Loading...
1/*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20#include <linux/module.h>
21#include <linux/time.h>
22#include <linux/errno.h>
23#include <linux/stat.h>
24#include <linux/fcntl.h>
25#include <linux/string.h>
26#include <linux/kernel.h>
27#include <linux/slab.h>
28#include <linux/mm.h>
29#include <linux/sunrpc/clnt.h>
30#include <linux/nfs_fs.h>
31#include <linux/nfs_mount.h>
32#include <linux/pagemap.h>
33#include <linux/pagevec.h>
34#include <linux/namei.h>
35#include <linux/mount.h>
36#include <linux/swap.h>
37#include <linux/sched.h>
38#include <linux/kmemleak.h>
39#include <linux/xattr.h>
40
41#include "delegation.h"
42#include "iostat.h"
43#include "internal.h"
44#include "fscache.h"
45
46#include "nfstrace.h"
47
48/* #define NFS_DEBUG_VERBOSE 1 */
49
50static int nfs_opendir(struct inode *, struct file *);
51static int nfs_closedir(struct inode *, struct file *);
52static int nfs_readdir(struct file *, struct dir_context *);
53static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55static void nfs_readdir_clear_array(struct page*);
56
57const struct file_operations nfs_dir_operations = {
58 .llseek = nfs_llseek_dir,
59 .read = generic_read_dir,
60 .iterate = nfs_readdir,
61 .open = nfs_opendir,
62 .release = nfs_closedir,
63 .fsync = nfs_fsync_dir,
64};
65
66const struct address_space_operations nfs_dir_aops = {
67 .freepage = nfs_readdir_clear_array,
68};
69
70static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71{
72 struct nfs_inode *nfsi = NFS_I(dir);
73 struct nfs_open_dir_context *ctx;
74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 if (ctx != NULL) {
76 ctx->duped = 0;
77 ctx->attr_gencount = nfsi->attr_gencount;
78 ctx->dir_cookie = 0;
79 ctx->dup_cookie = 0;
80 ctx->cred = get_rpccred(cred);
81 spin_lock(&dir->i_lock);
82 list_add(&ctx->list, &nfsi->open_files);
83 spin_unlock(&dir->i_lock);
84 return ctx;
85 }
86 return ERR_PTR(-ENOMEM);
87}
88
89static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90{
91 spin_lock(&dir->i_lock);
92 list_del(&ctx->list);
93 spin_unlock(&dir->i_lock);
94 put_rpccred(ctx->cred);
95 kfree(ctx);
96}
97
98/*
99 * Open file
100 */
101static int
102nfs_opendir(struct inode *inode, struct file *filp)
103{
104 int res = 0;
105 struct nfs_open_dir_context *ctx;
106 struct rpc_cred *cred;
107
108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109
110 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111
112 cred = rpc_lookup_cred();
113 if (IS_ERR(cred))
114 return PTR_ERR(cred);
115 ctx = alloc_nfs_open_dir_context(inode, cred);
116 if (IS_ERR(ctx)) {
117 res = PTR_ERR(ctx);
118 goto out;
119 }
120 filp->private_data = ctx;
121out:
122 put_rpccred(cred);
123 return res;
124}
125
126static int
127nfs_closedir(struct inode *inode, struct file *filp)
128{
129 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
130 return 0;
131}
132
133struct nfs_cache_array_entry {
134 u64 cookie;
135 u64 ino;
136 struct qstr string;
137 unsigned char d_type;
138};
139
140struct nfs_cache_array {
141 int size;
142 int eof_index;
143 u64 last_cookie;
144 struct nfs_cache_array_entry array[0];
145};
146
147typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool);
148typedef struct {
149 struct file *file;
150 struct page *page;
151 struct dir_context *ctx;
152 unsigned long page_index;
153 u64 *dir_cookie;
154 u64 last_cookie;
155 loff_t current_index;
156 decode_dirent_t decode;
157
158 unsigned long timestamp;
159 unsigned long gencount;
160 unsigned int cache_entry_index;
161 bool plus;
162 bool eof;
163} nfs_readdir_descriptor_t;
164
165/*
166 * we are freeing strings created by nfs_add_to_readdir_array()
167 */
168static
169void nfs_readdir_clear_array(struct page *page)
170{
171 struct nfs_cache_array *array;
172 int i;
173
174 array = kmap_atomic(page);
175 for (i = 0; i < array->size; i++)
176 kfree(array->array[i].string.name);
177 kunmap_atomic(array);
178}
179
180/*
181 * the caller is responsible for freeing qstr.name
182 * when called by nfs_readdir_add_to_array, the strings will be freed in
183 * nfs_clear_readdir_array()
184 */
185static
186int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
187{
188 string->len = len;
189 string->name = kmemdup(name, len, GFP_KERNEL);
190 if (string->name == NULL)
191 return -ENOMEM;
192 /*
193 * Avoid a kmemleak false positive. The pointer to the name is stored
194 * in a page cache page which kmemleak does not scan.
195 */
196 kmemleak_not_leak(string->name);
197 string->hash = full_name_hash(NULL, name, len);
198 return 0;
199}
200
201static
202int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
203{
204 struct nfs_cache_array *array = kmap(page);
205 struct nfs_cache_array_entry *cache_entry;
206 int ret;
207
208 cache_entry = &array->array[array->size];
209
210 /* Check that this entry lies within the page bounds */
211 ret = -ENOSPC;
212 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
213 goto out;
214
215 cache_entry->cookie = entry->prev_cookie;
216 cache_entry->ino = entry->ino;
217 cache_entry->d_type = entry->d_type;
218 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
219 if (ret)
220 goto out;
221 array->last_cookie = entry->cookie;
222 array->size++;
223 if (entry->eof != 0)
224 array->eof_index = array->size;
225out:
226 kunmap(page);
227 return ret;
228}
229
230static
231int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
232{
233 loff_t diff = desc->ctx->pos - desc->current_index;
234 unsigned int index;
235
236 if (diff < 0)
237 goto out_eof;
238 if (diff >= array->size) {
239 if (array->eof_index >= 0)
240 goto out_eof;
241 return -EAGAIN;
242 }
243
244 index = (unsigned int)diff;
245 *desc->dir_cookie = array->array[index].cookie;
246 desc->cache_entry_index = index;
247 return 0;
248out_eof:
249 desc->eof = true;
250 return -EBADCOOKIE;
251}
252
253static bool
254nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
255{
256 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
257 return false;
258 smp_rmb();
259 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
260}
261
262static
263int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
264{
265 int i;
266 loff_t new_pos;
267 int status = -EAGAIN;
268
269 for (i = 0; i < array->size; i++) {
270 if (array->array[i].cookie == *desc->dir_cookie) {
271 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
272 struct nfs_open_dir_context *ctx = desc->file->private_data;
273
274 new_pos = desc->current_index + i;
275 if (ctx->attr_gencount != nfsi->attr_gencount ||
276 !nfs_readdir_inode_mapping_valid(nfsi)) {
277 ctx->duped = 0;
278 ctx->attr_gencount = nfsi->attr_gencount;
279 } else if (new_pos < desc->ctx->pos) {
280 if (ctx->duped > 0
281 && ctx->dup_cookie == *desc->dir_cookie) {
282 if (printk_ratelimit()) {
283 pr_notice("NFS: directory %pD2 contains a readdir loop."
284 "Please contact your server vendor. "
285 "The file: %.*s has duplicate cookie %llu\n",
286 desc->file, array->array[i].string.len,
287 array->array[i].string.name, *desc->dir_cookie);
288 }
289 status = -ELOOP;
290 goto out;
291 }
292 ctx->dup_cookie = *desc->dir_cookie;
293 ctx->duped = -1;
294 }
295 desc->ctx->pos = new_pos;
296 desc->cache_entry_index = i;
297 return 0;
298 }
299 }
300 if (array->eof_index >= 0) {
301 status = -EBADCOOKIE;
302 if (*desc->dir_cookie == array->last_cookie)
303 desc->eof = true;
304 }
305out:
306 return status;
307}
308
309static
310int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
311{
312 struct nfs_cache_array *array;
313 int status;
314
315 array = kmap(desc->page);
316
317 if (*desc->dir_cookie == 0)
318 status = nfs_readdir_search_for_pos(array, desc);
319 else
320 status = nfs_readdir_search_for_cookie(array, desc);
321
322 if (status == -EAGAIN) {
323 desc->last_cookie = array->last_cookie;
324 desc->current_index += array->size;
325 desc->page_index++;
326 }
327 kunmap(desc->page);
328 return status;
329}
330
331/* Fill a page with xdr information before transferring to the cache page */
332static
333int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
334 struct nfs_entry *entry, struct file *file, struct inode *inode)
335{
336 struct nfs_open_dir_context *ctx = file->private_data;
337 struct rpc_cred *cred = ctx->cred;
338 unsigned long timestamp, gencount;
339 int error;
340
341 again:
342 timestamp = jiffies;
343 gencount = nfs_inc_attr_generation_counter();
344 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
345 NFS_SERVER(inode)->dtsize, desc->plus);
346 if (error < 0) {
347 /* We requested READDIRPLUS, but the server doesn't grok it */
348 if (error == -ENOTSUPP && desc->plus) {
349 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
350 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
351 desc->plus = false;
352 goto again;
353 }
354 goto error;
355 }
356 desc->timestamp = timestamp;
357 desc->gencount = gencount;
358error:
359 return error;
360}
361
362static int xdr_decode(nfs_readdir_descriptor_t *desc,
363 struct nfs_entry *entry, struct xdr_stream *xdr)
364{
365 int error;
366
367 error = desc->decode(xdr, entry, desc->plus);
368 if (error)
369 return error;
370 entry->fattr->time_start = desc->timestamp;
371 entry->fattr->gencount = desc->gencount;
372 return 0;
373}
374
375/* Match file and dirent using either filehandle or fileid
376 * Note: caller is responsible for checking the fsid
377 */
378static
379int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
380{
381 struct inode *inode;
382 struct nfs_inode *nfsi;
383
384 if (d_really_is_negative(dentry))
385 return 0;
386
387 inode = d_inode(dentry);
388 if (is_bad_inode(inode) || NFS_STALE(inode))
389 return 0;
390
391 nfsi = NFS_I(inode);
392 if (entry->fattr->fileid != nfsi->fileid)
393 return 0;
394 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
395 return 0;
396 return 1;
397}
398
399static
400bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
401{
402 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
403 return false;
404 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
405 return true;
406 if (ctx->pos == 0)
407 return true;
408 return false;
409}
410
411/*
412 * This function is called by the lookup and getattr code to request the
413 * use of readdirplus to accelerate any future lookups in the same
414 * directory.
415 */
416void nfs_advise_use_readdirplus(struct inode *dir)
417{
418 struct nfs_inode *nfsi = NFS_I(dir);
419
420 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
421 !list_empty(&nfsi->open_files))
422 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
423}
424
425/*
426 * This function is mainly for use by nfs_getattr().
427 *
428 * If this is an 'ls -l', we want to force use of readdirplus.
429 * Do this by checking if there is an active file descriptor
430 * and calling nfs_advise_use_readdirplus, then forcing a
431 * cache flush.
432 */
433void nfs_force_use_readdirplus(struct inode *dir)
434{
435 struct nfs_inode *nfsi = NFS_I(dir);
436
437 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
438 !list_empty(&nfsi->open_files)) {
439 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
440 invalidate_mapping_pages(dir->i_mapping, 0, -1);
441 }
442}
443
444static
445void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
446{
447 struct qstr filename = QSTR_INIT(entry->name, entry->len);
448 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
449 struct dentry *dentry;
450 struct dentry *alias;
451 struct inode *dir = d_inode(parent);
452 struct inode *inode;
453 int status;
454
455 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
456 return;
457 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
458 return;
459 if (filename.len == 0)
460 return;
461 /* Validate that the name doesn't contain any illegal '\0' */
462 if (strnlen(filename.name, filename.len) != filename.len)
463 return;
464 /* ...or '/' */
465 if (strnchr(filename.name, filename.len, '/'))
466 return;
467 if (filename.name[0] == '.') {
468 if (filename.len == 1)
469 return;
470 if (filename.len == 2 && filename.name[1] == '.')
471 return;
472 }
473 filename.hash = full_name_hash(parent, filename.name, filename.len);
474
475 dentry = d_lookup(parent, &filename);
476again:
477 if (!dentry) {
478 dentry = d_alloc_parallel(parent, &filename, &wq);
479 if (IS_ERR(dentry))
480 return;
481 }
482 if (!d_in_lookup(dentry)) {
483 /* Is there a mountpoint here? If so, just exit */
484 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
485 &entry->fattr->fsid))
486 goto out;
487 if (nfs_same_file(dentry, entry)) {
488 if (!entry->fh->size)
489 goto out;
490 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
491 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
492 if (!status)
493 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
494 goto out;
495 } else {
496 d_invalidate(dentry);
497 dput(dentry);
498 dentry = NULL;
499 goto again;
500 }
501 }
502 if (!entry->fh->size) {
503 d_lookup_done(dentry);
504 goto out;
505 }
506
507 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
508 alias = d_splice_alias(inode, dentry);
509 d_lookup_done(dentry);
510 if (alias) {
511 if (IS_ERR(alias))
512 goto out;
513 dput(dentry);
514 dentry = alias;
515 }
516 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
517out:
518 dput(dentry);
519}
520
521/* Perform conversion from xdr to cache array */
522static
523int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
524 struct page **xdr_pages, struct page *page, unsigned int buflen)
525{
526 struct xdr_stream stream;
527 struct xdr_buf buf;
528 struct page *scratch;
529 struct nfs_cache_array *array;
530 unsigned int count = 0;
531 int status;
532
533 scratch = alloc_page(GFP_KERNEL);
534 if (scratch == NULL)
535 return -ENOMEM;
536
537 if (buflen == 0)
538 goto out_nopages;
539
540 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
541 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
542
543 do {
544 status = xdr_decode(desc, entry, &stream);
545 if (status != 0) {
546 if (status == -EAGAIN)
547 status = 0;
548 break;
549 }
550
551 count++;
552
553 if (desc->plus)
554 nfs_prime_dcache(file_dentry(desc->file), entry);
555
556 status = nfs_readdir_add_to_array(entry, page);
557 if (status != 0)
558 break;
559 } while (!entry->eof);
560
561out_nopages:
562 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
563 array = kmap(page);
564 array->eof_index = array->size;
565 status = 0;
566 kunmap(page);
567 }
568
569 put_page(scratch);
570 return status;
571}
572
573static
574void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
575{
576 unsigned int i;
577 for (i = 0; i < npages; i++)
578 put_page(pages[i]);
579}
580
581/*
582 * nfs_readdir_large_page will allocate pages that must be freed with a call
583 * to nfs_readdir_free_pagearray
584 */
585static
586int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
587{
588 unsigned int i;
589
590 for (i = 0; i < npages; i++) {
591 struct page *page = alloc_page(GFP_KERNEL);
592 if (page == NULL)
593 goto out_freepages;
594 pages[i] = page;
595 }
596 return 0;
597
598out_freepages:
599 nfs_readdir_free_pages(pages, i);
600 return -ENOMEM;
601}
602
603static
604int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
605{
606 struct page *pages[NFS_MAX_READDIR_PAGES];
607 struct nfs_entry entry;
608 struct file *file = desc->file;
609 struct nfs_cache_array *array;
610 int status = -ENOMEM;
611 unsigned int array_size = ARRAY_SIZE(pages);
612
613 entry.prev_cookie = 0;
614 entry.cookie = desc->last_cookie;
615 entry.eof = 0;
616 entry.fh = nfs_alloc_fhandle();
617 entry.fattr = nfs_alloc_fattr();
618 entry.server = NFS_SERVER(inode);
619 if (entry.fh == NULL || entry.fattr == NULL)
620 goto out;
621
622 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
623 if (IS_ERR(entry.label)) {
624 status = PTR_ERR(entry.label);
625 goto out;
626 }
627
628 array = kmap(page);
629 memset(array, 0, sizeof(struct nfs_cache_array));
630 array->eof_index = -1;
631
632 status = nfs_readdir_alloc_pages(pages, array_size);
633 if (status < 0)
634 goto out_release_array;
635 do {
636 unsigned int pglen;
637 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
638
639 if (status < 0)
640 break;
641 pglen = status;
642 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
643 if (status < 0) {
644 if (status == -ENOSPC)
645 status = 0;
646 break;
647 }
648 } while (array->eof_index < 0);
649
650 nfs_readdir_free_pages(pages, array_size);
651out_release_array:
652 kunmap(page);
653 nfs4_label_free(entry.label);
654out:
655 nfs_free_fattr(entry.fattr);
656 nfs_free_fhandle(entry.fh);
657 return status;
658}
659
660/*
661 * Now we cache directories properly, by converting xdr information
662 * to an array that can be used for lookups later. This results in
663 * fewer cache pages, since we can store more information on each page.
664 * We only need to convert from xdr once so future lookups are much simpler
665 */
666static
667int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
668{
669 struct inode *inode = file_inode(desc->file);
670 int ret;
671
672 ret = nfs_readdir_xdr_to_array(desc, page, inode);
673 if (ret < 0)
674 goto error;
675 SetPageUptodate(page);
676
677 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
678 /* Should never happen */
679 nfs_zap_mapping(inode, inode->i_mapping);
680 }
681 unlock_page(page);
682 return 0;
683 error:
684 unlock_page(page);
685 return ret;
686}
687
688static
689void cache_page_release(nfs_readdir_descriptor_t *desc)
690{
691 if (!desc->page->mapping)
692 nfs_readdir_clear_array(desc->page);
693 put_page(desc->page);
694 desc->page = NULL;
695}
696
697static
698struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
699{
700 return read_cache_page(desc->file->f_mapping,
701 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
702}
703
704/*
705 * Returns 0 if desc->dir_cookie was found on page desc->page_index
706 */
707static
708int find_cache_page(nfs_readdir_descriptor_t *desc)
709{
710 int res;
711
712 desc->page = get_cache_page(desc);
713 if (IS_ERR(desc->page))
714 return PTR_ERR(desc->page);
715
716 res = nfs_readdir_search_array(desc);
717 if (res != 0)
718 cache_page_release(desc);
719 return res;
720}
721
722/* Search for desc->dir_cookie from the beginning of the page cache */
723static inline
724int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
725{
726 int res;
727
728 if (desc->page_index == 0) {
729 desc->current_index = 0;
730 desc->last_cookie = 0;
731 }
732 do {
733 res = find_cache_page(desc);
734 } while (res == -EAGAIN);
735 return res;
736}
737
738/*
739 * Once we've found the start of the dirent within a page: fill 'er up...
740 */
741static
742int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
743{
744 struct file *file = desc->file;
745 int i = 0;
746 int res = 0;
747 struct nfs_cache_array *array = NULL;
748 struct nfs_open_dir_context *ctx = file->private_data;
749
750 array = kmap(desc->page);
751 for (i = desc->cache_entry_index; i < array->size; i++) {
752 struct nfs_cache_array_entry *ent;
753
754 ent = &array->array[i];
755 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
756 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
757 desc->eof = true;
758 break;
759 }
760 desc->ctx->pos++;
761 if (i < (array->size-1))
762 *desc->dir_cookie = array->array[i+1].cookie;
763 else
764 *desc->dir_cookie = array->last_cookie;
765 if (ctx->duped != 0)
766 ctx->duped = 1;
767 }
768 if (array->eof_index >= 0)
769 desc->eof = true;
770
771 kunmap(desc->page);
772 cache_page_release(desc);
773 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
774 (unsigned long long)*desc->dir_cookie, res);
775 return res;
776}
777
778/*
779 * If we cannot find a cookie in our cache, we suspect that this is
780 * because it points to a deleted file, so we ask the server to return
781 * whatever it thinks is the next entry. We then feed this to filldir.
782 * If all goes well, we should then be able to find our way round the
783 * cache on the next call to readdir_search_pagecache();
784 *
785 * NOTE: we cannot add the anonymous page to the pagecache because
786 * the data it contains might not be page aligned. Besides,
787 * we should already have a complete representation of the
788 * directory in the page cache by the time we get here.
789 */
790static inline
791int uncached_readdir(nfs_readdir_descriptor_t *desc)
792{
793 struct page *page = NULL;
794 int status;
795 struct inode *inode = file_inode(desc->file);
796 struct nfs_open_dir_context *ctx = desc->file->private_data;
797
798 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
799 (unsigned long long)*desc->dir_cookie);
800
801 page = alloc_page(GFP_HIGHUSER);
802 if (!page) {
803 status = -ENOMEM;
804 goto out;
805 }
806
807 desc->page_index = 0;
808 desc->last_cookie = *desc->dir_cookie;
809 desc->page = page;
810 ctx->duped = 0;
811
812 status = nfs_readdir_xdr_to_array(desc, page, inode);
813 if (status < 0)
814 goto out_release;
815
816 status = nfs_do_filldir(desc);
817
818 out:
819 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
820 __func__, status);
821 return status;
822 out_release:
823 cache_page_release(desc);
824 goto out;
825}
826
827/* The file offset position represents the dirent entry number. A
828 last cookie cache takes care of the common case of reading the
829 whole directory.
830 */
831static int nfs_readdir(struct file *file, struct dir_context *ctx)
832{
833 struct dentry *dentry = file_dentry(file);
834 struct inode *inode = d_inode(dentry);
835 nfs_readdir_descriptor_t my_desc,
836 *desc = &my_desc;
837 struct nfs_open_dir_context *dir_ctx = file->private_data;
838 int res = 0;
839
840 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
841 file, (long long)ctx->pos);
842 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
843
844 /*
845 * ctx->pos points to the dirent entry number.
846 * *desc->dir_cookie has the cookie for the next entry. We have
847 * to either find the entry with the appropriate number or
848 * revalidate the cookie.
849 */
850 memset(desc, 0, sizeof(*desc));
851
852 desc->file = file;
853 desc->ctx = ctx;
854 desc->dir_cookie = &dir_ctx->dir_cookie;
855 desc->decode = NFS_PROTO(inode)->decode_dirent;
856 desc->plus = nfs_use_readdirplus(inode, ctx);
857
858 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
859 res = nfs_revalidate_mapping(inode, file->f_mapping);
860 if (res < 0)
861 goto out;
862
863 do {
864 res = readdir_search_pagecache(desc);
865
866 if (res == -EBADCOOKIE) {
867 res = 0;
868 /* This means either end of directory */
869 if (*desc->dir_cookie && !desc->eof) {
870 /* Or that the server has 'lost' a cookie */
871 res = uncached_readdir(desc);
872 if (res == 0)
873 continue;
874 }
875 break;
876 }
877 if (res == -ETOOSMALL && desc->plus) {
878 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
879 nfs_zap_caches(inode);
880 desc->page_index = 0;
881 desc->plus = false;
882 desc->eof = false;
883 continue;
884 }
885 if (res < 0)
886 break;
887
888 res = nfs_do_filldir(desc);
889 if (res < 0)
890 break;
891 } while (!desc->eof);
892out:
893 if (res > 0)
894 res = 0;
895 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
896 return res;
897}
898
899static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
900{
901 struct inode *inode = file_inode(filp);
902 struct nfs_open_dir_context *dir_ctx = filp->private_data;
903
904 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
905 filp, offset, whence);
906
907 inode_lock(inode);
908 switch (whence) {
909 case 1:
910 offset += filp->f_pos;
911 case 0:
912 if (offset >= 0)
913 break;
914 default:
915 offset = -EINVAL;
916 goto out;
917 }
918 if (offset != filp->f_pos) {
919 filp->f_pos = offset;
920 dir_ctx->dir_cookie = 0;
921 dir_ctx->duped = 0;
922 }
923out:
924 inode_unlock(inode);
925 return offset;
926}
927
928/*
929 * All directory operations under NFS are synchronous, so fsync()
930 * is a dummy operation.
931 */
932static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
933 int datasync)
934{
935 struct inode *inode = file_inode(filp);
936
937 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
938
939 inode_lock(inode);
940 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
941 inode_unlock(inode);
942 return 0;
943}
944
945/**
946 * nfs_force_lookup_revalidate - Mark the directory as having changed
947 * @dir - pointer to directory inode
948 *
949 * This forces the revalidation code in nfs_lookup_revalidate() to do a
950 * full lookup on all child dentries of 'dir' whenever a change occurs
951 * on the server that might have invalidated our dcache.
952 *
953 * The caller should be holding dir->i_lock
954 */
955void nfs_force_lookup_revalidate(struct inode *dir)
956{
957 NFS_I(dir)->cache_change_attribute++;
958}
959EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
960
961/*
962 * A check for whether or not the parent directory has changed.
963 * In the case it has, we assume that the dentries are untrustworthy
964 * and may need to be looked up again.
965 * If rcu_walk prevents us from performing a full check, return 0.
966 */
967static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
968 int rcu_walk)
969{
970 if (IS_ROOT(dentry))
971 return 1;
972 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
973 return 0;
974 if (!nfs_verify_change_attribute(dir, dentry->d_time))
975 return 0;
976 /* Revalidate nfsi->cache_change_attribute before we declare a match */
977 if (nfs_mapping_need_revalidate_inode(dir)) {
978 if (rcu_walk)
979 return 0;
980 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
981 return 0;
982 }
983 if (!nfs_verify_change_attribute(dir, dentry->d_time))
984 return 0;
985 return 1;
986}
987
988/*
989 * Use intent information to check whether or not we're going to do
990 * an O_EXCL create using this path component.
991 */
992static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
993{
994 if (NFS_PROTO(dir)->version == 2)
995 return 0;
996 return flags & LOOKUP_EXCL;
997}
998
999/*
1000 * Inode and filehandle revalidation for lookups.
1001 *
1002 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1003 * or if the intent information indicates that we're about to open this
1004 * particular file and the "nocto" mount flag is not set.
1005 *
1006 */
1007static
1008int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1009{
1010 struct nfs_server *server = NFS_SERVER(inode);
1011 int ret;
1012
1013 if (IS_AUTOMOUNT(inode))
1014 return 0;
1015 /* VFS wants an on-the-wire revalidation */
1016 if (flags & LOOKUP_REVAL)
1017 goto out_force;
1018 /* This is an open(2) */
1019 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1020 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1021 goto out_force;
1022out:
1023 return (inode->i_nlink == 0) ? -ENOENT : 0;
1024out_force:
1025 if (flags & LOOKUP_RCU)
1026 return -ECHILD;
1027 ret = __nfs_revalidate_inode(server, inode);
1028 if (ret != 0)
1029 return ret;
1030 goto out;
1031}
1032
1033/*
1034 * We judge how long we want to trust negative
1035 * dentries by looking at the parent inode mtime.
1036 *
1037 * If parent mtime has changed, we revalidate, else we wait for a
1038 * period corresponding to the parent's attribute cache timeout value.
1039 *
1040 * If LOOKUP_RCU prevents us from performing a full check, return 1
1041 * suggesting a reval is needed.
1042 */
1043static inline
1044int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1045 unsigned int flags)
1046{
1047 /* Don't revalidate a negative dentry if we're creating a new file */
1048 if (flags & LOOKUP_CREATE)
1049 return 0;
1050 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1051 return 1;
1052 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1053}
1054
1055/*
1056 * This is called every time the dcache has a lookup hit,
1057 * and we should check whether we can really trust that
1058 * lookup.
1059 *
1060 * NOTE! The hit can be a negative hit too, don't assume
1061 * we have an inode!
1062 *
1063 * If the parent directory is seen to have changed, we throw out the
1064 * cached dentry and do a new lookup.
1065 */
1066static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1067{
1068 struct inode *dir;
1069 struct inode *inode;
1070 struct dentry *parent;
1071 struct nfs_fh *fhandle = NULL;
1072 struct nfs_fattr *fattr = NULL;
1073 struct nfs4_label *label = NULL;
1074 int error;
1075
1076 if (flags & LOOKUP_RCU) {
1077 parent = READ_ONCE(dentry->d_parent);
1078 dir = d_inode_rcu(parent);
1079 if (!dir)
1080 return -ECHILD;
1081 } else {
1082 parent = dget_parent(dentry);
1083 dir = d_inode(parent);
1084 }
1085 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1086 inode = d_inode(dentry);
1087
1088 if (!inode) {
1089 if (nfs_neg_need_reval(dir, dentry, flags)) {
1090 if (flags & LOOKUP_RCU)
1091 return -ECHILD;
1092 goto out_bad;
1093 }
1094 goto out_valid;
1095 }
1096
1097 if (is_bad_inode(inode)) {
1098 if (flags & LOOKUP_RCU)
1099 return -ECHILD;
1100 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1101 __func__, dentry);
1102 goto out_bad;
1103 }
1104
1105 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1106 goto out_set_verifier;
1107
1108 /* Force a full look up iff the parent directory has changed */
1109 if (!nfs_is_exclusive_create(dir, flags) &&
1110 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1111 error = nfs_lookup_verify_inode(inode, flags);
1112 if (error) {
1113 if (flags & LOOKUP_RCU)
1114 return -ECHILD;
1115 if (error == -ESTALE)
1116 goto out_zap_parent;
1117 goto out_error;
1118 }
1119 nfs_advise_use_readdirplus(dir);
1120 goto out_valid;
1121 }
1122
1123 if (flags & LOOKUP_RCU)
1124 return -ECHILD;
1125
1126 if (NFS_STALE(inode))
1127 goto out_bad;
1128
1129 error = -ENOMEM;
1130 fhandle = nfs_alloc_fhandle();
1131 fattr = nfs_alloc_fattr();
1132 if (fhandle == NULL || fattr == NULL)
1133 goto out_error;
1134
1135 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1136 if (IS_ERR(label))
1137 goto out_error;
1138
1139 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1140 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1141 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1142 if (error == -ESTALE || error == -ENOENT)
1143 goto out_bad;
1144 if (error)
1145 goto out_error;
1146 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1147 goto out_bad;
1148 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1149 goto out_bad;
1150
1151 nfs_setsecurity(inode, fattr, label);
1152
1153 nfs_free_fattr(fattr);
1154 nfs_free_fhandle(fhandle);
1155 nfs4_label_free(label);
1156
1157 /* set a readdirplus hint that we had a cache miss */
1158 nfs_force_use_readdirplus(dir);
1159
1160out_set_verifier:
1161 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1162 out_valid:
1163 if (flags & LOOKUP_RCU) {
1164 if (parent != READ_ONCE(dentry->d_parent))
1165 return -ECHILD;
1166 } else
1167 dput(parent);
1168 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1169 __func__, dentry);
1170 return 1;
1171out_zap_parent:
1172 nfs_zap_caches(dir);
1173 out_bad:
1174 WARN_ON(flags & LOOKUP_RCU);
1175 nfs_free_fattr(fattr);
1176 nfs_free_fhandle(fhandle);
1177 nfs4_label_free(label);
1178 nfs_mark_for_revalidate(dir);
1179 if (inode && S_ISDIR(inode->i_mode)) {
1180 /* Purge readdir caches. */
1181 nfs_zap_caches(inode);
1182 /*
1183 * We can't d_drop the root of a disconnected tree:
1184 * its d_hash is on the s_anon list and d_drop() would hide
1185 * it from shrink_dcache_for_unmount(), leading to busy
1186 * inodes on unmount and further oopses.
1187 */
1188 if (IS_ROOT(dentry))
1189 goto out_valid;
1190 }
1191 dput(parent);
1192 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1193 __func__, dentry);
1194 return 0;
1195out_error:
1196 WARN_ON(flags & LOOKUP_RCU);
1197 nfs_free_fattr(fattr);
1198 nfs_free_fhandle(fhandle);
1199 nfs4_label_free(label);
1200 dput(parent);
1201 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1202 __func__, dentry, error);
1203 return error;
1204}
1205
1206/*
1207 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1208 * when we don't really care about the dentry name. This is called when a
1209 * pathwalk ends on a dentry that was not found via a normal lookup in the
1210 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1211 *
1212 * In this situation, we just want to verify that the inode itself is OK
1213 * since the dentry might have changed on the server.
1214 */
1215static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1216{
1217 struct inode *inode = d_inode(dentry);
1218 int error = 0;
1219
1220 /*
1221 * I believe we can only get a negative dentry here in the case of a
1222 * procfs-style symlink. Just assume it's correct for now, but we may
1223 * eventually need to do something more here.
1224 */
1225 if (!inode) {
1226 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1227 __func__, dentry);
1228 return 1;
1229 }
1230
1231 if (is_bad_inode(inode)) {
1232 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1233 __func__, dentry);
1234 return 0;
1235 }
1236
1237 error = nfs_lookup_verify_inode(inode, flags);
1238 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1239 __func__, inode->i_ino, error ? "invalid" : "valid");
1240 return !error;
1241}
1242
1243/*
1244 * This is called from dput() when d_count is going to 0.
1245 */
1246static int nfs_dentry_delete(const struct dentry *dentry)
1247{
1248 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1249 dentry, dentry->d_flags);
1250
1251 /* Unhash any dentry with a stale inode */
1252 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1253 return 1;
1254
1255 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1256 /* Unhash it, so that ->d_iput() would be called */
1257 return 1;
1258 }
1259 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1260 /* Unhash it, so that ancestors of killed async unlink
1261 * files will be cleaned up during umount */
1262 return 1;
1263 }
1264 return 0;
1265
1266}
1267
1268/* Ensure that we revalidate inode->i_nlink */
1269static void nfs_drop_nlink(struct inode *inode)
1270{
1271 spin_lock(&inode->i_lock);
1272 /* drop the inode if we're reasonably sure this is the last link */
1273 if (inode->i_nlink == 1)
1274 clear_nlink(inode);
1275 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1276 | NFS_INO_INVALID_CTIME
1277 | NFS_INO_INVALID_OTHER;
1278 spin_unlock(&inode->i_lock);
1279}
1280
1281/*
1282 * Called when the dentry loses inode.
1283 * We use it to clean up silly-renamed files.
1284 */
1285static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1286{
1287 if (S_ISDIR(inode->i_mode))
1288 /* drop any readdir cache as it could easily be old */
1289 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1290
1291 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1292 nfs_complete_unlink(dentry, inode);
1293 nfs_drop_nlink(inode);
1294 }
1295 iput(inode);
1296}
1297
1298static void nfs_d_release(struct dentry *dentry)
1299{
1300 /* free cached devname value, if it survived that far */
1301 if (unlikely(dentry->d_fsdata)) {
1302 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1303 WARN_ON(1);
1304 else
1305 kfree(dentry->d_fsdata);
1306 }
1307}
1308
1309const struct dentry_operations nfs_dentry_operations = {
1310 .d_revalidate = nfs_lookup_revalidate,
1311 .d_weak_revalidate = nfs_weak_revalidate,
1312 .d_delete = nfs_dentry_delete,
1313 .d_iput = nfs_dentry_iput,
1314 .d_automount = nfs_d_automount,
1315 .d_release = nfs_d_release,
1316};
1317EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1318
1319struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1320{
1321 struct dentry *res;
1322 struct inode *inode = NULL;
1323 struct nfs_fh *fhandle = NULL;
1324 struct nfs_fattr *fattr = NULL;
1325 struct nfs4_label *label = NULL;
1326 int error;
1327
1328 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1329 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1330
1331 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1332 return ERR_PTR(-ENAMETOOLONG);
1333
1334 /*
1335 * If we're doing an exclusive create, optimize away the lookup
1336 * but don't hash the dentry.
1337 */
1338 if (nfs_is_exclusive_create(dir, flags))
1339 return NULL;
1340
1341 res = ERR_PTR(-ENOMEM);
1342 fhandle = nfs_alloc_fhandle();
1343 fattr = nfs_alloc_fattr();
1344 if (fhandle == NULL || fattr == NULL)
1345 goto out;
1346
1347 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1348 if (IS_ERR(label))
1349 goto out;
1350
1351 trace_nfs_lookup_enter(dir, dentry, flags);
1352 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1353 if (error == -ENOENT)
1354 goto no_entry;
1355 if (error < 0) {
1356 res = ERR_PTR(error);
1357 goto out_label;
1358 }
1359 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1360 res = ERR_CAST(inode);
1361 if (IS_ERR(res))
1362 goto out_label;
1363
1364 /* Notify readdir to use READDIRPLUS */
1365 nfs_force_use_readdirplus(dir);
1366
1367no_entry:
1368 res = d_splice_alias(inode, dentry);
1369 if (res != NULL) {
1370 if (IS_ERR(res))
1371 goto out_label;
1372 dentry = res;
1373 }
1374 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1375out_label:
1376 trace_nfs_lookup_exit(dir, dentry, flags, error);
1377 nfs4_label_free(label);
1378out:
1379 nfs_free_fattr(fattr);
1380 nfs_free_fhandle(fhandle);
1381 return res;
1382}
1383EXPORT_SYMBOL_GPL(nfs_lookup);
1384
1385#if IS_ENABLED(CONFIG_NFS_V4)
1386static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1387
1388const struct dentry_operations nfs4_dentry_operations = {
1389 .d_revalidate = nfs4_lookup_revalidate,
1390 .d_weak_revalidate = nfs_weak_revalidate,
1391 .d_delete = nfs_dentry_delete,
1392 .d_iput = nfs_dentry_iput,
1393 .d_automount = nfs_d_automount,
1394 .d_release = nfs_d_release,
1395};
1396EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1397
1398static fmode_t flags_to_mode(int flags)
1399{
1400 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1401 if ((flags & O_ACCMODE) != O_WRONLY)
1402 res |= FMODE_READ;
1403 if ((flags & O_ACCMODE) != O_RDONLY)
1404 res |= FMODE_WRITE;
1405 return res;
1406}
1407
1408static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1409{
1410 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1411}
1412
1413static int do_open(struct inode *inode, struct file *filp)
1414{
1415 nfs_fscache_open_file(inode, filp);
1416 return 0;
1417}
1418
1419static int nfs_finish_open(struct nfs_open_context *ctx,
1420 struct dentry *dentry,
1421 struct file *file, unsigned open_flags,
1422 int *opened)
1423{
1424 int err;
1425
1426 err = finish_open(file, dentry, do_open, opened);
1427 if (err)
1428 goto out;
1429 if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1430 nfs_file_set_open_context(file, ctx);
1431 else
1432 err = -ESTALE;
1433out:
1434 return err;
1435}
1436
1437int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1438 struct file *file, unsigned open_flags,
1439 umode_t mode, int *opened)
1440{
1441 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1442 struct nfs_open_context *ctx;
1443 struct dentry *res;
1444 struct iattr attr = { .ia_valid = ATTR_OPEN };
1445 struct inode *inode;
1446 unsigned int lookup_flags = 0;
1447 bool switched = false;
1448 int err;
1449
1450 /* Expect a negative dentry */
1451 BUG_ON(d_inode(dentry));
1452
1453 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1454 dir->i_sb->s_id, dir->i_ino, dentry);
1455
1456 err = nfs_check_flags(open_flags);
1457 if (err)
1458 return err;
1459
1460 /* NFS only supports OPEN on regular files */
1461 if ((open_flags & O_DIRECTORY)) {
1462 if (!d_in_lookup(dentry)) {
1463 /*
1464 * Hashed negative dentry with O_DIRECTORY: dentry was
1465 * revalidated and is fine, no need to perform lookup
1466 * again
1467 */
1468 return -ENOENT;
1469 }
1470 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1471 goto no_open;
1472 }
1473
1474 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1475 return -ENAMETOOLONG;
1476
1477 if (open_flags & O_CREAT) {
1478 struct nfs_server *server = NFS_SERVER(dir);
1479
1480 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1481 mode &= ~current_umask();
1482
1483 attr.ia_valid |= ATTR_MODE;
1484 attr.ia_mode = mode;
1485 }
1486 if (open_flags & O_TRUNC) {
1487 attr.ia_valid |= ATTR_SIZE;
1488 attr.ia_size = 0;
1489 }
1490
1491 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1492 d_drop(dentry);
1493 switched = true;
1494 dentry = d_alloc_parallel(dentry->d_parent,
1495 &dentry->d_name, &wq);
1496 if (IS_ERR(dentry))
1497 return PTR_ERR(dentry);
1498 if (unlikely(!d_in_lookup(dentry)))
1499 return finish_no_open(file, dentry);
1500 }
1501
1502 ctx = create_nfs_open_context(dentry, open_flags, file);
1503 err = PTR_ERR(ctx);
1504 if (IS_ERR(ctx))
1505 goto out;
1506
1507 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1508 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1509 if (IS_ERR(inode)) {
1510 err = PTR_ERR(inode);
1511 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1512 put_nfs_open_context(ctx);
1513 d_drop(dentry);
1514 switch (err) {
1515 case -ENOENT:
1516 d_splice_alias(NULL, dentry);
1517 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1518 break;
1519 case -EISDIR:
1520 case -ENOTDIR:
1521 goto no_open;
1522 case -ELOOP:
1523 if (!(open_flags & O_NOFOLLOW))
1524 goto no_open;
1525 break;
1526 /* case -EINVAL: */
1527 default:
1528 break;
1529 }
1530 goto out;
1531 }
1532
1533 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1534 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1535 put_nfs_open_context(ctx);
1536out:
1537 if (unlikely(switched)) {
1538 d_lookup_done(dentry);
1539 dput(dentry);
1540 }
1541 return err;
1542
1543no_open:
1544 res = nfs_lookup(dir, dentry, lookup_flags);
1545 if (switched) {
1546 d_lookup_done(dentry);
1547 if (!res)
1548 res = dentry;
1549 else
1550 dput(dentry);
1551 }
1552 if (IS_ERR(res))
1553 return PTR_ERR(res);
1554 return finish_no_open(file, res);
1555}
1556EXPORT_SYMBOL_GPL(nfs_atomic_open);
1557
1558static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1559{
1560 struct inode *inode;
1561 int ret = 0;
1562
1563 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1564 goto no_open;
1565 if (d_mountpoint(dentry))
1566 goto no_open;
1567 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1568 goto no_open;
1569
1570 inode = d_inode(dentry);
1571
1572 /* We can't create new files in nfs_open_revalidate(), so we
1573 * optimize away revalidation of negative dentries.
1574 */
1575 if (inode == NULL) {
1576 struct dentry *parent;
1577 struct inode *dir;
1578
1579 if (flags & LOOKUP_RCU) {
1580 parent = READ_ONCE(dentry->d_parent);
1581 dir = d_inode_rcu(parent);
1582 if (!dir)
1583 return -ECHILD;
1584 } else {
1585 parent = dget_parent(dentry);
1586 dir = d_inode(parent);
1587 }
1588 if (!nfs_neg_need_reval(dir, dentry, flags))
1589 ret = 1;
1590 else if (flags & LOOKUP_RCU)
1591 ret = -ECHILD;
1592 if (!(flags & LOOKUP_RCU))
1593 dput(parent);
1594 else if (parent != READ_ONCE(dentry->d_parent))
1595 return -ECHILD;
1596 goto out;
1597 }
1598
1599 /* NFS only supports OPEN on regular files */
1600 if (!S_ISREG(inode->i_mode))
1601 goto no_open;
1602 /* We cannot do exclusive creation on a positive dentry */
1603 if (flags & LOOKUP_EXCL)
1604 goto no_open;
1605
1606 /* Let f_op->open() actually open (and revalidate) the file */
1607 ret = 1;
1608
1609out:
1610 return ret;
1611
1612no_open:
1613 return nfs_lookup_revalidate(dentry, flags);
1614}
1615
1616#endif /* CONFIG_NFSV4 */
1617
1618/*
1619 * Code common to create, mkdir, and mknod.
1620 */
1621int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1622 struct nfs_fattr *fattr,
1623 struct nfs4_label *label)
1624{
1625 struct dentry *parent = dget_parent(dentry);
1626 struct inode *dir = d_inode(parent);
1627 struct inode *inode;
1628 int error = -EACCES;
1629
1630 d_drop(dentry);
1631
1632 /* We may have been initialized further down */
1633 if (d_really_is_positive(dentry))
1634 goto out;
1635 if (fhandle->size == 0) {
1636 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1637 if (error)
1638 goto out_error;
1639 }
1640 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1641 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1642 struct nfs_server *server = NFS_SB(dentry->d_sb);
1643 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1644 if (error < 0)
1645 goto out_error;
1646 }
1647 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1648 error = PTR_ERR(inode);
1649 if (IS_ERR(inode))
1650 goto out_error;
1651 d_add(dentry, inode);
1652out:
1653 dput(parent);
1654 return 0;
1655out_error:
1656 nfs_mark_for_revalidate(dir);
1657 dput(parent);
1658 return error;
1659}
1660EXPORT_SYMBOL_GPL(nfs_instantiate);
1661
1662/*
1663 * Following a failed create operation, we drop the dentry rather
1664 * than retain a negative dentry. This avoids a problem in the event
1665 * that the operation succeeded on the server, but an error in the
1666 * reply path made it appear to have failed.
1667 */
1668int nfs_create(struct inode *dir, struct dentry *dentry,
1669 umode_t mode, bool excl)
1670{
1671 struct iattr attr;
1672 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1673 int error;
1674
1675 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1676 dir->i_sb->s_id, dir->i_ino, dentry);
1677
1678 attr.ia_mode = mode;
1679 attr.ia_valid = ATTR_MODE;
1680
1681 trace_nfs_create_enter(dir, dentry, open_flags);
1682 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1683 trace_nfs_create_exit(dir, dentry, open_flags, error);
1684 if (error != 0)
1685 goto out_err;
1686 return 0;
1687out_err:
1688 d_drop(dentry);
1689 return error;
1690}
1691EXPORT_SYMBOL_GPL(nfs_create);
1692
1693/*
1694 * See comments for nfs_proc_create regarding failed operations.
1695 */
1696int
1697nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1698{
1699 struct iattr attr;
1700 int status;
1701
1702 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1703 dir->i_sb->s_id, dir->i_ino, dentry);
1704
1705 attr.ia_mode = mode;
1706 attr.ia_valid = ATTR_MODE;
1707
1708 trace_nfs_mknod_enter(dir, dentry);
1709 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1710 trace_nfs_mknod_exit(dir, dentry, status);
1711 if (status != 0)
1712 goto out_err;
1713 return 0;
1714out_err:
1715 d_drop(dentry);
1716 return status;
1717}
1718EXPORT_SYMBOL_GPL(nfs_mknod);
1719
1720/*
1721 * See comments for nfs_proc_create regarding failed operations.
1722 */
1723int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1724{
1725 struct iattr attr;
1726 int error;
1727
1728 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1729 dir->i_sb->s_id, dir->i_ino, dentry);
1730
1731 attr.ia_valid = ATTR_MODE;
1732 attr.ia_mode = mode | S_IFDIR;
1733
1734 trace_nfs_mkdir_enter(dir, dentry);
1735 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1736 trace_nfs_mkdir_exit(dir, dentry, error);
1737 if (error != 0)
1738 goto out_err;
1739 return 0;
1740out_err:
1741 d_drop(dentry);
1742 return error;
1743}
1744EXPORT_SYMBOL_GPL(nfs_mkdir);
1745
1746static void nfs_dentry_handle_enoent(struct dentry *dentry)
1747{
1748 if (simple_positive(dentry))
1749 d_delete(dentry);
1750}
1751
1752int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1753{
1754 int error;
1755
1756 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1757 dir->i_sb->s_id, dir->i_ino, dentry);
1758
1759 trace_nfs_rmdir_enter(dir, dentry);
1760 if (d_really_is_positive(dentry)) {
1761 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1762 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1763 /* Ensure the VFS deletes this inode */
1764 switch (error) {
1765 case 0:
1766 clear_nlink(d_inode(dentry));
1767 break;
1768 case -ENOENT:
1769 nfs_dentry_handle_enoent(dentry);
1770 }
1771 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1772 } else
1773 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1774 trace_nfs_rmdir_exit(dir, dentry, error);
1775
1776 return error;
1777}
1778EXPORT_SYMBOL_GPL(nfs_rmdir);
1779
1780/*
1781 * Remove a file after making sure there are no pending writes,
1782 * and after checking that the file has only one user.
1783 *
1784 * We invalidate the attribute cache and free the inode prior to the operation
1785 * to avoid possible races if the server reuses the inode.
1786 */
1787static int nfs_safe_remove(struct dentry *dentry)
1788{
1789 struct inode *dir = d_inode(dentry->d_parent);
1790 struct inode *inode = d_inode(dentry);
1791 int error = -EBUSY;
1792
1793 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1794
1795 /* If the dentry was sillyrenamed, we simply call d_delete() */
1796 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1797 error = 0;
1798 goto out;
1799 }
1800
1801 trace_nfs_remove_enter(dir, dentry);
1802 if (inode != NULL) {
1803 error = NFS_PROTO(dir)->remove(dir, dentry);
1804 if (error == 0)
1805 nfs_drop_nlink(inode);
1806 } else
1807 error = NFS_PROTO(dir)->remove(dir, dentry);
1808 if (error == -ENOENT)
1809 nfs_dentry_handle_enoent(dentry);
1810 trace_nfs_remove_exit(dir, dentry, error);
1811out:
1812 return error;
1813}
1814
1815/* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1816 * belongs to an active ".nfs..." file and we return -EBUSY.
1817 *
1818 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1819 */
1820int nfs_unlink(struct inode *dir, struct dentry *dentry)
1821{
1822 int error;
1823 int need_rehash = 0;
1824
1825 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1826 dir->i_ino, dentry);
1827
1828 trace_nfs_unlink_enter(dir, dentry);
1829 spin_lock(&dentry->d_lock);
1830 if (d_count(dentry) > 1) {
1831 spin_unlock(&dentry->d_lock);
1832 /* Start asynchronous writeout of the inode */
1833 write_inode_now(d_inode(dentry), 0);
1834 error = nfs_sillyrename(dir, dentry);
1835 goto out;
1836 }
1837 if (!d_unhashed(dentry)) {
1838 __d_drop(dentry);
1839 need_rehash = 1;
1840 }
1841 spin_unlock(&dentry->d_lock);
1842 error = nfs_safe_remove(dentry);
1843 if (!error || error == -ENOENT) {
1844 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1845 } else if (need_rehash)
1846 d_rehash(dentry);
1847out:
1848 trace_nfs_unlink_exit(dir, dentry, error);
1849 return error;
1850}
1851EXPORT_SYMBOL_GPL(nfs_unlink);
1852
1853/*
1854 * To create a symbolic link, most file systems instantiate a new inode,
1855 * add a page to it containing the path, then write it out to the disk
1856 * using prepare_write/commit_write.
1857 *
1858 * Unfortunately the NFS client can't create the in-core inode first
1859 * because it needs a file handle to create an in-core inode (see
1860 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1861 * symlink request has completed on the server.
1862 *
1863 * So instead we allocate a raw page, copy the symname into it, then do
1864 * the SYMLINK request with the page as the buffer. If it succeeds, we
1865 * now have a new file handle and can instantiate an in-core NFS inode
1866 * and move the raw page into its mapping.
1867 */
1868int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1869{
1870 struct page *page;
1871 char *kaddr;
1872 struct iattr attr;
1873 unsigned int pathlen = strlen(symname);
1874 int error;
1875
1876 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1877 dir->i_ino, dentry, symname);
1878
1879 if (pathlen > PAGE_SIZE)
1880 return -ENAMETOOLONG;
1881
1882 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1883 attr.ia_valid = ATTR_MODE;
1884
1885 page = alloc_page(GFP_USER);
1886 if (!page)
1887 return -ENOMEM;
1888
1889 kaddr = page_address(page);
1890 memcpy(kaddr, symname, pathlen);
1891 if (pathlen < PAGE_SIZE)
1892 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1893
1894 trace_nfs_symlink_enter(dir, dentry);
1895 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1896 trace_nfs_symlink_exit(dir, dentry, error);
1897 if (error != 0) {
1898 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1899 dir->i_sb->s_id, dir->i_ino,
1900 dentry, symname, error);
1901 d_drop(dentry);
1902 __free_page(page);
1903 return error;
1904 }
1905
1906 /*
1907 * No big deal if we can't add this page to the page cache here.
1908 * READLINK will get the missing page from the server if needed.
1909 */
1910 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1911 GFP_KERNEL)) {
1912 SetPageUptodate(page);
1913 unlock_page(page);
1914 /*
1915 * add_to_page_cache_lru() grabs an extra page refcount.
1916 * Drop it here to avoid leaking this page later.
1917 */
1918 put_page(page);
1919 } else
1920 __free_page(page);
1921
1922 return 0;
1923}
1924EXPORT_SYMBOL_GPL(nfs_symlink);
1925
1926int
1927nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1928{
1929 struct inode *inode = d_inode(old_dentry);
1930 int error;
1931
1932 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1933 old_dentry, dentry);
1934
1935 trace_nfs_link_enter(inode, dir, dentry);
1936 d_drop(dentry);
1937 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1938 if (error == 0) {
1939 ihold(inode);
1940 d_add(dentry, inode);
1941 }
1942 trace_nfs_link_exit(inode, dir, dentry, error);
1943 return error;
1944}
1945EXPORT_SYMBOL_GPL(nfs_link);
1946
1947/*
1948 * RENAME
1949 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1950 * different file handle for the same inode after a rename (e.g. when
1951 * moving to a different directory). A fail-safe method to do so would
1952 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1953 * rename the old file using the sillyrename stuff. This way, the original
1954 * file in old_dir will go away when the last process iput()s the inode.
1955 *
1956 * FIXED.
1957 *
1958 * It actually works quite well. One needs to have the possibility for
1959 * at least one ".nfs..." file in each directory the file ever gets
1960 * moved or linked to which happens automagically with the new
1961 * implementation that only depends on the dcache stuff instead of
1962 * using the inode layer
1963 *
1964 * Unfortunately, things are a little more complicated than indicated
1965 * above. For a cross-directory move, we want to make sure we can get
1966 * rid of the old inode after the operation. This means there must be
1967 * no pending writes (if it's a file), and the use count must be 1.
1968 * If these conditions are met, we can drop the dentries before doing
1969 * the rename.
1970 */
1971int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1972 struct inode *new_dir, struct dentry *new_dentry,
1973 unsigned int flags)
1974{
1975 struct inode *old_inode = d_inode(old_dentry);
1976 struct inode *new_inode = d_inode(new_dentry);
1977 struct dentry *dentry = NULL, *rehash = NULL;
1978 struct rpc_task *task;
1979 int error = -EBUSY;
1980
1981 if (flags)
1982 return -EINVAL;
1983
1984 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
1985 old_dentry, new_dentry,
1986 d_count(new_dentry));
1987
1988 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
1989 /*
1990 * For non-directories, check whether the target is busy and if so,
1991 * make a copy of the dentry and then do a silly-rename. If the
1992 * silly-rename succeeds, the copied dentry is hashed and becomes
1993 * the new target.
1994 */
1995 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1996 /*
1997 * To prevent any new references to the target during the
1998 * rename, we unhash the dentry in advance.
1999 */
2000 if (!d_unhashed(new_dentry)) {
2001 d_drop(new_dentry);
2002 rehash = new_dentry;
2003 }
2004
2005 if (d_count(new_dentry) > 2) {
2006 int err;
2007
2008 /* copy the target dentry's name */
2009 dentry = d_alloc(new_dentry->d_parent,
2010 &new_dentry->d_name);
2011 if (!dentry)
2012 goto out;
2013
2014 /* silly-rename the existing target ... */
2015 err = nfs_sillyrename(new_dir, new_dentry);
2016 if (err)
2017 goto out;
2018
2019 new_dentry = dentry;
2020 rehash = NULL;
2021 new_inode = NULL;
2022 }
2023 }
2024
2025 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2026 if (IS_ERR(task)) {
2027 error = PTR_ERR(task);
2028 goto out;
2029 }
2030
2031 error = rpc_wait_for_completion_task(task);
2032 if (error != 0) {
2033 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2034 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2035 smp_wmb();
2036 } else
2037 error = task->tk_status;
2038 rpc_put_task(task);
2039 nfs_mark_for_revalidate(old_inode);
2040out:
2041 if (rehash)
2042 d_rehash(rehash);
2043 trace_nfs_rename_exit(old_dir, old_dentry,
2044 new_dir, new_dentry, error);
2045 if (!error) {
2046 if (new_inode != NULL)
2047 nfs_drop_nlink(new_inode);
2048 /*
2049 * The d_move() should be here instead of in an async RPC completion
2050 * handler because we need the proper locks to move the dentry. If
2051 * we're interrupted by a signal, the async RPC completion handler
2052 * should mark the directories for revalidation.
2053 */
2054 d_move(old_dentry, new_dentry);
2055 nfs_set_verifier(old_dentry,
2056 nfs_save_change_attribute(new_dir));
2057 } else if (error == -ENOENT)
2058 nfs_dentry_handle_enoent(old_dentry);
2059
2060 /* new dentry created? */
2061 if (dentry)
2062 dput(dentry);
2063 return error;
2064}
2065EXPORT_SYMBOL_GPL(nfs_rename);
2066
2067static DEFINE_SPINLOCK(nfs_access_lru_lock);
2068static LIST_HEAD(nfs_access_lru_list);
2069static atomic_long_t nfs_access_nr_entries;
2070
2071static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2072module_param(nfs_access_max_cachesize, ulong, 0644);
2073MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2074
2075static void nfs_access_free_entry(struct nfs_access_entry *entry)
2076{
2077 put_rpccred(entry->cred);
2078 kfree_rcu(entry, rcu_head);
2079 smp_mb__before_atomic();
2080 atomic_long_dec(&nfs_access_nr_entries);
2081 smp_mb__after_atomic();
2082}
2083
2084static void nfs_access_free_list(struct list_head *head)
2085{
2086 struct nfs_access_entry *cache;
2087
2088 while (!list_empty(head)) {
2089 cache = list_entry(head->next, struct nfs_access_entry, lru);
2090 list_del(&cache->lru);
2091 nfs_access_free_entry(cache);
2092 }
2093}
2094
2095static unsigned long
2096nfs_do_access_cache_scan(unsigned int nr_to_scan)
2097{
2098 LIST_HEAD(head);
2099 struct nfs_inode *nfsi, *next;
2100 struct nfs_access_entry *cache;
2101 long freed = 0;
2102
2103 spin_lock(&nfs_access_lru_lock);
2104 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2105 struct inode *inode;
2106
2107 if (nr_to_scan-- == 0)
2108 break;
2109 inode = &nfsi->vfs_inode;
2110 spin_lock(&inode->i_lock);
2111 if (list_empty(&nfsi->access_cache_entry_lru))
2112 goto remove_lru_entry;
2113 cache = list_entry(nfsi->access_cache_entry_lru.next,
2114 struct nfs_access_entry, lru);
2115 list_move(&cache->lru, &head);
2116 rb_erase(&cache->rb_node, &nfsi->access_cache);
2117 freed++;
2118 if (!list_empty(&nfsi->access_cache_entry_lru))
2119 list_move_tail(&nfsi->access_cache_inode_lru,
2120 &nfs_access_lru_list);
2121 else {
2122remove_lru_entry:
2123 list_del_init(&nfsi->access_cache_inode_lru);
2124 smp_mb__before_atomic();
2125 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2126 smp_mb__after_atomic();
2127 }
2128 spin_unlock(&inode->i_lock);
2129 }
2130 spin_unlock(&nfs_access_lru_lock);
2131 nfs_access_free_list(&head);
2132 return freed;
2133}
2134
2135unsigned long
2136nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2137{
2138 int nr_to_scan = sc->nr_to_scan;
2139 gfp_t gfp_mask = sc->gfp_mask;
2140
2141 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2142 return SHRINK_STOP;
2143 return nfs_do_access_cache_scan(nr_to_scan);
2144}
2145
2146
2147unsigned long
2148nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2149{
2150 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2151}
2152
2153static void
2154nfs_access_cache_enforce_limit(void)
2155{
2156 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2157 unsigned long diff;
2158 unsigned int nr_to_scan;
2159
2160 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2161 return;
2162 nr_to_scan = 100;
2163 diff = nr_entries - nfs_access_max_cachesize;
2164 if (diff < nr_to_scan)
2165 nr_to_scan = diff;
2166 nfs_do_access_cache_scan(nr_to_scan);
2167}
2168
2169static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2170{
2171 struct rb_root *root_node = &nfsi->access_cache;
2172 struct rb_node *n;
2173 struct nfs_access_entry *entry;
2174
2175 /* Unhook entries from the cache */
2176 while ((n = rb_first(root_node)) != NULL) {
2177 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2178 rb_erase(n, root_node);
2179 list_move(&entry->lru, head);
2180 }
2181 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2182}
2183
2184void nfs_access_zap_cache(struct inode *inode)
2185{
2186 LIST_HEAD(head);
2187
2188 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2189 return;
2190 /* Remove from global LRU init */
2191 spin_lock(&nfs_access_lru_lock);
2192 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2193 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2194
2195 spin_lock(&inode->i_lock);
2196 __nfs_access_zap_cache(NFS_I(inode), &head);
2197 spin_unlock(&inode->i_lock);
2198 spin_unlock(&nfs_access_lru_lock);
2199 nfs_access_free_list(&head);
2200}
2201EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2202
2203static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2204{
2205 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2206 struct nfs_access_entry *entry;
2207
2208 while (n != NULL) {
2209 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2210
2211 if (cred < entry->cred)
2212 n = n->rb_left;
2213 else if (cred > entry->cred)
2214 n = n->rb_right;
2215 else
2216 return entry;
2217 }
2218 return NULL;
2219}
2220
2221static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res, bool may_block)
2222{
2223 struct nfs_inode *nfsi = NFS_I(inode);
2224 struct nfs_access_entry *cache;
2225 bool retry = true;
2226 int err;
2227
2228 spin_lock(&inode->i_lock);
2229 for(;;) {
2230 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2231 goto out_zap;
2232 cache = nfs_access_search_rbtree(inode, cred);
2233 err = -ENOENT;
2234 if (cache == NULL)
2235 goto out;
2236 /* Found an entry, is our attribute cache valid? */
2237 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2238 break;
2239 err = -ECHILD;
2240 if (!may_block)
2241 goto out;
2242 if (!retry)
2243 goto out_zap;
2244 spin_unlock(&inode->i_lock);
2245 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2246 if (err)
2247 return err;
2248 spin_lock(&inode->i_lock);
2249 retry = false;
2250 }
2251 res->cred = cache->cred;
2252 res->mask = cache->mask;
2253 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2254 err = 0;
2255out:
2256 spin_unlock(&inode->i_lock);
2257 return err;
2258out_zap:
2259 spin_unlock(&inode->i_lock);
2260 nfs_access_zap_cache(inode);
2261 return -ENOENT;
2262}
2263
2264static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2265{
2266 /* Only check the most recently returned cache entry,
2267 * but do it without locking.
2268 */
2269 struct nfs_inode *nfsi = NFS_I(inode);
2270 struct nfs_access_entry *cache;
2271 int err = -ECHILD;
2272 struct list_head *lh;
2273
2274 rcu_read_lock();
2275 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2276 goto out;
2277 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2278 cache = list_entry(lh, struct nfs_access_entry, lru);
2279 if (lh == &nfsi->access_cache_entry_lru ||
2280 cred != cache->cred)
2281 cache = NULL;
2282 if (cache == NULL)
2283 goto out;
2284 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2285 goto out;
2286 res->cred = cache->cred;
2287 res->mask = cache->mask;
2288 err = 0;
2289out:
2290 rcu_read_unlock();
2291 return err;
2292}
2293
2294static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2295{
2296 struct nfs_inode *nfsi = NFS_I(inode);
2297 struct rb_root *root_node = &nfsi->access_cache;
2298 struct rb_node **p = &root_node->rb_node;
2299 struct rb_node *parent = NULL;
2300 struct nfs_access_entry *entry;
2301
2302 spin_lock(&inode->i_lock);
2303 while (*p != NULL) {
2304 parent = *p;
2305 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2306
2307 if (set->cred < entry->cred)
2308 p = &parent->rb_left;
2309 else if (set->cred > entry->cred)
2310 p = &parent->rb_right;
2311 else
2312 goto found;
2313 }
2314 rb_link_node(&set->rb_node, parent, p);
2315 rb_insert_color(&set->rb_node, root_node);
2316 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2317 spin_unlock(&inode->i_lock);
2318 return;
2319found:
2320 rb_replace_node(parent, &set->rb_node, root_node);
2321 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2322 list_del(&entry->lru);
2323 spin_unlock(&inode->i_lock);
2324 nfs_access_free_entry(entry);
2325}
2326
2327void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2328{
2329 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2330 if (cache == NULL)
2331 return;
2332 RB_CLEAR_NODE(&cache->rb_node);
2333 cache->cred = get_rpccred(set->cred);
2334 cache->mask = set->mask;
2335
2336 /* The above field assignments must be visible
2337 * before this item appears on the lru. We cannot easily
2338 * use rcu_assign_pointer, so just force the memory barrier.
2339 */
2340 smp_wmb();
2341 nfs_access_add_rbtree(inode, cache);
2342
2343 /* Update accounting */
2344 smp_mb__before_atomic();
2345 atomic_long_inc(&nfs_access_nr_entries);
2346 smp_mb__after_atomic();
2347
2348 /* Add inode to global LRU list */
2349 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2350 spin_lock(&nfs_access_lru_lock);
2351 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2352 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2353 &nfs_access_lru_list);
2354 spin_unlock(&nfs_access_lru_lock);
2355 }
2356 nfs_access_cache_enforce_limit();
2357}
2358EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2359
2360#define NFS_MAY_READ (NFS_ACCESS_READ)
2361#define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2362 NFS_ACCESS_EXTEND | \
2363 NFS_ACCESS_DELETE)
2364#define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2365 NFS_ACCESS_EXTEND)
2366#define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2367#define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2368#define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2369static int
2370nfs_access_calc_mask(u32 access_result, umode_t umode)
2371{
2372 int mask = 0;
2373
2374 if (access_result & NFS_MAY_READ)
2375 mask |= MAY_READ;
2376 if (S_ISDIR(umode)) {
2377 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2378 mask |= MAY_WRITE;
2379 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2380 mask |= MAY_EXEC;
2381 } else if (S_ISREG(umode)) {
2382 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2383 mask |= MAY_WRITE;
2384 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2385 mask |= MAY_EXEC;
2386 } else if (access_result & NFS_MAY_WRITE)
2387 mask |= MAY_WRITE;
2388 return mask;
2389}
2390
2391void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2392{
2393 entry->mask = access_result;
2394}
2395EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2396
2397static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2398{
2399 struct nfs_access_entry cache;
2400 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2401 int cache_mask;
2402 int status;
2403
2404 trace_nfs_access_enter(inode);
2405
2406 status = nfs_access_get_cached_rcu(inode, cred, &cache);
2407 if (status != 0)
2408 status = nfs_access_get_cached(inode, cred, &cache, may_block);
2409 if (status == 0)
2410 goto out_cached;
2411
2412 status = -ECHILD;
2413 if (!may_block)
2414 goto out;
2415
2416 /*
2417 * Determine which access bits we want to ask for...
2418 */
2419 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2420 if (S_ISDIR(inode->i_mode))
2421 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2422 else
2423 cache.mask |= NFS_ACCESS_EXECUTE;
2424 cache.cred = cred;
2425 status = NFS_PROTO(inode)->access(inode, &cache);
2426 if (status != 0) {
2427 if (status == -ESTALE) {
2428 nfs_zap_caches(inode);
2429 if (!S_ISDIR(inode->i_mode))
2430 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2431 }
2432 goto out;
2433 }
2434 nfs_access_add_cache(inode, &cache);
2435out_cached:
2436 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2437 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2438 status = -EACCES;
2439out:
2440 trace_nfs_access_exit(inode, status);
2441 return status;
2442}
2443
2444static int nfs_open_permission_mask(int openflags)
2445{
2446 int mask = 0;
2447
2448 if (openflags & __FMODE_EXEC) {
2449 /* ONLY check exec rights */
2450 mask = MAY_EXEC;
2451 } else {
2452 if ((openflags & O_ACCMODE) != O_WRONLY)
2453 mask |= MAY_READ;
2454 if ((openflags & O_ACCMODE) != O_RDONLY)
2455 mask |= MAY_WRITE;
2456 }
2457
2458 return mask;
2459}
2460
2461int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2462{
2463 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2464}
2465EXPORT_SYMBOL_GPL(nfs_may_open);
2466
2467static int nfs_execute_ok(struct inode *inode, int mask)
2468{
2469 struct nfs_server *server = NFS_SERVER(inode);
2470 int ret = 0;
2471
2472 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) {
2473 if (mask & MAY_NOT_BLOCK)
2474 return -ECHILD;
2475 ret = __nfs_revalidate_inode(server, inode);
2476 }
2477 if (ret == 0 && !execute_ok(inode))
2478 ret = -EACCES;
2479 return ret;
2480}
2481
2482int nfs_permission(struct inode *inode, int mask)
2483{
2484 struct rpc_cred *cred;
2485 int res = 0;
2486
2487 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2488
2489 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2490 goto out;
2491 /* Is this sys_access() ? */
2492 if (mask & (MAY_ACCESS | MAY_CHDIR))
2493 goto force_lookup;
2494
2495 switch (inode->i_mode & S_IFMT) {
2496 case S_IFLNK:
2497 goto out;
2498 case S_IFREG:
2499 if ((mask & MAY_OPEN) &&
2500 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2501 return 0;
2502 break;
2503 case S_IFDIR:
2504 /*
2505 * Optimize away all write operations, since the server
2506 * will check permissions when we perform the op.
2507 */
2508 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2509 goto out;
2510 }
2511
2512force_lookup:
2513 if (!NFS_PROTO(inode)->access)
2514 goto out_notsup;
2515
2516 /* Always try fast lookups first */
2517 rcu_read_lock();
2518 cred = rpc_lookup_cred_nonblock();
2519 if (!IS_ERR(cred))
2520 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2521 else
2522 res = PTR_ERR(cred);
2523 rcu_read_unlock();
2524 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2525 /* Fast lookup failed, try the slow way */
2526 cred = rpc_lookup_cred();
2527 if (!IS_ERR(cred)) {
2528 res = nfs_do_access(inode, cred, mask);
2529 put_rpccred(cred);
2530 } else
2531 res = PTR_ERR(cred);
2532 }
2533out:
2534 if (!res && (mask & MAY_EXEC))
2535 res = nfs_execute_ok(inode, mask);
2536
2537 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2538 inode->i_sb->s_id, inode->i_ino, mask, res);
2539 return res;
2540out_notsup:
2541 if (mask & MAY_NOT_BLOCK)
2542 return -ECHILD;
2543
2544 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2545 if (res == 0)
2546 res = generic_permission(inode, mask);
2547 goto out;
2548}
2549EXPORT_SYMBOL_GPL(nfs_permission);
2550
2551/*
2552 * Local variables:
2553 * version-control: t
2554 * kept-new-versions: 5
2555 * End:
2556 */
1/*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20#include <linux/module.h>
21#include <linux/time.h>
22#include <linux/errno.h>
23#include <linux/stat.h>
24#include <linux/fcntl.h>
25#include <linux/string.h>
26#include <linux/kernel.h>
27#include <linux/slab.h>
28#include <linux/mm.h>
29#include <linux/sunrpc/clnt.h>
30#include <linux/nfs_fs.h>
31#include <linux/nfs_mount.h>
32#include <linux/pagemap.h>
33#include <linux/pagevec.h>
34#include <linux/namei.h>
35#include <linux/mount.h>
36#include <linux/swap.h>
37#include <linux/sched.h>
38#include <linux/kmemleak.h>
39#include <linux/xattr.h>
40
41#include "delegation.h"
42#include "iostat.h"
43#include "internal.h"
44#include "fscache.h"
45
46#include "nfstrace.h"
47
48/* #define NFS_DEBUG_VERBOSE 1 */
49
50static int nfs_opendir(struct inode *, struct file *);
51static int nfs_closedir(struct inode *, struct file *);
52static int nfs_readdir(struct file *, struct dir_context *);
53static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55static void nfs_readdir_clear_array(struct page*);
56
57const struct file_operations nfs_dir_operations = {
58 .llseek = nfs_llseek_dir,
59 .read = generic_read_dir,
60 .iterate_shared = nfs_readdir,
61 .open = nfs_opendir,
62 .release = nfs_closedir,
63 .fsync = nfs_fsync_dir,
64};
65
66const struct address_space_operations nfs_dir_aops = {
67 .freepage = nfs_readdir_clear_array,
68};
69
70static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71{
72 struct nfs_inode *nfsi = NFS_I(dir);
73 struct nfs_open_dir_context *ctx;
74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 if (ctx != NULL) {
76 ctx->duped = 0;
77 ctx->attr_gencount = nfsi->attr_gencount;
78 ctx->dir_cookie = 0;
79 ctx->dup_cookie = 0;
80 ctx->cred = get_rpccred(cred);
81 spin_lock(&dir->i_lock);
82 list_add(&ctx->list, &nfsi->open_files);
83 spin_unlock(&dir->i_lock);
84 return ctx;
85 }
86 return ERR_PTR(-ENOMEM);
87}
88
89static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90{
91 spin_lock(&dir->i_lock);
92 list_del(&ctx->list);
93 spin_unlock(&dir->i_lock);
94 put_rpccred(ctx->cred);
95 kfree(ctx);
96}
97
98/*
99 * Open file
100 */
101static int
102nfs_opendir(struct inode *inode, struct file *filp)
103{
104 int res = 0;
105 struct nfs_open_dir_context *ctx;
106 struct rpc_cred *cred;
107
108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109
110 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111
112 cred = rpc_lookup_cred();
113 if (IS_ERR(cred))
114 return PTR_ERR(cred);
115 ctx = alloc_nfs_open_dir_context(inode, cred);
116 if (IS_ERR(ctx)) {
117 res = PTR_ERR(ctx);
118 goto out;
119 }
120 filp->private_data = ctx;
121 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122 /* This is a mountpoint, so d_revalidate will never
123 * have been called, so we need to refresh the
124 * inode (for close-open consistency) ourselves.
125 */
126 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
127 }
128out:
129 put_rpccred(cred);
130 return res;
131}
132
133static int
134nfs_closedir(struct inode *inode, struct file *filp)
135{
136 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
137 return 0;
138}
139
140struct nfs_cache_array_entry {
141 u64 cookie;
142 u64 ino;
143 struct qstr string;
144 unsigned char d_type;
145};
146
147struct nfs_cache_array {
148 atomic_t refcount;
149 int size;
150 int eof_index;
151 u64 last_cookie;
152 struct nfs_cache_array_entry array[0];
153};
154
155typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
156typedef struct {
157 struct file *file;
158 struct page *page;
159 struct dir_context *ctx;
160 unsigned long page_index;
161 u64 *dir_cookie;
162 u64 last_cookie;
163 loff_t current_index;
164 decode_dirent_t decode;
165
166 unsigned long timestamp;
167 unsigned long gencount;
168 unsigned int cache_entry_index;
169 unsigned int plus:1;
170 unsigned int eof:1;
171} nfs_readdir_descriptor_t;
172
173/*
174 * The caller is responsible for calling nfs_readdir_release_array(page)
175 */
176static
177struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
178{
179 void *ptr;
180 if (page == NULL)
181 return ERR_PTR(-EIO);
182 ptr = kmap(page);
183 if (ptr == NULL)
184 return ERR_PTR(-ENOMEM);
185 return ptr;
186}
187
188static
189void nfs_readdir_release_array(struct page *page)
190{
191 kunmap(page);
192}
193
194/*
195 * we are freeing strings created by nfs_add_to_readdir_array()
196 */
197static
198void nfs_readdir_clear_array(struct page *page)
199{
200 struct nfs_cache_array *array;
201 int i;
202
203 array = kmap_atomic(page);
204 if (atomic_dec_and_test(&array->refcount))
205 for (i = 0; i < array->size; i++)
206 kfree(array->array[i].string.name);
207 kunmap_atomic(array);
208}
209
210static bool grab_page(struct page *page)
211{
212 struct nfs_cache_array *array = kmap_atomic(page);
213 bool res = atomic_inc_not_zero(&array->refcount);
214 kunmap_atomic(array);
215 return res;
216}
217
218/*
219 * the caller is responsible for freeing qstr.name
220 * when called by nfs_readdir_add_to_array, the strings will be freed in
221 * nfs_clear_readdir_array()
222 */
223static
224int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
225{
226 string->len = len;
227 string->name = kmemdup(name, len, GFP_KERNEL);
228 if (string->name == NULL)
229 return -ENOMEM;
230 /*
231 * Avoid a kmemleak false positive. The pointer to the name is stored
232 * in a page cache page which kmemleak does not scan.
233 */
234 kmemleak_not_leak(string->name);
235 string->hash = full_name_hash(NULL, name, len);
236 return 0;
237}
238
239static
240int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
241{
242 struct nfs_cache_array *array = nfs_readdir_get_array(page);
243 struct nfs_cache_array_entry *cache_entry;
244 int ret;
245
246 if (IS_ERR(array))
247 return PTR_ERR(array);
248
249 cache_entry = &array->array[array->size];
250
251 /* Check that this entry lies within the page bounds */
252 ret = -ENOSPC;
253 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
254 goto out;
255
256 cache_entry->cookie = entry->prev_cookie;
257 cache_entry->ino = entry->ino;
258 cache_entry->d_type = entry->d_type;
259 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
260 if (ret)
261 goto out;
262 array->last_cookie = entry->cookie;
263 array->size++;
264 if (entry->eof != 0)
265 array->eof_index = array->size;
266out:
267 nfs_readdir_release_array(page);
268 return ret;
269}
270
271static
272int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
273{
274 loff_t diff = desc->ctx->pos - desc->current_index;
275 unsigned int index;
276
277 if (diff < 0)
278 goto out_eof;
279 if (diff >= array->size) {
280 if (array->eof_index >= 0)
281 goto out_eof;
282 return -EAGAIN;
283 }
284
285 index = (unsigned int)diff;
286 *desc->dir_cookie = array->array[index].cookie;
287 desc->cache_entry_index = index;
288 return 0;
289out_eof:
290 desc->eof = 1;
291 return -EBADCOOKIE;
292}
293
294static bool
295nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
296{
297 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
298 return false;
299 smp_rmb();
300 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
301}
302
303static
304int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
305{
306 int i;
307 loff_t new_pos;
308 int status = -EAGAIN;
309
310 for (i = 0; i < array->size; i++) {
311 if (array->array[i].cookie == *desc->dir_cookie) {
312 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
313 struct nfs_open_dir_context *ctx = desc->file->private_data;
314
315 new_pos = desc->current_index + i;
316 if (ctx->attr_gencount != nfsi->attr_gencount ||
317 !nfs_readdir_inode_mapping_valid(nfsi)) {
318 ctx->duped = 0;
319 ctx->attr_gencount = nfsi->attr_gencount;
320 } else if (new_pos < desc->ctx->pos) {
321 if (ctx->duped > 0
322 && ctx->dup_cookie == *desc->dir_cookie) {
323 if (printk_ratelimit()) {
324 pr_notice("NFS: directory %pD2 contains a readdir loop."
325 "Please contact your server vendor. "
326 "The file: %.*s has duplicate cookie %llu\n",
327 desc->file, array->array[i].string.len,
328 array->array[i].string.name, *desc->dir_cookie);
329 }
330 status = -ELOOP;
331 goto out;
332 }
333 ctx->dup_cookie = *desc->dir_cookie;
334 ctx->duped = -1;
335 }
336 desc->ctx->pos = new_pos;
337 desc->cache_entry_index = i;
338 return 0;
339 }
340 }
341 if (array->eof_index >= 0) {
342 status = -EBADCOOKIE;
343 if (*desc->dir_cookie == array->last_cookie)
344 desc->eof = 1;
345 }
346out:
347 return status;
348}
349
350static
351int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
352{
353 struct nfs_cache_array *array;
354 int status;
355
356 array = nfs_readdir_get_array(desc->page);
357 if (IS_ERR(array)) {
358 status = PTR_ERR(array);
359 goto out;
360 }
361
362 if (*desc->dir_cookie == 0)
363 status = nfs_readdir_search_for_pos(array, desc);
364 else
365 status = nfs_readdir_search_for_cookie(array, desc);
366
367 if (status == -EAGAIN) {
368 desc->last_cookie = array->last_cookie;
369 desc->current_index += array->size;
370 desc->page_index++;
371 }
372 nfs_readdir_release_array(desc->page);
373out:
374 return status;
375}
376
377/* Fill a page with xdr information before transferring to the cache page */
378static
379int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
380 struct nfs_entry *entry, struct file *file, struct inode *inode)
381{
382 struct nfs_open_dir_context *ctx = file->private_data;
383 struct rpc_cred *cred = ctx->cred;
384 unsigned long timestamp, gencount;
385 int error;
386
387 again:
388 timestamp = jiffies;
389 gencount = nfs_inc_attr_generation_counter();
390 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
391 NFS_SERVER(inode)->dtsize, desc->plus);
392 if (error < 0) {
393 /* We requested READDIRPLUS, but the server doesn't grok it */
394 if (error == -ENOTSUPP && desc->plus) {
395 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
396 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
397 desc->plus = 0;
398 goto again;
399 }
400 goto error;
401 }
402 desc->timestamp = timestamp;
403 desc->gencount = gencount;
404error:
405 return error;
406}
407
408static int xdr_decode(nfs_readdir_descriptor_t *desc,
409 struct nfs_entry *entry, struct xdr_stream *xdr)
410{
411 int error;
412
413 error = desc->decode(xdr, entry, desc->plus);
414 if (error)
415 return error;
416 entry->fattr->time_start = desc->timestamp;
417 entry->fattr->gencount = desc->gencount;
418 return 0;
419}
420
421/* Match file and dirent using either filehandle or fileid
422 * Note: caller is responsible for checking the fsid
423 */
424static
425int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
426{
427 struct inode *inode;
428 struct nfs_inode *nfsi;
429
430 if (d_really_is_negative(dentry))
431 return 0;
432
433 inode = d_inode(dentry);
434 if (is_bad_inode(inode) || NFS_STALE(inode))
435 return 0;
436
437 nfsi = NFS_I(inode);
438 if (entry->fattr->fileid != nfsi->fileid)
439 return 0;
440 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
441 return 0;
442 return 1;
443}
444
445static
446bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
447{
448 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
449 return false;
450 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
451 return true;
452 if (ctx->pos == 0)
453 return true;
454 return false;
455}
456
457/*
458 * This function is called by the lookup and getattr code to request the
459 * use of readdirplus to accelerate any future lookups in the same
460 * directory.
461 */
462void nfs_advise_use_readdirplus(struct inode *dir)
463{
464 struct nfs_inode *nfsi = NFS_I(dir);
465
466 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
467 !list_empty(&nfsi->open_files))
468 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
469}
470
471/*
472 * This function is mainly for use by nfs_getattr().
473 *
474 * If this is an 'ls -l', we want to force use of readdirplus.
475 * Do this by checking if there is an active file descriptor
476 * and calling nfs_advise_use_readdirplus, then forcing a
477 * cache flush.
478 */
479void nfs_force_use_readdirplus(struct inode *dir)
480{
481 struct nfs_inode *nfsi = NFS_I(dir);
482
483 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
484 !list_empty(&nfsi->open_files)) {
485 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
486 invalidate_mapping_pages(dir->i_mapping, 0, -1);
487 }
488}
489
490static
491void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
492{
493 struct qstr filename = QSTR_INIT(entry->name, entry->len);
494 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
495 struct dentry *dentry;
496 struct dentry *alias;
497 struct inode *dir = d_inode(parent);
498 struct inode *inode;
499 int status;
500
501 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
502 return;
503 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
504 return;
505 if (filename.len == 0)
506 return;
507 /* Validate that the name doesn't contain any illegal '\0' */
508 if (strnlen(filename.name, filename.len) != filename.len)
509 return;
510 /* ...or '/' */
511 if (strnchr(filename.name, filename.len, '/'))
512 return;
513 if (filename.name[0] == '.') {
514 if (filename.len == 1)
515 return;
516 if (filename.len == 2 && filename.name[1] == '.')
517 return;
518 }
519 filename.hash = full_name_hash(parent, filename.name, filename.len);
520
521 dentry = d_lookup(parent, &filename);
522again:
523 if (!dentry) {
524 dentry = d_alloc_parallel(parent, &filename, &wq);
525 if (IS_ERR(dentry))
526 return;
527 }
528 if (!d_in_lookup(dentry)) {
529 /* Is there a mountpoint here? If so, just exit */
530 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
531 &entry->fattr->fsid))
532 goto out;
533 if (nfs_same_file(dentry, entry)) {
534 if (!entry->fh->size)
535 goto out;
536 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
537 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
538 if (!status)
539 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
540 goto out;
541 } else {
542 d_invalidate(dentry);
543 dput(dentry);
544 dentry = NULL;
545 goto again;
546 }
547 }
548 if (!entry->fh->size) {
549 d_lookup_done(dentry);
550 goto out;
551 }
552
553 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
554 alias = d_splice_alias(inode, dentry);
555 d_lookup_done(dentry);
556 if (alias) {
557 if (IS_ERR(alias))
558 goto out;
559 dput(dentry);
560 dentry = alias;
561 }
562 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
563out:
564 dput(dentry);
565}
566
567/* Perform conversion from xdr to cache array */
568static
569int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
570 struct page **xdr_pages, struct page *page, unsigned int buflen)
571{
572 struct xdr_stream stream;
573 struct xdr_buf buf;
574 struct page *scratch;
575 struct nfs_cache_array *array;
576 unsigned int count = 0;
577 int status;
578
579 scratch = alloc_page(GFP_KERNEL);
580 if (scratch == NULL)
581 return -ENOMEM;
582
583 if (buflen == 0)
584 goto out_nopages;
585
586 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
587 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
588
589 do {
590 status = xdr_decode(desc, entry, &stream);
591 if (status != 0) {
592 if (status == -EAGAIN)
593 status = 0;
594 break;
595 }
596
597 count++;
598
599 if (desc->plus != 0)
600 nfs_prime_dcache(file_dentry(desc->file), entry);
601
602 status = nfs_readdir_add_to_array(entry, page);
603 if (status != 0)
604 break;
605 } while (!entry->eof);
606
607out_nopages:
608 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
609 array = nfs_readdir_get_array(page);
610 if (!IS_ERR(array)) {
611 array->eof_index = array->size;
612 status = 0;
613 nfs_readdir_release_array(page);
614 } else
615 status = PTR_ERR(array);
616 }
617
618 put_page(scratch);
619 return status;
620}
621
622static
623void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
624{
625 unsigned int i;
626 for (i = 0; i < npages; i++)
627 put_page(pages[i]);
628}
629
630/*
631 * nfs_readdir_large_page will allocate pages that must be freed with a call
632 * to nfs_readdir_free_pagearray
633 */
634static
635int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
636{
637 unsigned int i;
638
639 for (i = 0; i < npages; i++) {
640 struct page *page = alloc_page(GFP_KERNEL);
641 if (page == NULL)
642 goto out_freepages;
643 pages[i] = page;
644 }
645 return 0;
646
647out_freepages:
648 nfs_readdir_free_pages(pages, i);
649 return -ENOMEM;
650}
651
652static
653int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
654{
655 struct page *pages[NFS_MAX_READDIR_PAGES];
656 struct nfs_entry entry;
657 struct file *file = desc->file;
658 struct nfs_cache_array *array;
659 int status = -ENOMEM;
660 unsigned int array_size = ARRAY_SIZE(pages);
661
662 entry.prev_cookie = 0;
663 entry.cookie = desc->last_cookie;
664 entry.eof = 0;
665 entry.fh = nfs_alloc_fhandle();
666 entry.fattr = nfs_alloc_fattr();
667 entry.server = NFS_SERVER(inode);
668 if (entry.fh == NULL || entry.fattr == NULL)
669 goto out;
670
671 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
672 if (IS_ERR(entry.label)) {
673 status = PTR_ERR(entry.label);
674 goto out;
675 }
676
677 array = nfs_readdir_get_array(page);
678 if (IS_ERR(array)) {
679 status = PTR_ERR(array);
680 goto out_label_free;
681 }
682 memset(array, 0, sizeof(struct nfs_cache_array));
683 atomic_set(&array->refcount, 1);
684 array->eof_index = -1;
685
686 status = nfs_readdir_alloc_pages(pages, array_size);
687 if (status < 0)
688 goto out_release_array;
689 do {
690 unsigned int pglen;
691 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
692
693 if (status < 0)
694 break;
695 pglen = status;
696 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
697 if (status < 0) {
698 if (status == -ENOSPC)
699 status = 0;
700 break;
701 }
702 } while (array->eof_index < 0);
703
704 nfs_readdir_free_pages(pages, array_size);
705out_release_array:
706 nfs_readdir_release_array(page);
707out_label_free:
708 nfs4_label_free(entry.label);
709out:
710 nfs_free_fattr(entry.fattr);
711 nfs_free_fhandle(entry.fh);
712 return status;
713}
714
715/*
716 * Now we cache directories properly, by converting xdr information
717 * to an array that can be used for lookups later. This results in
718 * fewer cache pages, since we can store more information on each page.
719 * We only need to convert from xdr once so future lookups are much simpler
720 */
721static
722int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
723{
724 struct inode *inode = file_inode(desc->file);
725 int ret;
726
727 ret = nfs_readdir_xdr_to_array(desc, page, inode);
728 if (ret < 0)
729 goto error;
730 SetPageUptodate(page);
731
732 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
733 /* Should never happen */
734 nfs_zap_mapping(inode, inode->i_mapping);
735 }
736 unlock_page(page);
737 return 0;
738 error:
739 unlock_page(page);
740 return ret;
741}
742
743static
744void cache_page_release(nfs_readdir_descriptor_t *desc)
745{
746 nfs_readdir_clear_array(desc->page);
747 put_page(desc->page);
748 desc->page = NULL;
749}
750
751static
752struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
753{
754 struct page *page;
755
756 for (;;) {
757 page = read_cache_page(desc->file->f_mapping,
758 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
759 if (IS_ERR(page) || grab_page(page))
760 break;
761 put_page(page);
762 }
763 return page;
764}
765
766/*
767 * Returns 0 if desc->dir_cookie was found on page desc->page_index
768 */
769static
770int find_cache_page(nfs_readdir_descriptor_t *desc)
771{
772 int res;
773
774 desc->page = get_cache_page(desc);
775 if (IS_ERR(desc->page))
776 return PTR_ERR(desc->page);
777
778 res = nfs_readdir_search_array(desc);
779 if (res != 0)
780 cache_page_release(desc);
781 return res;
782}
783
784/* Search for desc->dir_cookie from the beginning of the page cache */
785static inline
786int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
787{
788 int res;
789
790 if (desc->page_index == 0) {
791 desc->current_index = 0;
792 desc->last_cookie = 0;
793 }
794 do {
795 res = find_cache_page(desc);
796 } while (res == -EAGAIN);
797 return res;
798}
799
800/*
801 * Once we've found the start of the dirent within a page: fill 'er up...
802 */
803static
804int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
805{
806 struct file *file = desc->file;
807 int i = 0;
808 int res = 0;
809 struct nfs_cache_array *array = NULL;
810 struct nfs_open_dir_context *ctx = file->private_data;
811
812 array = nfs_readdir_get_array(desc->page);
813 if (IS_ERR(array)) {
814 res = PTR_ERR(array);
815 goto out;
816 }
817
818 for (i = desc->cache_entry_index; i < array->size; i++) {
819 struct nfs_cache_array_entry *ent;
820
821 ent = &array->array[i];
822 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
823 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
824 desc->eof = 1;
825 break;
826 }
827 desc->ctx->pos++;
828 if (i < (array->size-1))
829 *desc->dir_cookie = array->array[i+1].cookie;
830 else
831 *desc->dir_cookie = array->last_cookie;
832 if (ctx->duped != 0)
833 ctx->duped = 1;
834 }
835 if (array->eof_index >= 0)
836 desc->eof = 1;
837
838 nfs_readdir_release_array(desc->page);
839out:
840 cache_page_release(desc);
841 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
842 (unsigned long long)*desc->dir_cookie, res);
843 return res;
844}
845
846/*
847 * If we cannot find a cookie in our cache, we suspect that this is
848 * because it points to a deleted file, so we ask the server to return
849 * whatever it thinks is the next entry. We then feed this to filldir.
850 * If all goes well, we should then be able to find our way round the
851 * cache on the next call to readdir_search_pagecache();
852 *
853 * NOTE: we cannot add the anonymous page to the pagecache because
854 * the data it contains might not be page aligned. Besides,
855 * we should already have a complete representation of the
856 * directory in the page cache by the time we get here.
857 */
858static inline
859int uncached_readdir(nfs_readdir_descriptor_t *desc)
860{
861 struct page *page = NULL;
862 int status;
863 struct inode *inode = file_inode(desc->file);
864 struct nfs_open_dir_context *ctx = desc->file->private_data;
865
866 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
867 (unsigned long long)*desc->dir_cookie);
868
869 page = alloc_page(GFP_HIGHUSER);
870 if (!page) {
871 status = -ENOMEM;
872 goto out;
873 }
874
875 desc->page_index = 0;
876 desc->last_cookie = *desc->dir_cookie;
877 desc->page = page;
878 ctx->duped = 0;
879
880 status = nfs_readdir_xdr_to_array(desc, page, inode);
881 if (status < 0)
882 goto out_release;
883
884 status = nfs_do_filldir(desc);
885
886 out:
887 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
888 __func__, status);
889 return status;
890 out_release:
891 cache_page_release(desc);
892 goto out;
893}
894
895/* The file offset position represents the dirent entry number. A
896 last cookie cache takes care of the common case of reading the
897 whole directory.
898 */
899static int nfs_readdir(struct file *file, struct dir_context *ctx)
900{
901 struct dentry *dentry = file_dentry(file);
902 struct inode *inode = d_inode(dentry);
903 nfs_readdir_descriptor_t my_desc,
904 *desc = &my_desc;
905 struct nfs_open_dir_context *dir_ctx = file->private_data;
906 int res = 0;
907
908 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
909 file, (long long)ctx->pos);
910 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
911
912 /*
913 * ctx->pos points to the dirent entry number.
914 * *desc->dir_cookie has the cookie for the next entry. We have
915 * to either find the entry with the appropriate number or
916 * revalidate the cookie.
917 */
918 memset(desc, 0, sizeof(*desc));
919
920 desc->file = file;
921 desc->ctx = ctx;
922 desc->dir_cookie = &dir_ctx->dir_cookie;
923 desc->decode = NFS_PROTO(inode)->decode_dirent;
924 desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
925
926 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
927 res = nfs_revalidate_mapping(inode, file->f_mapping);
928 if (res < 0)
929 goto out;
930
931 do {
932 res = readdir_search_pagecache(desc);
933
934 if (res == -EBADCOOKIE) {
935 res = 0;
936 /* This means either end of directory */
937 if (*desc->dir_cookie && desc->eof == 0) {
938 /* Or that the server has 'lost' a cookie */
939 res = uncached_readdir(desc);
940 if (res == 0)
941 continue;
942 }
943 break;
944 }
945 if (res == -ETOOSMALL && desc->plus) {
946 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
947 nfs_zap_caches(inode);
948 desc->page_index = 0;
949 desc->plus = 0;
950 desc->eof = 0;
951 continue;
952 }
953 if (res < 0)
954 break;
955
956 res = nfs_do_filldir(desc);
957 if (res < 0)
958 break;
959 } while (!desc->eof);
960out:
961 if (res > 0)
962 res = 0;
963 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
964 return res;
965}
966
967static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
968{
969 struct nfs_open_dir_context *dir_ctx = filp->private_data;
970
971 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
972 filp, offset, whence);
973
974 switch (whence) {
975 case 1:
976 offset += filp->f_pos;
977 case 0:
978 if (offset >= 0)
979 break;
980 default:
981 return -EINVAL;
982 }
983 if (offset != filp->f_pos) {
984 filp->f_pos = offset;
985 dir_ctx->dir_cookie = 0;
986 dir_ctx->duped = 0;
987 }
988 return offset;
989}
990
991/*
992 * All directory operations under NFS are synchronous, so fsync()
993 * is a dummy operation.
994 */
995static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
996 int datasync)
997{
998 struct inode *inode = file_inode(filp);
999
1000 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1001
1002 inode_lock(inode);
1003 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
1004 inode_unlock(inode);
1005 return 0;
1006}
1007
1008/**
1009 * nfs_force_lookup_revalidate - Mark the directory as having changed
1010 * @dir - pointer to directory inode
1011 *
1012 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1013 * full lookup on all child dentries of 'dir' whenever a change occurs
1014 * on the server that might have invalidated our dcache.
1015 *
1016 * The caller should be holding dir->i_lock
1017 */
1018void nfs_force_lookup_revalidate(struct inode *dir)
1019{
1020 NFS_I(dir)->cache_change_attribute++;
1021}
1022EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1023
1024/*
1025 * A check for whether or not the parent directory has changed.
1026 * In the case it has, we assume that the dentries are untrustworthy
1027 * and may need to be looked up again.
1028 * If rcu_walk prevents us from performing a full check, return 0.
1029 */
1030static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1031 int rcu_walk)
1032{
1033 if (IS_ROOT(dentry))
1034 return 1;
1035 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1036 return 0;
1037 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1038 return 0;
1039 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1040 if (nfs_mapping_need_revalidate_inode(dir)) {
1041 if (rcu_walk)
1042 return 0;
1043 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1044 return 0;
1045 }
1046 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1047 return 0;
1048 return 1;
1049}
1050
1051/*
1052 * Use intent information to check whether or not we're going to do
1053 * an O_EXCL create using this path component.
1054 */
1055static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1056{
1057 if (NFS_PROTO(dir)->version == 2)
1058 return 0;
1059 return flags & LOOKUP_EXCL;
1060}
1061
1062/*
1063 * Inode and filehandle revalidation for lookups.
1064 *
1065 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1066 * or if the intent information indicates that we're about to open this
1067 * particular file and the "nocto" mount flag is not set.
1068 *
1069 */
1070static
1071int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1072{
1073 struct nfs_server *server = NFS_SERVER(inode);
1074 int ret;
1075
1076 if (IS_AUTOMOUNT(inode))
1077 return 0;
1078 /* VFS wants an on-the-wire revalidation */
1079 if (flags & LOOKUP_REVAL)
1080 goto out_force;
1081 /* This is an open(2) */
1082 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1083 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1084 goto out_force;
1085out:
1086 return (inode->i_nlink == 0) ? -ENOENT : 0;
1087out_force:
1088 if (flags & LOOKUP_RCU)
1089 return -ECHILD;
1090 ret = __nfs_revalidate_inode(server, inode);
1091 if (ret != 0)
1092 return ret;
1093 goto out;
1094}
1095
1096/*
1097 * We judge how long we want to trust negative
1098 * dentries by looking at the parent inode mtime.
1099 *
1100 * If parent mtime has changed, we revalidate, else we wait for a
1101 * period corresponding to the parent's attribute cache timeout value.
1102 *
1103 * If LOOKUP_RCU prevents us from performing a full check, return 1
1104 * suggesting a reval is needed.
1105 */
1106static inline
1107int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1108 unsigned int flags)
1109{
1110 /* Don't revalidate a negative dentry if we're creating a new file */
1111 if (flags & LOOKUP_CREATE)
1112 return 0;
1113 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1114 return 1;
1115 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1116}
1117
1118/*
1119 * This is called every time the dcache has a lookup hit,
1120 * and we should check whether we can really trust that
1121 * lookup.
1122 *
1123 * NOTE! The hit can be a negative hit too, don't assume
1124 * we have an inode!
1125 *
1126 * If the parent directory is seen to have changed, we throw out the
1127 * cached dentry and do a new lookup.
1128 */
1129static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1130{
1131 struct inode *dir;
1132 struct inode *inode;
1133 struct dentry *parent;
1134 struct nfs_fh *fhandle = NULL;
1135 struct nfs_fattr *fattr = NULL;
1136 struct nfs4_label *label = NULL;
1137 int error;
1138
1139 if (flags & LOOKUP_RCU) {
1140 parent = ACCESS_ONCE(dentry->d_parent);
1141 dir = d_inode_rcu(parent);
1142 if (!dir)
1143 return -ECHILD;
1144 } else {
1145 parent = dget_parent(dentry);
1146 dir = d_inode(parent);
1147 }
1148 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1149 inode = d_inode(dentry);
1150
1151 if (!inode) {
1152 if (nfs_neg_need_reval(dir, dentry, flags)) {
1153 if (flags & LOOKUP_RCU)
1154 return -ECHILD;
1155 goto out_bad;
1156 }
1157 goto out_valid;
1158 }
1159
1160 if (is_bad_inode(inode)) {
1161 if (flags & LOOKUP_RCU)
1162 return -ECHILD;
1163 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1164 __func__, dentry);
1165 goto out_bad;
1166 }
1167
1168 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1169 goto out_set_verifier;
1170
1171 /* Force a full look up iff the parent directory has changed */
1172 if (!nfs_is_exclusive_create(dir, flags) &&
1173 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1174
1175 if (nfs_lookup_verify_inode(inode, flags)) {
1176 if (flags & LOOKUP_RCU)
1177 return -ECHILD;
1178 goto out_zap_parent;
1179 }
1180 nfs_advise_use_readdirplus(dir);
1181 goto out_valid;
1182 }
1183
1184 if (flags & LOOKUP_RCU)
1185 return -ECHILD;
1186
1187 if (NFS_STALE(inode))
1188 goto out_bad;
1189
1190 error = -ENOMEM;
1191 fhandle = nfs_alloc_fhandle();
1192 fattr = nfs_alloc_fattr();
1193 if (fhandle == NULL || fattr == NULL)
1194 goto out_error;
1195
1196 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1197 if (IS_ERR(label))
1198 goto out_error;
1199
1200 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1201 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1202 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1203 if (error)
1204 goto out_bad;
1205 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1206 goto out_bad;
1207 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1208 goto out_bad;
1209
1210 nfs_setsecurity(inode, fattr, label);
1211
1212 nfs_free_fattr(fattr);
1213 nfs_free_fhandle(fhandle);
1214 nfs4_label_free(label);
1215
1216 /* set a readdirplus hint that we had a cache miss */
1217 nfs_force_use_readdirplus(dir);
1218
1219out_set_verifier:
1220 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1221 out_valid:
1222 if (flags & LOOKUP_RCU) {
1223 if (parent != ACCESS_ONCE(dentry->d_parent))
1224 return -ECHILD;
1225 } else
1226 dput(parent);
1227 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1228 __func__, dentry);
1229 return 1;
1230out_zap_parent:
1231 nfs_zap_caches(dir);
1232 out_bad:
1233 WARN_ON(flags & LOOKUP_RCU);
1234 nfs_free_fattr(fattr);
1235 nfs_free_fhandle(fhandle);
1236 nfs4_label_free(label);
1237 nfs_mark_for_revalidate(dir);
1238 if (inode && S_ISDIR(inode->i_mode)) {
1239 /* Purge readdir caches. */
1240 nfs_zap_caches(inode);
1241 /*
1242 * We can't d_drop the root of a disconnected tree:
1243 * its d_hash is on the s_anon list and d_drop() would hide
1244 * it from shrink_dcache_for_unmount(), leading to busy
1245 * inodes on unmount and further oopses.
1246 */
1247 if (IS_ROOT(dentry))
1248 goto out_valid;
1249 }
1250 dput(parent);
1251 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1252 __func__, dentry);
1253 return 0;
1254out_error:
1255 WARN_ON(flags & LOOKUP_RCU);
1256 nfs_free_fattr(fattr);
1257 nfs_free_fhandle(fhandle);
1258 nfs4_label_free(label);
1259 dput(parent);
1260 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1261 __func__, dentry, error);
1262 return error;
1263}
1264
1265/*
1266 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1267 * when we don't really care about the dentry name. This is called when a
1268 * pathwalk ends on a dentry that was not found via a normal lookup in the
1269 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1270 *
1271 * In this situation, we just want to verify that the inode itself is OK
1272 * since the dentry might have changed on the server.
1273 */
1274static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1275{
1276 struct inode *inode = d_inode(dentry);
1277 int error = 0;
1278
1279 /*
1280 * I believe we can only get a negative dentry here in the case of a
1281 * procfs-style symlink. Just assume it's correct for now, but we may
1282 * eventually need to do something more here.
1283 */
1284 if (!inode) {
1285 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1286 __func__, dentry);
1287 return 1;
1288 }
1289
1290 if (is_bad_inode(inode)) {
1291 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1292 __func__, dentry);
1293 return 0;
1294 }
1295
1296 if (nfs_mapping_need_revalidate_inode(inode))
1297 error = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
1298 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1299 __func__, inode->i_ino, error ? "invalid" : "valid");
1300 return !error;
1301}
1302
1303/*
1304 * This is called from dput() when d_count is going to 0.
1305 */
1306static int nfs_dentry_delete(const struct dentry *dentry)
1307{
1308 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1309 dentry, dentry->d_flags);
1310
1311 /* Unhash any dentry with a stale inode */
1312 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1313 return 1;
1314
1315 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1316 /* Unhash it, so that ->d_iput() would be called */
1317 return 1;
1318 }
1319 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1320 /* Unhash it, so that ancestors of killed async unlink
1321 * files will be cleaned up during umount */
1322 return 1;
1323 }
1324 return 0;
1325
1326}
1327
1328/* Ensure that we revalidate inode->i_nlink */
1329static void nfs_drop_nlink(struct inode *inode)
1330{
1331 spin_lock(&inode->i_lock);
1332 /* drop the inode if we're reasonably sure this is the last link */
1333 if (inode->i_nlink == 1)
1334 clear_nlink(inode);
1335 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1336 spin_unlock(&inode->i_lock);
1337}
1338
1339/*
1340 * Called when the dentry loses inode.
1341 * We use it to clean up silly-renamed files.
1342 */
1343static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1344{
1345 if (S_ISDIR(inode->i_mode))
1346 /* drop any readdir cache as it could easily be old */
1347 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1348
1349 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1350 nfs_complete_unlink(dentry, inode);
1351 nfs_drop_nlink(inode);
1352 }
1353 iput(inode);
1354}
1355
1356static void nfs_d_release(struct dentry *dentry)
1357{
1358 /* free cached devname value, if it survived that far */
1359 if (unlikely(dentry->d_fsdata)) {
1360 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1361 WARN_ON(1);
1362 else
1363 kfree(dentry->d_fsdata);
1364 }
1365}
1366
1367const struct dentry_operations nfs_dentry_operations = {
1368 .d_revalidate = nfs_lookup_revalidate,
1369 .d_weak_revalidate = nfs_weak_revalidate,
1370 .d_delete = nfs_dentry_delete,
1371 .d_iput = nfs_dentry_iput,
1372 .d_automount = nfs_d_automount,
1373 .d_release = nfs_d_release,
1374};
1375EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1376
1377struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1378{
1379 struct dentry *res;
1380 struct inode *inode = NULL;
1381 struct nfs_fh *fhandle = NULL;
1382 struct nfs_fattr *fattr = NULL;
1383 struct nfs4_label *label = NULL;
1384 int error;
1385
1386 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1387 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1388
1389 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1390 return ERR_PTR(-ENAMETOOLONG);
1391
1392 /*
1393 * If we're doing an exclusive create, optimize away the lookup
1394 * but don't hash the dentry.
1395 */
1396 if (nfs_is_exclusive_create(dir, flags))
1397 return NULL;
1398
1399 res = ERR_PTR(-ENOMEM);
1400 fhandle = nfs_alloc_fhandle();
1401 fattr = nfs_alloc_fattr();
1402 if (fhandle == NULL || fattr == NULL)
1403 goto out;
1404
1405 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1406 if (IS_ERR(label))
1407 goto out;
1408
1409 trace_nfs_lookup_enter(dir, dentry, flags);
1410 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1411 if (error == -ENOENT)
1412 goto no_entry;
1413 if (error < 0) {
1414 res = ERR_PTR(error);
1415 goto out_label;
1416 }
1417 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1418 res = ERR_CAST(inode);
1419 if (IS_ERR(res))
1420 goto out_label;
1421
1422 /* Notify readdir to use READDIRPLUS */
1423 nfs_force_use_readdirplus(dir);
1424
1425no_entry:
1426 res = d_splice_alias(inode, dentry);
1427 if (res != NULL) {
1428 if (IS_ERR(res))
1429 goto out_label;
1430 dentry = res;
1431 }
1432 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1433out_label:
1434 trace_nfs_lookup_exit(dir, dentry, flags, error);
1435 nfs4_label_free(label);
1436out:
1437 nfs_free_fattr(fattr);
1438 nfs_free_fhandle(fhandle);
1439 return res;
1440}
1441EXPORT_SYMBOL_GPL(nfs_lookup);
1442
1443#if IS_ENABLED(CONFIG_NFS_V4)
1444static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1445
1446const struct dentry_operations nfs4_dentry_operations = {
1447 .d_revalidate = nfs4_lookup_revalidate,
1448 .d_delete = nfs_dentry_delete,
1449 .d_iput = nfs_dentry_iput,
1450 .d_automount = nfs_d_automount,
1451 .d_release = nfs_d_release,
1452};
1453EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1454
1455static fmode_t flags_to_mode(int flags)
1456{
1457 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1458 if ((flags & O_ACCMODE) != O_WRONLY)
1459 res |= FMODE_READ;
1460 if ((flags & O_ACCMODE) != O_RDONLY)
1461 res |= FMODE_WRITE;
1462 return res;
1463}
1464
1465static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1466{
1467 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1468}
1469
1470static int do_open(struct inode *inode, struct file *filp)
1471{
1472 nfs_fscache_open_file(inode, filp);
1473 return 0;
1474}
1475
1476static int nfs_finish_open(struct nfs_open_context *ctx,
1477 struct dentry *dentry,
1478 struct file *file, unsigned open_flags,
1479 int *opened)
1480{
1481 int err;
1482
1483 err = finish_open(file, dentry, do_open, opened);
1484 if (err)
1485 goto out;
1486 nfs_file_set_open_context(file, ctx);
1487
1488out:
1489 return err;
1490}
1491
1492int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1493 struct file *file, unsigned open_flags,
1494 umode_t mode, int *opened)
1495{
1496 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1497 struct nfs_open_context *ctx;
1498 struct dentry *res;
1499 struct iattr attr = { .ia_valid = ATTR_OPEN };
1500 struct inode *inode;
1501 unsigned int lookup_flags = 0;
1502 bool switched = false;
1503 int err;
1504
1505 /* Expect a negative dentry */
1506 BUG_ON(d_inode(dentry));
1507
1508 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1509 dir->i_sb->s_id, dir->i_ino, dentry);
1510
1511 err = nfs_check_flags(open_flags);
1512 if (err)
1513 return err;
1514
1515 /* NFS only supports OPEN on regular files */
1516 if ((open_flags & O_DIRECTORY)) {
1517 if (!d_in_lookup(dentry)) {
1518 /*
1519 * Hashed negative dentry with O_DIRECTORY: dentry was
1520 * revalidated and is fine, no need to perform lookup
1521 * again
1522 */
1523 return -ENOENT;
1524 }
1525 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1526 goto no_open;
1527 }
1528
1529 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1530 return -ENAMETOOLONG;
1531
1532 if (open_flags & O_CREAT) {
1533 struct nfs_server *server = NFS_SERVER(dir);
1534
1535 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1536 mode &= ~current_umask();
1537
1538 attr.ia_valid |= ATTR_MODE;
1539 attr.ia_mode = mode;
1540 }
1541 if (open_flags & O_TRUNC) {
1542 attr.ia_valid |= ATTR_SIZE;
1543 attr.ia_size = 0;
1544 }
1545
1546 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1547 d_drop(dentry);
1548 switched = true;
1549 dentry = d_alloc_parallel(dentry->d_parent,
1550 &dentry->d_name, &wq);
1551 if (IS_ERR(dentry))
1552 return PTR_ERR(dentry);
1553 if (unlikely(!d_in_lookup(dentry)))
1554 return finish_no_open(file, dentry);
1555 }
1556
1557 ctx = create_nfs_open_context(dentry, open_flags, file);
1558 err = PTR_ERR(ctx);
1559 if (IS_ERR(ctx))
1560 goto out;
1561
1562 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1563 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1564 if (IS_ERR(inode)) {
1565 err = PTR_ERR(inode);
1566 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1567 put_nfs_open_context(ctx);
1568 d_drop(dentry);
1569 switch (err) {
1570 case -ENOENT:
1571 d_add(dentry, NULL);
1572 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1573 break;
1574 case -EISDIR:
1575 case -ENOTDIR:
1576 goto no_open;
1577 case -ELOOP:
1578 if (!(open_flags & O_NOFOLLOW))
1579 goto no_open;
1580 break;
1581 /* case -EINVAL: */
1582 default:
1583 break;
1584 }
1585 goto out;
1586 }
1587
1588 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1589 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1590 put_nfs_open_context(ctx);
1591out:
1592 if (unlikely(switched)) {
1593 d_lookup_done(dentry);
1594 dput(dentry);
1595 }
1596 return err;
1597
1598no_open:
1599 res = nfs_lookup(dir, dentry, lookup_flags);
1600 if (switched) {
1601 d_lookup_done(dentry);
1602 if (!res)
1603 res = dentry;
1604 else
1605 dput(dentry);
1606 }
1607 if (IS_ERR(res))
1608 return PTR_ERR(res);
1609 return finish_no_open(file, res);
1610}
1611EXPORT_SYMBOL_GPL(nfs_atomic_open);
1612
1613static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1614{
1615 struct inode *inode;
1616 int ret = 0;
1617
1618 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1619 goto no_open;
1620 if (d_mountpoint(dentry))
1621 goto no_open;
1622 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1623 goto no_open;
1624
1625 inode = d_inode(dentry);
1626
1627 /* We can't create new files in nfs_open_revalidate(), so we
1628 * optimize away revalidation of negative dentries.
1629 */
1630 if (inode == NULL) {
1631 struct dentry *parent;
1632 struct inode *dir;
1633
1634 if (flags & LOOKUP_RCU) {
1635 parent = ACCESS_ONCE(dentry->d_parent);
1636 dir = d_inode_rcu(parent);
1637 if (!dir)
1638 return -ECHILD;
1639 } else {
1640 parent = dget_parent(dentry);
1641 dir = d_inode(parent);
1642 }
1643 if (!nfs_neg_need_reval(dir, dentry, flags))
1644 ret = 1;
1645 else if (flags & LOOKUP_RCU)
1646 ret = -ECHILD;
1647 if (!(flags & LOOKUP_RCU))
1648 dput(parent);
1649 else if (parent != ACCESS_ONCE(dentry->d_parent))
1650 return -ECHILD;
1651 goto out;
1652 }
1653
1654 /* NFS only supports OPEN on regular files */
1655 if (!S_ISREG(inode->i_mode))
1656 goto no_open;
1657 /* We cannot do exclusive creation on a positive dentry */
1658 if (flags & LOOKUP_EXCL)
1659 goto no_open;
1660
1661 /* Let f_op->open() actually open (and revalidate) the file */
1662 ret = 1;
1663
1664out:
1665 return ret;
1666
1667no_open:
1668 return nfs_lookup_revalidate(dentry, flags);
1669}
1670
1671#endif /* CONFIG_NFSV4 */
1672
1673/*
1674 * Code common to create, mkdir, and mknod.
1675 */
1676int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1677 struct nfs_fattr *fattr,
1678 struct nfs4_label *label)
1679{
1680 struct dentry *parent = dget_parent(dentry);
1681 struct inode *dir = d_inode(parent);
1682 struct inode *inode;
1683 int error = -EACCES;
1684
1685 d_drop(dentry);
1686
1687 /* We may have been initialized further down */
1688 if (d_really_is_positive(dentry))
1689 goto out;
1690 if (fhandle->size == 0) {
1691 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1692 if (error)
1693 goto out_error;
1694 }
1695 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1696 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1697 struct nfs_server *server = NFS_SB(dentry->d_sb);
1698 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1699 if (error < 0)
1700 goto out_error;
1701 }
1702 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1703 error = PTR_ERR(inode);
1704 if (IS_ERR(inode))
1705 goto out_error;
1706 d_add(dentry, inode);
1707out:
1708 dput(parent);
1709 return 0;
1710out_error:
1711 nfs_mark_for_revalidate(dir);
1712 dput(parent);
1713 return error;
1714}
1715EXPORT_SYMBOL_GPL(nfs_instantiate);
1716
1717/*
1718 * Following a failed create operation, we drop the dentry rather
1719 * than retain a negative dentry. This avoids a problem in the event
1720 * that the operation succeeded on the server, but an error in the
1721 * reply path made it appear to have failed.
1722 */
1723int nfs_create(struct inode *dir, struct dentry *dentry,
1724 umode_t mode, bool excl)
1725{
1726 struct iattr attr;
1727 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1728 int error;
1729
1730 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1731 dir->i_sb->s_id, dir->i_ino, dentry);
1732
1733 attr.ia_mode = mode;
1734 attr.ia_valid = ATTR_MODE;
1735
1736 trace_nfs_create_enter(dir, dentry, open_flags);
1737 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1738 trace_nfs_create_exit(dir, dentry, open_flags, error);
1739 if (error != 0)
1740 goto out_err;
1741 return 0;
1742out_err:
1743 d_drop(dentry);
1744 return error;
1745}
1746EXPORT_SYMBOL_GPL(nfs_create);
1747
1748/*
1749 * See comments for nfs_proc_create regarding failed operations.
1750 */
1751int
1752nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1753{
1754 struct iattr attr;
1755 int status;
1756
1757 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1758 dir->i_sb->s_id, dir->i_ino, dentry);
1759
1760 attr.ia_mode = mode;
1761 attr.ia_valid = ATTR_MODE;
1762
1763 trace_nfs_mknod_enter(dir, dentry);
1764 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1765 trace_nfs_mknod_exit(dir, dentry, status);
1766 if (status != 0)
1767 goto out_err;
1768 return 0;
1769out_err:
1770 d_drop(dentry);
1771 return status;
1772}
1773EXPORT_SYMBOL_GPL(nfs_mknod);
1774
1775/*
1776 * See comments for nfs_proc_create regarding failed operations.
1777 */
1778int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1779{
1780 struct iattr attr;
1781 int error;
1782
1783 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1784 dir->i_sb->s_id, dir->i_ino, dentry);
1785
1786 attr.ia_valid = ATTR_MODE;
1787 attr.ia_mode = mode | S_IFDIR;
1788
1789 trace_nfs_mkdir_enter(dir, dentry);
1790 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1791 trace_nfs_mkdir_exit(dir, dentry, error);
1792 if (error != 0)
1793 goto out_err;
1794 return 0;
1795out_err:
1796 d_drop(dentry);
1797 return error;
1798}
1799EXPORT_SYMBOL_GPL(nfs_mkdir);
1800
1801static void nfs_dentry_handle_enoent(struct dentry *dentry)
1802{
1803 if (simple_positive(dentry))
1804 d_delete(dentry);
1805}
1806
1807int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1808{
1809 int error;
1810
1811 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1812 dir->i_sb->s_id, dir->i_ino, dentry);
1813
1814 trace_nfs_rmdir_enter(dir, dentry);
1815 if (d_really_is_positive(dentry)) {
1816 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1817 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1818 /* Ensure the VFS deletes this inode */
1819 switch (error) {
1820 case 0:
1821 clear_nlink(d_inode(dentry));
1822 break;
1823 case -ENOENT:
1824 nfs_dentry_handle_enoent(dentry);
1825 }
1826 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1827 } else
1828 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1829 trace_nfs_rmdir_exit(dir, dentry, error);
1830
1831 return error;
1832}
1833EXPORT_SYMBOL_GPL(nfs_rmdir);
1834
1835/*
1836 * Remove a file after making sure there are no pending writes,
1837 * and after checking that the file has only one user.
1838 *
1839 * We invalidate the attribute cache and free the inode prior to the operation
1840 * to avoid possible races if the server reuses the inode.
1841 */
1842static int nfs_safe_remove(struct dentry *dentry)
1843{
1844 struct inode *dir = d_inode(dentry->d_parent);
1845 struct inode *inode = d_inode(dentry);
1846 int error = -EBUSY;
1847
1848 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1849
1850 /* If the dentry was sillyrenamed, we simply call d_delete() */
1851 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1852 error = 0;
1853 goto out;
1854 }
1855
1856 trace_nfs_remove_enter(dir, dentry);
1857 if (inode != NULL) {
1858 NFS_PROTO(inode)->return_delegation(inode);
1859 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1860 if (error == 0)
1861 nfs_drop_nlink(inode);
1862 } else
1863 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1864 if (error == -ENOENT)
1865 nfs_dentry_handle_enoent(dentry);
1866 trace_nfs_remove_exit(dir, dentry, error);
1867out:
1868 return error;
1869}
1870
1871/* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1872 * belongs to an active ".nfs..." file and we return -EBUSY.
1873 *
1874 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1875 */
1876int nfs_unlink(struct inode *dir, struct dentry *dentry)
1877{
1878 int error;
1879 int need_rehash = 0;
1880
1881 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1882 dir->i_ino, dentry);
1883
1884 trace_nfs_unlink_enter(dir, dentry);
1885 spin_lock(&dentry->d_lock);
1886 if (d_count(dentry) > 1) {
1887 spin_unlock(&dentry->d_lock);
1888 /* Start asynchronous writeout of the inode */
1889 write_inode_now(d_inode(dentry), 0);
1890 error = nfs_sillyrename(dir, dentry);
1891 goto out;
1892 }
1893 if (!d_unhashed(dentry)) {
1894 __d_drop(dentry);
1895 need_rehash = 1;
1896 }
1897 spin_unlock(&dentry->d_lock);
1898 error = nfs_safe_remove(dentry);
1899 if (!error || error == -ENOENT) {
1900 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1901 } else if (need_rehash)
1902 d_rehash(dentry);
1903out:
1904 trace_nfs_unlink_exit(dir, dentry, error);
1905 return error;
1906}
1907EXPORT_SYMBOL_GPL(nfs_unlink);
1908
1909/*
1910 * To create a symbolic link, most file systems instantiate a new inode,
1911 * add a page to it containing the path, then write it out to the disk
1912 * using prepare_write/commit_write.
1913 *
1914 * Unfortunately the NFS client can't create the in-core inode first
1915 * because it needs a file handle to create an in-core inode (see
1916 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1917 * symlink request has completed on the server.
1918 *
1919 * So instead we allocate a raw page, copy the symname into it, then do
1920 * the SYMLINK request with the page as the buffer. If it succeeds, we
1921 * now have a new file handle and can instantiate an in-core NFS inode
1922 * and move the raw page into its mapping.
1923 */
1924int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1925{
1926 struct page *page;
1927 char *kaddr;
1928 struct iattr attr;
1929 unsigned int pathlen = strlen(symname);
1930 int error;
1931
1932 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1933 dir->i_ino, dentry, symname);
1934
1935 if (pathlen > PAGE_SIZE)
1936 return -ENAMETOOLONG;
1937
1938 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1939 attr.ia_valid = ATTR_MODE;
1940
1941 page = alloc_page(GFP_USER);
1942 if (!page)
1943 return -ENOMEM;
1944
1945 kaddr = page_address(page);
1946 memcpy(kaddr, symname, pathlen);
1947 if (pathlen < PAGE_SIZE)
1948 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1949
1950 trace_nfs_symlink_enter(dir, dentry);
1951 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1952 trace_nfs_symlink_exit(dir, dentry, error);
1953 if (error != 0) {
1954 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1955 dir->i_sb->s_id, dir->i_ino,
1956 dentry, symname, error);
1957 d_drop(dentry);
1958 __free_page(page);
1959 return error;
1960 }
1961
1962 /*
1963 * No big deal if we can't add this page to the page cache here.
1964 * READLINK will get the missing page from the server if needed.
1965 */
1966 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1967 GFP_KERNEL)) {
1968 SetPageUptodate(page);
1969 unlock_page(page);
1970 /*
1971 * add_to_page_cache_lru() grabs an extra page refcount.
1972 * Drop it here to avoid leaking this page later.
1973 */
1974 put_page(page);
1975 } else
1976 __free_page(page);
1977
1978 return 0;
1979}
1980EXPORT_SYMBOL_GPL(nfs_symlink);
1981
1982int
1983nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1984{
1985 struct inode *inode = d_inode(old_dentry);
1986 int error;
1987
1988 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1989 old_dentry, dentry);
1990
1991 trace_nfs_link_enter(inode, dir, dentry);
1992 NFS_PROTO(inode)->return_delegation(inode);
1993
1994 d_drop(dentry);
1995 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1996 if (error == 0) {
1997 ihold(inode);
1998 d_add(dentry, inode);
1999 }
2000 trace_nfs_link_exit(inode, dir, dentry, error);
2001 return error;
2002}
2003EXPORT_SYMBOL_GPL(nfs_link);
2004
2005/*
2006 * RENAME
2007 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2008 * different file handle for the same inode after a rename (e.g. when
2009 * moving to a different directory). A fail-safe method to do so would
2010 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2011 * rename the old file using the sillyrename stuff. This way, the original
2012 * file in old_dir will go away when the last process iput()s the inode.
2013 *
2014 * FIXED.
2015 *
2016 * It actually works quite well. One needs to have the possibility for
2017 * at least one ".nfs..." file in each directory the file ever gets
2018 * moved or linked to which happens automagically with the new
2019 * implementation that only depends on the dcache stuff instead of
2020 * using the inode layer
2021 *
2022 * Unfortunately, things are a little more complicated than indicated
2023 * above. For a cross-directory move, we want to make sure we can get
2024 * rid of the old inode after the operation. This means there must be
2025 * no pending writes (if it's a file), and the use count must be 1.
2026 * If these conditions are met, we can drop the dentries before doing
2027 * the rename.
2028 */
2029int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2030 struct inode *new_dir, struct dentry *new_dentry,
2031 unsigned int flags)
2032{
2033 struct inode *old_inode = d_inode(old_dentry);
2034 struct inode *new_inode = d_inode(new_dentry);
2035 struct dentry *dentry = NULL, *rehash = NULL;
2036 struct rpc_task *task;
2037 int error = -EBUSY;
2038
2039 if (flags)
2040 return -EINVAL;
2041
2042 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2043 old_dentry, new_dentry,
2044 d_count(new_dentry));
2045
2046 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2047 /*
2048 * For non-directories, check whether the target is busy and if so,
2049 * make a copy of the dentry and then do a silly-rename. If the
2050 * silly-rename succeeds, the copied dentry is hashed and becomes
2051 * the new target.
2052 */
2053 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2054 /*
2055 * To prevent any new references to the target during the
2056 * rename, we unhash the dentry in advance.
2057 */
2058 if (!d_unhashed(new_dentry)) {
2059 d_drop(new_dentry);
2060 rehash = new_dentry;
2061 }
2062
2063 if (d_count(new_dentry) > 2) {
2064 int err;
2065
2066 /* copy the target dentry's name */
2067 dentry = d_alloc(new_dentry->d_parent,
2068 &new_dentry->d_name);
2069 if (!dentry)
2070 goto out;
2071
2072 /* silly-rename the existing target ... */
2073 err = nfs_sillyrename(new_dir, new_dentry);
2074 if (err)
2075 goto out;
2076
2077 new_dentry = dentry;
2078 rehash = NULL;
2079 new_inode = NULL;
2080 }
2081 }
2082
2083 NFS_PROTO(old_inode)->return_delegation(old_inode);
2084 if (new_inode != NULL)
2085 NFS_PROTO(new_inode)->return_delegation(new_inode);
2086
2087 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2088 if (IS_ERR(task)) {
2089 error = PTR_ERR(task);
2090 goto out;
2091 }
2092
2093 error = rpc_wait_for_completion_task(task);
2094 if (error == 0)
2095 error = task->tk_status;
2096 rpc_put_task(task);
2097 nfs_mark_for_revalidate(old_inode);
2098out:
2099 if (rehash)
2100 d_rehash(rehash);
2101 trace_nfs_rename_exit(old_dir, old_dentry,
2102 new_dir, new_dentry, error);
2103 if (!error) {
2104 if (new_inode != NULL)
2105 nfs_drop_nlink(new_inode);
2106 d_move(old_dentry, new_dentry);
2107 nfs_set_verifier(new_dentry,
2108 nfs_save_change_attribute(new_dir));
2109 } else if (error == -ENOENT)
2110 nfs_dentry_handle_enoent(old_dentry);
2111
2112 /* new dentry created? */
2113 if (dentry)
2114 dput(dentry);
2115 return error;
2116}
2117EXPORT_SYMBOL_GPL(nfs_rename);
2118
2119static DEFINE_SPINLOCK(nfs_access_lru_lock);
2120static LIST_HEAD(nfs_access_lru_list);
2121static atomic_long_t nfs_access_nr_entries;
2122
2123static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2124module_param(nfs_access_max_cachesize, ulong, 0644);
2125MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2126
2127static void nfs_access_free_entry(struct nfs_access_entry *entry)
2128{
2129 put_rpccred(entry->cred);
2130 kfree_rcu(entry, rcu_head);
2131 smp_mb__before_atomic();
2132 atomic_long_dec(&nfs_access_nr_entries);
2133 smp_mb__after_atomic();
2134}
2135
2136static void nfs_access_free_list(struct list_head *head)
2137{
2138 struct nfs_access_entry *cache;
2139
2140 while (!list_empty(head)) {
2141 cache = list_entry(head->next, struct nfs_access_entry, lru);
2142 list_del(&cache->lru);
2143 nfs_access_free_entry(cache);
2144 }
2145}
2146
2147static unsigned long
2148nfs_do_access_cache_scan(unsigned int nr_to_scan)
2149{
2150 LIST_HEAD(head);
2151 struct nfs_inode *nfsi, *next;
2152 struct nfs_access_entry *cache;
2153 long freed = 0;
2154
2155 spin_lock(&nfs_access_lru_lock);
2156 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2157 struct inode *inode;
2158
2159 if (nr_to_scan-- == 0)
2160 break;
2161 inode = &nfsi->vfs_inode;
2162 spin_lock(&inode->i_lock);
2163 if (list_empty(&nfsi->access_cache_entry_lru))
2164 goto remove_lru_entry;
2165 cache = list_entry(nfsi->access_cache_entry_lru.next,
2166 struct nfs_access_entry, lru);
2167 list_move(&cache->lru, &head);
2168 rb_erase(&cache->rb_node, &nfsi->access_cache);
2169 freed++;
2170 if (!list_empty(&nfsi->access_cache_entry_lru))
2171 list_move_tail(&nfsi->access_cache_inode_lru,
2172 &nfs_access_lru_list);
2173 else {
2174remove_lru_entry:
2175 list_del_init(&nfsi->access_cache_inode_lru);
2176 smp_mb__before_atomic();
2177 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2178 smp_mb__after_atomic();
2179 }
2180 spin_unlock(&inode->i_lock);
2181 }
2182 spin_unlock(&nfs_access_lru_lock);
2183 nfs_access_free_list(&head);
2184 return freed;
2185}
2186
2187unsigned long
2188nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2189{
2190 int nr_to_scan = sc->nr_to_scan;
2191 gfp_t gfp_mask = sc->gfp_mask;
2192
2193 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2194 return SHRINK_STOP;
2195 return nfs_do_access_cache_scan(nr_to_scan);
2196}
2197
2198
2199unsigned long
2200nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2201{
2202 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2203}
2204
2205static void
2206nfs_access_cache_enforce_limit(void)
2207{
2208 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2209 unsigned long diff;
2210 unsigned int nr_to_scan;
2211
2212 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2213 return;
2214 nr_to_scan = 100;
2215 diff = nr_entries - nfs_access_max_cachesize;
2216 if (diff < nr_to_scan)
2217 nr_to_scan = diff;
2218 nfs_do_access_cache_scan(nr_to_scan);
2219}
2220
2221static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2222{
2223 struct rb_root *root_node = &nfsi->access_cache;
2224 struct rb_node *n;
2225 struct nfs_access_entry *entry;
2226
2227 /* Unhook entries from the cache */
2228 while ((n = rb_first(root_node)) != NULL) {
2229 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2230 rb_erase(n, root_node);
2231 list_move(&entry->lru, head);
2232 }
2233 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2234}
2235
2236void nfs_access_zap_cache(struct inode *inode)
2237{
2238 LIST_HEAD(head);
2239
2240 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2241 return;
2242 /* Remove from global LRU init */
2243 spin_lock(&nfs_access_lru_lock);
2244 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2245 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2246
2247 spin_lock(&inode->i_lock);
2248 __nfs_access_zap_cache(NFS_I(inode), &head);
2249 spin_unlock(&inode->i_lock);
2250 spin_unlock(&nfs_access_lru_lock);
2251 nfs_access_free_list(&head);
2252}
2253EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2254
2255static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2256{
2257 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2258 struct nfs_access_entry *entry;
2259
2260 while (n != NULL) {
2261 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2262
2263 if (cred < entry->cred)
2264 n = n->rb_left;
2265 else if (cred > entry->cred)
2266 n = n->rb_right;
2267 else
2268 return entry;
2269 }
2270 return NULL;
2271}
2272
2273static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res, bool may_block)
2274{
2275 struct nfs_inode *nfsi = NFS_I(inode);
2276 struct nfs_access_entry *cache;
2277 bool retry = true;
2278 int err;
2279
2280 spin_lock(&inode->i_lock);
2281 for(;;) {
2282 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2283 goto out_zap;
2284 cache = nfs_access_search_rbtree(inode, cred);
2285 err = -ENOENT;
2286 if (cache == NULL)
2287 goto out;
2288 /* Found an entry, is our attribute cache valid? */
2289 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2290 break;
2291 err = -ECHILD;
2292 if (!may_block)
2293 goto out;
2294 if (!retry)
2295 goto out_zap;
2296 spin_unlock(&inode->i_lock);
2297 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2298 if (err)
2299 return err;
2300 spin_lock(&inode->i_lock);
2301 retry = false;
2302 }
2303 res->jiffies = cache->jiffies;
2304 res->cred = cache->cred;
2305 res->mask = cache->mask;
2306 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2307 err = 0;
2308out:
2309 spin_unlock(&inode->i_lock);
2310 return err;
2311out_zap:
2312 spin_unlock(&inode->i_lock);
2313 nfs_access_zap_cache(inode);
2314 return -ENOENT;
2315}
2316
2317static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2318{
2319 /* Only check the most recently returned cache entry,
2320 * but do it without locking.
2321 */
2322 struct nfs_inode *nfsi = NFS_I(inode);
2323 struct nfs_access_entry *cache;
2324 int err = -ECHILD;
2325 struct list_head *lh;
2326
2327 rcu_read_lock();
2328 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2329 goto out;
2330 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2331 cache = list_entry(lh, struct nfs_access_entry, lru);
2332 if (lh == &nfsi->access_cache_entry_lru ||
2333 cred != cache->cred)
2334 cache = NULL;
2335 if (cache == NULL)
2336 goto out;
2337 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2338 goto out;
2339 res->jiffies = cache->jiffies;
2340 res->cred = cache->cred;
2341 res->mask = cache->mask;
2342 err = 0;
2343out:
2344 rcu_read_unlock();
2345 return err;
2346}
2347
2348static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2349{
2350 struct nfs_inode *nfsi = NFS_I(inode);
2351 struct rb_root *root_node = &nfsi->access_cache;
2352 struct rb_node **p = &root_node->rb_node;
2353 struct rb_node *parent = NULL;
2354 struct nfs_access_entry *entry;
2355
2356 spin_lock(&inode->i_lock);
2357 while (*p != NULL) {
2358 parent = *p;
2359 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2360
2361 if (set->cred < entry->cred)
2362 p = &parent->rb_left;
2363 else if (set->cred > entry->cred)
2364 p = &parent->rb_right;
2365 else
2366 goto found;
2367 }
2368 rb_link_node(&set->rb_node, parent, p);
2369 rb_insert_color(&set->rb_node, root_node);
2370 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2371 spin_unlock(&inode->i_lock);
2372 return;
2373found:
2374 rb_replace_node(parent, &set->rb_node, root_node);
2375 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2376 list_del(&entry->lru);
2377 spin_unlock(&inode->i_lock);
2378 nfs_access_free_entry(entry);
2379}
2380
2381void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2382{
2383 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2384 if (cache == NULL)
2385 return;
2386 RB_CLEAR_NODE(&cache->rb_node);
2387 cache->jiffies = set->jiffies;
2388 cache->cred = get_rpccred(set->cred);
2389 cache->mask = set->mask;
2390
2391 /* The above field assignments must be visible
2392 * before this item appears on the lru. We cannot easily
2393 * use rcu_assign_pointer, so just force the memory barrier.
2394 */
2395 smp_wmb();
2396 nfs_access_add_rbtree(inode, cache);
2397
2398 /* Update accounting */
2399 smp_mb__before_atomic();
2400 atomic_long_inc(&nfs_access_nr_entries);
2401 smp_mb__after_atomic();
2402
2403 /* Add inode to global LRU list */
2404 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2405 spin_lock(&nfs_access_lru_lock);
2406 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2407 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2408 &nfs_access_lru_list);
2409 spin_unlock(&nfs_access_lru_lock);
2410 }
2411 nfs_access_cache_enforce_limit();
2412}
2413EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2414
2415void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2416{
2417 entry->mask = 0;
2418 if (access_result & NFS4_ACCESS_READ)
2419 entry->mask |= MAY_READ;
2420 if (access_result &
2421 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2422 entry->mask |= MAY_WRITE;
2423 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2424 entry->mask |= MAY_EXEC;
2425}
2426EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2427
2428static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2429{
2430 struct nfs_access_entry cache;
2431 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2432 int status;
2433
2434 trace_nfs_access_enter(inode);
2435
2436 status = nfs_access_get_cached_rcu(inode, cred, &cache);
2437 if (status != 0)
2438 status = nfs_access_get_cached(inode, cred, &cache, may_block);
2439 if (status == 0)
2440 goto out_cached;
2441
2442 status = -ECHILD;
2443 if (!may_block)
2444 goto out;
2445
2446 /* Be clever: ask server to check for all possible rights */
2447 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2448 cache.cred = cred;
2449 cache.jiffies = jiffies;
2450 status = NFS_PROTO(inode)->access(inode, &cache);
2451 if (status != 0) {
2452 if (status == -ESTALE) {
2453 nfs_zap_caches(inode);
2454 if (!S_ISDIR(inode->i_mode))
2455 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2456 }
2457 goto out;
2458 }
2459 nfs_access_add_cache(inode, &cache);
2460out_cached:
2461 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2462 status = -EACCES;
2463out:
2464 trace_nfs_access_exit(inode, status);
2465 return status;
2466}
2467
2468static int nfs_open_permission_mask(int openflags)
2469{
2470 int mask = 0;
2471
2472 if (openflags & __FMODE_EXEC) {
2473 /* ONLY check exec rights */
2474 mask = MAY_EXEC;
2475 } else {
2476 if ((openflags & O_ACCMODE) != O_WRONLY)
2477 mask |= MAY_READ;
2478 if ((openflags & O_ACCMODE) != O_RDONLY)
2479 mask |= MAY_WRITE;
2480 }
2481
2482 return mask;
2483}
2484
2485int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2486{
2487 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2488}
2489EXPORT_SYMBOL_GPL(nfs_may_open);
2490
2491static int nfs_execute_ok(struct inode *inode, int mask)
2492{
2493 struct nfs_server *server = NFS_SERVER(inode);
2494 int ret = 0;
2495
2496 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) {
2497 if (mask & MAY_NOT_BLOCK)
2498 return -ECHILD;
2499 ret = __nfs_revalidate_inode(server, inode);
2500 }
2501 if (ret == 0 && !execute_ok(inode))
2502 ret = -EACCES;
2503 return ret;
2504}
2505
2506int nfs_permission(struct inode *inode, int mask)
2507{
2508 struct rpc_cred *cred;
2509 int res = 0;
2510
2511 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2512
2513 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2514 goto out;
2515 /* Is this sys_access() ? */
2516 if (mask & (MAY_ACCESS | MAY_CHDIR))
2517 goto force_lookup;
2518
2519 switch (inode->i_mode & S_IFMT) {
2520 case S_IFLNK:
2521 goto out;
2522 case S_IFREG:
2523 if ((mask & MAY_OPEN) &&
2524 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2525 return 0;
2526 break;
2527 case S_IFDIR:
2528 /*
2529 * Optimize away all write operations, since the server
2530 * will check permissions when we perform the op.
2531 */
2532 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2533 goto out;
2534 }
2535
2536force_lookup:
2537 if (!NFS_PROTO(inode)->access)
2538 goto out_notsup;
2539
2540 /* Always try fast lookups first */
2541 rcu_read_lock();
2542 cred = rpc_lookup_cred_nonblock();
2543 if (!IS_ERR(cred))
2544 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2545 else
2546 res = PTR_ERR(cred);
2547 rcu_read_unlock();
2548 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2549 /* Fast lookup failed, try the slow way */
2550 cred = rpc_lookup_cred();
2551 if (!IS_ERR(cred)) {
2552 res = nfs_do_access(inode, cred, mask);
2553 put_rpccred(cred);
2554 } else
2555 res = PTR_ERR(cred);
2556 }
2557out:
2558 if (!res && (mask & MAY_EXEC))
2559 res = nfs_execute_ok(inode, mask);
2560
2561 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2562 inode->i_sb->s_id, inode->i_ino, mask, res);
2563 return res;
2564out_notsup:
2565 if (mask & MAY_NOT_BLOCK)
2566 return -ECHILD;
2567
2568 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2569 if (res == 0)
2570 res = generic_permission(inode, mask);
2571 goto out;
2572}
2573EXPORT_SYMBOL_GPL(nfs_permission);
2574
2575/*
2576 * Local variables:
2577 * version-control: t
2578 * kept-new-versions: 5
2579 * End:
2580 */