
 303
 304
 305extern struct proto tcp_prot;
 306
 307#define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 308#define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 309#define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
 310#define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
 311
 312void tcp_tasklet_init(void);
 313
 314void tcp_v4_err(struct sk_buff *skb, u32);
 315
 316void tcp_shutdown(struct sock *sk, int how);
 317
 318int tcp_v4_early_demux(struct sk_buff *skb);
 319int tcp_v4_rcv(struct sk_buff *skb);
 320
 321int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
 322int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
 323int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
 324int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
 325		 int flags);
 326int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
 327			size_t size, int flags);
 328ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
 329		 size_t size, int flags);
 330void tcp_release_cb(struct sock *sk);
 331void tcp_wfree(struct sk_buff *skb);
 332void tcp_write_timer_handler(struct sock *sk);
 333void tcp_delack_timer_handler(struct sock *sk);
 334int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
 335int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
 336void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
 337			 const struct tcphdr *th);
 338void tcp_rcv_space_adjust(struct sock *sk);
 339int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
 340void tcp_twsk_destructor(struct sock *sk);
 341ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
 342			struct pipe_inode_info *pipe, size_t len,
 343			unsigned int flags);
 344
 345static inline void tcp_dec_quickack_mode(struct sock *sk,
 346					 const unsigned int pkts)
 347{
 348	struct inet_connection_sock *icsk = inet_csk(sk);
 349
 350	if (icsk->icsk_ack.quick) {
 351		if (pkts >= icsk->icsk_ack.quick) {
 352			icsk->icsk_ack.quick = 0;
 353			/* Leaving quickack mode we deflate ATO. */
 354			icsk->icsk_ack.ato   = TCP_ATO_MIN;
 355		} else
 356			icsk->icsk_ack.quick -= pkts;
 357	}
 358}
 359
 360#define	TCP_ECN_OK		1
 361#define	TCP_ECN_QUEUE_CWR	2
 362#define	TCP_ECN_DEMAND_CWR	4
 363#define	TCP_ECN_SEEN		8
 364
 365enum tcp_tw_status {
 366	TCP_TW_SUCCESS = 0,
 367	TCP_TW_RST = 1,
 368	TCP_TW_ACK = 2,
 369	TCP_TW_SYN = 3
 370};
 371
 372
 373enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
 374					      struct sk_buff *skb,
 375					      const struct tcphdr *th);
 376struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
 377			   struct request_sock *req, bool fastopen,
 378			   bool *lost_race);
 379int tcp_child_process(struct sock *parent, struct sock *child,
 380		      struct sk_buff *skb);
 381void tcp_enter_loss(struct sock *sk);
 382void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
 383void tcp_clear_retrans(struct tcp_sock *tp);
 384void tcp_update_metrics(struct sock *sk);
 385void tcp_init_metrics(struct sock *sk);
 386void tcp_metrics_init(void);
 387bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
 
 
 
 
 
 388void tcp_close(struct sock *sk, long timeout);
 389void tcp_init_sock(struct sock *sk);
 390void tcp_init_transfer(struct sock *sk, int bpf_op);
 391__poll_t tcp_poll(struct file *file, struct socket *sock,
 392		      struct poll_table_struct *wait);
 393int tcp_getsockopt(struct sock *sk, int level, int optname,
 394		   char __user *optval, int __user *optlen);
 395int tcp_setsockopt(struct sock *sk, int level, int optname,
 396		   char __user *optval, unsigned int optlen);
 397int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
 398			  char __user *optval, int __user *optlen);
 399int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
 400			  char __user *optval, unsigned int optlen);
 401void tcp_set_keepalive(struct sock *sk, int val);
 402void tcp_syn_ack_timeout(const struct request_sock *req);
 403int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
 404		int flags, int *addr_len);
 405void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
 406		       struct tcp_options_received *opt_rx,
 407		       int estab, struct tcp_fastopen_cookie *foc);
 408const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
 409
 410/*
 411 *	TCP v4 functions exported for the inet6 API
 412 */
 413
 414void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
 415void tcp_v4_mtu_reduced(struct sock *sk);
 416void tcp_req_err(struct sock *sk, u32 seq, bool abort);
 417int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
 418struct sock *tcp_create_openreq_child(const struct sock *sk,
 419				      struct request_sock *req,
 420				      struct sk_buff *skb);
 421void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
 422struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
 423				  struct request_sock *req,
 424				  struct dst_entry *dst,
 425				  struct request_sock *req_unhash,
 426				  bool *own_req);
 427int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
 428int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
 429int tcp_connect(struct sock *sk);
 430enum tcp_synack_type {
 431	TCP_SYNACK_NORMAL,
 432	TCP_SYNACK_FASTOPEN,
 433	TCP_SYNACK_COOKIE,
 434};
 435struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
 436				struct request_sock *req,
 437				struct tcp_fastopen_cookie *foc,
 438				enum tcp_synack_type synack_type);
 439int tcp_disconnect(struct sock *sk, int flags);
 440
 441void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
 442int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
 443void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
 444
 445/* From syncookies.c */
 446struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
 447				 struct request_sock *req,
 448				 struct dst_entry *dst, u32 tsoff);
 449int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
 450		      u32 cookie);
 451struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
 452#ifdef CONFIG_SYN_COOKIES
 453
 454/* Syncookies use a monotonic timer which increments every 60 seconds.
 455 * This counter is used both as a hash input and partially encoded into
 456 * the cookie value.  A cookie is only validated further if the delta
 457 * between the current counter value and the encoded one is less than this,
 458 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
 459 * the counter advances immediately after a cookie is generated).
 460 */
 461#define MAX_SYNCOOKIE_AGE	2
 462#define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
 463#define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
 464
 465/* syncookies: remember time of last synqueue overflow
 466 * But do not dirty this field too often (once per second is enough)
 467 * It is racy as we do not hold a lock, but race is very minor.
 468 */
 469static inline void tcp_synq_overflow(const struct sock *sk)
 470{
 471	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
 472	unsigned long now = jiffies;
 473
 474	if (time_after(now, last_overflow + HZ))
 475		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
 476}
 477
 478/* syncookies: no recent synqueue overflow on this listening socket? */
 479static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
 480{
 481	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
 482
 483	return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
 484}
 485
 486static inline u32 tcp_cookie_time(void)
 487{
 488	u64 val = get_jiffies_64();
 489
 490	do_div(val, TCP_SYNCOOKIE_PERIOD);
 491	return val;
 492}
 493
 494u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
 495			      u16 *mssp);
 496__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
 497u64 cookie_init_timestamp(struct request_sock *req);
 498bool cookie_timestamp_decode(const struct net *net,
 499			     struct tcp_options_received *opt);
 500bool cookie_ecn_ok(const struct tcp_options_received *opt,
 501		   const struct net *net, const struct dst_entry *dst);
 502
 503/* From net/ipv6/syncookies.c */
 504int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
 505		      u32 cookie);
 506struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
 507
 508u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
 509			      const struct tcphdr *th, u16 *mssp);
 510__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
 511#endif
 512/* tcp_output.c */
 513
 
 
 514void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
 515			       int nonagle);
 
 516int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 517int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 518void tcp_retransmit_timer(struct sock *sk);
 519void tcp_xmit_retransmit_queue(struct sock *);
 520void tcp_simple_retransmit(struct sock *);
 521void tcp_enter_recovery(struct sock *sk, bool ece_ack);
 522int tcp_trim_head(struct sock *, struct sk_buff *, u32);
 523enum tcp_queue {
 524	TCP_FRAG_IN_WRITE_QUEUE,
 525	TCP_FRAG_IN_RTX_QUEUE,
 526};
 527int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
 528		 struct sk_buff *skb, u32 len,
 529		 unsigned int mss_now, gfp_t gfp);
 530
 531void tcp_send_probe0(struct sock *);
 532void tcp_send_partial(struct sock *);
 533int tcp_write_wakeup(struct sock *, int mib);
 534void tcp_send_fin(struct sock *sk);
 535void tcp_send_active_reset(struct sock *sk, gfp_t priority);
 536int tcp_send_synack(struct sock *);
 537void tcp_push_one(struct sock *, unsigned int mss_now);
 538void tcp_send_ack(struct sock *sk);
 539void tcp_send_delayed_ack(struct sock *sk);
 540void tcp_send_loss_probe(struct sock *sk);
 541bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
 542void tcp_skb_collapse_tstamp(struct sk_buff *skb,
 543			     const struct sk_buff *next_skb);
 544
 545/* tcp_input.c */
 
 546void tcp_rearm_rto(struct sock *sk);
 547void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
 548void tcp_reset(struct sock *sk);
 549void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
 550void tcp_fin(struct sock *sk);
 551
 552/* tcp_timer.c */
 553void tcp_init_xmit_timers(struct sock *);
 554static inline void tcp_clear_xmit_timers(struct sock *sk)
 555{
 556	hrtimer_cancel(&tcp_sk(sk)->pacing_timer);
 557	inet_csk_clear_xmit_timers(sk);
 558}
 559
 560unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
 561unsigned int tcp_current_mss(struct sock *sk);
 562
 563/* Bound MSS / TSO packet size with the half of the window */
 564static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
 565{
 566	int cutoff;
 567
 568	/* When peer uses tiny windows, there is no use in packetizing
 569	 * to sub-MSS pieces for the sake of SWS or making sure there
 570	 * are enough packets in the pipe for fast recovery.
 571	 *
 572	 * On the other hand, for extremely large MSS devices, handling
 573	 * smaller than MSS windows in this way does make sense.
 574	 */
 575	if (tp->max_window > TCP_MSS_DEFAULT)
 576		cutoff = (tp->max_window >> 1);
 577	else
 578		cutoff = tp->max_window;
 579
 580	if (cutoff && pktsize > cutoff)
 581		return max_t(int, cutoff, 68U - tp->tcp_header_len);
 582	else
 583		return pktsize;
 584}
 585
 586/* tcp.c */
 587void tcp_get_info(struct sock *, struct tcp_info *);
 588
 589/* Read 'sendfile()'-style from a TCP socket */
 590int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
 591		  sk_read_actor_t recv_actor);
 592
 593void tcp_initialize_rcv_mss(struct sock *sk);
 594
 595int tcp_mtu_to_mss(struct sock *sk, int pmtu);
 596int tcp_mss_to_mtu(struct sock *sk, int mss);
 597void tcp_mtup_init(struct sock *sk);
 598void tcp_init_buffer_space(struct sock *sk);
 599
 600static inline void tcp_bound_rto(const struct sock *sk)
 601{
 602	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
 603		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
 604}
 605
 606static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
 607{
 608	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
 609}
 610
 611static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
 612{
 613	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
 614			       ntohl(TCP_FLAG_ACK) |
 615			       snd_wnd);
 616}
 617
 618static inline void tcp_fast_path_on(struct tcp_sock *tp)
 619{
 620	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
 621}
 622
 623static inline void tcp_fast_path_check(struct sock *sk)
 624{
 625	struct tcp_sock *tp = tcp_sk(sk);
 626
 627	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
 628	    tp->rcv_wnd &&
 629	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
 630	    !tp->urg_data)
 631		tcp_fast_path_on(tp);
 632}
 633
 634/* Compute the actual rto_min value */
 635static inline u32 tcp_rto_min(struct sock *sk)
 636{
 637	const struct dst_entry *dst = __sk_dst_get(sk);
 638	u32 rto_min = TCP_RTO_MIN;
 639
 640	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
 641		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
 642	return rto_min;
 643}
 644
 645static inline u32 tcp_rto_min_us(struct sock *sk)
 646{
 647	return jiffies_to_usecs(tcp_rto_min(sk));
 648}
 649
 650static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
 651{
 652	return dst_metric_locked(dst, RTAX_CC_ALGO);
 653}
 654
 655/* Minimum RTT in usec. ~0 means not available. */
 656static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
 657{
 658	return minmax_get(&tp->rtt_min);
 659}
 660
 661/* Compute the actual receive window we are currently advertising.
 662 * Rcv_nxt can be after the window if our peer push more data
 663 * than the offered window.
 664 */
 665static inline u32 tcp_receive_window(const struct tcp_sock *tp)
 666{
 667	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
 668
 669	if (win < 0)
 670		win = 0;
 671	return (u32) win;
 672}
 673
 674/* Choose a new window, without checks for shrinking, and without
 675 * scaling applied to the result.  The caller does these things
 676 * if necessary.  This is a "raw" window selection.
 677 */
 678u32 __tcp_select_window(struct sock *sk);
 679
 680void tcp_send_window_probe(struct sock *sk);
 681
 682/* TCP uses 32bit jiffies to save some space.
 683 * Note that this is different from tcp_time_stamp, which
 684 * historically has been the same until linux-4.13.
 685 */
 686#define tcp_jiffies32 ((u32)jiffies)
 687
 688/*
 689 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
 690 * It is no longer tied to jiffies, but to 1 ms clock.
 691 * Note: double check if you want to use tcp_jiffies32 instead of this.
 692 */
 693#define TCP_TS_HZ	1000
 694
 695static inline u64 tcp_clock_ns(void)
 696{
 697	return local_clock();
 698}
 699
 700static inline u64 tcp_clock_us(void)
 701{
 702	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
 703}
 704
 705/* This should only be used in contexts where tp->tcp_mstamp is up to date */
 706static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
 707{
 708	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
 709}
 710
 711/* Could use tcp_clock_us() / 1000, but this version uses a single divide */
 712static inline u32 tcp_time_stamp_raw(void)
 713{
 714	return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
 715}
 716
 717
 718/* Refresh 1us clock of a TCP socket,
 719 * ensuring monotically increasing values.
 720 */
 721static inline void tcp_mstamp_refresh(struct tcp_sock *tp)
 722{
 723	u64 val = tcp_clock_us();
 724
 725	if (val > tp->tcp_mstamp)
 726		tp->tcp_mstamp = val;
 727}
 728
 729static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
 730{
 731	return max_t(s64, t1 - t0, 0);
 732}
 733
 734static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
 735{
 736	return div_u64(skb->skb_mstamp, USEC_PER_SEC / TCP_TS_HZ);
 737}
 738
 739
 740#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
 741
 742#define TCPHDR_FIN 0x01
 743#define TCPHDR_SYN 0x02
 744#define TCPHDR_RST 0x04
 745#define TCPHDR_PSH 0x08
 746#define TCPHDR_ACK 0x10
 747#define TCPHDR_URG 0x20
 748#define TCPHDR_ECE 0x40
 749#define TCPHDR_CWR 0x80
 750
 751#define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
 752
 753/* This is what the send packet queuing engine uses to pass
 754 * TCP per-packet control information to the transmission code.
 755 * We also store the host-order sequence numbers in here too.
 756 * This is 44 bytes if IPV6 is enabled.
 757 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
 758 */
 759struct tcp_skb_cb {
 760	__u32		seq;		/* Starting sequence number	*/
 761	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
 762	union {
 763		/* Note : tcp_tw_isn is used in input path only
 764		 *	  (isn chosen by tcp_timewait_state_process())
 765		 *
 766		 * 	  tcp_gso_segs/size are used in write queue only,
 767		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
 768		 */
 769		__u32		tcp_tw_isn;
 770		struct {
 771			u16	tcp_gso_segs;
 772			u16	tcp_gso_size;
 773		};
 774	};
 775	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
 776
 777	__u8		sacked;		/* State flags for SACK.	*/
 778#define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
 779#define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
 780#define TCPCB_LOST		0x04	/* SKB is lost			*/
 781#define TCPCB_TAGBITS		0x07	/* All tag bits			*/
 782#define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
 783#define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
 784#define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
 785				TCPCB_REPAIRED)
 786
 787	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
 788	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
 789			eor:1,		/* Is skb MSG_EOR marked? */
 790			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
 791			unused:5;
 792	__u32		ack_seq;	/* Sequence number ACK'd	*/
 793	union {
 794		struct {
 795			/* There is space for up to 24 bytes */
 796			__u32 in_flight:30,/* Bytes in flight at transmit */
 797			      is_app_limited:1, /* cwnd not fully used? */
 798			      unused:1;
 799			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
 800			__u32 delivered;
 801			/* start of send pipeline phase */
 802			u64 first_tx_mstamp;
 803			/* when we reached the "delivered" count */
 804			u64 delivered_mstamp;
 805		} tx;   /* only used for outgoing skbs */
 806		union {
 807			struct inet_skb_parm	h4;
 808#if IS_ENABLED(CONFIG_IPV6)
 809			struct inet6_skb_parm	h6;
 810#endif
 811		} header;	/* For incoming skbs */
 812		struct {
 813			__u32 key;
 814			__u32 flags;
 815			struct bpf_map *map;
 816			void *data_end;
 817		} bpf;
 818	};
 819};
 820
 821#define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
 822
 823
 824#if IS_ENABLED(CONFIG_IPV6)
 825/* This is the variant of inet6_iif() that must be used by TCP,
 826 * as TCP moves IP6CB into a different location in skb->cb[]
 827 */
 828static inline int tcp_v6_iif(const struct sk_buff *skb)
 829{
 830	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
 831
 832	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
 833}
 834
 835/* TCP_SKB_CB reference means this can not be used from early demux */
 836static inline int tcp_v6_sdif(const struct sk_buff *skb)
 837{
 838#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 839	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
 840		return TCP_SKB_CB(skb)->header.h6.iif;
 841#endif
 842	return 0;
 843}
 844#endif
 845
 
 846static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
 847{
 848#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 849	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
 850	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
 851		return true;
 852#endif
 853	return false;
 854}
 855
 856/* TCP_SKB_CB reference means this can not be used from early demux */
 857static inline int tcp_v4_sdif(struct sk_buff *skb)
 858{
 859#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 860	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
 861		return TCP_SKB_CB(skb)->header.h4.iif;
 862#endif
 863	return 0;
 864}
 865
 866/* Due to TSO, an SKB can be composed of multiple actual
 867 * packets.  To keep these tracked properly, we use this.
 868 */
 869static inline int tcp_skb_pcount(const struct sk_buff *skb)
 870{
 871	return TCP_SKB_CB(skb)->tcp_gso_segs;
 872}
 873
 874static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
 875{
 876	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
 877}
 878
 879static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
 880{
 881	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
 882}
 883
 884/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
 885static inline int tcp_skb_mss(const struct sk_buff *skb)
 886{
 887	return TCP_SKB_CB(skb)->tcp_gso_size;
 888}
 889
 890static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
 891{
 892	return likely(!TCP_SKB_CB(skb)->eor);
 893}
 894
 895/* Events passed to congestion control interface */
 896enum tcp_ca_event {
 897	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
 898	CA_EVENT_CWND_RESTART,	/* congestion window restart */
 899	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
 900	CA_EVENT_LOSS,		/* loss timeout */
 901	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
 902	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
 903	CA_EVENT_DELAYED_ACK,	/* Delayed ack is sent */
 904	CA_EVENT_NON_DELAYED_ACK,
 905};
 906
 907/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
 908enum tcp_ca_ack_event_flags {
 909	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
 910	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
 911	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
 912};
 913
 914/*
 915 * Interface for adding new TCP congestion control handlers
 916 */
 917#define TCP_CA_NAME_MAX	16
 918#define TCP_CA_MAX	128
 919#define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
 920
 921#define TCP_CA_UNSPEC	0
 922
 923/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
 924#define TCP_CONG_NON_RESTRICTED 0x1
 925/* Requires ECN/ECT set on all packets */
 926#define TCP_CONG_NEEDS_ECN	0x2
 927
 928union tcp_cc_info;
 929
 930struct ack_sample {
 931	u32 pkts_acked;
 932	s32 rtt_us;
 933	u32 in_flight;
 934};
 935
 936/* A rate sample measures the number of (original/retransmitted) data
 937 * packets delivered "delivered" over an interval of time "interval_us".
 938 * The tcp_rate.c code fills in the rate sample, and congestion
 939 * control modules that define a cong_control function to run at the end
 940 * of ACK processing can optionally chose to consult this sample when
 941 * setting cwnd and pacing rate.
 942 * A sample is invalid if "delivered" or "interval_us" is negative.
 943 */
 944struct rate_sample {
 945	u64  prior_mstamp; /* starting timestamp for interval */
 946	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
 947	s32  delivered;		/* number of packets delivered over interval */
 948	long interval_us;	/* time for tp->delivered to incr "delivered" */
 949	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
 950	int  losses;		/* number of packets marked lost upon ACK */
 951	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
 952	u32  prior_in_flight;	/* in flight before this ACK */
 953	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
 954	bool is_retrans;	/* is sample from retransmission? */
 955	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
 956};
 957
 958struct tcp_congestion_ops {
 959	struct list_head	list;
 960	u32 key;
 961	u32 flags;
 962
 963	/* initialize private data (optional) */
 964	void (*init)(struct sock *sk);
 965	/* cleanup private data  (optional) */
 966	void (*release)(struct sock *sk);
 967
 968	/* return slow start threshold (required) */
 969	u32 (*ssthresh)(struct sock *sk);
 970	/* do new cwnd calculation (required) */
 971	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
 972	/* call before changing ca_state (optional) */
 973	void (*set_state)(struct sock *sk, u8 new_state);
 974	/* call when cwnd event occurs (optional) */
 975	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
 976	/* call when ack arrives (optional) */
 977	void (*in_ack_event)(struct sock *sk, u32 flags);
 978	/* new value of cwnd after loss (required) */
 979	u32  (*undo_cwnd)(struct sock *sk);
 980	/* hook for packet ack accounting (optional) */
 981	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
 982	/* override sysctl_tcp_min_tso_segs */
 983	u32 (*min_tso_segs)(struct sock *sk);
 984	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
 985	u32 (*sndbuf_expand)(struct sock *sk);
 986	/* call when packets are delivered to update cwnd and pacing rate,
 987	 * after all the ca_state processing. (optional)
 988	 */
 989	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
 990	/* get info for inet_diag (optional) */
 991	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
 992			   union tcp_cc_info *info);
 993
 994	char 		name[TCP_CA_NAME_MAX];
 995	struct module 	*owner;
 996};
 997
 998int tcp_register_congestion_control(struct tcp_congestion_ops *type);
 999void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1000
1001void tcp_assign_congestion_control(struct sock *sk);
1002void tcp_init_congestion_control(struct sock *sk);
1003void tcp_cleanup_congestion_control(struct sock *sk);
1004int tcp_set_default_congestion_control(struct net *net, const char *name);
1005void tcp_get_default_congestion_control(struct net *net, char *name);
1006void tcp_get_available_congestion_control(char *buf, size_t len);
1007void tcp_get_allowed_congestion_control(char *buf, size_t len);
1008int tcp_set_allowed_congestion_control(char *allowed);
1009int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool reinit);
1010u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1011void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1012
1013u32 tcp_reno_ssthresh(struct sock *sk);
1014u32 tcp_reno_undo_cwnd(struct sock *sk);
1015void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1016extern struct tcp_congestion_ops tcp_reno;
1017
1018struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1019u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1020#ifdef CONFIG_INET
1021char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1022#else
1023static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1024{
1025	return NULL;
1026}
1027#endif
1028
1029static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1030{
1031	const struct inet_connection_sock *icsk = inet_csk(sk);
1032
1033	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1034}
1035
1036static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1037{
1038	struct inet_connection_sock *icsk = inet_csk(sk);
1039
1040	if (icsk->icsk_ca_ops->set_state)
1041		icsk->icsk_ca_ops->set_state(sk, ca_state);
1042	icsk->icsk_ca_state = ca_state;
1043}
1044
1045static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1046{
1047	const struct inet_connection_sock *icsk = inet_csk(sk);
1048
1049	if (icsk->icsk_ca_ops->cwnd_event)
1050		icsk->icsk_ca_ops->cwnd_event(sk, event);
1051}
1052
1053/* From tcp_rate.c */
1054void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1055void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1056			    struct rate_sample *rs);
1057void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1058		  bool is_sack_reneg, struct rate_sample *rs);
1059void tcp_rate_check_app_limited(struct sock *sk);
1060
1061/* These functions determine how the current flow behaves in respect of SACK
1062 * handling. SACK is negotiated with the peer, and therefore it can vary
1063 * between different flows.
1064 *
1065 * tcp_is_sack - SACK enabled
1066 * tcp_is_reno - No SACK
 
1067 */
1068static inline int tcp_is_sack(const struct tcp_sock *tp)
1069{
1070	return tp->rx_opt.sack_ok;
1071}
1072
1073static inline bool tcp_is_reno(const struct tcp_sock *tp)
1074{
1075	return !tcp_is_sack(tp);
1076}
1077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1079{
1080	return tp->sacked_out + tp->lost_out;
1081}
1082
1083/* This determines how many packets are "in the network" to the best
1084 * of our knowledge.  In many cases it is conservative, but where
1085 * detailed information is available from the receiver (via SACK
1086 * blocks etc.) we can make more aggressive calculations.
1087 *
1088 * Use this for decisions involving congestion control, use just
1089 * tp->packets_out to determine if the send queue is empty or not.
1090 *
1091 * Read this equation as:
1092 *
1093 *	"Packets sent once on transmission queue" MINUS
1094 *	"Packets left network, but not honestly ACKed yet" PLUS
1095 *	"Packets fast retransmitted"
1096 */
1097static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1098{
1099	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1100}
1101
1102#define TCP_INFINITE_SSTHRESH	0x7fffffff
1103
1104static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1105{
1106	return tp->snd_cwnd < tp->snd_ssthresh;
1107}
1108
1109static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1110{
1111	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1112}
1113
1114static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1115{
1116	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1117	       (1 << inet_csk(sk)->icsk_ca_state);
1118}
1119
1120/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1121 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1122 * ssthresh.
1123 */
1124static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1125{
1126	const struct tcp_sock *tp = tcp_sk(sk);
1127
1128	if (tcp_in_cwnd_reduction(sk))
1129		return tp->snd_ssthresh;
1130	else
1131		return max(tp->snd_ssthresh,
1132			   ((tp->snd_cwnd >> 1) +
1133			    (tp->snd_cwnd >> 2)));
1134}
1135
1136/* Use define here intentionally to get WARN_ON location shown at the caller */
1137#define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1138
1139void tcp_enter_cwr(struct sock *sk);
1140__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1141
1142/* The maximum number of MSS of available cwnd for which TSO defers
1143 * sending if not using sysctl_tcp_tso_win_divisor.
1144 */
1145static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1146{
1147	return 3;
1148}
1149
1150/* Returns end sequence number of the receiver's advertised window */
1151static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1152{
1153	return tp->snd_una + tp->snd_wnd;
1154}
1155
1156/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1157 * flexible approach. The RFC suggests cwnd should not be raised unless
1158 * it was fully used previously. And that's exactly what we do in
1159 * congestion avoidance mode. But in slow start we allow cwnd to grow
1160 * as long as the application has used half the cwnd.
1161 * Example :
1162 *    cwnd is 10 (IW10), but application sends 9 frames.
1163 *    We allow cwnd to reach 18 when all frames are ACKed.
1164 * This check is safe because it's as aggressive as slow start which already
1165 * risks 100% overshoot. The advantage is that we discourage application to
1166 * either send more filler packets or data to artificially blow up the cwnd
1167 * usage, and allow application-limited process to probe bw more aggressively.
1168 */
1169static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1170{
1171	const struct tcp_sock *tp = tcp_sk(sk);
1172
1173	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1174	if (tcp_in_slow_start(tp))
1175		return tp->snd_cwnd < 2 * tp->max_packets_out;
1176
1177	return tp->is_cwnd_limited;
1178}
1179
1180/* Something is really bad, we could not queue an additional packet,
1181 * because qdisc is full or receiver sent a 0 window.
1182 * We do not want to add fuel to the fire, or abort too early,
1183 * so make sure the timer we arm now is at least 200ms in the future,
1184 * regardless of current icsk_rto value (as it could be ~2ms)
1185 */
1186static inline unsigned long tcp_probe0_base(const struct sock *sk)
1187{
1188	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1189}
1190
1191/* Variant of inet_csk_rto_backoff() used for zero window probes */
1192static inline unsigned long tcp_probe0_when(const struct sock *sk,
1193					    unsigned long max_when)
1194{
1195	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1196
1197	return (unsigned long)min_t(u64, when, max_when);
1198}
1199
1200static inline void tcp_check_probe_timer(struct sock *sk)
1201{
1202	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1203		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1204					  tcp_probe0_base(sk), TCP_RTO_MAX);
1205}
1206
1207static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1208{
1209	tp->snd_wl1 = seq;
1210}
1211
1212static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1213{
1214	tp->snd_wl1 = seq;
1215}
1216
1217/*
1218 * Calculate(/check) TCP checksum
1219 */
1220static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1221				   __be32 daddr, __wsum base)
1222{
1223	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1224}
1225
1226static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1227{
1228	return __skb_checksum_complete(skb);
1229}
1230
1231static inline bool tcp_checksum_complete(struct sk_buff *skb)
1232{
1233	return !skb_csum_unnecessary(skb) &&
1234		__tcp_checksum_complete(skb);
1235}
1236
 
 
 
 
 
 
 
 
 
 
 
1237bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1238int tcp_filter(struct sock *sk, struct sk_buff *skb);
1239
1240#undef STATE_TRACE
1241
1242#ifdef STATE_TRACE
1243static const char *statename[]={
1244	"Unused","Established","Syn Sent","Syn Recv",
1245	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1246	"Close Wait","Last ACK","Listen","Closing"
1247};
1248#endif
1249void tcp_set_state(struct sock *sk, int state);
1250
1251void tcp_done(struct sock *sk);
1252
1253int tcp_abort(struct sock *sk, int err);
1254
1255static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1256{
1257	rx_opt->dsack = 0;
1258	rx_opt->num_sacks = 0;
1259}
1260
1261u32 tcp_default_init_rwnd(u32 mss);
1262void tcp_cwnd_restart(struct sock *sk, s32 delta);
1263
1264static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1265{
1266	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1267	struct tcp_sock *tp = tcp_sk(sk);
1268	s32 delta;
1269
1270	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1271	    ca_ops->cong_control)
1272		return;
1273	delta = tcp_jiffies32 - tp->lsndtime;
1274	if (delta > inet_csk(sk)->icsk_rto)
1275		tcp_cwnd_restart(sk, delta);
1276}
1277
1278/* Determine a window scaling and initial window to offer. */
1279void tcp_select_initial_window(const struct sock *sk, int __space,
1280			       __u32 mss, __u32 *rcv_wnd,
1281			       __u32 *window_clamp, int wscale_ok,
1282			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1283
1284static inline int tcp_win_from_space(const struct sock *sk, int space)
1285{
1286	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1287
1288	return tcp_adv_win_scale <= 0 ?
1289		(space>>(-tcp_adv_win_scale)) :
1290		space - (space>>tcp_adv_win_scale);
1291}
1292
1293/* Note: caller must be prepared to deal with negative returns */
1294static inline int tcp_space(const struct sock *sk)
1295{
1296	return tcp_win_from_space(sk, sk->sk_rcvbuf -
1297				  atomic_read(&sk->sk_rmem_alloc));
1298}
1299
1300static inline int tcp_full_space(const struct sock *sk)
1301{
1302	return tcp_win_from_space(sk, sk->sk_rcvbuf);
1303}
1304
1305extern void tcp_openreq_init_rwin(struct request_sock *req,
1306				  const struct sock *sk_listener,
1307				  const struct dst_entry *dst);
1308
1309void tcp_enter_memory_pressure(struct sock *sk);
1310void tcp_leave_memory_pressure(struct sock *sk);
1311
1312static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1313{
1314	struct net *net = sock_net((struct sock *)tp);
1315
1316	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1317}
1318
1319static inline int keepalive_time_when(const struct tcp_sock *tp)
1320{
1321	struct net *net = sock_net((struct sock *)tp);
1322
1323	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1324}
1325
1326static inline int keepalive_probes(const struct tcp_sock *tp)
1327{
1328	struct net *net = sock_net((struct sock *)tp);
1329
1330	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1331}
1332
1333static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1334{
1335	const struct inet_connection_sock *icsk = &tp->inet_conn;
1336
1337	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1338			  tcp_jiffies32 - tp->rcv_tstamp);
1339}
1340
1341static inline int tcp_fin_time(const struct sock *sk)
1342{
1343	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1344	const int rto = inet_csk(sk)->icsk_rto;
1345
1346	if (fin_timeout < (rto << 2) - (rto >> 1))
1347		fin_timeout = (rto << 2) - (rto >> 1);
1348
1349	return fin_timeout;
1350}
1351
1352static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1353				  int paws_win)
1354{
1355	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1356		return true;
1357	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1358		return true;
1359	/*
1360	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1361	 * then following tcp messages have valid values. Ignore 0 value,
1362	 * or else 'negative' tsval might forbid us to accept their packets.
1363	 */
1364	if (!rx_opt->ts_recent)
1365		return true;
1366	return false;
1367}
1368
1369static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1370				   int rst)
1371{
1372	if (tcp_paws_check(rx_opt, 0))
1373		return false;
1374
1375	/* RST segments are not recommended to carry timestamp,
1376	   and, if they do, it is recommended to ignore PAWS because
1377	   "their cleanup function should take precedence over timestamps."
1378	   Certainly, it is mistake. It is necessary to understand the reasons
1379	   of this constraint to relax it: if peer reboots, clock may go
1380	   out-of-sync and half-open connections will not be reset.
1381	   Actually, the problem would be not existing if all
1382	   the implementations followed draft about maintaining clock
1383	   via reboots. Linux-2.2 DOES NOT!
1384
1385	   However, we can relax time bounds for RST segments to MSL.
1386	 */
1387	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1388		return false;
1389	return true;
1390}
1391
1392bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1393			  int mib_idx, u32 *last_oow_ack_time);
1394
1395static inline void tcp_mib_init(struct net *net)
1396{
1397	/* See RFC 2012 */
1398	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1399	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1400	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1401	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1402}
1403
1404/* from STCP */
1405static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1406{
1407	tp->lost_skb_hint = NULL;
1408}
1409
1410static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1411{
1412	tcp_clear_retrans_hints_partial(tp);
1413	tp->retransmit_skb_hint = NULL;
1414}
1415
1416union tcp_md5_addr {
1417	struct in_addr  a4;
1418#if IS_ENABLED(CONFIG_IPV6)
1419	struct in6_addr	a6;
1420#endif
1421};
1422
1423/* - key database */
1424struct tcp_md5sig_key {
1425	struct hlist_node	node;
1426	u8			keylen;
1427	u8			family; /* AF_INET or AF_INET6 */
1428	union tcp_md5_addr	addr;
1429	u8			prefixlen;
1430	u8			key[TCP_MD5SIG_MAXKEYLEN];
1431	struct rcu_head		rcu;
1432};
1433
1434/* - sock block */
1435struct tcp_md5sig_info {
1436	struct hlist_head	head;
1437	struct rcu_head		rcu;
1438};
1439
1440/* - pseudo header */
1441struct tcp4_pseudohdr {
1442	__be32		saddr;
1443	__be32		daddr;
1444	__u8		pad;
1445	__u8		protocol;
1446	__be16		len;
1447};
1448
1449struct tcp6_pseudohdr {
1450	struct in6_addr	saddr;
1451	struct in6_addr daddr;
1452	__be32		len;
1453	__be32		protocol;	/* including padding */
1454};
1455
1456union tcp_md5sum_block {
1457	struct tcp4_pseudohdr ip4;
1458#if IS_ENABLED(CONFIG_IPV6)
1459	struct tcp6_pseudohdr ip6;
1460#endif
1461};
1462
1463/* - pool: digest algorithm, hash description and scratch buffer */
1464struct tcp_md5sig_pool {
1465	struct ahash_request	*md5_req;
1466	void			*scratch;
1467};
1468
1469/* - functions */
1470int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1471			const struct sock *sk, const struct sk_buff *skb);
1472int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1473		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1474		   gfp_t gfp);
1475int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1476		   int family, u8 prefixlen);
1477struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1478					 const struct sock *addr_sk);
1479
1480#ifdef CONFIG_TCP_MD5SIG
1481struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1482					 const union tcp_md5_addr *addr,
1483					 int family);
1484#define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1485#else
1486static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1487					 const union tcp_md5_addr *addr,
1488					 int family)
1489{
1490	return NULL;
1491}
1492#define tcp_twsk_md5_key(twsk)	NULL
1493#endif
1494
1495bool tcp_alloc_md5sig_pool(void);
1496
1497struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1498static inline void tcp_put_md5sig_pool(void)
1499{
1500	local_bh_enable();
1501}
1502
1503int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1504			  unsigned int header_len);
1505int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1506		     const struct tcp_md5sig_key *key);
1507
1508/* From tcp_fastopen.c */
1509void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1510			    struct tcp_fastopen_cookie *cookie);
 
1511void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1512			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1513			    u16 try_exp);
1514struct tcp_fastopen_request {
1515	/* Fast Open cookie. Size 0 means a cookie request */
1516	struct tcp_fastopen_cookie	cookie;
1517	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1518	size_t				size;
1519	int				copied;	/* queued in tcp_connect() */
1520};
1521void tcp_free_fastopen_req(struct tcp_sock *tp);
1522void tcp_fastopen_destroy_cipher(struct sock *sk);
1523void tcp_fastopen_ctx_destroy(struct net *net);
1524int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1525			      void *key, unsigned int len);
1526void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1527struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1528			      struct request_sock *req,
1529			      struct tcp_fastopen_cookie *foc,
1530			      const struct dst_entry *dst);
1531void tcp_fastopen_init_key_once(struct net *net);
1532bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1533			     struct tcp_fastopen_cookie *cookie);
1534bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1535#define TCP_FASTOPEN_KEY_LENGTH 16
1536
1537/* Fastopen key context */
1538struct tcp_fastopen_context {
1539	struct crypto_cipher	*tfm;
1540	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1541	struct rcu_head		rcu;
1542};
1543
1544extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1545void tcp_fastopen_active_disable(struct sock *sk);
1546bool tcp_fastopen_active_should_disable(struct sock *sk);
1547void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1548void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1549
1550/* Latencies incurred by various limits for a sender. They are
1551 * chronograph-like stats that are mutually exclusive.
1552 */
1553enum tcp_chrono {
1554	TCP_CHRONO_UNSPEC,
1555	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1556	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1557	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1558	__TCP_CHRONO_MAX,
1559};
1560
1561void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1562void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1563
1564/* This helper is needed, because skb->tcp_tsorted_anchor uses
1565 * the same memory storage than skb->destructor/_skb_refdst
1566 */
1567static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1568{
1569	skb->destructor = NULL;
1570	skb->_skb_refdst = 0UL;
1571}
1572
1573#define tcp_skb_tsorted_save(skb) {		\
1574	unsigned long _save = skb->_skb_refdst;	\
1575	skb->_skb_refdst = 0UL;
1576
1577#define tcp_skb_tsorted_restore(skb)		\
1578	skb->_skb_refdst = _save;		\
1579}
1580
1581void tcp_write_queue_purge(struct sock *sk);
1582
1583static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1584{
1585	return skb_rb_first(&sk->tcp_rtx_queue);
1586}
1587
1588static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1589{
1590	return skb_peek(&sk->sk_write_queue);
1591}
1592
1593static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1594{
1595	return skb_peek_tail(&sk->sk_write_queue);
1596}
1597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1598#define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1599	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1600
1601static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1602{
1603	return skb_peek(&sk->sk_write_queue);
1604}
1605
1606static inline bool tcp_skb_is_last(const struct sock *sk,
1607				   const struct sk_buff *skb)
1608{
1609	return skb_queue_is_last(&sk->sk_write_queue, skb);
1610}
1611
1612static inline bool tcp_write_queue_empty(const struct sock *sk)
1613{
1614	return skb_queue_empty(&sk->sk_write_queue);
1615}
1616
1617static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1618{
1619	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
 
 
 
1620}
1621
1622static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1623{
1624	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
 
 
 
 
 
1625}
1626
1627static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1628{
1629	if (tcp_write_queue_empty(sk))
1630		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1631}
1632
1633static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1634{
1635	__skb_queue_tail(&sk->sk_write_queue, skb);
1636}
1637
1638static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1639{
1640	__tcp_add_write_queue_tail(sk, skb);
1641
1642	/* Queue it, remembering where we must start sending. */
1643	if (sk->sk_write_queue.next == skb)
 
1644		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1645}
1646
1647/* Insert new before skb on the write queue of sk.  */
1648static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1649						  struct sk_buff *skb,
1650						  struct sock *sk)
1651{
1652	__skb_queue_before(&sk->sk_write_queue, skb, new);
 
 
 
1653}
1654
1655static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1656{
1657	tcp_skb_tsorted_anchor_cleanup(skb);
1658	__skb_unlink(skb, &sk->sk_write_queue);
1659}
1660
1661void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1662
1663static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1664{
1665	tcp_skb_tsorted_anchor_cleanup(skb);
1666	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1667}
1668
1669static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1670{
1671	list_del(&skb->tcp_tsorted_anchor);
1672	tcp_rtx_queue_unlink(skb, sk);
1673	sk_wmem_free_skb(sk, skb);
1674}
1675
1676static inline void tcp_push_pending_frames(struct sock *sk)
1677{
1678	if (tcp_send_head(sk)) {
1679		struct tcp_sock *tp = tcp_sk(sk);
1680
1681		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1682	}
1683}
1684
1685/* Start sequence of the skb just after the highest skb with SACKed
1686 * bit, valid only if sacked_out > 0 or when the caller has ensured
1687 * validity by itself.
1688 */
1689static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1690{
1691	if (!tp->sacked_out)
1692		return tp->snd_una;
1693
1694	if (tp->highest_sack == NULL)
1695		return tp->snd_nxt;
1696
1697	return TCP_SKB_CB(tp->highest_sack)->seq;
1698}
1699
1700static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1701{
1702	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
 
1703}
1704
1705static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1706{
1707	return tcp_sk(sk)->highest_sack;
1708}
1709
1710static inline void tcp_highest_sack_reset(struct sock *sk)
1711{
1712	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1713}
1714
1715/* Called when old skb is about to be deleted and replaced by new skb */
1716static inline void tcp_highest_sack_replace(struct sock *sk,
1717					    struct sk_buff *old,
1718					    struct sk_buff *new)
1719{
1720	if (old == tcp_highest_sack(sk))
1721		tcp_sk(sk)->highest_sack = new;
1722}
1723
1724/* This helper checks if socket has IP_TRANSPARENT set */
1725static inline bool inet_sk_transparent(const struct sock *sk)
1726{
1727	switch (sk->sk_state) {
1728	case TCP_TIME_WAIT:
1729		return inet_twsk(sk)->tw_transparent;
1730	case TCP_NEW_SYN_RECV:
1731		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1732	}
1733	return inet_sk(sk)->transparent;
1734}
1735
1736/* Determines whether this is a thin stream (which may suffer from
1737 * increased latency). Used to trigger latency-reducing mechanisms.
1738 */
1739static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1740{
1741	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1742}
1743
1744/* /proc */
1745enum tcp_seq_states {
1746	TCP_SEQ_STATE_LISTENING,
1747	TCP_SEQ_STATE_ESTABLISHED,
1748};
1749
1750int tcp_seq_open(struct inode *inode, struct file *file);
1751
1752struct tcp_seq_afinfo {
1753	char				*name;
1754	sa_family_t			family;
1755	const struct file_operations	*seq_fops;
1756	struct seq_operations		seq_ops;
1757};
1758
1759struct tcp_iter_state {
1760	struct seq_net_private	p;
1761	sa_family_t		family;
1762	enum tcp_seq_states	state;
1763	struct sock		*syn_wait_sk;
1764	int			bucket, offset, sbucket, num;
1765	loff_t			last_pos;
1766};
1767
1768int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1769void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1770
1771extern struct request_sock_ops tcp_request_sock_ops;
1772extern struct request_sock_ops tcp6_request_sock_ops;
1773
1774void tcp_v4_destroy_sock(struct sock *sk);
1775
1776struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1777				netdev_features_t features);
1778struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1779int tcp_gro_complete(struct sk_buff *skb);
1780
1781void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1782
1783static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1784{
1785	struct net *net = sock_net((struct sock *)tp);
1786	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1787}
1788
1789static inline bool tcp_stream_memory_free(const struct sock *sk)
1790{
1791	const struct tcp_sock *tp = tcp_sk(sk);
1792	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1793
1794	return notsent_bytes < tcp_notsent_lowat(tp);
1795}
1796
1797#ifdef CONFIG_PROC_FS
1798int tcp4_proc_init(void);
1799void tcp4_proc_exit(void);
1800#endif
1801
1802int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1803int tcp_conn_request(struct request_sock_ops *rsk_ops,
1804		     const struct tcp_request_sock_ops *af_ops,
1805		     struct sock *sk, struct sk_buff *skb);
1806
1807/* TCP af-specific functions */
1808struct tcp_sock_af_ops {
1809#ifdef CONFIG_TCP_MD5SIG
1810	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1811						const struct sock *addr_sk);
1812	int		(*calc_md5_hash)(char *location,
1813					 const struct tcp_md5sig_key *md5,
1814					 const struct sock *sk,
1815					 const struct sk_buff *skb);
1816	int		(*md5_parse)(struct sock *sk,
1817				     int optname,
1818				     char __user *optval,
1819				     int optlen);
1820#endif
1821};
1822
1823struct tcp_request_sock_ops {
1824	u16 mss_clamp;
1825#ifdef CONFIG_TCP_MD5SIG
1826	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1827						 const struct sock *addr_sk);
1828	int		(*calc_md5_hash) (char *location,
1829					  const struct tcp_md5sig_key *md5,
1830					  const struct sock *sk,
1831					  const struct sk_buff *skb);
1832#endif
1833	void (*init_req)(struct request_sock *req,
1834			 const struct sock *sk_listener,
1835			 struct sk_buff *skb);
1836#ifdef CONFIG_SYN_COOKIES
1837	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1838				 __u16 *mss);
1839#endif
1840	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1841				       const struct request_sock *req);
1842	u32 (*init_seq)(const struct sk_buff *skb);
1843	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1844	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1845			   struct flowi *fl, struct request_sock *req,
1846			   struct tcp_fastopen_cookie *foc,
1847			   enum tcp_synack_type synack_type);
1848};
1849
1850#ifdef CONFIG_SYN_COOKIES
1851static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1852					 const struct sock *sk, struct sk_buff *skb,
1853					 __u16 *mss)
1854{
1855	tcp_synq_overflow(sk);
1856	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1857	return ops->cookie_init_seq(skb, mss);
1858}
1859#else
1860static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1861					 const struct sock *sk, struct sk_buff *skb,
1862					 __u16 *mss)
1863{
1864	return 0;
1865}
1866#endif
1867
1868int tcpv4_offload_init(void);
1869
1870void tcp_v4_init(void);
1871void tcp_init(void);
1872
1873/* tcp_recovery.c */
1874extern void tcp_rack_mark_lost(struct sock *sk);
1875extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1876			     u64 xmit_time);
1877extern void tcp_rack_reo_timeout(struct sock *sk);
1878extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
1879
1880/* At how many usecs into the future should the RTO fire? */
1881static inline s64 tcp_rto_delta_us(const struct sock *sk)
1882{
1883	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
1884	u32 rto = inet_csk(sk)->icsk_rto;
1885	u64 rto_time_stamp_us = skb->skb_mstamp + jiffies_to_usecs(rto);
1886
1887	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1888}
 
 
 
 
 
 
 
 
1889
1890/*
1891 * Save and compile IPv4 options, return a pointer to it
1892 */
1893static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
1894							 struct sk_buff *skb)
1895{
1896	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1897	struct ip_options_rcu *dopt = NULL;
1898
1899	if (opt->optlen) {
1900		int opt_size = sizeof(*dopt) + opt->optlen;
1901
1902		dopt = kmalloc(opt_size, GFP_ATOMIC);
1903		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
1904			kfree(dopt);
1905			dopt = NULL;
1906		}
1907	}
1908	return dopt;
1909}
1910
1911/* locally generated TCP pure ACKs have skb->truesize == 2
1912 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1913 * This is much faster than dissecting the packet to find out.
1914 * (Think of GRE encapsulations, IPv4, IPv6, ...)
1915 */
1916static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1917{
1918	return skb->truesize == 2;
1919}
1920
1921static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1922{
1923	skb->truesize = 2;
1924}
1925
1926static inline int tcp_inq(struct sock *sk)
1927{
1928	struct tcp_sock *tp = tcp_sk(sk);
1929	int answ;
1930
1931	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1932		answ = 0;
1933	} else if (sock_flag(sk, SOCK_URGINLINE) ||
1934		   !tp->urg_data ||
1935		   before(tp->urg_seq, tp->copied_seq) ||
1936		   !before(tp->urg_seq, tp->rcv_nxt)) {
1937
1938		answ = tp->rcv_nxt - tp->copied_seq;
1939
1940		/* Subtract 1, if FIN was received */
1941		if (answ && sock_flag(sk, SOCK_DONE))
1942			answ--;
1943	} else {
1944		answ = tp->urg_seq - tp->copied_seq;
1945	}
1946
1947	return answ;
1948}
1949
1950int tcp_peek_len(struct socket *sock);
1951
1952static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
1953{
1954	u16 segs_in;
1955
1956	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1957	tp->segs_in += segs_in;
1958	if (skb->len > tcp_hdrlen(skb))
1959		tp->data_segs_in += segs_in;
1960}
1961
1962/*
1963 * TCP listen path runs lockless.
1964 * We forced "struct sock" to be const qualified to make sure
1965 * we don't modify one of its field by mistake.
1966 * Here, we increment sk_drops which is an atomic_t, so we can safely
1967 * make sock writable again.
1968 */
1969static inline void tcp_listendrop(const struct sock *sk)
1970{
1971	atomic_inc(&((struct sock *)sk)->sk_drops);
1972	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
1973}
1974
1975enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
1976
1977/*
1978 * Interface for adding Upper Level Protocols over TCP
1979 */
1980
1981#define TCP_ULP_NAME_MAX	16
1982#define TCP_ULP_MAX		128
1983#define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
1984
1985enum {
1986	TCP_ULP_TLS,
1987	TCP_ULP_BPF,
1988};
1989
1990struct tcp_ulp_ops {
1991	struct list_head	list;
1992
1993	/* initialize ulp */
1994	int (*init)(struct sock *sk);
1995	/* cleanup ulp */
1996	void (*release)(struct sock *sk);
1997
1998	int		uid;
1999	char		name[TCP_ULP_NAME_MAX];
2000	bool		user_visible;
2001	struct module	*owner;
2002};
2003int tcp_register_ulp(struct tcp_ulp_ops *type);
2004void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2005int tcp_set_ulp(struct sock *sk, const char *name);
2006int tcp_set_ulp_id(struct sock *sk, const int ulp);
2007void tcp_get_available_ulp(char *buf, size_t len);
2008void tcp_cleanup_ulp(struct sock *sk);
2009
2010/* Call BPF_SOCK_OPS program that returns an int. If the return value
2011 * is < 0, then the BPF op failed (for example if the loaded BPF
2012 * program does not support the chosen operation or there is no BPF
2013 * program loaded).
2014 */
2015#ifdef CONFIG_BPF
2016static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2017{
2018	struct bpf_sock_ops_kern sock_ops;
2019	int ret;
2020
2021	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2022	if (sk_fullsock(sk)) {
2023		sock_ops.is_fullsock = 1;
2024		sock_owned_by_me(sk);
2025	}
2026
2027	sock_ops.sk = sk;
2028	sock_ops.op = op;
2029	if (nargs > 0)
2030		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2031
2032	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2033	if (ret == 0)
2034		ret = sock_ops.reply;
2035	else
2036		ret = -1;
2037	return ret;
2038}
2039
2040static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2041{
2042	u32 args[2] = {arg1, arg2};
2043
2044	return tcp_call_bpf(sk, op, 2, args);
2045}
2046
2047static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2048				    u32 arg3)
2049{
2050	u32 args[3] = {arg1, arg2, arg3};
2051
2052	return tcp_call_bpf(sk, op, 3, args);
2053}
2054
2055#else
2056static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2057{
2058	return -EPERM;
2059}
2060
2061static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2062{
2063	return -EPERM;
2064}
2065
2066static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2067				    u32 arg3)
2068{
2069	return -EPERM;
2070}
2071
2072#endif
2073
2074static inline u32 tcp_timeout_init(struct sock *sk)
2075{
2076	int timeout;
2077
2078	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2079
2080	if (timeout <= 0)
2081		timeout = TCP_TIMEOUT_INIT;
2082	return timeout;
2083}
2084
2085static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2086{
2087	int rwnd;
2088
2089	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2090
2091	if (rwnd < 0)
2092		rwnd = 0;
2093	return rwnd;
2094}
2095
2096static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2097{
2098	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2099}
2100
2101#if IS_ENABLED(CONFIG_SMC)
2102extern struct static_key_false tcp_have_smc;
2103#endif
2104#endif	/* _TCP_H */
v4.10.11
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Definitions for the TCP module.
   7 *
   8 * Version:	@(#)tcp.h	1.0.5	05/23/93
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *
  13 *		This program is free software; you can redistribute it and/or
  14 *		modify it under the terms of the GNU General Public License
  15 *		as published by the Free Software Foundation; either version
  16 *		2 of the License, or (at your option) any later version.
  17 */
  18#ifndef _TCP_H
  19#define _TCP_H
  20
  21#define FASTRETRANS_DEBUG 1
  22
  23#include <linux/list.h>
  24#include <linux/tcp.h>
  25#include <linux/bug.h>
  26#include <linux/slab.h>
  27#include <linux/cache.h>
  28#include <linux/percpu.h>
  29#include <linux/skbuff.h>
  30#include <linux/cryptohash.h>
  31#include <linux/kref.h>
  32#include <linux/ktime.h>
  33
  34#include <net/inet_connection_sock.h>
  35#include <net/inet_timewait_sock.h>
  36#include <net/inet_hashtables.h>
  37#include <net/checksum.h>
  38#include <net/request_sock.h>
  39#include <net/sock.h>
  40#include <net/snmp.h>
  41#include <net/ip.h>
  42#include <net/tcp_states.h>
  43#include <net/inet_ecn.h>
  44#include <net/dst.h>
  45
  46#include <linux/seq_file.h>
  47#include <linux/memcontrol.h>
 
  48
  49extern struct inet_hashinfo tcp_hashinfo;
  50
  51extern struct percpu_counter tcp_orphan_count;
  52void tcp_time_wait(struct sock *sk, int state, int timeo);
  53
  54#define MAX_TCP_HEADER	(128 + MAX_HEADER)
  55#define MAX_TCP_OPTION_SPACE 40
  56
  57/*
  58 * Never offer a window over 32767 without using window scaling. Some
  59 * poor stacks do signed 16bit maths!
  60 */
  61#define MAX_TCP_WINDOW		32767U
  62
  63/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
  64#define TCP_MIN_MSS		88U
  65
  66/* The least MTU to use for probing */
  67#define TCP_BASE_MSS		1024
  68
  69/* probing interval, default to 10 minutes as per RFC4821 */
  70#define TCP_PROBE_INTERVAL	600
  71
  72/* Specify interval when tcp mtu probing will stop */
  73#define TCP_PROBE_THRESHOLD	8
  74
  75/* After receiving this amount of duplicate ACKs fast retransmit starts. */
  76#define TCP_FASTRETRANS_THRESH 3
  77
  78/* Maximal number of ACKs sent quickly to accelerate slow-start. */
  79#define TCP_MAX_QUICKACKS	16U
  80
 
 
 
  81/* urg_data states */
  82#define TCP_URG_VALID	0x0100
  83#define TCP_URG_NOTYET	0x0200
  84#define TCP_URG_READ	0x0400
  85
  86#define TCP_RETR1	3	/*
  87				 * This is how many retries it does before it
  88				 * tries to figure out if the gateway is
  89				 * down. Minimal RFC value is 3; it corresponds
  90				 * to ~3sec-8min depending on RTO.
  91				 */
  92
  93#define TCP_RETR2	15	/*
  94				 * This should take at least
  95				 * 90 minutes to time out.
  96				 * RFC1122 says that the limit is 100 sec.
  97				 * 15 is ~13-30min depending on RTO.
  98				 */
  99
 100#define TCP_SYN_RETRIES	 6	/* This is how many retries are done
 101				 * when active opening a connection.
 102				 * RFC1122 says the minimum retry MUST
 103				 * be at least 180secs.  Nevertheless
 104				 * this value is corresponding to
 105				 * 63secs of retransmission with the
 106				 * current initial RTO.
 107				 */
 108
 109#define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
 110				 * when passive opening a connection.
 111				 * This is corresponding to 31secs of
 112				 * retransmission with the current
 113				 * initial RTO.
 114				 */
 115
 116#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
 117				  * state, about 60 seconds	*/
 118#define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
 119                                 /* BSD style FIN_WAIT2 deadlock breaker.
 120				  * It used to be 3min, new value is 60sec,
 121				  * to combine FIN-WAIT-2 timeout with
 122				  * TIME-WAIT timer.
 123				  */
 124
 125#define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
 126#if HZ >= 100
 127#define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
 128#define TCP_ATO_MIN	((unsigned)(HZ/25))
 129#else
 130#define TCP_DELACK_MIN	4U
 131#define TCP_ATO_MIN	4U
 132#endif
 133#define TCP_RTO_MAX	((unsigned)(120*HZ))
 134#define TCP_RTO_MIN	((unsigned)(HZ/5))
 
 135#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
 136#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
 137						 * used as a fallback RTO for the
 138						 * initial data transmission if no
 139						 * valid RTT sample has been acquired,
 140						 * most likely due to retrans in 3WHS.
 141						 */
 142
 143#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
 144					                 * for local resources.
 145					                 */
 146
 147#define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
 148#define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
 149#define TCP_KEEPALIVE_INTVL	(75*HZ)
 150
 151#define MAX_TCP_KEEPIDLE	32767
 152#define MAX_TCP_KEEPINTVL	32767
 153#define MAX_TCP_KEEPCNT		127
 154#define MAX_TCP_SYNCNT		127
 155
 156#define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
 157
 158#define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
 159#define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
 160					 * after this time. It should be equal
 161					 * (or greater than) TCP_TIMEWAIT_LEN
 162					 * to provide reliability equal to one
 163					 * provided by timewait state.
 164					 */
 165#define TCP_PAWS_WINDOW	1		/* Replay window for per-host
 166					 * timestamps. It must be less than
 167					 * minimal timewait lifetime.
 168					 */
 169/*
 170 *	TCP option
 171 */
 172
 173#define TCPOPT_NOP		1	/* Padding */
 174#define TCPOPT_EOL		0	/* End of options */
 175#define TCPOPT_MSS		2	/* Segment size negotiating */
 176#define TCPOPT_WINDOW		3	/* Window scaling */
 177#define TCPOPT_SACK_PERM        4       /* SACK Permitted */
 178#define TCPOPT_SACK             5       /* SACK Block */
 179#define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
 180#define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
 181#define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
 182#define TCPOPT_EXP		254	/* Experimental */
 183/* Magic number to be after the option value for sharing TCP
 184 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
 185 */
 186#define TCPOPT_FASTOPEN_MAGIC	0xF989
 
 187
 188/*
 189 *     TCP option lengths
 190 */
 191
 192#define TCPOLEN_MSS            4
 193#define TCPOLEN_WINDOW         3
 194#define TCPOLEN_SACK_PERM      2
 195#define TCPOLEN_TIMESTAMP      10
 196#define TCPOLEN_MD5SIG         18
 197#define TCPOLEN_FASTOPEN_BASE  2
 198#define TCPOLEN_EXP_FASTOPEN_BASE  4
 
 199
 200/* But this is what stacks really send out. */
 201#define TCPOLEN_TSTAMP_ALIGNED		12
 202#define TCPOLEN_WSCALE_ALIGNED		4
 203#define TCPOLEN_SACKPERM_ALIGNED	4
 204#define TCPOLEN_SACK_BASE		2
 205#define TCPOLEN_SACK_BASE_ALIGNED	4
 206#define TCPOLEN_SACK_PERBLOCK		8
 207#define TCPOLEN_MD5SIG_ALIGNED		20
 208#define TCPOLEN_MSS_ALIGNED		4
 
 209
 210/* Flags in tp->nonagle */
 211#define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
 212#define TCP_NAGLE_CORK		2	/* Socket is corked	    */
 213#define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
 214
 215/* TCP thin-stream limits */
 216#define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
 217
 218/* TCP initial congestion window as per rfc6928 */
 219#define TCP_INIT_CWND		10
 220
 221/* Bit Flags for sysctl_tcp_fastopen */
 222#define	TFO_CLIENT_ENABLE	1
 223#define	TFO_SERVER_ENABLE	2
 224#define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
 225
 226/* Accept SYN data w/o any cookie option */
 227#define	TFO_SERVER_COOKIE_NOT_REQD	0x200
 228
 229/* Force enable TFO on all listeners, i.e., not requiring the
 230 * TCP_FASTOPEN socket option.
 231 */
 232#define	TFO_SERVER_WO_SOCKOPT1	0x400
 233
 234extern struct inet_timewait_death_row tcp_death_row;
 235
 236/* sysctl variables for tcp */
 237extern int sysctl_tcp_timestamps;
 238extern int sysctl_tcp_window_scaling;
 239extern int sysctl_tcp_sack;
 240extern int sysctl_tcp_fastopen;
 241extern int sysctl_tcp_retrans_collapse;
 242extern int sysctl_tcp_stdurg;
 243extern int sysctl_tcp_rfc1337;
 244extern int sysctl_tcp_abort_on_overflow;
 245extern int sysctl_tcp_max_orphans;
 246extern int sysctl_tcp_fack;
 247extern int sysctl_tcp_reordering;
 248extern int sysctl_tcp_max_reordering;
 249extern int sysctl_tcp_dsack;
 250extern long sysctl_tcp_mem[3];
 251extern int sysctl_tcp_wmem[3];
 252extern int sysctl_tcp_rmem[3];
 253extern int sysctl_tcp_app_win;
 254extern int sysctl_tcp_adv_win_scale;
 255extern int sysctl_tcp_frto;
 256extern int sysctl_tcp_low_latency;
 257extern int sysctl_tcp_nometrics_save;
 258extern int sysctl_tcp_moderate_rcvbuf;
 259extern int sysctl_tcp_tso_win_divisor;
 260extern int sysctl_tcp_workaround_signed_windows;
 261extern int sysctl_tcp_slow_start_after_idle;
 262extern int sysctl_tcp_thin_linear_timeouts;
 263extern int sysctl_tcp_thin_dupack;
 264extern int sysctl_tcp_early_retrans;
 265extern int sysctl_tcp_limit_output_bytes;
 266extern int sysctl_tcp_challenge_ack_limit;
 267extern int sysctl_tcp_min_tso_segs;
 268extern int sysctl_tcp_min_rtt_wlen;
 269extern int sysctl_tcp_autocorking;
 270extern int sysctl_tcp_invalid_ratelimit;
 271extern int sysctl_tcp_pacing_ss_ratio;
 272extern int sysctl_tcp_pacing_ca_ratio;
 273
 274extern atomic_long_t tcp_memory_allocated;
 275extern struct percpu_counter tcp_sockets_allocated;
 276extern int tcp_memory_pressure;
 277
 278/* optimized version of sk_under_memory_pressure() for TCP sockets */
 279static inline bool tcp_under_memory_pressure(const struct sock *sk)
 280{
 281	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
 282	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
 283		return true;
 284
 285	return tcp_memory_pressure;
 286}
 287/*
 288 * The next routines deal with comparing 32 bit unsigned ints
 289 * and worry about wraparound (automatic with unsigned arithmetic).
 290 */
 291
 292static inline bool before(__u32 seq1, __u32 seq2)
 293{
 294        return (__s32)(seq1-seq2) < 0;
 295}
 296#define after(seq2, seq1) 	before(seq1, seq2)
 297
 298/* is s2<=s1<=s3 ? */
 299static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
 300{
 301	return seq3 - seq2 >= seq1 - seq2;
 302}
 303
 304static inline bool tcp_out_of_memory(struct sock *sk)
 305{
 306	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
 307	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
 308		return true;
 309	return false;
 310}
 311
 312void sk_forced_mem_schedule(struct sock *sk, int size);
 313
 314static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
 315{
 316	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
 317	int orphans = percpu_counter_read_positive(ocp);
 318
 319	if (orphans << shift > sysctl_tcp_max_orphans) {
 320		orphans = percpu_counter_sum_positive(ocp);
 321		if (orphans << shift > sysctl_tcp_max_orphans)
 322			return true;
 323	}
 324	return false;
 325}
 326
 327bool tcp_check_oom(struct sock *sk, int shift);
 328
 329
 330extern struct proto tcp_prot;
 331
 332#define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 333#define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 334#define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
 335#define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
 336
 337void tcp_tasklet_init(void);
 338
 339void tcp_v4_err(struct sk_buff *skb, u32);
 340
 341void tcp_shutdown(struct sock *sk, int how);
 342
 343void tcp_v4_early_demux(struct sk_buff *skb);
 344int tcp_v4_rcv(struct sk_buff *skb);
 345
 346int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
 347int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
 
 348int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
 349		 int flags);
 
 
 
 
 350void tcp_release_cb(struct sock *sk);
 351void tcp_wfree(struct sk_buff *skb);
 352void tcp_write_timer_handler(struct sock *sk);
 353void tcp_delack_timer_handler(struct sock *sk);
 354int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
 355int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
 356void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
 357			 const struct tcphdr *th, unsigned int len);
 358void tcp_rcv_space_adjust(struct sock *sk);
 359int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
 360void tcp_twsk_destructor(struct sock *sk);
 361ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
 362			struct pipe_inode_info *pipe, size_t len,
 363			unsigned int flags);
 364
 365static inline void tcp_dec_quickack_mode(struct sock *sk,
 366					 const unsigned int pkts)
 367{
 368	struct inet_connection_sock *icsk = inet_csk(sk);
 369
 370	if (icsk->icsk_ack.quick) {
 371		if (pkts >= icsk->icsk_ack.quick) {
 372			icsk->icsk_ack.quick = 0;
 373			/* Leaving quickack mode we deflate ATO. */
 374			icsk->icsk_ack.ato   = TCP_ATO_MIN;
 375		} else
 376			icsk->icsk_ack.quick -= pkts;
 377	}
 378}
 379
 380#define	TCP_ECN_OK		1
 381#define	TCP_ECN_QUEUE_CWR	2
 382#define	TCP_ECN_DEMAND_CWR	4
 383#define	TCP_ECN_SEEN		8
 384
 385enum tcp_tw_status {
 386	TCP_TW_SUCCESS = 0,
 387	TCP_TW_RST = 1,
 388	TCP_TW_ACK = 2,
 389	TCP_TW_SYN = 3
 390};
 391
 392
 393enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
 394					      struct sk_buff *skb,
 395					      const struct tcphdr *th);
 396struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
 397			   struct request_sock *req, bool fastopen);
 
 398int tcp_child_process(struct sock *parent, struct sock *child,
 399		      struct sk_buff *skb);
 400void tcp_enter_loss(struct sock *sk);
 
 401void tcp_clear_retrans(struct tcp_sock *tp);
 402void tcp_update_metrics(struct sock *sk);
 403void tcp_init_metrics(struct sock *sk);
 404void tcp_metrics_init(void);
 405bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst,
 406			bool paws_check, bool timestamps);
 407bool tcp_remember_stamp(struct sock *sk);
 408bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
 409void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
 410void tcp_disable_fack(struct tcp_sock *tp);
 411void tcp_close(struct sock *sk, long timeout);
 412void tcp_init_sock(struct sock *sk);
 413unsigned int tcp_poll(struct file *file, struct socket *sock,
 
 414		      struct poll_table_struct *wait);
 415int tcp_getsockopt(struct sock *sk, int level, int optname,
 416		   char __user *optval, int __user *optlen);
 417int tcp_setsockopt(struct sock *sk, int level, int optname,
 418		   char __user *optval, unsigned int optlen);
 419int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
 420			  char __user *optval, int __user *optlen);
 421int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
 422			  char __user *optval, unsigned int optlen);
 423void tcp_set_keepalive(struct sock *sk, int val);
 424void tcp_syn_ack_timeout(const struct request_sock *req);
 425int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
 426		int flags, int *addr_len);
 427void tcp_parse_options(const struct sk_buff *skb,
 428		       struct tcp_options_received *opt_rx,
 429		       int estab, struct tcp_fastopen_cookie *foc);
 430const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
 431
 432/*
 433 *	TCP v4 functions exported for the inet6 API
 434 */
 435
 436void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
 437void tcp_v4_mtu_reduced(struct sock *sk);
 438void tcp_req_err(struct sock *sk, u32 seq, bool abort);
 439int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
 440struct sock *tcp_create_openreq_child(const struct sock *sk,
 441				      struct request_sock *req,
 442				      struct sk_buff *skb);
 443void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
 444struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
 445				  struct request_sock *req,
 446				  struct dst_entry *dst,
 447				  struct request_sock *req_unhash,
 448				  bool *own_req);
 449int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
 450int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
 451int tcp_connect(struct sock *sk);
 452enum tcp_synack_type {
 453	TCP_SYNACK_NORMAL,
 454	TCP_SYNACK_FASTOPEN,
 455	TCP_SYNACK_COOKIE,
 456};
 457struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
 458				struct request_sock *req,
 459				struct tcp_fastopen_cookie *foc,
 460				enum tcp_synack_type synack_type);
 461int tcp_disconnect(struct sock *sk, int flags);
 462
 463void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
 464int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
 465void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
 466
 467/* From syncookies.c */
 468struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
 469				 struct request_sock *req,
 470				 struct dst_entry *dst);
 471int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
 472		      u32 cookie);
 473struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
 474#ifdef CONFIG_SYN_COOKIES
 475
 476/* Syncookies use a monotonic timer which increments every 60 seconds.
 477 * This counter is used both as a hash input and partially encoded into
 478 * the cookie value.  A cookie is only validated further if the delta
 479 * between the current counter value and the encoded one is less than this,
 480 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
 481 * the counter advances immediately after a cookie is generated).
 482 */
 483#define MAX_SYNCOOKIE_AGE	2
 484#define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
 485#define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
 486
 487/* syncookies: remember time of last synqueue overflow
 488 * But do not dirty this field too often (once per second is enough)
 489 * It is racy as we do not hold a lock, but race is very minor.
 490 */
 491static inline void tcp_synq_overflow(const struct sock *sk)
 492{
 493	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
 494	unsigned long now = jiffies;
 495
 496	if (time_after(now, last_overflow + HZ))
 497		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
 498}
 499
 500/* syncookies: no recent synqueue overflow on this listening socket? */
 501static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
 502{
 503	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
 504
 505	return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
 506}
 507
 508static inline u32 tcp_cookie_time(void)
 509{
 510	u64 val = get_jiffies_64();
 511
 512	do_div(val, TCP_SYNCOOKIE_PERIOD);
 513	return val;
 514}
 515
 516u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
 517			      u16 *mssp);
 518__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
 519__u32 cookie_init_timestamp(struct request_sock *req);
 520bool cookie_timestamp_decode(struct tcp_options_received *opt);
 
 521bool cookie_ecn_ok(const struct tcp_options_received *opt,
 522		   const struct net *net, const struct dst_entry *dst);
 523
 524/* From net/ipv6/syncookies.c */
 525int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
 526		      u32 cookie);
 527struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
 528
 529u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
 530			      const struct tcphdr *th, u16 *mssp);
 531__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
 532#endif
 533/* tcp_output.c */
 534
 535u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
 536		     int min_tso_segs);
 537void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
 538			       int nonagle);
 539bool tcp_may_send_now(struct sock *sk);
 540int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 541int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 542void tcp_retransmit_timer(struct sock *sk);
 543void tcp_xmit_retransmit_queue(struct sock *);
 544void tcp_simple_retransmit(struct sock *);
 
 545int tcp_trim_head(struct sock *, struct sk_buff *, u32);
 546int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int, gfp_t);
 
 
 
 
 
 
 547
 548void tcp_send_probe0(struct sock *);
 549void tcp_send_partial(struct sock *);
 550int tcp_write_wakeup(struct sock *, int mib);
 551void tcp_send_fin(struct sock *sk);
 552void tcp_send_active_reset(struct sock *sk, gfp_t priority);
 553int tcp_send_synack(struct sock *);
 554void tcp_push_one(struct sock *, unsigned int mss_now);
 555void tcp_send_ack(struct sock *sk);
 556void tcp_send_delayed_ack(struct sock *sk);
 557void tcp_send_loss_probe(struct sock *sk);
 558bool tcp_schedule_loss_probe(struct sock *sk);
 559void tcp_skb_collapse_tstamp(struct sk_buff *skb,
 560			     const struct sk_buff *next_skb);
 561
 562/* tcp_input.c */
 563void tcp_resume_early_retransmit(struct sock *sk);
 564void tcp_rearm_rto(struct sock *sk);
 565void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
 566void tcp_reset(struct sock *sk);
 567void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
 568void tcp_fin(struct sock *sk);
 569
 570/* tcp_timer.c */
 571void tcp_init_xmit_timers(struct sock *);
 572static inline void tcp_clear_xmit_timers(struct sock *sk)
 573{
 
 574	inet_csk_clear_xmit_timers(sk);
 575}
 576
 577unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
 578unsigned int tcp_current_mss(struct sock *sk);
 579
 580/* Bound MSS / TSO packet size with the half of the window */
 581static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
 582{
 583	int cutoff;
 584
 585	/* When peer uses tiny windows, there is no use in packetizing
 586	 * to sub-MSS pieces for the sake of SWS or making sure there
 587	 * are enough packets in the pipe for fast recovery.
 588	 *
 589	 * On the other hand, for extremely large MSS devices, handling
 590	 * smaller than MSS windows in this way does make sense.
 591	 */
 592	if (tp->max_window > TCP_MSS_DEFAULT)
 593		cutoff = (tp->max_window >> 1);
 594	else
 595		cutoff = tp->max_window;
 596
 597	if (cutoff && pktsize > cutoff)
 598		return max_t(int, cutoff, 68U - tp->tcp_header_len);
 599	else
 600		return pktsize;
 601}
 602
 603/* tcp.c */
 604void tcp_get_info(struct sock *, struct tcp_info *);
 605
 606/* Read 'sendfile()'-style from a TCP socket */
 607int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
 608		  sk_read_actor_t recv_actor);
 609
 610void tcp_initialize_rcv_mss(struct sock *sk);
 611
 612int tcp_mtu_to_mss(struct sock *sk, int pmtu);
 613int tcp_mss_to_mtu(struct sock *sk, int mss);
 614void tcp_mtup_init(struct sock *sk);
 615void tcp_init_buffer_space(struct sock *sk);
 616
 617static inline void tcp_bound_rto(const struct sock *sk)
 618{
 619	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
 620		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
 621}
 622
 623static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
 624{
 625	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
 626}
 627
 628static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
 629{
 630	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
 631			       ntohl(TCP_FLAG_ACK) |
 632			       snd_wnd);
 633}
 634
 635static inline void tcp_fast_path_on(struct tcp_sock *tp)
 636{
 637	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
 638}
 639
 640static inline void tcp_fast_path_check(struct sock *sk)
 641{
 642	struct tcp_sock *tp = tcp_sk(sk);
 643
 644	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
 645	    tp->rcv_wnd &&
 646	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
 647	    !tp->urg_data)
 648		tcp_fast_path_on(tp);
 649}
 650
 651/* Compute the actual rto_min value */
 652static inline u32 tcp_rto_min(struct sock *sk)
 653{
 654	const struct dst_entry *dst = __sk_dst_get(sk);
 655	u32 rto_min = TCP_RTO_MIN;
 656
 657	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
 658		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
 659	return rto_min;
 660}
 661
 662static inline u32 tcp_rto_min_us(struct sock *sk)
 663{
 664	return jiffies_to_usecs(tcp_rto_min(sk));
 665}
 666
 667static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
 668{
 669	return dst_metric_locked(dst, RTAX_CC_ALGO);
 670}
 671
 672/* Minimum RTT in usec. ~0 means not available. */
 673static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
 674{
 675	return minmax_get(&tp->rtt_min);
 676}
 677
 678/* Compute the actual receive window we are currently advertising.
 679 * Rcv_nxt can be after the window if our peer push more data
 680 * than the offered window.
 681 */
 682static inline u32 tcp_receive_window(const struct tcp_sock *tp)
 683{
 684	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
 685
 686	if (win < 0)
 687		win = 0;
 688	return (u32) win;
 689}
 690
 691/* Choose a new window, without checks for shrinking, and without
 692 * scaling applied to the result.  The caller does these things
 693 * if necessary.  This is a "raw" window selection.
 694 */
 695u32 __tcp_select_window(struct sock *sk);
 696
 697void tcp_send_window_probe(struct sock *sk);
 698
 699/* TCP timestamps are only 32-bits, this causes a slight
 700 * complication on 64-bit systems since we store a snapshot
 701 * of jiffies in the buffer control blocks below.  We decided
 702 * to use only the low 32-bits of jiffies and hide the ugly
 703 * casts with the following macro.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 704 */
 705#define tcp_time_stamp		((__u32)(jiffies))
 
 
 
 
 
 
 
 
 
 
 
 706
 707static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
 708{
 709	return skb->skb_mstamp.stamp_jiffies;
 710}
 711
 712
 713#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
 714
 715#define TCPHDR_FIN 0x01
 716#define TCPHDR_SYN 0x02
 717#define TCPHDR_RST 0x04
 718#define TCPHDR_PSH 0x08
 719#define TCPHDR_ACK 0x10
 720#define TCPHDR_URG 0x20
 721#define TCPHDR_ECE 0x40
 722#define TCPHDR_CWR 0x80
 723
 724#define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
 725
 726/* This is what the send packet queuing engine uses to pass
 727 * TCP per-packet control information to the transmission code.
 728 * We also store the host-order sequence numbers in here too.
 729 * This is 44 bytes if IPV6 is enabled.
 730 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
 731 */
 732struct tcp_skb_cb {
 733	__u32		seq;		/* Starting sequence number	*/
 734	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
 735	union {
 736		/* Note : tcp_tw_isn is used in input path only
 737		 *	  (isn chosen by tcp_timewait_state_process())
 738		 *
 739		 * 	  tcp_gso_segs/size are used in write queue only,
 740		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
 741		 */
 742		__u32		tcp_tw_isn;
 743		struct {
 744			u16	tcp_gso_segs;
 745			u16	tcp_gso_size;
 746		};
 747	};
 748	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
 749
 750	__u8		sacked;		/* State flags for SACK/FACK.	*/
 751#define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
 752#define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
 753#define TCPCB_LOST		0x04	/* SKB is lost			*/
 754#define TCPCB_TAGBITS		0x07	/* All tag bits			*/
 755#define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
 756#define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
 757#define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
 758				TCPCB_REPAIRED)
 759
 760	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
 761	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
 762			eor:1,		/* Is skb MSG_EOR marked? */
 763			unused:6;
 
 764	__u32		ack_seq;	/* Sequence number ACK'd	*/
 765	union {
 766		struct {
 767			/* There is space for up to 24 bytes */
 768			__u32 in_flight:30,/* Bytes in flight at transmit */
 769			      is_app_limited:1, /* cwnd not fully used? */
 770			      unused:1;
 771			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
 772			__u32 delivered;
 773			/* start of send pipeline phase */
 774			struct skb_mstamp first_tx_mstamp;
 775			/* when we reached the "delivered" count */
 776			struct skb_mstamp delivered_mstamp;
 777		} tx;   /* only used for outgoing skbs */
 778		union {
 779			struct inet_skb_parm	h4;
 780#if IS_ENABLED(CONFIG_IPV6)
 781			struct inet6_skb_parm	h6;
 782#endif
 783		} header;	/* For incoming skbs */
 
 
 
 
 
 
 784	};
 785};
 786
 787#define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
 788
 789
 790#if IS_ENABLED(CONFIG_IPV6)
 791/* This is the variant of inet6_iif() that must be used by TCP,
 792 * as TCP moves IP6CB into a different location in skb->cb[]
 793 */
 794static inline int tcp_v6_iif(const struct sk_buff *skb)
 795{
 796	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
 797
 798	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
 799}
 
 
 
 
 
 
 
 
 
 
 800#endif
 801
 802/* TCP_SKB_CB reference means this can not be used from early demux */
 803static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
 804{
 805#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 806	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
 807	    skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
 808		return true;
 809#endif
 810	return false;
 811}
 812
 
 
 
 
 
 
 
 
 
 
 813/* Due to TSO, an SKB can be composed of multiple actual
 814 * packets.  To keep these tracked properly, we use this.
 815 */
 816static inline int tcp_skb_pcount(const struct sk_buff *skb)
 817{
 818	return TCP_SKB_CB(skb)->tcp_gso_segs;
 819}
 820
 821static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
 822{
 823	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
 824}
 825
 826static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
 827{
 828	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
 829}
 830
 831/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
 832static inline int tcp_skb_mss(const struct sk_buff *skb)
 833{
 834	return TCP_SKB_CB(skb)->tcp_gso_size;
 835}
 836
 837static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
 838{
 839	return likely(!TCP_SKB_CB(skb)->eor);
 840}
 841
 842/* Events passed to congestion control interface */
 843enum tcp_ca_event {
 844	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
 845	CA_EVENT_CWND_RESTART,	/* congestion window restart */
 846	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
 847	CA_EVENT_LOSS,		/* loss timeout */
 848	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
 849	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
 850	CA_EVENT_DELAYED_ACK,	/* Delayed ack is sent */
 851	CA_EVENT_NON_DELAYED_ACK,
 852};
 853
 854/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
 855enum tcp_ca_ack_event_flags {
 856	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
 857	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
 858	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
 859};
 860
 861/*
 862 * Interface for adding new TCP congestion control handlers
 863 */
 864#define TCP_CA_NAME_MAX	16
 865#define TCP_CA_MAX	128
 866#define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
 867
 868#define TCP_CA_UNSPEC	0
 869
 870/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
 871#define TCP_CONG_NON_RESTRICTED 0x1
 872/* Requires ECN/ECT set on all packets */
 873#define TCP_CONG_NEEDS_ECN	0x2
 874
 875union tcp_cc_info;
 876
 877struct ack_sample {
 878	u32 pkts_acked;
 879	s32 rtt_us;
 880	u32 in_flight;
 881};
 882
 883/* A rate sample measures the number of (original/retransmitted) data
 884 * packets delivered "delivered" over an interval of time "interval_us".
 885 * The tcp_rate.c code fills in the rate sample, and congestion
 886 * control modules that define a cong_control function to run at the end
 887 * of ACK processing can optionally chose to consult this sample when
 888 * setting cwnd and pacing rate.
 889 * A sample is invalid if "delivered" or "interval_us" is negative.
 890 */
 891struct rate_sample {
 892	struct	skb_mstamp prior_mstamp; /* starting timestamp for interval */
 893	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
 894	s32  delivered;		/* number of packets delivered over interval */
 895	long interval_us;	/* time for tp->delivered to incr "delivered" */
 896	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
 897	int  losses;		/* number of packets marked lost upon ACK */
 898	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
 899	u32  prior_in_flight;	/* in flight before this ACK */
 900	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
 901	bool is_retrans;	/* is sample from retransmission? */
 
 902};
 903
 904struct tcp_congestion_ops {
 905	struct list_head	list;
 906	u32 key;
 907	u32 flags;
 908
 909	/* initialize private data (optional) */
 910	void (*init)(struct sock *sk);
 911	/* cleanup private data  (optional) */
 912	void (*release)(struct sock *sk);
 913
 914	/* return slow start threshold (required) */
 915	u32 (*ssthresh)(struct sock *sk);
 916	/* do new cwnd calculation (required) */
 917	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
 918	/* call before changing ca_state (optional) */
 919	void (*set_state)(struct sock *sk, u8 new_state);
 920	/* call when cwnd event occurs (optional) */
 921	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
 922	/* call when ack arrives (optional) */
 923	void (*in_ack_event)(struct sock *sk, u32 flags);
 924	/* new value of cwnd after loss (optional) */
 925	u32  (*undo_cwnd)(struct sock *sk);
 926	/* hook for packet ack accounting (optional) */
 927	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
 928	/* suggest number of segments for each skb to transmit (optional) */
 929	u32 (*tso_segs_goal)(struct sock *sk);
 930	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
 931	u32 (*sndbuf_expand)(struct sock *sk);
 932	/* call when packets are delivered to update cwnd and pacing rate,
 933	 * after all the ca_state processing. (optional)
 934	 */
 935	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
 936	/* get info for inet_diag (optional) */
 937	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
 938			   union tcp_cc_info *info);
 939
 940	char 		name[TCP_CA_NAME_MAX];
 941	struct module 	*owner;
 942};
 943
 944int tcp_register_congestion_control(struct tcp_congestion_ops *type);
 945void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
 946
 947void tcp_assign_congestion_control(struct sock *sk);
 948void tcp_init_congestion_control(struct sock *sk);
 949void tcp_cleanup_congestion_control(struct sock *sk);
 950int tcp_set_default_congestion_control(const char *name);
 951void tcp_get_default_congestion_control(char *name);
 952void tcp_get_available_congestion_control(char *buf, size_t len);
 953void tcp_get_allowed_congestion_control(char *buf, size_t len);
 954int tcp_set_allowed_congestion_control(char *allowed);
 955int tcp_set_congestion_control(struct sock *sk, const char *name);
 956u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
 957void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
 958
 959u32 tcp_reno_ssthresh(struct sock *sk);
 960u32 tcp_reno_undo_cwnd(struct sock *sk);
 961void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
 962extern struct tcp_congestion_ops tcp_reno;
 963
 964struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
 965u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
 966#ifdef CONFIG_INET
 967char *tcp_ca_get_name_by_key(u32 key, char *buffer);
 968#else
 969static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
 970{
 971	return NULL;
 972}
 973#endif
 974
 975static inline bool tcp_ca_needs_ecn(const struct sock *sk)
 976{
 977	const struct inet_connection_sock *icsk = inet_csk(sk);
 978
 979	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
 980}
 981
 982static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
 983{
 984	struct inet_connection_sock *icsk = inet_csk(sk);
 985
 986	if (icsk->icsk_ca_ops->set_state)
 987		icsk->icsk_ca_ops->set_state(sk, ca_state);
 988	icsk->icsk_ca_state = ca_state;
 989}
 990
 991static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
 992{
 993	const struct inet_connection_sock *icsk = inet_csk(sk);
 994
 995	if (icsk->icsk_ca_ops->cwnd_event)
 996		icsk->icsk_ca_ops->cwnd_event(sk, event);
 997}
 998
 999/* From tcp_rate.c */
1000void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1001void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1002			    struct rate_sample *rs);
1003void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1004		  struct skb_mstamp *now, struct rate_sample *rs);
1005void tcp_rate_check_app_limited(struct sock *sk);
1006
1007/* These functions determine how the current flow behaves in respect of SACK
1008 * handling. SACK is negotiated with the peer, and therefore it can vary
1009 * between different flows.
1010 *
1011 * tcp_is_sack - SACK enabled
1012 * tcp_is_reno - No SACK
1013 * tcp_is_fack - FACK enabled, implies SACK enabled
1014 */
1015static inline int tcp_is_sack(const struct tcp_sock *tp)
1016{
1017	return tp->rx_opt.sack_ok;
1018}
1019
1020static inline bool tcp_is_reno(const struct tcp_sock *tp)
1021{
1022	return !tcp_is_sack(tp);
1023}
1024
1025static inline bool tcp_is_fack(const struct tcp_sock *tp)
1026{
1027	return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
1028}
1029
1030static inline void tcp_enable_fack(struct tcp_sock *tp)
1031{
1032	tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
1033}
1034
1035/* TCP early-retransmit (ER) is similar to but more conservative than
1036 * the thin-dupack feature.  Enable ER only if thin-dupack is disabled.
1037 */
1038static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
1039{
1040	struct net *net = sock_net((struct sock *)tp);
1041
1042	tp->do_early_retrans = sysctl_tcp_early_retrans &&
1043		sysctl_tcp_early_retrans < 4 && !sysctl_tcp_thin_dupack &&
1044		net->ipv4.sysctl_tcp_reordering == 3;
1045}
1046
1047static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
1048{
1049	tp->do_early_retrans = 0;
1050}
1051
1052static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1053{
1054	return tp->sacked_out + tp->lost_out;
1055}
1056
1057/* This determines how many packets are "in the network" to the best
1058 * of our knowledge.  In many cases it is conservative, but where
1059 * detailed information is available from the receiver (via SACK
1060 * blocks etc.) we can make more aggressive calculations.
1061 *
1062 * Use this for decisions involving congestion control, use just
1063 * tp->packets_out to determine if the send queue is empty or not.
1064 *
1065 * Read this equation as:
1066 *
1067 *	"Packets sent once on transmission queue" MINUS
1068 *	"Packets left network, but not honestly ACKed yet" PLUS
1069 *	"Packets fast retransmitted"
1070 */
1071static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1072{
1073	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1074}
1075
1076#define TCP_INFINITE_SSTHRESH	0x7fffffff
1077
1078static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1079{
1080	return tp->snd_cwnd < tp->snd_ssthresh;
1081}
1082
1083static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1084{
1085	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1086}
1087
1088static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1089{
1090	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1091	       (1 << inet_csk(sk)->icsk_ca_state);
1092}
1093
1094/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1095 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1096 * ssthresh.
1097 */
1098static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1099{
1100	const struct tcp_sock *tp = tcp_sk(sk);
1101
1102	if (tcp_in_cwnd_reduction(sk))
1103		return tp->snd_ssthresh;
1104	else
1105		return max(tp->snd_ssthresh,
1106			   ((tp->snd_cwnd >> 1) +
1107			    (tp->snd_cwnd >> 2)));
1108}
1109
1110/* Use define here intentionally to get WARN_ON location shown at the caller */
1111#define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1112
1113void tcp_enter_cwr(struct sock *sk);
1114__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1115
1116/* The maximum number of MSS of available cwnd for which TSO defers
1117 * sending if not using sysctl_tcp_tso_win_divisor.
1118 */
1119static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1120{
1121	return 3;
1122}
1123
1124/* Returns end sequence number of the receiver's advertised window */
1125static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1126{
1127	return tp->snd_una + tp->snd_wnd;
1128}
1129
1130/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1131 * flexible approach. The RFC suggests cwnd should not be raised unless
1132 * it was fully used previously. And that's exactly what we do in
1133 * congestion avoidance mode. But in slow start we allow cwnd to grow
1134 * as long as the application has used half the cwnd.
1135 * Example :
1136 *    cwnd is 10 (IW10), but application sends 9 frames.
1137 *    We allow cwnd to reach 18 when all frames are ACKed.
1138 * This check is safe because it's as aggressive as slow start which already
1139 * risks 100% overshoot. The advantage is that we discourage application to
1140 * either send more filler packets or data to artificially blow up the cwnd
1141 * usage, and allow application-limited process to probe bw more aggressively.
1142 */
1143static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1144{
1145	const struct tcp_sock *tp = tcp_sk(sk);
1146
1147	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1148	if (tcp_in_slow_start(tp))
1149		return tp->snd_cwnd < 2 * tp->max_packets_out;
1150
1151	return tp->is_cwnd_limited;
1152}
1153
1154/* Something is really bad, we could not queue an additional packet,
1155 * because qdisc is full or receiver sent a 0 window.
1156 * We do not want to add fuel to the fire, or abort too early,
1157 * so make sure the timer we arm now is at least 200ms in the future,
1158 * regardless of current icsk_rto value (as it could be ~2ms)
1159 */
1160static inline unsigned long tcp_probe0_base(const struct sock *sk)
1161{
1162	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1163}
1164
1165/* Variant of inet_csk_rto_backoff() used for zero window probes */
1166static inline unsigned long tcp_probe0_when(const struct sock *sk,
1167					    unsigned long max_when)
1168{
1169	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1170
1171	return (unsigned long)min_t(u64, when, max_when);
1172}
1173
1174static inline void tcp_check_probe_timer(struct sock *sk)
1175{
1176	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1177		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1178					  tcp_probe0_base(sk), TCP_RTO_MAX);
1179}
1180
1181static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1182{
1183	tp->snd_wl1 = seq;
1184}
1185
1186static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1187{
1188	tp->snd_wl1 = seq;
1189}
1190
1191/*
1192 * Calculate(/check) TCP checksum
1193 */
1194static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1195				   __be32 daddr, __wsum base)
1196{
1197	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1198}
1199
1200static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1201{
1202	return __skb_checksum_complete(skb);
1203}
1204
1205static inline bool tcp_checksum_complete(struct sk_buff *skb)
1206{
1207	return !skb_csum_unnecessary(skb) &&
1208		__tcp_checksum_complete(skb);
1209}
1210
1211/* Prequeue for VJ style copy to user, combined with checksumming. */
1212
1213static inline void tcp_prequeue_init(struct tcp_sock *tp)
1214{
1215	tp->ucopy.task = NULL;
1216	tp->ucopy.len = 0;
1217	tp->ucopy.memory = 0;
1218	skb_queue_head_init(&tp->ucopy.prequeue);
1219}
1220
1221bool tcp_prequeue(struct sock *sk, struct sk_buff *skb);
1222bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1223int tcp_filter(struct sock *sk, struct sk_buff *skb);
1224
1225#undef STATE_TRACE
1226
1227#ifdef STATE_TRACE
1228static const char *statename[]={
1229	"Unused","Established","Syn Sent","Syn Recv",
1230	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1231	"Close Wait","Last ACK","Listen","Closing"
1232};
1233#endif
1234void tcp_set_state(struct sock *sk, int state);
1235
1236void tcp_done(struct sock *sk);
1237
1238int tcp_abort(struct sock *sk, int err);
1239
1240static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1241{
1242	rx_opt->dsack = 0;
1243	rx_opt->num_sacks = 0;
1244}
1245
1246u32 tcp_default_init_rwnd(u32 mss);
1247void tcp_cwnd_restart(struct sock *sk, s32 delta);
1248
1249static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1250{
 
1251	struct tcp_sock *tp = tcp_sk(sk);
1252	s32 delta;
1253
1254	if (!sysctl_tcp_slow_start_after_idle || tp->packets_out)
 
1255		return;
1256	delta = tcp_time_stamp - tp->lsndtime;
1257	if (delta > inet_csk(sk)->icsk_rto)
1258		tcp_cwnd_restart(sk, delta);
1259}
1260
1261/* Determine a window scaling and initial window to offer. */
1262void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
 
1263			       __u32 *window_clamp, int wscale_ok,
1264			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1265
1266static inline int tcp_win_from_space(int space)
1267{
1268	return sysctl_tcp_adv_win_scale<=0 ?
1269		(space>>(-sysctl_tcp_adv_win_scale)) :
1270		space - (space>>sysctl_tcp_adv_win_scale);
 
 
1271}
1272
1273/* Note: caller must be prepared to deal with negative returns */
1274static inline int tcp_space(const struct sock *sk)
1275{
1276	return tcp_win_from_space(sk->sk_rcvbuf -
1277				  atomic_read(&sk->sk_rmem_alloc));
1278}
1279
1280static inline int tcp_full_space(const struct sock *sk)
1281{
1282	return tcp_win_from_space(sk->sk_rcvbuf);
1283}
1284
1285extern void tcp_openreq_init_rwin(struct request_sock *req,
1286				  const struct sock *sk_listener,
1287				  const struct dst_entry *dst);
1288
1289void tcp_enter_memory_pressure(struct sock *sk);
 
1290
1291static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1292{
1293	struct net *net = sock_net((struct sock *)tp);
1294
1295	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1296}
1297
1298static inline int keepalive_time_when(const struct tcp_sock *tp)
1299{
1300	struct net *net = sock_net((struct sock *)tp);
1301
1302	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1303}
1304
1305static inline int keepalive_probes(const struct tcp_sock *tp)
1306{
1307	struct net *net = sock_net((struct sock *)tp);
1308
1309	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1310}
1311
1312static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1313{
1314	const struct inet_connection_sock *icsk = &tp->inet_conn;
1315
1316	return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1317			  tcp_time_stamp - tp->rcv_tstamp);
1318}
1319
1320static inline int tcp_fin_time(const struct sock *sk)
1321{
1322	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1323	const int rto = inet_csk(sk)->icsk_rto;
1324
1325	if (fin_timeout < (rto << 2) - (rto >> 1))
1326		fin_timeout = (rto << 2) - (rto >> 1);
1327
1328	return fin_timeout;
1329}
1330
1331static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1332				  int paws_win)
1333{
1334	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1335		return true;
1336	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1337		return true;
1338	/*
1339	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1340	 * then following tcp messages have valid values. Ignore 0 value,
1341	 * or else 'negative' tsval might forbid us to accept their packets.
1342	 */
1343	if (!rx_opt->ts_recent)
1344		return true;
1345	return false;
1346}
1347
1348static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1349				   int rst)
1350{
1351	if (tcp_paws_check(rx_opt, 0))
1352		return false;
1353
1354	/* RST segments are not recommended to carry timestamp,
1355	   and, if they do, it is recommended to ignore PAWS because
1356	   "their cleanup function should take precedence over timestamps."
1357	   Certainly, it is mistake. It is necessary to understand the reasons
1358	   of this constraint to relax it: if peer reboots, clock may go
1359	   out-of-sync and half-open connections will not be reset.
1360	   Actually, the problem would be not existing if all
1361	   the implementations followed draft about maintaining clock
1362	   via reboots. Linux-2.2 DOES NOT!
1363
1364	   However, we can relax time bounds for RST segments to MSL.
1365	 */
1366	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1367		return false;
1368	return true;
1369}
1370
1371bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1372			  int mib_idx, u32 *last_oow_ack_time);
1373
1374static inline void tcp_mib_init(struct net *net)
1375{
1376	/* See RFC 2012 */
1377	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1378	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1379	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1380	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1381}
1382
1383/* from STCP */
1384static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1385{
1386	tp->lost_skb_hint = NULL;
1387}
1388
1389static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1390{
1391	tcp_clear_retrans_hints_partial(tp);
1392	tp->retransmit_skb_hint = NULL;
1393}
1394
1395union tcp_md5_addr {
1396	struct in_addr  a4;
1397#if IS_ENABLED(CONFIG_IPV6)
1398	struct in6_addr	a6;
1399#endif
1400};
1401
1402/* - key database */
1403struct tcp_md5sig_key {
1404	struct hlist_node	node;
1405	u8			keylen;
1406	u8			family; /* AF_INET or AF_INET6 */
1407	union tcp_md5_addr	addr;
 
1408	u8			key[TCP_MD5SIG_MAXKEYLEN];
1409	struct rcu_head		rcu;
1410};
1411
1412/* - sock block */
1413struct tcp_md5sig_info {
1414	struct hlist_head	head;
1415	struct rcu_head		rcu;
1416};
1417
1418/* - pseudo header */
1419struct tcp4_pseudohdr {
1420	__be32		saddr;
1421	__be32		daddr;
1422	__u8		pad;
1423	__u8		protocol;
1424	__be16		len;
1425};
1426
1427struct tcp6_pseudohdr {
1428	struct in6_addr	saddr;
1429	struct in6_addr daddr;
1430	__be32		len;
1431	__be32		protocol;	/* including padding */
1432};
1433
1434union tcp_md5sum_block {
1435	struct tcp4_pseudohdr ip4;
1436#if IS_ENABLED(CONFIG_IPV6)
1437	struct tcp6_pseudohdr ip6;
1438#endif
1439};
1440
1441/* - pool: digest algorithm, hash description and scratch buffer */
1442struct tcp_md5sig_pool {
1443	struct ahash_request	*md5_req;
1444	void			*scratch;
1445};
1446
1447/* - functions */
1448int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1449			const struct sock *sk, const struct sk_buff *skb);
1450int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1451		   int family, const u8 *newkey, u8 newkeylen, gfp_t gfp);
 
1452int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1453		   int family);
1454struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1455					 const struct sock *addr_sk);
1456
1457#ifdef CONFIG_TCP_MD5SIG
1458struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1459					 const union tcp_md5_addr *addr,
1460					 int family);
1461#define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1462#else
1463static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1464					 const union tcp_md5_addr *addr,
1465					 int family)
1466{
1467	return NULL;
1468}
1469#define tcp_twsk_md5_key(twsk)	NULL
1470#endif
1471
1472bool tcp_alloc_md5sig_pool(void);
1473
1474struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1475static inline void tcp_put_md5sig_pool(void)
1476{
1477	local_bh_enable();
1478}
1479
1480int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1481			  unsigned int header_len);
1482int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1483		     const struct tcp_md5sig_key *key);
1484
1485/* From tcp_fastopen.c */
1486void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1487			    struct tcp_fastopen_cookie *cookie, int *syn_loss,
1488			    unsigned long *last_syn_loss);
1489void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1490			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1491			    u16 try_exp);
1492struct tcp_fastopen_request {
1493	/* Fast Open cookie. Size 0 means a cookie request */
1494	struct tcp_fastopen_cookie	cookie;
1495	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1496	size_t				size;
1497	int				copied;	/* queued in tcp_connect() */
1498};
1499void tcp_free_fastopen_req(struct tcp_sock *tp);
1500
1501extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1502int tcp_fastopen_reset_cipher(void *key, unsigned int len);
 
1503void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1504struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1505			      struct request_sock *req,
1506			      struct tcp_fastopen_cookie *foc,
1507			      struct dst_entry *dst);
1508void tcp_fastopen_init_key_once(bool publish);
 
 
 
1509#define TCP_FASTOPEN_KEY_LENGTH 16
1510
1511/* Fastopen key context */
1512struct tcp_fastopen_context {
1513	struct crypto_cipher	*tfm;
1514	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1515	struct rcu_head		rcu;
1516};
1517
 
 
 
 
 
 
1518/* Latencies incurred by various limits for a sender. They are
1519 * chronograph-like stats that are mutually exclusive.
1520 */
1521enum tcp_chrono {
1522	TCP_CHRONO_UNSPEC,
1523	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1524	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1525	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1526	__TCP_CHRONO_MAX,
1527};
1528
1529void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1530void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1531
1532/* write queue abstraction */
1533static inline void tcp_write_queue_purge(struct sock *sk)
 
 
1534{
1535	struct sk_buff *skb;
 
 
 
 
 
 
 
 
 
 
1536
1537	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1538	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1539		sk_wmem_free_skb(sk, skb);
1540	sk_mem_reclaim(sk);
1541	tcp_clear_all_retrans_hints(tcp_sk(sk));
1542}
1543
1544static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1545{
1546	return skb_peek(&sk->sk_write_queue);
1547}
1548
1549static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1550{
1551	return skb_peek_tail(&sk->sk_write_queue);
1552}
1553
1554static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1555						   const struct sk_buff *skb)
1556{
1557	return skb_queue_next(&sk->sk_write_queue, skb);
1558}
1559
1560static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1561						   const struct sk_buff *skb)
1562{
1563	return skb_queue_prev(&sk->sk_write_queue, skb);
1564}
1565
1566#define tcp_for_write_queue(skb, sk)					\
1567	skb_queue_walk(&(sk)->sk_write_queue, skb)
1568
1569#define tcp_for_write_queue_from(skb, sk)				\
1570	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1571
1572#define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1573	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1574
1575static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1576{
1577	return sk->sk_send_head;
1578}
1579
1580static inline bool tcp_skb_is_last(const struct sock *sk,
1581				   const struct sk_buff *skb)
1582{
1583	return skb_queue_is_last(&sk->sk_write_queue, skb);
1584}
1585
1586static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
 
 
 
 
 
1587{
1588	if (tcp_skb_is_last(sk, skb))
1589		sk->sk_send_head = NULL;
1590	else
1591		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1592}
1593
1594static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1595{
1596	if (sk->sk_send_head == skb_unlinked) {
1597		sk->sk_send_head = NULL;
1598		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1599	}
1600	if (tcp_sk(sk)->highest_sack == skb_unlinked)
1601		tcp_sk(sk)->highest_sack = NULL;
1602}
1603
1604static inline void tcp_init_send_head(struct sock *sk)
1605{
1606	sk->sk_send_head = NULL;
 
1607}
1608
1609static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1610{
1611	__skb_queue_tail(&sk->sk_write_queue, skb);
1612}
1613
1614static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1615{
1616	__tcp_add_write_queue_tail(sk, skb);
1617
1618	/* Queue it, remembering where we must start sending. */
1619	if (sk->sk_send_head == NULL) {
1620		sk->sk_send_head = skb;
1621		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1622
1623		if (tcp_sk(sk)->highest_sack == NULL)
1624			tcp_sk(sk)->highest_sack = skb;
1625	}
1626}
1627
1628static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1629{
1630	__skb_queue_head(&sk->sk_write_queue, skb);
1631}
1632
1633/* Insert buff after skb on the write queue of sk.  */
1634static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1635						struct sk_buff *buff,
1636						struct sock *sk)
1637{
1638	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1639}
1640
1641/* Insert new before skb on the write queue of sk.  */
1642static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1643						  struct sk_buff *skb,
1644						  struct sock *sk)
1645{
1646	__skb_queue_before(&sk->sk_write_queue, skb, new);
1647
1648	if (sk->sk_send_head == skb)
1649		sk->sk_send_head = new;
1650}
1651
1652static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1653{
 
1654	__skb_unlink(skb, &sk->sk_write_queue);
1655}
1656
1657static inline bool tcp_write_queue_empty(struct sock *sk)
 
 
1658{
1659	return skb_queue_empty(&sk->sk_write_queue);
 
 
 
 
 
 
 
 
1660}
1661
1662static inline void tcp_push_pending_frames(struct sock *sk)
1663{
1664	if (tcp_send_head(sk)) {
1665		struct tcp_sock *tp = tcp_sk(sk);
1666
1667		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1668	}
1669}
1670
1671/* Start sequence of the skb just after the highest skb with SACKed
1672 * bit, valid only if sacked_out > 0 or when the caller has ensured
1673 * validity by itself.
1674 */
1675static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1676{
1677	if (!tp->sacked_out)
1678		return tp->snd_una;
1679
1680	if (tp->highest_sack == NULL)
1681		return tp->snd_nxt;
1682
1683	return TCP_SKB_CB(tp->highest_sack)->seq;
1684}
1685
1686static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1687{
1688	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1689						tcp_write_queue_next(sk, skb);
1690}
1691
1692static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1693{
1694	return tcp_sk(sk)->highest_sack;
1695}
1696
1697static inline void tcp_highest_sack_reset(struct sock *sk)
1698{
1699	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1700}
1701
1702/* Called when old skb is about to be deleted (to be combined with new skb) */
1703static inline void tcp_highest_sack_combine(struct sock *sk,
1704					    struct sk_buff *old,
1705					    struct sk_buff *new)
1706{
1707	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1708		tcp_sk(sk)->highest_sack = new;
1709}
1710
1711/* This helper checks if socket has IP_TRANSPARENT set */
1712static inline bool inet_sk_transparent(const struct sock *sk)
1713{
1714	switch (sk->sk_state) {
1715	case TCP_TIME_WAIT:
1716		return inet_twsk(sk)->tw_transparent;
1717	case TCP_NEW_SYN_RECV:
1718		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1719	}
1720	return inet_sk(sk)->transparent;
1721}
1722
1723/* Determines whether this is a thin stream (which may suffer from
1724 * increased latency). Used to trigger latency-reducing mechanisms.
1725 */
1726static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1727{
1728	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1729}
1730
1731/* /proc */
1732enum tcp_seq_states {
1733	TCP_SEQ_STATE_LISTENING,
1734	TCP_SEQ_STATE_ESTABLISHED,
1735};
1736
1737int tcp_seq_open(struct inode *inode, struct file *file);
1738
1739struct tcp_seq_afinfo {
1740	char				*name;
1741	sa_family_t			family;
1742	const struct file_operations	*seq_fops;
1743	struct seq_operations		seq_ops;
1744};
1745
1746struct tcp_iter_state {
1747	struct seq_net_private	p;
1748	sa_family_t		family;
1749	enum tcp_seq_states	state;
1750	struct sock		*syn_wait_sk;
1751	int			bucket, offset, sbucket, num;
1752	loff_t			last_pos;
1753};
1754
1755int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1756void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1757
1758extern struct request_sock_ops tcp_request_sock_ops;
1759extern struct request_sock_ops tcp6_request_sock_ops;
1760
1761void tcp_v4_destroy_sock(struct sock *sk);
1762
1763struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1764				netdev_features_t features);
1765struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1766int tcp_gro_complete(struct sk_buff *skb);
1767
1768void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1769
1770static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1771{
1772	struct net *net = sock_net((struct sock *)tp);
1773	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1774}
1775
1776static inline bool tcp_stream_memory_free(const struct sock *sk)
1777{
1778	const struct tcp_sock *tp = tcp_sk(sk);
1779	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1780
1781	return notsent_bytes < tcp_notsent_lowat(tp);
1782}
1783
1784#ifdef CONFIG_PROC_FS
1785int tcp4_proc_init(void);
1786void tcp4_proc_exit(void);
1787#endif
1788
1789int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1790int tcp_conn_request(struct request_sock_ops *rsk_ops,
1791		     const struct tcp_request_sock_ops *af_ops,
1792		     struct sock *sk, struct sk_buff *skb);
1793
1794/* TCP af-specific functions */
1795struct tcp_sock_af_ops {
1796#ifdef CONFIG_TCP_MD5SIG
1797	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1798						const struct sock *addr_sk);
1799	int		(*calc_md5_hash)(char *location,
1800					 const struct tcp_md5sig_key *md5,
1801					 const struct sock *sk,
1802					 const struct sk_buff *skb);
1803	int		(*md5_parse)(struct sock *sk,
 
1804				     char __user *optval,
1805				     int optlen);
1806#endif
1807};
1808
1809struct tcp_request_sock_ops {
1810	u16 mss_clamp;
1811#ifdef CONFIG_TCP_MD5SIG
1812	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1813						 const struct sock *addr_sk);
1814	int		(*calc_md5_hash) (char *location,
1815					  const struct tcp_md5sig_key *md5,
1816					  const struct sock *sk,
1817					  const struct sk_buff *skb);
1818#endif
1819	void (*init_req)(struct request_sock *req,
1820			 const struct sock *sk_listener,
1821			 struct sk_buff *skb);
1822#ifdef CONFIG_SYN_COOKIES
1823	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1824				 __u16 *mss);
1825#endif
1826	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1827				       const struct request_sock *req,
1828				       bool *strict);
1829	__u32 (*init_seq)(const struct sk_buff *skb, u32 *tsoff);
1830	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1831			   struct flowi *fl, struct request_sock *req,
1832			   struct tcp_fastopen_cookie *foc,
1833			   enum tcp_synack_type synack_type);
1834};
1835
1836#ifdef CONFIG_SYN_COOKIES
1837static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1838					 const struct sock *sk, struct sk_buff *skb,
1839					 __u16 *mss)
1840{
1841	tcp_synq_overflow(sk);
1842	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1843	return ops->cookie_init_seq(skb, mss);
1844}
1845#else
1846static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1847					 const struct sock *sk, struct sk_buff *skb,
1848					 __u16 *mss)
1849{
1850	return 0;
1851}
1852#endif
1853
1854int tcpv4_offload_init(void);
1855
1856void tcp_v4_init(void);
1857void tcp_init(void);
1858
1859/* tcp_recovery.c */
 
 
 
 
 
 
 
 
 
 
 
 
1860
1861/* Flags to enable various loss recovery features. See below */
1862extern int sysctl_tcp_recovery;
1863
1864/* Use TCP RACK to detect (some) tail and retransmit losses */
1865#define TCP_RACK_LOST_RETRANS  0x1
1866
1867extern int tcp_rack_mark_lost(struct sock *sk);
1868
1869extern void tcp_rack_advance(struct tcp_sock *tp,
1870			     const struct skb_mstamp *xmit_time, u8 sacked);
1871
1872/*
1873 * Save and compile IPv4 options, return a pointer to it
1874 */
1875static inline struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
 
1876{
1877	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1878	struct ip_options_rcu *dopt = NULL;
1879
1880	if (opt->optlen) {
1881		int opt_size = sizeof(*dopt) + opt->optlen;
1882
1883		dopt = kmalloc(opt_size, GFP_ATOMIC);
1884		if (dopt && __ip_options_echo(&dopt->opt, skb, opt)) {
1885			kfree(dopt);
1886			dopt = NULL;
1887		}
1888	}
1889	return dopt;
1890}
1891
1892/* locally generated TCP pure ACKs have skb->truesize == 2
1893 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1894 * This is much faster than dissecting the packet to find out.
1895 * (Think of GRE encapsulations, IPv4, IPv6, ...)
1896 */
1897static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1898{
1899	return skb->truesize == 2;
1900}
1901
1902static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1903{
1904	skb->truesize = 2;
1905}
1906
1907static inline int tcp_inq(struct sock *sk)
1908{
1909	struct tcp_sock *tp = tcp_sk(sk);
1910	int answ;
1911
1912	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1913		answ = 0;
1914	} else if (sock_flag(sk, SOCK_URGINLINE) ||
1915		   !tp->urg_data ||
1916		   before(tp->urg_seq, tp->copied_seq) ||
1917		   !before(tp->urg_seq, tp->rcv_nxt)) {
1918
1919		answ = tp->rcv_nxt - tp->copied_seq;
1920
1921		/* Subtract 1, if FIN was received */
1922		if (answ && sock_flag(sk, SOCK_DONE))
1923			answ--;
1924	} else {
1925		answ = tp->urg_seq - tp->copied_seq;
1926	}
1927
1928	return answ;
1929}
1930
1931int tcp_peek_len(struct socket *sock);
1932
1933static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
1934{
1935	u16 segs_in;
1936
1937	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1938	tp->segs_in += segs_in;
1939	if (skb->len > tcp_hdrlen(skb))
1940		tp->data_segs_in += segs_in;
1941}
1942
1943/*
1944 * TCP listen path runs lockless.
1945 * We forced "struct sock" to be const qualified to make sure
1946 * we don't modify one of its field by mistake.
1947 * Here, we increment sk_drops which is an atomic_t, so we can safely
1948 * make sock writable again.
1949 */
1950static inline void tcp_listendrop(const struct sock *sk)
1951{
1952	atomic_inc(&((struct sock *)sk)->sk_drops);
1953	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
1954}
1955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1956#endif	/* _TCP_H */