Loading...
1/*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41#include "udfdecl.h"
42
43#include <linux/blkdev.h>
44#include <linux/slab.h>
45#include <linux/kernel.h>
46#include <linux/module.h>
47#include <linux/parser.h>
48#include <linux/stat.h>
49#include <linux/cdrom.h>
50#include <linux/nls.h>
51#include <linux/vfs.h>
52#include <linux/vmalloc.h>
53#include <linux/errno.h>
54#include <linux/mount.h>
55#include <linux/seq_file.h>
56#include <linux/bitmap.h>
57#include <linux/crc-itu-t.h>
58#include <linux/log2.h>
59#include <asm/byteorder.h>
60
61#include "udf_sb.h"
62#include "udf_i.h"
63
64#include <linux/init.h>
65#include <linux/uaccess.h>
66
67enum {
68 VDS_POS_PRIMARY_VOL_DESC,
69 VDS_POS_UNALLOC_SPACE_DESC,
70 VDS_POS_LOGICAL_VOL_DESC,
71 VDS_POS_IMP_USE_VOL_DESC,
72 VDS_POS_LENGTH
73};
74
75#define VSD_FIRST_SECTOR_OFFSET 32768
76#define VSD_MAX_SECTOR_OFFSET 0x800000
77
78/*
79 * Maximum number of Terminating Descriptor / Logical Volume Integrity
80 * Descriptor redirections. The chosen numbers are arbitrary - just that we
81 * hopefully don't limit any real use of rewritten inode on write-once media
82 * but avoid looping for too long on corrupted media.
83 */
84#define UDF_MAX_TD_NESTING 64
85#define UDF_MAX_LVID_NESTING 1000
86
87enum { UDF_MAX_LINKS = 0xffff };
88
89/* These are the "meat" - everything else is stuffing */
90static int udf_fill_super(struct super_block *, void *, int);
91static void udf_put_super(struct super_block *);
92static int udf_sync_fs(struct super_block *, int);
93static int udf_remount_fs(struct super_block *, int *, char *);
94static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
96 struct kernel_lb_addr *);
97static void udf_load_fileset(struct super_block *, struct buffer_head *,
98 struct kernel_lb_addr *);
99static void udf_open_lvid(struct super_block *);
100static void udf_close_lvid(struct super_block *);
101static unsigned int udf_count_free(struct super_block *);
102static int udf_statfs(struct dentry *, struct kstatfs *);
103static int udf_show_options(struct seq_file *, struct dentry *);
104
105struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
106{
107 struct logicalVolIntegrityDesc *lvid;
108 unsigned int partnum;
109 unsigned int offset;
110
111 if (!UDF_SB(sb)->s_lvid_bh)
112 return NULL;
113 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
114 partnum = le32_to_cpu(lvid->numOfPartitions);
115 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
116 offsetof(struct logicalVolIntegrityDesc, impUse)) /
117 (2 * sizeof(uint32_t)) < partnum) {
118 udf_err(sb, "Logical volume integrity descriptor corrupted "
119 "(numOfPartitions = %u)!\n", partnum);
120 return NULL;
121 }
122 /* The offset is to skip freeSpaceTable and sizeTable arrays */
123 offset = partnum * 2 * sizeof(uint32_t);
124 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
125}
126
127/* UDF filesystem type */
128static struct dentry *udf_mount(struct file_system_type *fs_type,
129 int flags, const char *dev_name, void *data)
130{
131 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
132}
133
134static struct file_system_type udf_fstype = {
135 .owner = THIS_MODULE,
136 .name = "udf",
137 .mount = udf_mount,
138 .kill_sb = kill_block_super,
139 .fs_flags = FS_REQUIRES_DEV,
140};
141MODULE_ALIAS_FS("udf");
142
143static struct kmem_cache *udf_inode_cachep;
144
145static struct inode *udf_alloc_inode(struct super_block *sb)
146{
147 struct udf_inode_info *ei;
148 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
149 if (!ei)
150 return NULL;
151
152 ei->i_unique = 0;
153 ei->i_lenExtents = 0;
154 ei->i_next_alloc_block = 0;
155 ei->i_next_alloc_goal = 0;
156 ei->i_strat4096 = 0;
157 init_rwsem(&ei->i_data_sem);
158 ei->cached_extent.lstart = -1;
159 spin_lock_init(&ei->i_extent_cache_lock);
160
161 return &ei->vfs_inode;
162}
163
164static void udf_i_callback(struct rcu_head *head)
165{
166 struct inode *inode = container_of(head, struct inode, i_rcu);
167 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
168}
169
170static void udf_destroy_inode(struct inode *inode)
171{
172 call_rcu(&inode->i_rcu, udf_i_callback);
173}
174
175static void init_once(void *foo)
176{
177 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
178
179 ei->i_ext.i_data = NULL;
180 inode_init_once(&ei->vfs_inode);
181}
182
183static int __init init_inodecache(void)
184{
185 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
186 sizeof(struct udf_inode_info),
187 0, (SLAB_RECLAIM_ACCOUNT |
188 SLAB_MEM_SPREAD |
189 SLAB_ACCOUNT),
190 init_once);
191 if (!udf_inode_cachep)
192 return -ENOMEM;
193 return 0;
194}
195
196static void destroy_inodecache(void)
197{
198 /*
199 * Make sure all delayed rcu free inodes are flushed before we
200 * destroy cache.
201 */
202 rcu_barrier();
203 kmem_cache_destroy(udf_inode_cachep);
204}
205
206/* Superblock operations */
207static const struct super_operations udf_sb_ops = {
208 .alloc_inode = udf_alloc_inode,
209 .destroy_inode = udf_destroy_inode,
210 .write_inode = udf_write_inode,
211 .evict_inode = udf_evict_inode,
212 .put_super = udf_put_super,
213 .sync_fs = udf_sync_fs,
214 .statfs = udf_statfs,
215 .remount_fs = udf_remount_fs,
216 .show_options = udf_show_options,
217};
218
219struct udf_options {
220 unsigned char novrs;
221 unsigned int blocksize;
222 unsigned int session;
223 unsigned int lastblock;
224 unsigned int anchor;
225 unsigned int flags;
226 umode_t umask;
227 kgid_t gid;
228 kuid_t uid;
229 umode_t fmode;
230 umode_t dmode;
231 struct nls_table *nls_map;
232};
233
234static int __init init_udf_fs(void)
235{
236 int err;
237
238 err = init_inodecache();
239 if (err)
240 goto out1;
241 err = register_filesystem(&udf_fstype);
242 if (err)
243 goto out;
244
245 return 0;
246
247out:
248 destroy_inodecache();
249
250out1:
251 return err;
252}
253
254static void __exit exit_udf_fs(void)
255{
256 unregister_filesystem(&udf_fstype);
257 destroy_inodecache();
258}
259
260static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
261{
262 struct udf_sb_info *sbi = UDF_SB(sb);
263
264 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
265 if (!sbi->s_partmaps) {
266 sbi->s_partitions = 0;
267 return -ENOMEM;
268 }
269
270 sbi->s_partitions = count;
271 return 0;
272}
273
274static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
275{
276 int i;
277 int nr_groups = bitmap->s_nr_groups;
278
279 for (i = 0; i < nr_groups; i++)
280 if (bitmap->s_block_bitmap[i])
281 brelse(bitmap->s_block_bitmap[i]);
282
283 kvfree(bitmap);
284}
285
286static void udf_free_partition(struct udf_part_map *map)
287{
288 int i;
289 struct udf_meta_data *mdata;
290
291 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
292 iput(map->s_uspace.s_table);
293 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
294 iput(map->s_fspace.s_table);
295 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
296 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
297 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
298 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
299 if (map->s_partition_type == UDF_SPARABLE_MAP15)
300 for (i = 0; i < 4; i++)
301 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
302 else if (map->s_partition_type == UDF_METADATA_MAP25) {
303 mdata = &map->s_type_specific.s_metadata;
304 iput(mdata->s_metadata_fe);
305 mdata->s_metadata_fe = NULL;
306
307 iput(mdata->s_mirror_fe);
308 mdata->s_mirror_fe = NULL;
309
310 iput(mdata->s_bitmap_fe);
311 mdata->s_bitmap_fe = NULL;
312 }
313}
314
315static void udf_sb_free_partitions(struct super_block *sb)
316{
317 struct udf_sb_info *sbi = UDF_SB(sb);
318 int i;
319
320 if (!sbi->s_partmaps)
321 return;
322 for (i = 0; i < sbi->s_partitions; i++)
323 udf_free_partition(&sbi->s_partmaps[i]);
324 kfree(sbi->s_partmaps);
325 sbi->s_partmaps = NULL;
326}
327
328static int udf_show_options(struct seq_file *seq, struct dentry *root)
329{
330 struct super_block *sb = root->d_sb;
331 struct udf_sb_info *sbi = UDF_SB(sb);
332
333 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
334 seq_puts(seq, ",nostrict");
335 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
336 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
337 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
338 seq_puts(seq, ",unhide");
339 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
340 seq_puts(seq, ",undelete");
341 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
342 seq_puts(seq, ",noadinicb");
343 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
344 seq_puts(seq, ",shortad");
345 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
346 seq_puts(seq, ",uid=forget");
347 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
348 seq_puts(seq, ",gid=forget");
349 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
350 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
351 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
352 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
353 if (sbi->s_umask != 0)
354 seq_printf(seq, ",umask=%ho", sbi->s_umask);
355 if (sbi->s_fmode != UDF_INVALID_MODE)
356 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
357 if (sbi->s_dmode != UDF_INVALID_MODE)
358 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
359 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
360 seq_printf(seq, ",session=%d", sbi->s_session);
361 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
362 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
363 if (sbi->s_anchor != 0)
364 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
365 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
366 seq_puts(seq, ",utf8");
367 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
368 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
369
370 return 0;
371}
372
373/*
374 * udf_parse_options
375 *
376 * PURPOSE
377 * Parse mount options.
378 *
379 * DESCRIPTION
380 * The following mount options are supported:
381 *
382 * gid= Set the default group.
383 * umask= Set the default umask.
384 * mode= Set the default file permissions.
385 * dmode= Set the default directory permissions.
386 * uid= Set the default user.
387 * bs= Set the block size.
388 * unhide Show otherwise hidden files.
389 * undelete Show deleted files in lists.
390 * adinicb Embed data in the inode (default)
391 * noadinicb Don't embed data in the inode
392 * shortad Use short ad's
393 * longad Use long ad's (default)
394 * nostrict Unset strict conformance
395 * iocharset= Set the NLS character set
396 *
397 * The remaining are for debugging and disaster recovery:
398 *
399 * novrs Skip volume sequence recognition
400 *
401 * The following expect a offset from 0.
402 *
403 * session= Set the CDROM session (default= last session)
404 * anchor= Override standard anchor location. (default= 256)
405 * volume= Override the VolumeDesc location. (unused)
406 * partition= Override the PartitionDesc location. (unused)
407 * lastblock= Set the last block of the filesystem/
408 *
409 * The following expect a offset from the partition root.
410 *
411 * fileset= Override the fileset block location. (unused)
412 * rootdir= Override the root directory location. (unused)
413 * WARNING: overriding the rootdir to a non-directory may
414 * yield highly unpredictable results.
415 *
416 * PRE-CONDITIONS
417 * options Pointer to mount options string.
418 * uopts Pointer to mount options variable.
419 *
420 * POST-CONDITIONS
421 * <return> 1 Mount options parsed okay.
422 * <return> 0 Error parsing mount options.
423 *
424 * HISTORY
425 * July 1, 1997 - Andrew E. Mileski
426 * Written, tested, and released.
427 */
428
429enum {
430 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
431 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
432 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
433 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
434 Opt_rootdir, Opt_utf8, Opt_iocharset,
435 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
436 Opt_fmode, Opt_dmode
437};
438
439static const match_table_t tokens = {
440 {Opt_novrs, "novrs"},
441 {Opt_nostrict, "nostrict"},
442 {Opt_bs, "bs=%u"},
443 {Opt_unhide, "unhide"},
444 {Opt_undelete, "undelete"},
445 {Opt_noadinicb, "noadinicb"},
446 {Opt_adinicb, "adinicb"},
447 {Opt_shortad, "shortad"},
448 {Opt_longad, "longad"},
449 {Opt_uforget, "uid=forget"},
450 {Opt_uignore, "uid=ignore"},
451 {Opt_gforget, "gid=forget"},
452 {Opt_gignore, "gid=ignore"},
453 {Opt_gid, "gid=%u"},
454 {Opt_uid, "uid=%u"},
455 {Opt_umask, "umask=%o"},
456 {Opt_session, "session=%u"},
457 {Opt_lastblock, "lastblock=%u"},
458 {Opt_anchor, "anchor=%u"},
459 {Opt_volume, "volume=%u"},
460 {Opt_partition, "partition=%u"},
461 {Opt_fileset, "fileset=%u"},
462 {Opt_rootdir, "rootdir=%u"},
463 {Opt_utf8, "utf8"},
464 {Opt_iocharset, "iocharset=%s"},
465 {Opt_fmode, "mode=%o"},
466 {Opt_dmode, "dmode=%o"},
467 {Opt_err, NULL}
468};
469
470static int udf_parse_options(char *options, struct udf_options *uopt,
471 bool remount)
472{
473 char *p;
474 int option;
475
476 uopt->novrs = 0;
477 uopt->session = 0xFFFFFFFF;
478 uopt->lastblock = 0;
479 uopt->anchor = 0;
480
481 if (!options)
482 return 1;
483
484 while ((p = strsep(&options, ",")) != NULL) {
485 substring_t args[MAX_OPT_ARGS];
486 int token;
487 unsigned n;
488 if (!*p)
489 continue;
490
491 token = match_token(p, tokens, args);
492 switch (token) {
493 case Opt_novrs:
494 uopt->novrs = 1;
495 break;
496 case Opt_bs:
497 if (match_int(&args[0], &option))
498 return 0;
499 n = option;
500 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
501 return 0;
502 uopt->blocksize = n;
503 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
504 break;
505 case Opt_unhide:
506 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
507 break;
508 case Opt_undelete:
509 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
510 break;
511 case Opt_noadinicb:
512 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
513 break;
514 case Opt_adinicb:
515 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
516 break;
517 case Opt_shortad:
518 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
519 break;
520 case Opt_longad:
521 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
522 break;
523 case Opt_gid:
524 if (match_int(args, &option))
525 return 0;
526 uopt->gid = make_kgid(current_user_ns(), option);
527 if (!gid_valid(uopt->gid))
528 return 0;
529 uopt->flags |= (1 << UDF_FLAG_GID_SET);
530 break;
531 case Opt_uid:
532 if (match_int(args, &option))
533 return 0;
534 uopt->uid = make_kuid(current_user_ns(), option);
535 if (!uid_valid(uopt->uid))
536 return 0;
537 uopt->flags |= (1 << UDF_FLAG_UID_SET);
538 break;
539 case Opt_umask:
540 if (match_octal(args, &option))
541 return 0;
542 uopt->umask = option;
543 break;
544 case Opt_nostrict:
545 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
546 break;
547 case Opt_session:
548 if (match_int(args, &option))
549 return 0;
550 uopt->session = option;
551 if (!remount)
552 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
553 break;
554 case Opt_lastblock:
555 if (match_int(args, &option))
556 return 0;
557 uopt->lastblock = option;
558 if (!remount)
559 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
560 break;
561 case Opt_anchor:
562 if (match_int(args, &option))
563 return 0;
564 uopt->anchor = option;
565 break;
566 case Opt_volume:
567 case Opt_partition:
568 case Opt_fileset:
569 case Opt_rootdir:
570 /* Ignored (never implemented properly) */
571 break;
572 case Opt_utf8:
573 uopt->flags |= (1 << UDF_FLAG_UTF8);
574 break;
575#ifdef CONFIG_UDF_NLS
576 case Opt_iocharset:
577 if (!remount) {
578 if (uopt->nls_map)
579 unload_nls(uopt->nls_map);
580 uopt->nls_map = load_nls(args[0].from);
581 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
582 }
583 break;
584#endif
585 case Opt_uforget:
586 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
587 break;
588 case Opt_uignore:
589 case Opt_gignore:
590 /* These options are superseeded by uid=<number> */
591 break;
592 case Opt_gforget:
593 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
594 break;
595 case Opt_fmode:
596 if (match_octal(args, &option))
597 return 0;
598 uopt->fmode = option & 0777;
599 break;
600 case Opt_dmode:
601 if (match_octal(args, &option))
602 return 0;
603 uopt->dmode = option & 0777;
604 break;
605 default:
606 pr_err("bad mount option \"%s\" or missing value\n", p);
607 return 0;
608 }
609 }
610 return 1;
611}
612
613static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
614{
615 struct udf_options uopt;
616 struct udf_sb_info *sbi = UDF_SB(sb);
617 int error = 0;
618 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
619
620 sync_filesystem(sb);
621 if (lvidiu) {
622 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
623 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & SB_RDONLY))
624 return -EACCES;
625 }
626
627 uopt.flags = sbi->s_flags;
628 uopt.uid = sbi->s_uid;
629 uopt.gid = sbi->s_gid;
630 uopt.umask = sbi->s_umask;
631 uopt.fmode = sbi->s_fmode;
632 uopt.dmode = sbi->s_dmode;
633 uopt.nls_map = NULL;
634
635 if (!udf_parse_options(options, &uopt, true))
636 return -EINVAL;
637
638 write_lock(&sbi->s_cred_lock);
639 sbi->s_flags = uopt.flags;
640 sbi->s_uid = uopt.uid;
641 sbi->s_gid = uopt.gid;
642 sbi->s_umask = uopt.umask;
643 sbi->s_fmode = uopt.fmode;
644 sbi->s_dmode = uopt.dmode;
645 write_unlock(&sbi->s_cred_lock);
646
647 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
648 goto out_unlock;
649
650 if (*flags & SB_RDONLY)
651 udf_close_lvid(sb);
652 else
653 udf_open_lvid(sb);
654
655out_unlock:
656 return error;
657}
658
659/* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
660/* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
661static loff_t udf_check_vsd(struct super_block *sb)
662{
663 struct volStructDesc *vsd = NULL;
664 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
665 int sectorsize;
666 struct buffer_head *bh = NULL;
667 int nsr02 = 0;
668 int nsr03 = 0;
669 struct udf_sb_info *sbi;
670
671 sbi = UDF_SB(sb);
672 if (sb->s_blocksize < sizeof(struct volStructDesc))
673 sectorsize = sizeof(struct volStructDesc);
674 else
675 sectorsize = sb->s_blocksize;
676
677 sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
678
679 udf_debug("Starting at sector %u (%lu byte sectors)\n",
680 (unsigned int)(sector >> sb->s_blocksize_bits),
681 sb->s_blocksize);
682 /* Process the sequence (if applicable). The hard limit on the sector
683 * offset is arbitrary, hopefully large enough so that all valid UDF
684 * filesystems will be recognised. There is no mention of an upper
685 * bound to the size of the volume recognition area in the standard.
686 * The limit will prevent the code to read all the sectors of a
687 * specially crafted image (like a bluray disc full of CD001 sectors),
688 * potentially causing minutes or even hours of uninterruptible I/O
689 * activity. This actually happened with uninitialised SSD partitions
690 * (all 0xFF) before the check for the limit and all valid IDs were
691 * added */
692 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
693 sector += sectorsize) {
694 /* Read a block */
695 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
696 if (!bh)
697 break;
698
699 /* Look for ISO descriptors */
700 vsd = (struct volStructDesc *)(bh->b_data +
701 (sector & (sb->s_blocksize - 1)));
702
703 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
704 VSD_STD_ID_LEN)) {
705 switch (vsd->structType) {
706 case 0:
707 udf_debug("ISO9660 Boot Record found\n");
708 break;
709 case 1:
710 udf_debug("ISO9660 Primary Volume Descriptor found\n");
711 break;
712 case 2:
713 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
714 break;
715 case 3:
716 udf_debug("ISO9660 Volume Partition Descriptor found\n");
717 break;
718 case 255:
719 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
720 break;
721 default:
722 udf_debug("ISO9660 VRS (%u) found\n",
723 vsd->structType);
724 break;
725 }
726 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
727 VSD_STD_ID_LEN))
728 ; /* nothing */
729 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
730 VSD_STD_ID_LEN)) {
731 brelse(bh);
732 break;
733 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
734 VSD_STD_ID_LEN))
735 nsr02 = sector;
736 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
737 VSD_STD_ID_LEN))
738 nsr03 = sector;
739 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
740 VSD_STD_ID_LEN))
741 ; /* nothing */
742 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
743 VSD_STD_ID_LEN))
744 ; /* nothing */
745 else {
746 /* invalid id : end of volume recognition area */
747 brelse(bh);
748 break;
749 }
750 brelse(bh);
751 }
752
753 if (nsr03)
754 return nsr03;
755 else if (nsr02)
756 return nsr02;
757 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
758 VSD_FIRST_SECTOR_OFFSET)
759 return -1;
760 else
761 return 0;
762}
763
764static int udf_find_fileset(struct super_block *sb,
765 struct kernel_lb_addr *fileset,
766 struct kernel_lb_addr *root)
767{
768 struct buffer_head *bh = NULL;
769 long lastblock;
770 uint16_t ident;
771 struct udf_sb_info *sbi;
772
773 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
774 fileset->partitionReferenceNum != 0xFFFF) {
775 bh = udf_read_ptagged(sb, fileset, 0, &ident);
776
777 if (!bh) {
778 return 1;
779 } else if (ident != TAG_IDENT_FSD) {
780 brelse(bh);
781 return 1;
782 }
783
784 }
785
786 sbi = UDF_SB(sb);
787 if (!bh) {
788 /* Search backwards through the partitions */
789 struct kernel_lb_addr newfileset;
790
791/* --> cvg: FIXME - is it reasonable? */
792 return 1;
793
794 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
795 (newfileset.partitionReferenceNum != 0xFFFF &&
796 fileset->logicalBlockNum == 0xFFFFFFFF &&
797 fileset->partitionReferenceNum == 0xFFFF);
798 newfileset.partitionReferenceNum--) {
799 lastblock = sbi->s_partmaps
800 [newfileset.partitionReferenceNum]
801 .s_partition_len;
802 newfileset.logicalBlockNum = 0;
803
804 do {
805 bh = udf_read_ptagged(sb, &newfileset, 0,
806 &ident);
807 if (!bh) {
808 newfileset.logicalBlockNum++;
809 continue;
810 }
811
812 switch (ident) {
813 case TAG_IDENT_SBD:
814 {
815 struct spaceBitmapDesc *sp;
816 sp = (struct spaceBitmapDesc *)
817 bh->b_data;
818 newfileset.logicalBlockNum += 1 +
819 ((le32_to_cpu(sp->numOfBytes) +
820 sizeof(struct spaceBitmapDesc)
821 - 1) >> sb->s_blocksize_bits);
822 brelse(bh);
823 break;
824 }
825 case TAG_IDENT_FSD:
826 *fileset = newfileset;
827 break;
828 default:
829 newfileset.logicalBlockNum++;
830 brelse(bh);
831 bh = NULL;
832 break;
833 }
834 } while (newfileset.logicalBlockNum < lastblock &&
835 fileset->logicalBlockNum == 0xFFFFFFFF &&
836 fileset->partitionReferenceNum == 0xFFFF);
837 }
838 }
839
840 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
841 fileset->partitionReferenceNum != 0xFFFF) && bh) {
842 udf_debug("Fileset at block=%u, partition=%u\n",
843 fileset->logicalBlockNum,
844 fileset->partitionReferenceNum);
845
846 sbi->s_partition = fileset->partitionReferenceNum;
847 udf_load_fileset(sb, bh, root);
848 brelse(bh);
849 return 0;
850 }
851 return 1;
852}
853
854/*
855 * Load primary Volume Descriptor Sequence
856 *
857 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
858 * should be tried.
859 */
860static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
861{
862 struct primaryVolDesc *pvoldesc;
863 uint8_t *outstr;
864 struct buffer_head *bh;
865 uint16_t ident;
866 int ret = -ENOMEM;
867
868 outstr = kmalloc(128, GFP_NOFS);
869 if (!outstr)
870 return -ENOMEM;
871
872 bh = udf_read_tagged(sb, block, block, &ident);
873 if (!bh) {
874 ret = -EAGAIN;
875 goto out2;
876 }
877
878 if (ident != TAG_IDENT_PVD) {
879 ret = -EIO;
880 goto out_bh;
881 }
882
883 pvoldesc = (struct primaryVolDesc *)bh->b_data;
884
885 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
886 pvoldesc->recordingDateAndTime)) {
887#ifdef UDFFS_DEBUG
888 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
889 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
890 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
891 ts->minute, le16_to_cpu(ts->typeAndTimezone));
892#endif
893 }
894
895 ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
896 if (ret < 0)
897 goto out_bh;
898
899 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
900 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
901
902 ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
903 if (ret < 0)
904 goto out_bh;
905
906 outstr[ret] = 0;
907 udf_debug("volSetIdent[] = '%s'\n", outstr);
908
909 ret = 0;
910out_bh:
911 brelse(bh);
912out2:
913 kfree(outstr);
914 return ret;
915}
916
917struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
918 u32 meta_file_loc, u32 partition_ref)
919{
920 struct kernel_lb_addr addr;
921 struct inode *metadata_fe;
922
923 addr.logicalBlockNum = meta_file_loc;
924 addr.partitionReferenceNum = partition_ref;
925
926 metadata_fe = udf_iget_special(sb, &addr);
927
928 if (IS_ERR(metadata_fe)) {
929 udf_warn(sb, "metadata inode efe not found\n");
930 return metadata_fe;
931 }
932 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
933 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
934 iput(metadata_fe);
935 return ERR_PTR(-EIO);
936 }
937
938 return metadata_fe;
939}
940
941static int udf_load_metadata_files(struct super_block *sb, int partition,
942 int type1_index)
943{
944 struct udf_sb_info *sbi = UDF_SB(sb);
945 struct udf_part_map *map;
946 struct udf_meta_data *mdata;
947 struct kernel_lb_addr addr;
948 struct inode *fe;
949
950 map = &sbi->s_partmaps[partition];
951 mdata = &map->s_type_specific.s_metadata;
952 mdata->s_phys_partition_ref = type1_index;
953
954 /* metadata address */
955 udf_debug("Metadata file location: block = %u part = %u\n",
956 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
957
958 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
959 mdata->s_phys_partition_ref);
960 if (IS_ERR(fe)) {
961 /* mirror file entry */
962 udf_debug("Mirror metadata file location: block = %u part = %u\n",
963 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
964
965 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
966 mdata->s_phys_partition_ref);
967
968 if (IS_ERR(fe)) {
969 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
970 return PTR_ERR(fe);
971 }
972 mdata->s_mirror_fe = fe;
973 } else
974 mdata->s_metadata_fe = fe;
975
976
977 /*
978 * bitmap file entry
979 * Note:
980 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
981 */
982 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
983 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
984 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
985
986 udf_debug("Bitmap file location: block = %u part = %u\n",
987 addr.logicalBlockNum, addr.partitionReferenceNum);
988
989 fe = udf_iget_special(sb, &addr);
990 if (IS_ERR(fe)) {
991 if (sb_rdonly(sb))
992 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
993 else {
994 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
995 return PTR_ERR(fe);
996 }
997 } else
998 mdata->s_bitmap_fe = fe;
999 }
1000
1001 udf_debug("udf_load_metadata_files Ok\n");
1002 return 0;
1003}
1004
1005static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1006 struct kernel_lb_addr *root)
1007{
1008 struct fileSetDesc *fset;
1009
1010 fset = (struct fileSetDesc *)bh->b_data;
1011
1012 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1013
1014 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1015
1016 udf_debug("Rootdir at block=%u, partition=%u\n",
1017 root->logicalBlockNum, root->partitionReferenceNum);
1018}
1019
1020int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1021{
1022 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1023 return DIV_ROUND_UP(map->s_partition_len +
1024 (sizeof(struct spaceBitmapDesc) << 3),
1025 sb->s_blocksize * 8);
1026}
1027
1028static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1029{
1030 struct udf_bitmap *bitmap;
1031 int nr_groups;
1032 int size;
1033
1034 nr_groups = udf_compute_nr_groups(sb, index);
1035 size = sizeof(struct udf_bitmap) +
1036 (sizeof(struct buffer_head *) * nr_groups);
1037
1038 if (size <= PAGE_SIZE)
1039 bitmap = kzalloc(size, GFP_KERNEL);
1040 else
1041 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1042
1043 if (!bitmap)
1044 return NULL;
1045
1046 bitmap->s_nr_groups = nr_groups;
1047 return bitmap;
1048}
1049
1050static int udf_fill_partdesc_info(struct super_block *sb,
1051 struct partitionDesc *p, int p_index)
1052{
1053 struct udf_part_map *map;
1054 struct udf_sb_info *sbi = UDF_SB(sb);
1055 struct partitionHeaderDesc *phd;
1056
1057 map = &sbi->s_partmaps[p_index];
1058
1059 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1060 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1061
1062 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1063 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1064 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1065 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1066 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1067 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1068 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1069 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1070
1071 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1072 p_index, map->s_partition_type,
1073 map->s_partition_root, map->s_partition_len);
1074
1075 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1076 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1077 return 0;
1078
1079 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1080 if (phd->unallocSpaceTable.extLength) {
1081 struct kernel_lb_addr loc = {
1082 .logicalBlockNum = le32_to_cpu(
1083 phd->unallocSpaceTable.extPosition),
1084 .partitionReferenceNum = p_index,
1085 };
1086 struct inode *inode;
1087
1088 inode = udf_iget_special(sb, &loc);
1089 if (IS_ERR(inode)) {
1090 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1091 p_index);
1092 return PTR_ERR(inode);
1093 }
1094 map->s_uspace.s_table = inode;
1095 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1096 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1097 p_index, map->s_uspace.s_table->i_ino);
1098 }
1099
1100 if (phd->unallocSpaceBitmap.extLength) {
1101 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1102 if (!bitmap)
1103 return -ENOMEM;
1104 map->s_uspace.s_bitmap = bitmap;
1105 bitmap->s_extPosition = le32_to_cpu(
1106 phd->unallocSpaceBitmap.extPosition);
1107 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1108 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1109 p_index, bitmap->s_extPosition);
1110 }
1111
1112 if (phd->partitionIntegrityTable.extLength)
1113 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1114
1115 if (phd->freedSpaceTable.extLength) {
1116 struct kernel_lb_addr loc = {
1117 .logicalBlockNum = le32_to_cpu(
1118 phd->freedSpaceTable.extPosition),
1119 .partitionReferenceNum = p_index,
1120 };
1121 struct inode *inode;
1122
1123 inode = udf_iget_special(sb, &loc);
1124 if (IS_ERR(inode)) {
1125 udf_debug("cannot load freedSpaceTable (part %d)\n",
1126 p_index);
1127 return PTR_ERR(inode);
1128 }
1129 map->s_fspace.s_table = inode;
1130 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1131 udf_debug("freedSpaceTable (part %d) @ %lu\n",
1132 p_index, map->s_fspace.s_table->i_ino);
1133 }
1134
1135 if (phd->freedSpaceBitmap.extLength) {
1136 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1137 if (!bitmap)
1138 return -ENOMEM;
1139 map->s_fspace.s_bitmap = bitmap;
1140 bitmap->s_extPosition = le32_to_cpu(
1141 phd->freedSpaceBitmap.extPosition);
1142 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1143 udf_debug("freedSpaceBitmap (part %d) @ %u\n",
1144 p_index, bitmap->s_extPosition);
1145 }
1146 return 0;
1147}
1148
1149static void udf_find_vat_block(struct super_block *sb, int p_index,
1150 int type1_index, sector_t start_block)
1151{
1152 struct udf_sb_info *sbi = UDF_SB(sb);
1153 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1154 sector_t vat_block;
1155 struct kernel_lb_addr ino;
1156 struct inode *inode;
1157
1158 /*
1159 * VAT file entry is in the last recorded block. Some broken disks have
1160 * it a few blocks before so try a bit harder...
1161 */
1162 ino.partitionReferenceNum = type1_index;
1163 for (vat_block = start_block;
1164 vat_block >= map->s_partition_root &&
1165 vat_block >= start_block - 3; vat_block--) {
1166 ino.logicalBlockNum = vat_block - map->s_partition_root;
1167 inode = udf_iget_special(sb, &ino);
1168 if (!IS_ERR(inode)) {
1169 sbi->s_vat_inode = inode;
1170 break;
1171 }
1172 }
1173}
1174
1175static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1176{
1177 struct udf_sb_info *sbi = UDF_SB(sb);
1178 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1179 struct buffer_head *bh = NULL;
1180 struct udf_inode_info *vati;
1181 uint32_t pos;
1182 struct virtualAllocationTable20 *vat20;
1183 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1184 sb->s_blocksize_bits;
1185
1186 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1187 if (!sbi->s_vat_inode &&
1188 sbi->s_last_block != blocks - 1) {
1189 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1190 (unsigned long)sbi->s_last_block,
1191 (unsigned long)blocks - 1);
1192 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1193 }
1194 if (!sbi->s_vat_inode)
1195 return -EIO;
1196
1197 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1198 map->s_type_specific.s_virtual.s_start_offset = 0;
1199 map->s_type_specific.s_virtual.s_num_entries =
1200 (sbi->s_vat_inode->i_size - 36) >> 2;
1201 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1202 vati = UDF_I(sbi->s_vat_inode);
1203 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1204 pos = udf_block_map(sbi->s_vat_inode, 0);
1205 bh = sb_bread(sb, pos);
1206 if (!bh)
1207 return -EIO;
1208 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1209 } else {
1210 vat20 = (struct virtualAllocationTable20 *)
1211 vati->i_ext.i_data;
1212 }
1213
1214 map->s_type_specific.s_virtual.s_start_offset =
1215 le16_to_cpu(vat20->lengthHeader);
1216 map->s_type_specific.s_virtual.s_num_entries =
1217 (sbi->s_vat_inode->i_size -
1218 map->s_type_specific.s_virtual.
1219 s_start_offset) >> 2;
1220 brelse(bh);
1221 }
1222 return 0;
1223}
1224
1225/*
1226 * Load partition descriptor block
1227 *
1228 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1229 * sequence.
1230 */
1231static int udf_load_partdesc(struct super_block *sb, sector_t block)
1232{
1233 struct buffer_head *bh;
1234 struct partitionDesc *p;
1235 struct udf_part_map *map;
1236 struct udf_sb_info *sbi = UDF_SB(sb);
1237 int i, type1_idx;
1238 uint16_t partitionNumber;
1239 uint16_t ident;
1240 int ret;
1241
1242 bh = udf_read_tagged(sb, block, block, &ident);
1243 if (!bh)
1244 return -EAGAIN;
1245 if (ident != TAG_IDENT_PD) {
1246 ret = 0;
1247 goto out_bh;
1248 }
1249
1250 p = (struct partitionDesc *)bh->b_data;
1251 partitionNumber = le16_to_cpu(p->partitionNumber);
1252
1253 /* First scan for TYPE1 and SPARABLE partitions */
1254 for (i = 0; i < sbi->s_partitions; i++) {
1255 map = &sbi->s_partmaps[i];
1256 udf_debug("Searching map: (%u == %u)\n",
1257 map->s_partition_num, partitionNumber);
1258 if (map->s_partition_num == partitionNumber &&
1259 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1260 map->s_partition_type == UDF_SPARABLE_MAP15))
1261 break;
1262 }
1263
1264 if (i >= sbi->s_partitions) {
1265 udf_debug("Partition (%u) not found in partition map\n",
1266 partitionNumber);
1267 ret = 0;
1268 goto out_bh;
1269 }
1270
1271 ret = udf_fill_partdesc_info(sb, p, i);
1272 if (ret < 0)
1273 goto out_bh;
1274
1275 /*
1276 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1277 * PHYSICAL partitions are already set up
1278 */
1279 type1_idx = i;
1280#ifdef UDFFS_DEBUG
1281 map = NULL; /* supress 'maybe used uninitialized' warning */
1282#endif
1283 for (i = 0; i < sbi->s_partitions; i++) {
1284 map = &sbi->s_partmaps[i];
1285
1286 if (map->s_partition_num == partitionNumber &&
1287 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1288 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1289 map->s_partition_type == UDF_METADATA_MAP25))
1290 break;
1291 }
1292
1293 if (i >= sbi->s_partitions) {
1294 ret = 0;
1295 goto out_bh;
1296 }
1297
1298 ret = udf_fill_partdesc_info(sb, p, i);
1299 if (ret < 0)
1300 goto out_bh;
1301
1302 if (map->s_partition_type == UDF_METADATA_MAP25) {
1303 ret = udf_load_metadata_files(sb, i, type1_idx);
1304 if (ret < 0) {
1305 udf_err(sb, "error loading MetaData partition map %d\n",
1306 i);
1307 goto out_bh;
1308 }
1309 } else {
1310 /*
1311 * If we have a partition with virtual map, we don't handle
1312 * writing to it (we overwrite blocks instead of relocating
1313 * them).
1314 */
1315 if (!sb_rdonly(sb)) {
1316 ret = -EACCES;
1317 goto out_bh;
1318 }
1319 ret = udf_load_vat(sb, i, type1_idx);
1320 if (ret < 0)
1321 goto out_bh;
1322 }
1323 ret = 0;
1324out_bh:
1325 /* In case loading failed, we handle cleanup in udf_fill_super */
1326 brelse(bh);
1327 return ret;
1328}
1329
1330static int udf_load_sparable_map(struct super_block *sb,
1331 struct udf_part_map *map,
1332 struct sparablePartitionMap *spm)
1333{
1334 uint32_t loc;
1335 uint16_t ident;
1336 struct sparingTable *st;
1337 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1338 int i;
1339 struct buffer_head *bh;
1340
1341 map->s_partition_type = UDF_SPARABLE_MAP15;
1342 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1343 if (!is_power_of_2(sdata->s_packet_len)) {
1344 udf_err(sb, "error loading logical volume descriptor: "
1345 "Invalid packet length %u\n",
1346 (unsigned)sdata->s_packet_len);
1347 return -EIO;
1348 }
1349 if (spm->numSparingTables > 4) {
1350 udf_err(sb, "error loading logical volume descriptor: "
1351 "Too many sparing tables (%d)\n",
1352 (int)spm->numSparingTables);
1353 return -EIO;
1354 }
1355
1356 for (i = 0; i < spm->numSparingTables; i++) {
1357 loc = le32_to_cpu(spm->locSparingTable[i]);
1358 bh = udf_read_tagged(sb, loc, loc, &ident);
1359 if (!bh)
1360 continue;
1361
1362 st = (struct sparingTable *)bh->b_data;
1363 if (ident != 0 ||
1364 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1365 strlen(UDF_ID_SPARING)) ||
1366 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1367 sb->s_blocksize) {
1368 brelse(bh);
1369 continue;
1370 }
1371
1372 sdata->s_spar_map[i] = bh;
1373 }
1374 map->s_partition_func = udf_get_pblock_spar15;
1375 return 0;
1376}
1377
1378static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1379 struct kernel_lb_addr *fileset)
1380{
1381 struct logicalVolDesc *lvd;
1382 int i, offset;
1383 uint8_t type;
1384 struct udf_sb_info *sbi = UDF_SB(sb);
1385 struct genericPartitionMap *gpm;
1386 uint16_t ident;
1387 struct buffer_head *bh;
1388 unsigned int table_len;
1389 int ret;
1390
1391 bh = udf_read_tagged(sb, block, block, &ident);
1392 if (!bh)
1393 return -EAGAIN;
1394 BUG_ON(ident != TAG_IDENT_LVD);
1395 lvd = (struct logicalVolDesc *)bh->b_data;
1396 table_len = le32_to_cpu(lvd->mapTableLength);
1397 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1398 udf_err(sb, "error loading logical volume descriptor: "
1399 "Partition table too long (%u > %lu)\n", table_len,
1400 sb->s_blocksize - sizeof(*lvd));
1401 ret = -EIO;
1402 goto out_bh;
1403 }
1404
1405 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1406 if (ret)
1407 goto out_bh;
1408
1409 for (i = 0, offset = 0;
1410 i < sbi->s_partitions && offset < table_len;
1411 i++, offset += gpm->partitionMapLength) {
1412 struct udf_part_map *map = &sbi->s_partmaps[i];
1413 gpm = (struct genericPartitionMap *)
1414 &(lvd->partitionMaps[offset]);
1415 type = gpm->partitionMapType;
1416 if (type == 1) {
1417 struct genericPartitionMap1 *gpm1 =
1418 (struct genericPartitionMap1 *)gpm;
1419 map->s_partition_type = UDF_TYPE1_MAP15;
1420 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1421 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1422 map->s_partition_func = NULL;
1423 } else if (type == 2) {
1424 struct udfPartitionMap2 *upm2 =
1425 (struct udfPartitionMap2 *)gpm;
1426 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1427 strlen(UDF_ID_VIRTUAL))) {
1428 u16 suf =
1429 le16_to_cpu(((__le16 *)upm2->partIdent.
1430 identSuffix)[0]);
1431 if (suf < 0x0200) {
1432 map->s_partition_type =
1433 UDF_VIRTUAL_MAP15;
1434 map->s_partition_func =
1435 udf_get_pblock_virt15;
1436 } else {
1437 map->s_partition_type =
1438 UDF_VIRTUAL_MAP20;
1439 map->s_partition_func =
1440 udf_get_pblock_virt20;
1441 }
1442 } else if (!strncmp(upm2->partIdent.ident,
1443 UDF_ID_SPARABLE,
1444 strlen(UDF_ID_SPARABLE))) {
1445 ret = udf_load_sparable_map(sb, map,
1446 (struct sparablePartitionMap *)gpm);
1447 if (ret < 0)
1448 goto out_bh;
1449 } else if (!strncmp(upm2->partIdent.ident,
1450 UDF_ID_METADATA,
1451 strlen(UDF_ID_METADATA))) {
1452 struct udf_meta_data *mdata =
1453 &map->s_type_specific.s_metadata;
1454 struct metadataPartitionMap *mdm =
1455 (struct metadataPartitionMap *)
1456 &(lvd->partitionMaps[offset]);
1457 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1458 i, type, UDF_ID_METADATA);
1459
1460 map->s_partition_type = UDF_METADATA_MAP25;
1461 map->s_partition_func = udf_get_pblock_meta25;
1462
1463 mdata->s_meta_file_loc =
1464 le32_to_cpu(mdm->metadataFileLoc);
1465 mdata->s_mirror_file_loc =
1466 le32_to_cpu(mdm->metadataMirrorFileLoc);
1467 mdata->s_bitmap_file_loc =
1468 le32_to_cpu(mdm->metadataBitmapFileLoc);
1469 mdata->s_alloc_unit_size =
1470 le32_to_cpu(mdm->allocUnitSize);
1471 mdata->s_align_unit_size =
1472 le16_to_cpu(mdm->alignUnitSize);
1473 if (mdm->flags & 0x01)
1474 mdata->s_flags |= MF_DUPLICATE_MD;
1475
1476 udf_debug("Metadata Ident suffix=0x%x\n",
1477 le16_to_cpu(*(__le16 *)
1478 mdm->partIdent.identSuffix));
1479 udf_debug("Metadata part num=%u\n",
1480 le16_to_cpu(mdm->partitionNum));
1481 udf_debug("Metadata part alloc unit size=%u\n",
1482 le32_to_cpu(mdm->allocUnitSize));
1483 udf_debug("Metadata file loc=%u\n",
1484 le32_to_cpu(mdm->metadataFileLoc));
1485 udf_debug("Mirror file loc=%u\n",
1486 le32_to_cpu(mdm->metadataMirrorFileLoc));
1487 udf_debug("Bitmap file loc=%u\n",
1488 le32_to_cpu(mdm->metadataBitmapFileLoc));
1489 udf_debug("Flags: %d %u\n",
1490 mdata->s_flags, mdm->flags);
1491 } else {
1492 udf_debug("Unknown ident: %s\n",
1493 upm2->partIdent.ident);
1494 continue;
1495 }
1496 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1497 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1498 }
1499 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1500 i, map->s_partition_num, type, map->s_volumeseqnum);
1501 }
1502
1503 if (fileset) {
1504 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1505
1506 *fileset = lelb_to_cpu(la->extLocation);
1507 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1508 fileset->logicalBlockNum,
1509 fileset->partitionReferenceNum);
1510 }
1511 if (lvd->integritySeqExt.extLength)
1512 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1513 ret = 0;
1514out_bh:
1515 brelse(bh);
1516 return ret;
1517}
1518
1519/*
1520 * Find the prevailing Logical Volume Integrity Descriptor.
1521 */
1522static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1523{
1524 struct buffer_head *bh, *final_bh;
1525 uint16_t ident;
1526 struct udf_sb_info *sbi = UDF_SB(sb);
1527 struct logicalVolIntegrityDesc *lvid;
1528 int indirections = 0;
1529
1530 while (++indirections <= UDF_MAX_LVID_NESTING) {
1531 final_bh = NULL;
1532 while (loc.extLength > 0 &&
1533 (bh = udf_read_tagged(sb, loc.extLocation,
1534 loc.extLocation, &ident))) {
1535 if (ident != TAG_IDENT_LVID) {
1536 brelse(bh);
1537 break;
1538 }
1539
1540 brelse(final_bh);
1541 final_bh = bh;
1542
1543 loc.extLength -= sb->s_blocksize;
1544 loc.extLocation++;
1545 }
1546
1547 if (!final_bh)
1548 return;
1549
1550 brelse(sbi->s_lvid_bh);
1551 sbi->s_lvid_bh = final_bh;
1552
1553 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1554 if (lvid->nextIntegrityExt.extLength == 0)
1555 return;
1556
1557 loc = leea_to_cpu(lvid->nextIntegrityExt);
1558 }
1559
1560 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1561 UDF_MAX_LVID_NESTING);
1562 brelse(sbi->s_lvid_bh);
1563 sbi->s_lvid_bh = NULL;
1564}
1565
1566/*
1567 * Step for reallocation of table of partition descriptor sequence numbers.
1568 * Must be power of 2.
1569 */
1570#define PART_DESC_ALLOC_STEP 32
1571
1572struct desc_seq_scan_data {
1573 struct udf_vds_record vds[VDS_POS_LENGTH];
1574 unsigned int size_part_descs;
1575 struct udf_vds_record *part_descs_loc;
1576};
1577
1578static struct udf_vds_record *handle_partition_descriptor(
1579 struct buffer_head *bh,
1580 struct desc_seq_scan_data *data)
1581{
1582 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1583 int partnum;
1584
1585 partnum = le16_to_cpu(desc->partitionNumber);
1586 if (partnum >= data->size_part_descs) {
1587 struct udf_vds_record *new_loc;
1588 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1589
1590 new_loc = kzalloc(sizeof(*new_loc) * new_size, GFP_KERNEL);
1591 if (!new_loc)
1592 return ERR_PTR(-ENOMEM);
1593 memcpy(new_loc, data->part_descs_loc,
1594 data->size_part_descs * sizeof(*new_loc));
1595 kfree(data->part_descs_loc);
1596 data->part_descs_loc = new_loc;
1597 data->size_part_descs = new_size;
1598 }
1599 return &(data->part_descs_loc[partnum]);
1600}
1601
1602
1603static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1604 struct buffer_head *bh, struct desc_seq_scan_data *data)
1605{
1606 switch (ident) {
1607 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1608 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1609 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1610 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1611 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1612 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1613 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1614 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1615 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1616 return handle_partition_descriptor(bh, data);
1617 }
1618 return NULL;
1619}
1620
1621/*
1622 * Process a main/reserve volume descriptor sequence.
1623 * @block First block of first extent of the sequence.
1624 * @lastblock Lastblock of first extent of the sequence.
1625 * @fileset There we store extent containing root fileset
1626 *
1627 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1628 * sequence
1629 */
1630static noinline int udf_process_sequence(
1631 struct super_block *sb,
1632 sector_t block, sector_t lastblock,
1633 struct kernel_lb_addr *fileset)
1634{
1635 struct buffer_head *bh = NULL;
1636 struct udf_vds_record *curr;
1637 struct generic_desc *gd;
1638 struct volDescPtr *vdp;
1639 bool done = false;
1640 uint32_t vdsn;
1641 uint16_t ident;
1642 int ret;
1643 unsigned int indirections = 0;
1644 struct desc_seq_scan_data data;
1645 unsigned int i;
1646
1647 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1648 data.size_part_descs = PART_DESC_ALLOC_STEP;
1649 data.part_descs_loc = kzalloc(sizeof(*data.part_descs_loc) *
1650 data.size_part_descs, GFP_KERNEL);
1651 if (!data.part_descs_loc)
1652 return -ENOMEM;
1653
1654 /*
1655 * Read the main descriptor sequence and find which descriptors
1656 * are in it.
1657 */
1658 for (; (!done && block <= lastblock); block++) {
1659
1660 bh = udf_read_tagged(sb, block, block, &ident);
1661 if (!bh)
1662 break;
1663
1664 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1665 gd = (struct generic_desc *)bh->b_data;
1666 vdsn = le32_to_cpu(gd->volDescSeqNum);
1667 switch (ident) {
1668 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1669 if (++indirections > UDF_MAX_TD_NESTING) {
1670 udf_err(sb, "too many Volume Descriptor "
1671 "Pointers (max %u supported)\n",
1672 UDF_MAX_TD_NESTING);
1673 brelse(bh);
1674 return -EIO;
1675 }
1676
1677 vdp = (struct volDescPtr *)bh->b_data;
1678 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1679 lastblock = le32_to_cpu(
1680 vdp->nextVolDescSeqExt.extLength) >>
1681 sb->s_blocksize_bits;
1682 lastblock += block - 1;
1683 /* For loop is going to increment 'block' again */
1684 block--;
1685 break;
1686 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1687 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1688 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1689 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1690 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1691 curr = get_volume_descriptor_record(ident, bh, &data);
1692 if (IS_ERR(curr)) {
1693 brelse(bh);
1694 return PTR_ERR(curr);
1695 }
1696 /* Descriptor we don't care about? */
1697 if (!curr)
1698 break;
1699 if (vdsn >= curr->volDescSeqNum) {
1700 curr->volDescSeqNum = vdsn;
1701 curr->block = block;
1702 }
1703 break;
1704 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1705 done = true;
1706 break;
1707 }
1708 brelse(bh);
1709 }
1710 /*
1711 * Now read interesting descriptors again and process them
1712 * in a suitable order
1713 */
1714 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1715 udf_err(sb, "Primary Volume Descriptor not found!\n");
1716 return -EAGAIN;
1717 }
1718 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1719 if (ret < 0)
1720 return ret;
1721
1722 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1723 ret = udf_load_logicalvol(sb,
1724 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1725 fileset);
1726 if (ret < 0)
1727 return ret;
1728 }
1729
1730 /* Now handle prevailing Partition Descriptors */
1731 for (i = 0; i < data.size_part_descs; i++) {
1732 if (data.part_descs_loc[i].block) {
1733 ret = udf_load_partdesc(sb,
1734 data.part_descs_loc[i].block);
1735 if (ret < 0)
1736 return ret;
1737 }
1738 }
1739
1740 return 0;
1741}
1742
1743/*
1744 * Load Volume Descriptor Sequence described by anchor in bh
1745 *
1746 * Returns <0 on error, 0 on success
1747 */
1748static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1749 struct kernel_lb_addr *fileset)
1750{
1751 struct anchorVolDescPtr *anchor;
1752 sector_t main_s, main_e, reserve_s, reserve_e;
1753 int ret;
1754
1755 anchor = (struct anchorVolDescPtr *)bh->b_data;
1756
1757 /* Locate the main sequence */
1758 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1759 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1760 main_e = main_e >> sb->s_blocksize_bits;
1761 main_e += main_s - 1;
1762
1763 /* Locate the reserve sequence */
1764 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1765 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1766 reserve_e = reserve_e >> sb->s_blocksize_bits;
1767 reserve_e += reserve_s - 1;
1768
1769 /* Process the main & reserve sequences */
1770 /* responsible for finding the PartitionDesc(s) */
1771 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1772 if (ret != -EAGAIN)
1773 return ret;
1774 udf_sb_free_partitions(sb);
1775 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1776 if (ret < 0) {
1777 udf_sb_free_partitions(sb);
1778 /* No sequence was OK, return -EIO */
1779 if (ret == -EAGAIN)
1780 ret = -EIO;
1781 }
1782 return ret;
1783}
1784
1785/*
1786 * Check whether there is an anchor block in the given block and
1787 * load Volume Descriptor Sequence if so.
1788 *
1789 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1790 * block
1791 */
1792static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1793 struct kernel_lb_addr *fileset)
1794{
1795 struct buffer_head *bh;
1796 uint16_t ident;
1797 int ret;
1798
1799 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1800 udf_fixed_to_variable(block) >=
1801 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1802 return -EAGAIN;
1803
1804 bh = udf_read_tagged(sb, block, block, &ident);
1805 if (!bh)
1806 return -EAGAIN;
1807 if (ident != TAG_IDENT_AVDP) {
1808 brelse(bh);
1809 return -EAGAIN;
1810 }
1811 ret = udf_load_sequence(sb, bh, fileset);
1812 brelse(bh);
1813 return ret;
1814}
1815
1816/*
1817 * Search for an anchor volume descriptor pointer.
1818 *
1819 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1820 * of anchors.
1821 */
1822static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1823 struct kernel_lb_addr *fileset)
1824{
1825 sector_t last[6];
1826 int i;
1827 struct udf_sb_info *sbi = UDF_SB(sb);
1828 int last_count = 0;
1829 int ret;
1830
1831 /* First try user provided anchor */
1832 if (sbi->s_anchor) {
1833 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1834 if (ret != -EAGAIN)
1835 return ret;
1836 }
1837 /*
1838 * according to spec, anchor is in either:
1839 * block 256
1840 * lastblock-256
1841 * lastblock
1842 * however, if the disc isn't closed, it could be 512.
1843 */
1844 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1845 if (ret != -EAGAIN)
1846 return ret;
1847 /*
1848 * The trouble is which block is the last one. Drives often misreport
1849 * this so we try various possibilities.
1850 */
1851 last[last_count++] = *lastblock;
1852 if (*lastblock >= 1)
1853 last[last_count++] = *lastblock - 1;
1854 last[last_count++] = *lastblock + 1;
1855 if (*lastblock >= 2)
1856 last[last_count++] = *lastblock - 2;
1857 if (*lastblock >= 150)
1858 last[last_count++] = *lastblock - 150;
1859 if (*lastblock >= 152)
1860 last[last_count++] = *lastblock - 152;
1861
1862 for (i = 0; i < last_count; i++) {
1863 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1864 sb->s_blocksize_bits)
1865 continue;
1866 ret = udf_check_anchor_block(sb, last[i], fileset);
1867 if (ret != -EAGAIN) {
1868 if (!ret)
1869 *lastblock = last[i];
1870 return ret;
1871 }
1872 if (last[i] < 256)
1873 continue;
1874 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1875 if (ret != -EAGAIN) {
1876 if (!ret)
1877 *lastblock = last[i];
1878 return ret;
1879 }
1880 }
1881
1882 /* Finally try block 512 in case media is open */
1883 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1884}
1885
1886/*
1887 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1888 * area specified by it. The function expects sbi->s_lastblock to be the last
1889 * block on the media.
1890 *
1891 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1892 * was not found.
1893 */
1894static int udf_find_anchor(struct super_block *sb,
1895 struct kernel_lb_addr *fileset)
1896{
1897 struct udf_sb_info *sbi = UDF_SB(sb);
1898 sector_t lastblock = sbi->s_last_block;
1899 int ret;
1900
1901 ret = udf_scan_anchors(sb, &lastblock, fileset);
1902 if (ret != -EAGAIN)
1903 goto out;
1904
1905 /* No anchor found? Try VARCONV conversion of block numbers */
1906 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1907 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1908 /* Firstly, we try to not convert number of the last block */
1909 ret = udf_scan_anchors(sb, &lastblock, fileset);
1910 if (ret != -EAGAIN)
1911 goto out;
1912
1913 lastblock = sbi->s_last_block;
1914 /* Secondly, we try with converted number of the last block */
1915 ret = udf_scan_anchors(sb, &lastblock, fileset);
1916 if (ret < 0) {
1917 /* VARCONV didn't help. Clear it. */
1918 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1919 }
1920out:
1921 if (ret == 0)
1922 sbi->s_last_block = lastblock;
1923 return ret;
1924}
1925
1926/*
1927 * Check Volume Structure Descriptor, find Anchor block and load Volume
1928 * Descriptor Sequence.
1929 *
1930 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1931 * block was not found.
1932 */
1933static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1934 int silent, struct kernel_lb_addr *fileset)
1935{
1936 struct udf_sb_info *sbi = UDF_SB(sb);
1937 loff_t nsr_off;
1938 int ret;
1939
1940 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1941 if (!silent)
1942 udf_warn(sb, "Bad block size\n");
1943 return -EINVAL;
1944 }
1945 sbi->s_last_block = uopt->lastblock;
1946 if (!uopt->novrs) {
1947 /* Check that it is NSR02 compliant */
1948 nsr_off = udf_check_vsd(sb);
1949 if (!nsr_off) {
1950 if (!silent)
1951 udf_warn(sb, "No VRS found\n");
1952 return -EINVAL;
1953 }
1954 if (nsr_off == -1)
1955 udf_debug("Failed to read sector at offset %d. "
1956 "Assuming open disc. Skipping validity "
1957 "check\n", VSD_FIRST_SECTOR_OFFSET);
1958 if (!sbi->s_last_block)
1959 sbi->s_last_block = udf_get_last_block(sb);
1960 } else {
1961 udf_debug("Validity check skipped because of novrs option\n");
1962 }
1963
1964 /* Look for anchor block and load Volume Descriptor Sequence */
1965 sbi->s_anchor = uopt->anchor;
1966 ret = udf_find_anchor(sb, fileset);
1967 if (ret < 0) {
1968 if (!silent && ret == -EAGAIN)
1969 udf_warn(sb, "No anchor found\n");
1970 return ret;
1971 }
1972 return 0;
1973}
1974
1975static void udf_open_lvid(struct super_block *sb)
1976{
1977 struct udf_sb_info *sbi = UDF_SB(sb);
1978 struct buffer_head *bh = sbi->s_lvid_bh;
1979 struct logicalVolIntegrityDesc *lvid;
1980 struct logicalVolIntegrityDescImpUse *lvidiu;
1981 struct timespec ts;
1982
1983 if (!bh)
1984 return;
1985 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1986 lvidiu = udf_sb_lvidiu(sb);
1987 if (!lvidiu)
1988 return;
1989
1990 mutex_lock(&sbi->s_alloc_mutex);
1991 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1992 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1993 ktime_get_real_ts(&ts);
1994 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1995 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
1996 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1997 else
1998 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
1999
2000 lvid->descTag.descCRC = cpu_to_le16(
2001 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2002 le16_to_cpu(lvid->descTag.descCRCLength)));
2003
2004 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2005 mark_buffer_dirty(bh);
2006 sbi->s_lvid_dirty = 0;
2007 mutex_unlock(&sbi->s_alloc_mutex);
2008 /* Make opening of filesystem visible on the media immediately */
2009 sync_dirty_buffer(bh);
2010}
2011
2012static void udf_close_lvid(struct super_block *sb)
2013{
2014 struct udf_sb_info *sbi = UDF_SB(sb);
2015 struct buffer_head *bh = sbi->s_lvid_bh;
2016 struct logicalVolIntegrityDesc *lvid;
2017 struct logicalVolIntegrityDescImpUse *lvidiu;
2018 struct timespec ts;
2019
2020 if (!bh)
2021 return;
2022 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2023 lvidiu = udf_sb_lvidiu(sb);
2024 if (!lvidiu)
2025 return;
2026
2027 mutex_lock(&sbi->s_alloc_mutex);
2028 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2029 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2030 ktime_get_real_ts(&ts);
2031 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2032 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2033 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2034 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2035 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2036 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2037 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2038 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2039 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2040
2041 lvid->descTag.descCRC = cpu_to_le16(
2042 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2043 le16_to_cpu(lvid->descTag.descCRCLength)));
2044
2045 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2046 /*
2047 * We set buffer uptodate unconditionally here to avoid spurious
2048 * warnings from mark_buffer_dirty() when previous EIO has marked
2049 * the buffer as !uptodate
2050 */
2051 set_buffer_uptodate(bh);
2052 mark_buffer_dirty(bh);
2053 sbi->s_lvid_dirty = 0;
2054 mutex_unlock(&sbi->s_alloc_mutex);
2055 /* Make closing of filesystem visible on the media immediately */
2056 sync_dirty_buffer(bh);
2057}
2058
2059u64 lvid_get_unique_id(struct super_block *sb)
2060{
2061 struct buffer_head *bh;
2062 struct udf_sb_info *sbi = UDF_SB(sb);
2063 struct logicalVolIntegrityDesc *lvid;
2064 struct logicalVolHeaderDesc *lvhd;
2065 u64 uniqueID;
2066 u64 ret;
2067
2068 bh = sbi->s_lvid_bh;
2069 if (!bh)
2070 return 0;
2071
2072 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2073 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2074
2075 mutex_lock(&sbi->s_alloc_mutex);
2076 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2077 if (!(++uniqueID & 0xFFFFFFFF))
2078 uniqueID += 16;
2079 lvhd->uniqueID = cpu_to_le64(uniqueID);
2080 mutex_unlock(&sbi->s_alloc_mutex);
2081 mark_buffer_dirty(bh);
2082
2083 return ret;
2084}
2085
2086static int udf_fill_super(struct super_block *sb, void *options, int silent)
2087{
2088 int ret = -EINVAL;
2089 struct inode *inode = NULL;
2090 struct udf_options uopt;
2091 struct kernel_lb_addr rootdir, fileset;
2092 struct udf_sb_info *sbi;
2093 bool lvid_open = false;
2094
2095 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2096 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2097 uopt.uid = make_kuid(current_user_ns(), overflowuid);
2098 uopt.gid = make_kgid(current_user_ns(), overflowgid);
2099 uopt.umask = 0;
2100 uopt.fmode = UDF_INVALID_MODE;
2101 uopt.dmode = UDF_INVALID_MODE;
2102 uopt.nls_map = NULL;
2103
2104 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2105 if (!sbi)
2106 return -ENOMEM;
2107
2108 sb->s_fs_info = sbi;
2109
2110 mutex_init(&sbi->s_alloc_mutex);
2111
2112 if (!udf_parse_options((char *)options, &uopt, false))
2113 goto parse_options_failure;
2114
2115 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2116 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2117 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2118 goto parse_options_failure;
2119 }
2120#ifdef CONFIG_UDF_NLS
2121 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2122 uopt.nls_map = load_nls_default();
2123 if (!uopt.nls_map)
2124 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2125 else
2126 udf_debug("Using default NLS map\n");
2127 }
2128#endif
2129 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2130 uopt.flags |= (1 << UDF_FLAG_UTF8);
2131
2132 fileset.logicalBlockNum = 0xFFFFFFFF;
2133 fileset.partitionReferenceNum = 0xFFFF;
2134
2135 sbi->s_flags = uopt.flags;
2136 sbi->s_uid = uopt.uid;
2137 sbi->s_gid = uopt.gid;
2138 sbi->s_umask = uopt.umask;
2139 sbi->s_fmode = uopt.fmode;
2140 sbi->s_dmode = uopt.dmode;
2141 sbi->s_nls_map = uopt.nls_map;
2142 rwlock_init(&sbi->s_cred_lock);
2143
2144 if (uopt.session == 0xFFFFFFFF)
2145 sbi->s_session = udf_get_last_session(sb);
2146 else
2147 sbi->s_session = uopt.session;
2148
2149 udf_debug("Multi-session=%d\n", sbi->s_session);
2150
2151 /* Fill in the rest of the superblock */
2152 sb->s_op = &udf_sb_ops;
2153 sb->s_export_op = &udf_export_ops;
2154
2155 sb->s_magic = UDF_SUPER_MAGIC;
2156 sb->s_time_gran = 1000;
2157
2158 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2159 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2160 } else {
2161 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2162 while (uopt.blocksize <= 4096) {
2163 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2164 if (ret < 0) {
2165 if (!silent && ret != -EACCES) {
2166 pr_notice("Scanning with blocksize %u failed\n",
2167 uopt.blocksize);
2168 }
2169 brelse(sbi->s_lvid_bh);
2170 sbi->s_lvid_bh = NULL;
2171 /*
2172 * EACCES is special - we want to propagate to
2173 * upper layers that we cannot handle RW mount.
2174 */
2175 if (ret == -EACCES)
2176 break;
2177 } else
2178 break;
2179
2180 uopt.blocksize <<= 1;
2181 }
2182 }
2183 if (ret < 0) {
2184 if (ret == -EAGAIN) {
2185 udf_warn(sb, "No partition found (1)\n");
2186 ret = -EINVAL;
2187 }
2188 goto error_out;
2189 }
2190
2191 udf_debug("Lastblock=%u\n", sbi->s_last_block);
2192
2193 if (sbi->s_lvid_bh) {
2194 struct logicalVolIntegrityDescImpUse *lvidiu =
2195 udf_sb_lvidiu(sb);
2196 uint16_t minUDFReadRev;
2197 uint16_t minUDFWriteRev;
2198
2199 if (!lvidiu) {
2200 ret = -EINVAL;
2201 goto error_out;
2202 }
2203 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2204 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2205 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2206 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2207 minUDFReadRev,
2208 UDF_MAX_READ_VERSION);
2209 ret = -EINVAL;
2210 goto error_out;
2211 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2212 !sb_rdonly(sb)) {
2213 ret = -EACCES;
2214 goto error_out;
2215 }
2216
2217 sbi->s_udfrev = minUDFWriteRev;
2218
2219 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2220 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2221 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2222 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2223 }
2224
2225 if (!sbi->s_partitions) {
2226 udf_warn(sb, "No partition found (2)\n");
2227 ret = -EINVAL;
2228 goto error_out;
2229 }
2230
2231 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2232 UDF_PART_FLAG_READ_ONLY &&
2233 !sb_rdonly(sb)) {
2234 ret = -EACCES;
2235 goto error_out;
2236 }
2237
2238 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2239 udf_warn(sb, "No fileset found\n");
2240 ret = -EINVAL;
2241 goto error_out;
2242 }
2243
2244 if (!silent) {
2245 struct timestamp ts;
2246 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2247 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2248 sbi->s_volume_ident,
2249 le16_to_cpu(ts.year), ts.month, ts.day,
2250 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2251 }
2252 if (!sb_rdonly(sb)) {
2253 udf_open_lvid(sb);
2254 lvid_open = true;
2255 }
2256
2257 /* Assign the root inode */
2258 /* assign inodes by physical block number */
2259 /* perhaps it's not extensible enough, but for now ... */
2260 inode = udf_iget(sb, &rootdir);
2261 if (IS_ERR(inode)) {
2262 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2263 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2264 ret = PTR_ERR(inode);
2265 goto error_out;
2266 }
2267
2268 /* Allocate a dentry for the root inode */
2269 sb->s_root = d_make_root(inode);
2270 if (!sb->s_root) {
2271 udf_err(sb, "Couldn't allocate root dentry\n");
2272 ret = -ENOMEM;
2273 goto error_out;
2274 }
2275 sb->s_maxbytes = MAX_LFS_FILESIZE;
2276 sb->s_max_links = UDF_MAX_LINKS;
2277 return 0;
2278
2279error_out:
2280 iput(sbi->s_vat_inode);
2281parse_options_failure:
2282#ifdef CONFIG_UDF_NLS
2283 if (uopt.nls_map)
2284 unload_nls(uopt.nls_map);
2285#endif
2286 if (lvid_open)
2287 udf_close_lvid(sb);
2288 brelse(sbi->s_lvid_bh);
2289 udf_sb_free_partitions(sb);
2290 kfree(sbi);
2291 sb->s_fs_info = NULL;
2292
2293 return ret;
2294}
2295
2296void _udf_err(struct super_block *sb, const char *function,
2297 const char *fmt, ...)
2298{
2299 struct va_format vaf;
2300 va_list args;
2301
2302 va_start(args, fmt);
2303
2304 vaf.fmt = fmt;
2305 vaf.va = &args;
2306
2307 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2308
2309 va_end(args);
2310}
2311
2312void _udf_warn(struct super_block *sb, const char *function,
2313 const char *fmt, ...)
2314{
2315 struct va_format vaf;
2316 va_list args;
2317
2318 va_start(args, fmt);
2319
2320 vaf.fmt = fmt;
2321 vaf.va = &args;
2322
2323 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2324
2325 va_end(args);
2326}
2327
2328static void udf_put_super(struct super_block *sb)
2329{
2330 struct udf_sb_info *sbi;
2331
2332 sbi = UDF_SB(sb);
2333
2334 iput(sbi->s_vat_inode);
2335#ifdef CONFIG_UDF_NLS
2336 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2337 unload_nls(sbi->s_nls_map);
2338#endif
2339 if (!sb_rdonly(sb))
2340 udf_close_lvid(sb);
2341 brelse(sbi->s_lvid_bh);
2342 udf_sb_free_partitions(sb);
2343 mutex_destroy(&sbi->s_alloc_mutex);
2344 kfree(sb->s_fs_info);
2345 sb->s_fs_info = NULL;
2346}
2347
2348static int udf_sync_fs(struct super_block *sb, int wait)
2349{
2350 struct udf_sb_info *sbi = UDF_SB(sb);
2351
2352 mutex_lock(&sbi->s_alloc_mutex);
2353 if (sbi->s_lvid_dirty) {
2354 /*
2355 * Blockdevice will be synced later so we don't have to submit
2356 * the buffer for IO
2357 */
2358 mark_buffer_dirty(sbi->s_lvid_bh);
2359 sbi->s_lvid_dirty = 0;
2360 }
2361 mutex_unlock(&sbi->s_alloc_mutex);
2362
2363 return 0;
2364}
2365
2366static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2367{
2368 struct super_block *sb = dentry->d_sb;
2369 struct udf_sb_info *sbi = UDF_SB(sb);
2370 struct logicalVolIntegrityDescImpUse *lvidiu;
2371 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2372
2373 lvidiu = udf_sb_lvidiu(sb);
2374 buf->f_type = UDF_SUPER_MAGIC;
2375 buf->f_bsize = sb->s_blocksize;
2376 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2377 buf->f_bfree = udf_count_free(sb);
2378 buf->f_bavail = buf->f_bfree;
2379 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2380 le32_to_cpu(lvidiu->numDirs)) : 0)
2381 + buf->f_bfree;
2382 buf->f_ffree = buf->f_bfree;
2383 buf->f_namelen = UDF_NAME_LEN;
2384 buf->f_fsid.val[0] = (u32)id;
2385 buf->f_fsid.val[1] = (u32)(id >> 32);
2386
2387 return 0;
2388}
2389
2390static unsigned int udf_count_free_bitmap(struct super_block *sb,
2391 struct udf_bitmap *bitmap)
2392{
2393 struct buffer_head *bh = NULL;
2394 unsigned int accum = 0;
2395 int index;
2396 udf_pblk_t block = 0, newblock;
2397 struct kernel_lb_addr loc;
2398 uint32_t bytes;
2399 uint8_t *ptr;
2400 uint16_t ident;
2401 struct spaceBitmapDesc *bm;
2402
2403 loc.logicalBlockNum = bitmap->s_extPosition;
2404 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2405 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2406
2407 if (!bh) {
2408 udf_err(sb, "udf_count_free failed\n");
2409 goto out;
2410 } else if (ident != TAG_IDENT_SBD) {
2411 brelse(bh);
2412 udf_err(sb, "udf_count_free failed\n");
2413 goto out;
2414 }
2415
2416 bm = (struct spaceBitmapDesc *)bh->b_data;
2417 bytes = le32_to_cpu(bm->numOfBytes);
2418 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2419 ptr = (uint8_t *)bh->b_data;
2420
2421 while (bytes > 0) {
2422 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2423 accum += bitmap_weight((const unsigned long *)(ptr + index),
2424 cur_bytes * 8);
2425 bytes -= cur_bytes;
2426 if (bytes) {
2427 brelse(bh);
2428 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2429 bh = udf_tread(sb, newblock);
2430 if (!bh) {
2431 udf_debug("read failed\n");
2432 goto out;
2433 }
2434 index = 0;
2435 ptr = (uint8_t *)bh->b_data;
2436 }
2437 }
2438 brelse(bh);
2439out:
2440 return accum;
2441}
2442
2443static unsigned int udf_count_free_table(struct super_block *sb,
2444 struct inode *table)
2445{
2446 unsigned int accum = 0;
2447 uint32_t elen;
2448 struct kernel_lb_addr eloc;
2449 int8_t etype;
2450 struct extent_position epos;
2451
2452 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2453 epos.block = UDF_I(table)->i_location;
2454 epos.offset = sizeof(struct unallocSpaceEntry);
2455 epos.bh = NULL;
2456
2457 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2458 accum += (elen >> table->i_sb->s_blocksize_bits);
2459
2460 brelse(epos.bh);
2461 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2462
2463 return accum;
2464}
2465
2466static unsigned int udf_count_free(struct super_block *sb)
2467{
2468 unsigned int accum = 0;
2469 struct udf_sb_info *sbi;
2470 struct udf_part_map *map;
2471
2472 sbi = UDF_SB(sb);
2473 if (sbi->s_lvid_bh) {
2474 struct logicalVolIntegrityDesc *lvid =
2475 (struct logicalVolIntegrityDesc *)
2476 sbi->s_lvid_bh->b_data;
2477 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2478 accum = le32_to_cpu(
2479 lvid->freeSpaceTable[sbi->s_partition]);
2480 if (accum == 0xFFFFFFFF)
2481 accum = 0;
2482 }
2483 }
2484
2485 if (accum)
2486 return accum;
2487
2488 map = &sbi->s_partmaps[sbi->s_partition];
2489 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2490 accum += udf_count_free_bitmap(sb,
2491 map->s_uspace.s_bitmap);
2492 }
2493 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2494 accum += udf_count_free_bitmap(sb,
2495 map->s_fspace.s_bitmap);
2496 }
2497 if (accum)
2498 return accum;
2499
2500 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2501 accum += udf_count_free_table(sb,
2502 map->s_uspace.s_table);
2503 }
2504 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2505 accum += udf_count_free_table(sb,
2506 map->s_fspace.s_table);
2507 }
2508
2509 return accum;
2510}
2511
2512MODULE_AUTHOR("Ben Fennema");
2513MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2514MODULE_LICENSE("GPL");
2515module_init(init_udf_fs)
2516module_exit(exit_udf_fs)
1/*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41#include "udfdecl.h"
42
43#include <linux/blkdev.h>
44#include <linux/slab.h>
45#include <linux/kernel.h>
46#include <linux/module.h>
47#include <linux/parser.h>
48#include <linux/stat.h>
49#include <linux/cdrom.h>
50#include <linux/nls.h>
51#include <linux/vfs.h>
52#include <linux/vmalloc.h>
53#include <linux/errno.h>
54#include <linux/mount.h>
55#include <linux/seq_file.h>
56#include <linux/bitmap.h>
57#include <linux/crc-itu-t.h>
58#include <linux/log2.h>
59#include <asm/byteorder.h>
60
61#include "udf_sb.h"
62#include "udf_i.h"
63
64#include <linux/init.h>
65#include <linux/uaccess.h>
66
67#define VDS_POS_PRIMARY_VOL_DESC 0
68#define VDS_POS_UNALLOC_SPACE_DESC 1
69#define VDS_POS_LOGICAL_VOL_DESC 2
70#define VDS_POS_PARTITION_DESC 3
71#define VDS_POS_IMP_USE_VOL_DESC 4
72#define VDS_POS_VOL_DESC_PTR 5
73#define VDS_POS_TERMINATING_DESC 6
74#define VDS_POS_LENGTH 7
75
76#define UDF_DEFAULT_BLOCKSIZE 2048
77
78#define VSD_FIRST_SECTOR_OFFSET 32768
79#define VSD_MAX_SECTOR_OFFSET 0x800000
80
81/*
82 * Maximum number of Terminating Descriptor / Logical Volume Integrity
83 * Descriptor redirections. The chosen numbers are arbitrary - just that we
84 * hopefully don't limit any real use of rewritten inode on write-once media
85 * but avoid looping for too long on corrupted media.
86 */
87#define UDF_MAX_TD_NESTING 64
88#define UDF_MAX_LVID_NESTING 1000
89
90enum { UDF_MAX_LINKS = 0xffff };
91
92/* These are the "meat" - everything else is stuffing */
93static int udf_fill_super(struct super_block *, void *, int);
94static void udf_put_super(struct super_block *);
95static int udf_sync_fs(struct super_block *, int);
96static int udf_remount_fs(struct super_block *, int *, char *);
97static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
98static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
99 struct kernel_lb_addr *);
100static void udf_load_fileset(struct super_block *, struct buffer_head *,
101 struct kernel_lb_addr *);
102static void udf_open_lvid(struct super_block *);
103static void udf_close_lvid(struct super_block *);
104static unsigned int udf_count_free(struct super_block *);
105static int udf_statfs(struct dentry *, struct kstatfs *);
106static int udf_show_options(struct seq_file *, struct dentry *);
107
108struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
109{
110 struct logicalVolIntegrityDesc *lvid;
111 unsigned int partnum;
112 unsigned int offset;
113
114 if (!UDF_SB(sb)->s_lvid_bh)
115 return NULL;
116 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
117 partnum = le32_to_cpu(lvid->numOfPartitions);
118 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
119 offsetof(struct logicalVolIntegrityDesc, impUse)) /
120 (2 * sizeof(uint32_t)) < partnum) {
121 udf_err(sb, "Logical volume integrity descriptor corrupted "
122 "(numOfPartitions = %u)!\n", partnum);
123 return NULL;
124 }
125 /* The offset is to skip freeSpaceTable and sizeTable arrays */
126 offset = partnum * 2 * sizeof(uint32_t);
127 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
128}
129
130/* UDF filesystem type */
131static struct dentry *udf_mount(struct file_system_type *fs_type,
132 int flags, const char *dev_name, void *data)
133{
134 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
135}
136
137static struct file_system_type udf_fstype = {
138 .owner = THIS_MODULE,
139 .name = "udf",
140 .mount = udf_mount,
141 .kill_sb = kill_block_super,
142 .fs_flags = FS_REQUIRES_DEV,
143};
144MODULE_ALIAS_FS("udf");
145
146static struct kmem_cache *udf_inode_cachep;
147
148static struct inode *udf_alloc_inode(struct super_block *sb)
149{
150 struct udf_inode_info *ei;
151 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
152 if (!ei)
153 return NULL;
154
155 ei->i_unique = 0;
156 ei->i_lenExtents = 0;
157 ei->i_next_alloc_block = 0;
158 ei->i_next_alloc_goal = 0;
159 ei->i_strat4096 = 0;
160 init_rwsem(&ei->i_data_sem);
161 ei->cached_extent.lstart = -1;
162 spin_lock_init(&ei->i_extent_cache_lock);
163
164 return &ei->vfs_inode;
165}
166
167static void udf_i_callback(struct rcu_head *head)
168{
169 struct inode *inode = container_of(head, struct inode, i_rcu);
170 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
171}
172
173static void udf_destroy_inode(struct inode *inode)
174{
175 call_rcu(&inode->i_rcu, udf_i_callback);
176}
177
178static void init_once(void *foo)
179{
180 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
181
182 ei->i_ext.i_data = NULL;
183 inode_init_once(&ei->vfs_inode);
184}
185
186static int __init init_inodecache(void)
187{
188 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
189 sizeof(struct udf_inode_info),
190 0, (SLAB_RECLAIM_ACCOUNT |
191 SLAB_MEM_SPREAD |
192 SLAB_ACCOUNT),
193 init_once);
194 if (!udf_inode_cachep)
195 return -ENOMEM;
196 return 0;
197}
198
199static void destroy_inodecache(void)
200{
201 /*
202 * Make sure all delayed rcu free inodes are flushed before we
203 * destroy cache.
204 */
205 rcu_barrier();
206 kmem_cache_destroy(udf_inode_cachep);
207}
208
209/* Superblock operations */
210static const struct super_operations udf_sb_ops = {
211 .alloc_inode = udf_alloc_inode,
212 .destroy_inode = udf_destroy_inode,
213 .write_inode = udf_write_inode,
214 .evict_inode = udf_evict_inode,
215 .put_super = udf_put_super,
216 .sync_fs = udf_sync_fs,
217 .statfs = udf_statfs,
218 .remount_fs = udf_remount_fs,
219 .show_options = udf_show_options,
220};
221
222struct udf_options {
223 unsigned char novrs;
224 unsigned int blocksize;
225 unsigned int session;
226 unsigned int lastblock;
227 unsigned int anchor;
228 unsigned int volume;
229 unsigned short partition;
230 unsigned int fileset;
231 unsigned int rootdir;
232 unsigned int flags;
233 umode_t umask;
234 kgid_t gid;
235 kuid_t uid;
236 umode_t fmode;
237 umode_t dmode;
238 struct nls_table *nls_map;
239};
240
241static int __init init_udf_fs(void)
242{
243 int err;
244
245 err = init_inodecache();
246 if (err)
247 goto out1;
248 err = register_filesystem(&udf_fstype);
249 if (err)
250 goto out;
251
252 return 0;
253
254out:
255 destroy_inodecache();
256
257out1:
258 return err;
259}
260
261static void __exit exit_udf_fs(void)
262{
263 unregister_filesystem(&udf_fstype);
264 destroy_inodecache();
265}
266
267module_init(init_udf_fs)
268module_exit(exit_udf_fs)
269
270static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
271{
272 struct udf_sb_info *sbi = UDF_SB(sb);
273
274 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
275 GFP_KERNEL);
276 if (!sbi->s_partmaps) {
277 udf_err(sb, "Unable to allocate space for %d partition maps\n",
278 count);
279 sbi->s_partitions = 0;
280 return -ENOMEM;
281 }
282
283 sbi->s_partitions = count;
284 return 0;
285}
286
287static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
288{
289 int i;
290 int nr_groups = bitmap->s_nr_groups;
291
292 for (i = 0; i < nr_groups; i++)
293 if (bitmap->s_block_bitmap[i])
294 brelse(bitmap->s_block_bitmap[i]);
295
296 kvfree(bitmap);
297}
298
299static void udf_free_partition(struct udf_part_map *map)
300{
301 int i;
302 struct udf_meta_data *mdata;
303
304 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
305 iput(map->s_uspace.s_table);
306 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
307 iput(map->s_fspace.s_table);
308 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
309 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
310 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
311 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
312 if (map->s_partition_type == UDF_SPARABLE_MAP15)
313 for (i = 0; i < 4; i++)
314 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
315 else if (map->s_partition_type == UDF_METADATA_MAP25) {
316 mdata = &map->s_type_specific.s_metadata;
317 iput(mdata->s_metadata_fe);
318 mdata->s_metadata_fe = NULL;
319
320 iput(mdata->s_mirror_fe);
321 mdata->s_mirror_fe = NULL;
322
323 iput(mdata->s_bitmap_fe);
324 mdata->s_bitmap_fe = NULL;
325 }
326}
327
328static void udf_sb_free_partitions(struct super_block *sb)
329{
330 struct udf_sb_info *sbi = UDF_SB(sb);
331 int i;
332 if (sbi->s_partmaps == NULL)
333 return;
334 for (i = 0; i < sbi->s_partitions; i++)
335 udf_free_partition(&sbi->s_partmaps[i]);
336 kfree(sbi->s_partmaps);
337 sbi->s_partmaps = NULL;
338}
339
340static int udf_show_options(struct seq_file *seq, struct dentry *root)
341{
342 struct super_block *sb = root->d_sb;
343 struct udf_sb_info *sbi = UDF_SB(sb);
344
345 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
346 seq_puts(seq, ",nostrict");
347 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
348 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
349 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
350 seq_puts(seq, ",unhide");
351 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
352 seq_puts(seq, ",undelete");
353 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
354 seq_puts(seq, ",noadinicb");
355 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
356 seq_puts(seq, ",shortad");
357 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
358 seq_puts(seq, ",uid=forget");
359 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
360 seq_puts(seq, ",uid=ignore");
361 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
362 seq_puts(seq, ",gid=forget");
363 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
364 seq_puts(seq, ",gid=ignore");
365 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
366 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
367 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
368 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
369 if (sbi->s_umask != 0)
370 seq_printf(seq, ",umask=%ho", sbi->s_umask);
371 if (sbi->s_fmode != UDF_INVALID_MODE)
372 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
373 if (sbi->s_dmode != UDF_INVALID_MODE)
374 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
375 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
376 seq_printf(seq, ",session=%u", sbi->s_session);
377 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
378 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
379 if (sbi->s_anchor != 0)
380 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
381 /*
382 * volume, partition, fileset and rootdir seem to be ignored
383 * currently
384 */
385 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
386 seq_puts(seq, ",utf8");
387 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
388 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
389
390 return 0;
391}
392
393/*
394 * udf_parse_options
395 *
396 * PURPOSE
397 * Parse mount options.
398 *
399 * DESCRIPTION
400 * The following mount options are supported:
401 *
402 * gid= Set the default group.
403 * umask= Set the default umask.
404 * mode= Set the default file permissions.
405 * dmode= Set the default directory permissions.
406 * uid= Set the default user.
407 * bs= Set the block size.
408 * unhide Show otherwise hidden files.
409 * undelete Show deleted files in lists.
410 * adinicb Embed data in the inode (default)
411 * noadinicb Don't embed data in the inode
412 * shortad Use short ad's
413 * longad Use long ad's (default)
414 * nostrict Unset strict conformance
415 * iocharset= Set the NLS character set
416 *
417 * The remaining are for debugging and disaster recovery:
418 *
419 * novrs Skip volume sequence recognition
420 *
421 * The following expect a offset from 0.
422 *
423 * session= Set the CDROM session (default= last session)
424 * anchor= Override standard anchor location. (default= 256)
425 * volume= Override the VolumeDesc location. (unused)
426 * partition= Override the PartitionDesc location. (unused)
427 * lastblock= Set the last block of the filesystem/
428 *
429 * The following expect a offset from the partition root.
430 *
431 * fileset= Override the fileset block location. (unused)
432 * rootdir= Override the root directory location. (unused)
433 * WARNING: overriding the rootdir to a non-directory may
434 * yield highly unpredictable results.
435 *
436 * PRE-CONDITIONS
437 * options Pointer to mount options string.
438 * uopts Pointer to mount options variable.
439 *
440 * POST-CONDITIONS
441 * <return> 1 Mount options parsed okay.
442 * <return> 0 Error parsing mount options.
443 *
444 * HISTORY
445 * July 1, 1997 - Andrew E. Mileski
446 * Written, tested, and released.
447 */
448
449enum {
450 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
451 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
452 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
453 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
454 Opt_rootdir, Opt_utf8, Opt_iocharset,
455 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
456 Opt_fmode, Opt_dmode
457};
458
459static const match_table_t tokens = {
460 {Opt_novrs, "novrs"},
461 {Opt_nostrict, "nostrict"},
462 {Opt_bs, "bs=%u"},
463 {Opt_unhide, "unhide"},
464 {Opt_undelete, "undelete"},
465 {Opt_noadinicb, "noadinicb"},
466 {Opt_adinicb, "adinicb"},
467 {Opt_shortad, "shortad"},
468 {Opt_longad, "longad"},
469 {Opt_uforget, "uid=forget"},
470 {Opt_uignore, "uid=ignore"},
471 {Opt_gforget, "gid=forget"},
472 {Opt_gignore, "gid=ignore"},
473 {Opt_gid, "gid=%u"},
474 {Opt_uid, "uid=%u"},
475 {Opt_umask, "umask=%o"},
476 {Opt_session, "session=%u"},
477 {Opt_lastblock, "lastblock=%u"},
478 {Opt_anchor, "anchor=%u"},
479 {Opt_volume, "volume=%u"},
480 {Opt_partition, "partition=%u"},
481 {Opt_fileset, "fileset=%u"},
482 {Opt_rootdir, "rootdir=%u"},
483 {Opt_utf8, "utf8"},
484 {Opt_iocharset, "iocharset=%s"},
485 {Opt_fmode, "mode=%o"},
486 {Opt_dmode, "dmode=%o"},
487 {Opt_err, NULL}
488};
489
490static int udf_parse_options(char *options, struct udf_options *uopt,
491 bool remount)
492{
493 char *p;
494 int option;
495
496 uopt->novrs = 0;
497 uopt->partition = 0xFFFF;
498 uopt->session = 0xFFFFFFFF;
499 uopt->lastblock = 0;
500 uopt->anchor = 0;
501 uopt->volume = 0xFFFFFFFF;
502 uopt->rootdir = 0xFFFFFFFF;
503 uopt->fileset = 0xFFFFFFFF;
504 uopt->nls_map = NULL;
505
506 if (!options)
507 return 1;
508
509 while ((p = strsep(&options, ",")) != NULL) {
510 substring_t args[MAX_OPT_ARGS];
511 int token;
512 unsigned n;
513 if (!*p)
514 continue;
515
516 token = match_token(p, tokens, args);
517 switch (token) {
518 case Opt_novrs:
519 uopt->novrs = 1;
520 break;
521 case Opt_bs:
522 if (match_int(&args[0], &option))
523 return 0;
524 n = option;
525 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
526 return 0;
527 uopt->blocksize = n;
528 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
529 break;
530 case Opt_unhide:
531 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
532 break;
533 case Opt_undelete:
534 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
535 break;
536 case Opt_noadinicb:
537 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
538 break;
539 case Opt_adinicb:
540 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
541 break;
542 case Opt_shortad:
543 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
544 break;
545 case Opt_longad:
546 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
547 break;
548 case Opt_gid:
549 if (match_int(args, &option))
550 return 0;
551 uopt->gid = make_kgid(current_user_ns(), option);
552 if (!gid_valid(uopt->gid))
553 return 0;
554 uopt->flags |= (1 << UDF_FLAG_GID_SET);
555 break;
556 case Opt_uid:
557 if (match_int(args, &option))
558 return 0;
559 uopt->uid = make_kuid(current_user_ns(), option);
560 if (!uid_valid(uopt->uid))
561 return 0;
562 uopt->flags |= (1 << UDF_FLAG_UID_SET);
563 break;
564 case Opt_umask:
565 if (match_octal(args, &option))
566 return 0;
567 uopt->umask = option;
568 break;
569 case Opt_nostrict:
570 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
571 break;
572 case Opt_session:
573 if (match_int(args, &option))
574 return 0;
575 uopt->session = option;
576 if (!remount)
577 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
578 break;
579 case Opt_lastblock:
580 if (match_int(args, &option))
581 return 0;
582 uopt->lastblock = option;
583 if (!remount)
584 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
585 break;
586 case Opt_anchor:
587 if (match_int(args, &option))
588 return 0;
589 uopt->anchor = option;
590 break;
591 case Opt_volume:
592 if (match_int(args, &option))
593 return 0;
594 uopt->volume = option;
595 break;
596 case Opt_partition:
597 if (match_int(args, &option))
598 return 0;
599 uopt->partition = option;
600 break;
601 case Opt_fileset:
602 if (match_int(args, &option))
603 return 0;
604 uopt->fileset = option;
605 break;
606 case Opt_rootdir:
607 if (match_int(args, &option))
608 return 0;
609 uopt->rootdir = option;
610 break;
611 case Opt_utf8:
612 uopt->flags |= (1 << UDF_FLAG_UTF8);
613 break;
614#ifdef CONFIG_UDF_NLS
615 case Opt_iocharset:
616 uopt->nls_map = load_nls(args[0].from);
617 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
618 break;
619#endif
620 case Opt_uignore:
621 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
622 break;
623 case Opt_uforget:
624 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
625 break;
626 case Opt_gignore:
627 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
628 break;
629 case Opt_gforget:
630 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
631 break;
632 case Opt_fmode:
633 if (match_octal(args, &option))
634 return 0;
635 uopt->fmode = option & 0777;
636 break;
637 case Opt_dmode:
638 if (match_octal(args, &option))
639 return 0;
640 uopt->dmode = option & 0777;
641 break;
642 default:
643 pr_err("bad mount option \"%s\" or missing value\n", p);
644 return 0;
645 }
646 }
647 return 1;
648}
649
650static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
651{
652 struct udf_options uopt;
653 struct udf_sb_info *sbi = UDF_SB(sb);
654 int error = 0;
655 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
656
657 sync_filesystem(sb);
658 if (lvidiu) {
659 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
660 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
661 return -EACCES;
662 }
663
664 uopt.flags = sbi->s_flags;
665 uopt.uid = sbi->s_uid;
666 uopt.gid = sbi->s_gid;
667 uopt.umask = sbi->s_umask;
668 uopt.fmode = sbi->s_fmode;
669 uopt.dmode = sbi->s_dmode;
670
671 if (!udf_parse_options(options, &uopt, true))
672 return -EINVAL;
673
674 write_lock(&sbi->s_cred_lock);
675 sbi->s_flags = uopt.flags;
676 sbi->s_uid = uopt.uid;
677 sbi->s_gid = uopt.gid;
678 sbi->s_umask = uopt.umask;
679 sbi->s_fmode = uopt.fmode;
680 sbi->s_dmode = uopt.dmode;
681 write_unlock(&sbi->s_cred_lock);
682
683 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
684 goto out_unlock;
685
686 if (*flags & MS_RDONLY)
687 udf_close_lvid(sb);
688 else
689 udf_open_lvid(sb);
690
691out_unlock:
692 return error;
693}
694
695/* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
696/* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
697static loff_t udf_check_vsd(struct super_block *sb)
698{
699 struct volStructDesc *vsd = NULL;
700 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
701 int sectorsize;
702 struct buffer_head *bh = NULL;
703 int nsr02 = 0;
704 int nsr03 = 0;
705 struct udf_sb_info *sbi;
706
707 sbi = UDF_SB(sb);
708 if (sb->s_blocksize < sizeof(struct volStructDesc))
709 sectorsize = sizeof(struct volStructDesc);
710 else
711 sectorsize = sb->s_blocksize;
712
713 sector += (sbi->s_session << sb->s_blocksize_bits);
714
715 udf_debug("Starting at sector %u (%ld byte sectors)\n",
716 (unsigned int)(sector >> sb->s_blocksize_bits),
717 sb->s_blocksize);
718 /* Process the sequence (if applicable). The hard limit on the sector
719 * offset is arbitrary, hopefully large enough so that all valid UDF
720 * filesystems will be recognised. There is no mention of an upper
721 * bound to the size of the volume recognition area in the standard.
722 * The limit will prevent the code to read all the sectors of a
723 * specially crafted image (like a bluray disc full of CD001 sectors),
724 * potentially causing minutes or even hours of uninterruptible I/O
725 * activity. This actually happened with uninitialised SSD partitions
726 * (all 0xFF) before the check for the limit and all valid IDs were
727 * added */
728 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
729 sector += sectorsize) {
730 /* Read a block */
731 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
732 if (!bh)
733 break;
734
735 /* Look for ISO descriptors */
736 vsd = (struct volStructDesc *)(bh->b_data +
737 (sector & (sb->s_blocksize - 1)));
738
739 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
740 VSD_STD_ID_LEN)) {
741 switch (vsd->structType) {
742 case 0:
743 udf_debug("ISO9660 Boot Record found\n");
744 break;
745 case 1:
746 udf_debug("ISO9660 Primary Volume Descriptor found\n");
747 break;
748 case 2:
749 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
750 break;
751 case 3:
752 udf_debug("ISO9660 Volume Partition Descriptor found\n");
753 break;
754 case 255:
755 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
756 break;
757 default:
758 udf_debug("ISO9660 VRS (%u) found\n",
759 vsd->structType);
760 break;
761 }
762 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
763 VSD_STD_ID_LEN))
764 ; /* nothing */
765 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
766 VSD_STD_ID_LEN)) {
767 brelse(bh);
768 break;
769 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
770 VSD_STD_ID_LEN))
771 nsr02 = sector;
772 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
773 VSD_STD_ID_LEN))
774 nsr03 = sector;
775 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
776 VSD_STD_ID_LEN))
777 ; /* nothing */
778 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
779 VSD_STD_ID_LEN))
780 ; /* nothing */
781 else {
782 /* invalid id : end of volume recognition area */
783 brelse(bh);
784 break;
785 }
786 brelse(bh);
787 }
788
789 if (nsr03)
790 return nsr03;
791 else if (nsr02)
792 return nsr02;
793 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
794 VSD_FIRST_SECTOR_OFFSET)
795 return -1;
796 else
797 return 0;
798}
799
800static int udf_find_fileset(struct super_block *sb,
801 struct kernel_lb_addr *fileset,
802 struct kernel_lb_addr *root)
803{
804 struct buffer_head *bh = NULL;
805 long lastblock;
806 uint16_t ident;
807 struct udf_sb_info *sbi;
808
809 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
810 fileset->partitionReferenceNum != 0xFFFF) {
811 bh = udf_read_ptagged(sb, fileset, 0, &ident);
812
813 if (!bh) {
814 return 1;
815 } else if (ident != TAG_IDENT_FSD) {
816 brelse(bh);
817 return 1;
818 }
819
820 }
821
822 sbi = UDF_SB(sb);
823 if (!bh) {
824 /* Search backwards through the partitions */
825 struct kernel_lb_addr newfileset;
826
827/* --> cvg: FIXME - is it reasonable? */
828 return 1;
829
830 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
831 (newfileset.partitionReferenceNum != 0xFFFF &&
832 fileset->logicalBlockNum == 0xFFFFFFFF &&
833 fileset->partitionReferenceNum == 0xFFFF);
834 newfileset.partitionReferenceNum--) {
835 lastblock = sbi->s_partmaps
836 [newfileset.partitionReferenceNum]
837 .s_partition_len;
838 newfileset.logicalBlockNum = 0;
839
840 do {
841 bh = udf_read_ptagged(sb, &newfileset, 0,
842 &ident);
843 if (!bh) {
844 newfileset.logicalBlockNum++;
845 continue;
846 }
847
848 switch (ident) {
849 case TAG_IDENT_SBD:
850 {
851 struct spaceBitmapDesc *sp;
852 sp = (struct spaceBitmapDesc *)
853 bh->b_data;
854 newfileset.logicalBlockNum += 1 +
855 ((le32_to_cpu(sp->numOfBytes) +
856 sizeof(struct spaceBitmapDesc)
857 - 1) >> sb->s_blocksize_bits);
858 brelse(bh);
859 break;
860 }
861 case TAG_IDENT_FSD:
862 *fileset = newfileset;
863 break;
864 default:
865 newfileset.logicalBlockNum++;
866 brelse(bh);
867 bh = NULL;
868 break;
869 }
870 } while (newfileset.logicalBlockNum < lastblock &&
871 fileset->logicalBlockNum == 0xFFFFFFFF &&
872 fileset->partitionReferenceNum == 0xFFFF);
873 }
874 }
875
876 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
877 fileset->partitionReferenceNum != 0xFFFF) && bh) {
878 udf_debug("Fileset at block=%d, partition=%d\n",
879 fileset->logicalBlockNum,
880 fileset->partitionReferenceNum);
881
882 sbi->s_partition = fileset->partitionReferenceNum;
883 udf_load_fileset(sb, bh, root);
884 brelse(bh);
885 return 0;
886 }
887 return 1;
888}
889
890/*
891 * Load primary Volume Descriptor Sequence
892 *
893 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
894 * should be tried.
895 */
896static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
897{
898 struct primaryVolDesc *pvoldesc;
899 uint8_t *outstr;
900 struct buffer_head *bh;
901 uint16_t ident;
902 int ret = -ENOMEM;
903
904 outstr = kmalloc(128, GFP_NOFS);
905 if (!outstr)
906 return -ENOMEM;
907
908 bh = udf_read_tagged(sb, block, block, &ident);
909 if (!bh) {
910 ret = -EAGAIN;
911 goto out2;
912 }
913
914 if (ident != TAG_IDENT_PVD) {
915 ret = -EIO;
916 goto out_bh;
917 }
918
919 pvoldesc = (struct primaryVolDesc *)bh->b_data;
920
921 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
922 pvoldesc->recordingDateAndTime)) {
923#ifdef UDFFS_DEBUG
924 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
925 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
926 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
927 ts->minute, le16_to_cpu(ts->typeAndTimezone));
928#endif
929 }
930
931 ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
932 if (ret < 0)
933 goto out_bh;
934
935 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
936 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
937
938 ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
939 if (ret < 0)
940 goto out_bh;
941
942 outstr[ret] = 0;
943 udf_debug("volSetIdent[] = '%s'\n", outstr);
944
945 ret = 0;
946out_bh:
947 brelse(bh);
948out2:
949 kfree(outstr);
950 return ret;
951}
952
953struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
954 u32 meta_file_loc, u32 partition_ref)
955{
956 struct kernel_lb_addr addr;
957 struct inode *metadata_fe;
958
959 addr.logicalBlockNum = meta_file_loc;
960 addr.partitionReferenceNum = partition_ref;
961
962 metadata_fe = udf_iget_special(sb, &addr);
963
964 if (IS_ERR(metadata_fe)) {
965 udf_warn(sb, "metadata inode efe not found\n");
966 return metadata_fe;
967 }
968 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
969 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
970 iput(metadata_fe);
971 return ERR_PTR(-EIO);
972 }
973
974 return metadata_fe;
975}
976
977static int udf_load_metadata_files(struct super_block *sb, int partition,
978 int type1_index)
979{
980 struct udf_sb_info *sbi = UDF_SB(sb);
981 struct udf_part_map *map;
982 struct udf_meta_data *mdata;
983 struct kernel_lb_addr addr;
984 struct inode *fe;
985
986 map = &sbi->s_partmaps[partition];
987 mdata = &map->s_type_specific.s_metadata;
988 mdata->s_phys_partition_ref = type1_index;
989
990 /* metadata address */
991 udf_debug("Metadata file location: block = %d part = %d\n",
992 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
993
994 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
995 mdata->s_phys_partition_ref);
996 if (IS_ERR(fe)) {
997 /* mirror file entry */
998 udf_debug("Mirror metadata file location: block = %d part = %d\n",
999 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
1000
1001 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
1002 mdata->s_phys_partition_ref);
1003
1004 if (IS_ERR(fe)) {
1005 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1006 return PTR_ERR(fe);
1007 }
1008 mdata->s_mirror_fe = fe;
1009 } else
1010 mdata->s_metadata_fe = fe;
1011
1012
1013 /*
1014 * bitmap file entry
1015 * Note:
1016 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1017 */
1018 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1019 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1020 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
1021
1022 udf_debug("Bitmap file location: block = %d part = %d\n",
1023 addr.logicalBlockNum, addr.partitionReferenceNum);
1024
1025 fe = udf_iget_special(sb, &addr);
1026 if (IS_ERR(fe)) {
1027 if (sb->s_flags & MS_RDONLY)
1028 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1029 else {
1030 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1031 return PTR_ERR(fe);
1032 }
1033 } else
1034 mdata->s_bitmap_fe = fe;
1035 }
1036
1037 udf_debug("udf_load_metadata_files Ok\n");
1038 return 0;
1039}
1040
1041static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1042 struct kernel_lb_addr *root)
1043{
1044 struct fileSetDesc *fset;
1045
1046 fset = (struct fileSetDesc *)bh->b_data;
1047
1048 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1049
1050 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1051
1052 udf_debug("Rootdir at block=%d, partition=%d\n",
1053 root->logicalBlockNum, root->partitionReferenceNum);
1054}
1055
1056int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1057{
1058 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1059 return DIV_ROUND_UP(map->s_partition_len +
1060 (sizeof(struct spaceBitmapDesc) << 3),
1061 sb->s_blocksize * 8);
1062}
1063
1064static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1065{
1066 struct udf_bitmap *bitmap;
1067 int nr_groups;
1068 int size;
1069
1070 nr_groups = udf_compute_nr_groups(sb, index);
1071 size = sizeof(struct udf_bitmap) +
1072 (sizeof(struct buffer_head *) * nr_groups);
1073
1074 if (size <= PAGE_SIZE)
1075 bitmap = kzalloc(size, GFP_KERNEL);
1076 else
1077 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1078
1079 if (bitmap == NULL)
1080 return NULL;
1081
1082 bitmap->s_nr_groups = nr_groups;
1083 return bitmap;
1084}
1085
1086static int udf_fill_partdesc_info(struct super_block *sb,
1087 struct partitionDesc *p, int p_index)
1088{
1089 struct udf_part_map *map;
1090 struct udf_sb_info *sbi = UDF_SB(sb);
1091 struct partitionHeaderDesc *phd;
1092
1093 map = &sbi->s_partmaps[p_index];
1094
1095 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1096 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1097
1098 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1099 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1100 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1101 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1102 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1103 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1104 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1105 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1106
1107 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1108 p_index, map->s_partition_type,
1109 map->s_partition_root, map->s_partition_len);
1110
1111 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1112 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1113 return 0;
1114
1115 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1116 if (phd->unallocSpaceTable.extLength) {
1117 struct kernel_lb_addr loc = {
1118 .logicalBlockNum = le32_to_cpu(
1119 phd->unallocSpaceTable.extPosition),
1120 .partitionReferenceNum = p_index,
1121 };
1122 struct inode *inode;
1123
1124 inode = udf_iget_special(sb, &loc);
1125 if (IS_ERR(inode)) {
1126 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1127 p_index);
1128 return PTR_ERR(inode);
1129 }
1130 map->s_uspace.s_table = inode;
1131 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1132 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1133 p_index, map->s_uspace.s_table->i_ino);
1134 }
1135
1136 if (phd->unallocSpaceBitmap.extLength) {
1137 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1138 if (!bitmap)
1139 return -ENOMEM;
1140 map->s_uspace.s_bitmap = bitmap;
1141 bitmap->s_extPosition = le32_to_cpu(
1142 phd->unallocSpaceBitmap.extPosition);
1143 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1144 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1145 p_index, bitmap->s_extPosition);
1146 }
1147
1148 if (phd->partitionIntegrityTable.extLength)
1149 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1150
1151 if (phd->freedSpaceTable.extLength) {
1152 struct kernel_lb_addr loc = {
1153 .logicalBlockNum = le32_to_cpu(
1154 phd->freedSpaceTable.extPosition),
1155 .partitionReferenceNum = p_index,
1156 };
1157 struct inode *inode;
1158
1159 inode = udf_iget_special(sb, &loc);
1160 if (IS_ERR(inode)) {
1161 udf_debug("cannot load freedSpaceTable (part %d)\n",
1162 p_index);
1163 return PTR_ERR(inode);
1164 }
1165 map->s_fspace.s_table = inode;
1166 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1167 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1168 p_index, map->s_fspace.s_table->i_ino);
1169 }
1170
1171 if (phd->freedSpaceBitmap.extLength) {
1172 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1173 if (!bitmap)
1174 return -ENOMEM;
1175 map->s_fspace.s_bitmap = bitmap;
1176 bitmap->s_extPosition = le32_to_cpu(
1177 phd->freedSpaceBitmap.extPosition);
1178 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1179 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1180 p_index, bitmap->s_extPosition);
1181 }
1182 return 0;
1183}
1184
1185static void udf_find_vat_block(struct super_block *sb, int p_index,
1186 int type1_index, sector_t start_block)
1187{
1188 struct udf_sb_info *sbi = UDF_SB(sb);
1189 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1190 sector_t vat_block;
1191 struct kernel_lb_addr ino;
1192 struct inode *inode;
1193
1194 /*
1195 * VAT file entry is in the last recorded block. Some broken disks have
1196 * it a few blocks before so try a bit harder...
1197 */
1198 ino.partitionReferenceNum = type1_index;
1199 for (vat_block = start_block;
1200 vat_block >= map->s_partition_root &&
1201 vat_block >= start_block - 3; vat_block--) {
1202 ino.logicalBlockNum = vat_block - map->s_partition_root;
1203 inode = udf_iget_special(sb, &ino);
1204 if (!IS_ERR(inode)) {
1205 sbi->s_vat_inode = inode;
1206 break;
1207 }
1208 }
1209}
1210
1211static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1212{
1213 struct udf_sb_info *sbi = UDF_SB(sb);
1214 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1215 struct buffer_head *bh = NULL;
1216 struct udf_inode_info *vati;
1217 uint32_t pos;
1218 struct virtualAllocationTable20 *vat20;
1219 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1220
1221 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1222 if (!sbi->s_vat_inode &&
1223 sbi->s_last_block != blocks - 1) {
1224 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1225 (unsigned long)sbi->s_last_block,
1226 (unsigned long)blocks - 1);
1227 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1228 }
1229 if (!sbi->s_vat_inode)
1230 return -EIO;
1231
1232 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1233 map->s_type_specific.s_virtual.s_start_offset = 0;
1234 map->s_type_specific.s_virtual.s_num_entries =
1235 (sbi->s_vat_inode->i_size - 36) >> 2;
1236 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1237 vati = UDF_I(sbi->s_vat_inode);
1238 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1239 pos = udf_block_map(sbi->s_vat_inode, 0);
1240 bh = sb_bread(sb, pos);
1241 if (!bh)
1242 return -EIO;
1243 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1244 } else {
1245 vat20 = (struct virtualAllocationTable20 *)
1246 vati->i_ext.i_data;
1247 }
1248
1249 map->s_type_specific.s_virtual.s_start_offset =
1250 le16_to_cpu(vat20->lengthHeader);
1251 map->s_type_specific.s_virtual.s_num_entries =
1252 (sbi->s_vat_inode->i_size -
1253 map->s_type_specific.s_virtual.
1254 s_start_offset) >> 2;
1255 brelse(bh);
1256 }
1257 return 0;
1258}
1259
1260/*
1261 * Load partition descriptor block
1262 *
1263 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1264 * sequence.
1265 */
1266static int udf_load_partdesc(struct super_block *sb, sector_t block)
1267{
1268 struct buffer_head *bh;
1269 struct partitionDesc *p;
1270 struct udf_part_map *map;
1271 struct udf_sb_info *sbi = UDF_SB(sb);
1272 int i, type1_idx;
1273 uint16_t partitionNumber;
1274 uint16_t ident;
1275 int ret;
1276
1277 bh = udf_read_tagged(sb, block, block, &ident);
1278 if (!bh)
1279 return -EAGAIN;
1280 if (ident != TAG_IDENT_PD) {
1281 ret = 0;
1282 goto out_bh;
1283 }
1284
1285 p = (struct partitionDesc *)bh->b_data;
1286 partitionNumber = le16_to_cpu(p->partitionNumber);
1287
1288 /* First scan for TYPE1 and SPARABLE partitions */
1289 for (i = 0; i < sbi->s_partitions; i++) {
1290 map = &sbi->s_partmaps[i];
1291 udf_debug("Searching map: (%d == %d)\n",
1292 map->s_partition_num, partitionNumber);
1293 if (map->s_partition_num == partitionNumber &&
1294 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1295 map->s_partition_type == UDF_SPARABLE_MAP15))
1296 break;
1297 }
1298
1299 if (i >= sbi->s_partitions) {
1300 udf_debug("Partition (%d) not found in partition map\n",
1301 partitionNumber);
1302 ret = 0;
1303 goto out_bh;
1304 }
1305
1306 ret = udf_fill_partdesc_info(sb, p, i);
1307 if (ret < 0)
1308 goto out_bh;
1309
1310 /*
1311 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1312 * PHYSICAL partitions are already set up
1313 */
1314 type1_idx = i;
1315#ifdef UDFFS_DEBUG
1316 map = NULL; /* supress 'maybe used uninitialized' warning */
1317#endif
1318 for (i = 0; i < sbi->s_partitions; i++) {
1319 map = &sbi->s_partmaps[i];
1320
1321 if (map->s_partition_num == partitionNumber &&
1322 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1323 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1324 map->s_partition_type == UDF_METADATA_MAP25))
1325 break;
1326 }
1327
1328 if (i >= sbi->s_partitions) {
1329 ret = 0;
1330 goto out_bh;
1331 }
1332
1333 ret = udf_fill_partdesc_info(sb, p, i);
1334 if (ret < 0)
1335 goto out_bh;
1336
1337 if (map->s_partition_type == UDF_METADATA_MAP25) {
1338 ret = udf_load_metadata_files(sb, i, type1_idx);
1339 if (ret < 0) {
1340 udf_err(sb, "error loading MetaData partition map %d\n",
1341 i);
1342 goto out_bh;
1343 }
1344 } else {
1345 /*
1346 * If we have a partition with virtual map, we don't handle
1347 * writing to it (we overwrite blocks instead of relocating
1348 * them).
1349 */
1350 if (!(sb->s_flags & MS_RDONLY)) {
1351 ret = -EACCES;
1352 goto out_bh;
1353 }
1354 ret = udf_load_vat(sb, i, type1_idx);
1355 if (ret < 0)
1356 goto out_bh;
1357 }
1358 ret = 0;
1359out_bh:
1360 /* In case loading failed, we handle cleanup in udf_fill_super */
1361 brelse(bh);
1362 return ret;
1363}
1364
1365static int udf_load_sparable_map(struct super_block *sb,
1366 struct udf_part_map *map,
1367 struct sparablePartitionMap *spm)
1368{
1369 uint32_t loc;
1370 uint16_t ident;
1371 struct sparingTable *st;
1372 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1373 int i;
1374 struct buffer_head *bh;
1375
1376 map->s_partition_type = UDF_SPARABLE_MAP15;
1377 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1378 if (!is_power_of_2(sdata->s_packet_len)) {
1379 udf_err(sb, "error loading logical volume descriptor: "
1380 "Invalid packet length %u\n",
1381 (unsigned)sdata->s_packet_len);
1382 return -EIO;
1383 }
1384 if (spm->numSparingTables > 4) {
1385 udf_err(sb, "error loading logical volume descriptor: "
1386 "Too many sparing tables (%d)\n",
1387 (int)spm->numSparingTables);
1388 return -EIO;
1389 }
1390
1391 for (i = 0; i < spm->numSparingTables; i++) {
1392 loc = le32_to_cpu(spm->locSparingTable[i]);
1393 bh = udf_read_tagged(sb, loc, loc, &ident);
1394 if (!bh)
1395 continue;
1396
1397 st = (struct sparingTable *)bh->b_data;
1398 if (ident != 0 ||
1399 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1400 strlen(UDF_ID_SPARING)) ||
1401 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1402 sb->s_blocksize) {
1403 brelse(bh);
1404 continue;
1405 }
1406
1407 sdata->s_spar_map[i] = bh;
1408 }
1409 map->s_partition_func = udf_get_pblock_spar15;
1410 return 0;
1411}
1412
1413static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1414 struct kernel_lb_addr *fileset)
1415{
1416 struct logicalVolDesc *lvd;
1417 int i, offset;
1418 uint8_t type;
1419 struct udf_sb_info *sbi = UDF_SB(sb);
1420 struct genericPartitionMap *gpm;
1421 uint16_t ident;
1422 struct buffer_head *bh;
1423 unsigned int table_len;
1424 int ret;
1425
1426 bh = udf_read_tagged(sb, block, block, &ident);
1427 if (!bh)
1428 return -EAGAIN;
1429 BUG_ON(ident != TAG_IDENT_LVD);
1430 lvd = (struct logicalVolDesc *)bh->b_data;
1431 table_len = le32_to_cpu(lvd->mapTableLength);
1432 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1433 udf_err(sb, "error loading logical volume descriptor: "
1434 "Partition table too long (%u > %lu)\n", table_len,
1435 sb->s_blocksize - sizeof(*lvd));
1436 ret = -EIO;
1437 goto out_bh;
1438 }
1439
1440 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1441 if (ret)
1442 goto out_bh;
1443
1444 for (i = 0, offset = 0;
1445 i < sbi->s_partitions && offset < table_len;
1446 i++, offset += gpm->partitionMapLength) {
1447 struct udf_part_map *map = &sbi->s_partmaps[i];
1448 gpm = (struct genericPartitionMap *)
1449 &(lvd->partitionMaps[offset]);
1450 type = gpm->partitionMapType;
1451 if (type == 1) {
1452 struct genericPartitionMap1 *gpm1 =
1453 (struct genericPartitionMap1 *)gpm;
1454 map->s_partition_type = UDF_TYPE1_MAP15;
1455 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1456 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1457 map->s_partition_func = NULL;
1458 } else if (type == 2) {
1459 struct udfPartitionMap2 *upm2 =
1460 (struct udfPartitionMap2 *)gpm;
1461 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1462 strlen(UDF_ID_VIRTUAL))) {
1463 u16 suf =
1464 le16_to_cpu(((__le16 *)upm2->partIdent.
1465 identSuffix)[0]);
1466 if (suf < 0x0200) {
1467 map->s_partition_type =
1468 UDF_VIRTUAL_MAP15;
1469 map->s_partition_func =
1470 udf_get_pblock_virt15;
1471 } else {
1472 map->s_partition_type =
1473 UDF_VIRTUAL_MAP20;
1474 map->s_partition_func =
1475 udf_get_pblock_virt20;
1476 }
1477 } else if (!strncmp(upm2->partIdent.ident,
1478 UDF_ID_SPARABLE,
1479 strlen(UDF_ID_SPARABLE))) {
1480 ret = udf_load_sparable_map(sb, map,
1481 (struct sparablePartitionMap *)gpm);
1482 if (ret < 0)
1483 goto out_bh;
1484 } else if (!strncmp(upm2->partIdent.ident,
1485 UDF_ID_METADATA,
1486 strlen(UDF_ID_METADATA))) {
1487 struct udf_meta_data *mdata =
1488 &map->s_type_specific.s_metadata;
1489 struct metadataPartitionMap *mdm =
1490 (struct metadataPartitionMap *)
1491 &(lvd->partitionMaps[offset]);
1492 udf_debug("Parsing Logical vol part %d type %d id=%s\n",
1493 i, type, UDF_ID_METADATA);
1494
1495 map->s_partition_type = UDF_METADATA_MAP25;
1496 map->s_partition_func = udf_get_pblock_meta25;
1497
1498 mdata->s_meta_file_loc =
1499 le32_to_cpu(mdm->metadataFileLoc);
1500 mdata->s_mirror_file_loc =
1501 le32_to_cpu(mdm->metadataMirrorFileLoc);
1502 mdata->s_bitmap_file_loc =
1503 le32_to_cpu(mdm->metadataBitmapFileLoc);
1504 mdata->s_alloc_unit_size =
1505 le32_to_cpu(mdm->allocUnitSize);
1506 mdata->s_align_unit_size =
1507 le16_to_cpu(mdm->alignUnitSize);
1508 if (mdm->flags & 0x01)
1509 mdata->s_flags |= MF_DUPLICATE_MD;
1510
1511 udf_debug("Metadata Ident suffix=0x%x\n",
1512 le16_to_cpu(*(__le16 *)
1513 mdm->partIdent.identSuffix));
1514 udf_debug("Metadata part num=%d\n",
1515 le16_to_cpu(mdm->partitionNum));
1516 udf_debug("Metadata part alloc unit size=%d\n",
1517 le32_to_cpu(mdm->allocUnitSize));
1518 udf_debug("Metadata file loc=%d\n",
1519 le32_to_cpu(mdm->metadataFileLoc));
1520 udf_debug("Mirror file loc=%d\n",
1521 le32_to_cpu(mdm->metadataMirrorFileLoc));
1522 udf_debug("Bitmap file loc=%d\n",
1523 le32_to_cpu(mdm->metadataBitmapFileLoc));
1524 udf_debug("Flags: %d %d\n",
1525 mdata->s_flags, mdm->flags);
1526 } else {
1527 udf_debug("Unknown ident: %s\n",
1528 upm2->partIdent.ident);
1529 continue;
1530 }
1531 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1532 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1533 }
1534 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1535 i, map->s_partition_num, type, map->s_volumeseqnum);
1536 }
1537
1538 if (fileset) {
1539 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1540
1541 *fileset = lelb_to_cpu(la->extLocation);
1542 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1543 fileset->logicalBlockNum,
1544 fileset->partitionReferenceNum);
1545 }
1546 if (lvd->integritySeqExt.extLength)
1547 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1548 ret = 0;
1549out_bh:
1550 brelse(bh);
1551 return ret;
1552}
1553
1554/*
1555 * Find the prevailing Logical Volume Integrity Descriptor.
1556 */
1557static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1558{
1559 struct buffer_head *bh, *final_bh;
1560 uint16_t ident;
1561 struct udf_sb_info *sbi = UDF_SB(sb);
1562 struct logicalVolIntegrityDesc *lvid;
1563 int indirections = 0;
1564
1565 while (++indirections <= UDF_MAX_LVID_NESTING) {
1566 final_bh = NULL;
1567 while (loc.extLength > 0 &&
1568 (bh = udf_read_tagged(sb, loc.extLocation,
1569 loc.extLocation, &ident))) {
1570 if (ident != TAG_IDENT_LVID) {
1571 brelse(bh);
1572 break;
1573 }
1574
1575 brelse(final_bh);
1576 final_bh = bh;
1577
1578 loc.extLength -= sb->s_blocksize;
1579 loc.extLocation++;
1580 }
1581
1582 if (!final_bh)
1583 return;
1584
1585 brelse(sbi->s_lvid_bh);
1586 sbi->s_lvid_bh = final_bh;
1587
1588 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1589 if (lvid->nextIntegrityExt.extLength == 0)
1590 return;
1591
1592 loc = leea_to_cpu(lvid->nextIntegrityExt);
1593 }
1594
1595 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1596 UDF_MAX_LVID_NESTING);
1597 brelse(sbi->s_lvid_bh);
1598 sbi->s_lvid_bh = NULL;
1599}
1600
1601
1602/*
1603 * Process a main/reserve volume descriptor sequence.
1604 * @block First block of first extent of the sequence.
1605 * @lastblock Lastblock of first extent of the sequence.
1606 * @fileset There we store extent containing root fileset
1607 *
1608 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1609 * sequence
1610 */
1611static noinline int udf_process_sequence(
1612 struct super_block *sb,
1613 sector_t block, sector_t lastblock,
1614 struct kernel_lb_addr *fileset)
1615{
1616 struct buffer_head *bh = NULL;
1617 struct udf_vds_record vds[VDS_POS_LENGTH];
1618 struct udf_vds_record *curr;
1619 struct generic_desc *gd;
1620 struct volDescPtr *vdp;
1621 bool done = false;
1622 uint32_t vdsn;
1623 uint16_t ident;
1624 long next_s = 0, next_e = 0;
1625 int ret;
1626 unsigned int indirections = 0;
1627
1628 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1629
1630 /*
1631 * Read the main descriptor sequence and find which descriptors
1632 * are in it.
1633 */
1634 for (; (!done && block <= lastblock); block++) {
1635
1636 bh = udf_read_tagged(sb, block, block, &ident);
1637 if (!bh) {
1638 udf_err(sb,
1639 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1640 (unsigned long long)block);
1641 return -EAGAIN;
1642 }
1643
1644 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1645 gd = (struct generic_desc *)bh->b_data;
1646 vdsn = le32_to_cpu(gd->volDescSeqNum);
1647 switch (ident) {
1648 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1649 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1650 if (vdsn >= curr->volDescSeqNum) {
1651 curr->volDescSeqNum = vdsn;
1652 curr->block = block;
1653 }
1654 break;
1655 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1656 curr = &vds[VDS_POS_VOL_DESC_PTR];
1657 if (vdsn >= curr->volDescSeqNum) {
1658 curr->volDescSeqNum = vdsn;
1659 curr->block = block;
1660
1661 vdp = (struct volDescPtr *)bh->b_data;
1662 next_s = le32_to_cpu(
1663 vdp->nextVolDescSeqExt.extLocation);
1664 next_e = le32_to_cpu(
1665 vdp->nextVolDescSeqExt.extLength);
1666 next_e = next_e >> sb->s_blocksize_bits;
1667 next_e += next_s;
1668 }
1669 break;
1670 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1671 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1672 if (vdsn >= curr->volDescSeqNum) {
1673 curr->volDescSeqNum = vdsn;
1674 curr->block = block;
1675 }
1676 break;
1677 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1678 curr = &vds[VDS_POS_PARTITION_DESC];
1679 if (!curr->block)
1680 curr->block = block;
1681 break;
1682 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1683 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1684 if (vdsn >= curr->volDescSeqNum) {
1685 curr->volDescSeqNum = vdsn;
1686 curr->block = block;
1687 }
1688 break;
1689 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1690 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1691 if (vdsn >= curr->volDescSeqNum) {
1692 curr->volDescSeqNum = vdsn;
1693 curr->block = block;
1694 }
1695 break;
1696 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1697 if (++indirections > UDF_MAX_TD_NESTING) {
1698 udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING);
1699 brelse(bh);
1700 return -EIO;
1701 }
1702
1703 vds[VDS_POS_TERMINATING_DESC].block = block;
1704 if (next_e) {
1705 block = next_s;
1706 lastblock = next_e;
1707 next_s = next_e = 0;
1708 } else
1709 done = true;
1710 break;
1711 }
1712 brelse(bh);
1713 }
1714 /*
1715 * Now read interesting descriptors again and process them
1716 * in a suitable order
1717 */
1718 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1719 udf_err(sb, "Primary Volume Descriptor not found!\n");
1720 return -EAGAIN;
1721 }
1722 ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1723 if (ret < 0)
1724 return ret;
1725
1726 if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1727 ret = udf_load_logicalvol(sb,
1728 vds[VDS_POS_LOGICAL_VOL_DESC].block,
1729 fileset);
1730 if (ret < 0)
1731 return ret;
1732 }
1733
1734 if (vds[VDS_POS_PARTITION_DESC].block) {
1735 /*
1736 * We rescan the whole descriptor sequence to find
1737 * partition descriptor blocks and process them.
1738 */
1739 for (block = vds[VDS_POS_PARTITION_DESC].block;
1740 block < vds[VDS_POS_TERMINATING_DESC].block;
1741 block++) {
1742 ret = udf_load_partdesc(sb, block);
1743 if (ret < 0)
1744 return ret;
1745 }
1746 }
1747
1748 return 0;
1749}
1750
1751/*
1752 * Load Volume Descriptor Sequence described by anchor in bh
1753 *
1754 * Returns <0 on error, 0 on success
1755 */
1756static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1757 struct kernel_lb_addr *fileset)
1758{
1759 struct anchorVolDescPtr *anchor;
1760 sector_t main_s, main_e, reserve_s, reserve_e;
1761 int ret;
1762
1763 anchor = (struct anchorVolDescPtr *)bh->b_data;
1764
1765 /* Locate the main sequence */
1766 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1767 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1768 main_e = main_e >> sb->s_blocksize_bits;
1769 main_e += main_s;
1770
1771 /* Locate the reserve sequence */
1772 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1773 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1774 reserve_e = reserve_e >> sb->s_blocksize_bits;
1775 reserve_e += reserve_s;
1776
1777 /* Process the main & reserve sequences */
1778 /* responsible for finding the PartitionDesc(s) */
1779 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1780 if (ret != -EAGAIN)
1781 return ret;
1782 udf_sb_free_partitions(sb);
1783 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1784 if (ret < 0) {
1785 udf_sb_free_partitions(sb);
1786 /* No sequence was OK, return -EIO */
1787 if (ret == -EAGAIN)
1788 ret = -EIO;
1789 }
1790 return ret;
1791}
1792
1793/*
1794 * Check whether there is an anchor block in the given block and
1795 * load Volume Descriptor Sequence if so.
1796 *
1797 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1798 * block
1799 */
1800static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1801 struct kernel_lb_addr *fileset)
1802{
1803 struct buffer_head *bh;
1804 uint16_t ident;
1805 int ret;
1806
1807 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1808 udf_fixed_to_variable(block) >=
1809 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1810 return -EAGAIN;
1811
1812 bh = udf_read_tagged(sb, block, block, &ident);
1813 if (!bh)
1814 return -EAGAIN;
1815 if (ident != TAG_IDENT_AVDP) {
1816 brelse(bh);
1817 return -EAGAIN;
1818 }
1819 ret = udf_load_sequence(sb, bh, fileset);
1820 brelse(bh);
1821 return ret;
1822}
1823
1824/*
1825 * Search for an anchor volume descriptor pointer.
1826 *
1827 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1828 * of anchors.
1829 */
1830static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1831 struct kernel_lb_addr *fileset)
1832{
1833 sector_t last[6];
1834 int i;
1835 struct udf_sb_info *sbi = UDF_SB(sb);
1836 int last_count = 0;
1837 int ret;
1838
1839 /* First try user provided anchor */
1840 if (sbi->s_anchor) {
1841 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1842 if (ret != -EAGAIN)
1843 return ret;
1844 }
1845 /*
1846 * according to spec, anchor is in either:
1847 * block 256
1848 * lastblock-256
1849 * lastblock
1850 * however, if the disc isn't closed, it could be 512.
1851 */
1852 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1853 if (ret != -EAGAIN)
1854 return ret;
1855 /*
1856 * The trouble is which block is the last one. Drives often misreport
1857 * this so we try various possibilities.
1858 */
1859 last[last_count++] = *lastblock;
1860 if (*lastblock >= 1)
1861 last[last_count++] = *lastblock - 1;
1862 last[last_count++] = *lastblock + 1;
1863 if (*lastblock >= 2)
1864 last[last_count++] = *lastblock - 2;
1865 if (*lastblock >= 150)
1866 last[last_count++] = *lastblock - 150;
1867 if (*lastblock >= 152)
1868 last[last_count++] = *lastblock - 152;
1869
1870 for (i = 0; i < last_count; i++) {
1871 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1872 sb->s_blocksize_bits)
1873 continue;
1874 ret = udf_check_anchor_block(sb, last[i], fileset);
1875 if (ret != -EAGAIN) {
1876 if (!ret)
1877 *lastblock = last[i];
1878 return ret;
1879 }
1880 if (last[i] < 256)
1881 continue;
1882 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1883 if (ret != -EAGAIN) {
1884 if (!ret)
1885 *lastblock = last[i];
1886 return ret;
1887 }
1888 }
1889
1890 /* Finally try block 512 in case media is open */
1891 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1892}
1893
1894/*
1895 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1896 * area specified by it. The function expects sbi->s_lastblock to be the last
1897 * block on the media.
1898 *
1899 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1900 * was not found.
1901 */
1902static int udf_find_anchor(struct super_block *sb,
1903 struct kernel_lb_addr *fileset)
1904{
1905 struct udf_sb_info *sbi = UDF_SB(sb);
1906 sector_t lastblock = sbi->s_last_block;
1907 int ret;
1908
1909 ret = udf_scan_anchors(sb, &lastblock, fileset);
1910 if (ret != -EAGAIN)
1911 goto out;
1912
1913 /* No anchor found? Try VARCONV conversion of block numbers */
1914 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1915 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1916 /* Firstly, we try to not convert number of the last block */
1917 ret = udf_scan_anchors(sb, &lastblock, fileset);
1918 if (ret != -EAGAIN)
1919 goto out;
1920
1921 lastblock = sbi->s_last_block;
1922 /* Secondly, we try with converted number of the last block */
1923 ret = udf_scan_anchors(sb, &lastblock, fileset);
1924 if (ret < 0) {
1925 /* VARCONV didn't help. Clear it. */
1926 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1927 }
1928out:
1929 if (ret == 0)
1930 sbi->s_last_block = lastblock;
1931 return ret;
1932}
1933
1934/*
1935 * Check Volume Structure Descriptor, find Anchor block and load Volume
1936 * Descriptor Sequence.
1937 *
1938 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1939 * block was not found.
1940 */
1941static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1942 int silent, struct kernel_lb_addr *fileset)
1943{
1944 struct udf_sb_info *sbi = UDF_SB(sb);
1945 loff_t nsr_off;
1946 int ret;
1947
1948 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1949 if (!silent)
1950 udf_warn(sb, "Bad block size\n");
1951 return -EINVAL;
1952 }
1953 sbi->s_last_block = uopt->lastblock;
1954 if (!uopt->novrs) {
1955 /* Check that it is NSR02 compliant */
1956 nsr_off = udf_check_vsd(sb);
1957 if (!nsr_off) {
1958 if (!silent)
1959 udf_warn(sb, "No VRS found\n");
1960 return 0;
1961 }
1962 if (nsr_off == -1)
1963 udf_debug("Failed to read sector at offset %d. "
1964 "Assuming open disc. Skipping validity "
1965 "check\n", VSD_FIRST_SECTOR_OFFSET);
1966 if (!sbi->s_last_block)
1967 sbi->s_last_block = udf_get_last_block(sb);
1968 } else {
1969 udf_debug("Validity check skipped because of novrs option\n");
1970 }
1971
1972 /* Look for anchor block and load Volume Descriptor Sequence */
1973 sbi->s_anchor = uopt->anchor;
1974 ret = udf_find_anchor(sb, fileset);
1975 if (ret < 0) {
1976 if (!silent && ret == -EAGAIN)
1977 udf_warn(sb, "No anchor found\n");
1978 return ret;
1979 }
1980 return 0;
1981}
1982
1983static void udf_open_lvid(struct super_block *sb)
1984{
1985 struct udf_sb_info *sbi = UDF_SB(sb);
1986 struct buffer_head *bh = sbi->s_lvid_bh;
1987 struct logicalVolIntegrityDesc *lvid;
1988 struct logicalVolIntegrityDescImpUse *lvidiu;
1989
1990 if (!bh)
1991 return;
1992 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1993 lvidiu = udf_sb_lvidiu(sb);
1994 if (!lvidiu)
1995 return;
1996
1997 mutex_lock(&sbi->s_alloc_mutex);
1998 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1999 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2000 udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
2001 CURRENT_TIME);
2002 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2003
2004 lvid->descTag.descCRC = cpu_to_le16(
2005 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2006 le16_to_cpu(lvid->descTag.descCRCLength)));
2007
2008 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2009 mark_buffer_dirty(bh);
2010 sbi->s_lvid_dirty = 0;
2011 mutex_unlock(&sbi->s_alloc_mutex);
2012 /* Make opening of filesystem visible on the media immediately */
2013 sync_dirty_buffer(bh);
2014}
2015
2016static void udf_close_lvid(struct super_block *sb)
2017{
2018 struct udf_sb_info *sbi = UDF_SB(sb);
2019 struct buffer_head *bh = sbi->s_lvid_bh;
2020 struct logicalVolIntegrityDesc *lvid;
2021 struct logicalVolIntegrityDescImpUse *lvidiu;
2022
2023 if (!bh)
2024 return;
2025 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2026 lvidiu = udf_sb_lvidiu(sb);
2027 if (!lvidiu)
2028 return;
2029
2030 mutex_lock(&sbi->s_alloc_mutex);
2031 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2032 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2033 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
2034 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2035 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2036 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2037 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2038 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2039 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2040 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2041
2042 lvid->descTag.descCRC = cpu_to_le16(
2043 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2044 le16_to_cpu(lvid->descTag.descCRCLength)));
2045
2046 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2047 /*
2048 * We set buffer uptodate unconditionally here to avoid spurious
2049 * warnings from mark_buffer_dirty() when previous EIO has marked
2050 * the buffer as !uptodate
2051 */
2052 set_buffer_uptodate(bh);
2053 mark_buffer_dirty(bh);
2054 sbi->s_lvid_dirty = 0;
2055 mutex_unlock(&sbi->s_alloc_mutex);
2056 /* Make closing of filesystem visible on the media immediately */
2057 sync_dirty_buffer(bh);
2058}
2059
2060u64 lvid_get_unique_id(struct super_block *sb)
2061{
2062 struct buffer_head *bh;
2063 struct udf_sb_info *sbi = UDF_SB(sb);
2064 struct logicalVolIntegrityDesc *lvid;
2065 struct logicalVolHeaderDesc *lvhd;
2066 u64 uniqueID;
2067 u64 ret;
2068
2069 bh = sbi->s_lvid_bh;
2070 if (!bh)
2071 return 0;
2072
2073 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2074 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2075
2076 mutex_lock(&sbi->s_alloc_mutex);
2077 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2078 if (!(++uniqueID & 0xFFFFFFFF))
2079 uniqueID += 16;
2080 lvhd->uniqueID = cpu_to_le64(uniqueID);
2081 mutex_unlock(&sbi->s_alloc_mutex);
2082 mark_buffer_dirty(bh);
2083
2084 return ret;
2085}
2086
2087static int udf_fill_super(struct super_block *sb, void *options, int silent)
2088{
2089 int ret = -EINVAL;
2090 struct inode *inode = NULL;
2091 struct udf_options uopt;
2092 struct kernel_lb_addr rootdir, fileset;
2093 struct udf_sb_info *sbi;
2094 bool lvid_open = false;
2095
2096 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2097 uopt.uid = INVALID_UID;
2098 uopt.gid = INVALID_GID;
2099 uopt.umask = 0;
2100 uopt.fmode = UDF_INVALID_MODE;
2101 uopt.dmode = UDF_INVALID_MODE;
2102
2103 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2104 if (!sbi)
2105 return -ENOMEM;
2106
2107 sb->s_fs_info = sbi;
2108
2109 mutex_init(&sbi->s_alloc_mutex);
2110
2111 if (!udf_parse_options((char *)options, &uopt, false))
2112 goto parse_options_failure;
2113
2114 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2115 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2116 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2117 goto parse_options_failure;
2118 }
2119#ifdef CONFIG_UDF_NLS
2120 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2121 uopt.nls_map = load_nls_default();
2122 if (!uopt.nls_map)
2123 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2124 else
2125 udf_debug("Using default NLS map\n");
2126 }
2127#endif
2128 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2129 uopt.flags |= (1 << UDF_FLAG_UTF8);
2130
2131 fileset.logicalBlockNum = 0xFFFFFFFF;
2132 fileset.partitionReferenceNum = 0xFFFF;
2133
2134 sbi->s_flags = uopt.flags;
2135 sbi->s_uid = uopt.uid;
2136 sbi->s_gid = uopt.gid;
2137 sbi->s_umask = uopt.umask;
2138 sbi->s_fmode = uopt.fmode;
2139 sbi->s_dmode = uopt.dmode;
2140 sbi->s_nls_map = uopt.nls_map;
2141 rwlock_init(&sbi->s_cred_lock);
2142
2143 if (uopt.session == 0xFFFFFFFF)
2144 sbi->s_session = udf_get_last_session(sb);
2145 else
2146 sbi->s_session = uopt.session;
2147
2148 udf_debug("Multi-session=%d\n", sbi->s_session);
2149
2150 /* Fill in the rest of the superblock */
2151 sb->s_op = &udf_sb_ops;
2152 sb->s_export_op = &udf_export_ops;
2153
2154 sb->s_magic = UDF_SUPER_MAGIC;
2155 sb->s_time_gran = 1000;
2156
2157 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2158 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2159 } else {
2160 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2161 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2162 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2163 if (!silent)
2164 pr_notice("Rescanning with blocksize %d\n",
2165 UDF_DEFAULT_BLOCKSIZE);
2166 brelse(sbi->s_lvid_bh);
2167 sbi->s_lvid_bh = NULL;
2168 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2169 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2170 }
2171 }
2172 if (ret < 0) {
2173 if (ret == -EAGAIN) {
2174 udf_warn(sb, "No partition found (1)\n");
2175 ret = -EINVAL;
2176 }
2177 goto error_out;
2178 }
2179
2180 udf_debug("Lastblock=%d\n", sbi->s_last_block);
2181
2182 if (sbi->s_lvid_bh) {
2183 struct logicalVolIntegrityDescImpUse *lvidiu =
2184 udf_sb_lvidiu(sb);
2185 uint16_t minUDFReadRev;
2186 uint16_t minUDFWriteRev;
2187
2188 if (!lvidiu) {
2189 ret = -EINVAL;
2190 goto error_out;
2191 }
2192 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2193 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2194 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2195 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2196 minUDFReadRev,
2197 UDF_MAX_READ_VERSION);
2198 ret = -EINVAL;
2199 goto error_out;
2200 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2201 !(sb->s_flags & MS_RDONLY)) {
2202 ret = -EACCES;
2203 goto error_out;
2204 }
2205
2206 sbi->s_udfrev = minUDFWriteRev;
2207
2208 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2209 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2210 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2211 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2212 }
2213
2214 if (!sbi->s_partitions) {
2215 udf_warn(sb, "No partition found (2)\n");
2216 ret = -EINVAL;
2217 goto error_out;
2218 }
2219
2220 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2221 UDF_PART_FLAG_READ_ONLY &&
2222 !(sb->s_flags & MS_RDONLY)) {
2223 ret = -EACCES;
2224 goto error_out;
2225 }
2226
2227 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2228 udf_warn(sb, "No fileset found\n");
2229 ret = -EINVAL;
2230 goto error_out;
2231 }
2232
2233 if (!silent) {
2234 struct timestamp ts;
2235 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2236 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2237 sbi->s_volume_ident,
2238 le16_to_cpu(ts.year), ts.month, ts.day,
2239 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2240 }
2241 if (!(sb->s_flags & MS_RDONLY)) {
2242 udf_open_lvid(sb);
2243 lvid_open = true;
2244 }
2245
2246 /* Assign the root inode */
2247 /* assign inodes by physical block number */
2248 /* perhaps it's not extensible enough, but for now ... */
2249 inode = udf_iget(sb, &rootdir);
2250 if (IS_ERR(inode)) {
2251 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2252 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2253 ret = PTR_ERR(inode);
2254 goto error_out;
2255 }
2256
2257 /* Allocate a dentry for the root inode */
2258 sb->s_root = d_make_root(inode);
2259 if (!sb->s_root) {
2260 udf_err(sb, "Couldn't allocate root dentry\n");
2261 ret = -ENOMEM;
2262 goto error_out;
2263 }
2264 sb->s_maxbytes = MAX_LFS_FILESIZE;
2265 sb->s_max_links = UDF_MAX_LINKS;
2266 return 0;
2267
2268error_out:
2269 iput(sbi->s_vat_inode);
2270parse_options_failure:
2271#ifdef CONFIG_UDF_NLS
2272 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2273 unload_nls(sbi->s_nls_map);
2274#endif
2275 if (lvid_open)
2276 udf_close_lvid(sb);
2277 brelse(sbi->s_lvid_bh);
2278 udf_sb_free_partitions(sb);
2279 kfree(sbi);
2280 sb->s_fs_info = NULL;
2281
2282 return ret;
2283}
2284
2285void _udf_err(struct super_block *sb, const char *function,
2286 const char *fmt, ...)
2287{
2288 struct va_format vaf;
2289 va_list args;
2290
2291 va_start(args, fmt);
2292
2293 vaf.fmt = fmt;
2294 vaf.va = &args;
2295
2296 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2297
2298 va_end(args);
2299}
2300
2301void _udf_warn(struct super_block *sb, const char *function,
2302 const char *fmt, ...)
2303{
2304 struct va_format vaf;
2305 va_list args;
2306
2307 va_start(args, fmt);
2308
2309 vaf.fmt = fmt;
2310 vaf.va = &args;
2311
2312 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2313
2314 va_end(args);
2315}
2316
2317static void udf_put_super(struct super_block *sb)
2318{
2319 struct udf_sb_info *sbi;
2320
2321 sbi = UDF_SB(sb);
2322
2323 iput(sbi->s_vat_inode);
2324#ifdef CONFIG_UDF_NLS
2325 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2326 unload_nls(sbi->s_nls_map);
2327#endif
2328 if (!(sb->s_flags & MS_RDONLY))
2329 udf_close_lvid(sb);
2330 brelse(sbi->s_lvid_bh);
2331 udf_sb_free_partitions(sb);
2332 mutex_destroy(&sbi->s_alloc_mutex);
2333 kfree(sb->s_fs_info);
2334 sb->s_fs_info = NULL;
2335}
2336
2337static int udf_sync_fs(struct super_block *sb, int wait)
2338{
2339 struct udf_sb_info *sbi = UDF_SB(sb);
2340
2341 mutex_lock(&sbi->s_alloc_mutex);
2342 if (sbi->s_lvid_dirty) {
2343 /*
2344 * Blockdevice will be synced later so we don't have to submit
2345 * the buffer for IO
2346 */
2347 mark_buffer_dirty(sbi->s_lvid_bh);
2348 sbi->s_lvid_dirty = 0;
2349 }
2350 mutex_unlock(&sbi->s_alloc_mutex);
2351
2352 return 0;
2353}
2354
2355static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2356{
2357 struct super_block *sb = dentry->d_sb;
2358 struct udf_sb_info *sbi = UDF_SB(sb);
2359 struct logicalVolIntegrityDescImpUse *lvidiu;
2360 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2361
2362 lvidiu = udf_sb_lvidiu(sb);
2363 buf->f_type = UDF_SUPER_MAGIC;
2364 buf->f_bsize = sb->s_blocksize;
2365 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2366 buf->f_bfree = udf_count_free(sb);
2367 buf->f_bavail = buf->f_bfree;
2368 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2369 le32_to_cpu(lvidiu->numDirs)) : 0)
2370 + buf->f_bfree;
2371 buf->f_ffree = buf->f_bfree;
2372 buf->f_namelen = UDF_NAME_LEN;
2373 buf->f_fsid.val[0] = (u32)id;
2374 buf->f_fsid.val[1] = (u32)(id >> 32);
2375
2376 return 0;
2377}
2378
2379static unsigned int udf_count_free_bitmap(struct super_block *sb,
2380 struct udf_bitmap *bitmap)
2381{
2382 struct buffer_head *bh = NULL;
2383 unsigned int accum = 0;
2384 int index;
2385 int block = 0, newblock;
2386 struct kernel_lb_addr loc;
2387 uint32_t bytes;
2388 uint8_t *ptr;
2389 uint16_t ident;
2390 struct spaceBitmapDesc *bm;
2391
2392 loc.logicalBlockNum = bitmap->s_extPosition;
2393 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2394 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2395
2396 if (!bh) {
2397 udf_err(sb, "udf_count_free failed\n");
2398 goto out;
2399 } else if (ident != TAG_IDENT_SBD) {
2400 brelse(bh);
2401 udf_err(sb, "udf_count_free failed\n");
2402 goto out;
2403 }
2404
2405 bm = (struct spaceBitmapDesc *)bh->b_data;
2406 bytes = le32_to_cpu(bm->numOfBytes);
2407 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2408 ptr = (uint8_t *)bh->b_data;
2409
2410 while (bytes > 0) {
2411 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2412 accum += bitmap_weight((const unsigned long *)(ptr + index),
2413 cur_bytes * 8);
2414 bytes -= cur_bytes;
2415 if (bytes) {
2416 brelse(bh);
2417 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2418 bh = udf_tread(sb, newblock);
2419 if (!bh) {
2420 udf_debug("read failed\n");
2421 goto out;
2422 }
2423 index = 0;
2424 ptr = (uint8_t *)bh->b_data;
2425 }
2426 }
2427 brelse(bh);
2428out:
2429 return accum;
2430}
2431
2432static unsigned int udf_count_free_table(struct super_block *sb,
2433 struct inode *table)
2434{
2435 unsigned int accum = 0;
2436 uint32_t elen;
2437 struct kernel_lb_addr eloc;
2438 int8_t etype;
2439 struct extent_position epos;
2440
2441 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2442 epos.block = UDF_I(table)->i_location;
2443 epos.offset = sizeof(struct unallocSpaceEntry);
2444 epos.bh = NULL;
2445
2446 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2447 accum += (elen >> table->i_sb->s_blocksize_bits);
2448
2449 brelse(epos.bh);
2450 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2451
2452 return accum;
2453}
2454
2455static unsigned int udf_count_free(struct super_block *sb)
2456{
2457 unsigned int accum = 0;
2458 struct udf_sb_info *sbi;
2459 struct udf_part_map *map;
2460
2461 sbi = UDF_SB(sb);
2462 if (sbi->s_lvid_bh) {
2463 struct logicalVolIntegrityDesc *lvid =
2464 (struct logicalVolIntegrityDesc *)
2465 sbi->s_lvid_bh->b_data;
2466 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2467 accum = le32_to_cpu(
2468 lvid->freeSpaceTable[sbi->s_partition]);
2469 if (accum == 0xFFFFFFFF)
2470 accum = 0;
2471 }
2472 }
2473
2474 if (accum)
2475 return accum;
2476
2477 map = &sbi->s_partmaps[sbi->s_partition];
2478 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2479 accum += udf_count_free_bitmap(sb,
2480 map->s_uspace.s_bitmap);
2481 }
2482 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2483 accum += udf_count_free_bitmap(sb,
2484 map->s_fspace.s_bitmap);
2485 }
2486 if (accum)
2487 return accum;
2488
2489 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2490 accum += udf_count_free_table(sb,
2491 map->s_uspace.s_table);
2492 }
2493 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2494 accum += udf_count_free_table(sb,
2495 map->s_fspace.s_table);
2496 }
2497
2498 return accum;
2499}