Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11#include <linux/pci.h>
12#include <linux/irq.h>
13#include <linux/log2.h>
14#include <linux/module.h>
15#include <linux/moduleparam.h>
16#include <linux/slab.h>
17#include <linux/dmi.h>
18#include <linux/dma-mapping.h>
19
20#include "xhci.h"
21#include "xhci-trace.h"
22#include "xhci-mtk.h"
23#include "xhci-debugfs.h"
24#include "xhci-dbgcap.h"
25
26#define DRIVER_AUTHOR "Sarah Sharp"
27#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29#define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32static int link_quirk;
33module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36static unsigned int quirks;
37module_param(quirks, uint, S_IRUGO);
38MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
40/* TODO: copied from ehci-hcd.c - can this be refactored? */
41/*
42 * xhci_handshake - spin reading hc until handshake completes or fails
43 * @ptr: address of hc register to be read
44 * @mask: bits to look at in result of read
45 * @done: value of those bits when handshake succeeds
46 * @usec: timeout in microseconds
47 *
48 * Returns negative errno, or zero on success
49 *
50 * Success happens when the "mask" bits have the specified value (hardware
51 * handshake done). There are two failure modes: "usec" have passed (major
52 * hardware flakeout), or the register reads as all-ones (hardware removed).
53 */
54int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
55{
56 u32 result;
57
58 do {
59 result = readl(ptr);
60 if (result == ~(u32)0) /* card removed */
61 return -ENODEV;
62 result &= mask;
63 if (result == done)
64 return 0;
65 udelay(1);
66 usec--;
67 } while (usec > 0);
68 return -ETIMEDOUT;
69}
70
71/*
72 * Disable interrupts and begin the xHCI halting process.
73 */
74void xhci_quiesce(struct xhci_hcd *xhci)
75{
76 u32 halted;
77 u32 cmd;
78 u32 mask;
79
80 mask = ~(XHCI_IRQS);
81 halted = readl(&xhci->op_regs->status) & STS_HALT;
82 if (!halted)
83 mask &= ~CMD_RUN;
84
85 cmd = readl(&xhci->op_regs->command);
86 cmd &= mask;
87 writel(cmd, &xhci->op_regs->command);
88}
89
90/*
91 * Force HC into halt state.
92 *
93 * Disable any IRQs and clear the run/stop bit.
94 * HC will complete any current and actively pipelined transactions, and
95 * should halt within 16 ms of the run/stop bit being cleared.
96 * Read HC Halted bit in the status register to see when the HC is finished.
97 */
98int xhci_halt(struct xhci_hcd *xhci)
99{
100 int ret;
101 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
102 xhci_quiesce(xhci);
103
104 ret = xhci_handshake(&xhci->op_regs->status,
105 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
106 if (ret) {
107 xhci_warn(xhci, "Host halt failed, %d\n", ret);
108 return ret;
109 }
110 xhci->xhc_state |= XHCI_STATE_HALTED;
111 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
112 return ret;
113}
114
115/*
116 * Set the run bit and wait for the host to be running.
117 */
118int xhci_start(struct xhci_hcd *xhci)
119{
120 u32 temp;
121 int ret;
122
123 temp = readl(&xhci->op_regs->command);
124 temp |= (CMD_RUN);
125 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
126 temp);
127 writel(temp, &xhci->op_regs->command);
128
129 /*
130 * Wait for the HCHalted Status bit to be 0 to indicate the host is
131 * running.
132 */
133 ret = xhci_handshake(&xhci->op_regs->status,
134 STS_HALT, 0, XHCI_MAX_HALT_USEC);
135 if (ret == -ETIMEDOUT)
136 xhci_err(xhci, "Host took too long to start, "
137 "waited %u microseconds.\n",
138 XHCI_MAX_HALT_USEC);
139 if (!ret)
140 /* clear state flags. Including dying, halted or removing */
141 xhci->xhc_state = 0;
142
143 return ret;
144}
145
146/*
147 * Reset a halted HC.
148 *
149 * This resets pipelines, timers, counters, state machines, etc.
150 * Transactions will be terminated immediately, and operational registers
151 * will be set to their defaults.
152 */
153int xhci_reset(struct xhci_hcd *xhci)
154{
155 u32 command;
156 u32 state;
157 int ret, i;
158
159 state = readl(&xhci->op_regs->status);
160
161 if (state == ~(u32)0) {
162 xhci_warn(xhci, "Host not accessible, reset failed.\n");
163 return -ENODEV;
164 }
165
166 if ((state & STS_HALT) == 0) {
167 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
168 return 0;
169 }
170
171 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
172 command = readl(&xhci->op_regs->command);
173 command |= CMD_RESET;
174 writel(command, &xhci->op_regs->command);
175
176 /* Existing Intel xHCI controllers require a delay of 1 mS,
177 * after setting the CMD_RESET bit, and before accessing any
178 * HC registers. This allows the HC to complete the
179 * reset operation and be ready for HC register access.
180 * Without this delay, the subsequent HC register access,
181 * may result in a system hang very rarely.
182 */
183 if (xhci->quirks & XHCI_INTEL_HOST)
184 udelay(1000);
185
186 ret = xhci_handshake(&xhci->op_regs->command,
187 CMD_RESET, 0, 10 * 1000 * 1000);
188 if (ret)
189 return ret;
190
191 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
192 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
193
194 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195 "Wait for controller to be ready for doorbell rings");
196 /*
197 * xHCI cannot write to any doorbells or operational registers other
198 * than status until the "Controller Not Ready" flag is cleared.
199 */
200 ret = xhci_handshake(&xhci->op_regs->status,
201 STS_CNR, 0, 10 * 1000 * 1000);
202
203 for (i = 0; i < 2; i++) {
204 xhci->bus_state[i].port_c_suspend = 0;
205 xhci->bus_state[i].suspended_ports = 0;
206 xhci->bus_state[i].resuming_ports = 0;
207 }
208
209 return ret;
210}
211
212
213#ifdef CONFIG_USB_PCI
214/*
215 * Set up MSI
216 */
217static int xhci_setup_msi(struct xhci_hcd *xhci)
218{
219 int ret;
220 /*
221 * TODO:Check with MSI Soc for sysdev
222 */
223 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
224
225 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
226 if (ret < 0) {
227 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
228 "failed to allocate MSI entry");
229 return ret;
230 }
231
232 ret = request_irq(pdev->irq, xhci_msi_irq,
233 0, "xhci_hcd", xhci_to_hcd(xhci));
234 if (ret) {
235 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
236 "disable MSI interrupt");
237 pci_free_irq_vectors(pdev);
238 }
239
240 return ret;
241}
242
243/*
244 * Set up MSI-X
245 */
246static int xhci_setup_msix(struct xhci_hcd *xhci)
247{
248 int i, ret = 0;
249 struct usb_hcd *hcd = xhci_to_hcd(xhci);
250 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
251
252 /*
253 * calculate number of msi-x vectors supported.
254 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
255 * with max number of interrupters based on the xhci HCSPARAMS1.
256 * - num_online_cpus: maximum msi-x vectors per CPUs core.
257 * Add additional 1 vector to ensure always available interrupt.
258 */
259 xhci->msix_count = min(num_online_cpus() + 1,
260 HCS_MAX_INTRS(xhci->hcs_params1));
261
262 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
263 PCI_IRQ_MSIX);
264 if (ret < 0) {
265 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
266 "Failed to enable MSI-X");
267 return ret;
268 }
269
270 for (i = 0; i < xhci->msix_count; i++) {
271 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
272 "xhci_hcd", xhci_to_hcd(xhci));
273 if (ret)
274 goto disable_msix;
275 }
276
277 hcd->msix_enabled = 1;
278 return ret;
279
280disable_msix:
281 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
282 while (--i >= 0)
283 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
284 pci_free_irq_vectors(pdev);
285 return ret;
286}
287
288/* Free any IRQs and disable MSI-X */
289static void xhci_cleanup_msix(struct xhci_hcd *xhci)
290{
291 struct usb_hcd *hcd = xhci_to_hcd(xhci);
292 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
293
294 if (xhci->quirks & XHCI_PLAT)
295 return;
296
297 /* return if using legacy interrupt */
298 if (hcd->irq > 0)
299 return;
300
301 if (hcd->msix_enabled) {
302 int i;
303
304 for (i = 0; i < xhci->msix_count; i++)
305 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
306 } else {
307 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
308 }
309
310 pci_free_irq_vectors(pdev);
311 hcd->msix_enabled = 0;
312}
313
314static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
315{
316 struct usb_hcd *hcd = xhci_to_hcd(xhci);
317
318 if (hcd->msix_enabled) {
319 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
320 int i;
321
322 for (i = 0; i < xhci->msix_count; i++)
323 synchronize_irq(pci_irq_vector(pdev, i));
324 }
325}
326
327static int xhci_try_enable_msi(struct usb_hcd *hcd)
328{
329 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
330 struct pci_dev *pdev;
331 int ret;
332
333 /* The xhci platform device has set up IRQs through usb_add_hcd. */
334 if (xhci->quirks & XHCI_PLAT)
335 return 0;
336
337 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
338 /*
339 * Some Fresco Logic host controllers advertise MSI, but fail to
340 * generate interrupts. Don't even try to enable MSI.
341 */
342 if (xhci->quirks & XHCI_BROKEN_MSI)
343 goto legacy_irq;
344
345 /* unregister the legacy interrupt */
346 if (hcd->irq)
347 free_irq(hcd->irq, hcd);
348 hcd->irq = 0;
349
350 ret = xhci_setup_msix(xhci);
351 if (ret)
352 /* fall back to msi*/
353 ret = xhci_setup_msi(xhci);
354
355 if (!ret) {
356 hcd->msi_enabled = 1;
357 return 0;
358 }
359
360 if (!pdev->irq) {
361 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
362 return -EINVAL;
363 }
364
365 legacy_irq:
366 if (!strlen(hcd->irq_descr))
367 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
368 hcd->driver->description, hcd->self.busnum);
369
370 /* fall back to legacy interrupt*/
371 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
372 hcd->irq_descr, hcd);
373 if (ret) {
374 xhci_err(xhci, "request interrupt %d failed\n",
375 pdev->irq);
376 return ret;
377 }
378 hcd->irq = pdev->irq;
379 return 0;
380}
381
382#else
383
384static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
385{
386 return 0;
387}
388
389static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
390{
391}
392
393static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
394{
395}
396
397#endif
398
399static void compliance_mode_recovery(struct timer_list *t)
400{
401 struct xhci_hcd *xhci;
402 struct usb_hcd *hcd;
403 u32 temp;
404 int i;
405
406 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
407
408 for (i = 0; i < xhci->num_usb3_ports; i++) {
409 temp = readl(xhci->usb3_ports[i]);
410 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
411 /*
412 * Compliance Mode Detected. Letting USB Core
413 * handle the Warm Reset
414 */
415 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
416 "Compliance mode detected->port %d",
417 i + 1);
418 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
419 "Attempting compliance mode recovery");
420 hcd = xhci->shared_hcd;
421
422 if (hcd->state == HC_STATE_SUSPENDED)
423 usb_hcd_resume_root_hub(hcd);
424
425 usb_hcd_poll_rh_status(hcd);
426 }
427 }
428
429 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
430 mod_timer(&xhci->comp_mode_recovery_timer,
431 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
432}
433
434/*
435 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
436 * that causes ports behind that hardware to enter compliance mode sometimes.
437 * The quirk creates a timer that polls every 2 seconds the link state of
438 * each host controller's port and recovers it by issuing a Warm reset
439 * if Compliance mode is detected, otherwise the port will become "dead" (no
440 * device connections or disconnections will be detected anymore). Becasue no
441 * status event is generated when entering compliance mode (per xhci spec),
442 * this quirk is needed on systems that have the failing hardware installed.
443 */
444static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
445{
446 xhci->port_status_u0 = 0;
447 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
448 0);
449 xhci->comp_mode_recovery_timer.expires = jiffies +
450 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
451
452 add_timer(&xhci->comp_mode_recovery_timer);
453 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
454 "Compliance mode recovery timer initialized");
455}
456
457/*
458 * This function identifies the systems that have installed the SN65LVPE502CP
459 * USB3.0 re-driver and that need the Compliance Mode Quirk.
460 * Systems:
461 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
462 */
463static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
464{
465 const char *dmi_product_name, *dmi_sys_vendor;
466
467 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
468 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
469 if (!dmi_product_name || !dmi_sys_vendor)
470 return false;
471
472 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
473 return false;
474
475 if (strstr(dmi_product_name, "Z420") ||
476 strstr(dmi_product_name, "Z620") ||
477 strstr(dmi_product_name, "Z820") ||
478 strstr(dmi_product_name, "Z1 Workstation"))
479 return true;
480
481 return false;
482}
483
484static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
485{
486 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
487}
488
489
490/*
491 * Initialize memory for HCD and xHC (one-time init).
492 *
493 * Program the PAGESIZE register, initialize the device context array, create
494 * device contexts (?), set up a command ring segment (or two?), create event
495 * ring (one for now).
496 */
497static int xhci_init(struct usb_hcd *hcd)
498{
499 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
500 int retval = 0;
501
502 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
503 spin_lock_init(&xhci->lock);
504 if (xhci->hci_version == 0x95 && link_quirk) {
505 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
506 "QUIRK: Not clearing Link TRB chain bits.");
507 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
508 } else {
509 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
510 "xHCI doesn't need link TRB QUIRK");
511 }
512 retval = xhci_mem_init(xhci, GFP_KERNEL);
513 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
514
515 /* Initializing Compliance Mode Recovery Data If Needed */
516 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
517 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
518 compliance_mode_recovery_timer_init(xhci);
519 }
520
521 return retval;
522}
523
524/*-------------------------------------------------------------------------*/
525
526
527static int xhci_run_finished(struct xhci_hcd *xhci)
528{
529 if (xhci_start(xhci)) {
530 xhci_halt(xhci);
531 return -ENODEV;
532 }
533 xhci->shared_hcd->state = HC_STATE_RUNNING;
534 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
535
536 if (xhci->quirks & XHCI_NEC_HOST)
537 xhci_ring_cmd_db(xhci);
538
539 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
540 "Finished xhci_run for USB3 roothub");
541 return 0;
542}
543
544/*
545 * Start the HC after it was halted.
546 *
547 * This function is called by the USB core when the HC driver is added.
548 * Its opposite is xhci_stop().
549 *
550 * xhci_init() must be called once before this function can be called.
551 * Reset the HC, enable device slot contexts, program DCBAAP, and
552 * set command ring pointer and event ring pointer.
553 *
554 * Setup MSI-X vectors and enable interrupts.
555 */
556int xhci_run(struct usb_hcd *hcd)
557{
558 u32 temp;
559 u64 temp_64;
560 int ret;
561 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
562
563 /* Start the xHCI host controller running only after the USB 2.0 roothub
564 * is setup.
565 */
566
567 hcd->uses_new_polling = 1;
568 if (!usb_hcd_is_primary_hcd(hcd))
569 return xhci_run_finished(xhci);
570
571 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
572
573 ret = xhci_try_enable_msi(hcd);
574 if (ret)
575 return ret;
576
577 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
578 temp_64 &= ~ERST_PTR_MASK;
579 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
580 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
581
582 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
583 "// Set the interrupt modulation register");
584 temp = readl(&xhci->ir_set->irq_control);
585 temp &= ~ER_IRQ_INTERVAL_MASK;
586 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
587 writel(temp, &xhci->ir_set->irq_control);
588
589 /* Set the HCD state before we enable the irqs */
590 temp = readl(&xhci->op_regs->command);
591 temp |= (CMD_EIE);
592 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
593 "// Enable interrupts, cmd = 0x%x.", temp);
594 writel(temp, &xhci->op_regs->command);
595
596 temp = readl(&xhci->ir_set->irq_pending);
597 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
598 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
599 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
600 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
601
602 if (xhci->quirks & XHCI_NEC_HOST) {
603 struct xhci_command *command;
604
605 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
606 if (!command)
607 return -ENOMEM;
608
609 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
610 TRB_TYPE(TRB_NEC_GET_FW));
611 if (ret)
612 xhci_free_command(xhci, command);
613 }
614 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
615 "Finished xhci_run for USB2 roothub");
616
617 xhci_dbc_init(xhci);
618
619 xhci_debugfs_init(xhci);
620
621 return 0;
622}
623EXPORT_SYMBOL_GPL(xhci_run);
624
625/*
626 * Stop xHCI driver.
627 *
628 * This function is called by the USB core when the HC driver is removed.
629 * Its opposite is xhci_run().
630 *
631 * Disable device contexts, disable IRQs, and quiesce the HC.
632 * Reset the HC, finish any completed transactions, and cleanup memory.
633 */
634static void xhci_stop(struct usb_hcd *hcd)
635{
636 u32 temp;
637 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
638
639 mutex_lock(&xhci->mutex);
640
641 /* Only halt host and free memory after both hcds are removed */
642 if (!usb_hcd_is_primary_hcd(hcd)) {
643 /* usb core will free this hcd shortly, unset pointer */
644 xhci->shared_hcd = NULL;
645 mutex_unlock(&xhci->mutex);
646 return;
647 }
648
649 xhci_dbc_exit(xhci);
650
651 spin_lock_irq(&xhci->lock);
652 xhci->xhc_state |= XHCI_STATE_HALTED;
653 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
654 xhci_halt(xhci);
655 xhci_reset(xhci);
656 spin_unlock_irq(&xhci->lock);
657
658 xhci_cleanup_msix(xhci);
659
660 /* Deleting Compliance Mode Recovery Timer */
661 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
662 (!(xhci_all_ports_seen_u0(xhci)))) {
663 del_timer_sync(&xhci->comp_mode_recovery_timer);
664 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
665 "%s: compliance mode recovery timer deleted",
666 __func__);
667 }
668
669 if (xhci->quirks & XHCI_AMD_PLL_FIX)
670 usb_amd_dev_put();
671
672 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
673 "// Disabling event ring interrupts");
674 temp = readl(&xhci->op_regs->status);
675 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
676 temp = readl(&xhci->ir_set->irq_pending);
677 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
678
679 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
680 xhci_mem_cleanup(xhci);
681 xhci_debugfs_exit(xhci);
682 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
683 "xhci_stop completed - status = %x",
684 readl(&xhci->op_regs->status));
685 mutex_unlock(&xhci->mutex);
686}
687
688/*
689 * Shutdown HC (not bus-specific)
690 *
691 * This is called when the machine is rebooting or halting. We assume that the
692 * machine will be powered off, and the HC's internal state will be reset.
693 * Don't bother to free memory.
694 *
695 * This will only ever be called with the main usb_hcd (the USB3 roothub).
696 */
697static void xhci_shutdown(struct usb_hcd *hcd)
698{
699 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
700
701 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
702 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
703
704 spin_lock_irq(&xhci->lock);
705 xhci_halt(xhci);
706 /* Workaround for spurious wakeups at shutdown with HSW */
707 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
708 xhci_reset(xhci);
709 spin_unlock_irq(&xhci->lock);
710
711 xhci_cleanup_msix(xhci);
712
713 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
714 "xhci_shutdown completed - status = %x",
715 readl(&xhci->op_regs->status));
716
717 /* Yet another workaround for spurious wakeups at shutdown with HSW */
718 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
719 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
720}
721
722#ifdef CONFIG_PM
723static void xhci_save_registers(struct xhci_hcd *xhci)
724{
725 xhci->s3.command = readl(&xhci->op_regs->command);
726 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
727 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
728 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
729 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
730 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
731 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
732 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
733 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
734}
735
736static void xhci_restore_registers(struct xhci_hcd *xhci)
737{
738 writel(xhci->s3.command, &xhci->op_regs->command);
739 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
740 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
741 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
742 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
743 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
744 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
745 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
746 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
747}
748
749static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
750{
751 u64 val_64;
752
753 /* step 2: initialize command ring buffer */
754 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
755 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
756 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
757 xhci->cmd_ring->dequeue) &
758 (u64) ~CMD_RING_RSVD_BITS) |
759 xhci->cmd_ring->cycle_state;
760 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
761 "// Setting command ring address to 0x%llx",
762 (long unsigned long) val_64);
763 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
764}
765
766/*
767 * The whole command ring must be cleared to zero when we suspend the host.
768 *
769 * The host doesn't save the command ring pointer in the suspend well, so we
770 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
771 * aligned, because of the reserved bits in the command ring dequeue pointer
772 * register. Therefore, we can't just set the dequeue pointer back in the
773 * middle of the ring (TRBs are 16-byte aligned).
774 */
775static void xhci_clear_command_ring(struct xhci_hcd *xhci)
776{
777 struct xhci_ring *ring;
778 struct xhci_segment *seg;
779
780 ring = xhci->cmd_ring;
781 seg = ring->deq_seg;
782 do {
783 memset(seg->trbs, 0,
784 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
785 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
786 cpu_to_le32(~TRB_CYCLE);
787 seg = seg->next;
788 } while (seg != ring->deq_seg);
789
790 /* Reset the software enqueue and dequeue pointers */
791 ring->deq_seg = ring->first_seg;
792 ring->dequeue = ring->first_seg->trbs;
793 ring->enq_seg = ring->deq_seg;
794 ring->enqueue = ring->dequeue;
795
796 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
797 /*
798 * Ring is now zeroed, so the HW should look for change of ownership
799 * when the cycle bit is set to 1.
800 */
801 ring->cycle_state = 1;
802
803 /*
804 * Reset the hardware dequeue pointer.
805 * Yes, this will need to be re-written after resume, but we're paranoid
806 * and want to make sure the hardware doesn't access bogus memory
807 * because, say, the BIOS or an SMI started the host without changing
808 * the command ring pointers.
809 */
810 xhci_set_cmd_ring_deq(xhci);
811}
812
813static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
814{
815 int port_index;
816 __le32 __iomem **port_array;
817 unsigned long flags;
818 u32 t1, t2;
819
820 spin_lock_irqsave(&xhci->lock, flags);
821
822 /* disable usb3 ports Wake bits */
823 port_index = xhci->num_usb3_ports;
824 port_array = xhci->usb3_ports;
825 while (port_index--) {
826 t1 = readl(port_array[port_index]);
827 t1 = xhci_port_state_to_neutral(t1);
828 t2 = t1 & ~PORT_WAKE_BITS;
829 if (t1 != t2)
830 writel(t2, port_array[port_index]);
831 }
832
833 /* disable usb2 ports Wake bits */
834 port_index = xhci->num_usb2_ports;
835 port_array = xhci->usb2_ports;
836 while (port_index--) {
837 t1 = readl(port_array[port_index]);
838 t1 = xhci_port_state_to_neutral(t1);
839 t2 = t1 & ~PORT_WAKE_BITS;
840 if (t1 != t2)
841 writel(t2, port_array[port_index]);
842 }
843
844 spin_unlock_irqrestore(&xhci->lock, flags);
845}
846
847/*
848 * Stop HC (not bus-specific)
849 *
850 * This is called when the machine transition into S3/S4 mode.
851 *
852 */
853int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
854{
855 int rc = 0;
856 unsigned int delay = XHCI_MAX_HALT_USEC;
857 struct usb_hcd *hcd = xhci_to_hcd(xhci);
858 u32 command;
859
860 if (!hcd->state)
861 return 0;
862
863 if (hcd->state != HC_STATE_SUSPENDED ||
864 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
865 return -EINVAL;
866
867 xhci_dbc_suspend(xhci);
868
869 /* Clear root port wake on bits if wakeup not allowed. */
870 if (!do_wakeup)
871 xhci_disable_port_wake_on_bits(xhci);
872
873 /* Don't poll the roothubs on bus suspend. */
874 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
875 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
876 del_timer_sync(&hcd->rh_timer);
877 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
878 del_timer_sync(&xhci->shared_hcd->rh_timer);
879
880 if (xhci->quirks & XHCI_SUSPEND_DELAY)
881 usleep_range(1000, 1500);
882
883 spin_lock_irq(&xhci->lock);
884 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
885 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
886 /* step 1: stop endpoint */
887 /* skipped assuming that port suspend has done */
888
889 /* step 2: clear Run/Stop bit */
890 command = readl(&xhci->op_regs->command);
891 command &= ~CMD_RUN;
892 writel(command, &xhci->op_regs->command);
893
894 /* Some chips from Fresco Logic need an extraordinary delay */
895 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
896
897 if (xhci_handshake(&xhci->op_regs->status,
898 STS_HALT, STS_HALT, delay)) {
899 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
900 spin_unlock_irq(&xhci->lock);
901 return -ETIMEDOUT;
902 }
903 xhci_clear_command_ring(xhci);
904
905 /* step 3: save registers */
906 xhci_save_registers(xhci);
907
908 /* step 4: set CSS flag */
909 command = readl(&xhci->op_regs->command);
910 command |= CMD_CSS;
911 writel(command, &xhci->op_regs->command);
912 if (xhci_handshake(&xhci->op_regs->status,
913 STS_SAVE, 0, 10 * 1000)) {
914 xhci_warn(xhci, "WARN: xHC save state timeout\n");
915 spin_unlock_irq(&xhci->lock);
916 return -ETIMEDOUT;
917 }
918 spin_unlock_irq(&xhci->lock);
919
920 /*
921 * Deleting Compliance Mode Recovery Timer because the xHCI Host
922 * is about to be suspended.
923 */
924 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
925 (!(xhci_all_ports_seen_u0(xhci)))) {
926 del_timer_sync(&xhci->comp_mode_recovery_timer);
927 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
928 "%s: compliance mode recovery timer deleted",
929 __func__);
930 }
931
932 /* step 5: remove core well power */
933 /* synchronize irq when using MSI-X */
934 xhci_msix_sync_irqs(xhci);
935
936 return rc;
937}
938EXPORT_SYMBOL_GPL(xhci_suspend);
939
940/*
941 * start xHC (not bus-specific)
942 *
943 * This is called when the machine transition from S3/S4 mode.
944 *
945 */
946int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
947{
948 u32 command, temp = 0, status;
949 struct usb_hcd *hcd = xhci_to_hcd(xhci);
950 struct usb_hcd *secondary_hcd;
951 int retval = 0;
952 bool comp_timer_running = false;
953
954 if (!hcd->state)
955 return 0;
956
957 /* Wait a bit if either of the roothubs need to settle from the
958 * transition into bus suspend.
959 */
960 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
961 time_before(jiffies,
962 xhci->bus_state[1].next_statechange))
963 msleep(100);
964
965 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
966 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
967
968 spin_lock_irq(&xhci->lock);
969 if (xhci->quirks & XHCI_RESET_ON_RESUME)
970 hibernated = true;
971
972 if (!hibernated) {
973 /* step 1: restore register */
974 xhci_restore_registers(xhci);
975 /* step 2: initialize command ring buffer */
976 xhci_set_cmd_ring_deq(xhci);
977 /* step 3: restore state and start state*/
978 /* step 3: set CRS flag */
979 command = readl(&xhci->op_regs->command);
980 command |= CMD_CRS;
981 writel(command, &xhci->op_regs->command);
982 if (xhci_handshake(&xhci->op_regs->status,
983 STS_RESTORE, 0, 10 * 1000)) {
984 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
985 spin_unlock_irq(&xhci->lock);
986 return -ETIMEDOUT;
987 }
988 temp = readl(&xhci->op_regs->status);
989 }
990
991 /* If restore operation fails, re-initialize the HC during resume */
992 if ((temp & STS_SRE) || hibernated) {
993
994 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
995 !(xhci_all_ports_seen_u0(xhci))) {
996 del_timer_sync(&xhci->comp_mode_recovery_timer);
997 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
998 "Compliance Mode Recovery Timer deleted!");
999 }
1000
1001 /* Let the USB core know _both_ roothubs lost power. */
1002 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1003 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1004
1005 xhci_dbg(xhci, "Stop HCD\n");
1006 xhci_halt(xhci);
1007 xhci_reset(xhci);
1008 spin_unlock_irq(&xhci->lock);
1009 xhci_cleanup_msix(xhci);
1010
1011 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1012 temp = readl(&xhci->op_regs->status);
1013 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1014 temp = readl(&xhci->ir_set->irq_pending);
1015 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1016
1017 xhci_dbg(xhci, "cleaning up memory\n");
1018 xhci_mem_cleanup(xhci);
1019 xhci_debugfs_exit(xhci);
1020 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1021 readl(&xhci->op_regs->status));
1022
1023 /* USB core calls the PCI reinit and start functions twice:
1024 * first with the primary HCD, and then with the secondary HCD.
1025 * If we don't do the same, the host will never be started.
1026 */
1027 if (!usb_hcd_is_primary_hcd(hcd))
1028 secondary_hcd = hcd;
1029 else
1030 secondary_hcd = xhci->shared_hcd;
1031
1032 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1033 retval = xhci_init(hcd->primary_hcd);
1034 if (retval)
1035 return retval;
1036 comp_timer_running = true;
1037
1038 xhci_dbg(xhci, "Start the primary HCD\n");
1039 retval = xhci_run(hcd->primary_hcd);
1040 if (!retval) {
1041 xhci_dbg(xhci, "Start the secondary HCD\n");
1042 retval = xhci_run(secondary_hcd);
1043 }
1044 hcd->state = HC_STATE_SUSPENDED;
1045 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1046 goto done;
1047 }
1048
1049 /* step 4: set Run/Stop bit */
1050 command = readl(&xhci->op_regs->command);
1051 command |= CMD_RUN;
1052 writel(command, &xhci->op_regs->command);
1053 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1054 0, 250 * 1000);
1055
1056 /* step 5: walk topology and initialize portsc,
1057 * portpmsc and portli
1058 */
1059 /* this is done in bus_resume */
1060
1061 /* step 6: restart each of the previously
1062 * Running endpoints by ringing their doorbells
1063 */
1064
1065 spin_unlock_irq(&xhci->lock);
1066
1067 xhci_dbc_resume(xhci);
1068
1069 done:
1070 if (retval == 0) {
1071 /* Resume root hubs only when have pending events. */
1072 status = readl(&xhci->op_regs->status);
1073 if (status & STS_EINT) {
1074 usb_hcd_resume_root_hub(xhci->shared_hcd);
1075 usb_hcd_resume_root_hub(hcd);
1076 }
1077 }
1078
1079 /*
1080 * If system is subject to the Quirk, Compliance Mode Timer needs to
1081 * be re-initialized Always after a system resume. Ports are subject
1082 * to suffer the Compliance Mode issue again. It doesn't matter if
1083 * ports have entered previously to U0 before system's suspension.
1084 */
1085 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1086 compliance_mode_recovery_timer_init(xhci);
1087
1088 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1089 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1090
1091 /* Re-enable port polling. */
1092 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1093 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1094 usb_hcd_poll_rh_status(xhci->shared_hcd);
1095 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1096 usb_hcd_poll_rh_status(hcd);
1097
1098 return retval;
1099}
1100EXPORT_SYMBOL_GPL(xhci_resume);
1101#endif /* CONFIG_PM */
1102
1103/*-------------------------------------------------------------------------*/
1104
1105/**
1106 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1107 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1108 * value to right shift 1 for the bitmask.
1109 *
1110 * Index = (epnum * 2) + direction - 1,
1111 * where direction = 0 for OUT, 1 for IN.
1112 * For control endpoints, the IN index is used (OUT index is unused), so
1113 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1114 */
1115unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1116{
1117 unsigned int index;
1118 if (usb_endpoint_xfer_control(desc))
1119 index = (unsigned int) (usb_endpoint_num(desc)*2);
1120 else
1121 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1122 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1123 return index;
1124}
1125
1126/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1127 * address from the XHCI endpoint index.
1128 */
1129unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1130{
1131 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1132 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1133 return direction | number;
1134}
1135
1136/* Find the flag for this endpoint (for use in the control context). Use the
1137 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1138 * bit 1, etc.
1139 */
1140static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1141{
1142 return 1 << (xhci_get_endpoint_index(desc) + 1);
1143}
1144
1145/* Find the flag for this endpoint (for use in the control context). Use the
1146 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1147 * bit 1, etc.
1148 */
1149static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1150{
1151 return 1 << (ep_index + 1);
1152}
1153
1154/* Compute the last valid endpoint context index. Basically, this is the
1155 * endpoint index plus one. For slot contexts with more than valid endpoint,
1156 * we find the most significant bit set in the added contexts flags.
1157 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1158 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1159 */
1160unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1161{
1162 return fls(added_ctxs) - 1;
1163}
1164
1165/* Returns 1 if the arguments are OK;
1166 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1167 */
1168static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1169 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1170 const char *func) {
1171 struct xhci_hcd *xhci;
1172 struct xhci_virt_device *virt_dev;
1173
1174 if (!hcd || (check_ep && !ep) || !udev) {
1175 pr_debug("xHCI %s called with invalid args\n", func);
1176 return -EINVAL;
1177 }
1178 if (!udev->parent) {
1179 pr_debug("xHCI %s called for root hub\n", func);
1180 return 0;
1181 }
1182
1183 xhci = hcd_to_xhci(hcd);
1184 if (check_virt_dev) {
1185 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1186 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1187 func);
1188 return -EINVAL;
1189 }
1190
1191 virt_dev = xhci->devs[udev->slot_id];
1192 if (virt_dev->udev != udev) {
1193 xhci_dbg(xhci, "xHCI %s called with udev and "
1194 "virt_dev does not match\n", func);
1195 return -EINVAL;
1196 }
1197 }
1198
1199 if (xhci->xhc_state & XHCI_STATE_HALTED)
1200 return -ENODEV;
1201
1202 return 1;
1203}
1204
1205static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1206 struct usb_device *udev, struct xhci_command *command,
1207 bool ctx_change, bool must_succeed);
1208
1209/*
1210 * Full speed devices may have a max packet size greater than 8 bytes, but the
1211 * USB core doesn't know that until it reads the first 8 bytes of the
1212 * descriptor. If the usb_device's max packet size changes after that point,
1213 * we need to issue an evaluate context command and wait on it.
1214 */
1215static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1216 unsigned int ep_index, struct urb *urb)
1217{
1218 struct xhci_container_ctx *out_ctx;
1219 struct xhci_input_control_ctx *ctrl_ctx;
1220 struct xhci_ep_ctx *ep_ctx;
1221 struct xhci_command *command;
1222 int max_packet_size;
1223 int hw_max_packet_size;
1224 int ret = 0;
1225
1226 out_ctx = xhci->devs[slot_id]->out_ctx;
1227 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1228 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1229 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1230 if (hw_max_packet_size != max_packet_size) {
1231 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1232 "Max Packet Size for ep 0 changed.");
1233 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1234 "Max packet size in usb_device = %d",
1235 max_packet_size);
1236 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1237 "Max packet size in xHCI HW = %d",
1238 hw_max_packet_size);
1239 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1240 "Issuing evaluate context command.");
1241
1242 /* Set up the input context flags for the command */
1243 /* FIXME: This won't work if a non-default control endpoint
1244 * changes max packet sizes.
1245 */
1246
1247 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1248 if (!command)
1249 return -ENOMEM;
1250
1251 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1252 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1253 if (!ctrl_ctx) {
1254 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1255 __func__);
1256 ret = -ENOMEM;
1257 goto command_cleanup;
1258 }
1259 /* Set up the modified control endpoint 0 */
1260 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1261 xhci->devs[slot_id]->out_ctx, ep_index);
1262
1263 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1264 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1265 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1266
1267 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1268 ctrl_ctx->drop_flags = 0;
1269
1270 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1271 true, false);
1272
1273 /* Clean up the input context for later use by bandwidth
1274 * functions.
1275 */
1276 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1277command_cleanup:
1278 kfree(command->completion);
1279 kfree(command);
1280 }
1281 return ret;
1282}
1283
1284/*
1285 * non-error returns are a promise to giveback() the urb later
1286 * we drop ownership so next owner (or urb unlink) can get it
1287 */
1288static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1289{
1290 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1291 unsigned long flags;
1292 int ret = 0;
1293 unsigned int slot_id, ep_index;
1294 unsigned int *ep_state;
1295 struct urb_priv *urb_priv;
1296 int num_tds;
1297
1298 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1299 true, true, __func__) <= 0)
1300 return -EINVAL;
1301
1302 slot_id = urb->dev->slot_id;
1303 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1304 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1305
1306 if (!HCD_HW_ACCESSIBLE(hcd)) {
1307 if (!in_interrupt())
1308 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1309 return -ESHUTDOWN;
1310 }
1311
1312 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1313 num_tds = urb->number_of_packets;
1314 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1315 urb->transfer_buffer_length > 0 &&
1316 urb->transfer_flags & URB_ZERO_PACKET &&
1317 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1318 num_tds = 2;
1319 else
1320 num_tds = 1;
1321
1322 urb_priv = kzalloc(sizeof(struct urb_priv) +
1323 num_tds * sizeof(struct xhci_td), mem_flags);
1324 if (!urb_priv)
1325 return -ENOMEM;
1326
1327 urb_priv->num_tds = num_tds;
1328 urb_priv->num_tds_done = 0;
1329 urb->hcpriv = urb_priv;
1330
1331 trace_xhci_urb_enqueue(urb);
1332
1333 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1334 /* Check to see if the max packet size for the default control
1335 * endpoint changed during FS device enumeration
1336 */
1337 if (urb->dev->speed == USB_SPEED_FULL) {
1338 ret = xhci_check_maxpacket(xhci, slot_id,
1339 ep_index, urb);
1340 if (ret < 0) {
1341 xhci_urb_free_priv(urb_priv);
1342 urb->hcpriv = NULL;
1343 return ret;
1344 }
1345 }
1346 }
1347
1348 spin_lock_irqsave(&xhci->lock, flags);
1349
1350 if (xhci->xhc_state & XHCI_STATE_DYING) {
1351 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1352 urb->ep->desc.bEndpointAddress, urb);
1353 ret = -ESHUTDOWN;
1354 goto free_priv;
1355 }
1356 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1357 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1358 *ep_state);
1359 ret = -EINVAL;
1360 goto free_priv;
1361 }
1362 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1363 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1364 ret = -EINVAL;
1365 goto free_priv;
1366 }
1367
1368 switch (usb_endpoint_type(&urb->ep->desc)) {
1369
1370 case USB_ENDPOINT_XFER_CONTROL:
1371 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1372 slot_id, ep_index);
1373 break;
1374 case USB_ENDPOINT_XFER_BULK:
1375 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1376 slot_id, ep_index);
1377 break;
1378 case USB_ENDPOINT_XFER_INT:
1379 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1380 slot_id, ep_index);
1381 break;
1382 case USB_ENDPOINT_XFER_ISOC:
1383 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1384 slot_id, ep_index);
1385 }
1386
1387 if (ret) {
1388free_priv:
1389 xhci_urb_free_priv(urb_priv);
1390 urb->hcpriv = NULL;
1391 }
1392 spin_unlock_irqrestore(&xhci->lock, flags);
1393 return ret;
1394}
1395
1396/*
1397 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1398 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1399 * should pick up where it left off in the TD, unless a Set Transfer Ring
1400 * Dequeue Pointer is issued.
1401 *
1402 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1403 * the ring. Since the ring is a contiguous structure, they can't be physically
1404 * removed. Instead, there are two options:
1405 *
1406 * 1) If the HC is in the middle of processing the URB to be canceled, we
1407 * simply move the ring's dequeue pointer past those TRBs using the Set
1408 * Transfer Ring Dequeue Pointer command. This will be the common case,
1409 * when drivers timeout on the last submitted URB and attempt to cancel.
1410 *
1411 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1412 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1413 * HC will need to invalidate the any TRBs it has cached after the stop
1414 * endpoint command, as noted in the xHCI 0.95 errata.
1415 *
1416 * 3) The TD may have completed by the time the Stop Endpoint Command
1417 * completes, so software needs to handle that case too.
1418 *
1419 * This function should protect against the TD enqueueing code ringing the
1420 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1421 * It also needs to account for multiple cancellations on happening at the same
1422 * time for the same endpoint.
1423 *
1424 * Note that this function can be called in any context, or so says
1425 * usb_hcd_unlink_urb()
1426 */
1427static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1428{
1429 unsigned long flags;
1430 int ret, i;
1431 u32 temp;
1432 struct xhci_hcd *xhci;
1433 struct urb_priv *urb_priv;
1434 struct xhci_td *td;
1435 unsigned int ep_index;
1436 struct xhci_ring *ep_ring;
1437 struct xhci_virt_ep *ep;
1438 struct xhci_command *command;
1439 struct xhci_virt_device *vdev;
1440
1441 xhci = hcd_to_xhci(hcd);
1442 spin_lock_irqsave(&xhci->lock, flags);
1443
1444 trace_xhci_urb_dequeue(urb);
1445
1446 /* Make sure the URB hasn't completed or been unlinked already */
1447 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1448 if (ret)
1449 goto done;
1450
1451 /* give back URB now if we can't queue it for cancel */
1452 vdev = xhci->devs[urb->dev->slot_id];
1453 urb_priv = urb->hcpriv;
1454 if (!vdev || !urb_priv)
1455 goto err_giveback;
1456
1457 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1458 ep = &vdev->eps[ep_index];
1459 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1460 if (!ep || !ep_ring)
1461 goto err_giveback;
1462
1463 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1464 temp = readl(&xhci->op_regs->status);
1465 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1466 xhci_hc_died(xhci);
1467 goto done;
1468 }
1469
1470 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1471 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1472 "HC halted, freeing TD manually.");
1473 for (i = urb_priv->num_tds_done;
1474 i < urb_priv->num_tds;
1475 i++) {
1476 td = &urb_priv->td[i];
1477 if (!list_empty(&td->td_list))
1478 list_del_init(&td->td_list);
1479 if (!list_empty(&td->cancelled_td_list))
1480 list_del_init(&td->cancelled_td_list);
1481 }
1482 goto err_giveback;
1483 }
1484
1485 i = urb_priv->num_tds_done;
1486 if (i < urb_priv->num_tds)
1487 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1488 "Cancel URB %p, dev %s, ep 0x%x, "
1489 "starting at offset 0x%llx",
1490 urb, urb->dev->devpath,
1491 urb->ep->desc.bEndpointAddress,
1492 (unsigned long long) xhci_trb_virt_to_dma(
1493 urb_priv->td[i].start_seg,
1494 urb_priv->td[i].first_trb));
1495
1496 for (; i < urb_priv->num_tds; i++) {
1497 td = &urb_priv->td[i];
1498 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1499 }
1500
1501 /* Queue a stop endpoint command, but only if this is
1502 * the first cancellation to be handled.
1503 */
1504 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1505 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1506 if (!command) {
1507 ret = -ENOMEM;
1508 goto done;
1509 }
1510 ep->ep_state |= EP_STOP_CMD_PENDING;
1511 ep->stop_cmd_timer.expires = jiffies +
1512 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1513 add_timer(&ep->stop_cmd_timer);
1514 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1515 ep_index, 0);
1516 xhci_ring_cmd_db(xhci);
1517 }
1518done:
1519 spin_unlock_irqrestore(&xhci->lock, flags);
1520 return ret;
1521
1522err_giveback:
1523 if (urb_priv)
1524 xhci_urb_free_priv(urb_priv);
1525 usb_hcd_unlink_urb_from_ep(hcd, urb);
1526 spin_unlock_irqrestore(&xhci->lock, flags);
1527 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1528 return ret;
1529}
1530
1531/* Drop an endpoint from a new bandwidth configuration for this device.
1532 * Only one call to this function is allowed per endpoint before
1533 * check_bandwidth() or reset_bandwidth() must be called.
1534 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1535 * add the endpoint to the schedule with possibly new parameters denoted by a
1536 * different endpoint descriptor in usb_host_endpoint.
1537 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1538 * not allowed.
1539 *
1540 * The USB core will not allow URBs to be queued to an endpoint that is being
1541 * disabled, so there's no need for mutual exclusion to protect
1542 * the xhci->devs[slot_id] structure.
1543 */
1544static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1545 struct usb_host_endpoint *ep)
1546{
1547 struct xhci_hcd *xhci;
1548 struct xhci_container_ctx *in_ctx, *out_ctx;
1549 struct xhci_input_control_ctx *ctrl_ctx;
1550 unsigned int ep_index;
1551 struct xhci_ep_ctx *ep_ctx;
1552 u32 drop_flag;
1553 u32 new_add_flags, new_drop_flags;
1554 int ret;
1555
1556 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1557 if (ret <= 0)
1558 return ret;
1559 xhci = hcd_to_xhci(hcd);
1560 if (xhci->xhc_state & XHCI_STATE_DYING)
1561 return -ENODEV;
1562
1563 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1564 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1565 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1566 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1567 __func__, drop_flag);
1568 return 0;
1569 }
1570
1571 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1572 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1573 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1574 if (!ctrl_ctx) {
1575 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1576 __func__);
1577 return 0;
1578 }
1579
1580 ep_index = xhci_get_endpoint_index(&ep->desc);
1581 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1582 /* If the HC already knows the endpoint is disabled,
1583 * or the HCD has noted it is disabled, ignore this request
1584 */
1585 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1586 le32_to_cpu(ctrl_ctx->drop_flags) &
1587 xhci_get_endpoint_flag(&ep->desc)) {
1588 /* Do not warn when called after a usb_device_reset */
1589 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1590 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1591 __func__, ep);
1592 return 0;
1593 }
1594
1595 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1596 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1597
1598 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1599 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1600
1601 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1602
1603 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1604
1605 if (xhci->quirks & XHCI_MTK_HOST)
1606 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1607
1608 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1609 (unsigned int) ep->desc.bEndpointAddress,
1610 udev->slot_id,
1611 (unsigned int) new_drop_flags,
1612 (unsigned int) new_add_flags);
1613 return 0;
1614}
1615
1616/* Add an endpoint to a new possible bandwidth configuration for this device.
1617 * Only one call to this function is allowed per endpoint before
1618 * check_bandwidth() or reset_bandwidth() must be called.
1619 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1620 * add the endpoint to the schedule with possibly new parameters denoted by a
1621 * different endpoint descriptor in usb_host_endpoint.
1622 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1623 * not allowed.
1624 *
1625 * The USB core will not allow URBs to be queued to an endpoint until the
1626 * configuration or alt setting is installed in the device, so there's no need
1627 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1628 */
1629static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1630 struct usb_host_endpoint *ep)
1631{
1632 struct xhci_hcd *xhci;
1633 struct xhci_container_ctx *in_ctx;
1634 unsigned int ep_index;
1635 struct xhci_input_control_ctx *ctrl_ctx;
1636 u32 added_ctxs;
1637 u32 new_add_flags, new_drop_flags;
1638 struct xhci_virt_device *virt_dev;
1639 int ret = 0;
1640
1641 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1642 if (ret <= 0) {
1643 /* So we won't queue a reset ep command for a root hub */
1644 ep->hcpriv = NULL;
1645 return ret;
1646 }
1647 xhci = hcd_to_xhci(hcd);
1648 if (xhci->xhc_state & XHCI_STATE_DYING)
1649 return -ENODEV;
1650
1651 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1652 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1653 /* FIXME when we have to issue an evaluate endpoint command to
1654 * deal with ep0 max packet size changing once we get the
1655 * descriptors
1656 */
1657 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1658 __func__, added_ctxs);
1659 return 0;
1660 }
1661
1662 virt_dev = xhci->devs[udev->slot_id];
1663 in_ctx = virt_dev->in_ctx;
1664 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1665 if (!ctrl_ctx) {
1666 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1667 __func__);
1668 return 0;
1669 }
1670
1671 ep_index = xhci_get_endpoint_index(&ep->desc);
1672 /* If this endpoint is already in use, and the upper layers are trying
1673 * to add it again without dropping it, reject the addition.
1674 */
1675 if (virt_dev->eps[ep_index].ring &&
1676 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1677 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1678 "without dropping it.\n",
1679 (unsigned int) ep->desc.bEndpointAddress);
1680 return -EINVAL;
1681 }
1682
1683 /* If the HCD has already noted the endpoint is enabled,
1684 * ignore this request.
1685 */
1686 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1687 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1688 __func__, ep);
1689 return 0;
1690 }
1691
1692 /*
1693 * Configuration and alternate setting changes must be done in
1694 * process context, not interrupt context (or so documenation
1695 * for usb_set_interface() and usb_set_configuration() claim).
1696 */
1697 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1698 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1699 __func__, ep->desc.bEndpointAddress);
1700 return -ENOMEM;
1701 }
1702
1703 if (xhci->quirks & XHCI_MTK_HOST) {
1704 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1705 if (ret < 0) {
1706 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1707 virt_dev->eps[ep_index].new_ring = NULL;
1708 return ret;
1709 }
1710 }
1711
1712 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1713 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1714
1715 /* If xhci_endpoint_disable() was called for this endpoint, but the
1716 * xHC hasn't been notified yet through the check_bandwidth() call,
1717 * this re-adds a new state for the endpoint from the new endpoint
1718 * descriptors. We must drop and re-add this endpoint, so we leave the
1719 * drop flags alone.
1720 */
1721 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1722
1723 /* Store the usb_device pointer for later use */
1724 ep->hcpriv = udev;
1725
1726 xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1727
1728 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1729 (unsigned int) ep->desc.bEndpointAddress,
1730 udev->slot_id,
1731 (unsigned int) new_drop_flags,
1732 (unsigned int) new_add_flags);
1733 return 0;
1734}
1735
1736static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1737{
1738 struct xhci_input_control_ctx *ctrl_ctx;
1739 struct xhci_ep_ctx *ep_ctx;
1740 struct xhci_slot_ctx *slot_ctx;
1741 int i;
1742
1743 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1744 if (!ctrl_ctx) {
1745 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1746 __func__);
1747 return;
1748 }
1749
1750 /* When a device's add flag and drop flag are zero, any subsequent
1751 * configure endpoint command will leave that endpoint's state
1752 * untouched. Make sure we don't leave any old state in the input
1753 * endpoint contexts.
1754 */
1755 ctrl_ctx->drop_flags = 0;
1756 ctrl_ctx->add_flags = 0;
1757 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1758 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1759 /* Endpoint 0 is always valid */
1760 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1761 for (i = 1; i < 31; i++) {
1762 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1763 ep_ctx->ep_info = 0;
1764 ep_ctx->ep_info2 = 0;
1765 ep_ctx->deq = 0;
1766 ep_ctx->tx_info = 0;
1767 }
1768}
1769
1770static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1771 struct usb_device *udev, u32 *cmd_status)
1772{
1773 int ret;
1774
1775 switch (*cmd_status) {
1776 case COMP_COMMAND_ABORTED:
1777 case COMP_COMMAND_RING_STOPPED:
1778 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1779 ret = -ETIME;
1780 break;
1781 case COMP_RESOURCE_ERROR:
1782 dev_warn(&udev->dev,
1783 "Not enough host controller resources for new device state.\n");
1784 ret = -ENOMEM;
1785 /* FIXME: can we allocate more resources for the HC? */
1786 break;
1787 case COMP_BANDWIDTH_ERROR:
1788 case COMP_SECONDARY_BANDWIDTH_ERROR:
1789 dev_warn(&udev->dev,
1790 "Not enough bandwidth for new device state.\n");
1791 ret = -ENOSPC;
1792 /* FIXME: can we go back to the old state? */
1793 break;
1794 case COMP_TRB_ERROR:
1795 /* the HCD set up something wrong */
1796 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1797 "add flag = 1, "
1798 "and endpoint is not disabled.\n");
1799 ret = -EINVAL;
1800 break;
1801 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1802 dev_warn(&udev->dev,
1803 "ERROR: Incompatible device for endpoint configure command.\n");
1804 ret = -ENODEV;
1805 break;
1806 case COMP_SUCCESS:
1807 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1808 "Successful Endpoint Configure command");
1809 ret = 0;
1810 break;
1811 default:
1812 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1813 *cmd_status);
1814 ret = -EINVAL;
1815 break;
1816 }
1817 return ret;
1818}
1819
1820static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1821 struct usb_device *udev, u32 *cmd_status)
1822{
1823 int ret;
1824
1825 switch (*cmd_status) {
1826 case COMP_COMMAND_ABORTED:
1827 case COMP_COMMAND_RING_STOPPED:
1828 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1829 ret = -ETIME;
1830 break;
1831 case COMP_PARAMETER_ERROR:
1832 dev_warn(&udev->dev,
1833 "WARN: xHCI driver setup invalid evaluate context command.\n");
1834 ret = -EINVAL;
1835 break;
1836 case COMP_SLOT_NOT_ENABLED_ERROR:
1837 dev_warn(&udev->dev,
1838 "WARN: slot not enabled for evaluate context command.\n");
1839 ret = -EINVAL;
1840 break;
1841 case COMP_CONTEXT_STATE_ERROR:
1842 dev_warn(&udev->dev,
1843 "WARN: invalid context state for evaluate context command.\n");
1844 ret = -EINVAL;
1845 break;
1846 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1847 dev_warn(&udev->dev,
1848 "ERROR: Incompatible device for evaluate context command.\n");
1849 ret = -ENODEV;
1850 break;
1851 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1852 /* Max Exit Latency too large error */
1853 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1854 ret = -EINVAL;
1855 break;
1856 case COMP_SUCCESS:
1857 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1858 "Successful evaluate context command");
1859 ret = 0;
1860 break;
1861 default:
1862 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1863 *cmd_status);
1864 ret = -EINVAL;
1865 break;
1866 }
1867 return ret;
1868}
1869
1870static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1871 struct xhci_input_control_ctx *ctrl_ctx)
1872{
1873 u32 valid_add_flags;
1874 u32 valid_drop_flags;
1875
1876 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1877 * (bit 1). The default control endpoint is added during the Address
1878 * Device command and is never removed until the slot is disabled.
1879 */
1880 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1881 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1882
1883 /* Use hweight32 to count the number of ones in the add flags, or
1884 * number of endpoints added. Don't count endpoints that are changed
1885 * (both added and dropped).
1886 */
1887 return hweight32(valid_add_flags) -
1888 hweight32(valid_add_flags & valid_drop_flags);
1889}
1890
1891static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1892 struct xhci_input_control_ctx *ctrl_ctx)
1893{
1894 u32 valid_add_flags;
1895 u32 valid_drop_flags;
1896
1897 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1898 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1899
1900 return hweight32(valid_drop_flags) -
1901 hweight32(valid_add_flags & valid_drop_flags);
1902}
1903
1904/*
1905 * We need to reserve the new number of endpoints before the configure endpoint
1906 * command completes. We can't subtract the dropped endpoints from the number
1907 * of active endpoints until the command completes because we can oversubscribe
1908 * the host in this case:
1909 *
1910 * - the first configure endpoint command drops more endpoints than it adds
1911 * - a second configure endpoint command that adds more endpoints is queued
1912 * - the first configure endpoint command fails, so the config is unchanged
1913 * - the second command may succeed, even though there isn't enough resources
1914 *
1915 * Must be called with xhci->lock held.
1916 */
1917static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1918 struct xhci_input_control_ctx *ctrl_ctx)
1919{
1920 u32 added_eps;
1921
1922 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1923 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1924 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1925 "Not enough ep ctxs: "
1926 "%u active, need to add %u, limit is %u.",
1927 xhci->num_active_eps, added_eps,
1928 xhci->limit_active_eps);
1929 return -ENOMEM;
1930 }
1931 xhci->num_active_eps += added_eps;
1932 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1933 "Adding %u ep ctxs, %u now active.", added_eps,
1934 xhci->num_active_eps);
1935 return 0;
1936}
1937
1938/*
1939 * The configure endpoint was failed by the xHC for some other reason, so we
1940 * need to revert the resources that failed configuration would have used.
1941 *
1942 * Must be called with xhci->lock held.
1943 */
1944static void xhci_free_host_resources(struct xhci_hcd *xhci,
1945 struct xhci_input_control_ctx *ctrl_ctx)
1946{
1947 u32 num_failed_eps;
1948
1949 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1950 xhci->num_active_eps -= num_failed_eps;
1951 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1952 "Removing %u failed ep ctxs, %u now active.",
1953 num_failed_eps,
1954 xhci->num_active_eps);
1955}
1956
1957/*
1958 * Now that the command has completed, clean up the active endpoint count by
1959 * subtracting out the endpoints that were dropped (but not changed).
1960 *
1961 * Must be called with xhci->lock held.
1962 */
1963static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1964 struct xhci_input_control_ctx *ctrl_ctx)
1965{
1966 u32 num_dropped_eps;
1967
1968 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1969 xhci->num_active_eps -= num_dropped_eps;
1970 if (num_dropped_eps)
1971 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1972 "Removing %u dropped ep ctxs, %u now active.",
1973 num_dropped_eps,
1974 xhci->num_active_eps);
1975}
1976
1977static unsigned int xhci_get_block_size(struct usb_device *udev)
1978{
1979 switch (udev->speed) {
1980 case USB_SPEED_LOW:
1981 case USB_SPEED_FULL:
1982 return FS_BLOCK;
1983 case USB_SPEED_HIGH:
1984 return HS_BLOCK;
1985 case USB_SPEED_SUPER:
1986 case USB_SPEED_SUPER_PLUS:
1987 return SS_BLOCK;
1988 case USB_SPEED_UNKNOWN:
1989 case USB_SPEED_WIRELESS:
1990 default:
1991 /* Should never happen */
1992 return 1;
1993 }
1994}
1995
1996static unsigned int
1997xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1998{
1999 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2000 return LS_OVERHEAD;
2001 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2002 return FS_OVERHEAD;
2003 return HS_OVERHEAD;
2004}
2005
2006/* If we are changing a LS/FS device under a HS hub,
2007 * make sure (if we are activating a new TT) that the HS bus has enough
2008 * bandwidth for this new TT.
2009 */
2010static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2011 struct xhci_virt_device *virt_dev,
2012 int old_active_eps)
2013{
2014 struct xhci_interval_bw_table *bw_table;
2015 struct xhci_tt_bw_info *tt_info;
2016
2017 /* Find the bandwidth table for the root port this TT is attached to. */
2018 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2019 tt_info = virt_dev->tt_info;
2020 /* If this TT already had active endpoints, the bandwidth for this TT
2021 * has already been added. Removing all periodic endpoints (and thus
2022 * making the TT enactive) will only decrease the bandwidth used.
2023 */
2024 if (old_active_eps)
2025 return 0;
2026 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2027 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2028 return -ENOMEM;
2029 return 0;
2030 }
2031 /* Not sure why we would have no new active endpoints...
2032 *
2033 * Maybe because of an Evaluate Context change for a hub update or a
2034 * control endpoint 0 max packet size change?
2035 * FIXME: skip the bandwidth calculation in that case.
2036 */
2037 return 0;
2038}
2039
2040static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2041 struct xhci_virt_device *virt_dev)
2042{
2043 unsigned int bw_reserved;
2044
2045 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2046 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2047 return -ENOMEM;
2048
2049 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2050 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2051 return -ENOMEM;
2052
2053 return 0;
2054}
2055
2056/*
2057 * This algorithm is a very conservative estimate of the worst-case scheduling
2058 * scenario for any one interval. The hardware dynamically schedules the
2059 * packets, so we can't tell which microframe could be the limiting factor in
2060 * the bandwidth scheduling. This only takes into account periodic endpoints.
2061 *
2062 * Obviously, we can't solve an NP complete problem to find the minimum worst
2063 * case scenario. Instead, we come up with an estimate that is no less than
2064 * the worst case bandwidth used for any one microframe, but may be an
2065 * over-estimate.
2066 *
2067 * We walk the requirements for each endpoint by interval, starting with the
2068 * smallest interval, and place packets in the schedule where there is only one
2069 * possible way to schedule packets for that interval. In order to simplify
2070 * this algorithm, we record the largest max packet size for each interval, and
2071 * assume all packets will be that size.
2072 *
2073 * For interval 0, we obviously must schedule all packets for each interval.
2074 * The bandwidth for interval 0 is just the amount of data to be transmitted
2075 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2076 * the number of packets).
2077 *
2078 * For interval 1, we have two possible microframes to schedule those packets
2079 * in. For this algorithm, if we can schedule the same number of packets for
2080 * each possible scheduling opportunity (each microframe), we will do so. The
2081 * remaining number of packets will be saved to be transmitted in the gaps in
2082 * the next interval's scheduling sequence.
2083 *
2084 * As we move those remaining packets to be scheduled with interval 2 packets,
2085 * we have to double the number of remaining packets to transmit. This is
2086 * because the intervals are actually powers of 2, and we would be transmitting
2087 * the previous interval's packets twice in this interval. We also have to be
2088 * sure that when we look at the largest max packet size for this interval, we
2089 * also look at the largest max packet size for the remaining packets and take
2090 * the greater of the two.
2091 *
2092 * The algorithm continues to evenly distribute packets in each scheduling
2093 * opportunity, and push the remaining packets out, until we get to the last
2094 * interval. Then those packets and their associated overhead are just added
2095 * to the bandwidth used.
2096 */
2097static int xhci_check_bw_table(struct xhci_hcd *xhci,
2098 struct xhci_virt_device *virt_dev,
2099 int old_active_eps)
2100{
2101 unsigned int bw_reserved;
2102 unsigned int max_bandwidth;
2103 unsigned int bw_used;
2104 unsigned int block_size;
2105 struct xhci_interval_bw_table *bw_table;
2106 unsigned int packet_size = 0;
2107 unsigned int overhead = 0;
2108 unsigned int packets_transmitted = 0;
2109 unsigned int packets_remaining = 0;
2110 unsigned int i;
2111
2112 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2113 return xhci_check_ss_bw(xhci, virt_dev);
2114
2115 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2116 max_bandwidth = HS_BW_LIMIT;
2117 /* Convert percent of bus BW reserved to blocks reserved */
2118 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2119 } else {
2120 max_bandwidth = FS_BW_LIMIT;
2121 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2122 }
2123
2124 bw_table = virt_dev->bw_table;
2125 /* We need to translate the max packet size and max ESIT payloads into
2126 * the units the hardware uses.
2127 */
2128 block_size = xhci_get_block_size(virt_dev->udev);
2129
2130 /* If we are manipulating a LS/FS device under a HS hub, double check
2131 * that the HS bus has enough bandwidth if we are activing a new TT.
2132 */
2133 if (virt_dev->tt_info) {
2134 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2135 "Recalculating BW for rootport %u",
2136 virt_dev->real_port);
2137 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2138 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2139 "newly activated TT.\n");
2140 return -ENOMEM;
2141 }
2142 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2143 "Recalculating BW for TT slot %u port %u",
2144 virt_dev->tt_info->slot_id,
2145 virt_dev->tt_info->ttport);
2146 } else {
2147 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2148 "Recalculating BW for rootport %u",
2149 virt_dev->real_port);
2150 }
2151
2152 /* Add in how much bandwidth will be used for interval zero, or the
2153 * rounded max ESIT payload + number of packets * largest overhead.
2154 */
2155 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2156 bw_table->interval_bw[0].num_packets *
2157 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2158
2159 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2160 unsigned int bw_added;
2161 unsigned int largest_mps;
2162 unsigned int interval_overhead;
2163
2164 /*
2165 * How many packets could we transmit in this interval?
2166 * If packets didn't fit in the previous interval, we will need
2167 * to transmit that many packets twice within this interval.
2168 */
2169 packets_remaining = 2 * packets_remaining +
2170 bw_table->interval_bw[i].num_packets;
2171
2172 /* Find the largest max packet size of this or the previous
2173 * interval.
2174 */
2175 if (list_empty(&bw_table->interval_bw[i].endpoints))
2176 largest_mps = 0;
2177 else {
2178 struct xhci_virt_ep *virt_ep;
2179 struct list_head *ep_entry;
2180
2181 ep_entry = bw_table->interval_bw[i].endpoints.next;
2182 virt_ep = list_entry(ep_entry,
2183 struct xhci_virt_ep, bw_endpoint_list);
2184 /* Convert to blocks, rounding up */
2185 largest_mps = DIV_ROUND_UP(
2186 virt_ep->bw_info.max_packet_size,
2187 block_size);
2188 }
2189 if (largest_mps > packet_size)
2190 packet_size = largest_mps;
2191
2192 /* Use the larger overhead of this or the previous interval. */
2193 interval_overhead = xhci_get_largest_overhead(
2194 &bw_table->interval_bw[i]);
2195 if (interval_overhead > overhead)
2196 overhead = interval_overhead;
2197
2198 /* How many packets can we evenly distribute across
2199 * (1 << (i + 1)) possible scheduling opportunities?
2200 */
2201 packets_transmitted = packets_remaining >> (i + 1);
2202
2203 /* Add in the bandwidth used for those scheduled packets */
2204 bw_added = packets_transmitted * (overhead + packet_size);
2205
2206 /* How many packets do we have remaining to transmit? */
2207 packets_remaining = packets_remaining % (1 << (i + 1));
2208
2209 /* What largest max packet size should those packets have? */
2210 /* If we've transmitted all packets, don't carry over the
2211 * largest packet size.
2212 */
2213 if (packets_remaining == 0) {
2214 packet_size = 0;
2215 overhead = 0;
2216 } else if (packets_transmitted > 0) {
2217 /* Otherwise if we do have remaining packets, and we've
2218 * scheduled some packets in this interval, take the
2219 * largest max packet size from endpoints with this
2220 * interval.
2221 */
2222 packet_size = largest_mps;
2223 overhead = interval_overhead;
2224 }
2225 /* Otherwise carry over packet_size and overhead from the last
2226 * time we had a remainder.
2227 */
2228 bw_used += bw_added;
2229 if (bw_used > max_bandwidth) {
2230 xhci_warn(xhci, "Not enough bandwidth. "
2231 "Proposed: %u, Max: %u\n",
2232 bw_used, max_bandwidth);
2233 return -ENOMEM;
2234 }
2235 }
2236 /*
2237 * Ok, we know we have some packets left over after even-handedly
2238 * scheduling interval 15. We don't know which microframes they will
2239 * fit into, so we over-schedule and say they will be scheduled every
2240 * microframe.
2241 */
2242 if (packets_remaining > 0)
2243 bw_used += overhead + packet_size;
2244
2245 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2246 unsigned int port_index = virt_dev->real_port - 1;
2247
2248 /* OK, we're manipulating a HS device attached to a
2249 * root port bandwidth domain. Include the number of active TTs
2250 * in the bandwidth used.
2251 */
2252 bw_used += TT_HS_OVERHEAD *
2253 xhci->rh_bw[port_index].num_active_tts;
2254 }
2255
2256 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2257 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2258 "Available: %u " "percent",
2259 bw_used, max_bandwidth, bw_reserved,
2260 (max_bandwidth - bw_used - bw_reserved) * 100 /
2261 max_bandwidth);
2262
2263 bw_used += bw_reserved;
2264 if (bw_used > max_bandwidth) {
2265 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2266 bw_used, max_bandwidth);
2267 return -ENOMEM;
2268 }
2269
2270 bw_table->bw_used = bw_used;
2271 return 0;
2272}
2273
2274static bool xhci_is_async_ep(unsigned int ep_type)
2275{
2276 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2277 ep_type != ISOC_IN_EP &&
2278 ep_type != INT_IN_EP);
2279}
2280
2281static bool xhci_is_sync_in_ep(unsigned int ep_type)
2282{
2283 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2284}
2285
2286static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2287{
2288 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2289
2290 if (ep_bw->ep_interval == 0)
2291 return SS_OVERHEAD_BURST +
2292 (ep_bw->mult * ep_bw->num_packets *
2293 (SS_OVERHEAD + mps));
2294 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2295 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2296 1 << ep_bw->ep_interval);
2297
2298}
2299
2300static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2301 struct xhci_bw_info *ep_bw,
2302 struct xhci_interval_bw_table *bw_table,
2303 struct usb_device *udev,
2304 struct xhci_virt_ep *virt_ep,
2305 struct xhci_tt_bw_info *tt_info)
2306{
2307 struct xhci_interval_bw *interval_bw;
2308 int normalized_interval;
2309
2310 if (xhci_is_async_ep(ep_bw->type))
2311 return;
2312
2313 if (udev->speed >= USB_SPEED_SUPER) {
2314 if (xhci_is_sync_in_ep(ep_bw->type))
2315 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2316 xhci_get_ss_bw_consumed(ep_bw);
2317 else
2318 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2319 xhci_get_ss_bw_consumed(ep_bw);
2320 return;
2321 }
2322
2323 /* SuperSpeed endpoints never get added to intervals in the table, so
2324 * this check is only valid for HS/FS/LS devices.
2325 */
2326 if (list_empty(&virt_ep->bw_endpoint_list))
2327 return;
2328 /* For LS/FS devices, we need to translate the interval expressed in
2329 * microframes to frames.
2330 */
2331 if (udev->speed == USB_SPEED_HIGH)
2332 normalized_interval = ep_bw->ep_interval;
2333 else
2334 normalized_interval = ep_bw->ep_interval - 3;
2335
2336 if (normalized_interval == 0)
2337 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2338 interval_bw = &bw_table->interval_bw[normalized_interval];
2339 interval_bw->num_packets -= ep_bw->num_packets;
2340 switch (udev->speed) {
2341 case USB_SPEED_LOW:
2342 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2343 break;
2344 case USB_SPEED_FULL:
2345 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2346 break;
2347 case USB_SPEED_HIGH:
2348 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2349 break;
2350 case USB_SPEED_SUPER:
2351 case USB_SPEED_SUPER_PLUS:
2352 case USB_SPEED_UNKNOWN:
2353 case USB_SPEED_WIRELESS:
2354 /* Should never happen because only LS/FS/HS endpoints will get
2355 * added to the endpoint list.
2356 */
2357 return;
2358 }
2359 if (tt_info)
2360 tt_info->active_eps -= 1;
2361 list_del_init(&virt_ep->bw_endpoint_list);
2362}
2363
2364static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2365 struct xhci_bw_info *ep_bw,
2366 struct xhci_interval_bw_table *bw_table,
2367 struct usb_device *udev,
2368 struct xhci_virt_ep *virt_ep,
2369 struct xhci_tt_bw_info *tt_info)
2370{
2371 struct xhci_interval_bw *interval_bw;
2372 struct xhci_virt_ep *smaller_ep;
2373 int normalized_interval;
2374
2375 if (xhci_is_async_ep(ep_bw->type))
2376 return;
2377
2378 if (udev->speed == USB_SPEED_SUPER) {
2379 if (xhci_is_sync_in_ep(ep_bw->type))
2380 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2381 xhci_get_ss_bw_consumed(ep_bw);
2382 else
2383 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2384 xhci_get_ss_bw_consumed(ep_bw);
2385 return;
2386 }
2387
2388 /* For LS/FS devices, we need to translate the interval expressed in
2389 * microframes to frames.
2390 */
2391 if (udev->speed == USB_SPEED_HIGH)
2392 normalized_interval = ep_bw->ep_interval;
2393 else
2394 normalized_interval = ep_bw->ep_interval - 3;
2395
2396 if (normalized_interval == 0)
2397 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2398 interval_bw = &bw_table->interval_bw[normalized_interval];
2399 interval_bw->num_packets += ep_bw->num_packets;
2400 switch (udev->speed) {
2401 case USB_SPEED_LOW:
2402 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2403 break;
2404 case USB_SPEED_FULL:
2405 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2406 break;
2407 case USB_SPEED_HIGH:
2408 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2409 break;
2410 case USB_SPEED_SUPER:
2411 case USB_SPEED_SUPER_PLUS:
2412 case USB_SPEED_UNKNOWN:
2413 case USB_SPEED_WIRELESS:
2414 /* Should never happen because only LS/FS/HS endpoints will get
2415 * added to the endpoint list.
2416 */
2417 return;
2418 }
2419
2420 if (tt_info)
2421 tt_info->active_eps += 1;
2422 /* Insert the endpoint into the list, largest max packet size first. */
2423 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2424 bw_endpoint_list) {
2425 if (ep_bw->max_packet_size >=
2426 smaller_ep->bw_info.max_packet_size) {
2427 /* Add the new ep before the smaller endpoint */
2428 list_add_tail(&virt_ep->bw_endpoint_list,
2429 &smaller_ep->bw_endpoint_list);
2430 return;
2431 }
2432 }
2433 /* Add the new endpoint at the end of the list. */
2434 list_add_tail(&virt_ep->bw_endpoint_list,
2435 &interval_bw->endpoints);
2436}
2437
2438void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2439 struct xhci_virt_device *virt_dev,
2440 int old_active_eps)
2441{
2442 struct xhci_root_port_bw_info *rh_bw_info;
2443 if (!virt_dev->tt_info)
2444 return;
2445
2446 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2447 if (old_active_eps == 0 &&
2448 virt_dev->tt_info->active_eps != 0) {
2449 rh_bw_info->num_active_tts += 1;
2450 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2451 } else if (old_active_eps != 0 &&
2452 virt_dev->tt_info->active_eps == 0) {
2453 rh_bw_info->num_active_tts -= 1;
2454 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2455 }
2456}
2457
2458static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2459 struct xhci_virt_device *virt_dev,
2460 struct xhci_container_ctx *in_ctx)
2461{
2462 struct xhci_bw_info ep_bw_info[31];
2463 int i;
2464 struct xhci_input_control_ctx *ctrl_ctx;
2465 int old_active_eps = 0;
2466
2467 if (virt_dev->tt_info)
2468 old_active_eps = virt_dev->tt_info->active_eps;
2469
2470 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2471 if (!ctrl_ctx) {
2472 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2473 __func__);
2474 return -ENOMEM;
2475 }
2476
2477 for (i = 0; i < 31; i++) {
2478 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2479 continue;
2480
2481 /* Make a copy of the BW info in case we need to revert this */
2482 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2483 sizeof(ep_bw_info[i]));
2484 /* Drop the endpoint from the interval table if the endpoint is
2485 * being dropped or changed.
2486 */
2487 if (EP_IS_DROPPED(ctrl_ctx, i))
2488 xhci_drop_ep_from_interval_table(xhci,
2489 &virt_dev->eps[i].bw_info,
2490 virt_dev->bw_table,
2491 virt_dev->udev,
2492 &virt_dev->eps[i],
2493 virt_dev->tt_info);
2494 }
2495 /* Overwrite the information stored in the endpoints' bw_info */
2496 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2497 for (i = 0; i < 31; i++) {
2498 /* Add any changed or added endpoints to the interval table */
2499 if (EP_IS_ADDED(ctrl_ctx, i))
2500 xhci_add_ep_to_interval_table(xhci,
2501 &virt_dev->eps[i].bw_info,
2502 virt_dev->bw_table,
2503 virt_dev->udev,
2504 &virt_dev->eps[i],
2505 virt_dev->tt_info);
2506 }
2507
2508 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2509 /* Ok, this fits in the bandwidth we have.
2510 * Update the number of active TTs.
2511 */
2512 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2513 return 0;
2514 }
2515
2516 /* We don't have enough bandwidth for this, revert the stored info. */
2517 for (i = 0; i < 31; i++) {
2518 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2519 continue;
2520
2521 /* Drop the new copies of any added or changed endpoints from
2522 * the interval table.
2523 */
2524 if (EP_IS_ADDED(ctrl_ctx, i)) {
2525 xhci_drop_ep_from_interval_table(xhci,
2526 &virt_dev->eps[i].bw_info,
2527 virt_dev->bw_table,
2528 virt_dev->udev,
2529 &virt_dev->eps[i],
2530 virt_dev->tt_info);
2531 }
2532 /* Revert the endpoint back to its old information */
2533 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2534 sizeof(ep_bw_info[i]));
2535 /* Add any changed or dropped endpoints back into the table */
2536 if (EP_IS_DROPPED(ctrl_ctx, i))
2537 xhci_add_ep_to_interval_table(xhci,
2538 &virt_dev->eps[i].bw_info,
2539 virt_dev->bw_table,
2540 virt_dev->udev,
2541 &virt_dev->eps[i],
2542 virt_dev->tt_info);
2543 }
2544 return -ENOMEM;
2545}
2546
2547
2548/* Issue a configure endpoint command or evaluate context command
2549 * and wait for it to finish.
2550 */
2551static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2552 struct usb_device *udev,
2553 struct xhci_command *command,
2554 bool ctx_change, bool must_succeed)
2555{
2556 int ret;
2557 unsigned long flags;
2558 struct xhci_input_control_ctx *ctrl_ctx;
2559 struct xhci_virt_device *virt_dev;
2560 struct xhci_slot_ctx *slot_ctx;
2561
2562 if (!command)
2563 return -EINVAL;
2564
2565 spin_lock_irqsave(&xhci->lock, flags);
2566
2567 if (xhci->xhc_state & XHCI_STATE_DYING) {
2568 spin_unlock_irqrestore(&xhci->lock, flags);
2569 return -ESHUTDOWN;
2570 }
2571
2572 virt_dev = xhci->devs[udev->slot_id];
2573
2574 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2575 if (!ctrl_ctx) {
2576 spin_unlock_irqrestore(&xhci->lock, flags);
2577 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2578 __func__);
2579 return -ENOMEM;
2580 }
2581
2582 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2583 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2584 spin_unlock_irqrestore(&xhci->lock, flags);
2585 xhci_warn(xhci, "Not enough host resources, "
2586 "active endpoint contexts = %u\n",
2587 xhci->num_active_eps);
2588 return -ENOMEM;
2589 }
2590 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2591 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2592 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2593 xhci_free_host_resources(xhci, ctrl_ctx);
2594 spin_unlock_irqrestore(&xhci->lock, flags);
2595 xhci_warn(xhci, "Not enough bandwidth\n");
2596 return -ENOMEM;
2597 }
2598
2599 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2600 trace_xhci_configure_endpoint(slot_ctx);
2601
2602 if (!ctx_change)
2603 ret = xhci_queue_configure_endpoint(xhci, command,
2604 command->in_ctx->dma,
2605 udev->slot_id, must_succeed);
2606 else
2607 ret = xhci_queue_evaluate_context(xhci, command,
2608 command->in_ctx->dma,
2609 udev->slot_id, must_succeed);
2610 if (ret < 0) {
2611 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2612 xhci_free_host_resources(xhci, ctrl_ctx);
2613 spin_unlock_irqrestore(&xhci->lock, flags);
2614 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2615 "FIXME allocate a new ring segment");
2616 return -ENOMEM;
2617 }
2618 xhci_ring_cmd_db(xhci);
2619 spin_unlock_irqrestore(&xhci->lock, flags);
2620
2621 /* Wait for the configure endpoint command to complete */
2622 wait_for_completion(command->completion);
2623
2624 if (!ctx_change)
2625 ret = xhci_configure_endpoint_result(xhci, udev,
2626 &command->status);
2627 else
2628 ret = xhci_evaluate_context_result(xhci, udev,
2629 &command->status);
2630
2631 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2632 spin_lock_irqsave(&xhci->lock, flags);
2633 /* If the command failed, remove the reserved resources.
2634 * Otherwise, clean up the estimate to include dropped eps.
2635 */
2636 if (ret)
2637 xhci_free_host_resources(xhci, ctrl_ctx);
2638 else
2639 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2640 spin_unlock_irqrestore(&xhci->lock, flags);
2641 }
2642 return ret;
2643}
2644
2645static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2646 struct xhci_virt_device *vdev, int i)
2647{
2648 struct xhci_virt_ep *ep = &vdev->eps[i];
2649
2650 if (ep->ep_state & EP_HAS_STREAMS) {
2651 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2652 xhci_get_endpoint_address(i));
2653 xhci_free_stream_info(xhci, ep->stream_info);
2654 ep->stream_info = NULL;
2655 ep->ep_state &= ~EP_HAS_STREAMS;
2656 }
2657}
2658
2659/* Called after one or more calls to xhci_add_endpoint() or
2660 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2661 * to call xhci_reset_bandwidth().
2662 *
2663 * Since we are in the middle of changing either configuration or
2664 * installing a new alt setting, the USB core won't allow URBs to be
2665 * enqueued for any endpoint on the old config or interface. Nothing
2666 * else should be touching the xhci->devs[slot_id] structure, so we
2667 * don't need to take the xhci->lock for manipulating that.
2668 */
2669static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2670{
2671 int i;
2672 int ret = 0;
2673 struct xhci_hcd *xhci;
2674 struct xhci_virt_device *virt_dev;
2675 struct xhci_input_control_ctx *ctrl_ctx;
2676 struct xhci_slot_ctx *slot_ctx;
2677 struct xhci_command *command;
2678
2679 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2680 if (ret <= 0)
2681 return ret;
2682 xhci = hcd_to_xhci(hcd);
2683 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2684 (xhci->xhc_state & XHCI_STATE_REMOVING))
2685 return -ENODEV;
2686
2687 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2688 virt_dev = xhci->devs[udev->slot_id];
2689
2690 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2691 if (!command)
2692 return -ENOMEM;
2693
2694 command->in_ctx = virt_dev->in_ctx;
2695
2696 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2697 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2698 if (!ctrl_ctx) {
2699 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2700 __func__);
2701 ret = -ENOMEM;
2702 goto command_cleanup;
2703 }
2704 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2705 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2706 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2707
2708 /* Don't issue the command if there's no endpoints to update. */
2709 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2710 ctrl_ctx->drop_flags == 0) {
2711 ret = 0;
2712 goto command_cleanup;
2713 }
2714 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2715 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2716 for (i = 31; i >= 1; i--) {
2717 __le32 le32 = cpu_to_le32(BIT(i));
2718
2719 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2720 || (ctrl_ctx->add_flags & le32) || i == 1) {
2721 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2722 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2723 break;
2724 }
2725 }
2726
2727 ret = xhci_configure_endpoint(xhci, udev, command,
2728 false, false);
2729 if (ret)
2730 /* Callee should call reset_bandwidth() */
2731 goto command_cleanup;
2732
2733 /* Free any rings that were dropped, but not changed. */
2734 for (i = 1; i < 31; i++) {
2735 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2736 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2737 xhci_free_endpoint_ring(xhci, virt_dev, i);
2738 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2739 }
2740 }
2741 xhci_zero_in_ctx(xhci, virt_dev);
2742 /*
2743 * Install any rings for completely new endpoints or changed endpoints,
2744 * and free any old rings from changed endpoints.
2745 */
2746 for (i = 1; i < 31; i++) {
2747 if (!virt_dev->eps[i].new_ring)
2748 continue;
2749 /* Only free the old ring if it exists.
2750 * It may not if this is the first add of an endpoint.
2751 */
2752 if (virt_dev->eps[i].ring) {
2753 xhci_free_endpoint_ring(xhci, virt_dev, i);
2754 }
2755 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2756 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2757 virt_dev->eps[i].new_ring = NULL;
2758 }
2759command_cleanup:
2760 kfree(command->completion);
2761 kfree(command);
2762
2763 return ret;
2764}
2765
2766static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2767{
2768 struct xhci_hcd *xhci;
2769 struct xhci_virt_device *virt_dev;
2770 int i, ret;
2771
2772 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2773 if (ret <= 0)
2774 return;
2775 xhci = hcd_to_xhci(hcd);
2776
2777 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2778 virt_dev = xhci->devs[udev->slot_id];
2779 /* Free any rings allocated for added endpoints */
2780 for (i = 0; i < 31; i++) {
2781 if (virt_dev->eps[i].new_ring) {
2782 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2783 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2784 virt_dev->eps[i].new_ring = NULL;
2785 }
2786 }
2787 xhci_zero_in_ctx(xhci, virt_dev);
2788}
2789
2790static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2791 struct xhci_container_ctx *in_ctx,
2792 struct xhci_container_ctx *out_ctx,
2793 struct xhci_input_control_ctx *ctrl_ctx,
2794 u32 add_flags, u32 drop_flags)
2795{
2796 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2797 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2798 xhci_slot_copy(xhci, in_ctx, out_ctx);
2799 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2800}
2801
2802static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2803 unsigned int slot_id, unsigned int ep_index,
2804 struct xhci_dequeue_state *deq_state)
2805{
2806 struct xhci_input_control_ctx *ctrl_ctx;
2807 struct xhci_container_ctx *in_ctx;
2808 struct xhci_ep_ctx *ep_ctx;
2809 u32 added_ctxs;
2810 dma_addr_t addr;
2811
2812 in_ctx = xhci->devs[slot_id]->in_ctx;
2813 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2814 if (!ctrl_ctx) {
2815 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2816 __func__);
2817 return;
2818 }
2819
2820 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2821 xhci->devs[slot_id]->out_ctx, ep_index);
2822 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2823 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2824 deq_state->new_deq_ptr);
2825 if (addr == 0) {
2826 xhci_warn(xhci, "WARN Cannot submit config ep after "
2827 "reset ep command\n");
2828 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2829 deq_state->new_deq_seg,
2830 deq_state->new_deq_ptr);
2831 return;
2832 }
2833 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2834
2835 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2836 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2837 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2838 added_ctxs, added_ctxs);
2839}
2840
2841void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2842 unsigned int stream_id, struct xhci_td *td)
2843{
2844 struct xhci_dequeue_state deq_state;
2845 struct usb_device *udev = td->urb->dev;
2846
2847 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2848 "Cleaning up stalled endpoint ring");
2849 /* We need to move the HW's dequeue pointer past this TD,
2850 * or it will attempt to resend it on the next doorbell ring.
2851 */
2852 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2853 ep_index, stream_id, td, &deq_state);
2854
2855 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2856 return;
2857
2858 /* HW with the reset endpoint quirk will use the saved dequeue state to
2859 * issue a configure endpoint command later.
2860 */
2861 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2862 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2863 "Queueing new dequeue state");
2864 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2865 ep_index, &deq_state);
2866 } else {
2867 /* Better hope no one uses the input context between now and the
2868 * reset endpoint completion!
2869 * XXX: No idea how this hardware will react when stream rings
2870 * are enabled.
2871 */
2872 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2873 "Setting up input context for "
2874 "configure endpoint command");
2875 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2876 ep_index, &deq_state);
2877 }
2878}
2879
2880/*
2881 * Called after usb core issues a clear halt control message.
2882 * The host side of the halt should already be cleared by a reset endpoint
2883 * command issued when the STALL event was received.
2884 *
2885 * The reset endpoint command may only be issued to endpoints in the halted
2886 * state. For software that wishes to reset the data toggle or sequence number
2887 * of an endpoint that isn't in the halted state this function will issue a
2888 * configure endpoint command with the Drop and Add bits set for the target
2889 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
2890 */
2891
2892static void xhci_endpoint_reset(struct usb_hcd *hcd,
2893 struct usb_host_endpoint *host_ep)
2894{
2895 struct xhci_hcd *xhci;
2896 struct usb_device *udev;
2897 struct xhci_virt_device *vdev;
2898 struct xhci_virt_ep *ep;
2899 struct xhci_input_control_ctx *ctrl_ctx;
2900 struct xhci_command *stop_cmd, *cfg_cmd;
2901 unsigned int ep_index;
2902 unsigned long flags;
2903 u32 ep_flag;
2904
2905 xhci = hcd_to_xhci(hcd);
2906 if (!host_ep->hcpriv)
2907 return;
2908 udev = (struct usb_device *) host_ep->hcpriv;
2909 vdev = xhci->devs[udev->slot_id];
2910 ep_index = xhci_get_endpoint_index(&host_ep->desc);
2911 ep = &vdev->eps[ep_index];
2912
2913 /* Bail out if toggle is already being cleared by a endpoint reset */
2914 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
2915 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
2916 return;
2917 }
2918 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
2919 if (usb_endpoint_xfer_control(&host_ep->desc) ||
2920 usb_endpoint_xfer_isoc(&host_ep->desc))
2921 return;
2922
2923 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
2924
2925 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
2926 return;
2927
2928 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
2929 if (!stop_cmd)
2930 return;
2931
2932 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
2933 if (!cfg_cmd)
2934 goto cleanup;
2935
2936 spin_lock_irqsave(&xhci->lock, flags);
2937
2938 /* block queuing new trbs and ringing ep doorbell */
2939 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
2940
2941 /*
2942 * Make sure endpoint ring is empty before resetting the toggle/seq.
2943 * Driver is required to synchronously cancel all transfer request.
2944 * Stop the endpoint to force xHC to update the output context
2945 */
2946
2947 if (!list_empty(&ep->ring->td_list)) {
2948 dev_err(&udev->dev, "EP not empty, refuse reset\n");
2949 spin_unlock_irqrestore(&xhci->lock, flags);
2950 goto cleanup;
2951 }
2952 xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0);
2953 xhci_ring_cmd_db(xhci);
2954 spin_unlock_irqrestore(&xhci->lock, flags);
2955
2956 wait_for_completion(stop_cmd->completion);
2957
2958 spin_lock_irqsave(&xhci->lock, flags);
2959
2960 /* config ep command clears toggle if add and drop ep flags are set */
2961 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
2962 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
2963 ctrl_ctx, ep_flag, ep_flag);
2964 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
2965
2966 xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
2967 udev->slot_id, false);
2968 xhci_ring_cmd_db(xhci);
2969 spin_unlock_irqrestore(&xhci->lock, flags);
2970
2971 wait_for_completion(cfg_cmd->completion);
2972
2973 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
2974 xhci_free_command(xhci, cfg_cmd);
2975cleanup:
2976 xhci_free_command(xhci, stop_cmd);
2977}
2978
2979static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2980 struct usb_device *udev, struct usb_host_endpoint *ep,
2981 unsigned int slot_id)
2982{
2983 int ret;
2984 unsigned int ep_index;
2985 unsigned int ep_state;
2986
2987 if (!ep)
2988 return -EINVAL;
2989 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2990 if (ret <= 0)
2991 return -EINVAL;
2992 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2993 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2994 " descriptor for ep 0x%x does not support streams\n",
2995 ep->desc.bEndpointAddress);
2996 return -EINVAL;
2997 }
2998
2999 ep_index = xhci_get_endpoint_index(&ep->desc);
3000 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3001 if (ep_state & EP_HAS_STREAMS ||
3002 ep_state & EP_GETTING_STREAMS) {
3003 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3004 "already has streams set up.\n",
3005 ep->desc.bEndpointAddress);
3006 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3007 "dynamic stream context array reallocation.\n");
3008 return -EINVAL;
3009 }
3010 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3011 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3012 "endpoint 0x%x; URBs are pending.\n",
3013 ep->desc.bEndpointAddress);
3014 return -EINVAL;
3015 }
3016 return 0;
3017}
3018
3019static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3020 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3021{
3022 unsigned int max_streams;
3023
3024 /* The stream context array size must be a power of two */
3025 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3026 /*
3027 * Find out how many primary stream array entries the host controller
3028 * supports. Later we may use secondary stream arrays (similar to 2nd
3029 * level page entries), but that's an optional feature for xHCI host
3030 * controllers. xHCs must support at least 4 stream IDs.
3031 */
3032 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3033 if (*num_stream_ctxs > max_streams) {
3034 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3035 max_streams);
3036 *num_stream_ctxs = max_streams;
3037 *num_streams = max_streams;
3038 }
3039}
3040
3041/* Returns an error code if one of the endpoint already has streams.
3042 * This does not change any data structures, it only checks and gathers
3043 * information.
3044 */
3045static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3046 struct usb_device *udev,
3047 struct usb_host_endpoint **eps, unsigned int num_eps,
3048 unsigned int *num_streams, u32 *changed_ep_bitmask)
3049{
3050 unsigned int max_streams;
3051 unsigned int endpoint_flag;
3052 int i;
3053 int ret;
3054
3055 for (i = 0; i < num_eps; i++) {
3056 ret = xhci_check_streams_endpoint(xhci, udev,
3057 eps[i], udev->slot_id);
3058 if (ret < 0)
3059 return ret;
3060
3061 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3062 if (max_streams < (*num_streams - 1)) {
3063 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3064 eps[i]->desc.bEndpointAddress,
3065 max_streams);
3066 *num_streams = max_streams+1;
3067 }
3068
3069 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3070 if (*changed_ep_bitmask & endpoint_flag)
3071 return -EINVAL;
3072 *changed_ep_bitmask |= endpoint_flag;
3073 }
3074 return 0;
3075}
3076
3077static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3078 struct usb_device *udev,
3079 struct usb_host_endpoint **eps, unsigned int num_eps)
3080{
3081 u32 changed_ep_bitmask = 0;
3082 unsigned int slot_id;
3083 unsigned int ep_index;
3084 unsigned int ep_state;
3085 int i;
3086
3087 slot_id = udev->slot_id;
3088 if (!xhci->devs[slot_id])
3089 return 0;
3090
3091 for (i = 0; i < num_eps; i++) {
3092 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3093 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3094 /* Are streams already being freed for the endpoint? */
3095 if (ep_state & EP_GETTING_NO_STREAMS) {
3096 xhci_warn(xhci, "WARN Can't disable streams for "
3097 "endpoint 0x%x, "
3098 "streams are being disabled already\n",
3099 eps[i]->desc.bEndpointAddress);
3100 return 0;
3101 }
3102 /* Are there actually any streams to free? */
3103 if (!(ep_state & EP_HAS_STREAMS) &&
3104 !(ep_state & EP_GETTING_STREAMS)) {
3105 xhci_warn(xhci, "WARN Can't disable streams for "
3106 "endpoint 0x%x, "
3107 "streams are already disabled!\n",
3108 eps[i]->desc.bEndpointAddress);
3109 xhci_warn(xhci, "WARN xhci_free_streams() called "
3110 "with non-streams endpoint\n");
3111 return 0;
3112 }
3113 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3114 }
3115 return changed_ep_bitmask;
3116}
3117
3118/*
3119 * The USB device drivers use this function (through the HCD interface in USB
3120 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3121 * coordinate mass storage command queueing across multiple endpoints (basically
3122 * a stream ID == a task ID).
3123 *
3124 * Setting up streams involves allocating the same size stream context array
3125 * for each endpoint and issuing a configure endpoint command for all endpoints.
3126 *
3127 * Don't allow the call to succeed if one endpoint only supports one stream
3128 * (which means it doesn't support streams at all).
3129 *
3130 * Drivers may get less stream IDs than they asked for, if the host controller
3131 * hardware or endpoints claim they can't support the number of requested
3132 * stream IDs.
3133 */
3134static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3135 struct usb_host_endpoint **eps, unsigned int num_eps,
3136 unsigned int num_streams, gfp_t mem_flags)
3137{
3138 int i, ret;
3139 struct xhci_hcd *xhci;
3140 struct xhci_virt_device *vdev;
3141 struct xhci_command *config_cmd;
3142 struct xhci_input_control_ctx *ctrl_ctx;
3143 unsigned int ep_index;
3144 unsigned int num_stream_ctxs;
3145 unsigned int max_packet;
3146 unsigned long flags;
3147 u32 changed_ep_bitmask = 0;
3148
3149 if (!eps)
3150 return -EINVAL;
3151
3152 /* Add one to the number of streams requested to account for
3153 * stream 0 that is reserved for xHCI usage.
3154 */
3155 num_streams += 1;
3156 xhci = hcd_to_xhci(hcd);
3157 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3158 num_streams);
3159
3160 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3161 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3162 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3163 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3164 return -ENOSYS;
3165 }
3166
3167 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3168 if (!config_cmd)
3169 return -ENOMEM;
3170
3171 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3172 if (!ctrl_ctx) {
3173 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3174 __func__);
3175 xhci_free_command(xhci, config_cmd);
3176 return -ENOMEM;
3177 }
3178
3179 /* Check to make sure all endpoints are not already configured for
3180 * streams. While we're at it, find the maximum number of streams that
3181 * all the endpoints will support and check for duplicate endpoints.
3182 */
3183 spin_lock_irqsave(&xhci->lock, flags);
3184 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3185 num_eps, &num_streams, &changed_ep_bitmask);
3186 if (ret < 0) {
3187 xhci_free_command(xhci, config_cmd);
3188 spin_unlock_irqrestore(&xhci->lock, flags);
3189 return ret;
3190 }
3191 if (num_streams <= 1) {
3192 xhci_warn(xhci, "WARN: endpoints can't handle "
3193 "more than one stream.\n");
3194 xhci_free_command(xhci, config_cmd);
3195 spin_unlock_irqrestore(&xhci->lock, flags);
3196 return -EINVAL;
3197 }
3198 vdev = xhci->devs[udev->slot_id];
3199 /* Mark each endpoint as being in transition, so
3200 * xhci_urb_enqueue() will reject all URBs.
3201 */
3202 for (i = 0; i < num_eps; i++) {
3203 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3204 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3205 }
3206 spin_unlock_irqrestore(&xhci->lock, flags);
3207
3208 /* Setup internal data structures and allocate HW data structures for
3209 * streams (but don't install the HW structures in the input context
3210 * until we're sure all memory allocation succeeded).
3211 */
3212 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3213 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3214 num_stream_ctxs, num_streams);
3215
3216 for (i = 0; i < num_eps; i++) {
3217 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3218 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3219 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3220 num_stream_ctxs,
3221 num_streams,
3222 max_packet, mem_flags);
3223 if (!vdev->eps[ep_index].stream_info)
3224 goto cleanup;
3225 /* Set maxPstreams in endpoint context and update deq ptr to
3226 * point to stream context array. FIXME
3227 */
3228 }
3229
3230 /* Set up the input context for a configure endpoint command. */
3231 for (i = 0; i < num_eps; i++) {
3232 struct xhci_ep_ctx *ep_ctx;
3233
3234 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3235 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3236
3237 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3238 vdev->out_ctx, ep_index);
3239 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3240 vdev->eps[ep_index].stream_info);
3241 }
3242 /* Tell the HW to drop its old copy of the endpoint context info
3243 * and add the updated copy from the input context.
3244 */
3245 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3246 vdev->out_ctx, ctrl_ctx,
3247 changed_ep_bitmask, changed_ep_bitmask);
3248
3249 /* Issue and wait for the configure endpoint command */
3250 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3251 false, false);
3252
3253 /* xHC rejected the configure endpoint command for some reason, so we
3254 * leave the old ring intact and free our internal streams data
3255 * structure.
3256 */
3257 if (ret < 0)
3258 goto cleanup;
3259
3260 spin_lock_irqsave(&xhci->lock, flags);
3261 for (i = 0; i < num_eps; i++) {
3262 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3263 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3264 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3265 udev->slot_id, ep_index);
3266 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3267 }
3268 xhci_free_command(xhci, config_cmd);
3269 spin_unlock_irqrestore(&xhci->lock, flags);
3270
3271 /* Subtract 1 for stream 0, which drivers can't use */
3272 return num_streams - 1;
3273
3274cleanup:
3275 /* If it didn't work, free the streams! */
3276 for (i = 0; i < num_eps; i++) {
3277 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3278 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3279 vdev->eps[ep_index].stream_info = NULL;
3280 /* FIXME Unset maxPstreams in endpoint context and
3281 * update deq ptr to point to normal string ring.
3282 */
3283 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3284 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3285 xhci_endpoint_zero(xhci, vdev, eps[i]);
3286 }
3287 xhci_free_command(xhci, config_cmd);
3288 return -ENOMEM;
3289}
3290
3291/* Transition the endpoint from using streams to being a "normal" endpoint
3292 * without streams.
3293 *
3294 * Modify the endpoint context state, submit a configure endpoint command,
3295 * and free all endpoint rings for streams if that completes successfully.
3296 */
3297static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3298 struct usb_host_endpoint **eps, unsigned int num_eps,
3299 gfp_t mem_flags)
3300{
3301 int i, ret;
3302 struct xhci_hcd *xhci;
3303 struct xhci_virt_device *vdev;
3304 struct xhci_command *command;
3305 struct xhci_input_control_ctx *ctrl_ctx;
3306 unsigned int ep_index;
3307 unsigned long flags;
3308 u32 changed_ep_bitmask;
3309
3310 xhci = hcd_to_xhci(hcd);
3311 vdev = xhci->devs[udev->slot_id];
3312
3313 /* Set up a configure endpoint command to remove the streams rings */
3314 spin_lock_irqsave(&xhci->lock, flags);
3315 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3316 udev, eps, num_eps);
3317 if (changed_ep_bitmask == 0) {
3318 spin_unlock_irqrestore(&xhci->lock, flags);
3319 return -EINVAL;
3320 }
3321
3322 /* Use the xhci_command structure from the first endpoint. We may have
3323 * allocated too many, but the driver may call xhci_free_streams() for
3324 * each endpoint it grouped into one call to xhci_alloc_streams().
3325 */
3326 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3327 command = vdev->eps[ep_index].stream_info->free_streams_command;
3328 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3329 if (!ctrl_ctx) {
3330 spin_unlock_irqrestore(&xhci->lock, flags);
3331 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3332 __func__);
3333 return -EINVAL;
3334 }
3335
3336 for (i = 0; i < num_eps; i++) {
3337 struct xhci_ep_ctx *ep_ctx;
3338
3339 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3340 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3341 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3342 EP_GETTING_NO_STREAMS;
3343
3344 xhci_endpoint_copy(xhci, command->in_ctx,
3345 vdev->out_ctx, ep_index);
3346 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3347 &vdev->eps[ep_index]);
3348 }
3349 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3350 vdev->out_ctx, ctrl_ctx,
3351 changed_ep_bitmask, changed_ep_bitmask);
3352 spin_unlock_irqrestore(&xhci->lock, flags);
3353
3354 /* Issue and wait for the configure endpoint command,
3355 * which must succeed.
3356 */
3357 ret = xhci_configure_endpoint(xhci, udev, command,
3358 false, true);
3359
3360 /* xHC rejected the configure endpoint command for some reason, so we
3361 * leave the streams rings intact.
3362 */
3363 if (ret < 0)
3364 return ret;
3365
3366 spin_lock_irqsave(&xhci->lock, flags);
3367 for (i = 0; i < num_eps; i++) {
3368 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3369 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3370 vdev->eps[ep_index].stream_info = NULL;
3371 /* FIXME Unset maxPstreams in endpoint context and
3372 * update deq ptr to point to normal string ring.
3373 */
3374 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3375 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3376 }
3377 spin_unlock_irqrestore(&xhci->lock, flags);
3378
3379 return 0;
3380}
3381
3382/*
3383 * Deletes endpoint resources for endpoints that were active before a Reset
3384 * Device command, or a Disable Slot command. The Reset Device command leaves
3385 * the control endpoint intact, whereas the Disable Slot command deletes it.
3386 *
3387 * Must be called with xhci->lock held.
3388 */
3389void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3390 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3391{
3392 int i;
3393 unsigned int num_dropped_eps = 0;
3394 unsigned int drop_flags = 0;
3395
3396 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3397 if (virt_dev->eps[i].ring) {
3398 drop_flags |= 1 << i;
3399 num_dropped_eps++;
3400 }
3401 }
3402 xhci->num_active_eps -= num_dropped_eps;
3403 if (num_dropped_eps)
3404 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3405 "Dropped %u ep ctxs, flags = 0x%x, "
3406 "%u now active.",
3407 num_dropped_eps, drop_flags,
3408 xhci->num_active_eps);
3409}
3410
3411/*
3412 * This submits a Reset Device Command, which will set the device state to 0,
3413 * set the device address to 0, and disable all the endpoints except the default
3414 * control endpoint. The USB core should come back and call
3415 * xhci_address_device(), and then re-set up the configuration. If this is
3416 * called because of a usb_reset_and_verify_device(), then the old alternate
3417 * settings will be re-installed through the normal bandwidth allocation
3418 * functions.
3419 *
3420 * Wait for the Reset Device command to finish. Remove all structures
3421 * associated with the endpoints that were disabled. Clear the input device
3422 * structure? Reset the control endpoint 0 max packet size?
3423 *
3424 * If the virt_dev to be reset does not exist or does not match the udev,
3425 * it means the device is lost, possibly due to the xHC restore error and
3426 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3427 * re-allocate the device.
3428 */
3429static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3430 struct usb_device *udev)
3431{
3432 int ret, i;
3433 unsigned long flags;
3434 struct xhci_hcd *xhci;
3435 unsigned int slot_id;
3436 struct xhci_virt_device *virt_dev;
3437 struct xhci_command *reset_device_cmd;
3438 struct xhci_slot_ctx *slot_ctx;
3439 int old_active_eps = 0;
3440
3441 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3442 if (ret <= 0)
3443 return ret;
3444 xhci = hcd_to_xhci(hcd);
3445 slot_id = udev->slot_id;
3446 virt_dev = xhci->devs[slot_id];
3447 if (!virt_dev) {
3448 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3449 "not exist. Re-allocate the device\n", slot_id);
3450 ret = xhci_alloc_dev(hcd, udev);
3451 if (ret == 1)
3452 return 0;
3453 else
3454 return -EINVAL;
3455 }
3456
3457 if (virt_dev->tt_info)
3458 old_active_eps = virt_dev->tt_info->active_eps;
3459
3460 if (virt_dev->udev != udev) {
3461 /* If the virt_dev and the udev does not match, this virt_dev
3462 * may belong to another udev.
3463 * Re-allocate the device.
3464 */
3465 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3466 "not match the udev. Re-allocate the device\n",
3467 slot_id);
3468 ret = xhci_alloc_dev(hcd, udev);
3469 if (ret == 1)
3470 return 0;
3471 else
3472 return -EINVAL;
3473 }
3474
3475 /* If device is not setup, there is no point in resetting it */
3476 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3477 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3478 SLOT_STATE_DISABLED)
3479 return 0;
3480
3481 trace_xhci_discover_or_reset_device(slot_ctx);
3482
3483 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3484 /* Allocate the command structure that holds the struct completion.
3485 * Assume we're in process context, since the normal device reset
3486 * process has to wait for the device anyway. Storage devices are
3487 * reset as part of error handling, so use GFP_NOIO instead of
3488 * GFP_KERNEL.
3489 */
3490 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3491 if (!reset_device_cmd) {
3492 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3493 return -ENOMEM;
3494 }
3495
3496 /* Attempt to submit the Reset Device command to the command ring */
3497 spin_lock_irqsave(&xhci->lock, flags);
3498
3499 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3500 if (ret) {
3501 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3502 spin_unlock_irqrestore(&xhci->lock, flags);
3503 goto command_cleanup;
3504 }
3505 xhci_ring_cmd_db(xhci);
3506 spin_unlock_irqrestore(&xhci->lock, flags);
3507
3508 /* Wait for the Reset Device command to finish */
3509 wait_for_completion(reset_device_cmd->completion);
3510
3511 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3512 * unless we tried to reset a slot ID that wasn't enabled,
3513 * or the device wasn't in the addressed or configured state.
3514 */
3515 ret = reset_device_cmd->status;
3516 switch (ret) {
3517 case COMP_COMMAND_ABORTED:
3518 case COMP_COMMAND_RING_STOPPED:
3519 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3520 ret = -ETIME;
3521 goto command_cleanup;
3522 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3523 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3524 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3525 slot_id,
3526 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3527 xhci_dbg(xhci, "Not freeing device rings.\n");
3528 /* Don't treat this as an error. May change my mind later. */
3529 ret = 0;
3530 goto command_cleanup;
3531 case COMP_SUCCESS:
3532 xhci_dbg(xhci, "Successful reset device command.\n");
3533 break;
3534 default:
3535 if (xhci_is_vendor_info_code(xhci, ret))
3536 break;
3537 xhci_warn(xhci, "Unknown completion code %u for "
3538 "reset device command.\n", ret);
3539 ret = -EINVAL;
3540 goto command_cleanup;
3541 }
3542
3543 /* Free up host controller endpoint resources */
3544 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3545 spin_lock_irqsave(&xhci->lock, flags);
3546 /* Don't delete the default control endpoint resources */
3547 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3548 spin_unlock_irqrestore(&xhci->lock, flags);
3549 }
3550
3551 /* Everything but endpoint 0 is disabled, so free the rings. */
3552 for (i = 1; i < 31; i++) {
3553 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3554
3555 if (ep->ep_state & EP_HAS_STREAMS) {
3556 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3557 xhci_get_endpoint_address(i));
3558 xhci_free_stream_info(xhci, ep->stream_info);
3559 ep->stream_info = NULL;
3560 ep->ep_state &= ~EP_HAS_STREAMS;
3561 }
3562
3563 if (ep->ring) {
3564 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3565 xhci_free_endpoint_ring(xhci, virt_dev, i);
3566 }
3567 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3568 xhci_drop_ep_from_interval_table(xhci,
3569 &virt_dev->eps[i].bw_info,
3570 virt_dev->bw_table,
3571 udev,
3572 &virt_dev->eps[i],
3573 virt_dev->tt_info);
3574 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3575 }
3576 /* If necessary, update the number of active TTs on this root port */
3577 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3578 ret = 0;
3579
3580command_cleanup:
3581 xhci_free_command(xhci, reset_device_cmd);
3582 return ret;
3583}
3584
3585/*
3586 * At this point, the struct usb_device is about to go away, the device has
3587 * disconnected, and all traffic has been stopped and the endpoints have been
3588 * disabled. Free any HC data structures associated with that device.
3589 */
3590static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3591{
3592 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3593 struct xhci_virt_device *virt_dev;
3594 struct xhci_slot_ctx *slot_ctx;
3595 int i, ret;
3596
3597#ifndef CONFIG_USB_DEFAULT_PERSIST
3598 /*
3599 * We called pm_runtime_get_noresume when the device was attached.
3600 * Decrement the counter here to allow controller to runtime suspend
3601 * if no devices remain.
3602 */
3603 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3604 pm_runtime_put_noidle(hcd->self.controller);
3605#endif
3606
3607 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3608 /* If the host is halted due to driver unload, we still need to free the
3609 * device.
3610 */
3611 if (ret <= 0 && ret != -ENODEV)
3612 return;
3613
3614 virt_dev = xhci->devs[udev->slot_id];
3615 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3616 trace_xhci_free_dev(slot_ctx);
3617
3618 /* Stop any wayward timer functions (which may grab the lock) */
3619 for (i = 0; i < 31; i++) {
3620 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3621 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3622 }
3623 xhci_debugfs_remove_slot(xhci, udev->slot_id);
3624 virt_dev->udev = NULL;
3625 ret = xhci_disable_slot(xhci, udev->slot_id);
3626 if (ret)
3627 xhci_free_virt_device(xhci, udev->slot_id);
3628}
3629
3630int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3631{
3632 struct xhci_command *command;
3633 unsigned long flags;
3634 u32 state;
3635 int ret = 0;
3636
3637 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3638 if (!command)
3639 return -ENOMEM;
3640
3641 spin_lock_irqsave(&xhci->lock, flags);
3642 /* Don't disable the slot if the host controller is dead. */
3643 state = readl(&xhci->op_regs->status);
3644 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3645 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3646 spin_unlock_irqrestore(&xhci->lock, flags);
3647 kfree(command);
3648 return -ENODEV;
3649 }
3650
3651 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3652 slot_id);
3653 if (ret) {
3654 spin_unlock_irqrestore(&xhci->lock, flags);
3655 kfree(command);
3656 return ret;
3657 }
3658 xhci_ring_cmd_db(xhci);
3659 spin_unlock_irqrestore(&xhci->lock, flags);
3660 return ret;
3661}
3662
3663/*
3664 * Checks if we have enough host controller resources for the default control
3665 * endpoint.
3666 *
3667 * Must be called with xhci->lock held.
3668 */
3669static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3670{
3671 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3672 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3673 "Not enough ep ctxs: "
3674 "%u active, need to add 1, limit is %u.",
3675 xhci->num_active_eps, xhci->limit_active_eps);
3676 return -ENOMEM;
3677 }
3678 xhci->num_active_eps += 1;
3679 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3680 "Adding 1 ep ctx, %u now active.",
3681 xhci->num_active_eps);
3682 return 0;
3683}
3684
3685
3686/*
3687 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3688 * timed out, or allocating memory failed. Returns 1 on success.
3689 */
3690int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3691{
3692 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3693 struct xhci_virt_device *vdev;
3694 struct xhci_slot_ctx *slot_ctx;
3695 unsigned long flags;
3696 int ret, slot_id;
3697 struct xhci_command *command;
3698
3699 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3700 if (!command)
3701 return 0;
3702
3703 spin_lock_irqsave(&xhci->lock, flags);
3704 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3705 if (ret) {
3706 spin_unlock_irqrestore(&xhci->lock, flags);
3707 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3708 xhci_free_command(xhci, command);
3709 return 0;
3710 }
3711 xhci_ring_cmd_db(xhci);
3712 spin_unlock_irqrestore(&xhci->lock, flags);
3713
3714 wait_for_completion(command->completion);
3715 slot_id = command->slot_id;
3716
3717 if (!slot_id || command->status != COMP_SUCCESS) {
3718 xhci_err(xhci, "Error while assigning device slot ID\n");
3719 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3720 HCS_MAX_SLOTS(
3721 readl(&xhci->cap_regs->hcs_params1)));
3722 xhci_free_command(xhci, command);
3723 return 0;
3724 }
3725
3726 xhci_free_command(xhci, command);
3727
3728 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3729 spin_lock_irqsave(&xhci->lock, flags);
3730 ret = xhci_reserve_host_control_ep_resources(xhci);
3731 if (ret) {
3732 spin_unlock_irqrestore(&xhci->lock, flags);
3733 xhci_warn(xhci, "Not enough host resources, "
3734 "active endpoint contexts = %u\n",
3735 xhci->num_active_eps);
3736 goto disable_slot;
3737 }
3738 spin_unlock_irqrestore(&xhci->lock, flags);
3739 }
3740 /* Use GFP_NOIO, since this function can be called from
3741 * xhci_discover_or_reset_device(), which may be called as part of
3742 * mass storage driver error handling.
3743 */
3744 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3745 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3746 goto disable_slot;
3747 }
3748 vdev = xhci->devs[slot_id];
3749 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3750 trace_xhci_alloc_dev(slot_ctx);
3751
3752 udev->slot_id = slot_id;
3753
3754 xhci_debugfs_create_slot(xhci, slot_id);
3755
3756#ifndef CONFIG_USB_DEFAULT_PERSIST
3757 /*
3758 * If resetting upon resume, we can't put the controller into runtime
3759 * suspend if there is a device attached.
3760 */
3761 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3762 pm_runtime_get_noresume(hcd->self.controller);
3763#endif
3764
3765 /* Is this a LS or FS device under a HS hub? */
3766 /* Hub or peripherial? */
3767 return 1;
3768
3769disable_slot:
3770 ret = xhci_disable_slot(xhci, udev->slot_id);
3771 if (ret)
3772 xhci_free_virt_device(xhci, udev->slot_id);
3773
3774 return 0;
3775}
3776
3777/*
3778 * Issue an Address Device command and optionally send a corresponding
3779 * SetAddress request to the device.
3780 */
3781static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3782 enum xhci_setup_dev setup)
3783{
3784 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3785 unsigned long flags;
3786 struct xhci_virt_device *virt_dev;
3787 int ret = 0;
3788 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3789 struct xhci_slot_ctx *slot_ctx;
3790 struct xhci_input_control_ctx *ctrl_ctx;
3791 u64 temp_64;
3792 struct xhci_command *command = NULL;
3793
3794 mutex_lock(&xhci->mutex);
3795
3796 if (xhci->xhc_state) { /* dying, removing or halted */
3797 ret = -ESHUTDOWN;
3798 goto out;
3799 }
3800
3801 if (!udev->slot_id) {
3802 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3803 "Bad Slot ID %d", udev->slot_id);
3804 ret = -EINVAL;
3805 goto out;
3806 }
3807
3808 virt_dev = xhci->devs[udev->slot_id];
3809
3810 if (WARN_ON(!virt_dev)) {
3811 /*
3812 * In plug/unplug torture test with an NEC controller,
3813 * a zero-dereference was observed once due to virt_dev = 0.
3814 * Print useful debug rather than crash if it is observed again!
3815 */
3816 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3817 udev->slot_id);
3818 ret = -EINVAL;
3819 goto out;
3820 }
3821 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3822 trace_xhci_setup_device_slot(slot_ctx);
3823
3824 if (setup == SETUP_CONTEXT_ONLY) {
3825 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3826 SLOT_STATE_DEFAULT) {
3827 xhci_dbg(xhci, "Slot already in default state\n");
3828 goto out;
3829 }
3830 }
3831
3832 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3833 if (!command) {
3834 ret = -ENOMEM;
3835 goto out;
3836 }
3837
3838 command->in_ctx = virt_dev->in_ctx;
3839
3840 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3841 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3842 if (!ctrl_ctx) {
3843 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3844 __func__);
3845 ret = -EINVAL;
3846 goto out;
3847 }
3848 /*
3849 * If this is the first Set Address since device plug-in or
3850 * virt_device realloaction after a resume with an xHCI power loss,
3851 * then set up the slot context.
3852 */
3853 if (!slot_ctx->dev_info)
3854 xhci_setup_addressable_virt_dev(xhci, udev);
3855 /* Otherwise, update the control endpoint ring enqueue pointer. */
3856 else
3857 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3858 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3859 ctrl_ctx->drop_flags = 0;
3860
3861 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3862 le32_to_cpu(slot_ctx->dev_info) >> 27);
3863
3864 spin_lock_irqsave(&xhci->lock, flags);
3865 trace_xhci_setup_device(virt_dev);
3866 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3867 udev->slot_id, setup);
3868 if (ret) {
3869 spin_unlock_irqrestore(&xhci->lock, flags);
3870 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3871 "FIXME: allocate a command ring segment");
3872 goto out;
3873 }
3874 xhci_ring_cmd_db(xhci);
3875 spin_unlock_irqrestore(&xhci->lock, flags);
3876
3877 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3878 wait_for_completion(command->completion);
3879
3880 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3881 * the SetAddress() "recovery interval" required by USB and aborting the
3882 * command on a timeout.
3883 */
3884 switch (command->status) {
3885 case COMP_COMMAND_ABORTED:
3886 case COMP_COMMAND_RING_STOPPED:
3887 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3888 ret = -ETIME;
3889 break;
3890 case COMP_CONTEXT_STATE_ERROR:
3891 case COMP_SLOT_NOT_ENABLED_ERROR:
3892 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3893 act, udev->slot_id);
3894 ret = -EINVAL;
3895 break;
3896 case COMP_USB_TRANSACTION_ERROR:
3897 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3898
3899 mutex_unlock(&xhci->mutex);
3900 ret = xhci_disable_slot(xhci, udev->slot_id);
3901 if (!ret)
3902 xhci_alloc_dev(hcd, udev);
3903 kfree(command->completion);
3904 kfree(command);
3905 return -EPROTO;
3906 case COMP_INCOMPATIBLE_DEVICE_ERROR:
3907 dev_warn(&udev->dev,
3908 "ERROR: Incompatible device for setup %s command\n", act);
3909 ret = -ENODEV;
3910 break;
3911 case COMP_SUCCESS:
3912 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3913 "Successful setup %s command", act);
3914 break;
3915 default:
3916 xhci_err(xhci,
3917 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3918 act, command->status);
3919 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3920 ret = -EINVAL;
3921 break;
3922 }
3923 if (ret)
3924 goto out;
3925 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3926 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3927 "Op regs DCBAA ptr = %#016llx", temp_64);
3928 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3929 "Slot ID %d dcbaa entry @%p = %#016llx",
3930 udev->slot_id,
3931 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3932 (unsigned long long)
3933 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3934 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3935 "Output Context DMA address = %#08llx",
3936 (unsigned long long)virt_dev->out_ctx->dma);
3937 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3938 le32_to_cpu(slot_ctx->dev_info) >> 27);
3939 /*
3940 * USB core uses address 1 for the roothubs, so we add one to the
3941 * address given back to us by the HC.
3942 */
3943 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3944 le32_to_cpu(slot_ctx->dev_info) >> 27);
3945 /* Zero the input context control for later use */
3946 ctrl_ctx->add_flags = 0;
3947 ctrl_ctx->drop_flags = 0;
3948
3949 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3950 "Internal device address = %d",
3951 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3952out:
3953 mutex_unlock(&xhci->mutex);
3954 if (command) {
3955 kfree(command->completion);
3956 kfree(command);
3957 }
3958 return ret;
3959}
3960
3961static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3962{
3963 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3964}
3965
3966static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3967{
3968 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3969}
3970
3971/*
3972 * Transfer the port index into real index in the HW port status
3973 * registers. Caculate offset between the port's PORTSC register
3974 * and port status base. Divide the number of per port register
3975 * to get the real index. The raw port number bases 1.
3976 */
3977int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3978{
3979 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3980 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3981 __le32 __iomem *addr;
3982 int raw_port;
3983
3984 if (hcd->speed < HCD_USB3)
3985 addr = xhci->usb2_ports[port1 - 1];
3986 else
3987 addr = xhci->usb3_ports[port1 - 1];
3988
3989 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3990 return raw_port;
3991}
3992
3993/*
3994 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3995 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
3996 */
3997static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3998 struct usb_device *udev, u16 max_exit_latency)
3999{
4000 struct xhci_virt_device *virt_dev;
4001 struct xhci_command *command;
4002 struct xhci_input_control_ctx *ctrl_ctx;
4003 struct xhci_slot_ctx *slot_ctx;
4004 unsigned long flags;
4005 int ret;
4006
4007 spin_lock_irqsave(&xhci->lock, flags);
4008
4009 virt_dev = xhci->devs[udev->slot_id];
4010
4011 /*
4012 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4013 * xHC was re-initialized. Exit latency will be set later after
4014 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4015 */
4016
4017 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4018 spin_unlock_irqrestore(&xhci->lock, flags);
4019 return 0;
4020 }
4021
4022 /* Attempt to issue an Evaluate Context command to change the MEL. */
4023 command = xhci->lpm_command;
4024 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4025 if (!ctrl_ctx) {
4026 spin_unlock_irqrestore(&xhci->lock, flags);
4027 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4028 __func__);
4029 return -ENOMEM;
4030 }
4031
4032 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4033 spin_unlock_irqrestore(&xhci->lock, flags);
4034
4035 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4036 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4037 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4038 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4039 slot_ctx->dev_state = 0;
4040
4041 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4042 "Set up evaluate context for LPM MEL change.");
4043
4044 /* Issue and wait for the evaluate context command. */
4045 ret = xhci_configure_endpoint(xhci, udev, command,
4046 true, true);
4047
4048 if (!ret) {
4049 spin_lock_irqsave(&xhci->lock, flags);
4050 virt_dev->current_mel = max_exit_latency;
4051 spin_unlock_irqrestore(&xhci->lock, flags);
4052 }
4053 return ret;
4054}
4055
4056#ifdef CONFIG_PM
4057
4058/* BESL to HIRD Encoding array for USB2 LPM */
4059static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4060 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4061
4062/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4063static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4064 struct usb_device *udev)
4065{
4066 int u2del, besl, besl_host;
4067 int besl_device = 0;
4068 u32 field;
4069
4070 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4071 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4072
4073 if (field & USB_BESL_SUPPORT) {
4074 for (besl_host = 0; besl_host < 16; besl_host++) {
4075 if (xhci_besl_encoding[besl_host] >= u2del)
4076 break;
4077 }
4078 /* Use baseline BESL value as default */
4079 if (field & USB_BESL_BASELINE_VALID)
4080 besl_device = USB_GET_BESL_BASELINE(field);
4081 else if (field & USB_BESL_DEEP_VALID)
4082 besl_device = USB_GET_BESL_DEEP(field);
4083 } else {
4084 if (u2del <= 50)
4085 besl_host = 0;
4086 else
4087 besl_host = (u2del - 51) / 75 + 1;
4088 }
4089
4090 besl = besl_host + besl_device;
4091 if (besl > 15)
4092 besl = 15;
4093
4094 return besl;
4095}
4096
4097/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4098static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4099{
4100 u32 field;
4101 int l1;
4102 int besld = 0;
4103 int hirdm = 0;
4104
4105 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4106
4107 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4108 l1 = udev->l1_params.timeout / 256;
4109
4110 /* device has preferred BESLD */
4111 if (field & USB_BESL_DEEP_VALID) {
4112 besld = USB_GET_BESL_DEEP(field);
4113 hirdm = 1;
4114 }
4115
4116 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4117}
4118
4119static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4120 struct usb_device *udev, int enable)
4121{
4122 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4123 __le32 __iomem **port_array;
4124 __le32 __iomem *pm_addr, *hlpm_addr;
4125 u32 pm_val, hlpm_val, field;
4126 unsigned int port_num;
4127 unsigned long flags;
4128 int hird, exit_latency;
4129 int ret;
4130
4131 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4132 !udev->lpm_capable)
4133 return -EPERM;
4134
4135 if (!udev->parent || udev->parent->parent ||
4136 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4137 return -EPERM;
4138
4139 if (udev->usb2_hw_lpm_capable != 1)
4140 return -EPERM;
4141
4142 spin_lock_irqsave(&xhci->lock, flags);
4143
4144 port_array = xhci->usb2_ports;
4145 port_num = udev->portnum - 1;
4146 pm_addr = port_array[port_num] + PORTPMSC;
4147 pm_val = readl(pm_addr);
4148 hlpm_addr = port_array[port_num] + PORTHLPMC;
4149 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4150
4151 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4152 enable ? "enable" : "disable", port_num + 1);
4153
4154 if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4155 /* Host supports BESL timeout instead of HIRD */
4156 if (udev->usb2_hw_lpm_besl_capable) {
4157 /* if device doesn't have a preferred BESL value use a
4158 * default one which works with mixed HIRD and BESL
4159 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4160 */
4161 if ((field & USB_BESL_SUPPORT) &&
4162 (field & USB_BESL_BASELINE_VALID))
4163 hird = USB_GET_BESL_BASELINE(field);
4164 else
4165 hird = udev->l1_params.besl;
4166
4167 exit_latency = xhci_besl_encoding[hird];
4168 spin_unlock_irqrestore(&xhci->lock, flags);
4169
4170 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4171 * input context for link powermanagement evaluate
4172 * context commands. It is protected by hcd->bandwidth
4173 * mutex and is shared by all devices. We need to set
4174 * the max ext latency in USB 2 BESL LPM as well, so
4175 * use the same mutex and xhci_change_max_exit_latency()
4176 */
4177 mutex_lock(hcd->bandwidth_mutex);
4178 ret = xhci_change_max_exit_latency(xhci, udev,
4179 exit_latency);
4180 mutex_unlock(hcd->bandwidth_mutex);
4181
4182 if (ret < 0)
4183 return ret;
4184 spin_lock_irqsave(&xhci->lock, flags);
4185
4186 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4187 writel(hlpm_val, hlpm_addr);
4188 /* flush write */
4189 readl(hlpm_addr);
4190 } else {
4191 hird = xhci_calculate_hird_besl(xhci, udev);
4192 }
4193
4194 pm_val &= ~PORT_HIRD_MASK;
4195 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4196 writel(pm_val, pm_addr);
4197 pm_val = readl(pm_addr);
4198 pm_val |= PORT_HLE;
4199 writel(pm_val, pm_addr);
4200 /* flush write */
4201 readl(pm_addr);
4202 } else {
4203 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4204 writel(pm_val, pm_addr);
4205 /* flush write */
4206 readl(pm_addr);
4207 if (udev->usb2_hw_lpm_besl_capable) {
4208 spin_unlock_irqrestore(&xhci->lock, flags);
4209 mutex_lock(hcd->bandwidth_mutex);
4210 xhci_change_max_exit_latency(xhci, udev, 0);
4211 mutex_unlock(hcd->bandwidth_mutex);
4212 return 0;
4213 }
4214 }
4215
4216 spin_unlock_irqrestore(&xhci->lock, flags);
4217 return 0;
4218}
4219
4220/* check if a usb2 port supports a given extened capability protocol
4221 * only USB2 ports extended protocol capability values are cached.
4222 * Return 1 if capability is supported
4223 */
4224static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4225 unsigned capability)
4226{
4227 u32 port_offset, port_count;
4228 int i;
4229
4230 for (i = 0; i < xhci->num_ext_caps; i++) {
4231 if (xhci->ext_caps[i] & capability) {
4232 /* port offsets starts at 1 */
4233 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4234 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4235 if (port >= port_offset &&
4236 port < port_offset + port_count)
4237 return 1;
4238 }
4239 }
4240 return 0;
4241}
4242
4243static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4244{
4245 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4246 int portnum = udev->portnum - 1;
4247
4248 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4249 !udev->lpm_capable)
4250 return 0;
4251
4252 /* we only support lpm for non-hub device connected to root hub yet */
4253 if (!udev->parent || udev->parent->parent ||
4254 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4255 return 0;
4256
4257 if (xhci->hw_lpm_support == 1 &&
4258 xhci_check_usb2_port_capability(
4259 xhci, portnum, XHCI_HLC)) {
4260 udev->usb2_hw_lpm_capable = 1;
4261 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4262 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4263 if (xhci_check_usb2_port_capability(xhci, portnum,
4264 XHCI_BLC))
4265 udev->usb2_hw_lpm_besl_capable = 1;
4266 }
4267
4268 return 0;
4269}
4270
4271/*---------------------- USB 3.0 Link PM functions ------------------------*/
4272
4273/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4274static unsigned long long xhci_service_interval_to_ns(
4275 struct usb_endpoint_descriptor *desc)
4276{
4277 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4278}
4279
4280static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4281 enum usb3_link_state state)
4282{
4283 unsigned long long sel;
4284 unsigned long long pel;
4285 unsigned int max_sel_pel;
4286 char *state_name;
4287
4288 switch (state) {
4289 case USB3_LPM_U1:
4290 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4291 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4292 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4293 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4294 state_name = "U1";
4295 break;
4296 case USB3_LPM_U2:
4297 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4298 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4299 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4300 state_name = "U2";
4301 break;
4302 default:
4303 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4304 __func__);
4305 return USB3_LPM_DISABLED;
4306 }
4307
4308 if (sel <= max_sel_pel && pel <= max_sel_pel)
4309 return USB3_LPM_DEVICE_INITIATED;
4310
4311 if (sel > max_sel_pel)
4312 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4313 "due to long SEL %llu ms\n",
4314 state_name, sel);
4315 else
4316 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4317 "due to long PEL %llu ms\n",
4318 state_name, pel);
4319 return USB3_LPM_DISABLED;
4320}
4321
4322/* The U1 timeout should be the maximum of the following values:
4323 * - For control endpoints, U1 system exit latency (SEL) * 3
4324 * - For bulk endpoints, U1 SEL * 5
4325 * - For interrupt endpoints:
4326 * - Notification EPs, U1 SEL * 3
4327 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4328 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4329 */
4330static unsigned long long xhci_calculate_intel_u1_timeout(
4331 struct usb_device *udev,
4332 struct usb_endpoint_descriptor *desc)
4333{
4334 unsigned long long timeout_ns;
4335 int ep_type;
4336 int intr_type;
4337
4338 ep_type = usb_endpoint_type(desc);
4339 switch (ep_type) {
4340 case USB_ENDPOINT_XFER_CONTROL:
4341 timeout_ns = udev->u1_params.sel * 3;
4342 break;
4343 case USB_ENDPOINT_XFER_BULK:
4344 timeout_ns = udev->u1_params.sel * 5;
4345 break;
4346 case USB_ENDPOINT_XFER_INT:
4347 intr_type = usb_endpoint_interrupt_type(desc);
4348 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4349 timeout_ns = udev->u1_params.sel * 3;
4350 break;
4351 }
4352 /* Otherwise the calculation is the same as isoc eps */
4353 /* fall through */
4354 case USB_ENDPOINT_XFER_ISOC:
4355 timeout_ns = xhci_service_interval_to_ns(desc);
4356 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4357 if (timeout_ns < udev->u1_params.sel * 2)
4358 timeout_ns = udev->u1_params.sel * 2;
4359 break;
4360 default:
4361 return 0;
4362 }
4363
4364 return timeout_ns;
4365}
4366
4367/* Returns the hub-encoded U1 timeout value. */
4368static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4369 struct usb_device *udev,
4370 struct usb_endpoint_descriptor *desc)
4371{
4372 unsigned long long timeout_ns;
4373
4374 if (xhci->quirks & XHCI_INTEL_HOST)
4375 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4376 else
4377 timeout_ns = udev->u1_params.sel;
4378
4379 /* The U1 timeout is encoded in 1us intervals.
4380 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4381 */
4382 if (timeout_ns == USB3_LPM_DISABLED)
4383 timeout_ns = 1;
4384 else
4385 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4386
4387 /* If the necessary timeout value is bigger than what we can set in the
4388 * USB 3.0 hub, we have to disable hub-initiated U1.
4389 */
4390 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4391 return timeout_ns;
4392 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4393 "due to long timeout %llu ms\n", timeout_ns);
4394 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4395}
4396
4397/* The U2 timeout should be the maximum of:
4398 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4399 * - largest bInterval of any active periodic endpoint (to avoid going
4400 * into lower power link states between intervals).
4401 * - the U2 Exit Latency of the device
4402 */
4403static unsigned long long xhci_calculate_intel_u2_timeout(
4404 struct usb_device *udev,
4405 struct usb_endpoint_descriptor *desc)
4406{
4407 unsigned long long timeout_ns;
4408 unsigned long long u2_del_ns;
4409
4410 timeout_ns = 10 * 1000 * 1000;
4411
4412 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4413 (xhci_service_interval_to_ns(desc) > timeout_ns))
4414 timeout_ns = xhci_service_interval_to_ns(desc);
4415
4416 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4417 if (u2_del_ns > timeout_ns)
4418 timeout_ns = u2_del_ns;
4419
4420 return timeout_ns;
4421}
4422
4423/* Returns the hub-encoded U2 timeout value. */
4424static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4425 struct usb_device *udev,
4426 struct usb_endpoint_descriptor *desc)
4427{
4428 unsigned long long timeout_ns;
4429
4430 if (xhci->quirks & XHCI_INTEL_HOST)
4431 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4432 else
4433 timeout_ns = udev->u2_params.sel;
4434
4435 /* The U2 timeout is encoded in 256us intervals */
4436 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4437 /* If the necessary timeout value is bigger than what we can set in the
4438 * USB 3.0 hub, we have to disable hub-initiated U2.
4439 */
4440 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4441 return timeout_ns;
4442 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4443 "due to long timeout %llu ms\n", timeout_ns);
4444 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4445}
4446
4447static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4448 struct usb_device *udev,
4449 struct usb_endpoint_descriptor *desc,
4450 enum usb3_link_state state,
4451 u16 *timeout)
4452{
4453 if (state == USB3_LPM_U1)
4454 return xhci_calculate_u1_timeout(xhci, udev, desc);
4455 else if (state == USB3_LPM_U2)
4456 return xhci_calculate_u2_timeout(xhci, udev, desc);
4457
4458 return USB3_LPM_DISABLED;
4459}
4460
4461static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4462 struct usb_device *udev,
4463 struct usb_endpoint_descriptor *desc,
4464 enum usb3_link_state state,
4465 u16 *timeout)
4466{
4467 u16 alt_timeout;
4468
4469 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4470 desc, state, timeout);
4471
4472 /* If we found we can't enable hub-initiated LPM, or
4473 * the U1 or U2 exit latency was too high to allow
4474 * device-initiated LPM as well, just stop searching.
4475 */
4476 if (alt_timeout == USB3_LPM_DISABLED ||
4477 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4478 *timeout = alt_timeout;
4479 return -E2BIG;
4480 }
4481 if (alt_timeout > *timeout)
4482 *timeout = alt_timeout;
4483 return 0;
4484}
4485
4486static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4487 struct usb_device *udev,
4488 struct usb_host_interface *alt,
4489 enum usb3_link_state state,
4490 u16 *timeout)
4491{
4492 int j;
4493
4494 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4495 if (xhci_update_timeout_for_endpoint(xhci, udev,
4496 &alt->endpoint[j].desc, state, timeout))
4497 return -E2BIG;
4498 continue;
4499 }
4500 return 0;
4501}
4502
4503static int xhci_check_intel_tier_policy(struct usb_device *udev,
4504 enum usb3_link_state state)
4505{
4506 struct usb_device *parent;
4507 unsigned int num_hubs;
4508
4509 if (state == USB3_LPM_U2)
4510 return 0;
4511
4512 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4513 for (parent = udev->parent, num_hubs = 0; parent->parent;
4514 parent = parent->parent)
4515 num_hubs++;
4516
4517 if (num_hubs < 2)
4518 return 0;
4519
4520 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4521 " below second-tier hub.\n");
4522 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4523 "to decrease power consumption.\n");
4524 return -E2BIG;
4525}
4526
4527static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4528 struct usb_device *udev,
4529 enum usb3_link_state state)
4530{
4531 if (xhci->quirks & XHCI_INTEL_HOST)
4532 return xhci_check_intel_tier_policy(udev, state);
4533 else
4534 return 0;
4535}
4536
4537/* Returns the U1 or U2 timeout that should be enabled.
4538 * If the tier check or timeout setting functions return with a non-zero exit
4539 * code, that means the timeout value has been finalized and we shouldn't look
4540 * at any more endpoints.
4541 */
4542static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4543 struct usb_device *udev, enum usb3_link_state state)
4544{
4545 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4546 struct usb_host_config *config;
4547 char *state_name;
4548 int i;
4549 u16 timeout = USB3_LPM_DISABLED;
4550
4551 if (state == USB3_LPM_U1)
4552 state_name = "U1";
4553 else if (state == USB3_LPM_U2)
4554 state_name = "U2";
4555 else {
4556 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4557 state);
4558 return timeout;
4559 }
4560
4561 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4562 return timeout;
4563
4564 /* Gather some information about the currently installed configuration
4565 * and alternate interface settings.
4566 */
4567 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4568 state, &timeout))
4569 return timeout;
4570
4571 config = udev->actconfig;
4572 if (!config)
4573 return timeout;
4574
4575 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4576 struct usb_driver *driver;
4577 struct usb_interface *intf = config->interface[i];
4578
4579 if (!intf)
4580 continue;
4581
4582 /* Check if any currently bound drivers want hub-initiated LPM
4583 * disabled.
4584 */
4585 if (intf->dev.driver) {
4586 driver = to_usb_driver(intf->dev.driver);
4587 if (driver && driver->disable_hub_initiated_lpm) {
4588 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4589 "at request of driver %s\n",
4590 state_name, driver->name);
4591 return xhci_get_timeout_no_hub_lpm(udev, state);
4592 }
4593 }
4594
4595 /* Not sure how this could happen... */
4596 if (!intf->cur_altsetting)
4597 continue;
4598
4599 if (xhci_update_timeout_for_interface(xhci, udev,
4600 intf->cur_altsetting,
4601 state, &timeout))
4602 return timeout;
4603 }
4604 return timeout;
4605}
4606
4607static int calculate_max_exit_latency(struct usb_device *udev,
4608 enum usb3_link_state state_changed,
4609 u16 hub_encoded_timeout)
4610{
4611 unsigned long long u1_mel_us = 0;
4612 unsigned long long u2_mel_us = 0;
4613 unsigned long long mel_us = 0;
4614 bool disabling_u1;
4615 bool disabling_u2;
4616 bool enabling_u1;
4617 bool enabling_u2;
4618
4619 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4620 hub_encoded_timeout == USB3_LPM_DISABLED);
4621 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4622 hub_encoded_timeout == USB3_LPM_DISABLED);
4623
4624 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4625 hub_encoded_timeout != USB3_LPM_DISABLED);
4626 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4627 hub_encoded_timeout != USB3_LPM_DISABLED);
4628
4629 /* If U1 was already enabled and we're not disabling it,
4630 * or we're going to enable U1, account for the U1 max exit latency.
4631 */
4632 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4633 enabling_u1)
4634 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4635 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4636 enabling_u2)
4637 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4638
4639 if (u1_mel_us > u2_mel_us)
4640 mel_us = u1_mel_us;
4641 else
4642 mel_us = u2_mel_us;
4643 /* xHCI host controller max exit latency field is only 16 bits wide. */
4644 if (mel_us > MAX_EXIT) {
4645 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4646 "is too big.\n", mel_us);
4647 return -E2BIG;
4648 }
4649 return mel_us;
4650}
4651
4652/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4653static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4654 struct usb_device *udev, enum usb3_link_state state)
4655{
4656 struct xhci_hcd *xhci;
4657 u16 hub_encoded_timeout;
4658 int mel;
4659 int ret;
4660
4661 xhci = hcd_to_xhci(hcd);
4662 /* The LPM timeout values are pretty host-controller specific, so don't
4663 * enable hub-initiated timeouts unless the vendor has provided
4664 * information about their timeout algorithm.
4665 */
4666 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4667 !xhci->devs[udev->slot_id])
4668 return USB3_LPM_DISABLED;
4669
4670 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4671 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4672 if (mel < 0) {
4673 /* Max Exit Latency is too big, disable LPM. */
4674 hub_encoded_timeout = USB3_LPM_DISABLED;
4675 mel = 0;
4676 }
4677
4678 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4679 if (ret)
4680 return ret;
4681 return hub_encoded_timeout;
4682}
4683
4684static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4685 struct usb_device *udev, enum usb3_link_state state)
4686{
4687 struct xhci_hcd *xhci;
4688 u16 mel;
4689
4690 xhci = hcd_to_xhci(hcd);
4691 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4692 !xhci->devs[udev->slot_id])
4693 return 0;
4694
4695 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4696 return xhci_change_max_exit_latency(xhci, udev, mel);
4697}
4698#else /* CONFIG_PM */
4699
4700static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4701 struct usb_device *udev, int enable)
4702{
4703 return 0;
4704}
4705
4706static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4707{
4708 return 0;
4709}
4710
4711static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4712 struct usb_device *udev, enum usb3_link_state state)
4713{
4714 return USB3_LPM_DISABLED;
4715}
4716
4717static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4718 struct usb_device *udev, enum usb3_link_state state)
4719{
4720 return 0;
4721}
4722#endif /* CONFIG_PM */
4723
4724/*-------------------------------------------------------------------------*/
4725
4726/* Once a hub descriptor is fetched for a device, we need to update the xHC's
4727 * internal data structures for the device.
4728 */
4729static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4730 struct usb_tt *tt, gfp_t mem_flags)
4731{
4732 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4733 struct xhci_virt_device *vdev;
4734 struct xhci_command *config_cmd;
4735 struct xhci_input_control_ctx *ctrl_ctx;
4736 struct xhci_slot_ctx *slot_ctx;
4737 unsigned long flags;
4738 unsigned think_time;
4739 int ret;
4740
4741 /* Ignore root hubs */
4742 if (!hdev->parent)
4743 return 0;
4744
4745 vdev = xhci->devs[hdev->slot_id];
4746 if (!vdev) {
4747 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4748 return -EINVAL;
4749 }
4750
4751 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4752 if (!config_cmd)
4753 return -ENOMEM;
4754
4755 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4756 if (!ctrl_ctx) {
4757 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4758 __func__);
4759 xhci_free_command(xhci, config_cmd);
4760 return -ENOMEM;
4761 }
4762
4763 spin_lock_irqsave(&xhci->lock, flags);
4764 if (hdev->speed == USB_SPEED_HIGH &&
4765 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4766 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4767 xhci_free_command(xhci, config_cmd);
4768 spin_unlock_irqrestore(&xhci->lock, flags);
4769 return -ENOMEM;
4770 }
4771
4772 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4773 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4774 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4775 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4776 /*
4777 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4778 * but it may be already set to 1 when setup an xHCI virtual
4779 * device, so clear it anyway.
4780 */
4781 if (tt->multi)
4782 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4783 else if (hdev->speed == USB_SPEED_FULL)
4784 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4785
4786 if (xhci->hci_version > 0x95) {
4787 xhci_dbg(xhci, "xHCI version %x needs hub "
4788 "TT think time and number of ports\n",
4789 (unsigned int) xhci->hci_version);
4790 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4791 /* Set TT think time - convert from ns to FS bit times.
4792 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4793 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4794 *
4795 * xHCI 1.0: this field shall be 0 if the device is not a
4796 * High-spped hub.
4797 */
4798 think_time = tt->think_time;
4799 if (think_time != 0)
4800 think_time = (think_time / 666) - 1;
4801 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4802 slot_ctx->tt_info |=
4803 cpu_to_le32(TT_THINK_TIME(think_time));
4804 } else {
4805 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4806 "TT think time or number of ports\n",
4807 (unsigned int) xhci->hci_version);
4808 }
4809 slot_ctx->dev_state = 0;
4810 spin_unlock_irqrestore(&xhci->lock, flags);
4811
4812 xhci_dbg(xhci, "Set up %s for hub device.\n",
4813 (xhci->hci_version > 0x95) ?
4814 "configure endpoint" : "evaluate context");
4815
4816 /* Issue and wait for the configure endpoint or
4817 * evaluate context command.
4818 */
4819 if (xhci->hci_version > 0x95)
4820 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4821 false, false);
4822 else
4823 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4824 true, false);
4825
4826 xhci_free_command(xhci, config_cmd);
4827 return ret;
4828}
4829
4830static int xhci_get_frame(struct usb_hcd *hcd)
4831{
4832 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4833 /* EHCI mods by the periodic size. Why? */
4834 return readl(&xhci->run_regs->microframe_index) >> 3;
4835}
4836
4837int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4838{
4839 struct xhci_hcd *xhci;
4840 /*
4841 * TODO: Check with DWC3 clients for sysdev according to
4842 * quirks
4843 */
4844 struct device *dev = hcd->self.sysdev;
4845 unsigned int minor_rev;
4846 int retval;
4847
4848 /* Accept arbitrarily long scatter-gather lists */
4849 hcd->self.sg_tablesize = ~0;
4850
4851 /* support to build packet from discontinuous buffers */
4852 hcd->self.no_sg_constraint = 1;
4853
4854 /* XHCI controllers don't stop the ep queue on short packets :| */
4855 hcd->self.no_stop_on_short = 1;
4856
4857 xhci = hcd_to_xhci(hcd);
4858
4859 if (usb_hcd_is_primary_hcd(hcd)) {
4860 xhci->main_hcd = hcd;
4861 /* Mark the first roothub as being USB 2.0.
4862 * The xHCI driver will register the USB 3.0 roothub.
4863 */
4864 hcd->speed = HCD_USB2;
4865 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4866 /*
4867 * USB 2.0 roothub under xHCI has an integrated TT,
4868 * (rate matching hub) as opposed to having an OHCI/UHCI
4869 * companion controller.
4870 */
4871 hcd->has_tt = 1;
4872 } else {
4873 /*
4874 * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol
4875 * minor revision instead of sbrn
4876 */
4877 minor_rev = xhci->usb3_rhub.min_rev;
4878 if (minor_rev) {
4879 hcd->speed = HCD_USB31;
4880 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4881 }
4882 xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n",
4883 minor_rev,
4884 minor_rev ? "Enhanced" : "");
4885
4886 /* xHCI private pointer was set in xhci_pci_probe for the second
4887 * registered roothub.
4888 */
4889 return 0;
4890 }
4891
4892 mutex_init(&xhci->mutex);
4893 xhci->cap_regs = hcd->regs;
4894 xhci->op_regs = hcd->regs +
4895 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4896 xhci->run_regs = hcd->regs +
4897 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4898 /* Cache read-only capability registers */
4899 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4900 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4901 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4902 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4903 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4904 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4905 if (xhci->hci_version > 0x100)
4906 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4907
4908 xhci->quirks |= quirks;
4909
4910 get_quirks(dev, xhci);
4911
4912 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4913 * success event after a short transfer. This quirk will ignore such
4914 * spurious event.
4915 */
4916 if (xhci->hci_version > 0x96)
4917 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4918
4919 /* Make sure the HC is halted. */
4920 retval = xhci_halt(xhci);
4921 if (retval)
4922 return retval;
4923
4924 xhci_dbg(xhci, "Resetting HCD\n");
4925 /* Reset the internal HC memory state and registers. */
4926 retval = xhci_reset(xhci);
4927 if (retval)
4928 return retval;
4929 xhci_dbg(xhci, "Reset complete\n");
4930
4931 /*
4932 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4933 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4934 * address memory pointers actually. So, this driver clears the AC64
4935 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4936 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4937 */
4938 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4939 xhci->hcc_params &= ~BIT(0);
4940
4941 /* Set dma_mask and coherent_dma_mask to 64-bits,
4942 * if xHC supports 64-bit addressing */
4943 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4944 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4945 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4946 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4947 } else {
4948 /*
4949 * This is to avoid error in cases where a 32-bit USB
4950 * controller is used on a 64-bit capable system.
4951 */
4952 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4953 if (retval)
4954 return retval;
4955 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4956 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4957 }
4958
4959 xhci_dbg(xhci, "Calling HCD init\n");
4960 /* Initialize HCD and host controller data structures. */
4961 retval = xhci_init(hcd);
4962 if (retval)
4963 return retval;
4964 xhci_dbg(xhci, "Called HCD init\n");
4965
4966 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4967 xhci->hcc_params, xhci->hci_version, xhci->quirks);
4968
4969 return 0;
4970}
4971EXPORT_SYMBOL_GPL(xhci_gen_setup);
4972
4973static const struct hc_driver xhci_hc_driver = {
4974 .description = "xhci-hcd",
4975 .product_desc = "xHCI Host Controller",
4976 .hcd_priv_size = sizeof(struct xhci_hcd),
4977
4978 /*
4979 * generic hardware linkage
4980 */
4981 .irq = xhci_irq,
4982 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4983
4984 /*
4985 * basic lifecycle operations
4986 */
4987 .reset = NULL, /* set in xhci_init_driver() */
4988 .start = xhci_run,
4989 .stop = xhci_stop,
4990 .shutdown = xhci_shutdown,
4991
4992 /*
4993 * managing i/o requests and associated device resources
4994 */
4995 .urb_enqueue = xhci_urb_enqueue,
4996 .urb_dequeue = xhci_urb_dequeue,
4997 .alloc_dev = xhci_alloc_dev,
4998 .free_dev = xhci_free_dev,
4999 .alloc_streams = xhci_alloc_streams,
5000 .free_streams = xhci_free_streams,
5001 .add_endpoint = xhci_add_endpoint,
5002 .drop_endpoint = xhci_drop_endpoint,
5003 .endpoint_reset = xhci_endpoint_reset,
5004 .check_bandwidth = xhci_check_bandwidth,
5005 .reset_bandwidth = xhci_reset_bandwidth,
5006 .address_device = xhci_address_device,
5007 .enable_device = xhci_enable_device,
5008 .update_hub_device = xhci_update_hub_device,
5009 .reset_device = xhci_discover_or_reset_device,
5010
5011 /*
5012 * scheduling support
5013 */
5014 .get_frame_number = xhci_get_frame,
5015
5016 /*
5017 * root hub support
5018 */
5019 .hub_control = xhci_hub_control,
5020 .hub_status_data = xhci_hub_status_data,
5021 .bus_suspend = xhci_bus_suspend,
5022 .bus_resume = xhci_bus_resume,
5023
5024 /*
5025 * call back when device connected and addressed
5026 */
5027 .update_device = xhci_update_device,
5028 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5029 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5030 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5031 .find_raw_port_number = xhci_find_raw_port_number,
5032};
5033
5034void xhci_init_driver(struct hc_driver *drv,
5035 const struct xhci_driver_overrides *over)
5036{
5037 BUG_ON(!over);
5038
5039 /* Copy the generic table to drv then apply the overrides */
5040 *drv = xhci_hc_driver;
5041
5042 if (over) {
5043 drv->hcd_priv_size += over->extra_priv_size;
5044 if (over->reset)
5045 drv->reset = over->reset;
5046 if (over->start)
5047 drv->start = over->start;
5048 }
5049}
5050EXPORT_SYMBOL_GPL(xhci_init_driver);
5051
5052MODULE_DESCRIPTION(DRIVER_DESC);
5053MODULE_AUTHOR(DRIVER_AUTHOR);
5054MODULE_LICENSE("GPL");
5055
5056static int __init xhci_hcd_init(void)
5057{
5058 /*
5059 * Check the compiler generated sizes of structures that must be laid
5060 * out in specific ways for hardware access.
5061 */
5062 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5063 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5064 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5065 /* xhci_device_control has eight fields, and also
5066 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5067 */
5068 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5069 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5070 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5071 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5072 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5073 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5074 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5075
5076 if (usb_disabled())
5077 return -ENODEV;
5078
5079 xhci_debugfs_create_root();
5080
5081 return 0;
5082}
5083
5084/*
5085 * If an init function is provided, an exit function must also be provided
5086 * to allow module unload.
5087 */
5088static void __exit xhci_hcd_fini(void)
5089{
5090 xhci_debugfs_remove_root();
5091}
5092
5093module_init(xhci_hcd_init);
5094module_exit(xhci_hcd_fini);
1/*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23#include <linux/pci.h>
24#include <linux/irq.h>
25#include <linux/log2.h>
26#include <linux/module.h>
27#include <linux/moduleparam.h>
28#include <linux/slab.h>
29#include <linux/dmi.h>
30#include <linux/dma-mapping.h>
31
32#include "xhci.h"
33#include "xhci-trace.h"
34#include "xhci-mtk.h"
35
36#define DRIVER_AUTHOR "Sarah Sharp"
37#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38
39#define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40
41/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42static int link_quirk;
43module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45
46static unsigned int quirks;
47module_param(quirks, uint, S_IRUGO);
48MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49
50/* TODO: copied from ehci-hcd.c - can this be refactored? */
51/*
52 * xhci_handshake - spin reading hc until handshake completes or fails
53 * @ptr: address of hc register to be read
54 * @mask: bits to look at in result of read
55 * @done: value of those bits when handshake succeeds
56 * @usec: timeout in microseconds
57 *
58 * Returns negative errno, or zero on success
59 *
60 * Success happens when the "mask" bits have the specified value (hardware
61 * handshake done). There are two failure modes: "usec" have passed (major
62 * hardware flakeout), or the register reads as all-ones (hardware removed).
63 */
64int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65{
66 u32 result;
67
68 do {
69 result = readl(ptr);
70 if (result == ~(u32)0) /* card removed */
71 return -ENODEV;
72 result &= mask;
73 if (result == done)
74 return 0;
75 udelay(1);
76 usec--;
77 } while (usec > 0);
78 return -ETIMEDOUT;
79}
80
81/*
82 * Disable interrupts and begin the xHCI halting process.
83 */
84void xhci_quiesce(struct xhci_hcd *xhci)
85{
86 u32 halted;
87 u32 cmd;
88 u32 mask;
89
90 mask = ~(XHCI_IRQS);
91 halted = readl(&xhci->op_regs->status) & STS_HALT;
92 if (!halted)
93 mask &= ~CMD_RUN;
94
95 cmd = readl(&xhci->op_regs->command);
96 cmd &= mask;
97 writel(cmd, &xhci->op_regs->command);
98}
99
100/*
101 * Force HC into halt state.
102 *
103 * Disable any IRQs and clear the run/stop bit.
104 * HC will complete any current and actively pipelined transactions, and
105 * should halt within 16 ms of the run/stop bit being cleared.
106 * Read HC Halted bit in the status register to see when the HC is finished.
107 */
108int xhci_halt(struct xhci_hcd *xhci)
109{
110 int ret;
111 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112 xhci_quiesce(xhci);
113
114 ret = xhci_handshake(&xhci->op_regs->status,
115 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116 if (ret) {
117 xhci_warn(xhci, "Host halt failed, %d\n", ret);
118 return ret;
119 }
120 xhci->xhc_state |= XHCI_STATE_HALTED;
121 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
122 return ret;
123}
124
125/*
126 * Set the run bit and wait for the host to be running.
127 */
128static int xhci_start(struct xhci_hcd *xhci)
129{
130 u32 temp;
131 int ret;
132
133 temp = readl(&xhci->op_regs->command);
134 temp |= (CMD_RUN);
135 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136 temp);
137 writel(temp, &xhci->op_regs->command);
138
139 /*
140 * Wait for the HCHalted Status bit to be 0 to indicate the host is
141 * running.
142 */
143 ret = xhci_handshake(&xhci->op_regs->status,
144 STS_HALT, 0, XHCI_MAX_HALT_USEC);
145 if (ret == -ETIMEDOUT)
146 xhci_err(xhci, "Host took too long to start, "
147 "waited %u microseconds.\n",
148 XHCI_MAX_HALT_USEC);
149 if (!ret)
150 /* clear state flags. Including dying, halted or removing */
151 xhci->xhc_state = 0;
152
153 return ret;
154}
155
156/*
157 * Reset a halted HC.
158 *
159 * This resets pipelines, timers, counters, state machines, etc.
160 * Transactions will be terminated immediately, and operational registers
161 * will be set to their defaults.
162 */
163int xhci_reset(struct xhci_hcd *xhci)
164{
165 u32 command;
166 u32 state;
167 int ret, i;
168
169 state = readl(&xhci->op_regs->status);
170
171 if (state == ~(u32)0) {
172 xhci_warn(xhci, "Host not accessible, reset failed.\n");
173 return -ENODEV;
174 }
175
176 if ((state & STS_HALT) == 0) {
177 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
178 return 0;
179 }
180
181 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
182 command = readl(&xhci->op_regs->command);
183 command |= CMD_RESET;
184 writel(command, &xhci->op_regs->command);
185
186 /* Existing Intel xHCI controllers require a delay of 1 mS,
187 * after setting the CMD_RESET bit, and before accessing any
188 * HC registers. This allows the HC to complete the
189 * reset operation and be ready for HC register access.
190 * Without this delay, the subsequent HC register access,
191 * may result in a system hang very rarely.
192 */
193 if (xhci->quirks & XHCI_INTEL_HOST)
194 udelay(1000);
195
196 ret = xhci_handshake(&xhci->op_regs->command,
197 CMD_RESET, 0, 10 * 1000 * 1000);
198 if (ret)
199 return ret;
200
201 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
202 "Wait for controller to be ready for doorbell rings");
203 /*
204 * xHCI cannot write to any doorbells or operational registers other
205 * than status until the "Controller Not Ready" flag is cleared.
206 */
207 ret = xhci_handshake(&xhci->op_regs->status,
208 STS_CNR, 0, 10 * 1000 * 1000);
209
210 for (i = 0; i < 2; ++i) {
211 xhci->bus_state[i].port_c_suspend = 0;
212 xhci->bus_state[i].suspended_ports = 0;
213 xhci->bus_state[i].resuming_ports = 0;
214 }
215
216 return ret;
217}
218
219#ifdef CONFIG_PCI
220static int xhci_free_msi(struct xhci_hcd *xhci)
221{
222 int i;
223
224 if (!xhci->msix_entries)
225 return -EINVAL;
226
227 for (i = 0; i < xhci->msix_count; i++)
228 if (xhci->msix_entries[i].vector)
229 free_irq(xhci->msix_entries[i].vector,
230 xhci_to_hcd(xhci));
231 return 0;
232}
233
234/*
235 * Set up MSI
236 */
237static int xhci_setup_msi(struct xhci_hcd *xhci)
238{
239 int ret;
240 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
241
242 ret = pci_enable_msi(pdev);
243 if (ret) {
244 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
245 "failed to allocate MSI entry");
246 return ret;
247 }
248
249 ret = request_irq(pdev->irq, xhci_msi_irq,
250 0, "xhci_hcd", xhci_to_hcd(xhci));
251 if (ret) {
252 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
253 "disable MSI interrupt");
254 pci_disable_msi(pdev);
255 }
256
257 return ret;
258}
259
260/*
261 * Free IRQs
262 * free all IRQs request
263 */
264static void xhci_free_irq(struct xhci_hcd *xhci)
265{
266 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
267 int ret;
268
269 /* return if using legacy interrupt */
270 if (xhci_to_hcd(xhci)->irq > 0)
271 return;
272
273 ret = xhci_free_msi(xhci);
274 if (!ret)
275 return;
276 if (pdev->irq > 0)
277 free_irq(pdev->irq, xhci_to_hcd(xhci));
278
279 return;
280}
281
282/*
283 * Set up MSI-X
284 */
285static int xhci_setup_msix(struct xhci_hcd *xhci)
286{
287 int i, ret = 0;
288 struct usb_hcd *hcd = xhci_to_hcd(xhci);
289 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
290
291 /*
292 * calculate number of msi-x vectors supported.
293 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
294 * with max number of interrupters based on the xhci HCSPARAMS1.
295 * - num_online_cpus: maximum msi-x vectors per CPUs core.
296 * Add additional 1 vector to ensure always available interrupt.
297 */
298 xhci->msix_count = min(num_online_cpus() + 1,
299 HCS_MAX_INTRS(xhci->hcs_params1));
300
301 xhci->msix_entries =
302 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
303 GFP_KERNEL);
304 if (!xhci->msix_entries)
305 return -ENOMEM;
306
307 for (i = 0; i < xhci->msix_count; i++) {
308 xhci->msix_entries[i].entry = i;
309 xhci->msix_entries[i].vector = 0;
310 }
311
312 ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
313 if (ret) {
314 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
315 "Failed to enable MSI-X");
316 goto free_entries;
317 }
318
319 for (i = 0; i < xhci->msix_count; i++) {
320 ret = request_irq(xhci->msix_entries[i].vector,
321 xhci_msi_irq,
322 0, "xhci_hcd", xhci_to_hcd(xhci));
323 if (ret)
324 goto disable_msix;
325 }
326
327 hcd->msix_enabled = 1;
328 return ret;
329
330disable_msix:
331 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
332 xhci_free_irq(xhci);
333 pci_disable_msix(pdev);
334free_entries:
335 kfree(xhci->msix_entries);
336 xhci->msix_entries = NULL;
337 return ret;
338}
339
340/* Free any IRQs and disable MSI-X */
341static void xhci_cleanup_msix(struct xhci_hcd *xhci)
342{
343 struct usb_hcd *hcd = xhci_to_hcd(xhci);
344 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
345
346 if (xhci->quirks & XHCI_PLAT)
347 return;
348
349 xhci_free_irq(xhci);
350
351 if (xhci->msix_entries) {
352 pci_disable_msix(pdev);
353 kfree(xhci->msix_entries);
354 xhci->msix_entries = NULL;
355 } else {
356 pci_disable_msi(pdev);
357 }
358
359 hcd->msix_enabled = 0;
360 return;
361}
362
363static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
364{
365 int i;
366
367 if (xhci->msix_entries) {
368 for (i = 0; i < xhci->msix_count; i++)
369 synchronize_irq(xhci->msix_entries[i].vector);
370 }
371}
372
373static int xhci_try_enable_msi(struct usb_hcd *hcd)
374{
375 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
376 struct pci_dev *pdev;
377 int ret;
378
379 /* The xhci platform device has set up IRQs through usb_add_hcd. */
380 if (xhci->quirks & XHCI_PLAT)
381 return 0;
382
383 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
384 /*
385 * Some Fresco Logic host controllers advertise MSI, but fail to
386 * generate interrupts. Don't even try to enable MSI.
387 */
388 if (xhci->quirks & XHCI_BROKEN_MSI)
389 goto legacy_irq;
390
391 /* unregister the legacy interrupt */
392 if (hcd->irq)
393 free_irq(hcd->irq, hcd);
394 hcd->irq = 0;
395
396 ret = xhci_setup_msix(xhci);
397 if (ret)
398 /* fall back to msi*/
399 ret = xhci_setup_msi(xhci);
400
401 if (!ret)
402 /* hcd->irq is 0, we have MSI */
403 return 0;
404
405 if (!pdev->irq) {
406 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
407 return -EINVAL;
408 }
409
410 legacy_irq:
411 if (!strlen(hcd->irq_descr))
412 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
413 hcd->driver->description, hcd->self.busnum);
414
415 /* fall back to legacy interrupt*/
416 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
417 hcd->irq_descr, hcd);
418 if (ret) {
419 xhci_err(xhci, "request interrupt %d failed\n",
420 pdev->irq);
421 return ret;
422 }
423 hcd->irq = pdev->irq;
424 return 0;
425}
426
427#else
428
429static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
430{
431 return 0;
432}
433
434static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
435{
436}
437
438static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
439{
440}
441
442#endif
443
444static void compliance_mode_recovery(unsigned long arg)
445{
446 struct xhci_hcd *xhci;
447 struct usb_hcd *hcd;
448 u32 temp;
449 int i;
450
451 xhci = (struct xhci_hcd *)arg;
452
453 for (i = 0; i < xhci->num_usb3_ports; i++) {
454 temp = readl(xhci->usb3_ports[i]);
455 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
456 /*
457 * Compliance Mode Detected. Letting USB Core
458 * handle the Warm Reset
459 */
460 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
461 "Compliance mode detected->port %d",
462 i + 1);
463 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
464 "Attempting compliance mode recovery");
465 hcd = xhci->shared_hcd;
466
467 if (hcd->state == HC_STATE_SUSPENDED)
468 usb_hcd_resume_root_hub(hcd);
469
470 usb_hcd_poll_rh_status(hcd);
471 }
472 }
473
474 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
475 mod_timer(&xhci->comp_mode_recovery_timer,
476 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
477}
478
479/*
480 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
481 * that causes ports behind that hardware to enter compliance mode sometimes.
482 * The quirk creates a timer that polls every 2 seconds the link state of
483 * each host controller's port and recovers it by issuing a Warm reset
484 * if Compliance mode is detected, otherwise the port will become "dead" (no
485 * device connections or disconnections will be detected anymore). Becasue no
486 * status event is generated when entering compliance mode (per xhci spec),
487 * this quirk is needed on systems that have the failing hardware installed.
488 */
489static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
490{
491 xhci->port_status_u0 = 0;
492 setup_timer(&xhci->comp_mode_recovery_timer,
493 compliance_mode_recovery, (unsigned long)xhci);
494 xhci->comp_mode_recovery_timer.expires = jiffies +
495 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
496
497 add_timer(&xhci->comp_mode_recovery_timer);
498 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
499 "Compliance mode recovery timer initialized");
500}
501
502/*
503 * This function identifies the systems that have installed the SN65LVPE502CP
504 * USB3.0 re-driver and that need the Compliance Mode Quirk.
505 * Systems:
506 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
507 */
508static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
509{
510 const char *dmi_product_name, *dmi_sys_vendor;
511
512 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
513 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
514 if (!dmi_product_name || !dmi_sys_vendor)
515 return false;
516
517 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
518 return false;
519
520 if (strstr(dmi_product_name, "Z420") ||
521 strstr(dmi_product_name, "Z620") ||
522 strstr(dmi_product_name, "Z820") ||
523 strstr(dmi_product_name, "Z1 Workstation"))
524 return true;
525
526 return false;
527}
528
529static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
530{
531 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
532}
533
534
535/*
536 * Initialize memory for HCD and xHC (one-time init).
537 *
538 * Program the PAGESIZE register, initialize the device context array, create
539 * device contexts (?), set up a command ring segment (or two?), create event
540 * ring (one for now).
541 */
542int xhci_init(struct usb_hcd *hcd)
543{
544 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
545 int retval = 0;
546
547 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
548 spin_lock_init(&xhci->lock);
549 if (xhci->hci_version == 0x95 && link_quirk) {
550 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
551 "QUIRK: Not clearing Link TRB chain bits.");
552 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
553 } else {
554 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
555 "xHCI doesn't need link TRB QUIRK");
556 }
557 retval = xhci_mem_init(xhci, GFP_KERNEL);
558 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
559
560 /* Initializing Compliance Mode Recovery Data If Needed */
561 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
562 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
563 compliance_mode_recovery_timer_init(xhci);
564 }
565
566 return retval;
567}
568
569/*-------------------------------------------------------------------------*/
570
571
572static int xhci_run_finished(struct xhci_hcd *xhci)
573{
574 if (xhci_start(xhci)) {
575 xhci_halt(xhci);
576 return -ENODEV;
577 }
578 xhci->shared_hcd->state = HC_STATE_RUNNING;
579 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
580
581 if (xhci->quirks & XHCI_NEC_HOST)
582 xhci_ring_cmd_db(xhci);
583
584 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
585 "Finished xhci_run for USB3 roothub");
586 return 0;
587}
588
589/*
590 * Start the HC after it was halted.
591 *
592 * This function is called by the USB core when the HC driver is added.
593 * Its opposite is xhci_stop().
594 *
595 * xhci_init() must be called once before this function can be called.
596 * Reset the HC, enable device slot contexts, program DCBAAP, and
597 * set command ring pointer and event ring pointer.
598 *
599 * Setup MSI-X vectors and enable interrupts.
600 */
601int xhci_run(struct usb_hcd *hcd)
602{
603 u32 temp;
604 u64 temp_64;
605 int ret;
606 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
607
608 /* Start the xHCI host controller running only after the USB 2.0 roothub
609 * is setup.
610 */
611
612 hcd->uses_new_polling = 1;
613 if (!usb_hcd_is_primary_hcd(hcd))
614 return xhci_run_finished(xhci);
615
616 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
617
618 ret = xhci_try_enable_msi(hcd);
619 if (ret)
620 return ret;
621
622 xhci_dbg(xhci, "Command ring memory map follows:\n");
623 xhci_debug_ring(xhci, xhci->cmd_ring);
624 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
625 xhci_dbg_cmd_ptrs(xhci);
626
627 xhci_dbg(xhci, "ERST memory map follows:\n");
628 xhci_dbg_erst(xhci, &xhci->erst);
629 xhci_dbg(xhci, "Event ring:\n");
630 xhci_debug_ring(xhci, xhci->event_ring);
631 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
632 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
633 temp_64 &= ~ERST_PTR_MASK;
634 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
636
637 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
638 "// Set the interrupt modulation register");
639 temp = readl(&xhci->ir_set->irq_control);
640 temp &= ~ER_IRQ_INTERVAL_MASK;
641 /*
642 * the increment interval is 8 times as much as that defined
643 * in xHCI spec on MTK's controller
644 */
645 temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
646 writel(temp, &xhci->ir_set->irq_control);
647
648 /* Set the HCD state before we enable the irqs */
649 temp = readl(&xhci->op_regs->command);
650 temp |= (CMD_EIE);
651 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
652 "// Enable interrupts, cmd = 0x%x.", temp);
653 writel(temp, &xhci->op_regs->command);
654
655 temp = readl(&xhci->ir_set->irq_pending);
656 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
657 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
658 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
659 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
660 xhci_print_ir_set(xhci, 0);
661
662 if (xhci->quirks & XHCI_NEC_HOST) {
663 struct xhci_command *command;
664 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
665 if (!command)
666 return -ENOMEM;
667 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
668 TRB_TYPE(TRB_NEC_GET_FW));
669 }
670 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671 "Finished xhci_run for USB2 roothub");
672 return 0;
673}
674EXPORT_SYMBOL_GPL(xhci_run);
675
676/*
677 * Stop xHCI driver.
678 *
679 * This function is called by the USB core when the HC driver is removed.
680 * Its opposite is xhci_run().
681 *
682 * Disable device contexts, disable IRQs, and quiesce the HC.
683 * Reset the HC, finish any completed transactions, and cleanup memory.
684 */
685void xhci_stop(struct usb_hcd *hcd)
686{
687 u32 temp;
688 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
689
690 mutex_lock(&xhci->mutex);
691
692 if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
693 spin_lock_irq(&xhci->lock);
694
695 xhci->xhc_state |= XHCI_STATE_HALTED;
696 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
697 xhci_halt(xhci);
698 xhci_reset(xhci);
699 spin_unlock_irq(&xhci->lock);
700 }
701
702 if (!usb_hcd_is_primary_hcd(hcd)) {
703 mutex_unlock(&xhci->mutex);
704 return;
705 }
706
707 xhci_cleanup_msix(xhci);
708
709 /* Deleting Compliance Mode Recovery Timer */
710 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
711 (!(xhci_all_ports_seen_u0(xhci)))) {
712 del_timer_sync(&xhci->comp_mode_recovery_timer);
713 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
714 "%s: compliance mode recovery timer deleted",
715 __func__);
716 }
717
718 if (xhci->quirks & XHCI_AMD_PLL_FIX)
719 usb_amd_dev_put();
720
721 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
722 "// Disabling event ring interrupts");
723 temp = readl(&xhci->op_regs->status);
724 writel(temp & ~STS_EINT, &xhci->op_regs->status);
725 temp = readl(&xhci->ir_set->irq_pending);
726 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
727 xhci_print_ir_set(xhci, 0);
728
729 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
730 xhci_mem_cleanup(xhci);
731 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
732 "xhci_stop completed - status = %x",
733 readl(&xhci->op_regs->status));
734 mutex_unlock(&xhci->mutex);
735}
736
737/*
738 * Shutdown HC (not bus-specific)
739 *
740 * This is called when the machine is rebooting or halting. We assume that the
741 * machine will be powered off, and the HC's internal state will be reset.
742 * Don't bother to free memory.
743 *
744 * This will only ever be called with the main usb_hcd (the USB3 roothub).
745 */
746void xhci_shutdown(struct usb_hcd *hcd)
747{
748 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
749
750 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
751 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
752
753 spin_lock_irq(&xhci->lock);
754 xhci_halt(xhci);
755 /* Workaround for spurious wakeups at shutdown with HSW */
756 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
757 xhci_reset(xhci);
758 spin_unlock_irq(&xhci->lock);
759
760 xhci_cleanup_msix(xhci);
761
762 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
763 "xhci_shutdown completed - status = %x",
764 readl(&xhci->op_regs->status));
765
766 /* Yet another workaround for spurious wakeups at shutdown with HSW */
767 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
768 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
769}
770
771#ifdef CONFIG_PM
772static void xhci_save_registers(struct xhci_hcd *xhci)
773{
774 xhci->s3.command = readl(&xhci->op_regs->command);
775 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
776 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
777 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
778 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
779 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
780 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
781 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
782 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
783}
784
785static void xhci_restore_registers(struct xhci_hcd *xhci)
786{
787 writel(xhci->s3.command, &xhci->op_regs->command);
788 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
789 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
790 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
791 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
792 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
793 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
794 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
795 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
796}
797
798static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
799{
800 u64 val_64;
801
802 /* step 2: initialize command ring buffer */
803 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
804 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
805 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
806 xhci->cmd_ring->dequeue) &
807 (u64) ~CMD_RING_RSVD_BITS) |
808 xhci->cmd_ring->cycle_state;
809 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
810 "// Setting command ring address to 0x%llx",
811 (long unsigned long) val_64);
812 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
813}
814
815/*
816 * The whole command ring must be cleared to zero when we suspend the host.
817 *
818 * The host doesn't save the command ring pointer in the suspend well, so we
819 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
820 * aligned, because of the reserved bits in the command ring dequeue pointer
821 * register. Therefore, we can't just set the dequeue pointer back in the
822 * middle of the ring (TRBs are 16-byte aligned).
823 */
824static void xhci_clear_command_ring(struct xhci_hcd *xhci)
825{
826 struct xhci_ring *ring;
827 struct xhci_segment *seg;
828
829 ring = xhci->cmd_ring;
830 seg = ring->deq_seg;
831 do {
832 memset(seg->trbs, 0,
833 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
834 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
835 cpu_to_le32(~TRB_CYCLE);
836 seg = seg->next;
837 } while (seg != ring->deq_seg);
838
839 /* Reset the software enqueue and dequeue pointers */
840 ring->deq_seg = ring->first_seg;
841 ring->dequeue = ring->first_seg->trbs;
842 ring->enq_seg = ring->deq_seg;
843 ring->enqueue = ring->dequeue;
844
845 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
846 /*
847 * Ring is now zeroed, so the HW should look for change of ownership
848 * when the cycle bit is set to 1.
849 */
850 ring->cycle_state = 1;
851
852 /*
853 * Reset the hardware dequeue pointer.
854 * Yes, this will need to be re-written after resume, but we're paranoid
855 * and want to make sure the hardware doesn't access bogus memory
856 * because, say, the BIOS or an SMI started the host without changing
857 * the command ring pointers.
858 */
859 xhci_set_cmd_ring_deq(xhci);
860}
861
862static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
863{
864 int port_index;
865 __le32 __iomem **port_array;
866 unsigned long flags;
867 u32 t1, t2;
868
869 spin_lock_irqsave(&xhci->lock, flags);
870
871 /* disble usb3 ports Wake bits*/
872 port_index = xhci->num_usb3_ports;
873 port_array = xhci->usb3_ports;
874 while (port_index--) {
875 t1 = readl(port_array[port_index]);
876 t1 = xhci_port_state_to_neutral(t1);
877 t2 = t1 & ~PORT_WAKE_BITS;
878 if (t1 != t2)
879 writel(t2, port_array[port_index]);
880 }
881
882 /* disble usb2 ports Wake bits*/
883 port_index = xhci->num_usb2_ports;
884 port_array = xhci->usb2_ports;
885 while (port_index--) {
886 t1 = readl(port_array[port_index]);
887 t1 = xhci_port_state_to_neutral(t1);
888 t2 = t1 & ~PORT_WAKE_BITS;
889 if (t1 != t2)
890 writel(t2, port_array[port_index]);
891 }
892
893 spin_unlock_irqrestore(&xhci->lock, flags);
894}
895
896/*
897 * Stop HC (not bus-specific)
898 *
899 * This is called when the machine transition into S3/S4 mode.
900 *
901 */
902int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
903{
904 int rc = 0;
905 unsigned int delay = XHCI_MAX_HALT_USEC;
906 struct usb_hcd *hcd = xhci_to_hcd(xhci);
907 u32 command;
908
909 if (!hcd->state)
910 return 0;
911
912 if (hcd->state != HC_STATE_SUSPENDED ||
913 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
914 return -EINVAL;
915
916 /* Clear root port wake on bits if wakeup not allowed. */
917 if (!do_wakeup)
918 xhci_disable_port_wake_on_bits(xhci);
919
920 /* Don't poll the roothubs on bus suspend. */
921 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
922 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
923 del_timer_sync(&hcd->rh_timer);
924 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
925 del_timer_sync(&xhci->shared_hcd->rh_timer);
926
927 spin_lock_irq(&xhci->lock);
928 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
929 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
930 /* step 1: stop endpoint */
931 /* skipped assuming that port suspend has done */
932
933 /* step 2: clear Run/Stop bit */
934 command = readl(&xhci->op_regs->command);
935 command &= ~CMD_RUN;
936 writel(command, &xhci->op_regs->command);
937
938 /* Some chips from Fresco Logic need an extraordinary delay */
939 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
940
941 if (xhci_handshake(&xhci->op_regs->status,
942 STS_HALT, STS_HALT, delay)) {
943 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
944 spin_unlock_irq(&xhci->lock);
945 return -ETIMEDOUT;
946 }
947 xhci_clear_command_ring(xhci);
948
949 /* step 3: save registers */
950 xhci_save_registers(xhci);
951
952 /* step 4: set CSS flag */
953 command = readl(&xhci->op_regs->command);
954 command |= CMD_CSS;
955 writel(command, &xhci->op_regs->command);
956 if (xhci_handshake(&xhci->op_regs->status,
957 STS_SAVE, 0, 10 * 1000)) {
958 xhci_warn(xhci, "WARN: xHC save state timeout\n");
959 spin_unlock_irq(&xhci->lock);
960 return -ETIMEDOUT;
961 }
962 spin_unlock_irq(&xhci->lock);
963
964 /*
965 * Deleting Compliance Mode Recovery Timer because the xHCI Host
966 * is about to be suspended.
967 */
968 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
969 (!(xhci_all_ports_seen_u0(xhci)))) {
970 del_timer_sync(&xhci->comp_mode_recovery_timer);
971 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
972 "%s: compliance mode recovery timer deleted",
973 __func__);
974 }
975
976 /* step 5: remove core well power */
977 /* synchronize irq when using MSI-X */
978 xhci_msix_sync_irqs(xhci);
979
980 return rc;
981}
982EXPORT_SYMBOL_GPL(xhci_suspend);
983
984/*
985 * start xHC (not bus-specific)
986 *
987 * This is called when the machine transition from S3/S4 mode.
988 *
989 */
990int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
991{
992 u32 command, temp = 0, status;
993 struct usb_hcd *hcd = xhci_to_hcd(xhci);
994 struct usb_hcd *secondary_hcd;
995 int retval = 0;
996 bool comp_timer_running = false;
997
998 if (!hcd->state)
999 return 0;
1000
1001 /* Wait a bit if either of the roothubs need to settle from the
1002 * transition into bus suspend.
1003 */
1004 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1005 time_before(jiffies,
1006 xhci->bus_state[1].next_statechange))
1007 msleep(100);
1008
1009 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1010 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1011
1012 spin_lock_irq(&xhci->lock);
1013 if (xhci->quirks & XHCI_RESET_ON_RESUME)
1014 hibernated = true;
1015
1016 if (!hibernated) {
1017 /* step 1: restore register */
1018 xhci_restore_registers(xhci);
1019 /* step 2: initialize command ring buffer */
1020 xhci_set_cmd_ring_deq(xhci);
1021 /* step 3: restore state and start state*/
1022 /* step 3: set CRS flag */
1023 command = readl(&xhci->op_regs->command);
1024 command |= CMD_CRS;
1025 writel(command, &xhci->op_regs->command);
1026 if (xhci_handshake(&xhci->op_regs->status,
1027 STS_RESTORE, 0, 10 * 1000)) {
1028 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1029 spin_unlock_irq(&xhci->lock);
1030 return -ETIMEDOUT;
1031 }
1032 temp = readl(&xhci->op_regs->status);
1033 }
1034
1035 /* If restore operation fails, re-initialize the HC during resume */
1036 if ((temp & STS_SRE) || hibernated) {
1037
1038 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1039 !(xhci_all_ports_seen_u0(xhci))) {
1040 del_timer_sync(&xhci->comp_mode_recovery_timer);
1041 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1042 "Compliance Mode Recovery Timer deleted!");
1043 }
1044
1045 /* Let the USB core know _both_ roothubs lost power. */
1046 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1047 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1048
1049 xhci_dbg(xhci, "Stop HCD\n");
1050 xhci_halt(xhci);
1051 xhci_reset(xhci);
1052 spin_unlock_irq(&xhci->lock);
1053 xhci_cleanup_msix(xhci);
1054
1055 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1056 temp = readl(&xhci->op_regs->status);
1057 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1058 temp = readl(&xhci->ir_set->irq_pending);
1059 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1060 xhci_print_ir_set(xhci, 0);
1061
1062 xhci_dbg(xhci, "cleaning up memory\n");
1063 xhci_mem_cleanup(xhci);
1064 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1065 readl(&xhci->op_regs->status));
1066
1067 /* USB core calls the PCI reinit and start functions twice:
1068 * first with the primary HCD, and then with the secondary HCD.
1069 * If we don't do the same, the host will never be started.
1070 */
1071 if (!usb_hcd_is_primary_hcd(hcd))
1072 secondary_hcd = hcd;
1073 else
1074 secondary_hcd = xhci->shared_hcd;
1075
1076 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1077 retval = xhci_init(hcd->primary_hcd);
1078 if (retval)
1079 return retval;
1080 comp_timer_running = true;
1081
1082 xhci_dbg(xhci, "Start the primary HCD\n");
1083 retval = xhci_run(hcd->primary_hcd);
1084 if (!retval) {
1085 xhci_dbg(xhci, "Start the secondary HCD\n");
1086 retval = xhci_run(secondary_hcd);
1087 }
1088 hcd->state = HC_STATE_SUSPENDED;
1089 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1090 goto done;
1091 }
1092
1093 /* step 4: set Run/Stop bit */
1094 command = readl(&xhci->op_regs->command);
1095 command |= CMD_RUN;
1096 writel(command, &xhci->op_regs->command);
1097 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1098 0, 250 * 1000);
1099
1100 /* step 5: walk topology and initialize portsc,
1101 * portpmsc and portli
1102 */
1103 /* this is done in bus_resume */
1104
1105 /* step 6: restart each of the previously
1106 * Running endpoints by ringing their doorbells
1107 */
1108
1109 spin_unlock_irq(&xhci->lock);
1110
1111 done:
1112 if (retval == 0) {
1113 /* Resume root hubs only when have pending events. */
1114 status = readl(&xhci->op_regs->status);
1115 if (status & STS_EINT) {
1116 usb_hcd_resume_root_hub(xhci->shared_hcd);
1117 usb_hcd_resume_root_hub(hcd);
1118 }
1119 }
1120
1121 /*
1122 * If system is subject to the Quirk, Compliance Mode Timer needs to
1123 * be re-initialized Always after a system resume. Ports are subject
1124 * to suffer the Compliance Mode issue again. It doesn't matter if
1125 * ports have entered previously to U0 before system's suspension.
1126 */
1127 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1128 compliance_mode_recovery_timer_init(xhci);
1129
1130 /* Re-enable port polling. */
1131 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1132 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1133 usb_hcd_poll_rh_status(xhci->shared_hcd);
1134 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1135 usb_hcd_poll_rh_status(hcd);
1136
1137 return retval;
1138}
1139EXPORT_SYMBOL_GPL(xhci_resume);
1140#endif /* CONFIG_PM */
1141
1142/*-------------------------------------------------------------------------*/
1143
1144/**
1145 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1146 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1147 * value to right shift 1 for the bitmask.
1148 *
1149 * Index = (epnum * 2) + direction - 1,
1150 * where direction = 0 for OUT, 1 for IN.
1151 * For control endpoints, the IN index is used (OUT index is unused), so
1152 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1153 */
1154unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1155{
1156 unsigned int index;
1157 if (usb_endpoint_xfer_control(desc))
1158 index = (unsigned int) (usb_endpoint_num(desc)*2);
1159 else
1160 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1161 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1162 return index;
1163}
1164
1165/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1166 * address from the XHCI endpoint index.
1167 */
1168unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1169{
1170 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1171 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1172 return direction | number;
1173}
1174
1175/* Find the flag for this endpoint (for use in the control context). Use the
1176 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1177 * bit 1, etc.
1178 */
1179unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1180{
1181 return 1 << (xhci_get_endpoint_index(desc) + 1);
1182}
1183
1184/* Find the flag for this endpoint (for use in the control context). Use the
1185 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1186 * bit 1, etc.
1187 */
1188unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1189{
1190 return 1 << (ep_index + 1);
1191}
1192
1193/* Compute the last valid endpoint context index. Basically, this is the
1194 * endpoint index plus one. For slot contexts with more than valid endpoint,
1195 * we find the most significant bit set in the added contexts flags.
1196 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1197 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1198 */
1199unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1200{
1201 return fls(added_ctxs) - 1;
1202}
1203
1204/* Returns 1 if the arguments are OK;
1205 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1206 */
1207static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1208 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1209 const char *func) {
1210 struct xhci_hcd *xhci;
1211 struct xhci_virt_device *virt_dev;
1212
1213 if (!hcd || (check_ep && !ep) || !udev) {
1214 pr_debug("xHCI %s called with invalid args\n", func);
1215 return -EINVAL;
1216 }
1217 if (!udev->parent) {
1218 pr_debug("xHCI %s called for root hub\n", func);
1219 return 0;
1220 }
1221
1222 xhci = hcd_to_xhci(hcd);
1223 if (check_virt_dev) {
1224 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1225 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1226 func);
1227 return -EINVAL;
1228 }
1229
1230 virt_dev = xhci->devs[udev->slot_id];
1231 if (virt_dev->udev != udev) {
1232 xhci_dbg(xhci, "xHCI %s called with udev and "
1233 "virt_dev does not match\n", func);
1234 return -EINVAL;
1235 }
1236 }
1237
1238 if (xhci->xhc_state & XHCI_STATE_HALTED)
1239 return -ENODEV;
1240
1241 return 1;
1242}
1243
1244static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1245 struct usb_device *udev, struct xhci_command *command,
1246 bool ctx_change, bool must_succeed);
1247
1248/*
1249 * Full speed devices may have a max packet size greater than 8 bytes, but the
1250 * USB core doesn't know that until it reads the first 8 bytes of the
1251 * descriptor. If the usb_device's max packet size changes after that point,
1252 * we need to issue an evaluate context command and wait on it.
1253 */
1254static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1255 unsigned int ep_index, struct urb *urb)
1256{
1257 struct xhci_container_ctx *out_ctx;
1258 struct xhci_input_control_ctx *ctrl_ctx;
1259 struct xhci_ep_ctx *ep_ctx;
1260 struct xhci_command *command;
1261 int max_packet_size;
1262 int hw_max_packet_size;
1263 int ret = 0;
1264
1265 out_ctx = xhci->devs[slot_id]->out_ctx;
1266 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1267 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1268 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1269 if (hw_max_packet_size != max_packet_size) {
1270 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1271 "Max Packet Size for ep 0 changed.");
1272 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1273 "Max packet size in usb_device = %d",
1274 max_packet_size);
1275 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1276 "Max packet size in xHCI HW = %d",
1277 hw_max_packet_size);
1278 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1279 "Issuing evaluate context command.");
1280
1281 /* Set up the input context flags for the command */
1282 /* FIXME: This won't work if a non-default control endpoint
1283 * changes max packet sizes.
1284 */
1285
1286 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1287 if (!command)
1288 return -ENOMEM;
1289
1290 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1291 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1292 if (!ctrl_ctx) {
1293 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1294 __func__);
1295 ret = -ENOMEM;
1296 goto command_cleanup;
1297 }
1298 /* Set up the modified control endpoint 0 */
1299 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1300 xhci->devs[slot_id]->out_ctx, ep_index);
1301
1302 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1303 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1304 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1305
1306 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1307 ctrl_ctx->drop_flags = 0;
1308
1309 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1310 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1311 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1312 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1313
1314 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1315 true, false);
1316
1317 /* Clean up the input context for later use by bandwidth
1318 * functions.
1319 */
1320 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1321command_cleanup:
1322 kfree(command->completion);
1323 kfree(command);
1324 }
1325 return ret;
1326}
1327
1328/*
1329 * non-error returns are a promise to giveback() the urb later
1330 * we drop ownership so next owner (or urb unlink) can get it
1331 */
1332int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1333{
1334 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1335 struct xhci_td *buffer;
1336 unsigned long flags;
1337 int ret = 0;
1338 unsigned int slot_id, ep_index;
1339 struct urb_priv *urb_priv;
1340 int size, i;
1341
1342 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1343 true, true, __func__) <= 0)
1344 return -EINVAL;
1345
1346 slot_id = urb->dev->slot_id;
1347 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1348
1349 if (!HCD_HW_ACCESSIBLE(hcd)) {
1350 if (!in_interrupt())
1351 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1352 ret = -ESHUTDOWN;
1353 goto exit;
1354 }
1355
1356 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1357 size = urb->number_of_packets;
1358 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1359 urb->transfer_buffer_length > 0 &&
1360 urb->transfer_flags & URB_ZERO_PACKET &&
1361 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1362 size = 2;
1363 else
1364 size = 1;
1365
1366 urb_priv = kzalloc(sizeof(struct urb_priv) +
1367 size * sizeof(struct xhci_td *), mem_flags);
1368 if (!urb_priv)
1369 return -ENOMEM;
1370
1371 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1372 if (!buffer) {
1373 kfree(urb_priv);
1374 return -ENOMEM;
1375 }
1376
1377 for (i = 0; i < size; i++) {
1378 urb_priv->td[i] = buffer;
1379 buffer++;
1380 }
1381
1382 urb_priv->length = size;
1383 urb_priv->td_cnt = 0;
1384 urb->hcpriv = urb_priv;
1385
1386 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1387 /* Check to see if the max packet size for the default control
1388 * endpoint changed during FS device enumeration
1389 */
1390 if (urb->dev->speed == USB_SPEED_FULL) {
1391 ret = xhci_check_maxpacket(xhci, slot_id,
1392 ep_index, urb);
1393 if (ret < 0) {
1394 xhci_urb_free_priv(urb_priv);
1395 urb->hcpriv = NULL;
1396 return ret;
1397 }
1398 }
1399
1400 /* We have a spinlock and interrupts disabled, so we must pass
1401 * atomic context to this function, which may allocate memory.
1402 */
1403 spin_lock_irqsave(&xhci->lock, flags);
1404 if (xhci->xhc_state & XHCI_STATE_DYING)
1405 goto dying;
1406 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1407 slot_id, ep_index);
1408 if (ret)
1409 goto free_priv;
1410 spin_unlock_irqrestore(&xhci->lock, flags);
1411 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1412 spin_lock_irqsave(&xhci->lock, flags);
1413 if (xhci->xhc_state & XHCI_STATE_DYING)
1414 goto dying;
1415 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1416 EP_GETTING_STREAMS) {
1417 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1418 "is transitioning to using streams.\n");
1419 ret = -EINVAL;
1420 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1421 EP_GETTING_NO_STREAMS) {
1422 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1423 "is transitioning to "
1424 "not having streams.\n");
1425 ret = -EINVAL;
1426 } else {
1427 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1428 slot_id, ep_index);
1429 }
1430 if (ret)
1431 goto free_priv;
1432 spin_unlock_irqrestore(&xhci->lock, flags);
1433 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1434 spin_lock_irqsave(&xhci->lock, flags);
1435 if (xhci->xhc_state & XHCI_STATE_DYING)
1436 goto dying;
1437 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1438 slot_id, ep_index);
1439 if (ret)
1440 goto free_priv;
1441 spin_unlock_irqrestore(&xhci->lock, flags);
1442 } else {
1443 spin_lock_irqsave(&xhci->lock, flags);
1444 if (xhci->xhc_state & XHCI_STATE_DYING)
1445 goto dying;
1446 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1447 slot_id, ep_index);
1448 if (ret)
1449 goto free_priv;
1450 spin_unlock_irqrestore(&xhci->lock, flags);
1451 }
1452exit:
1453 return ret;
1454dying:
1455 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1456 "non-responsive xHCI host.\n",
1457 urb->ep->desc.bEndpointAddress, urb);
1458 ret = -ESHUTDOWN;
1459free_priv:
1460 xhci_urb_free_priv(urb_priv);
1461 urb->hcpriv = NULL;
1462 spin_unlock_irqrestore(&xhci->lock, flags);
1463 return ret;
1464}
1465
1466/*
1467 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1468 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1469 * should pick up where it left off in the TD, unless a Set Transfer Ring
1470 * Dequeue Pointer is issued.
1471 *
1472 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1473 * the ring. Since the ring is a contiguous structure, they can't be physically
1474 * removed. Instead, there are two options:
1475 *
1476 * 1) If the HC is in the middle of processing the URB to be canceled, we
1477 * simply move the ring's dequeue pointer past those TRBs using the Set
1478 * Transfer Ring Dequeue Pointer command. This will be the common case,
1479 * when drivers timeout on the last submitted URB and attempt to cancel.
1480 *
1481 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1482 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1483 * HC will need to invalidate the any TRBs it has cached after the stop
1484 * endpoint command, as noted in the xHCI 0.95 errata.
1485 *
1486 * 3) The TD may have completed by the time the Stop Endpoint Command
1487 * completes, so software needs to handle that case too.
1488 *
1489 * This function should protect against the TD enqueueing code ringing the
1490 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1491 * It also needs to account for multiple cancellations on happening at the same
1492 * time for the same endpoint.
1493 *
1494 * Note that this function can be called in any context, or so says
1495 * usb_hcd_unlink_urb()
1496 */
1497int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1498{
1499 unsigned long flags;
1500 int ret, i;
1501 u32 temp;
1502 struct xhci_hcd *xhci;
1503 struct urb_priv *urb_priv;
1504 struct xhci_td *td;
1505 unsigned int ep_index;
1506 struct xhci_ring *ep_ring;
1507 struct xhci_virt_ep *ep;
1508 struct xhci_command *command;
1509
1510 xhci = hcd_to_xhci(hcd);
1511 spin_lock_irqsave(&xhci->lock, flags);
1512 /* Make sure the URB hasn't completed or been unlinked already */
1513 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1514 if (ret || !urb->hcpriv)
1515 goto done;
1516 temp = readl(&xhci->op_regs->status);
1517 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1518 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1519 "HW died, freeing TD.");
1520 urb_priv = urb->hcpriv;
1521 for (i = urb_priv->td_cnt;
1522 i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1523 i++) {
1524 td = urb_priv->td[i];
1525 if (!list_empty(&td->td_list))
1526 list_del_init(&td->td_list);
1527 if (!list_empty(&td->cancelled_td_list))
1528 list_del_init(&td->cancelled_td_list);
1529 }
1530
1531 usb_hcd_unlink_urb_from_ep(hcd, urb);
1532 spin_unlock_irqrestore(&xhci->lock, flags);
1533 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1534 xhci_urb_free_priv(urb_priv);
1535 return ret;
1536 }
1537
1538 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1539 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1540 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1541 if (!ep_ring) {
1542 ret = -EINVAL;
1543 goto done;
1544 }
1545
1546 urb_priv = urb->hcpriv;
1547 i = urb_priv->td_cnt;
1548 if (i < urb_priv->length)
1549 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1550 "Cancel URB %p, dev %s, ep 0x%x, "
1551 "starting at offset 0x%llx",
1552 urb, urb->dev->devpath,
1553 urb->ep->desc.bEndpointAddress,
1554 (unsigned long long) xhci_trb_virt_to_dma(
1555 urb_priv->td[i]->start_seg,
1556 urb_priv->td[i]->first_trb));
1557
1558 for (; i < urb_priv->length; i++) {
1559 td = urb_priv->td[i];
1560 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1561 }
1562
1563 /* Queue a stop endpoint command, but only if this is
1564 * the first cancellation to be handled.
1565 */
1566 if (!(ep->ep_state & EP_HALT_PENDING)) {
1567 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1568 if (!command) {
1569 ret = -ENOMEM;
1570 goto done;
1571 }
1572 ep->ep_state |= EP_HALT_PENDING;
1573 ep->stop_cmds_pending++;
1574 ep->stop_cmd_timer.expires = jiffies +
1575 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1576 add_timer(&ep->stop_cmd_timer);
1577 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1578 ep_index, 0);
1579 xhci_ring_cmd_db(xhci);
1580 }
1581done:
1582 spin_unlock_irqrestore(&xhci->lock, flags);
1583 return ret;
1584}
1585
1586/* Drop an endpoint from a new bandwidth configuration for this device.
1587 * Only one call to this function is allowed per endpoint before
1588 * check_bandwidth() or reset_bandwidth() must be called.
1589 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1590 * add the endpoint to the schedule with possibly new parameters denoted by a
1591 * different endpoint descriptor in usb_host_endpoint.
1592 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1593 * not allowed.
1594 *
1595 * The USB core will not allow URBs to be queued to an endpoint that is being
1596 * disabled, so there's no need for mutual exclusion to protect
1597 * the xhci->devs[slot_id] structure.
1598 */
1599int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1600 struct usb_host_endpoint *ep)
1601{
1602 struct xhci_hcd *xhci;
1603 struct xhci_container_ctx *in_ctx, *out_ctx;
1604 struct xhci_input_control_ctx *ctrl_ctx;
1605 unsigned int ep_index;
1606 struct xhci_ep_ctx *ep_ctx;
1607 u32 drop_flag;
1608 u32 new_add_flags, new_drop_flags;
1609 int ret;
1610
1611 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1612 if (ret <= 0)
1613 return ret;
1614 xhci = hcd_to_xhci(hcd);
1615 if (xhci->xhc_state & XHCI_STATE_DYING)
1616 return -ENODEV;
1617
1618 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1619 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1620 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1621 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1622 __func__, drop_flag);
1623 return 0;
1624 }
1625
1626 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1627 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1628 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1629 if (!ctrl_ctx) {
1630 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1631 __func__);
1632 return 0;
1633 }
1634
1635 ep_index = xhci_get_endpoint_index(&ep->desc);
1636 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1637 /* If the HC already knows the endpoint is disabled,
1638 * or the HCD has noted it is disabled, ignore this request
1639 */
1640 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1641 le32_to_cpu(ctrl_ctx->drop_flags) &
1642 xhci_get_endpoint_flag(&ep->desc)) {
1643 /* Do not warn when called after a usb_device_reset */
1644 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1645 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1646 __func__, ep);
1647 return 0;
1648 }
1649
1650 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1651 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1652
1653 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1654 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1655
1656 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1657
1658 if (xhci->quirks & XHCI_MTK_HOST)
1659 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1660
1661 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1662 (unsigned int) ep->desc.bEndpointAddress,
1663 udev->slot_id,
1664 (unsigned int) new_drop_flags,
1665 (unsigned int) new_add_flags);
1666 return 0;
1667}
1668
1669/* Add an endpoint to a new possible bandwidth configuration for this device.
1670 * Only one call to this function is allowed per endpoint before
1671 * check_bandwidth() or reset_bandwidth() must be called.
1672 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1673 * add the endpoint to the schedule with possibly new parameters denoted by a
1674 * different endpoint descriptor in usb_host_endpoint.
1675 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1676 * not allowed.
1677 *
1678 * The USB core will not allow URBs to be queued to an endpoint until the
1679 * configuration or alt setting is installed in the device, so there's no need
1680 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1681 */
1682int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1683 struct usb_host_endpoint *ep)
1684{
1685 struct xhci_hcd *xhci;
1686 struct xhci_container_ctx *in_ctx;
1687 unsigned int ep_index;
1688 struct xhci_input_control_ctx *ctrl_ctx;
1689 u32 added_ctxs;
1690 u32 new_add_flags, new_drop_flags;
1691 struct xhci_virt_device *virt_dev;
1692 int ret = 0;
1693
1694 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1695 if (ret <= 0) {
1696 /* So we won't queue a reset ep command for a root hub */
1697 ep->hcpriv = NULL;
1698 return ret;
1699 }
1700 xhci = hcd_to_xhci(hcd);
1701 if (xhci->xhc_state & XHCI_STATE_DYING)
1702 return -ENODEV;
1703
1704 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1705 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1706 /* FIXME when we have to issue an evaluate endpoint command to
1707 * deal with ep0 max packet size changing once we get the
1708 * descriptors
1709 */
1710 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1711 __func__, added_ctxs);
1712 return 0;
1713 }
1714
1715 virt_dev = xhci->devs[udev->slot_id];
1716 in_ctx = virt_dev->in_ctx;
1717 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1718 if (!ctrl_ctx) {
1719 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1720 __func__);
1721 return 0;
1722 }
1723
1724 ep_index = xhci_get_endpoint_index(&ep->desc);
1725 /* If this endpoint is already in use, and the upper layers are trying
1726 * to add it again without dropping it, reject the addition.
1727 */
1728 if (virt_dev->eps[ep_index].ring &&
1729 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1730 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1731 "without dropping it.\n",
1732 (unsigned int) ep->desc.bEndpointAddress);
1733 return -EINVAL;
1734 }
1735
1736 /* If the HCD has already noted the endpoint is enabled,
1737 * ignore this request.
1738 */
1739 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1740 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1741 __func__, ep);
1742 return 0;
1743 }
1744
1745 /*
1746 * Configuration and alternate setting changes must be done in
1747 * process context, not interrupt context (or so documenation
1748 * for usb_set_interface() and usb_set_configuration() claim).
1749 */
1750 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1751 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1752 __func__, ep->desc.bEndpointAddress);
1753 return -ENOMEM;
1754 }
1755
1756 if (xhci->quirks & XHCI_MTK_HOST) {
1757 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1758 if (ret < 0) {
1759 xhci_free_or_cache_endpoint_ring(xhci,
1760 virt_dev, ep_index);
1761 return ret;
1762 }
1763 }
1764
1765 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1766 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1767
1768 /* If xhci_endpoint_disable() was called for this endpoint, but the
1769 * xHC hasn't been notified yet through the check_bandwidth() call,
1770 * this re-adds a new state for the endpoint from the new endpoint
1771 * descriptors. We must drop and re-add this endpoint, so we leave the
1772 * drop flags alone.
1773 */
1774 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1775
1776 /* Store the usb_device pointer for later use */
1777 ep->hcpriv = udev;
1778
1779 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1780 (unsigned int) ep->desc.bEndpointAddress,
1781 udev->slot_id,
1782 (unsigned int) new_drop_flags,
1783 (unsigned int) new_add_flags);
1784 return 0;
1785}
1786
1787static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1788{
1789 struct xhci_input_control_ctx *ctrl_ctx;
1790 struct xhci_ep_ctx *ep_ctx;
1791 struct xhci_slot_ctx *slot_ctx;
1792 int i;
1793
1794 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1795 if (!ctrl_ctx) {
1796 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1797 __func__);
1798 return;
1799 }
1800
1801 /* When a device's add flag and drop flag are zero, any subsequent
1802 * configure endpoint command will leave that endpoint's state
1803 * untouched. Make sure we don't leave any old state in the input
1804 * endpoint contexts.
1805 */
1806 ctrl_ctx->drop_flags = 0;
1807 ctrl_ctx->add_flags = 0;
1808 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1809 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1810 /* Endpoint 0 is always valid */
1811 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1812 for (i = 1; i < 31; ++i) {
1813 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1814 ep_ctx->ep_info = 0;
1815 ep_ctx->ep_info2 = 0;
1816 ep_ctx->deq = 0;
1817 ep_ctx->tx_info = 0;
1818 }
1819}
1820
1821static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1822 struct usb_device *udev, u32 *cmd_status)
1823{
1824 int ret;
1825
1826 switch (*cmd_status) {
1827 case COMP_CMD_ABORT:
1828 case COMP_CMD_STOP:
1829 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1830 ret = -ETIME;
1831 break;
1832 case COMP_ENOMEM:
1833 dev_warn(&udev->dev,
1834 "Not enough host controller resources for new device state.\n");
1835 ret = -ENOMEM;
1836 /* FIXME: can we allocate more resources for the HC? */
1837 break;
1838 case COMP_BW_ERR:
1839 case COMP_2ND_BW_ERR:
1840 dev_warn(&udev->dev,
1841 "Not enough bandwidth for new device state.\n");
1842 ret = -ENOSPC;
1843 /* FIXME: can we go back to the old state? */
1844 break;
1845 case COMP_TRB_ERR:
1846 /* the HCD set up something wrong */
1847 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1848 "add flag = 1, "
1849 "and endpoint is not disabled.\n");
1850 ret = -EINVAL;
1851 break;
1852 case COMP_DEV_ERR:
1853 dev_warn(&udev->dev,
1854 "ERROR: Incompatible device for endpoint configure command.\n");
1855 ret = -ENODEV;
1856 break;
1857 case COMP_SUCCESS:
1858 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1859 "Successful Endpoint Configure command");
1860 ret = 0;
1861 break;
1862 default:
1863 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1864 *cmd_status);
1865 ret = -EINVAL;
1866 break;
1867 }
1868 return ret;
1869}
1870
1871static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1872 struct usb_device *udev, u32 *cmd_status)
1873{
1874 int ret;
1875 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1876
1877 switch (*cmd_status) {
1878 case COMP_CMD_ABORT:
1879 case COMP_CMD_STOP:
1880 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1881 ret = -ETIME;
1882 break;
1883 case COMP_EINVAL:
1884 dev_warn(&udev->dev,
1885 "WARN: xHCI driver setup invalid evaluate context command.\n");
1886 ret = -EINVAL;
1887 break;
1888 case COMP_EBADSLT:
1889 dev_warn(&udev->dev,
1890 "WARN: slot not enabled for evaluate context command.\n");
1891 ret = -EINVAL;
1892 break;
1893 case COMP_CTX_STATE:
1894 dev_warn(&udev->dev,
1895 "WARN: invalid context state for evaluate context command.\n");
1896 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1897 ret = -EINVAL;
1898 break;
1899 case COMP_DEV_ERR:
1900 dev_warn(&udev->dev,
1901 "ERROR: Incompatible device for evaluate context command.\n");
1902 ret = -ENODEV;
1903 break;
1904 case COMP_MEL_ERR:
1905 /* Max Exit Latency too large error */
1906 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1907 ret = -EINVAL;
1908 break;
1909 case COMP_SUCCESS:
1910 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1911 "Successful evaluate context command");
1912 ret = 0;
1913 break;
1914 default:
1915 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1916 *cmd_status);
1917 ret = -EINVAL;
1918 break;
1919 }
1920 return ret;
1921}
1922
1923static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1924 struct xhci_input_control_ctx *ctrl_ctx)
1925{
1926 u32 valid_add_flags;
1927 u32 valid_drop_flags;
1928
1929 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1930 * (bit 1). The default control endpoint is added during the Address
1931 * Device command and is never removed until the slot is disabled.
1932 */
1933 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1934 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1935
1936 /* Use hweight32 to count the number of ones in the add flags, or
1937 * number of endpoints added. Don't count endpoints that are changed
1938 * (both added and dropped).
1939 */
1940 return hweight32(valid_add_flags) -
1941 hweight32(valid_add_flags & valid_drop_flags);
1942}
1943
1944static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1945 struct xhci_input_control_ctx *ctrl_ctx)
1946{
1947 u32 valid_add_flags;
1948 u32 valid_drop_flags;
1949
1950 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1951 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1952
1953 return hweight32(valid_drop_flags) -
1954 hweight32(valid_add_flags & valid_drop_flags);
1955}
1956
1957/*
1958 * We need to reserve the new number of endpoints before the configure endpoint
1959 * command completes. We can't subtract the dropped endpoints from the number
1960 * of active endpoints until the command completes because we can oversubscribe
1961 * the host in this case:
1962 *
1963 * - the first configure endpoint command drops more endpoints than it adds
1964 * - a second configure endpoint command that adds more endpoints is queued
1965 * - the first configure endpoint command fails, so the config is unchanged
1966 * - the second command may succeed, even though there isn't enough resources
1967 *
1968 * Must be called with xhci->lock held.
1969 */
1970static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1971 struct xhci_input_control_ctx *ctrl_ctx)
1972{
1973 u32 added_eps;
1974
1975 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1976 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1977 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1978 "Not enough ep ctxs: "
1979 "%u active, need to add %u, limit is %u.",
1980 xhci->num_active_eps, added_eps,
1981 xhci->limit_active_eps);
1982 return -ENOMEM;
1983 }
1984 xhci->num_active_eps += added_eps;
1985 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1986 "Adding %u ep ctxs, %u now active.", added_eps,
1987 xhci->num_active_eps);
1988 return 0;
1989}
1990
1991/*
1992 * The configure endpoint was failed by the xHC for some other reason, so we
1993 * need to revert the resources that failed configuration would have used.
1994 *
1995 * Must be called with xhci->lock held.
1996 */
1997static void xhci_free_host_resources(struct xhci_hcd *xhci,
1998 struct xhci_input_control_ctx *ctrl_ctx)
1999{
2000 u32 num_failed_eps;
2001
2002 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2003 xhci->num_active_eps -= num_failed_eps;
2004 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2005 "Removing %u failed ep ctxs, %u now active.",
2006 num_failed_eps,
2007 xhci->num_active_eps);
2008}
2009
2010/*
2011 * Now that the command has completed, clean up the active endpoint count by
2012 * subtracting out the endpoints that were dropped (but not changed).
2013 *
2014 * Must be called with xhci->lock held.
2015 */
2016static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2017 struct xhci_input_control_ctx *ctrl_ctx)
2018{
2019 u32 num_dropped_eps;
2020
2021 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2022 xhci->num_active_eps -= num_dropped_eps;
2023 if (num_dropped_eps)
2024 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2025 "Removing %u dropped ep ctxs, %u now active.",
2026 num_dropped_eps,
2027 xhci->num_active_eps);
2028}
2029
2030static unsigned int xhci_get_block_size(struct usb_device *udev)
2031{
2032 switch (udev->speed) {
2033 case USB_SPEED_LOW:
2034 case USB_SPEED_FULL:
2035 return FS_BLOCK;
2036 case USB_SPEED_HIGH:
2037 return HS_BLOCK;
2038 case USB_SPEED_SUPER:
2039 case USB_SPEED_SUPER_PLUS:
2040 return SS_BLOCK;
2041 case USB_SPEED_UNKNOWN:
2042 case USB_SPEED_WIRELESS:
2043 default:
2044 /* Should never happen */
2045 return 1;
2046 }
2047}
2048
2049static unsigned int
2050xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2051{
2052 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2053 return LS_OVERHEAD;
2054 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2055 return FS_OVERHEAD;
2056 return HS_OVERHEAD;
2057}
2058
2059/* If we are changing a LS/FS device under a HS hub,
2060 * make sure (if we are activating a new TT) that the HS bus has enough
2061 * bandwidth for this new TT.
2062 */
2063static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2064 struct xhci_virt_device *virt_dev,
2065 int old_active_eps)
2066{
2067 struct xhci_interval_bw_table *bw_table;
2068 struct xhci_tt_bw_info *tt_info;
2069
2070 /* Find the bandwidth table for the root port this TT is attached to. */
2071 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2072 tt_info = virt_dev->tt_info;
2073 /* If this TT already had active endpoints, the bandwidth for this TT
2074 * has already been added. Removing all periodic endpoints (and thus
2075 * making the TT enactive) will only decrease the bandwidth used.
2076 */
2077 if (old_active_eps)
2078 return 0;
2079 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2080 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2081 return -ENOMEM;
2082 return 0;
2083 }
2084 /* Not sure why we would have no new active endpoints...
2085 *
2086 * Maybe because of an Evaluate Context change for a hub update or a
2087 * control endpoint 0 max packet size change?
2088 * FIXME: skip the bandwidth calculation in that case.
2089 */
2090 return 0;
2091}
2092
2093static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2094 struct xhci_virt_device *virt_dev)
2095{
2096 unsigned int bw_reserved;
2097
2098 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2099 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2100 return -ENOMEM;
2101
2102 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2103 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2104 return -ENOMEM;
2105
2106 return 0;
2107}
2108
2109/*
2110 * This algorithm is a very conservative estimate of the worst-case scheduling
2111 * scenario for any one interval. The hardware dynamically schedules the
2112 * packets, so we can't tell which microframe could be the limiting factor in
2113 * the bandwidth scheduling. This only takes into account periodic endpoints.
2114 *
2115 * Obviously, we can't solve an NP complete problem to find the minimum worst
2116 * case scenario. Instead, we come up with an estimate that is no less than
2117 * the worst case bandwidth used for any one microframe, but may be an
2118 * over-estimate.
2119 *
2120 * We walk the requirements for each endpoint by interval, starting with the
2121 * smallest interval, and place packets in the schedule where there is only one
2122 * possible way to schedule packets for that interval. In order to simplify
2123 * this algorithm, we record the largest max packet size for each interval, and
2124 * assume all packets will be that size.
2125 *
2126 * For interval 0, we obviously must schedule all packets for each interval.
2127 * The bandwidth for interval 0 is just the amount of data to be transmitted
2128 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2129 * the number of packets).
2130 *
2131 * For interval 1, we have two possible microframes to schedule those packets
2132 * in. For this algorithm, if we can schedule the same number of packets for
2133 * each possible scheduling opportunity (each microframe), we will do so. The
2134 * remaining number of packets will be saved to be transmitted in the gaps in
2135 * the next interval's scheduling sequence.
2136 *
2137 * As we move those remaining packets to be scheduled with interval 2 packets,
2138 * we have to double the number of remaining packets to transmit. This is
2139 * because the intervals are actually powers of 2, and we would be transmitting
2140 * the previous interval's packets twice in this interval. We also have to be
2141 * sure that when we look at the largest max packet size for this interval, we
2142 * also look at the largest max packet size for the remaining packets and take
2143 * the greater of the two.
2144 *
2145 * The algorithm continues to evenly distribute packets in each scheduling
2146 * opportunity, and push the remaining packets out, until we get to the last
2147 * interval. Then those packets and their associated overhead are just added
2148 * to the bandwidth used.
2149 */
2150static int xhci_check_bw_table(struct xhci_hcd *xhci,
2151 struct xhci_virt_device *virt_dev,
2152 int old_active_eps)
2153{
2154 unsigned int bw_reserved;
2155 unsigned int max_bandwidth;
2156 unsigned int bw_used;
2157 unsigned int block_size;
2158 struct xhci_interval_bw_table *bw_table;
2159 unsigned int packet_size = 0;
2160 unsigned int overhead = 0;
2161 unsigned int packets_transmitted = 0;
2162 unsigned int packets_remaining = 0;
2163 unsigned int i;
2164
2165 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2166 return xhci_check_ss_bw(xhci, virt_dev);
2167
2168 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2169 max_bandwidth = HS_BW_LIMIT;
2170 /* Convert percent of bus BW reserved to blocks reserved */
2171 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2172 } else {
2173 max_bandwidth = FS_BW_LIMIT;
2174 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2175 }
2176
2177 bw_table = virt_dev->bw_table;
2178 /* We need to translate the max packet size and max ESIT payloads into
2179 * the units the hardware uses.
2180 */
2181 block_size = xhci_get_block_size(virt_dev->udev);
2182
2183 /* If we are manipulating a LS/FS device under a HS hub, double check
2184 * that the HS bus has enough bandwidth if we are activing a new TT.
2185 */
2186 if (virt_dev->tt_info) {
2187 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2188 "Recalculating BW for rootport %u",
2189 virt_dev->real_port);
2190 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2191 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2192 "newly activated TT.\n");
2193 return -ENOMEM;
2194 }
2195 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2196 "Recalculating BW for TT slot %u port %u",
2197 virt_dev->tt_info->slot_id,
2198 virt_dev->tt_info->ttport);
2199 } else {
2200 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2201 "Recalculating BW for rootport %u",
2202 virt_dev->real_port);
2203 }
2204
2205 /* Add in how much bandwidth will be used for interval zero, or the
2206 * rounded max ESIT payload + number of packets * largest overhead.
2207 */
2208 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2209 bw_table->interval_bw[0].num_packets *
2210 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2211
2212 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2213 unsigned int bw_added;
2214 unsigned int largest_mps;
2215 unsigned int interval_overhead;
2216
2217 /*
2218 * How many packets could we transmit in this interval?
2219 * If packets didn't fit in the previous interval, we will need
2220 * to transmit that many packets twice within this interval.
2221 */
2222 packets_remaining = 2 * packets_remaining +
2223 bw_table->interval_bw[i].num_packets;
2224
2225 /* Find the largest max packet size of this or the previous
2226 * interval.
2227 */
2228 if (list_empty(&bw_table->interval_bw[i].endpoints))
2229 largest_mps = 0;
2230 else {
2231 struct xhci_virt_ep *virt_ep;
2232 struct list_head *ep_entry;
2233
2234 ep_entry = bw_table->interval_bw[i].endpoints.next;
2235 virt_ep = list_entry(ep_entry,
2236 struct xhci_virt_ep, bw_endpoint_list);
2237 /* Convert to blocks, rounding up */
2238 largest_mps = DIV_ROUND_UP(
2239 virt_ep->bw_info.max_packet_size,
2240 block_size);
2241 }
2242 if (largest_mps > packet_size)
2243 packet_size = largest_mps;
2244
2245 /* Use the larger overhead of this or the previous interval. */
2246 interval_overhead = xhci_get_largest_overhead(
2247 &bw_table->interval_bw[i]);
2248 if (interval_overhead > overhead)
2249 overhead = interval_overhead;
2250
2251 /* How many packets can we evenly distribute across
2252 * (1 << (i + 1)) possible scheduling opportunities?
2253 */
2254 packets_transmitted = packets_remaining >> (i + 1);
2255
2256 /* Add in the bandwidth used for those scheduled packets */
2257 bw_added = packets_transmitted * (overhead + packet_size);
2258
2259 /* How many packets do we have remaining to transmit? */
2260 packets_remaining = packets_remaining % (1 << (i + 1));
2261
2262 /* What largest max packet size should those packets have? */
2263 /* If we've transmitted all packets, don't carry over the
2264 * largest packet size.
2265 */
2266 if (packets_remaining == 0) {
2267 packet_size = 0;
2268 overhead = 0;
2269 } else if (packets_transmitted > 0) {
2270 /* Otherwise if we do have remaining packets, and we've
2271 * scheduled some packets in this interval, take the
2272 * largest max packet size from endpoints with this
2273 * interval.
2274 */
2275 packet_size = largest_mps;
2276 overhead = interval_overhead;
2277 }
2278 /* Otherwise carry over packet_size and overhead from the last
2279 * time we had a remainder.
2280 */
2281 bw_used += bw_added;
2282 if (bw_used > max_bandwidth) {
2283 xhci_warn(xhci, "Not enough bandwidth. "
2284 "Proposed: %u, Max: %u\n",
2285 bw_used, max_bandwidth);
2286 return -ENOMEM;
2287 }
2288 }
2289 /*
2290 * Ok, we know we have some packets left over after even-handedly
2291 * scheduling interval 15. We don't know which microframes they will
2292 * fit into, so we over-schedule and say they will be scheduled every
2293 * microframe.
2294 */
2295 if (packets_remaining > 0)
2296 bw_used += overhead + packet_size;
2297
2298 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2299 unsigned int port_index = virt_dev->real_port - 1;
2300
2301 /* OK, we're manipulating a HS device attached to a
2302 * root port bandwidth domain. Include the number of active TTs
2303 * in the bandwidth used.
2304 */
2305 bw_used += TT_HS_OVERHEAD *
2306 xhci->rh_bw[port_index].num_active_tts;
2307 }
2308
2309 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2310 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2311 "Available: %u " "percent",
2312 bw_used, max_bandwidth, bw_reserved,
2313 (max_bandwidth - bw_used - bw_reserved) * 100 /
2314 max_bandwidth);
2315
2316 bw_used += bw_reserved;
2317 if (bw_used > max_bandwidth) {
2318 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2319 bw_used, max_bandwidth);
2320 return -ENOMEM;
2321 }
2322
2323 bw_table->bw_used = bw_used;
2324 return 0;
2325}
2326
2327static bool xhci_is_async_ep(unsigned int ep_type)
2328{
2329 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2330 ep_type != ISOC_IN_EP &&
2331 ep_type != INT_IN_EP);
2332}
2333
2334static bool xhci_is_sync_in_ep(unsigned int ep_type)
2335{
2336 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2337}
2338
2339static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2340{
2341 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2342
2343 if (ep_bw->ep_interval == 0)
2344 return SS_OVERHEAD_BURST +
2345 (ep_bw->mult * ep_bw->num_packets *
2346 (SS_OVERHEAD + mps));
2347 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2348 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2349 1 << ep_bw->ep_interval);
2350
2351}
2352
2353void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2354 struct xhci_bw_info *ep_bw,
2355 struct xhci_interval_bw_table *bw_table,
2356 struct usb_device *udev,
2357 struct xhci_virt_ep *virt_ep,
2358 struct xhci_tt_bw_info *tt_info)
2359{
2360 struct xhci_interval_bw *interval_bw;
2361 int normalized_interval;
2362
2363 if (xhci_is_async_ep(ep_bw->type))
2364 return;
2365
2366 if (udev->speed >= USB_SPEED_SUPER) {
2367 if (xhci_is_sync_in_ep(ep_bw->type))
2368 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2369 xhci_get_ss_bw_consumed(ep_bw);
2370 else
2371 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2372 xhci_get_ss_bw_consumed(ep_bw);
2373 return;
2374 }
2375
2376 /* SuperSpeed endpoints never get added to intervals in the table, so
2377 * this check is only valid for HS/FS/LS devices.
2378 */
2379 if (list_empty(&virt_ep->bw_endpoint_list))
2380 return;
2381 /* For LS/FS devices, we need to translate the interval expressed in
2382 * microframes to frames.
2383 */
2384 if (udev->speed == USB_SPEED_HIGH)
2385 normalized_interval = ep_bw->ep_interval;
2386 else
2387 normalized_interval = ep_bw->ep_interval - 3;
2388
2389 if (normalized_interval == 0)
2390 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2391 interval_bw = &bw_table->interval_bw[normalized_interval];
2392 interval_bw->num_packets -= ep_bw->num_packets;
2393 switch (udev->speed) {
2394 case USB_SPEED_LOW:
2395 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2396 break;
2397 case USB_SPEED_FULL:
2398 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2399 break;
2400 case USB_SPEED_HIGH:
2401 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2402 break;
2403 case USB_SPEED_SUPER:
2404 case USB_SPEED_SUPER_PLUS:
2405 case USB_SPEED_UNKNOWN:
2406 case USB_SPEED_WIRELESS:
2407 /* Should never happen because only LS/FS/HS endpoints will get
2408 * added to the endpoint list.
2409 */
2410 return;
2411 }
2412 if (tt_info)
2413 tt_info->active_eps -= 1;
2414 list_del_init(&virt_ep->bw_endpoint_list);
2415}
2416
2417static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2418 struct xhci_bw_info *ep_bw,
2419 struct xhci_interval_bw_table *bw_table,
2420 struct usb_device *udev,
2421 struct xhci_virt_ep *virt_ep,
2422 struct xhci_tt_bw_info *tt_info)
2423{
2424 struct xhci_interval_bw *interval_bw;
2425 struct xhci_virt_ep *smaller_ep;
2426 int normalized_interval;
2427
2428 if (xhci_is_async_ep(ep_bw->type))
2429 return;
2430
2431 if (udev->speed == USB_SPEED_SUPER) {
2432 if (xhci_is_sync_in_ep(ep_bw->type))
2433 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2434 xhci_get_ss_bw_consumed(ep_bw);
2435 else
2436 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2437 xhci_get_ss_bw_consumed(ep_bw);
2438 return;
2439 }
2440
2441 /* For LS/FS devices, we need to translate the interval expressed in
2442 * microframes to frames.
2443 */
2444 if (udev->speed == USB_SPEED_HIGH)
2445 normalized_interval = ep_bw->ep_interval;
2446 else
2447 normalized_interval = ep_bw->ep_interval - 3;
2448
2449 if (normalized_interval == 0)
2450 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2451 interval_bw = &bw_table->interval_bw[normalized_interval];
2452 interval_bw->num_packets += ep_bw->num_packets;
2453 switch (udev->speed) {
2454 case USB_SPEED_LOW:
2455 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2456 break;
2457 case USB_SPEED_FULL:
2458 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2459 break;
2460 case USB_SPEED_HIGH:
2461 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2462 break;
2463 case USB_SPEED_SUPER:
2464 case USB_SPEED_SUPER_PLUS:
2465 case USB_SPEED_UNKNOWN:
2466 case USB_SPEED_WIRELESS:
2467 /* Should never happen because only LS/FS/HS endpoints will get
2468 * added to the endpoint list.
2469 */
2470 return;
2471 }
2472
2473 if (tt_info)
2474 tt_info->active_eps += 1;
2475 /* Insert the endpoint into the list, largest max packet size first. */
2476 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2477 bw_endpoint_list) {
2478 if (ep_bw->max_packet_size >=
2479 smaller_ep->bw_info.max_packet_size) {
2480 /* Add the new ep before the smaller endpoint */
2481 list_add_tail(&virt_ep->bw_endpoint_list,
2482 &smaller_ep->bw_endpoint_list);
2483 return;
2484 }
2485 }
2486 /* Add the new endpoint at the end of the list. */
2487 list_add_tail(&virt_ep->bw_endpoint_list,
2488 &interval_bw->endpoints);
2489}
2490
2491void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2492 struct xhci_virt_device *virt_dev,
2493 int old_active_eps)
2494{
2495 struct xhci_root_port_bw_info *rh_bw_info;
2496 if (!virt_dev->tt_info)
2497 return;
2498
2499 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2500 if (old_active_eps == 0 &&
2501 virt_dev->tt_info->active_eps != 0) {
2502 rh_bw_info->num_active_tts += 1;
2503 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2504 } else if (old_active_eps != 0 &&
2505 virt_dev->tt_info->active_eps == 0) {
2506 rh_bw_info->num_active_tts -= 1;
2507 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2508 }
2509}
2510
2511static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2512 struct xhci_virt_device *virt_dev,
2513 struct xhci_container_ctx *in_ctx)
2514{
2515 struct xhci_bw_info ep_bw_info[31];
2516 int i;
2517 struct xhci_input_control_ctx *ctrl_ctx;
2518 int old_active_eps = 0;
2519
2520 if (virt_dev->tt_info)
2521 old_active_eps = virt_dev->tt_info->active_eps;
2522
2523 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2524 if (!ctrl_ctx) {
2525 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2526 __func__);
2527 return -ENOMEM;
2528 }
2529
2530 for (i = 0; i < 31; i++) {
2531 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2532 continue;
2533
2534 /* Make a copy of the BW info in case we need to revert this */
2535 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2536 sizeof(ep_bw_info[i]));
2537 /* Drop the endpoint from the interval table if the endpoint is
2538 * being dropped or changed.
2539 */
2540 if (EP_IS_DROPPED(ctrl_ctx, i))
2541 xhci_drop_ep_from_interval_table(xhci,
2542 &virt_dev->eps[i].bw_info,
2543 virt_dev->bw_table,
2544 virt_dev->udev,
2545 &virt_dev->eps[i],
2546 virt_dev->tt_info);
2547 }
2548 /* Overwrite the information stored in the endpoints' bw_info */
2549 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2550 for (i = 0; i < 31; i++) {
2551 /* Add any changed or added endpoints to the interval table */
2552 if (EP_IS_ADDED(ctrl_ctx, i))
2553 xhci_add_ep_to_interval_table(xhci,
2554 &virt_dev->eps[i].bw_info,
2555 virt_dev->bw_table,
2556 virt_dev->udev,
2557 &virt_dev->eps[i],
2558 virt_dev->tt_info);
2559 }
2560
2561 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2562 /* Ok, this fits in the bandwidth we have.
2563 * Update the number of active TTs.
2564 */
2565 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2566 return 0;
2567 }
2568
2569 /* We don't have enough bandwidth for this, revert the stored info. */
2570 for (i = 0; i < 31; i++) {
2571 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2572 continue;
2573
2574 /* Drop the new copies of any added or changed endpoints from
2575 * the interval table.
2576 */
2577 if (EP_IS_ADDED(ctrl_ctx, i)) {
2578 xhci_drop_ep_from_interval_table(xhci,
2579 &virt_dev->eps[i].bw_info,
2580 virt_dev->bw_table,
2581 virt_dev->udev,
2582 &virt_dev->eps[i],
2583 virt_dev->tt_info);
2584 }
2585 /* Revert the endpoint back to its old information */
2586 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2587 sizeof(ep_bw_info[i]));
2588 /* Add any changed or dropped endpoints back into the table */
2589 if (EP_IS_DROPPED(ctrl_ctx, i))
2590 xhci_add_ep_to_interval_table(xhci,
2591 &virt_dev->eps[i].bw_info,
2592 virt_dev->bw_table,
2593 virt_dev->udev,
2594 &virt_dev->eps[i],
2595 virt_dev->tt_info);
2596 }
2597 return -ENOMEM;
2598}
2599
2600
2601/* Issue a configure endpoint command or evaluate context command
2602 * and wait for it to finish.
2603 */
2604static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2605 struct usb_device *udev,
2606 struct xhci_command *command,
2607 bool ctx_change, bool must_succeed)
2608{
2609 int ret;
2610 unsigned long flags;
2611 struct xhci_input_control_ctx *ctrl_ctx;
2612 struct xhci_virt_device *virt_dev;
2613
2614 if (!command)
2615 return -EINVAL;
2616
2617 spin_lock_irqsave(&xhci->lock, flags);
2618 virt_dev = xhci->devs[udev->slot_id];
2619
2620 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2621 if (!ctrl_ctx) {
2622 spin_unlock_irqrestore(&xhci->lock, flags);
2623 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2624 __func__);
2625 return -ENOMEM;
2626 }
2627
2628 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2629 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2630 spin_unlock_irqrestore(&xhci->lock, flags);
2631 xhci_warn(xhci, "Not enough host resources, "
2632 "active endpoint contexts = %u\n",
2633 xhci->num_active_eps);
2634 return -ENOMEM;
2635 }
2636 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2637 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2638 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2639 xhci_free_host_resources(xhci, ctrl_ctx);
2640 spin_unlock_irqrestore(&xhci->lock, flags);
2641 xhci_warn(xhci, "Not enough bandwidth\n");
2642 return -ENOMEM;
2643 }
2644
2645 if (!ctx_change)
2646 ret = xhci_queue_configure_endpoint(xhci, command,
2647 command->in_ctx->dma,
2648 udev->slot_id, must_succeed);
2649 else
2650 ret = xhci_queue_evaluate_context(xhci, command,
2651 command->in_ctx->dma,
2652 udev->slot_id, must_succeed);
2653 if (ret < 0) {
2654 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2655 xhci_free_host_resources(xhci, ctrl_ctx);
2656 spin_unlock_irqrestore(&xhci->lock, flags);
2657 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2658 "FIXME allocate a new ring segment");
2659 return -ENOMEM;
2660 }
2661 xhci_ring_cmd_db(xhci);
2662 spin_unlock_irqrestore(&xhci->lock, flags);
2663
2664 /* Wait for the configure endpoint command to complete */
2665 wait_for_completion(command->completion);
2666
2667 if (!ctx_change)
2668 ret = xhci_configure_endpoint_result(xhci, udev,
2669 &command->status);
2670 else
2671 ret = xhci_evaluate_context_result(xhci, udev,
2672 &command->status);
2673
2674 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2675 spin_lock_irqsave(&xhci->lock, flags);
2676 /* If the command failed, remove the reserved resources.
2677 * Otherwise, clean up the estimate to include dropped eps.
2678 */
2679 if (ret)
2680 xhci_free_host_resources(xhci, ctrl_ctx);
2681 else
2682 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2683 spin_unlock_irqrestore(&xhci->lock, flags);
2684 }
2685 return ret;
2686}
2687
2688static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2689 struct xhci_virt_device *vdev, int i)
2690{
2691 struct xhci_virt_ep *ep = &vdev->eps[i];
2692
2693 if (ep->ep_state & EP_HAS_STREAMS) {
2694 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2695 xhci_get_endpoint_address(i));
2696 xhci_free_stream_info(xhci, ep->stream_info);
2697 ep->stream_info = NULL;
2698 ep->ep_state &= ~EP_HAS_STREAMS;
2699 }
2700}
2701
2702/* Called after one or more calls to xhci_add_endpoint() or
2703 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2704 * to call xhci_reset_bandwidth().
2705 *
2706 * Since we are in the middle of changing either configuration or
2707 * installing a new alt setting, the USB core won't allow URBs to be
2708 * enqueued for any endpoint on the old config or interface. Nothing
2709 * else should be touching the xhci->devs[slot_id] structure, so we
2710 * don't need to take the xhci->lock for manipulating that.
2711 */
2712int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2713{
2714 int i;
2715 int ret = 0;
2716 struct xhci_hcd *xhci;
2717 struct xhci_virt_device *virt_dev;
2718 struct xhci_input_control_ctx *ctrl_ctx;
2719 struct xhci_slot_ctx *slot_ctx;
2720 struct xhci_command *command;
2721
2722 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2723 if (ret <= 0)
2724 return ret;
2725 xhci = hcd_to_xhci(hcd);
2726 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2727 (xhci->xhc_state & XHCI_STATE_REMOVING))
2728 return -ENODEV;
2729
2730 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2731 virt_dev = xhci->devs[udev->slot_id];
2732
2733 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2734 if (!command)
2735 return -ENOMEM;
2736
2737 command->in_ctx = virt_dev->in_ctx;
2738
2739 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2740 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2741 if (!ctrl_ctx) {
2742 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2743 __func__);
2744 ret = -ENOMEM;
2745 goto command_cleanup;
2746 }
2747 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2748 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2749 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2750
2751 /* Don't issue the command if there's no endpoints to update. */
2752 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2753 ctrl_ctx->drop_flags == 0) {
2754 ret = 0;
2755 goto command_cleanup;
2756 }
2757 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2758 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2759 for (i = 31; i >= 1; i--) {
2760 __le32 le32 = cpu_to_le32(BIT(i));
2761
2762 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2763 || (ctrl_ctx->add_flags & le32) || i == 1) {
2764 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2765 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2766 break;
2767 }
2768 }
2769 xhci_dbg(xhci, "New Input Control Context:\n");
2770 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2771 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2772
2773 ret = xhci_configure_endpoint(xhci, udev, command,
2774 false, false);
2775 if (ret)
2776 /* Callee should call reset_bandwidth() */
2777 goto command_cleanup;
2778
2779 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2780 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2781 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2782
2783 /* Free any rings that were dropped, but not changed. */
2784 for (i = 1; i < 31; ++i) {
2785 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2786 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2787 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2788 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2789 }
2790 }
2791 xhci_zero_in_ctx(xhci, virt_dev);
2792 /*
2793 * Install any rings for completely new endpoints or changed endpoints,
2794 * and free or cache any old rings from changed endpoints.
2795 */
2796 for (i = 1; i < 31; ++i) {
2797 if (!virt_dev->eps[i].new_ring)
2798 continue;
2799 /* Only cache or free the old ring if it exists.
2800 * It may not if this is the first add of an endpoint.
2801 */
2802 if (virt_dev->eps[i].ring) {
2803 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2804 }
2805 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2806 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2807 virt_dev->eps[i].new_ring = NULL;
2808 }
2809command_cleanup:
2810 kfree(command->completion);
2811 kfree(command);
2812
2813 return ret;
2814}
2815
2816void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2817{
2818 struct xhci_hcd *xhci;
2819 struct xhci_virt_device *virt_dev;
2820 int i, ret;
2821
2822 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2823 if (ret <= 0)
2824 return;
2825 xhci = hcd_to_xhci(hcd);
2826
2827 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2828 virt_dev = xhci->devs[udev->slot_id];
2829 /* Free any rings allocated for added endpoints */
2830 for (i = 0; i < 31; ++i) {
2831 if (virt_dev->eps[i].new_ring) {
2832 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2833 virt_dev->eps[i].new_ring = NULL;
2834 }
2835 }
2836 xhci_zero_in_ctx(xhci, virt_dev);
2837}
2838
2839static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2840 struct xhci_container_ctx *in_ctx,
2841 struct xhci_container_ctx *out_ctx,
2842 struct xhci_input_control_ctx *ctrl_ctx,
2843 u32 add_flags, u32 drop_flags)
2844{
2845 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2846 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2847 xhci_slot_copy(xhci, in_ctx, out_ctx);
2848 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2849
2850 xhci_dbg(xhci, "Input Context:\n");
2851 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2852}
2853
2854static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2855 unsigned int slot_id, unsigned int ep_index,
2856 struct xhci_dequeue_state *deq_state)
2857{
2858 struct xhci_input_control_ctx *ctrl_ctx;
2859 struct xhci_container_ctx *in_ctx;
2860 struct xhci_ep_ctx *ep_ctx;
2861 u32 added_ctxs;
2862 dma_addr_t addr;
2863
2864 in_ctx = xhci->devs[slot_id]->in_ctx;
2865 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2866 if (!ctrl_ctx) {
2867 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2868 __func__);
2869 return;
2870 }
2871
2872 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2873 xhci->devs[slot_id]->out_ctx, ep_index);
2874 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2875 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2876 deq_state->new_deq_ptr);
2877 if (addr == 0) {
2878 xhci_warn(xhci, "WARN Cannot submit config ep after "
2879 "reset ep command\n");
2880 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2881 deq_state->new_deq_seg,
2882 deq_state->new_deq_ptr);
2883 return;
2884 }
2885 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2886
2887 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2888 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2889 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2890 added_ctxs, added_ctxs);
2891}
2892
2893void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2894 unsigned int ep_index, struct xhci_td *td)
2895{
2896 struct xhci_dequeue_state deq_state;
2897 struct xhci_virt_ep *ep;
2898 struct usb_device *udev = td->urb->dev;
2899
2900 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2901 "Cleaning up stalled endpoint ring");
2902 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2903 /* We need to move the HW's dequeue pointer past this TD,
2904 * or it will attempt to resend it on the next doorbell ring.
2905 */
2906 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2907 ep_index, ep->stopped_stream, td, &deq_state);
2908
2909 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2910 return;
2911
2912 /* HW with the reset endpoint quirk will use the saved dequeue state to
2913 * issue a configure endpoint command later.
2914 */
2915 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2916 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2917 "Queueing new dequeue state");
2918 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2919 ep_index, ep->stopped_stream, &deq_state);
2920 } else {
2921 /* Better hope no one uses the input context between now and the
2922 * reset endpoint completion!
2923 * XXX: No idea how this hardware will react when stream rings
2924 * are enabled.
2925 */
2926 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2927 "Setting up input context for "
2928 "configure endpoint command");
2929 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2930 ep_index, &deq_state);
2931 }
2932}
2933
2934/* Called when clearing halted device. The core should have sent the control
2935 * message to clear the device halt condition. The host side of the halt should
2936 * already be cleared with a reset endpoint command issued when the STALL tx
2937 * event was received.
2938 *
2939 * Context: in_interrupt
2940 */
2941
2942void xhci_endpoint_reset(struct usb_hcd *hcd,
2943 struct usb_host_endpoint *ep)
2944{
2945 struct xhci_hcd *xhci;
2946
2947 xhci = hcd_to_xhci(hcd);
2948
2949 /*
2950 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2951 * The Reset Endpoint Command may only be issued to endpoints in the
2952 * Halted state. If software wishes reset the Data Toggle or Sequence
2953 * Number of an endpoint that isn't in the Halted state, then software
2954 * may issue a Configure Endpoint Command with the Drop and Add bits set
2955 * for the target endpoint. that is in the Stopped state.
2956 */
2957
2958 /* For now just print debug to follow the situation */
2959 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2960 ep->desc.bEndpointAddress);
2961}
2962
2963static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2964 struct usb_device *udev, struct usb_host_endpoint *ep,
2965 unsigned int slot_id)
2966{
2967 int ret;
2968 unsigned int ep_index;
2969 unsigned int ep_state;
2970
2971 if (!ep)
2972 return -EINVAL;
2973 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2974 if (ret <= 0)
2975 return -EINVAL;
2976 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2977 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2978 " descriptor for ep 0x%x does not support streams\n",
2979 ep->desc.bEndpointAddress);
2980 return -EINVAL;
2981 }
2982
2983 ep_index = xhci_get_endpoint_index(&ep->desc);
2984 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2985 if (ep_state & EP_HAS_STREAMS ||
2986 ep_state & EP_GETTING_STREAMS) {
2987 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2988 "already has streams set up.\n",
2989 ep->desc.bEndpointAddress);
2990 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2991 "dynamic stream context array reallocation.\n");
2992 return -EINVAL;
2993 }
2994 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2995 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2996 "endpoint 0x%x; URBs are pending.\n",
2997 ep->desc.bEndpointAddress);
2998 return -EINVAL;
2999 }
3000 return 0;
3001}
3002
3003static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3004 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3005{
3006 unsigned int max_streams;
3007
3008 /* The stream context array size must be a power of two */
3009 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3010 /*
3011 * Find out how many primary stream array entries the host controller
3012 * supports. Later we may use secondary stream arrays (similar to 2nd
3013 * level page entries), but that's an optional feature for xHCI host
3014 * controllers. xHCs must support at least 4 stream IDs.
3015 */
3016 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3017 if (*num_stream_ctxs > max_streams) {
3018 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3019 max_streams);
3020 *num_stream_ctxs = max_streams;
3021 *num_streams = max_streams;
3022 }
3023}
3024
3025/* Returns an error code if one of the endpoint already has streams.
3026 * This does not change any data structures, it only checks and gathers
3027 * information.
3028 */
3029static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3030 struct usb_device *udev,
3031 struct usb_host_endpoint **eps, unsigned int num_eps,
3032 unsigned int *num_streams, u32 *changed_ep_bitmask)
3033{
3034 unsigned int max_streams;
3035 unsigned int endpoint_flag;
3036 int i;
3037 int ret;
3038
3039 for (i = 0; i < num_eps; i++) {
3040 ret = xhci_check_streams_endpoint(xhci, udev,
3041 eps[i], udev->slot_id);
3042 if (ret < 0)
3043 return ret;
3044
3045 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3046 if (max_streams < (*num_streams - 1)) {
3047 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3048 eps[i]->desc.bEndpointAddress,
3049 max_streams);
3050 *num_streams = max_streams+1;
3051 }
3052
3053 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3054 if (*changed_ep_bitmask & endpoint_flag)
3055 return -EINVAL;
3056 *changed_ep_bitmask |= endpoint_flag;
3057 }
3058 return 0;
3059}
3060
3061static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3062 struct usb_device *udev,
3063 struct usb_host_endpoint **eps, unsigned int num_eps)
3064{
3065 u32 changed_ep_bitmask = 0;
3066 unsigned int slot_id;
3067 unsigned int ep_index;
3068 unsigned int ep_state;
3069 int i;
3070
3071 slot_id = udev->slot_id;
3072 if (!xhci->devs[slot_id])
3073 return 0;
3074
3075 for (i = 0; i < num_eps; i++) {
3076 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3077 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3078 /* Are streams already being freed for the endpoint? */
3079 if (ep_state & EP_GETTING_NO_STREAMS) {
3080 xhci_warn(xhci, "WARN Can't disable streams for "
3081 "endpoint 0x%x, "
3082 "streams are being disabled already\n",
3083 eps[i]->desc.bEndpointAddress);
3084 return 0;
3085 }
3086 /* Are there actually any streams to free? */
3087 if (!(ep_state & EP_HAS_STREAMS) &&
3088 !(ep_state & EP_GETTING_STREAMS)) {
3089 xhci_warn(xhci, "WARN Can't disable streams for "
3090 "endpoint 0x%x, "
3091 "streams are already disabled!\n",
3092 eps[i]->desc.bEndpointAddress);
3093 xhci_warn(xhci, "WARN xhci_free_streams() called "
3094 "with non-streams endpoint\n");
3095 return 0;
3096 }
3097 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3098 }
3099 return changed_ep_bitmask;
3100}
3101
3102/*
3103 * The USB device drivers use this function (through the HCD interface in USB
3104 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3105 * coordinate mass storage command queueing across multiple endpoints (basically
3106 * a stream ID == a task ID).
3107 *
3108 * Setting up streams involves allocating the same size stream context array
3109 * for each endpoint and issuing a configure endpoint command for all endpoints.
3110 *
3111 * Don't allow the call to succeed if one endpoint only supports one stream
3112 * (which means it doesn't support streams at all).
3113 *
3114 * Drivers may get less stream IDs than they asked for, if the host controller
3115 * hardware or endpoints claim they can't support the number of requested
3116 * stream IDs.
3117 */
3118int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3119 struct usb_host_endpoint **eps, unsigned int num_eps,
3120 unsigned int num_streams, gfp_t mem_flags)
3121{
3122 int i, ret;
3123 struct xhci_hcd *xhci;
3124 struct xhci_virt_device *vdev;
3125 struct xhci_command *config_cmd;
3126 struct xhci_input_control_ctx *ctrl_ctx;
3127 unsigned int ep_index;
3128 unsigned int num_stream_ctxs;
3129 unsigned int max_packet;
3130 unsigned long flags;
3131 u32 changed_ep_bitmask = 0;
3132
3133 if (!eps)
3134 return -EINVAL;
3135
3136 /* Add one to the number of streams requested to account for
3137 * stream 0 that is reserved for xHCI usage.
3138 */
3139 num_streams += 1;
3140 xhci = hcd_to_xhci(hcd);
3141 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3142 num_streams);
3143
3144 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3145 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3146 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3147 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3148 return -ENOSYS;
3149 }
3150
3151 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3152 if (!config_cmd) {
3153 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3154 return -ENOMEM;
3155 }
3156 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3157 if (!ctrl_ctx) {
3158 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3159 __func__);
3160 xhci_free_command(xhci, config_cmd);
3161 return -ENOMEM;
3162 }
3163
3164 /* Check to make sure all endpoints are not already configured for
3165 * streams. While we're at it, find the maximum number of streams that
3166 * all the endpoints will support and check for duplicate endpoints.
3167 */
3168 spin_lock_irqsave(&xhci->lock, flags);
3169 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3170 num_eps, &num_streams, &changed_ep_bitmask);
3171 if (ret < 0) {
3172 xhci_free_command(xhci, config_cmd);
3173 spin_unlock_irqrestore(&xhci->lock, flags);
3174 return ret;
3175 }
3176 if (num_streams <= 1) {
3177 xhci_warn(xhci, "WARN: endpoints can't handle "
3178 "more than one stream.\n");
3179 xhci_free_command(xhci, config_cmd);
3180 spin_unlock_irqrestore(&xhci->lock, flags);
3181 return -EINVAL;
3182 }
3183 vdev = xhci->devs[udev->slot_id];
3184 /* Mark each endpoint as being in transition, so
3185 * xhci_urb_enqueue() will reject all URBs.
3186 */
3187 for (i = 0; i < num_eps; i++) {
3188 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3189 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3190 }
3191 spin_unlock_irqrestore(&xhci->lock, flags);
3192
3193 /* Setup internal data structures and allocate HW data structures for
3194 * streams (but don't install the HW structures in the input context
3195 * until we're sure all memory allocation succeeded).
3196 */
3197 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3198 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3199 num_stream_ctxs, num_streams);
3200
3201 for (i = 0; i < num_eps; i++) {
3202 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3203 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3204 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3205 num_stream_ctxs,
3206 num_streams,
3207 max_packet, mem_flags);
3208 if (!vdev->eps[ep_index].stream_info)
3209 goto cleanup;
3210 /* Set maxPstreams in endpoint context and update deq ptr to
3211 * point to stream context array. FIXME
3212 */
3213 }
3214
3215 /* Set up the input context for a configure endpoint command. */
3216 for (i = 0; i < num_eps; i++) {
3217 struct xhci_ep_ctx *ep_ctx;
3218
3219 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3220 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3221
3222 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3223 vdev->out_ctx, ep_index);
3224 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3225 vdev->eps[ep_index].stream_info);
3226 }
3227 /* Tell the HW to drop its old copy of the endpoint context info
3228 * and add the updated copy from the input context.
3229 */
3230 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3231 vdev->out_ctx, ctrl_ctx,
3232 changed_ep_bitmask, changed_ep_bitmask);
3233
3234 /* Issue and wait for the configure endpoint command */
3235 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3236 false, false);
3237
3238 /* xHC rejected the configure endpoint command for some reason, so we
3239 * leave the old ring intact and free our internal streams data
3240 * structure.
3241 */
3242 if (ret < 0)
3243 goto cleanup;
3244
3245 spin_lock_irqsave(&xhci->lock, flags);
3246 for (i = 0; i < num_eps; i++) {
3247 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3248 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3249 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3250 udev->slot_id, ep_index);
3251 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3252 }
3253 xhci_free_command(xhci, config_cmd);
3254 spin_unlock_irqrestore(&xhci->lock, flags);
3255
3256 /* Subtract 1 for stream 0, which drivers can't use */
3257 return num_streams - 1;
3258
3259cleanup:
3260 /* If it didn't work, free the streams! */
3261 for (i = 0; i < num_eps; i++) {
3262 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3263 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3264 vdev->eps[ep_index].stream_info = NULL;
3265 /* FIXME Unset maxPstreams in endpoint context and
3266 * update deq ptr to point to normal string ring.
3267 */
3268 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3269 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3270 xhci_endpoint_zero(xhci, vdev, eps[i]);
3271 }
3272 xhci_free_command(xhci, config_cmd);
3273 return -ENOMEM;
3274}
3275
3276/* Transition the endpoint from using streams to being a "normal" endpoint
3277 * without streams.
3278 *
3279 * Modify the endpoint context state, submit a configure endpoint command,
3280 * and free all endpoint rings for streams if that completes successfully.
3281 */
3282int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3283 struct usb_host_endpoint **eps, unsigned int num_eps,
3284 gfp_t mem_flags)
3285{
3286 int i, ret;
3287 struct xhci_hcd *xhci;
3288 struct xhci_virt_device *vdev;
3289 struct xhci_command *command;
3290 struct xhci_input_control_ctx *ctrl_ctx;
3291 unsigned int ep_index;
3292 unsigned long flags;
3293 u32 changed_ep_bitmask;
3294
3295 xhci = hcd_to_xhci(hcd);
3296 vdev = xhci->devs[udev->slot_id];
3297
3298 /* Set up a configure endpoint command to remove the streams rings */
3299 spin_lock_irqsave(&xhci->lock, flags);
3300 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3301 udev, eps, num_eps);
3302 if (changed_ep_bitmask == 0) {
3303 spin_unlock_irqrestore(&xhci->lock, flags);
3304 return -EINVAL;
3305 }
3306
3307 /* Use the xhci_command structure from the first endpoint. We may have
3308 * allocated too many, but the driver may call xhci_free_streams() for
3309 * each endpoint it grouped into one call to xhci_alloc_streams().
3310 */
3311 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3312 command = vdev->eps[ep_index].stream_info->free_streams_command;
3313 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3314 if (!ctrl_ctx) {
3315 spin_unlock_irqrestore(&xhci->lock, flags);
3316 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3317 __func__);
3318 return -EINVAL;
3319 }
3320
3321 for (i = 0; i < num_eps; i++) {
3322 struct xhci_ep_ctx *ep_ctx;
3323
3324 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3325 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3326 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3327 EP_GETTING_NO_STREAMS;
3328
3329 xhci_endpoint_copy(xhci, command->in_ctx,
3330 vdev->out_ctx, ep_index);
3331 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3332 &vdev->eps[ep_index]);
3333 }
3334 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3335 vdev->out_ctx, ctrl_ctx,
3336 changed_ep_bitmask, changed_ep_bitmask);
3337 spin_unlock_irqrestore(&xhci->lock, flags);
3338
3339 /* Issue and wait for the configure endpoint command,
3340 * which must succeed.
3341 */
3342 ret = xhci_configure_endpoint(xhci, udev, command,
3343 false, true);
3344
3345 /* xHC rejected the configure endpoint command for some reason, so we
3346 * leave the streams rings intact.
3347 */
3348 if (ret < 0)
3349 return ret;
3350
3351 spin_lock_irqsave(&xhci->lock, flags);
3352 for (i = 0; i < num_eps; i++) {
3353 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3354 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3355 vdev->eps[ep_index].stream_info = NULL;
3356 /* FIXME Unset maxPstreams in endpoint context and
3357 * update deq ptr to point to normal string ring.
3358 */
3359 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3360 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3361 }
3362 spin_unlock_irqrestore(&xhci->lock, flags);
3363
3364 return 0;
3365}
3366
3367/*
3368 * Deletes endpoint resources for endpoints that were active before a Reset
3369 * Device command, or a Disable Slot command. The Reset Device command leaves
3370 * the control endpoint intact, whereas the Disable Slot command deletes it.
3371 *
3372 * Must be called with xhci->lock held.
3373 */
3374void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3375 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3376{
3377 int i;
3378 unsigned int num_dropped_eps = 0;
3379 unsigned int drop_flags = 0;
3380
3381 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3382 if (virt_dev->eps[i].ring) {
3383 drop_flags |= 1 << i;
3384 num_dropped_eps++;
3385 }
3386 }
3387 xhci->num_active_eps -= num_dropped_eps;
3388 if (num_dropped_eps)
3389 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3390 "Dropped %u ep ctxs, flags = 0x%x, "
3391 "%u now active.",
3392 num_dropped_eps, drop_flags,
3393 xhci->num_active_eps);
3394}
3395
3396/*
3397 * This submits a Reset Device Command, which will set the device state to 0,
3398 * set the device address to 0, and disable all the endpoints except the default
3399 * control endpoint. The USB core should come back and call
3400 * xhci_address_device(), and then re-set up the configuration. If this is
3401 * called because of a usb_reset_and_verify_device(), then the old alternate
3402 * settings will be re-installed through the normal bandwidth allocation
3403 * functions.
3404 *
3405 * Wait for the Reset Device command to finish. Remove all structures
3406 * associated with the endpoints that were disabled. Clear the input device
3407 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3408 *
3409 * If the virt_dev to be reset does not exist or does not match the udev,
3410 * it means the device is lost, possibly due to the xHC restore error and
3411 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3412 * re-allocate the device.
3413 */
3414int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3415{
3416 int ret, i;
3417 unsigned long flags;
3418 struct xhci_hcd *xhci;
3419 unsigned int slot_id;
3420 struct xhci_virt_device *virt_dev;
3421 struct xhci_command *reset_device_cmd;
3422 int last_freed_endpoint;
3423 struct xhci_slot_ctx *slot_ctx;
3424 int old_active_eps = 0;
3425
3426 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3427 if (ret <= 0)
3428 return ret;
3429 xhci = hcd_to_xhci(hcd);
3430 slot_id = udev->slot_id;
3431 virt_dev = xhci->devs[slot_id];
3432 if (!virt_dev) {
3433 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3434 "not exist. Re-allocate the device\n", slot_id);
3435 ret = xhci_alloc_dev(hcd, udev);
3436 if (ret == 1)
3437 return 0;
3438 else
3439 return -EINVAL;
3440 }
3441
3442 if (virt_dev->tt_info)
3443 old_active_eps = virt_dev->tt_info->active_eps;
3444
3445 if (virt_dev->udev != udev) {
3446 /* If the virt_dev and the udev does not match, this virt_dev
3447 * may belong to another udev.
3448 * Re-allocate the device.
3449 */
3450 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3451 "not match the udev. Re-allocate the device\n",
3452 slot_id);
3453 ret = xhci_alloc_dev(hcd, udev);
3454 if (ret == 1)
3455 return 0;
3456 else
3457 return -EINVAL;
3458 }
3459
3460 /* If device is not setup, there is no point in resetting it */
3461 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3462 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3463 SLOT_STATE_DISABLED)
3464 return 0;
3465
3466 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3467 /* Allocate the command structure that holds the struct completion.
3468 * Assume we're in process context, since the normal device reset
3469 * process has to wait for the device anyway. Storage devices are
3470 * reset as part of error handling, so use GFP_NOIO instead of
3471 * GFP_KERNEL.
3472 */
3473 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3474 if (!reset_device_cmd) {
3475 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3476 return -ENOMEM;
3477 }
3478
3479 /* Attempt to submit the Reset Device command to the command ring */
3480 spin_lock_irqsave(&xhci->lock, flags);
3481
3482 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3483 if (ret) {
3484 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3485 spin_unlock_irqrestore(&xhci->lock, flags);
3486 goto command_cleanup;
3487 }
3488 xhci_ring_cmd_db(xhci);
3489 spin_unlock_irqrestore(&xhci->lock, flags);
3490
3491 /* Wait for the Reset Device command to finish */
3492 wait_for_completion(reset_device_cmd->completion);
3493
3494 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3495 * unless we tried to reset a slot ID that wasn't enabled,
3496 * or the device wasn't in the addressed or configured state.
3497 */
3498 ret = reset_device_cmd->status;
3499 switch (ret) {
3500 case COMP_CMD_ABORT:
3501 case COMP_CMD_STOP:
3502 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3503 ret = -ETIME;
3504 goto command_cleanup;
3505 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3506 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3507 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3508 slot_id,
3509 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3510 xhci_dbg(xhci, "Not freeing device rings.\n");
3511 /* Don't treat this as an error. May change my mind later. */
3512 ret = 0;
3513 goto command_cleanup;
3514 case COMP_SUCCESS:
3515 xhci_dbg(xhci, "Successful reset device command.\n");
3516 break;
3517 default:
3518 if (xhci_is_vendor_info_code(xhci, ret))
3519 break;
3520 xhci_warn(xhci, "Unknown completion code %u for "
3521 "reset device command.\n", ret);
3522 ret = -EINVAL;
3523 goto command_cleanup;
3524 }
3525
3526 /* Free up host controller endpoint resources */
3527 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3528 spin_lock_irqsave(&xhci->lock, flags);
3529 /* Don't delete the default control endpoint resources */
3530 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3531 spin_unlock_irqrestore(&xhci->lock, flags);
3532 }
3533
3534 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3535 last_freed_endpoint = 1;
3536 for (i = 1; i < 31; ++i) {
3537 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3538
3539 if (ep->ep_state & EP_HAS_STREAMS) {
3540 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3541 xhci_get_endpoint_address(i));
3542 xhci_free_stream_info(xhci, ep->stream_info);
3543 ep->stream_info = NULL;
3544 ep->ep_state &= ~EP_HAS_STREAMS;
3545 }
3546
3547 if (ep->ring) {
3548 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3549 last_freed_endpoint = i;
3550 }
3551 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3552 xhci_drop_ep_from_interval_table(xhci,
3553 &virt_dev->eps[i].bw_info,
3554 virt_dev->bw_table,
3555 udev,
3556 &virt_dev->eps[i],
3557 virt_dev->tt_info);
3558 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3559 }
3560 /* If necessary, update the number of active TTs on this root port */
3561 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3562
3563 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3564 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3565 ret = 0;
3566
3567command_cleanup:
3568 xhci_free_command(xhci, reset_device_cmd);
3569 return ret;
3570}
3571
3572/*
3573 * At this point, the struct usb_device is about to go away, the device has
3574 * disconnected, and all traffic has been stopped and the endpoints have been
3575 * disabled. Free any HC data structures associated with that device.
3576 */
3577void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3578{
3579 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3580 struct xhci_virt_device *virt_dev;
3581 unsigned long flags;
3582 u32 state;
3583 int i, ret;
3584 struct xhci_command *command;
3585
3586 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3587 if (!command)
3588 return;
3589
3590#ifndef CONFIG_USB_DEFAULT_PERSIST
3591 /*
3592 * We called pm_runtime_get_noresume when the device was attached.
3593 * Decrement the counter here to allow controller to runtime suspend
3594 * if no devices remain.
3595 */
3596 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3597 pm_runtime_put_noidle(hcd->self.controller);
3598#endif
3599
3600 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3601 /* If the host is halted due to driver unload, we still need to free the
3602 * device.
3603 */
3604 if (ret <= 0 && ret != -ENODEV) {
3605 kfree(command);
3606 return;
3607 }
3608
3609 virt_dev = xhci->devs[udev->slot_id];
3610
3611 /* Stop any wayward timer functions (which may grab the lock) */
3612 for (i = 0; i < 31; ++i) {
3613 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3614 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3615 }
3616
3617 spin_lock_irqsave(&xhci->lock, flags);
3618 /* Don't disable the slot if the host controller is dead. */
3619 state = readl(&xhci->op_regs->status);
3620 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3621 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3622 xhci_free_virt_device(xhci, udev->slot_id);
3623 spin_unlock_irqrestore(&xhci->lock, flags);
3624 kfree(command);
3625 return;
3626 }
3627
3628 if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3629 udev->slot_id)) {
3630 spin_unlock_irqrestore(&xhci->lock, flags);
3631 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3632 return;
3633 }
3634 xhci_ring_cmd_db(xhci);
3635 spin_unlock_irqrestore(&xhci->lock, flags);
3636
3637 /*
3638 * Event command completion handler will free any data structures
3639 * associated with the slot. XXX Can free sleep?
3640 */
3641}
3642
3643/*
3644 * Checks if we have enough host controller resources for the default control
3645 * endpoint.
3646 *
3647 * Must be called with xhci->lock held.
3648 */
3649static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3650{
3651 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3652 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3653 "Not enough ep ctxs: "
3654 "%u active, need to add 1, limit is %u.",
3655 xhci->num_active_eps, xhci->limit_active_eps);
3656 return -ENOMEM;
3657 }
3658 xhci->num_active_eps += 1;
3659 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3660 "Adding 1 ep ctx, %u now active.",
3661 xhci->num_active_eps);
3662 return 0;
3663}
3664
3665
3666/*
3667 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3668 * timed out, or allocating memory failed. Returns 1 on success.
3669 */
3670int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3671{
3672 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3673 unsigned long flags;
3674 int ret, slot_id;
3675 struct xhci_command *command;
3676
3677 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3678 if (!command)
3679 return 0;
3680
3681 /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3682 mutex_lock(&xhci->mutex);
3683 spin_lock_irqsave(&xhci->lock, flags);
3684 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3685 if (ret) {
3686 spin_unlock_irqrestore(&xhci->lock, flags);
3687 mutex_unlock(&xhci->mutex);
3688 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3689 xhci_free_command(xhci, command);
3690 return 0;
3691 }
3692 xhci_ring_cmd_db(xhci);
3693 spin_unlock_irqrestore(&xhci->lock, flags);
3694
3695 wait_for_completion(command->completion);
3696 slot_id = command->slot_id;
3697 mutex_unlock(&xhci->mutex);
3698
3699 if (!slot_id || command->status != COMP_SUCCESS) {
3700 xhci_err(xhci, "Error while assigning device slot ID\n");
3701 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3702 HCS_MAX_SLOTS(
3703 readl(&xhci->cap_regs->hcs_params1)));
3704 xhci_free_command(xhci, command);
3705 return 0;
3706 }
3707
3708 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3709 spin_lock_irqsave(&xhci->lock, flags);
3710 ret = xhci_reserve_host_control_ep_resources(xhci);
3711 if (ret) {
3712 spin_unlock_irqrestore(&xhci->lock, flags);
3713 xhci_warn(xhci, "Not enough host resources, "
3714 "active endpoint contexts = %u\n",
3715 xhci->num_active_eps);
3716 goto disable_slot;
3717 }
3718 spin_unlock_irqrestore(&xhci->lock, flags);
3719 }
3720 /* Use GFP_NOIO, since this function can be called from
3721 * xhci_discover_or_reset_device(), which may be called as part of
3722 * mass storage driver error handling.
3723 */
3724 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3725 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3726 goto disable_slot;
3727 }
3728 udev->slot_id = slot_id;
3729
3730#ifndef CONFIG_USB_DEFAULT_PERSIST
3731 /*
3732 * If resetting upon resume, we can't put the controller into runtime
3733 * suspend if there is a device attached.
3734 */
3735 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3736 pm_runtime_get_noresume(hcd->self.controller);
3737#endif
3738
3739
3740 xhci_free_command(xhci, command);
3741 /* Is this a LS or FS device under a HS hub? */
3742 /* Hub or peripherial? */
3743 return 1;
3744
3745disable_slot:
3746 /* Disable slot, if we can do it without mem alloc */
3747 spin_lock_irqsave(&xhci->lock, flags);
3748 kfree(command->completion);
3749 command->completion = NULL;
3750 command->status = 0;
3751 if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3752 udev->slot_id))
3753 xhci_ring_cmd_db(xhci);
3754 spin_unlock_irqrestore(&xhci->lock, flags);
3755 return 0;
3756}
3757
3758/*
3759 * Issue an Address Device command and optionally send a corresponding
3760 * SetAddress request to the device.
3761 */
3762static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3763 enum xhci_setup_dev setup)
3764{
3765 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3766 unsigned long flags;
3767 struct xhci_virt_device *virt_dev;
3768 int ret = 0;
3769 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3770 struct xhci_slot_ctx *slot_ctx;
3771 struct xhci_input_control_ctx *ctrl_ctx;
3772 u64 temp_64;
3773 struct xhci_command *command = NULL;
3774
3775 mutex_lock(&xhci->mutex);
3776
3777 if (xhci->xhc_state) { /* dying, removing or halted */
3778 ret = -ESHUTDOWN;
3779 goto out;
3780 }
3781
3782 if (!udev->slot_id) {
3783 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3784 "Bad Slot ID %d", udev->slot_id);
3785 ret = -EINVAL;
3786 goto out;
3787 }
3788
3789 virt_dev = xhci->devs[udev->slot_id];
3790
3791 if (WARN_ON(!virt_dev)) {
3792 /*
3793 * In plug/unplug torture test with an NEC controller,
3794 * a zero-dereference was observed once due to virt_dev = 0.
3795 * Print useful debug rather than crash if it is observed again!
3796 */
3797 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3798 udev->slot_id);
3799 ret = -EINVAL;
3800 goto out;
3801 }
3802
3803 if (setup == SETUP_CONTEXT_ONLY) {
3804 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3805 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3806 SLOT_STATE_DEFAULT) {
3807 xhci_dbg(xhci, "Slot already in default state\n");
3808 goto out;
3809 }
3810 }
3811
3812 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3813 if (!command) {
3814 ret = -ENOMEM;
3815 goto out;
3816 }
3817
3818 command->in_ctx = virt_dev->in_ctx;
3819
3820 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3821 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3822 if (!ctrl_ctx) {
3823 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3824 __func__);
3825 ret = -EINVAL;
3826 goto out;
3827 }
3828 /*
3829 * If this is the first Set Address since device plug-in or
3830 * virt_device realloaction after a resume with an xHCI power loss,
3831 * then set up the slot context.
3832 */
3833 if (!slot_ctx->dev_info)
3834 xhci_setup_addressable_virt_dev(xhci, udev);
3835 /* Otherwise, update the control endpoint ring enqueue pointer. */
3836 else
3837 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3838 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3839 ctrl_ctx->drop_flags = 0;
3840
3841 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3842 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3843 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3844 le32_to_cpu(slot_ctx->dev_info) >> 27);
3845
3846 spin_lock_irqsave(&xhci->lock, flags);
3847 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3848 udev->slot_id, setup);
3849 if (ret) {
3850 spin_unlock_irqrestore(&xhci->lock, flags);
3851 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3852 "FIXME: allocate a command ring segment");
3853 goto out;
3854 }
3855 xhci_ring_cmd_db(xhci);
3856 spin_unlock_irqrestore(&xhci->lock, flags);
3857
3858 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3859 wait_for_completion(command->completion);
3860
3861 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3862 * the SetAddress() "recovery interval" required by USB and aborting the
3863 * command on a timeout.
3864 */
3865 switch (command->status) {
3866 case COMP_CMD_ABORT:
3867 case COMP_CMD_STOP:
3868 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3869 ret = -ETIME;
3870 break;
3871 case COMP_CTX_STATE:
3872 case COMP_EBADSLT:
3873 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3874 act, udev->slot_id);
3875 ret = -EINVAL;
3876 break;
3877 case COMP_TX_ERR:
3878 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3879 ret = -EPROTO;
3880 break;
3881 case COMP_DEV_ERR:
3882 dev_warn(&udev->dev,
3883 "ERROR: Incompatible device for setup %s command\n", act);
3884 ret = -ENODEV;
3885 break;
3886 case COMP_SUCCESS:
3887 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3888 "Successful setup %s command", act);
3889 break;
3890 default:
3891 xhci_err(xhci,
3892 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3893 act, command->status);
3894 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3895 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3896 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3897 ret = -EINVAL;
3898 break;
3899 }
3900 if (ret)
3901 goto out;
3902 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3903 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3904 "Op regs DCBAA ptr = %#016llx", temp_64);
3905 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3906 "Slot ID %d dcbaa entry @%p = %#016llx",
3907 udev->slot_id,
3908 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3909 (unsigned long long)
3910 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3911 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3912 "Output Context DMA address = %#08llx",
3913 (unsigned long long)virt_dev->out_ctx->dma);
3914 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3915 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3916 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3917 le32_to_cpu(slot_ctx->dev_info) >> 27);
3918 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3919 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3920 /*
3921 * USB core uses address 1 for the roothubs, so we add one to the
3922 * address given back to us by the HC.
3923 */
3924 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3925 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3926 le32_to_cpu(slot_ctx->dev_info) >> 27);
3927 /* Zero the input context control for later use */
3928 ctrl_ctx->add_flags = 0;
3929 ctrl_ctx->drop_flags = 0;
3930
3931 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3932 "Internal device address = %d",
3933 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3934out:
3935 mutex_unlock(&xhci->mutex);
3936 if (command) {
3937 kfree(command->completion);
3938 kfree(command);
3939 }
3940 return ret;
3941}
3942
3943int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3944{
3945 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3946}
3947
3948int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3949{
3950 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3951}
3952
3953/*
3954 * Transfer the port index into real index in the HW port status
3955 * registers. Caculate offset between the port's PORTSC register
3956 * and port status base. Divide the number of per port register
3957 * to get the real index. The raw port number bases 1.
3958 */
3959int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3960{
3961 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3962 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3963 __le32 __iomem *addr;
3964 int raw_port;
3965
3966 if (hcd->speed < HCD_USB3)
3967 addr = xhci->usb2_ports[port1 - 1];
3968 else
3969 addr = xhci->usb3_ports[port1 - 1];
3970
3971 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3972 return raw_port;
3973}
3974
3975/*
3976 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3977 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
3978 */
3979static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3980 struct usb_device *udev, u16 max_exit_latency)
3981{
3982 struct xhci_virt_device *virt_dev;
3983 struct xhci_command *command;
3984 struct xhci_input_control_ctx *ctrl_ctx;
3985 struct xhci_slot_ctx *slot_ctx;
3986 unsigned long flags;
3987 int ret;
3988
3989 spin_lock_irqsave(&xhci->lock, flags);
3990
3991 virt_dev = xhci->devs[udev->slot_id];
3992
3993 /*
3994 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3995 * xHC was re-initialized. Exit latency will be set later after
3996 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3997 */
3998
3999 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4000 spin_unlock_irqrestore(&xhci->lock, flags);
4001 return 0;
4002 }
4003
4004 /* Attempt to issue an Evaluate Context command to change the MEL. */
4005 command = xhci->lpm_command;
4006 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4007 if (!ctrl_ctx) {
4008 spin_unlock_irqrestore(&xhci->lock, flags);
4009 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4010 __func__);
4011 return -ENOMEM;
4012 }
4013
4014 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4015 spin_unlock_irqrestore(&xhci->lock, flags);
4016
4017 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4018 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4019 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4020 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4021 slot_ctx->dev_state = 0;
4022
4023 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4024 "Set up evaluate context for LPM MEL change.");
4025 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4026 xhci_dbg_ctx(xhci, command->in_ctx, 0);
4027
4028 /* Issue and wait for the evaluate context command. */
4029 ret = xhci_configure_endpoint(xhci, udev, command,
4030 true, true);
4031 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4032 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4033
4034 if (!ret) {
4035 spin_lock_irqsave(&xhci->lock, flags);
4036 virt_dev->current_mel = max_exit_latency;
4037 spin_unlock_irqrestore(&xhci->lock, flags);
4038 }
4039 return ret;
4040}
4041
4042#ifdef CONFIG_PM
4043
4044/* BESL to HIRD Encoding array for USB2 LPM */
4045static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4046 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4047
4048/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4049static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4050 struct usb_device *udev)
4051{
4052 int u2del, besl, besl_host;
4053 int besl_device = 0;
4054 u32 field;
4055
4056 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4057 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4058
4059 if (field & USB_BESL_SUPPORT) {
4060 for (besl_host = 0; besl_host < 16; besl_host++) {
4061 if (xhci_besl_encoding[besl_host] >= u2del)
4062 break;
4063 }
4064 /* Use baseline BESL value as default */
4065 if (field & USB_BESL_BASELINE_VALID)
4066 besl_device = USB_GET_BESL_BASELINE(field);
4067 else if (field & USB_BESL_DEEP_VALID)
4068 besl_device = USB_GET_BESL_DEEP(field);
4069 } else {
4070 if (u2del <= 50)
4071 besl_host = 0;
4072 else
4073 besl_host = (u2del - 51) / 75 + 1;
4074 }
4075
4076 besl = besl_host + besl_device;
4077 if (besl > 15)
4078 besl = 15;
4079
4080 return besl;
4081}
4082
4083/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4084static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4085{
4086 u32 field;
4087 int l1;
4088 int besld = 0;
4089 int hirdm = 0;
4090
4091 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4092
4093 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4094 l1 = udev->l1_params.timeout / 256;
4095
4096 /* device has preferred BESLD */
4097 if (field & USB_BESL_DEEP_VALID) {
4098 besld = USB_GET_BESL_DEEP(field);
4099 hirdm = 1;
4100 }
4101
4102 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4103}
4104
4105int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4106 struct usb_device *udev, int enable)
4107{
4108 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4109 __le32 __iomem **port_array;
4110 __le32 __iomem *pm_addr, *hlpm_addr;
4111 u32 pm_val, hlpm_val, field;
4112 unsigned int port_num;
4113 unsigned long flags;
4114 int hird, exit_latency;
4115 int ret;
4116
4117 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4118 !udev->lpm_capable)
4119 return -EPERM;
4120
4121 if (!udev->parent || udev->parent->parent ||
4122 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4123 return -EPERM;
4124
4125 if (udev->usb2_hw_lpm_capable != 1)
4126 return -EPERM;
4127
4128 spin_lock_irqsave(&xhci->lock, flags);
4129
4130 port_array = xhci->usb2_ports;
4131 port_num = udev->portnum - 1;
4132 pm_addr = port_array[port_num] + PORTPMSC;
4133 pm_val = readl(pm_addr);
4134 hlpm_addr = port_array[port_num] + PORTHLPMC;
4135 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4136
4137 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4138 enable ? "enable" : "disable", port_num + 1);
4139
4140 if (enable) {
4141 /* Host supports BESL timeout instead of HIRD */
4142 if (udev->usb2_hw_lpm_besl_capable) {
4143 /* if device doesn't have a preferred BESL value use a
4144 * default one which works with mixed HIRD and BESL
4145 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4146 */
4147 if ((field & USB_BESL_SUPPORT) &&
4148 (field & USB_BESL_BASELINE_VALID))
4149 hird = USB_GET_BESL_BASELINE(field);
4150 else
4151 hird = udev->l1_params.besl;
4152
4153 exit_latency = xhci_besl_encoding[hird];
4154 spin_unlock_irqrestore(&xhci->lock, flags);
4155
4156 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4157 * input context for link powermanagement evaluate
4158 * context commands. It is protected by hcd->bandwidth
4159 * mutex and is shared by all devices. We need to set
4160 * the max ext latency in USB 2 BESL LPM as well, so
4161 * use the same mutex and xhci_change_max_exit_latency()
4162 */
4163 mutex_lock(hcd->bandwidth_mutex);
4164 ret = xhci_change_max_exit_latency(xhci, udev,
4165 exit_latency);
4166 mutex_unlock(hcd->bandwidth_mutex);
4167
4168 if (ret < 0)
4169 return ret;
4170 spin_lock_irqsave(&xhci->lock, flags);
4171
4172 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4173 writel(hlpm_val, hlpm_addr);
4174 /* flush write */
4175 readl(hlpm_addr);
4176 } else {
4177 hird = xhci_calculate_hird_besl(xhci, udev);
4178 }
4179
4180 pm_val &= ~PORT_HIRD_MASK;
4181 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4182 writel(pm_val, pm_addr);
4183 pm_val = readl(pm_addr);
4184 pm_val |= PORT_HLE;
4185 writel(pm_val, pm_addr);
4186 /* flush write */
4187 readl(pm_addr);
4188 } else {
4189 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4190 writel(pm_val, pm_addr);
4191 /* flush write */
4192 readl(pm_addr);
4193 if (udev->usb2_hw_lpm_besl_capable) {
4194 spin_unlock_irqrestore(&xhci->lock, flags);
4195 mutex_lock(hcd->bandwidth_mutex);
4196 xhci_change_max_exit_latency(xhci, udev, 0);
4197 mutex_unlock(hcd->bandwidth_mutex);
4198 return 0;
4199 }
4200 }
4201
4202 spin_unlock_irqrestore(&xhci->lock, flags);
4203 return 0;
4204}
4205
4206/* check if a usb2 port supports a given extened capability protocol
4207 * only USB2 ports extended protocol capability values are cached.
4208 * Return 1 if capability is supported
4209 */
4210static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4211 unsigned capability)
4212{
4213 u32 port_offset, port_count;
4214 int i;
4215
4216 for (i = 0; i < xhci->num_ext_caps; i++) {
4217 if (xhci->ext_caps[i] & capability) {
4218 /* port offsets starts at 1 */
4219 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4220 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4221 if (port >= port_offset &&
4222 port < port_offset + port_count)
4223 return 1;
4224 }
4225 }
4226 return 0;
4227}
4228
4229int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4230{
4231 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4232 int portnum = udev->portnum - 1;
4233
4234 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4235 !udev->lpm_capable)
4236 return 0;
4237
4238 /* we only support lpm for non-hub device connected to root hub yet */
4239 if (!udev->parent || udev->parent->parent ||
4240 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4241 return 0;
4242
4243 if (xhci->hw_lpm_support == 1 &&
4244 xhci_check_usb2_port_capability(
4245 xhci, portnum, XHCI_HLC)) {
4246 udev->usb2_hw_lpm_capable = 1;
4247 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4248 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4249 if (xhci_check_usb2_port_capability(xhci, portnum,
4250 XHCI_BLC))
4251 udev->usb2_hw_lpm_besl_capable = 1;
4252 }
4253
4254 return 0;
4255}
4256
4257/*---------------------- USB 3.0 Link PM functions ------------------------*/
4258
4259/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4260static unsigned long long xhci_service_interval_to_ns(
4261 struct usb_endpoint_descriptor *desc)
4262{
4263 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4264}
4265
4266static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4267 enum usb3_link_state state)
4268{
4269 unsigned long long sel;
4270 unsigned long long pel;
4271 unsigned int max_sel_pel;
4272 char *state_name;
4273
4274 switch (state) {
4275 case USB3_LPM_U1:
4276 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4277 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4278 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4279 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4280 state_name = "U1";
4281 break;
4282 case USB3_LPM_U2:
4283 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4284 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4285 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4286 state_name = "U2";
4287 break;
4288 default:
4289 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4290 __func__);
4291 return USB3_LPM_DISABLED;
4292 }
4293
4294 if (sel <= max_sel_pel && pel <= max_sel_pel)
4295 return USB3_LPM_DEVICE_INITIATED;
4296
4297 if (sel > max_sel_pel)
4298 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4299 "due to long SEL %llu ms\n",
4300 state_name, sel);
4301 else
4302 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4303 "due to long PEL %llu ms\n",
4304 state_name, pel);
4305 return USB3_LPM_DISABLED;
4306}
4307
4308/* The U1 timeout should be the maximum of the following values:
4309 * - For control endpoints, U1 system exit latency (SEL) * 3
4310 * - For bulk endpoints, U1 SEL * 5
4311 * - For interrupt endpoints:
4312 * - Notification EPs, U1 SEL * 3
4313 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4314 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4315 */
4316static unsigned long long xhci_calculate_intel_u1_timeout(
4317 struct usb_device *udev,
4318 struct usb_endpoint_descriptor *desc)
4319{
4320 unsigned long long timeout_ns;
4321 int ep_type;
4322 int intr_type;
4323
4324 ep_type = usb_endpoint_type(desc);
4325 switch (ep_type) {
4326 case USB_ENDPOINT_XFER_CONTROL:
4327 timeout_ns = udev->u1_params.sel * 3;
4328 break;
4329 case USB_ENDPOINT_XFER_BULK:
4330 timeout_ns = udev->u1_params.sel * 5;
4331 break;
4332 case USB_ENDPOINT_XFER_INT:
4333 intr_type = usb_endpoint_interrupt_type(desc);
4334 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4335 timeout_ns = udev->u1_params.sel * 3;
4336 break;
4337 }
4338 /* Otherwise the calculation is the same as isoc eps */
4339 case USB_ENDPOINT_XFER_ISOC:
4340 timeout_ns = xhci_service_interval_to_ns(desc);
4341 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4342 if (timeout_ns < udev->u1_params.sel * 2)
4343 timeout_ns = udev->u1_params.sel * 2;
4344 break;
4345 default:
4346 return 0;
4347 }
4348
4349 return timeout_ns;
4350}
4351
4352/* Returns the hub-encoded U1 timeout value. */
4353static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4354 struct usb_device *udev,
4355 struct usb_endpoint_descriptor *desc)
4356{
4357 unsigned long long timeout_ns;
4358
4359 if (xhci->quirks & XHCI_INTEL_HOST)
4360 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4361 else
4362 timeout_ns = udev->u1_params.sel;
4363
4364 /* The U1 timeout is encoded in 1us intervals.
4365 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4366 */
4367 if (timeout_ns == USB3_LPM_DISABLED)
4368 timeout_ns = 1;
4369 else
4370 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4371
4372 /* If the necessary timeout value is bigger than what we can set in the
4373 * USB 3.0 hub, we have to disable hub-initiated U1.
4374 */
4375 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4376 return timeout_ns;
4377 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4378 "due to long timeout %llu ms\n", timeout_ns);
4379 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4380}
4381
4382/* The U2 timeout should be the maximum of:
4383 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4384 * - largest bInterval of any active periodic endpoint (to avoid going
4385 * into lower power link states between intervals).
4386 * - the U2 Exit Latency of the device
4387 */
4388static unsigned long long xhci_calculate_intel_u2_timeout(
4389 struct usb_device *udev,
4390 struct usb_endpoint_descriptor *desc)
4391{
4392 unsigned long long timeout_ns;
4393 unsigned long long u2_del_ns;
4394
4395 timeout_ns = 10 * 1000 * 1000;
4396
4397 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4398 (xhci_service_interval_to_ns(desc) > timeout_ns))
4399 timeout_ns = xhci_service_interval_to_ns(desc);
4400
4401 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4402 if (u2_del_ns > timeout_ns)
4403 timeout_ns = u2_del_ns;
4404
4405 return timeout_ns;
4406}
4407
4408/* Returns the hub-encoded U2 timeout value. */
4409static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4410 struct usb_device *udev,
4411 struct usb_endpoint_descriptor *desc)
4412{
4413 unsigned long long timeout_ns;
4414
4415 if (xhci->quirks & XHCI_INTEL_HOST)
4416 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4417 else
4418 timeout_ns = udev->u2_params.sel;
4419
4420 /* The U2 timeout is encoded in 256us intervals */
4421 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4422 /* If the necessary timeout value is bigger than what we can set in the
4423 * USB 3.0 hub, we have to disable hub-initiated U2.
4424 */
4425 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4426 return timeout_ns;
4427 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4428 "due to long timeout %llu ms\n", timeout_ns);
4429 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4430}
4431
4432static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4433 struct usb_device *udev,
4434 struct usb_endpoint_descriptor *desc,
4435 enum usb3_link_state state,
4436 u16 *timeout)
4437{
4438 if (state == USB3_LPM_U1)
4439 return xhci_calculate_u1_timeout(xhci, udev, desc);
4440 else if (state == USB3_LPM_U2)
4441 return xhci_calculate_u2_timeout(xhci, udev, desc);
4442
4443 return USB3_LPM_DISABLED;
4444}
4445
4446static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4447 struct usb_device *udev,
4448 struct usb_endpoint_descriptor *desc,
4449 enum usb3_link_state state,
4450 u16 *timeout)
4451{
4452 u16 alt_timeout;
4453
4454 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4455 desc, state, timeout);
4456
4457 /* If we found we can't enable hub-initiated LPM, or
4458 * the U1 or U2 exit latency was too high to allow
4459 * device-initiated LPM as well, just stop searching.
4460 */
4461 if (alt_timeout == USB3_LPM_DISABLED ||
4462 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4463 *timeout = alt_timeout;
4464 return -E2BIG;
4465 }
4466 if (alt_timeout > *timeout)
4467 *timeout = alt_timeout;
4468 return 0;
4469}
4470
4471static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4472 struct usb_device *udev,
4473 struct usb_host_interface *alt,
4474 enum usb3_link_state state,
4475 u16 *timeout)
4476{
4477 int j;
4478
4479 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4480 if (xhci_update_timeout_for_endpoint(xhci, udev,
4481 &alt->endpoint[j].desc, state, timeout))
4482 return -E2BIG;
4483 continue;
4484 }
4485 return 0;
4486}
4487
4488static int xhci_check_intel_tier_policy(struct usb_device *udev,
4489 enum usb3_link_state state)
4490{
4491 struct usb_device *parent;
4492 unsigned int num_hubs;
4493
4494 if (state == USB3_LPM_U2)
4495 return 0;
4496
4497 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4498 for (parent = udev->parent, num_hubs = 0; parent->parent;
4499 parent = parent->parent)
4500 num_hubs++;
4501
4502 if (num_hubs < 2)
4503 return 0;
4504
4505 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4506 " below second-tier hub.\n");
4507 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4508 "to decrease power consumption.\n");
4509 return -E2BIG;
4510}
4511
4512static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4513 struct usb_device *udev,
4514 enum usb3_link_state state)
4515{
4516 if (xhci->quirks & XHCI_INTEL_HOST)
4517 return xhci_check_intel_tier_policy(udev, state);
4518 else
4519 return 0;
4520}
4521
4522/* Returns the U1 or U2 timeout that should be enabled.
4523 * If the tier check or timeout setting functions return with a non-zero exit
4524 * code, that means the timeout value has been finalized and we shouldn't look
4525 * at any more endpoints.
4526 */
4527static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4528 struct usb_device *udev, enum usb3_link_state state)
4529{
4530 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4531 struct usb_host_config *config;
4532 char *state_name;
4533 int i;
4534 u16 timeout = USB3_LPM_DISABLED;
4535
4536 if (state == USB3_LPM_U1)
4537 state_name = "U1";
4538 else if (state == USB3_LPM_U2)
4539 state_name = "U2";
4540 else {
4541 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4542 state);
4543 return timeout;
4544 }
4545
4546 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4547 return timeout;
4548
4549 /* Gather some information about the currently installed configuration
4550 * and alternate interface settings.
4551 */
4552 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4553 state, &timeout))
4554 return timeout;
4555
4556 config = udev->actconfig;
4557 if (!config)
4558 return timeout;
4559
4560 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4561 struct usb_driver *driver;
4562 struct usb_interface *intf = config->interface[i];
4563
4564 if (!intf)
4565 continue;
4566
4567 /* Check if any currently bound drivers want hub-initiated LPM
4568 * disabled.
4569 */
4570 if (intf->dev.driver) {
4571 driver = to_usb_driver(intf->dev.driver);
4572 if (driver && driver->disable_hub_initiated_lpm) {
4573 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4574 "at request of driver %s\n",
4575 state_name, driver->name);
4576 return xhci_get_timeout_no_hub_lpm(udev, state);
4577 }
4578 }
4579
4580 /* Not sure how this could happen... */
4581 if (!intf->cur_altsetting)
4582 continue;
4583
4584 if (xhci_update_timeout_for_interface(xhci, udev,
4585 intf->cur_altsetting,
4586 state, &timeout))
4587 return timeout;
4588 }
4589 return timeout;
4590}
4591
4592static int calculate_max_exit_latency(struct usb_device *udev,
4593 enum usb3_link_state state_changed,
4594 u16 hub_encoded_timeout)
4595{
4596 unsigned long long u1_mel_us = 0;
4597 unsigned long long u2_mel_us = 0;
4598 unsigned long long mel_us = 0;
4599 bool disabling_u1;
4600 bool disabling_u2;
4601 bool enabling_u1;
4602 bool enabling_u2;
4603
4604 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4605 hub_encoded_timeout == USB3_LPM_DISABLED);
4606 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4607 hub_encoded_timeout == USB3_LPM_DISABLED);
4608
4609 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4610 hub_encoded_timeout != USB3_LPM_DISABLED);
4611 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4612 hub_encoded_timeout != USB3_LPM_DISABLED);
4613
4614 /* If U1 was already enabled and we're not disabling it,
4615 * or we're going to enable U1, account for the U1 max exit latency.
4616 */
4617 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4618 enabling_u1)
4619 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4620 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4621 enabling_u2)
4622 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4623
4624 if (u1_mel_us > u2_mel_us)
4625 mel_us = u1_mel_us;
4626 else
4627 mel_us = u2_mel_us;
4628 /* xHCI host controller max exit latency field is only 16 bits wide. */
4629 if (mel_us > MAX_EXIT) {
4630 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4631 "is too big.\n", mel_us);
4632 return -E2BIG;
4633 }
4634 return mel_us;
4635}
4636
4637/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4638int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4639 struct usb_device *udev, enum usb3_link_state state)
4640{
4641 struct xhci_hcd *xhci;
4642 u16 hub_encoded_timeout;
4643 int mel;
4644 int ret;
4645
4646 xhci = hcd_to_xhci(hcd);
4647 /* The LPM timeout values are pretty host-controller specific, so don't
4648 * enable hub-initiated timeouts unless the vendor has provided
4649 * information about their timeout algorithm.
4650 */
4651 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4652 !xhci->devs[udev->slot_id])
4653 return USB3_LPM_DISABLED;
4654
4655 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4656 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4657 if (mel < 0) {
4658 /* Max Exit Latency is too big, disable LPM. */
4659 hub_encoded_timeout = USB3_LPM_DISABLED;
4660 mel = 0;
4661 }
4662
4663 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4664 if (ret)
4665 return ret;
4666 return hub_encoded_timeout;
4667}
4668
4669int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4670 struct usb_device *udev, enum usb3_link_state state)
4671{
4672 struct xhci_hcd *xhci;
4673 u16 mel;
4674
4675 xhci = hcd_to_xhci(hcd);
4676 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4677 !xhci->devs[udev->slot_id])
4678 return 0;
4679
4680 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4681 return xhci_change_max_exit_latency(xhci, udev, mel);
4682}
4683#else /* CONFIG_PM */
4684
4685int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4686 struct usb_device *udev, int enable)
4687{
4688 return 0;
4689}
4690
4691int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4692{
4693 return 0;
4694}
4695
4696int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4697 struct usb_device *udev, enum usb3_link_state state)
4698{
4699 return USB3_LPM_DISABLED;
4700}
4701
4702int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4703 struct usb_device *udev, enum usb3_link_state state)
4704{
4705 return 0;
4706}
4707#endif /* CONFIG_PM */
4708
4709/*-------------------------------------------------------------------------*/
4710
4711/* Once a hub descriptor is fetched for a device, we need to update the xHC's
4712 * internal data structures for the device.
4713 */
4714int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4715 struct usb_tt *tt, gfp_t mem_flags)
4716{
4717 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4718 struct xhci_virt_device *vdev;
4719 struct xhci_command *config_cmd;
4720 struct xhci_input_control_ctx *ctrl_ctx;
4721 struct xhci_slot_ctx *slot_ctx;
4722 unsigned long flags;
4723 unsigned think_time;
4724 int ret;
4725
4726 /* Ignore root hubs */
4727 if (!hdev->parent)
4728 return 0;
4729
4730 vdev = xhci->devs[hdev->slot_id];
4731 if (!vdev) {
4732 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4733 return -EINVAL;
4734 }
4735 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4736 if (!config_cmd) {
4737 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4738 return -ENOMEM;
4739 }
4740 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4741 if (!ctrl_ctx) {
4742 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4743 __func__);
4744 xhci_free_command(xhci, config_cmd);
4745 return -ENOMEM;
4746 }
4747
4748 spin_lock_irqsave(&xhci->lock, flags);
4749 if (hdev->speed == USB_SPEED_HIGH &&
4750 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4751 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4752 xhci_free_command(xhci, config_cmd);
4753 spin_unlock_irqrestore(&xhci->lock, flags);
4754 return -ENOMEM;
4755 }
4756
4757 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4758 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4759 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4760 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4761 /*
4762 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4763 * but it may be already set to 1 when setup an xHCI virtual
4764 * device, so clear it anyway.
4765 */
4766 if (tt->multi)
4767 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4768 else if (hdev->speed == USB_SPEED_FULL)
4769 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4770
4771 if (xhci->hci_version > 0x95) {
4772 xhci_dbg(xhci, "xHCI version %x needs hub "
4773 "TT think time and number of ports\n",
4774 (unsigned int) xhci->hci_version);
4775 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4776 /* Set TT think time - convert from ns to FS bit times.
4777 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4778 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4779 *
4780 * xHCI 1.0: this field shall be 0 if the device is not a
4781 * High-spped hub.
4782 */
4783 think_time = tt->think_time;
4784 if (think_time != 0)
4785 think_time = (think_time / 666) - 1;
4786 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4787 slot_ctx->tt_info |=
4788 cpu_to_le32(TT_THINK_TIME(think_time));
4789 } else {
4790 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4791 "TT think time or number of ports\n",
4792 (unsigned int) xhci->hci_version);
4793 }
4794 slot_ctx->dev_state = 0;
4795 spin_unlock_irqrestore(&xhci->lock, flags);
4796
4797 xhci_dbg(xhci, "Set up %s for hub device.\n",
4798 (xhci->hci_version > 0x95) ?
4799 "configure endpoint" : "evaluate context");
4800 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4801 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4802
4803 /* Issue and wait for the configure endpoint or
4804 * evaluate context command.
4805 */
4806 if (xhci->hci_version > 0x95)
4807 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4808 false, false);
4809 else
4810 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4811 true, false);
4812
4813 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4814 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4815
4816 xhci_free_command(xhci, config_cmd);
4817 return ret;
4818}
4819
4820int xhci_get_frame(struct usb_hcd *hcd)
4821{
4822 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4823 /* EHCI mods by the periodic size. Why? */
4824 return readl(&xhci->run_regs->microframe_index) >> 3;
4825}
4826
4827int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4828{
4829 struct xhci_hcd *xhci;
4830 struct device *dev = hcd->self.controller;
4831 int retval;
4832
4833 /* Accept arbitrarily long scatter-gather lists */
4834 hcd->self.sg_tablesize = ~0;
4835
4836 /* support to build packet from discontinuous buffers */
4837 hcd->self.no_sg_constraint = 1;
4838
4839 /* XHCI controllers don't stop the ep queue on short packets :| */
4840 hcd->self.no_stop_on_short = 1;
4841
4842 xhci = hcd_to_xhci(hcd);
4843
4844 if (usb_hcd_is_primary_hcd(hcd)) {
4845 xhci->main_hcd = hcd;
4846 /* Mark the first roothub as being USB 2.0.
4847 * The xHCI driver will register the USB 3.0 roothub.
4848 */
4849 hcd->speed = HCD_USB2;
4850 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4851 /*
4852 * USB 2.0 roothub under xHCI has an integrated TT,
4853 * (rate matching hub) as opposed to having an OHCI/UHCI
4854 * companion controller.
4855 */
4856 hcd->has_tt = 1;
4857 } else {
4858 if (xhci->sbrn == 0x31) {
4859 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4860 hcd->speed = HCD_USB31;
4861 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4862 }
4863 /* xHCI private pointer was set in xhci_pci_probe for the second
4864 * registered roothub.
4865 */
4866 return 0;
4867 }
4868
4869 mutex_init(&xhci->mutex);
4870 xhci->cap_regs = hcd->regs;
4871 xhci->op_regs = hcd->regs +
4872 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4873 xhci->run_regs = hcd->regs +
4874 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4875 /* Cache read-only capability registers */
4876 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4877 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4878 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4879 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4880 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4881 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4882 if (xhci->hci_version > 0x100)
4883 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4884 xhci_print_registers(xhci);
4885
4886 xhci->quirks |= quirks;
4887
4888 get_quirks(dev, xhci);
4889
4890 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4891 * success event after a short transfer. This quirk will ignore such
4892 * spurious event.
4893 */
4894 if (xhci->hci_version > 0x96)
4895 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4896
4897 /* Make sure the HC is halted. */
4898 retval = xhci_halt(xhci);
4899 if (retval)
4900 return retval;
4901
4902 xhci_dbg(xhci, "Resetting HCD\n");
4903 /* Reset the internal HC memory state and registers. */
4904 retval = xhci_reset(xhci);
4905 if (retval)
4906 return retval;
4907 xhci_dbg(xhci, "Reset complete\n");
4908
4909 /*
4910 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4911 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4912 * address memory pointers actually. So, this driver clears the AC64
4913 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4914 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4915 */
4916 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4917 xhci->hcc_params &= ~BIT(0);
4918
4919 /* Set dma_mask and coherent_dma_mask to 64-bits,
4920 * if xHC supports 64-bit addressing */
4921 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4922 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4923 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4924 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4925 } else {
4926 /*
4927 * This is to avoid error in cases where a 32-bit USB
4928 * controller is used on a 64-bit capable system.
4929 */
4930 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4931 if (retval)
4932 return retval;
4933 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4934 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4935 }
4936
4937 xhci_dbg(xhci, "Calling HCD init\n");
4938 /* Initialize HCD and host controller data structures. */
4939 retval = xhci_init(hcd);
4940 if (retval)
4941 return retval;
4942 xhci_dbg(xhci, "Called HCD init\n");
4943
4944 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4945 xhci->hcc_params, xhci->hci_version, xhci->quirks);
4946
4947 return 0;
4948}
4949EXPORT_SYMBOL_GPL(xhci_gen_setup);
4950
4951static const struct hc_driver xhci_hc_driver = {
4952 .description = "xhci-hcd",
4953 .product_desc = "xHCI Host Controller",
4954 .hcd_priv_size = sizeof(struct xhci_hcd),
4955
4956 /*
4957 * generic hardware linkage
4958 */
4959 .irq = xhci_irq,
4960 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4961
4962 /*
4963 * basic lifecycle operations
4964 */
4965 .reset = NULL, /* set in xhci_init_driver() */
4966 .start = xhci_run,
4967 .stop = xhci_stop,
4968 .shutdown = xhci_shutdown,
4969
4970 /*
4971 * managing i/o requests and associated device resources
4972 */
4973 .urb_enqueue = xhci_urb_enqueue,
4974 .urb_dequeue = xhci_urb_dequeue,
4975 .alloc_dev = xhci_alloc_dev,
4976 .free_dev = xhci_free_dev,
4977 .alloc_streams = xhci_alloc_streams,
4978 .free_streams = xhci_free_streams,
4979 .add_endpoint = xhci_add_endpoint,
4980 .drop_endpoint = xhci_drop_endpoint,
4981 .endpoint_reset = xhci_endpoint_reset,
4982 .check_bandwidth = xhci_check_bandwidth,
4983 .reset_bandwidth = xhci_reset_bandwidth,
4984 .address_device = xhci_address_device,
4985 .enable_device = xhci_enable_device,
4986 .update_hub_device = xhci_update_hub_device,
4987 .reset_device = xhci_discover_or_reset_device,
4988
4989 /*
4990 * scheduling support
4991 */
4992 .get_frame_number = xhci_get_frame,
4993
4994 /*
4995 * root hub support
4996 */
4997 .hub_control = xhci_hub_control,
4998 .hub_status_data = xhci_hub_status_data,
4999 .bus_suspend = xhci_bus_suspend,
5000 .bus_resume = xhci_bus_resume,
5001
5002 /*
5003 * call back when device connected and addressed
5004 */
5005 .update_device = xhci_update_device,
5006 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5007 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5008 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5009 .find_raw_port_number = xhci_find_raw_port_number,
5010};
5011
5012void xhci_init_driver(struct hc_driver *drv,
5013 const struct xhci_driver_overrides *over)
5014{
5015 BUG_ON(!over);
5016
5017 /* Copy the generic table to drv then apply the overrides */
5018 *drv = xhci_hc_driver;
5019
5020 if (over) {
5021 drv->hcd_priv_size += over->extra_priv_size;
5022 if (over->reset)
5023 drv->reset = over->reset;
5024 if (over->start)
5025 drv->start = over->start;
5026 }
5027}
5028EXPORT_SYMBOL_GPL(xhci_init_driver);
5029
5030MODULE_DESCRIPTION(DRIVER_DESC);
5031MODULE_AUTHOR(DRIVER_AUTHOR);
5032MODULE_LICENSE("GPL");
5033
5034static int __init xhci_hcd_init(void)
5035{
5036 /*
5037 * Check the compiler generated sizes of structures that must be laid
5038 * out in specific ways for hardware access.
5039 */
5040 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5041 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5042 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5043 /* xhci_device_control has eight fields, and also
5044 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5045 */
5046 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5047 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5048 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5049 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5050 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5051 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5052 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5053
5054 if (usb_disabled())
5055 return -ENODEV;
5056
5057 return 0;
5058}
5059
5060/*
5061 * If an init function is provided, an exit function must also be provided
5062 * to allow module unload.
5063 */
5064static void __exit xhci_hcd_fini(void) { }
5065
5066module_init(xhci_hcd_init);
5067module_exit(xhci_hcd_fini);