Loading...
1/*
2 * Copyright (c) 2009, Microsoft Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * Authors:
17 * Haiyang Zhang <haiyangz@microsoft.com>
18 * Hank Janssen <hjanssen@microsoft.com>
19 */
20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22#include <linux/init.h>
23#include <linux/atomic.h>
24#include <linux/module.h>
25#include <linux/highmem.h>
26#include <linux/device.h>
27#include <linux/io.h>
28#include <linux/delay.h>
29#include <linux/netdevice.h>
30#include <linux/inetdevice.h>
31#include <linux/etherdevice.h>
32#include <linux/skbuff.h>
33#include <linux/if_vlan.h>
34#include <linux/in.h>
35#include <linux/slab.h>
36#include <linux/rtnetlink.h>
37#include <linux/netpoll.h>
38#include <linux/reciprocal_div.h>
39
40#include <net/arp.h>
41#include <net/route.h>
42#include <net/sock.h>
43#include <net/pkt_sched.h>
44#include <net/checksum.h>
45#include <net/ip6_checksum.h>
46
47#include "hyperv_net.h"
48
49#define RING_SIZE_MIN 64
50#define RETRY_US_LO 5000
51#define RETRY_US_HI 10000
52#define RETRY_MAX 2000 /* >10 sec */
53
54#define LINKCHANGE_INT (2 * HZ)
55#define VF_TAKEOVER_INT (HZ / 10)
56
57static unsigned int ring_size __ro_after_init = 128;
58module_param(ring_size, uint, 0444);
59MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
60unsigned int netvsc_ring_bytes __ro_after_init;
61struct reciprocal_value netvsc_ring_reciprocal __ro_after_init;
62
63static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
64 NETIF_MSG_LINK | NETIF_MSG_IFUP |
65 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
66 NETIF_MSG_TX_ERR;
67
68static int debug = -1;
69module_param(debug, int, 0444);
70MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
71
72static void netvsc_change_rx_flags(struct net_device *net, int change)
73{
74 struct net_device_context *ndev_ctx = netdev_priv(net);
75 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
76 int inc;
77
78 if (!vf_netdev)
79 return;
80
81 if (change & IFF_PROMISC) {
82 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
83 dev_set_promiscuity(vf_netdev, inc);
84 }
85
86 if (change & IFF_ALLMULTI) {
87 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
88 dev_set_allmulti(vf_netdev, inc);
89 }
90}
91
92static void netvsc_set_rx_mode(struct net_device *net)
93{
94 struct net_device_context *ndev_ctx = netdev_priv(net);
95 struct net_device *vf_netdev;
96 struct netvsc_device *nvdev;
97
98 rcu_read_lock();
99 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
100 if (vf_netdev) {
101 dev_uc_sync(vf_netdev, net);
102 dev_mc_sync(vf_netdev, net);
103 }
104
105 nvdev = rcu_dereference(ndev_ctx->nvdev);
106 if (nvdev)
107 rndis_filter_update(nvdev);
108 rcu_read_unlock();
109}
110
111static int netvsc_open(struct net_device *net)
112{
113 struct net_device_context *ndev_ctx = netdev_priv(net);
114 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
115 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
116 struct rndis_device *rdev;
117 int ret = 0;
118
119 netif_carrier_off(net);
120
121 /* Open up the device */
122 ret = rndis_filter_open(nvdev);
123 if (ret != 0) {
124 netdev_err(net, "unable to open device (ret %d).\n", ret);
125 return ret;
126 }
127
128 rdev = nvdev->extension;
129 if (!rdev->link_state)
130 netif_carrier_on(net);
131
132 if (vf_netdev) {
133 /* Setting synthetic device up transparently sets
134 * slave as up. If open fails, then slave will be
135 * still be offline (and not used).
136 */
137 ret = dev_open(vf_netdev);
138 if (ret)
139 netdev_warn(net,
140 "unable to open slave: %s: %d\n",
141 vf_netdev->name, ret);
142 }
143 return 0;
144}
145
146static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
147{
148 unsigned int retry = 0;
149 int i;
150
151 /* Ensure pending bytes in ring are read */
152 for (;;) {
153 u32 aread = 0;
154
155 for (i = 0; i < nvdev->num_chn; i++) {
156 struct vmbus_channel *chn
157 = nvdev->chan_table[i].channel;
158
159 if (!chn)
160 continue;
161
162 /* make sure receive not running now */
163 napi_synchronize(&nvdev->chan_table[i].napi);
164
165 aread = hv_get_bytes_to_read(&chn->inbound);
166 if (aread)
167 break;
168
169 aread = hv_get_bytes_to_read(&chn->outbound);
170 if (aread)
171 break;
172 }
173
174 if (aread == 0)
175 return 0;
176
177 if (++retry > RETRY_MAX)
178 return -ETIMEDOUT;
179
180 usleep_range(RETRY_US_LO, RETRY_US_HI);
181 }
182}
183
184static int netvsc_close(struct net_device *net)
185{
186 struct net_device_context *net_device_ctx = netdev_priv(net);
187 struct net_device *vf_netdev
188 = rtnl_dereference(net_device_ctx->vf_netdev);
189 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
190 int ret;
191
192 netif_tx_disable(net);
193
194 /* No need to close rndis filter if it is removed already */
195 if (!nvdev)
196 return 0;
197
198 ret = rndis_filter_close(nvdev);
199 if (ret != 0) {
200 netdev_err(net, "unable to close device (ret %d).\n", ret);
201 return ret;
202 }
203
204 ret = netvsc_wait_until_empty(nvdev);
205 if (ret)
206 netdev_err(net, "Ring buffer not empty after closing rndis\n");
207
208 if (vf_netdev)
209 dev_close(vf_netdev);
210
211 return ret;
212}
213
214static inline void *init_ppi_data(struct rndis_message *msg,
215 u32 ppi_size, u32 pkt_type)
216{
217 struct rndis_packet *rndis_pkt = &msg->msg.pkt;
218 struct rndis_per_packet_info *ppi;
219
220 rndis_pkt->data_offset += ppi_size;
221 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
222 + rndis_pkt->per_pkt_info_len;
223
224 ppi->size = ppi_size;
225 ppi->type = pkt_type;
226 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
227
228 rndis_pkt->per_pkt_info_len += ppi_size;
229
230 return ppi + 1;
231}
232
233/* Azure hosts don't support non-TCP port numbers in hashing for fragmented
234 * packets. We can use ethtool to change UDP hash level when necessary.
235 */
236static inline u32 netvsc_get_hash(
237 struct sk_buff *skb,
238 const struct net_device_context *ndc)
239{
240 struct flow_keys flow;
241 u32 hash, pkt_proto = 0;
242 static u32 hashrnd __read_mostly;
243
244 net_get_random_once(&hashrnd, sizeof(hashrnd));
245
246 if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
247 return 0;
248
249 switch (flow.basic.ip_proto) {
250 case IPPROTO_TCP:
251 if (flow.basic.n_proto == htons(ETH_P_IP))
252 pkt_proto = HV_TCP4_L4HASH;
253 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
254 pkt_proto = HV_TCP6_L4HASH;
255
256 break;
257
258 case IPPROTO_UDP:
259 if (flow.basic.n_proto == htons(ETH_P_IP))
260 pkt_proto = HV_UDP4_L4HASH;
261 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
262 pkt_proto = HV_UDP6_L4HASH;
263
264 break;
265 }
266
267 if (pkt_proto & ndc->l4_hash) {
268 return skb_get_hash(skb);
269 } else {
270 if (flow.basic.n_proto == htons(ETH_P_IP))
271 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
272 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
273 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
274 else
275 hash = 0;
276
277 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
278 }
279
280 return hash;
281}
282
283static inline int netvsc_get_tx_queue(struct net_device *ndev,
284 struct sk_buff *skb, int old_idx)
285{
286 const struct net_device_context *ndc = netdev_priv(ndev);
287 struct sock *sk = skb->sk;
288 int q_idx;
289
290 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
291 (VRSS_SEND_TAB_SIZE - 1)];
292
293 /* If queue index changed record the new value */
294 if (q_idx != old_idx &&
295 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
296 sk_tx_queue_set(sk, q_idx);
297
298 return q_idx;
299}
300
301/*
302 * Select queue for transmit.
303 *
304 * If a valid queue has already been assigned, then use that.
305 * Otherwise compute tx queue based on hash and the send table.
306 *
307 * This is basically similar to default (__netdev_pick_tx) with the added step
308 * of using the host send_table when no other queue has been assigned.
309 *
310 * TODO support XPS - but get_xps_queue not exported
311 */
312static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
313{
314 int q_idx = sk_tx_queue_get(skb->sk);
315
316 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
317 /* If forwarding a packet, we use the recorded queue when
318 * available for better cache locality.
319 */
320 if (skb_rx_queue_recorded(skb))
321 q_idx = skb_get_rx_queue(skb);
322 else
323 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
324 }
325
326 return q_idx;
327}
328
329static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
330 void *accel_priv,
331 select_queue_fallback_t fallback)
332{
333 struct net_device_context *ndc = netdev_priv(ndev);
334 struct net_device *vf_netdev;
335 u16 txq;
336
337 rcu_read_lock();
338 vf_netdev = rcu_dereference(ndc->vf_netdev);
339 if (vf_netdev) {
340 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
341
342 if (vf_ops->ndo_select_queue)
343 txq = vf_ops->ndo_select_queue(vf_netdev, skb,
344 accel_priv, fallback);
345 else
346 txq = fallback(vf_netdev, skb);
347
348 /* Record the queue selected by VF so that it can be
349 * used for common case where VF has more queues than
350 * the synthetic device.
351 */
352 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
353 } else {
354 txq = netvsc_pick_tx(ndev, skb);
355 }
356 rcu_read_unlock();
357
358 while (unlikely(txq >= ndev->real_num_tx_queues))
359 txq -= ndev->real_num_tx_queues;
360
361 return txq;
362}
363
364static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
365 struct hv_page_buffer *pb)
366{
367 int j = 0;
368
369 /* Deal with compund pages by ignoring unused part
370 * of the page.
371 */
372 page += (offset >> PAGE_SHIFT);
373 offset &= ~PAGE_MASK;
374
375 while (len > 0) {
376 unsigned long bytes;
377
378 bytes = PAGE_SIZE - offset;
379 if (bytes > len)
380 bytes = len;
381 pb[j].pfn = page_to_pfn(page);
382 pb[j].offset = offset;
383 pb[j].len = bytes;
384
385 offset += bytes;
386 len -= bytes;
387
388 if (offset == PAGE_SIZE && len) {
389 page++;
390 offset = 0;
391 j++;
392 }
393 }
394
395 return j + 1;
396}
397
398static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
399 struct hv_netvsc_packet *packet,
400 struct hv_page_buffer *pb)
401{
402 u32 slots_used = 0;
403 char *data = skb->data;
404 int frags = skb_shinfo(skb)->nr_frags;
405 int i;
406
407 /* The packet is laid out thus:
408 * 1. hdr: RNDIS header and PPI
409 * 2. skb linear data
410 * 3. skb fragment data
411 */
412 slots_used += fill_pg_buf(virt_to_page(hdr),
413 offset_in_page(hdr),
414 len, &pb[slots_used]);
415
416 packet->rmsg_size = len;
417 packet->rmsg_pgcnt = slots_used;
418
419 slots_used += fill_pg_buf(virt_to_page(data),
420 offset_in_page(data),
421 skb_headlen(skb), &pb[slots_used]);
422
423 for (i = 0; i < frags; i++) {
424 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
425
426 slots_used += fill_pg_buf(skb_frag_page(frag),
427 frag->page_offset,
428 skb_frag_size(frag), &pb[slots_used]);
429 }
430 return slots_used;
431}
432
433static int count_skb_frag_slots(struct sk_buff *skb)
434{
435 int i, frags = skb_shinfo(skb)->nr_frags;
436 int pages = 0;
437
438 for (i = 0; i < frags; i++) {
439 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
440 unsigned long size = skb_frag_size(frag);
441 unsigned long offset = frag->page_offset;
442
443 /* Skip unused frames from start of page */
444 offset &= ~PAGE_MASK;
445 pages += PFN_UP(offset + size);
446 }
447 return pages;
448}
449
450static int netvsc_get_slots(struct sk_buff *skb)
451{
452 char *data = skb->data;
453 unsigned int offset = offset_in_page(data);
454 unsigned int len = skb_headlen(skb);
455 int slots;
456 int frag_slots;
457
458 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
459 frag_slots = count_skb_frag_slots(skb);
460 return slots + frag_slots;
461}
462
463static u32 net_checksum_info(struct sk_buff *skb)
464{
465 if (skb->protocol == htons(ETH_P_IP)) {
466 struct iphdr *ip = ip_hdr(skb);
467
468 if (ip->protocol == IPPROTO_TCP)
469 return TRANSPORT_INFO_IPV4_TCP;
470 else if (ip->protocol == IPPROTO_UDP)
471 return TRANSPORT_INFO_IPV4_UDP;
472 } else {
473 struct ipv6hdr *ip6 = ipv6_hdr(skb);
474
475 if (ip6->nexthdr == IPPROTO_TCP)
476 return TRANSPORT_INFO_IPV6_TCP;
477 else if (ip6->nexthdr == IPPROTO_UDP)
478 return TRANSPORT_INFO_IPV6_UDP;
479 }
480
481 return TRANSPORT_INFO_NOT_IP;
482}
483
484/* Send skb on the slave VF device. */
485static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
486 struct sk_buff *skb)
487{
488 struct net_device_context *ndev_ctx = netdev_priv(net);
489 unsigned int len = skb->len;
490 int rc;
491
492 skb->dev = vf_netdev;
493 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
494
495 rc = dev_queue_xmit(skb);
496 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
497 struct netvsc_vf_pcpu_stats *pcpu_stats
498 = this_cpu_ptr(ndev_ctx->vf_stats);
499
500 u64_stats_update_begin(&pcpu_stats->syncp);
501 pcpu_stats->tx_packets++;
502 pcpu_stats->tx_bytes += len;
503 u64_stats_update_end(&pcpu_stats->syncp);
504 } else {
505 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
506 }
507
508 return rc;
509}
510
511static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
512{
513 struct net_device_context *net_device_ctx = netdev_priv(net);
514 struct hv_netvsc_packet *packet = NULL;
515 int ret;
516 unsigned int num_data_pgs;
517 struct rndis_message *rndis_msg;
518 struct net_device *vf_netdev;
519 u32 rndis_msg_size;
520 u32 hash;
521 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
522
523 /* if VF is present and up then redirect packets
524 * already called with rcu_read_lock_bh
525 */
526 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
527 if (vf_netdev && netif_running(vf_netdev) &&
528 !netpoll_tx_running(net))
529 return netvsc_vf_xmit(net, vf_netdev, skb);
530
531 /* We will atmost need two pages to describe the rndis
532 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
533 * of pages in a single packet. If skb is scattered around
534 * more pages we try linearizing it.
535 */
536
537 num_data_pgs = netvsc_get_slots(skb) + 2;
538
539 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
540 ++net_device_ctx->eth_stats.tx_scattered;
541
542 if (skb_linearize(skb))
543 goto no_memory;
544
545 num_data_pgs = netvsc_get_slots(skb) + 2;
546 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
547 ++net_device_ctx->eth_stats.tx_too_big;
548 goto drop;
549 }
550 }
551
552 /*
553 * Place the rndis header in the skb head room and
554 * the skb->cb will be used for hv_netvsc_packet
555 * structure.
556 */
557 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
558 if (ret)
559 goto no_memory;
560
561 /* Use the skb control buffer for building up the packet */
562 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
563 FIELD_SIZEOF(struct sk_buff, cb));
564 packet = (struct hv_netvsc_packet *)skb->cb;
565
566 packet->q_idx = skb_get_queue_mapping(skb);
567
568 packet->total_data_buflen = skb->len;
569 packet->total_bytes = skb->len;
570 packet->total_packets = 1;
571
572 rndis_msg = (struct rndis_message *)skb->head;
573
574 /* Add the rndis header */
575 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
576 rndis_msg->msg_len = packet->total_data_buflen;
577
578 rndis_msg->msg.pkt = (struct rndis_packet) {
579 .data_offset = sizeof(struct rndis_packet),
580 .data_len = packet->total_data_buflen,
581 .per_pkt_info_offset = sizeof(struct rndis_packet),
582 };
583
584 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
585
586 hash = skb_get_hash_raw(skb);
587 if (hash != 0 && net->real_num_tx_queues > 1) {
588 u32 *hash_info;
589
590 rndis_msg_size += NDIS_HASH_PPI_SIZE;
591 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
592 NBL_HASH_VALUE);
593 *hash_info = hash;
594 }
595
596 if (skb_vlan_tag_present(skb)) {
597 struct ndis_pkt_8021q_info *vlan;
598
599 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
600 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
601 IEEE_8021Q_INFO);
602
603 vlan->value = 0;
604 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
605 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
606 VLAN_PRIO_SHIFT;
607 }
608
609 if (skb_is_gso(skb)) {
610 struct ndis_tcp_lso_info *lso_info;
611
612 rndis_msg_size += NDIS_LSO_PPI_SIZE;
613 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
614 TCP_LARGESEND_PKTINFO);
615
616 lso_info->value = 0;
617 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
618 if (skb->protocol == htons(ETH_P_IP)) {
619 lso_info->lso_v2_transmit.ip_version =
620 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
621 ip_hdr(skb)->tot_len = 0;
622 ip_hdr(skb)->check = 0;
623 tcp_hdr(skb)->check =
624 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
625 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
626 } else {
627 lso_info->lso_v2_transmit.ip_version =
628 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
629 ipv6_hdr(skb)->payload_len = 0;
630 tcp_hdr(skb)->check =
631 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
632 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
633 }
634 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
635 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
636 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
637 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
638 struct ndis_tcp_ip_checksum_info *csum_info;
639
640 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
641 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
642 TCPIP_CHKSUM_PKTINFO);
643
644 csum_info->value = 0;
645 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
646
647 if (skb->protocol == htons(ETH_P_IP)) {
648 csum_info->transmit.is_ipv4 = 1;
649
650 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
651 csum_info->transmit.tcp_checksum = 1;
652 else
653 csum_info->transmit.udp_checksum = 1;
654 } else {
655 csum_info->transmit.is_ipv6 = 1;
656
657 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
658 csum_info->transmit.tcp_checksum = 1;
659 else
660 csum_info->transmit.udp_checksum = 1;
661 }
662 } else {
663 /* Can't do offload of this type of checksum */
664 if (skb_checksum_help(skb))
665 goto drop;
666 }
667 }
668
669 /* Start filling in the page buffers with the rndis hdr */
670 rndis_msg->msg_len += rndis_msg_size;
671 packet->total_data_buflen = rndis_msg->msg_len;
672 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
673 skb, packet, pb);
674
675 /* timestamp packet in software */
676 skb_tx_timestamp(skb);
677
678 ret = netvsc_send(net, packet, rndis_msg, pb, skb);
679 if (likely(ret == 0))
680 return NETDEV_TX_OK;
681
682 if (ret == -EAGAIN) {
683 ++net_device_ctx->eth_stats.tx_busy;
684 return NETDEV_TX_BUSY;
685 }
686
687 if (ret == -ENOSPC)
688 ++net_device_ctx->eth_stats.tx_no_space;
689
690drop:
691 dev_kfree_skb_any(skb);
692 net->stats.tx_dropped++;
693
694 return NETDEV_TX_OK;
695
696no_memory:
697 ++net_device_ctx->eth_stats.tx_no_memory;
698 goto drop;
699}
700
701/*
702 * netvsc_linkstatus_callback - Link up/down notification
703 */
704void netvsc_linkstatus_callback(struct net_device *net,
705 struct rndis_message *resp)
706{
707 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
708 struct net_device_context *ndev_ctx = netdev_priv(net);
709 struct netvsc_reconfig *event;
710 unsigned long flags;
711
712 /* Update the physical link speed when changing to another vSwitch */
713 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
714 u32 speed;
715
716 speed = *(u32 *)((void *)indicate
717 + indicate->status_buf_offset) / 10000;
718 ndev_ctx->speed = speed;
719 return;
720 }
721
722 /* Handle these link change statuses below */
723 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
724 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
725 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
726 return;
727
728 if (net->reg_state != NETREG_REGISTERED)
729 return;
730
731 event = kzalloc(sizeof(*event), GFP_ATOMIC);
732 if (!event)
733 return;
734 event->event = indicate->status;
735
736 spin_lock_irqsave(&ndev_ctx->lock, flags);
737 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
738 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
739
740 schedule_delayed_work(&ndev_ctx->dwork, 0);
741}
742
743static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
744 struct napi_struct *napi,
745 const struct ndis_tcp_ip_checksum_info *csum_info,
746 const struct ndis_pkt_8021q_info *vlan,
747 void *data, u32 buflen)
748{
749 struct sk_buff *skb;
750
751 skb = napi_alloc_skb(napi, buflen);
752 if (!skb)
753 return skb;
754
755 /*
756 * Copy to skb. This copy is needed here since the memory pointed by
757 * hv_netvsc_packet cannot be deallocated
758 */
759 skb_put_data(skb, data, buflen);
760
761 skb->protocol = eth_type_trans(skb, net);
762
763 /* skb is already created with CHECKSUM_NONE */
764 skb_checksum_none_assert(skb);
765
766 /*
767 * In Linux, the IP checksum is always checked.
768 * Do L4 checksum offload if enabled and present.
769 */
770 if (csum_info && (net->features & NETIF_F_RXCSUM)) {
771 if (csum_info->receive.tcp_checksum_succeeded ||
772 csum_info->receive.udp_checksum_succeeded)
773 skb->ip_summed = CHECKSUM_UNNECESSARY;
774 }
775
776 if (vlan) {
777 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT);
778
779 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
780 vlan_tci);
781 }
782
783 return skb;
784}
785
786/*
787 * netvsc_recv_callback - Callback when we receive a packet from the
788 * "wire" on the specified device.
789 */
790int netvsc_recv_callback(struct net_device *net,
791 struct netvsc_device *net_device,
792 struct vmbus_channel *channel,
793 void *data, u32 len,
794 const struct ndis_tcp_ip_checksum_info *csum_info,
795 const struct ndis_pkt_8021q_info *vlan)
796{
797 struct net_device_context *net_device_ctx = netdev_priv(net);
798 u16 q_idx = channel->offermsg.offer.sub_channel_index;
799 struct netvsc_channel *nvchan = &net_device->chan_table[q_idx];
800 struct sk_buff *skb;
801 struct netvsc_stats *rx_stats;
802
803 if (net->reg_state != NETREG_REGISTERED)
804 return NVSP_STAT_FAIL;
805
806 /* Allocate a skb - TODO direct I/O to pages? */
807 skb = netvsc_alloc_recv_skb(net, &nvchan->napi,
808 csum_info, vlan, data, len);
809 if (unlikely(!skb)) {
810 ++net_device_ctx->eth_stats.rx_no_memory;
811 rcu_read_unlock();
812 return NVSP_STAT_FAIL;
813 }
814
815 skb_record_rx_queue(skb, q_idx);
816
817 /*
818 * Even if injecting the packet, record the statistics
819 * on the synthetic device because modifying the VF device
820 * statistics will not work correctly.
821 */
822 rx_stats = &nvchan->rx_stats;
823 u64_stats_update_begin(&rx_stats->syncp);
824 rx_stats->packets++;
825 rx_stats->bytes += len;
826
827 if (skb->pkt_type == PACKET_BROADCAST)
828 ++rx_stats->broadcast;
829 else if (skb->pkt_type == PACKET_MULTICAST)
830 ++rx_stats->multicast;
831 u64_stats_update_end(&rx_stats->syncp);
832
833 napi_gro_receive(&nvchan->napi, skb);
834 return NVSP_STAT_SUCCESS;
835}
836
837static void netvsc_get_drvinfo(struct net_device *net,
838 struct ethtool_drvinfo *info)
839{
840 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
841 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
842}
843
844static void netvsc_get_channels(struct net_device *net,
845 struct ethtool_channels *channel)
846{
847 struct net_device_context *net_device_ctx = netdev_priv(net);
848 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
849
850 if (nvdev) {
851 channel->max_combined = nvdev->max_chn;
852 channel->combined_count = nvdev->num_chn;
853 }
854}
855
856static int netvsc_detach(struct net_device *ndev,
857 struct netvsc_device *nvdev)
858{
859 struct net_device_context *ndev_ctx = netdev_priv(ndev);
860 struct hv_device *hdev = ndev_ctx->device_ctx;
861 int ret;
862
863 /* Don't try continuing to try and setup sub channels */
864 if (cancel_work_sync(&nvdev->subchan_work))
865 nvdev->num_chn = 1;
866
867 /* If device was up (receiving) then shutdown */
868 if (netif_running(ndev)) {
869 netif_tx_disable(ndev);
870
871 ret = rndis_filter_close(nvdev);
872 if (ret) {
873 netdev_err(ndev,
874 "unable to close device (ret %d).\n", ret);
875 return ret;
876 }
877
878 ret = netvsc_wait_until_empty(nvdev);
879 if (ret) {
880 netdev_err(ndev,
881 "Ring buffer not empty after closing rndis\n");
882 return ret;
883 }
884 }
885
886 netif_device_detach(ndev);
887
888 rndis_filter_device_remove(hdev, nvdev);
889
890 return 0;
891}
892
893static int netvsc_attach(struct net_device *ndev,
894 struct netvsc_device_info *dev_info)
895{
896 struct net_device_context *ndev_ctx = netdev_priv(ndev);
897 struct hv_device *hdev = ndev_ctx->device_ctx;
898 struct netvsc_device *nvdev;
899 struct rndis_device *rdev;
900 int ret;
901
902 nvdev = rndis_filter_device_add(hdev, dev_info);
903 if (IS_ERR(nvdev))
904 return PTR_ERR(nvdev);
905
906 /* Note: enable and attach happen when sub-channels setup */
907
908 netif_carrier_off(ndev);
909
910 if (netif_running(ndev)) {
911 ret = rndis_filter_open(nvdev);
912 if (ret)
913 return ret;
914
915 rdev = nvdev->extension;
916 if (!rdev->link_state)
917 netif_carrier_on(ndev);
918 }
919
920 return 0;
921}
922
923static int netvsc_set_channels(struct net_device *net,
924 struct ethtool_channels *channels)
925{
926 struct net_device_context *net_device_ctx = netdev_priv(net);
927 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
928 unsigned int orig, count = channels->combined_count;
929 struct netvsc_device_info device_info;
930 int ret;
931
932 /* We do not support separate count for rx, tx, or other */
933 if (count == 0 ||
934 channels->rx_count || channels->tx_count || channels->other_count)
935 return -EINVAL;
936
937 if (!nvdev || nvdev->destroy)
938 return -ENODEV;
939
940 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
941 return -EINVAL;
942
943 if (count > nvdev->max_chn)
944 return -EINVAL;
945
946 orig = nvdev->num_chn;
947
948 memset(&device_info, 0, sizeof(device_info));
949 device_info.num_chn = count;
950 device_info.send_sections = nvdev->send_section_cnt;
951 device_info.send_section_size = nvdev->send_section_size;
952 device_info.recv_sections = nvdev->recv_section_cnt;
953 device_info.recv_section_size = nvdev->recv_section_size;
954
955 ret = netvsc_detach(net, nvdev);
956 if (ret)
957 return ret;
958
959 ret = netvsc_attach(net, &device_info);
960 if (ret) {
961 device_info.num_chn = orig;
962 if (netvsc_attach(net, &device_info))
963 netdev_err(net, "restoring channel setting failed\n");
964 }
965
966 return ret;
967}
968
969static bool
970netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
971{
972 struct ethtool_link_ksettings diff1 = *cmd;
973 struct ethtool_link_ksettings diff2 = {};
974
975 diff1.base.speed = 0;
976 diff1.base.duplex = 0;
977 /* advertising and cmd are usually set */
978 ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
979 diff1.base.cmd = 0;
980 /* We set port to PORT_OTHER */
981 diff2.base.port = PORT_OTHER;
982
983 return !memcmp(&diff1, &diff2, sizeof(diff1));
984}
985
986static void netvsc_init_settings(struct net_device *dev)
987{
988 struct net_device_context *ndc = netdev_priv(dev);
989
990 ndc->l4_hash = HV_DEFAULT_L4HASH;
991
992 ndc->speed = SPEED_UNKNOWN;
993 ndc->duplex = DUPLEX_FULL;
994}
995
996static int netvsc_get_link_ksettings(struct net_device *dev,
997 struct ethtool_link_ksettings *cmd)
998{
999 struct net_device_context *ndc = netdev_priv(dev);
1000
1001 cmd->base.speed = ndc->speed;
1002 cmd->base.duplex = ndc->duplex;
1003 cmd->base.port = PORT_OTHER;
1004
1005 return 0;
1006}
1007
1008static int netvsc_set_link_ksettings(struct net_device *dev,
1009 const struct ethtool_link_ksettings *cmd)
1010{
1011 struct net_device_context *ndc = netdev_priv(dev);
1012 u32 speed;
1013
1014 speed = cmd->base.speed;
1015 if (!ethtool_validate_speed(speed) ||
1016 !ethtool_validate_duplex(cmd->base.duplex) ||
1017 !netvsc_validate_ethtool_ss_cmd(cmd))
1018 return -EINVAL;
1019
1020 ndc->speed = speed;
1021 ndc->duplex = cmd->base.duplex;
1022
1023 return 0;
1024}
1025
1026static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1027{
1028 struct net_device_context *ndevctx = netdev_priv(ndev);
1029 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1030 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1031 int orig_mtu = ndev->mtu;
1032 struct netvsc_device_info device_info;
1033 int ret = 0;
1034
1035 if (!nvdev || nvdev->destroy)
1036 return -ENODEV;
1037
1038 /* Change MTU of underlying VF netdev first. */
1039 if (vf_netdev) {
1040 ret = dev_set_mtu(vf_netdev, mtu);
1041 if (ret)
1042 return ret;
1043 }
1044
1045 memset(&device_info, 0, sizeof(device_info));
1046 device_info.num_chn = nvdev->num_chn;
1047 device_info.send_sections = nvdev->send_section_cnt;
1048 device_info.send_section_size = nvdev->send_section_size;
1049 device_info.recv_sections = nvdev->recv_section_cnt;
1050 device_info.recv_section_size = nvdev->recv_section_size;
1051
1052 ret = netvsc_detach(ndev, nvdev);
1053 if (ret)
1054 goto rollback_vf;
1055
1056 ndev->mtu = mtu;
1057
1058 ret = netvsc_attach(ndev, &device_info);
1059 if (ret)
1060 goto rollback;
1061
1062 return 0;
1063
1064rollback:
1065 /* Attempt rollback to original MTU */
1066 ndev->mtu = orig_mtu;
1067
1068 if (netvsc_attach(ndev, &device_info))
1069 netdev_err(ndev, "restoring mtu failed\n");
1070rollback_vf:
1071 if (vf_netdev)
1072 dev_set_mtu(vf_netdev, orig_mtu);
1073
1074 return ret;
1075}
1076
1077static void netvsc_get_vf_stats(struct net_device *net,
1078 struct netvsc_vf_pcpu_stats *tot)
1079{
1080 struct net_device_context *ndev_ctx = netdev_priv(net);
1081 int i;
1082
1083 memset(tot, 0, sizeof(*tot));
1084
1085 for_each_possible_cpu(i) {
1086 const struct netvsc_vf_pcpu_stats *stats
1087 = per_cpu_ptr(ndev_ctx->vf_stats, i);
1088 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1089 unsigned int start;
1090
1091 do {
1092 start = u64_stats_fetch_begin_irq(&stats->syncp);
1093 rx_packets = stats->rx_packets;
1094 tx_packets = stats->tx_packets;
1095 rx_bytes = stats->rx_bytes;
1096 tx_bytes = stats->tx_bytes;
1097 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1098
1099 tot->rx_packets += rx_packets;
1100 tot->tx_packets += tx_packets;
1101 tot->rx_bytes += rx_bytes;
1102 tot->tx_bytes += tx_bytes;
1103 tot->tx_dropped += stats->tx_dropped;
1104 }
1105}
1106
1107static void netvsc_get_stats64(struct net_device *net,
1108 struct rtnl_link_stats64 *t)
1109{
1110 struct net_device_context *ndev_ctx = netdev_priv(net);
1111 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1112 struct netvsc_vf_pcpu_stats vf_tot;
1113 int i;
1114
1115 if (!nvdev)
1116 return;
1117
1118 netdev_stats_to_stats64(t, &net->stats);
1119
1120 netvsc_get_vf_stats(net, &vf_tot);
1121 t->rx_packets += vf_tot.rx_packets;
1122 t->tx_packets += vf_tot.tx_packets;
1123 t->rx_bytes += vf_tot.rx_bytes;
1124 t->tx_bytes += vf_tot.tx_bytes;
1125 t->tx_dropped += vf_tot.tx_dropped;
1126
1127 for (i = 0; i < nvdev->num_chn; i++) {
1128 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1129 const struct netvsc_stats *stats;
1130 u64 packets, bytes, multicast;
1131 unsigned int start;
1132
1133 stats = &nvchan->tx_stats;
1134 do {
1135 start = u64_stats_fetch_begin_irq(&stats->syncp);
1136 packets = stats->packets;
1137 bytes = stats->bytes;
1138 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1139
1140 t->tx_bytes += bytes;
1141 t->tx_packets += packets;
1142
1143 stats = &nvchan->rx_stats;
1144 do {
1145 start = u64_stats_fetch_begin_irq(&stats->syncp);
1146 packets = stats->packets;
1147 bytes = stats->bytes;
1148 multicast = stats->multicast + stats->broadcast;
1149 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1150
1151 t->rx_bytes += bytes;
1152 t->rx_packets += packets;
1153 t->multicast += multicast;
1154 }
1155}
1156
1157static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1158{
1159 struct net_device_context *ndc = netdev_priv(ndev);
1160 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1161 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1162 struct sockaddr *addr = p;
1163 int err;
1164
1165 err = eth_prepare_mac_addr_change(ndev, p);
1166 if (err)
1167 return err;
1168
1169 if (!nvdev)
1170 return -ENODEV;
1171
1172 if (vf_netdev) {
1173 err = dev_set_mac_address(vf_netdev, addr);
1174 if (err)
1175 return err;
1176 }
1177
1178 err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1179 if (!err) {
1180 eth_commit_mac_addr_change(ndev, p);
1181 } else if (vf_netdev) {
1182 /* rollback change on VF */
1183 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1184 dev_set_mac_address(vf_netdev, addr);
1185 }
1186
1187 return err;
1188}
1189
1190static const struct {
1191 char name[ETH_GSTRING_LEN];
1192 u16 offset;
1193} netvsc_stats[] = {
1194 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1195 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1196 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1197 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1198 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
1199 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1200 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1201 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1202 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1203 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1204}, vf_stats[] = {
1205 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1206 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1207 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1208 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1209 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1210};
1211
1212#define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1213#define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats)
1214
1215/* 4 statistics per queue (rx/tx packets/bytes) */
1216#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1217
1218static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1219{
1220 struct net_device_context *ndc = netdev_priv(dev);
1221 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1222
1223 if (!nvdev)
1224 return -ENODEV;
1225
1226 switch (string_set) {
1227 case ETH_SS_STATS:
1228 return NETVSC_GLOBAL_STATS_LEN
1229 + NETVSC_VF_STATS_LEN
1230 + NETVSC_QUEUE_STATS_LEN(nvdev);
1231 default:
1232 return -EINVAL;
1233 }
1234}
1235
1236static void netvsc_get_ethtool_stats(struct net_device *dev,
1237 struct ethtool_stats *stats, u64 *data)
1238{
1239 struct net_device_context *ndc = netdev_priv(dev);
1240 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1241 const void *nds = &ndc->eth_stats;
1242 const struct netvsc_stats *qstats;
1243 struct netvsc_vf_pcpu_stats sum;
1244 unsigned int start;
1245 u64 packets, bytes;
1246 int i, j;
1247
1248 if (!nvdev)
1249 return;
1250
1251 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1252 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1253
1254 netvsc_get_vf_stats(dev, &sum);
1255 for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1256 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1257
1258 for (j = 0; j < nvdev->num_chn; j++) {
1259 qstats = &nvdev->chan_table[j].tx_stats;
1260
1261 do {
1262 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1263 packets = qstats->packets;
1264 bytes = qstats->bytes;
1265 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1266 data[i++] = packets;
1267 data[i++] = bytes;
1268
1269 qstats = &nvdev->chan_table[j].rx_stats;
1270 do {
1271 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1272 packets = qstats->packets;
1273 bytes = qstats->bytes;
1274 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1275 data[i++] = packets;
1276 data[i++] = bytes;
1277 }
1278}
1279
1280static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1281{
1282 struct net_device_context *ndc = netdev_priv(dev);
1283 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1284 u8 *p = data;
1285 int i;
1286
1287 if (!nvdev)
1288 return;
1289
1290 switch (stringset) {
1291 case ETH_SS_STATS:
1292 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1293 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1294 p += ETH_GSTRING_LEN;
1295 }
1296
1297 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1298 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1299 p += ETH_GSTRING_LEN;
1300 }
1301
1302 for (i = 0; i < nvdev->num_chn; i++) {
1303 sprintf(p, "tx_queue_%u_packets", i);
1304 p += ETH_GSTRING_LEN;
1305 sprintf(p, "tx_queue_%u_bytes", i);
1306 p += ETH_GSTRING_LEN;
1307 sprintf(p, "rx_queue_%u_packets", i);
1308 p += ETH_GSTRING_LEN;
1309 sprintf(p, "rx_queue_%u_bytes", i);
1310 p += ETH_GSTRING_LEN;
1311 }
1312
1313 break;
1314 }
1315}
1316
1317static int
1318netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1319 struct ethtool_rxnfc *info)
1320{
1321 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1322
1323 info->data = RXH_IP_SRC | RXH_IP_DST;
1324
1325 switch (info->flow_type) {
1326 case TCP_V4_FLOW:
1327 if (ndc->l4_hash & HV_TCP4_L4HASH)
1328 info->data |= l4_flag;
1329
1330 break;
1331
1332 case TCP_V6_FLOW:
1333 if (ndc->l4_hash & HV_TCP6_L4HASH)
1334 info->data |= l4_flag;
1335
1336 break;
1337
1338 case UDP_V4_FLOW:
1339 if (ndc->l4_hash & HV_UDP4_L4HASH)
1340 info->data |= l4_flag;
1341
1342 break;
1343
1344 case UDP_V6_FLOW:
1345 if (ndc->l4_hash & HV_UDP6_L4HASH)
1346 info->data |= l4_flag;
1347
1348 break;
1349
1350 case IPV4_FLOW:
1351 case IPV6_FLOW:
1352 break;
1353 default:
1354 info->data = 0;
1355 break;
1356 }
1357
1358 return 0;
1359}
1360
1361static int
1362netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1363 u32 *rules)
1364{
1365 struct net_device_context *ndc = netdev_priv(dev);
1366 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1367
1368 if (!nvdev)
1369 return -ENODEV;
1370
1371 switch (info->cmd) {
1372 case ETHTOOL_GRXRINGS:
1373 info->data = nvdev->num_chn;
1374 return 0;
1375
1376 case ETHTOOL_GRXFH:
1377 return netvsc_get_rss_hash_opts(ndc, info);
1378 }
1379 return -EOPNOTSUPP;
1380}
1381
1382static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1383 struct ethtool_rxnfc *info)
1384{
1385 if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1386 RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1387 switch (info->flow_type) {
1388 case TCP_V4_FLOW:
1389 ndc->l4_hash |= HV_TCP4_L4HASH;
1390 break;
1391
1392 case TCP_V6_FLOW:
1393 ndc->l4_hash |= HV_TCP6_L4HASH;
1394 break;
1395
1396 case UDP_V4_FLOW:
1397 ndc->l4_hash |= HV_UDP4_L4HASH;
1398 break;
1399
1400 case UDP_V6_FLOW:
1401 ndc->l4_hash |= HV_UDP6_L4HASH;
1402 break;
1403
1404 default:
1405 return -EOPNOTSUPP;
1406 }
1407
1408 return 0;
1409 }
1410
1411 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1412 switch (info->flow_type) {
1413 case TCP_V4_FLOW:
1414 ndc->l4_hash &= ~HV_TCP4_L4HASH;
1415 break;
1416
1417 case TCP_V6_FLOW:
1418 ndc->l4_hash &= ~HV_TCP6_L4HASH;
1419 break;
1420
1421 case UDP_V4_FLOW:
1422 ndc->l4_hash &= ~HV_UDP4_L4HASH;
1423 break;
1424
1425 case UDP_V6_FLOW:
1426 ndc->l4_hash &= ~HV_UDP6_L4HASH;
1427 break;
1428
1429 default:
1430 return -EOPNOTSUPP;
1431 }
1432
1433 return 0;
1434 }
1435
1436 return -EOPNOTSUPP;
1437}
1438
1439static int
1440netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1441{
1442 struct net_device_context *ndc = netdev_priv(ndev);
1443
1444 if (info->cmd == ETHTOOL_SRXFH)
1445 return netvsc_set_rss_hash_opts(ndc, info);
1446
1447 return -EOPNOTSUPP;
1448}
1449
1450#ifdef CONFIG_NET_POLL_CONTROLLER
1451static void netvsc_poll_controller(struct net_device *dev)
1452{
1453 struct net_device_context *ndc = netdev_priv(dev);
1454 struct netvsc_device *ndev;
1455 int i;
1456
1457 rcu_read_lock();
1458 ndev = rcu_dereference(ndc->nvdev);
1459 if (ndev) {
1460 for (i = 0; i < ndev->num_chn; i++) {
1461 struct netvsc_channel *nvchan = &ndev->chan_table[i];
1462
1463 napi_schedule(&nvchan->napi);
1464 }
1465 }
1466 rcu_read_unlock();
1467}
1468#endif
1469
1470static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1471{
1472 return NETVSC_HASH_KEYLEN;
1473}
1474
1475static u32 netvsc_rss_indir_size(struct net_device *dev)
1476{
1477 return ITAB_NUM;
1478}
1479
1480static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1481 u8 *hfunc)
1482{
1483 struct net_device_context *ndc = netdev_priv(dev);
1484 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1485 struct rndis_device *rndis_dev;
1486 int i;
1487
1488 if (!ndev)
1489 return -ENODEV;
1490
1491 if (hfunc)
1492 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1493
1494 rndis_dev = ndev->extension;
1495 if (indir) {
1496 for (i = 0; i < ITAB_NUM; i++)
1497 indir[i] = rndis_dev->rx_table[i];
1498 }
1499
1500 if (key)
1501 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1502
1503 return 0;
1504}
1505
1506static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1507 const u8 *key, const u8 hfunc)
1508{
1509 struct net_device_context *ndc = netdev_priv(dev);
1510 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1511 struct rndis_device *rndis_dev;
1512 int i;
1513
1514 if (!ndev)
1515 return -ENODEV;
1516
1517 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1518 return -EOPNOTSUPP;
1519
1520 rndis_dev = ndev->extension;
1521 if (indir) {
1522 for (i = 0; i < ITAB_NUM; i++)
1523 if (indir[i] >= ndev->num_chn)
1524 return -EINVAL;
1525
1526 for (i = 0; i < ITAB_NUM; i++)
1527 rndis_dev->rx_table[i] = indir[i];
1528 }
1529
1530 if (!key) {
1531 if (!indir)
1532 return 0;
1533
1534 key = rndis_dev->rss_key;
1535 }
1536
1537 return rndis_filter_set_rss_param(rndis_dev, key);
1538}
1539
1540/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1541 * It does have pre-allocated receive area which is divided into sections.
1542 */
1543static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1544 struct ethtool_ringparam *ring)
1545{
1546 u32 max_buf_size;
1547
1548 ring->rx_pending = nvdev->recv_section_cnt;
1549 ring->tx_pending = nvdev->send_section_cnt;
1550
1551 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1552 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1553 else
1554 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1555
1556 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1557 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1558 / nvdev->send_section_size;
1559}
1560
1561static void netvsc_get_ringparam(struct net_device *ndev,
1562 struct ethtool_ringparam *ring)
1563{
1564 struct net_device_context *ndevctx = netdev_priv(ndev);
1565 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1566
1567 if (!nvdev)
1568 return;
1569
1570 __netvsc_get_ringparam(nvdev, ring);
1571}
1572
1573static int netvsc_set_ringparam(struct net_device *ndev,
1574 struct ethtool_ringparam *ring)
1575{
1576 struct net_device_context *ndevctx = netdev_priv(ndev);
1577 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1578 struct netvsc_device_info device_info;
1579 struct ethtool_ringparam orig;
1580 u32 new_tx, new_rx;
1581 int ret = 0;
1582
1583 if (!nvdev || nvdev->destroy)
1584 return -ENODEV;
1585
1586 memset(&orig, 0, sizeof(orig));
1587 __netvsc_get_ringparam(nvdev, &orig);
1588
1589 new_tx = clamp_t(u32, ring->tx_pending,
1590 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1591 new_rx = clamp_t(u32, ring->rx_pending,
1592 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1593
1594 if (new_tx == orig.tx_pending &&
1595 new_rx == orig.rx_pending)
1596 return 0; /* no change */
1597
1598 memset(&device_info, 0, sizeof(device_info));
1599 device_info.num_chn = nvdev->num_chn;
1600 device_info.send_sections = new_tx;
1601 device_info.send_section_size = nvdev->send_section_size;
1602 device_info.recv_sections = new_rx;
1603 device_info.recv_section_size = nvdev->recv_section_size;
1604
1605 ret = netvsc_detach(ndev, nvdev);
1606 if (ret)
1607 return ret;
1608
1609 ret = netvsc_attach(ndev, &device_info);
1610 if (ret) {
1611 device_info.send_sections = orig.tx_pending;
1612 device_info.recv_sections = orig.rx_pending;
1613
1614 if (netvsc_attach(ndev, &device_info))
1615 netdev_err(ndev, "restoring ringparam failed");
1616 }
1617
1618 return ret;
1619}
1620
1621static const struct ethtool_ops ethtool_ops = {
1622 .get_drvinfo = netvsc_get_drvinfo,
1623 .get_link = ethtool_op_get_link,
1624 .get_ethtool_stats = netvsc_get_ethtool_stats,
1625 .get_sset_count = netvsc_get_sset_count,
1626 .get_strings = netvsc_get_strings,
1627 .get_channels = netvsc_get_channels,
1628 .set_channels = netvsc_set_channels,
1629 .get_ts_info = ethtool_op_get_ts_info,
1630 .get_rxnfc = netvsc_get_rxnfc,
1631 .set_rxnfc = netvsc_set_rxnfc,
1632 .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1633 .get_rxfh_indir_size = netvsc_rss_indir_size,
1634 .get_rxfh = netvsc_get_rxfh,
1635 .set_rxfh = netvsc_set_rxfh,
1636 .get_link_ksettings = netvsc_get_link_ksettings,
1637 .set_link_ksettings = netvsc_set_link_ksettings,
1638 .get_ringparam = netvsc_get_ringparam,
1639 .set_ringparam = netvsc_set_ringparam,
1640};
1641
1642static const struct net_device_ops device_ops = {
1643 .ndo_open = netvsc_open,
1644 .ndo_stop = netvsc_close,
1645 .ndo_start_xmit = netvsc_start_xmit,
1646 .ndo_change_rx_flags = netvsc_change_rx_flags,
1647 .ndo_set_rx_mode = netvsc_set_rx_mode,
1648 .ndo_change_mtu = netvsc_change_mtu,
1649 .ndo_validate_addr = eth_validate_addr,
1650 .ndo_set_mac_address = netvsc_set_mac_addr,
1651 .ndo_select_queue = netvsc_select_queue,
1652 .ndo_get_stats64 = netvsc_get_stats64,
1653#ifdef CONFIG_NET_POLL_CONTROLLER
1654 .ndo_poll_controller = netvsc_poll_controller,
1655#endif
1656};
1657
1658/*
1659 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1660 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1661 * present send GARP packet to network peers with netif_notify_peers().
1662 */
1663static void netvsc_link_change(struct work_struct *w)
1664{
1665 struct net_device_context *ndev_ctx =
1666 container_of(w, struct net_device_context, dwork.work);
1667 struct hv_device *device_obj = ndev_ctx->device_ctx;
1668 struct net_device *net = hv_get_drvdata(device_obj);
1669 struct netvsc_device *net_device;
1670 struct rndis_device *rdev;
1671 struct netvsc_reconfig *event = NULL;
1672 bool notify = false, reschedule = false;
1673 unsigned long flags, next_reconfig, delay;
1674
1675 /* if changes are happening, comeback later */
1676 if (!rtnl_trylock()) {
1677 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1678 return;
1679 }
1680
1681 net_device = rtnl_dereference(ndev_ctx->nvdev);
1682 if (!net_device)
1683 goto out_unlock;
1684
1685 rdev = net_device->extension;
1686
1687 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1688 if (time_is_after_jiffies(next_reconfig)) {
1689 /* link_watch only sends one notification with current state
1690 * per second, avoid doing reconfig more frequently. Handle
1691 * wrap around.
1692 */
1693 delay = next_reconfig - jiffies;
1694 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1695 schedule_delayed_work(&ndev_ctx->dwork, delay);
1696 goto out_unlock;
1697 }
1698 ndev_ctx->last_reconfig = jiffies;
1699
1700 spin_lock_irqsave(&ndev_ctx->lock, flags);
1701 if (!list_empty(&ndev_ctx->reconfig_events)) {
1702 event = list_first_entry(&ndev_ctx->reconfig_events,
1703 struct netvsc_reconfig, list);
1704 list_del(&event->list);
1705 reschedule = !list_empty(&ndev_ctx->reconfig_events);
1706 }
1707 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1708
1709 if (!event)
1710 goto out_unlock;
1711
1712 switch (event->event) {
1713 /* Only the following events are possible due to the check in
1714 * netvsc_linkstatus_callback()
1715 */
1716 case RNDIS_STATUS_MEDIA_CONNECT:
1717 if (rdev->link_state) {
1718 rdev->link_state = false;
1719 netif_carrier_on(net);
1720 netif_tx_wake_all_queues(net);
1721 } else {
1722 notify = true;
1723 }
1724 kfree(event);
1725 break;
1726 case RNDIS_STATUS_MEDIA_DISCONNECT:
1727 if (!rdev->link_state) {
1728 rdev->link_state = true;
1729 netif_carrier_off(net);
1730 netif_tx_stop_all_queues(net);
1731 }
1732 kfree(event);
1733 break;
1734 case RNDIS_STATUS_NETWORK_CHANGE:
1735 /* Only makes sense if carrier is present */
1736 if (!rdev->link_state) {
1737 rdev->link_state = true;
1738 netif_carrier_off(net);
1739 netif_tx_stop_all_queues(net);
1740 event->event = RNDIS_STATUS_MEDIA_CONNECT;
1741 spin_lock_irqsave(&ndev_ctx->lock, flags);
1742 list_add(&event->list, &ndev_ctx->reconfig_events);
1743 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1744 reschedule = true;
1745 }
1746 break;
1747 }
1748
1749 rtnl_unlock();
1750
1751 if (notify)
1752 netdev_notify_peers(net);
1753
1754 /* link_watch only sends one notification with current state per
1755 * second, handle next reconfig event in 2 seconds.
1756 */
1757 if (reschedule)
1758 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1759
1760 return;
1761
1762out_unlock:
1763 rtnl_unlock();
1764}
1765
1766static struct net_device *get_netvsc_bymac(const u8 *mac)
1767{
1768 struct net_device *dev;
1769
1770 ASSERT_RTNL();
1771
1772 for_each_netdev(&init_net, dev) {
1773 if (dev->netdev_ops != &device_ops)
1774 continue; /* not a netvsc device */
1775
1776 if (ether_addr_equal(mac, dev->perm_addr))
1777 return dev;
1778 }
1779
1780 return NULL;
1781}
1782
1783static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1784{
1785 struct net_device *dev;
1786
1787 ASSERT_RTNL();
1788
1789 for_each_netdev(&init_net, dev) {
1790 struct net_device_context *net_device_ctx;
1791
1792 if (dev->netdev_ops != &device_ops)
1793 continue; /* not a netvsc device */
1794
1795 net_device_ctx = netdev_priv(dev);
1796 if (!rtnl_dereference(net_device_ctx->nvdev))
1797 continue; /* device is removed */
1798
1799 if (rtnl_dereference(net_device_ctx->vf_netdev) == vf_netdev)
1800 return dev; /* a match */
1801 }
1802
1803 return NULL;
1804}
1805
1806/* Called when VF is injecting data into network stack.
1807 * Change the associated network device from VF to netvsc.
1808 * note: already called with rcu_read_lock
1809 */
1810static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
1811{
1812 struct sk_buff *skb = *pskb;
1813 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
1814 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1815 struct netvsc_vf_pcpu_stats *pcpu_stats
1816 = this_cpu_ptr(ndev_ctx->vf_stats);
1817
1818 skb->dev = ndev;
1819
1820 u64_stats_update_begin(&pcpu_stats->syncp);
1821 pcpu_stats->rx_packets++;
1822 pcpu_stats->rx_bytes += skb->len;
1823 u64_stats_update_end(&pcpu_stats->syncp);
1824
1825 return RX_HANDLER_ANOTHER;
1826}
1827
1828static int netvsc_vf_join(struct net_device *vf_netdev,
1829 struct net_device *ndev)
1830{
1831 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1832 int ret;
1833
1834 ret = netdev_rx_handler_register(vf_netdev,
1835 netvsc_vf_handle_frame, ndev);
1836 if (ret != 0) {
1837 netdev_err(vf_netdev,
1838 "can not register netvsc VF receive handler (err = %d)\n",
1839 ret);
1840 goto rx_handler_failed;
1841 }
1842
1843 ret = netdev_master_upper_dev_link(vf_netdev, ndev,
1844 NULL, NULL, NULL);
1845 if (ret != 0) {
1846 netdev_err(vf_netdev,
1847 "can not set master device %s (err = %d)\n",
1848 ndev->name, ret);
1849 goto upper_link_failed;
1850 }
1851
1852 /* set slave flag before open to prevent IPv6 addrconf */
1853 vf_netdev->flags |= IFF_SLAVE;
1854
1855 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
1856
1857 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
1858
1859 netdev_info(vf_netdev, "joined to %s\n", ndev->name);
1860 return 0;
1861
1862upper_link_failed:
1863 netdev_rx_handler_unregister(vf_netdev);
1864rx_handler_failed:
1865 return ret;
1866}
1867
1868static void __netvsc_vf_setup(struct net_device *ndev,
1869 struct net_device *vf_netdev)
1870{
1871 int ret;
1872
1873 /* Align MTU of VF with master */
1874 ret = dev_set_mtu(vf_netdev, ndev->mtu);
1875 if (ret)
1876 netdev_warn(vf_netdev,
1877 "unable to change mtu to %u\n", ndev->mtu);
1878
1879 /* set multicast etc flags on VF */
1880 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE);
1881
1882 /* sync address list from ndev to VF */
1883 netif_addr_lock_bh(ndev);
1884 dev_uc_sync(vf_netdev, ndev);
1885 dev_mc_sync(vf_netdev, ndev);
1886 netif_addr_unlock_bh(ndev);
1887
1888 if (netif_running(ndev)) {
1889 ret = dev_open(vf_netdev);
1890 if (ret)
1891 netdev_warn(vf_netdev,
1892 "unable to open: %d\n", ret);
1893 }
1894}
1895
1896/* Setup VF as slave of the synthetic device.
1897 * Runs in workqueue to avoid recursion in netlink callbacks.
1898 */
1899static void netvsc_vf_setup(struct work_struct *w)
1900{
1901 struct net_device_context *ndev_ctx
1902 = container_of(w, struct net_device_context, vf_takeover.work);
1903 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
1904 struct net_device *vf_netdev;
1905
1906 if (!rtnl_trylock()) {
1907 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
1908 return;
1909 }
1910
1911 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
1912 if (vf_netdev)
1913 __netvsc_vf_setup(ndev, vf_netdev);
1914
1915 rtnl_unlock();
1916}
1917
1918static int netvsc_register_vf(struct net_device *vf_netdev)
1919{
1920 struct net_device *ndev;
1921 struct net_device_context *net_device_ctx;
1922 struct netvsc_device *netvsc_dev;
1923
1924 if (vf_netdev->addr_len != ETH_ALEN)
1925 return NOTIFY_DONE;
1926
1927 /*
1928 * We will use the MAC address to locate the synthetic interface to
1929 * associate with the VF interface. If we don't find a matching
1930 * synthetic interface, move on.
1931 */
1932 ndev = get_netvsc_bymac(vf_netdev->perm_addr);
1933 if (!ndev)
1934 return NOTIFY_DONE;
1935
1936 net_device_ctx = netdev_priv(ndev);
1937 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1938 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
1939 return NOTIFY_DONE;
1940
1941 if (netvsc_vf_join(vf_netdev, ndev) != 0)
1942 return NOTIFY_DONE;
1943
1944 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
1945
1946 dev_hold(vf_netdev);
1947 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
1948 return NOTIFY_OK;
1949}
1950
1951/* VF up/down change detected, schedule to change data path */
1952static int netvsc_vf_changed(struct net_device *vf_netdev)
1953{
1954 struct net_device_context *net_device_ctx;
1955 struct netvsc_device *netvsc_dev;
1956 struct net_device *ndev;
1957 bool vf_is_up = netif_running(vf_netdev);
1958
1959 ndev = get_netvsc_byref(vf_netdev);
1960 if (!ndev)
1961 return NOTIFY_DONE;
1962
1963 net_device_ctx = netdev_priv(ndev);
1964 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1965 if (!netvsc_dev)
1966 return NOTIFY_DONE;
1967
1968 netvsc_switch_datapath(ndev, vf_is_up);
1969 netdev_info(ndev, "Data path switched %s VF: %s\n",
1970 vf_is_up ? "to" : "from", vf_netdev->name);
1971
1972 return NOTIFY_OK;
1973}
1974
1975static int netvsc_unregister_vf(struct net_device *vf_netdev)
1976{
1977 struct net_device *ndev;
1978 struct net_device_context *net_device_ctx;
1979
1980 ndev = get_netvsc_byref(vf_netdev);
1981 if (!ndev)
1982 return NOTIFY_DONE;
1983
1984 net_device_ctx = netdev_priv(ndev);
1985 cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
1986
1987 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
1988
1989 netdev_rx_handler_unregister(vf_netdev);
1990 netdev_upper_dev_unlink(vf_netdev, ndev);
1991 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
1992 dev_put(vf_netdev);
1993
1994 return NOTIFY_OK;
1995}
1996
1997static int netvsc_probe(struct hv_device *dev,
1998 const struct hv_vmbus_device_id *dev_id)
1999{
2000 struct net_device *net = NULL;
2001 struct net_device_context *net_device_ctx;
2002 struct netvsc_device_info device_info;
2003 struct netvsc_device *nvdev;
2004 int ret = -ENOMEM;
2005
2006 net = alloc_etherdev_mq(sizeof(struct net_device_context),
2007 VRSS_CHANNEL_MAX);
2008 if (!net)
2009 goto no_net;
2010
2011 netif_carrier_off(net);
2012
2013 netvsc_init_settings(net);
2014
2015 net_device_ctx = netdev_priv(net);
2016 net_device_ctx->device_ctx = dev;
2017 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2018 if (netif_msg_probe(net_device_ctx))
2019 netdev_dbg(net, "netvsc msg_enable: %d\n",
2020 net_device_ctx->msg_enable);
2021
2022 hv_set_drvdata(dev, net);
2023
2024 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2025
2026 spin_lock_init(&net_device_ctx->lock);
2027 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2028 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2029
2030 net_device_ctx->vf_stats
2031 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2032 if (!net_device_ctx->vf_stats)
2033 goto no_stats;
2034
2035 net->netdev_ops = &device_ops;
2036 net->ethtool_ops = ðtool_ops;
2037 SET_NETDEV_DEV(net, &dev->device);
2038
2039 /* We always need headroom for rndis header */
2040 net->needed_headroom = RNDIS_AND_PPI_SIZE;
2041
2042 /* Initialize the number of queues to be 1, we may change it if more
2043 * channels are offered later.
2044 */
2045 netif_set_real_num_tx_queues(net, 1);
2046 netif_set_real_num_rx_queues(net, 1);
2047
2048 /* Notify the netvsc driver of the new device */
2049 memset(&device_info, 0, sizeof(device_info));
2050 device_info.num_chn = VRSS_CHANNEL_DEFAULT;
2051 device_info.send_sections = NETVSC_DEFAULT_TX;
2052 device_info.send_section_size = NETVSC_SEND_SECTION_SIZE;
2053 device_info.recv_sections = NETVSC_DEFAULT_RX;
2054 device_info.recv_section_size = NETVSC_RECV_SECTION_SIZE;
2055
2056 nvdev = rndis_filter_device_add(dev, &device_info);
2057 if (IS_ERR(nvdev)) {
2058 ret = PTR_ERR(nvdev);
2059 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2060 goto rndis_failed;
2061 }
2062
2063 memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
2064
2065 /* hw_features computed in rndis_netdev_set_hwcaps() */
2066 net->features = net->hw_features |
2067 NETIF_F_HIGHDMA | NETIF_F_SG |
2068 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2069 net->vlan_features = net->features;
2070
2071 netdev_lockdep_set_classes(net);
2072
2073 /* MTU range: 68 - 1500 or 65521 */
2074 net->min_mtu = NETVSC_MTU_MIN;
2075 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2076 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2077 else
2078 net->max_mtu = ETH_DATA_LEN;
2079
2080 ret = register_netdev(net);
2081 if (ret != 0) {
2082 pr_err("Unable to register netdev.\n");
2083 goto register_failed;
2084 }
2085
2086 return ret;
2087
2088register_failed:
2089 rndis_filter_device_remove(dev, nvdev);
2090rndis_failed:
2091 free_percpu(net_device_ctx->vf_stats);
2092no_stats:
2093 hv_set_drvdata(dev, NULL);
2094 free_netdev(net);
2095no_net:
2096 return ret;
2097}
2098
2099static int netvsc_remove(struct hv_device *dev)
2100{
2101 struct net_device_context *ndev_ctx;
2102 struct net_device *vf_netdev, *net;
2103 struct netvsc_device *nvdev;
2104
2105 net = hv_get_drvdata(dev);
2106 if (net == NULL) {
2107 dev_err(&dev->device, "No net device to remove\n");
2108 return 0;
2109 }
2110
2111 ndev_ctx = netdev_priv(net);
2112
2113 cancel_delayed_work_sync(&ndev_ctx->dwork);
2114
2115 rcu_read_lock();
2116 nvdev = rcu_dereference(ndev_ctx->nvdev);
2117
2118 if (nvdev)
2119 cancel_work_sync(&nvdev->subchan_work);
2120
2121 /*
2122 * Call to the vsc driver to let it know that the device is being
2123 * removed. Also blocks mtu and channel changes.
2124 */
2125 rtnl_lock();
2126 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2127 if (vf_netdev)
2128 netvsc_unregister_vf(vf_netdev);
2129
2130 if (nvdev)
2131 rndis_filter_device_remove(dev, nvdev);
2132
2133 unregister_netdevice(net);
2134
2135 rtnl_unlock();
2136 rcu_read_unlock();
2137
2138 hv_set_drvdata(dev, NULL);
2139
2140 free_percpu(ndev_ctx->vf_stats);
2141 free_netdev(net);
2142 return 0;
2143}
2144
2145static const struct hv_vmbus_device_id id_table[] = {
2146 /* Network guid */
2147 { HV_NIC_GUID, },
2148 { },
2149};
2150
2151MODULE_DEVICE_TABLE(vmbus, id_table);
2152
2153/* The one and only one */
2154static struct hv_driver netvsc_drv = {
2155 .name = KBUILD_MODNAME,
2156 .id_table = id_table,
2157 .probe = netvsc_probe,
2158 .remove = netvsc_remove,
2159};
2160
2161/*
2162 * On Hyper-V, every VF interface is matched with a corresponding
2163 * synthetic interface. The synthetic interface is presented first
2164 * to the guest. When the corresponding VF instance is registered,
2165 * we will take care of switching the data path.
2166 */
2167static int netvsc_netdev_event(struct notifier_block *this,
2168 unsigned long event, void *ptr)
2169{
2170 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2171
2172 /* Skip our own events */
2173 if (event_dev->netdev_ops == &device_ops)
2174 return NOTIFY_DONE;
2175
2176 /* Avoid non-Ethernet type devices */
2177 if (event_dev->type != ARPHRD_ETHER)
2178 return NOTIFY_DONE;
2179
2180 /* Avoid Vlan dev with same MAC registering as VF */
2181 if (is_vlan_dev(event_dev))
2182 return NOTIFY_DONE;
2183
2184 /* Avoid Bonding master dev with same MAC registering as VF */
2185 if ((event_dev->priv_flags & IFF_BONDING) &&
2186 (event_dev->flags & IFF_MASTER))
2187 return NOTIFY_DONE;
2188
2189 switch (event) {
2190 case NETDEV_REGISTER:
2191 return netvsc_register_vf(event_dev);
2192 case NETDEV_UNREGISTER:
2193 return netvsc_unregister_vf(event_dev);
2194 case NETDEV_UP:
2195 case NETDEV_DOWN:
2196 return netvsc_vf_changed(event_dev);
2197 default:
2198 return NOTIFY_DONE;
2199 }
2200}
2201
2202static struct notifier_block netvsc_netdev_notifier = {
2203 .notifier_call = netvsc_netdev_event,
2204};
2205
2206static void __exit netvsc_drv_exit(void)
2207{
2208 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2209 vmbus_driver_unregister(&netvsc_drv);
2210}
2211
2212static int __init netvsc_drv_init(void)
2213{
2214 int ret;
2215
2216 if (ring_size < RING_SIZE_MIN) {
2217 ring_size = RING_SIZE_MIN;
2218 pr_info("Increased ring_size to %u (min allowed)\n",
2219 ring_size);
2220 }
2221 netvsc_ring_bytes = ring_size * PAGE_SIZE;
2222 netvsc_ring_reciprocal = reciprocal_value(netvsc_ring_bytes);
2223
2224 ret = vmbus_driver_register(&netvsc_drv);
2225 if (ret)
2226 return ret;
2227
2228 register_netdevice_notifier(&netvsc_netdev_notifier);
2229 return 0;
2230}
2231
2232MODULE_LICENSE("GPL");
2233MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2234
2235module_init(netvsc_drv_init);
2236module_exit(netvsc_drv_exit);
1/*
2 * Copyright (c) 2009, Microsoft Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * Authors:
17 * Haiyang Zhang <haiyangz@microsoft.com>
18 * Hank Janssen <hjanssen@microsoft.com>
19 */
20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22#include <linux/init.h>
23#include <linux/atomic.h>
24#include <linux/module.h>
25#include <linux/highmem.h>
26#include <linux/device.h>
27#include <linux/io.h>
28#include <linux/delay.h>
29#include <linux/netdevice.h>
30#include <linux/inetdevice.h>
31#include <linux/etherdevice.h>
32#include <linux/skbuff.h>
33#include <linux/if_vlan.h>
34#include <linux/in.h>
35#include <linux/slab.h>
36#include <net/arp.h>
37#include <net/route.h>
38#include <net/sock.h>
39#include <net/pkt_sched.h>
40
41#include "hyperv_net.h"
42
43#define RING_SIZE_MIN 64
44#define LINKCHANGE_INT (2 * HZ)
45#define NETVSC_HW_FEATURES (NETIF_F_RXCSUM | \
46 NETIF_F_SG | \
47 NETIF_F_TSO | \
48 NETIF_F_TSO6 | \
49 NETIF_F_HW_CSUM)
50
51/* Restrict GSO size to account for NVGRE */
52#define NETVSC_GSO_MAX_SIZE 62768
53
54static int ring_size = 128;
55module_param(ring_size, int, S_IRUGO);
56MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
57
58static int max_num_vrss_chns = 8;
59
60static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
61 NETIF_MSG_LINK | NETIF_MSG_IFUP |
62 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
63 NETIF_MSG_TX_ERR;
64
65static int debug = -1;
66module_param(debug, int, S_IRUGO);
67MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
68
69static void do_set_multicast(struct work_struct *w)
70{
71 struct net_device_context *ndevctx =
72 container_of(w, struct net_device_context, work);
73 struct hv_device *device_obj = ndevctx->device_ctx;
74 struct net_device *ndev = hv_get_drvdata(device_obj);
75 struct netvsc_device *nvdev = ndevctx->nvdev;
76 struct rndis_device *rdev;
77
78 if (!nvdev)
79 return;
80
81 rdev = nvdev->extension;
82 if (rdev == NULL)
83 return;
84
85 if (ndev->flags & IFF_PROMISC)
86 rndis_filter_set_packet_filter(rdev,
87 NDIS_PACKET_TYPE_PROMISCUOUS);
88 else
89 rndis_filter_set_packet_filter(rdev,
90 NDIS_PACKET_TYPE_BROADCAST |
91 NDIS_PACKET_TYPE_ALL_MULTICAST |
92 NDIS_PACKET_TYPE_DIRECTED);
93}
94
95static void netvsc_set_multicast_list(struct net_device *net)
96{
97 struct net_device_context *net_device_ctx = netdev_priv(net);
98
99 schedule_work(&net_device_ctx->work);
100}
101
102static int netvsc_open(struct net_device *net)
103{
104 struct netvsc_device *nvdev = net_device_to_netvsc_device(net);
105 struct rndis_device *rdev;
106 int ret = 0;
107
108 netif_carrier_off(net);
109
110 /* Open up the device */
111 ret = rndis_filter_open(nvdev);
112 if (ret != 0) {
113 netdev_err(net, "unable to open device (ret %d).\n", ret);
114 return ret;
115 }
116
117 netif_tx_wake_all_queues(net);
118
119 rdev = nvdev->extension;
120 if (!rdev->link_state)
121 netif_carrier_on(net);
122
123 return ret;
124}
125
126static int netvsc_close(struct net_device *net)
127{
128 struct net_device_context *net_device_ctx = netdev_priv(net);
129 struct netvsc_device *nvdev = net_device_ctx->nvdev;
130 int ret;
131 u32 aread, awrite, i, msec = 10, retry = 0, retry_max = 20;
132 struct vmbus_channel *chn;
133
134 netif_tx_disable(net);
135
136 /* Make sure netvsc_set_multicast_list doesn't re-enable filter! */
137 cancel_work_sync(&net_device_ctx->work);
138 ret = rndis_filter_close(nvdev);
139 if (ret != 0) {
140 netdev_err(net, "unable to close device (ret %d).\n", ret);
141 return ret;
142 }
143
144 /* Ensure pending bytes in ring are read */
145 while (true) {
146 aread = 0;
147 for (i = 0; i < nvdev->num_chn; i++) {
148 chn = nvdev->chn_table[i];
149 if (!chn)
150 continue;
151
152 hv_get_ringbuffer_availbytes(&chn->inbound, &aread,
153 &awrite);
154
155 if (aread)
156 break;
157
158 hv_get_ringbuffer_availbytes(&chn->outbound, &aread,
159 &awrite);
160
161 if (aread)
162 break;
163 }
164
165 retry++;
166 if (retry > retry_max || aread == 0)
167 break;
168
169 msleep(msec);
170
171 if (msec < 1000)
172 msec *= 2;
173 }
174
175 if (aread) {
176 netdev_err(net, "Ring buffer not empty after closing rndis\n");
177 ret = -ETIMEDOUT;
178 }
179
180 return ret;
181}
182
183static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size,
184 int pkt_type)
185{
186 struct rndis_packet *rndis_pkt;
187 struct rndis_per_packet_info *ppi;
188
189 rndis_pkt = &msg->msg.pkt;
190 rndis_pkt->data_offset += ppi_size;
191
192 ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt +
193 rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len);
194
195 ppi->size = ppi_size;
196 ppi->type = pkt_type;
197 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
198
199 rndis_pkt->per_pkt_info_len += ppi_size;
200
201 return ppi;
202}
203
204static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
205 void *accel_priv, select_queue_fallback_t fallback)
206{
207 struct net_device_context *net_device_ctx = netdev_priv(ndev);
208 struct netvsc_device *nvsc_dev = net_device_ctx->nvdev;
209 u32 hash;
210 u16 q_idx = 0;
211
212 if (nvsc_dev == NULL || ndev->real_num_tx_queues <= 1)
213 return 0;
214
215 hash = skb_get_hash(skb);
216 q_idx = nvsc_dev->send_table[hash % VRSS_SEND_TAB_SIZE] %
217 ndev->real_num_tx_queues;
218
219 if (!nvsc_dev->chn_table[q_idx])
220 q_idx = 0;
221
222 return q_idx;
223}
224
225static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
226 struct hv_page_buffer *pb)
227{
228 int j = 0;
229
230 /* Deal with compund pages by ignoring unused part
231 * of the page.
232 */
233 page += (offset >> PAGE_SHIFT);
234 offset &= ~PAGE_MASK;
235
236 while (len > 0) {
237 unsigned long bytes;
238
239 bytes = PAGE_SIZE - offset;
240 if (bytes > len)
241 bytes = len;
242 pb[j].pfn = page_to_pfn(page);
243 pb[j].offset = offset;
244 pb[j].len = bytes;
245
246 offset += bytes;
247 len -= bytes;
248
249 if (offset == PAGE_SIZE && len) {
250 page++;
251 offset = 0;
252 j++;
253 }
254 }
255
256 return j + 1;
257}
258
259static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
260 struct hv_netvsc_packet *packet,
261 struct hv_page_buffer **page_buf)
262{
263 struct hv_page_buffer *pb = *page_buf;
264 u32 slots_used = 0;
265 char *data = skb->data;
266 int frags = skb_shinfo(skb)->nr_frags;
267 int i;
268
269 /* The packet is laid out thus:
270 * 1. hdr: RNDIS header and PPI
271 * 2. skb linear data
272 * 3. skb fragment data
273 */
274 if (hdr != NULL)
275 slots_used += fill_pg_buf(virt_to_page(hdr),
276 offset_in_page(hdr),
277 len, &pb[slots_used]);
278
279 packet->rmsg_size = len;
280 packet->rmsg_pgcnt = slots_used;
281
282 slots_used += fill_pg_buf(virt_to_page(data),
283 offset_in_page(data),
284 skb_headlen(skb), &pb[slots_used]);
285
286 for (i = 0; i < frags; i++) {
287 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
288
289 slots_used += fill_pg_buf(skb_frag_page(frag),
290 frag->page_offset,
291 skb_frag_size(frag), &pb[slots_used]);
292 }
293 return slots_used;
294}
295
296static int count_skb_frag_slots(struct sk_buff *skb)
297{
298 int i, frags = skb_shinfo(skb)->nr_frags;
299 int pages = 0;
300
301 for (i = 0; i < frags; i++) {
302 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
303 unsigned long size = skb_frag_size(frag);
304 unsigned long offset = frag->page_offset;
305
306 /* Skip unused frames from start of page */
307 offset &= ~PAGE_MASK;
308 pages += PFN_UP(offset + size);
309 }
310 return pages;
311}
312
313static int netvsc_get_slots(struct sk_buff *skb)
314{
315 char *data = skb->data;
316 unsigned int offset = offset_in_page(data);
317 unsigned int len = skb_headlen(skb);
318 int slots;
319 int frag_slots;
320
321 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
322 frag_slots = count_skb_frag_slots(skb);
323 return slots + frag_slots;
324}
325
326static u32 get_net_transport_info(struct sk_buff *skb, u32 *trans_off)
327{
328 u32 ret_val = TRANSPORT_INFO_NOT_IP;
329
330 if ((eth_hdr(skb)->h_proto != htons(ETH_P_IP)) &&
331 (eth_hdr(skb)->h_proto != htons(ETH_P_IPV6))) {
332 goto not_ip;
333 }
334
335 *trans_off = skb_transport_offset(skb);
336
337 if ((eth_hdr(skb)->h_proto == htons(ETH_P_IP))) {
338 struct iphdr *iphdr = ip_hdr(skb);
339
340 if (iphdr->protocol == IPPROTO_TCP)
341 ret_val = TRANSPORT_INFO_IPV4_TCP;
342 else if (iphdr->protocol == IPPROTO_UDP)
343 ret_val = TRANSPORT_INFO_IPV4_UDP;
344 } else {
345 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
346 ret_val = TRANSPORT_INFO_IPV6_TCP;
347 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP)
348 ret_val = TRANSPORT_INFO_IPV6_UDP;
349 }
350
351not_ip:
352 return ret_val;
353}
354
355static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
356{
357 struct net_device_context *net_device_ctx = netdev_priv(net);
358 struct hv_netvsc_packet *packet = NULL;
359 int ret;
360 unsigned int num_data_pgs;
361 struct rndis_message *rndis_msg;
362 struct rndis_packet *rndis_pkt;
363 u32 rndis_msg_size;
364 struct rndis_per_packet_info *ppi;
365 struct ndis_tcp_ip_checksum_info *csum_info;
366 int hdr_offset;
367 u32 net_trans_info;
368 u32 hash;
369 u32 skb_length;
370 struct hv_page_buffer page_buf[MAX_PAGE_BUFFER_COUNT];
371 struct hv_page_buffer *pb = page_buf;
372
373 /* We will atmost need two pages to describe the rndis
374 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
375 * of pages in a single packet. If skb is scattered around
376 * more pages we try linearizing it.
377 */
378
379 skb_length = skb->len;
380 num_data_pgs = netvsc_get_slots(skb) + 2;
381
382 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
383 ++net_device_ctx->eth_stats.tx_scattered;
384
385 if (skb_linearize(skb))
386 goto no_memory;
387
388 num_data_pgs = netvsc_get_slots(skb) + 2;
389 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
390 ++net_device_ctx->eth_stats.tx_too_big;
391 goto drop;
392 }
393 }
394
395 /*
396 * Place the rndis header in the skb head room and
397 * the skb->cb will be used for hv_netvsc_packet
398 * structure.
399 */
400 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
401 if (ret)
402 goto no_memory;
403
404 /* Use the skb control buffer for building up the packet */
405 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
406 FIELD_SIZEOF(struct sk_buff, cb));
407 packet = (struct hv_netvsc_packet *)skb->cb;
408
409 packet->q_idx = skb_get_queue_mapping(skb);
410
411 packet->total_data_buflen = skb->len;
412
413 rndis_msg = (struct rndis_message *)skb->head;
414
415 memset(rndis_msg, 0, RNDIS_AND_PPI_SIZE);
416
417 /* Add the rndis header */
418 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
419 rndis_msg->msg_len = packet->total_data_buflen;
420 rndis_pkt = &rndis_msg->msg.pkt;
421 rndis_pkt->data_offset = sizeof(struct rndis_packet);
422 rndis_pkt->data_len = packet->total_data_buflen;
423 rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet);
424
425 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
426
427 hash = skb_get_hash_raw(skb);
428 if (hash != 0 && net->real_num_tx_queues > 1) {
429 rndis_msg_size += NDIS_HASH_PPI_SIZE;
430 ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
431 NBL_HASH_VALUE);
432 *(u32 *)((void *)ppi + ppi->ppi_offset) = hash;
433 }
434
435 if (skb_vlan_tag_present(skb)) {
436 struct ndis_pkt_8021q_info *vlan;
437
438 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
439 ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
440 IEEE_8021Q_INFO);
441 vlan = (struct ndis_pkt_8021q_info *)((void *)ppi +
442 ppi->ppi_offset);
443 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
444 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
445 VLAN_PRIO_SHIFT;
446 }
447
448 net_trans_info = get_net_transport_info(skb, &hdr_offset);
449
450 /*
451 * Setup the sendside checksum offload only if this is not a
452 * GSO packet.
453 */
454 if ((net_trans_info & (INFO_TCP | INFO_UDP)) && skb_is_gso(skb)) {
455 struct ndis_tcp_lso_info *lso_info;
456
457 rndis_msg_size += NDIS_LSO_PPI_SIZE;
458 ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
459 TCP_LARGESEND_PKTINFO);
460
461 lso_info = (struct ndis_tcp_lso_info *)((void *)ppi +
462 ppi->ppi_offset);
463
464 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
465 if (net_trans_info & (INFO_IPV4 << 16)) {
466 lso_info->lso_v2_transmit.ip_version =
467 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
468 ip_hdr(skb)->tot_len = 0;
469 ip_hdr(skb)->check = 0;
470 tcp_hdr(skb)->check =
471 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
472 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
473 } else {
474 lso_info->lso_v2_transmit.ip_version =
475 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
476 ipv6_hdr(skb)->payload_len = 0;
477 tcp_hdr(skb)->check =
478 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
479 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
480 }
481 lso_info->lso_v2_transmit.tcp_header_offset = hdr_offset;
482 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
483 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
484 if (net_trans_info & INFO_TCP) {
485 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
486 ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
487 TCPIP_CHKSUM_PKTINFO);
488
489 csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi +
490 ppi->ppi_offset);
491
492 if (net_trans_info & (INFO_IPV4 << 16))
493 csum_info->transmit.is_ipv4 = 1;
494 else
495 csum_info->transmit.is_ipv6 = 1;
496
497 csum_info->transmit.tcp_checksum = 1;
498 csum_info->transmit.tcp_header_offset = hdr_offset;
499 } else {
500 /* UDP checksum (and other) offload is not supported. */
501 if (skb_checksum_help(skb))
502 goto drop;
503 }
504 }
505
506 /* Start filling in the page buffers with the rndis hdr */
507 rndis_msg->msg_len += rndis_msg_size;
508 packet->total_data_buflen = rndis_msg->msg_len;
509 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
510 skb, packet, &pb);
511
512 /* timestamp packet in software */
513 skb_tx_timestamp(skb);
514 ret = netvsc_send(net_device_ctx->device_ctx, packet,
515 rndis_msg, &pb, skb);
516 if (likely(ret == 0)) {
517 struct netvsc_stats *tx_stats = this_cpu_ptr(net_device_ctx->tx_stats);
518
519 u64_stats_update_begin(&tx_stats->syncp);
520 tx_stats->packets++;
521 tx_stats->bytes += skb_length;
522 u64_stats_update_end(&tx_stats->syncp);
523 return NETDEV_TX_OK;
524 }
525
526 if (ret == -EAGAIN) {
527 ++net_device_ctx->eth_stats.tx_busy;
528 return NETDEV_TX_BUSY;
529 }
530
531 if (ret == -ENOSPC)
532 ++net_device_ctx->eth_stats.tx_no_space;
533
534drop:
535 dev_kfree_skb_any(skb);
536 net->stats.tx_dropped++;
537
538 return NETDEV_TX_OK;
539
540no_memory:
541 ++net_device_ctx->eth_stats.tx_no_memory;
542 goto drop;
543}
544
545/*
546 * netvsc_linkstatus_callback - Link up/down notification
547 */
548void netvsc_linkstatus_callback(struct hv_device *device_obj,
549 struct rndis_message *resp)
550{
551 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
552 struct net_device *net;
553 struct net_device_context *ndev_ctx;
554 struct netvsc_reconfig *event;
555 unsigned long flags;
556
557 net = hv_get_drvdata(device_obj);
558
559 if (!net)
560 return;
561
562 ndev_ctx = netdev_priv(net);
563
564 /* Update the physical link speed when changing to another vSwitch */
565 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
566 u32 speed;
567
568 speed = *(u32 *)((void *)indicate + indicate->
569 status_buf_offset) / 10000;
570 ndev_ctx->speed = speed;
571 return;
572 }
573
574 /* Handle these link change statuses below */
575 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
576 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
577 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
578 return;
579
580 if (net->reg_state != NETREG_REGISTERED)
581 return;
582
583 event = kzalloc(sizeof(*event), GFP_ATOMIC);
584 if (!event)
585 return;
586 event->event = indicate->status;
587
588 spin_lock_irqsave(&ndev_ctx->lock, flags);
589 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
590 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
591
592 schedule_delayed_work(&ndev_ctx->dwork, 0);
593}
594
595static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
596 struct hv_netvsc_packet *packet,
597 struct ndis_tcp_ip_checksum_info *csum_info,
598 void *data, u16 vlan_tci)
599{
600 struct sk_buff *skb;
601
602 skb = netdev_alloc_skb_ip_align(net, packet->total_data_buflen);
603 if (!skb)
604 return skb;
605
606 /*
607 * Copy to skb. This copy is needed here since the memory pointed by
608 * hv_netvsc_packet cannot be deallocated
609 */
610 memcpy(skb_put(skb, packet->total_data_buflen), data,
611 packet->total_data_buflen);
612
613 skb->protocol = eth_type_trans(skb, net);
614
615 /* skb is already created with CHECKSUM_NONE */
616 skb_checksum_none_assert(skb);
617
618 /*
619 * In Linux, the IP checksum is always checked.
620 * Do L4 checksum offload if enabled and present.
621 */
622 if (csum_info && (net->features & NETIF_F_RXCSUM)) {
623 if (csum_info->receive.tcp_checksum_succeeded ||
624 csum_info->receive.udp_checksum_succeeded)
625 skb->ip_summed = CHECKSUM_UNNECESSARY;
626 }
627
628 if (vlan_tci & VLAN_TAG_PRESENT)
629 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
630 vlan_tci);
631
632 return skb;
633}
634
635/*
636 * netvsc_recv_callback - Callback when we receive a packet from the
637 * "wire" on the specified device.
638 */
639int netvsc_recv_callback(struct hv_device *device_obj,
640 struct hv_netvsc_packet *packet,
641 void **data,
642 struct ndis_tcp_ip_checksum_info *csum_info,
643 struct vmbus_channel *channel,
644 u16 vlan_tci)
645{
646 struct net_device *net = hv_get_drvdata(device_obj);
647 struct net_device_context *net_device_ctx = netdev_priv(net);
648 struct net_device *vf_netdev;
649 struct sk_buff *skb;
650 struct netvsc_stats *rx_stats;
651
652 if (net->reg_state != NETREG_REGISTERED)
653 return NVSP_STAT_FAIL;
654
655 /*
656 * If necessary, inject this packet into the VF interface.
657 * On Hyper-V, multicast and brodcast packets are only delivered
658 * to the synthetic interface (after subjecting these to
659 * policy filters on the host). Deliver these via the VF
660 * interface in the guest.
661 */
662 rcu_read_lock();
663 vf_netdev = rcu_dereference(net_device_ctx->vf_netdev);
664 if (vf_netdev && (vf_netdev->flags & IFF_UP))
665 net = vf_netdev;
666
667 /* Allocate a skb - TODO direct I/O to pages? */
668 skb = netvsc_alloc_recv_skb(net, packet, csum_info, *data, vlan_tci);
669 if (unlikely(!skb)) {
670 ++net->stats.rx_dropped;
671 rcu_read_unlock();
672 return NVSP_STAT_FAIL;
673 }
674
675 if (net != vf_netdev)
676 skb_record_rx_queue(skb,
677 channel->offermsg.offer.sub_channel_index);
678
679 /*
680 * Even if injecting the packet, record the statistics
681 * on the synthetic device because modifying the VF device
682 * statistics will not work correctly.
683 */
684 rx_stats = this_cpu_ptr(net_device_ctx->rx_stats);
685 u64_stats_update_begin(&rx_stats->syncp);
686 rx_stats->packets++;
687 rx_stats->bytes += packet->total_data_buflen;
688
689 if (skb->pkt_type == PACKET_BROADCAST)
690 ++rx_stats->broadcast;
691 else if (skb->pkt_type == PACKET_MULTICAST)
692 ++rx_stats->multicast;
693 u64_stats_update_end(&rx_stats->syncp);
694
695 /*
696 * Pass the skb back up. Network stack will deallocate the skb when it
697 * is done.
698 * TODO - use NAPI?
699 */
700 netif_rx(skb);
701 rcu_read_unlock();
702
703 return 0;
704}
705
706static void netvsc_get_drvinfo(struct net_device *net,
707 struct ethtool_drvinfo *info)
708{
709 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
710 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
711}
712
713static void netvsc_get_channels(struct net_device *net,
714 struct ethtool_channels *channel)
715{
716 struct net_device_context *net_device_ctx = netdev_priv(net);
717 struct netvsc_device *nvdev = net_device_ctx->nvdev;
718
719 if (nvdev) {
720 channel->max_combined = nvdev->max_chn;
721 channel->combined_count = nvdev->num_chn;
722 }
723}
724
725static int netvsc_set_channels(struct net_device *net,
726 struct ethtool_channels *channels)
727{
728 struct net_device_context *net_device_ctx = netdev_priv(net);
729 struct hv_device *dev = net_device_ctx->device_ctx;
730 struct netvsc_device *nvdev = net_device_ctx->nvdev;
731 struct netvsc_device_info device_info;
732 u32 num_chn;
733 u32 max_chn;
734 int ret = 0;
735 bool recovering = false;
736
737 if (net_device_ctx->start_remove || !nvdev || nvdev->destroy)
738 return -ENODEV;
739
740 num_chn = nvdev->num_chn;
741 max_chn = min_t(u32, nvdev->max_chn, num_online_cpus());
742
743 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) {
744 pr_info("vRSS unsupported before NVSP Version 5\n");
745 return -EINVAL;
746 }
747
748 /* We do not support rx, tx, or other */
749 if (!channels ||
750 channels->rx_count ||
751 channels->tx_count ||
752 channels->other_count ||
753 (channels->combined_count < 1))
754 return -EINVAL;
755
756 if (channels->combined_count > max_chn) {
757 pr_info("combined channels too high, using %d\n", max_chn);
758 channels->combined_count = max_chn;
759 }
760
761 ret = netvsc_close(net);
762 if (ret)
763 goto out;
764
765 do_set:
766 net_device_ctx->start_remove = true;
767 rndis_filter_device_remove(dev);
768
769 nvdev->num_chn = channels->combined_count;
770
771 memset(&device_info, 0, sizeof(device_info));
772 device_info.num_chn = nvdev->num_chn; /* passed to RNDIS */
773 device_info.ring_size = ring_size;
774 device_info.max_num_vrss_chns = max_num_vrss_chns;
775
776 ret = rndis_filter_device_add(dev, &device_info);
777 if (ret) {
778 if (recovering) {
779 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
780 return ret;
781 }
782 goto recover;
783 }
784
785 nvdev = net_device_ctx->nvdev;
786
787 ret = netif_set_real_num_tx_queues(net, nvdev->num_chn);
788 if (ret) {
789 if (recovering) {
790 netdev_err(net, "could not set tx queue count (ret %d)\n", ret);
791 return ret;
792 }
793 goto recover;
794 }
795
796 ret = netif_set_real_num_rx_queues(net, nvdev->num_chn);
797 if (ret) {
798 if (recovering) {
799 netdev_err(net, "could not set rx queue count (ret %d)\n", ret);
800 return ret;
801 }
802 goto recover;
803 }
804
805 out:
806 netvsc_open(net);
807 net_device_ctx->start_remove = false;
808 /* We may have missed link change notifications */
809 schedule_delayed_work(&net_device_ctx->dwork, 0);
810
811 return ret;
812
813 recover:
814 /* If the above failed, we attempt to recover through the same
815 * process but with the original number of channels.
816 */
817 netdev_err(net, "could not set channels, recovering\n");
818 recovering = true;
819 channels->combined_count = num_chn;
820 goto do_set;
821}
822
823static bool netvsc_validate_ethtool_ss_cmd(const struct ethtool_cmd *cmd)
824{
825 struct ethtool_cmd diff1 = *cmd;
826 struct ethtool_cmd diff2 = {};
827
828 ethtool_cmd_speed_set(&diff1, 0);
829 diff1.duplex = 0;
830 /* advertising and cmd are usually set */
831 diff1.advertising = 0;
832 diff1.cmd = 0;
833 /* We set port to PORT_OTHER */
834 diff2.port = PORT_OTHER;
835
836 return !memcmp(&diff1, &diff2, sizeof(diff1));
837}
838
839static void netvsc_init_settings(struct net_device *dev)
840{
841 struct net_device_context *ndc = netdev_priv(dev);
842
843 ndc->speed = SPEED_UNKNOWN;
844 ndc->duplex = DUPLEX_UNKNOWN;
845}
846
847static int netvsc_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
848{
849 struct net_device_context *ndc = netdev_priv(dev);
850
851 ethtool_cmd_speed_set(cmd, ndc->speed);
852 cmd->duplex = ndc->duplex;
853 cmd->port = PORT_OTHER;
854
855 return 0;
856}
857
858static int netvsc_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
859{
860 struct net_device_context *ndc = netdev_priv(dev);
861 u32 speed;
862
863 speed = ethtool_cmd_speed(cmd);
864 if (!ethtool_validate_speed(speed) ||
865 !ethtool_validate_duplex(cmd->duplex) ||
866 !netvsc_validate_ethtool_ss_cmd(cmd))
867 return -EINVAL;
868
869 ndc->speed = speed;
870 ndc->duplex = cmd->duplex;
871
872 return 0;
873}
874
875static int netvsc_change_mtu(struct net_device *ndev, int mtu)
876{
877 struct net_device_context *ndevctx = netdev_priv(ndev);
878 struct netvsc_device *nvdev = ndevctx->nvdev;
879 struct hv_device *hdev = ndevctx->device_ctx;
880 struct netvsc_device_info device_info;
881 u32 num_chn;
882 int ret = 0;
883
884 if (ndevctx->start_remove || !nvdev || nvdev->destroy)
885 return -ENODEV;
886
887 ret = netvsc_close(ndev);
888 if (ret)
889 goto out;
890
891 num_chn = nvdev->num_chn;
892
893 ndevctx->start_remove = true;
894 rndis_filter_device_remove(hdev);
895
896 ndev->mtu = mtu;
897
898 memset(&device_info, 0, sizeof(device_info));
899 device_info.ring_size = ring_size;
900 device_info.num_chn = num_chn;
901 device_info.max_num_vrss_chns = max_num_vrss_chns;
902 rndis_filter_device_add(hdev, &device_info);
903
904out:
905 netvsc_open(ndev);
906 ndevctx->start_remove = false;
907
908 /* We may have missed link change notifications */
909 schedule_delayed_work(&ndevctx->dwork, 0);
910
911 return ret;
912}
913
914static struct rtnl_link_stats64 *netvsc_get_stats64(struct net_device *net,
915 struct rtnl_link_stats64 *t)
916{
917 struct net_device_context *ndev_ctx = netdev_priv(net);
918 int cpu;
919
920 for_each_possible_cpu(cpu) {
921 struct netvsc_stats *tx_stats = per_cpu_ptr(ndev_ctx->tx_stats,
922 cpu);
923 struct netvsc_stats *rx_stats = per_cpu_ptr(ndev_ctx->rx_stats,
924 cpu);
925 u64 tx_packets, tx_bytes, rx_packets, rx_bytes, rx_multicast;
926 unsigned int start;
927
928 do {
929 start = u64_stats_fetch_begin_irq(&tx_stats->syncp);
930 tx_packets = tx_stats->packets;
931 tx_bytes = tx_stats->bytes;
932 } while (u64_stats_fetch_retry_irq(&tx_stats->syncp, start));
933
934 do {
935 start = u64_stats_fetch_begin_irq(&rx_stats->syncp);
936 rx_packets = rx_stats->packets;
937 rx_bytes = rx_stats->bytes;
938 rx_multicast = rx_stats->multicast + rx_stats->broadcast;
939 } while (u64_stats_fetch_retry_irq(&rx_stats->syncp, start));
940
941 t->tx_bytes += tx_bytes;
942 t->tx_packets += tx_packets;
943 t->rx_bytes += rx_bytes;
944 t->rx_packets += rx_packets;
945 t->multicast += rx_multicast;
946 }
947
948 t->tx_dropped = net->stats.tx_dropped;
949 t->tx_errors = net->stats.tx_dropped;
950
951 t->rx_dropped = net->stats.rx_dropped;
952 t->rx_errors = net->stats.rx_errors;
953
954 return t;
955}
956
957static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
958{
959 struct sockaddr *addr = p;
960 char save_adr[ETH_ALEN];
961 unsigned char save_aatype;
962 int err;
963
964 memcpy(save_adr, ndev->dev_addr, ETH_ALEN);
965 save_aatype = ndev->addr_assign_type;
966
967 err = eth_mac_addr(ndev, p);
968 if (err != 0)
969 return err;
970
971 err = rndis_filter_set_device_mac(ndev, addr->sa_data);
972 if (err != 0) {
973 /* roll back to saved MAC */
974 memcpy(ndev->dev_addr, save_adr, ETH_ALEN);
975 ndev->addr_assign_type = save_aatype;
976 }
977
978 return err;
979}
980
981static const struct {
982 char name[ETH_GSTRING_LEN];
983 u16 offset;
984} netvsc_stats[] = {
985 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
986 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
987 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
988 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
989 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
990};
991
992static int netvsc_get_sset_count(struct net_device *dev, int string_set)
993{
994 switch (string_set) {
995 case ETH_SS_STATS:
996 return ARRAY_SIZE(netvsc_stats);
997 default:
998 return -EINVAL;
999 }
1000}
1001
1002static void netvsc_get_ethtool_stats(struct net_device *dev,
1003 struct ethtool_stats *stats, u64 *data)
1004{
1005 struct net_device_context *ndc = netdev_priv(dev);
1006 const void *nds = &ndc->eth_stats;
1007 int i;
1008
1009 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1010 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1011}
1012
1013static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1014{
1015 int i;
1016
1017 switch (stringset) {
1018 case ETH_SS_STATS:
1019 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1020 memcpy(data + i * ETH_GSTRING_LEN,
1021 netvsc_stats[i].name, ETH_GSTRING_LEN);
1022 break;
1023 }
1024}
1025
1026#ifdef CONFIG_NET_POLL_CONTROLLER
1027static void netvsc_poll_controller(struct net_device *net)
1028{
1029 /* As netvsc_start_xmit() works synchronous we don't have to
1030 * trigger anything here.
1031 */
1032}
1033#endif
1034
1035static const struct ethtool_ops ethtool_ops = {
1036 .get_drvinfo = netvsc_get_drvinfo,
1037 .get_link = ethtool_op_get_link,
1038 .get_ethtool_stats = netvsc_get_ethtool_stats,
1039 .get_sset_count = netvsc_get_sset_count,
1040 .get_strings = netvsc_get_strings,
1041 .get_channels = netvsc_get_channels,
1042 .set_channels = netvsc_set_channels,
1043 .get_ts_info = ethtool_op_get_ts_info,
1044 .get_settings = netvsc_get_settings,
1045 .set_settings = netvsc_set_settings,
1046};
1047
1048static const struct net_device_ops device_ops = {
1049 .ndo_open = netvsc_open,
1050 .ndo_stop = netvsc_close,
1051 .ndo_start_xmit = netvsc_start_xmit,
1052 .ndo_set_rx_mode = netvsc_set_multicast_list,
1053 .ndo_change_mtu = netvsc_change_mtu,
1054 .ndo_validate_addr = eth_validate_addr,
1055 .ndo_set_mac_address = netvsc_set_mac_addr,
1056 .ndo_select_queue = netvsc_select_queue,
1057 .ndo_get_stats64 = netvsc_get_stats64,
1058#ifdef CONFIG_NET_POLL_CONTROLLER
1059 .ndo_poll_controller = netvsc_poll_controller,
1060#endif
1061};
1062
1063/*
1064 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1065 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1066 * present send GARP packet to network peers with netif_notify_peers().
1067 */
1068static void netvsc_link_change(struct work_struct *w)
1069{
1070 struct net_device_context *ndev_ctx =
1071 container_of(w, struct net_device_context, dwork.work);
1072 struct hv_device *device_obj = ndev_ctx->device_ctx;
1073 struct net_device *net = hv_get_drvdata(device_obj);
1074 struct netvsc_device *net_device;
1075 struct rndis_device *rdev;
1076 struct netvsc_reconfig *event = NULL;
1077 bool notify = false, reschedule = false;
1078 unsigned long flags, next_reconfig, delay;
1079
1080 rtnl_lock();
1081 if (ndev_ctx->start_remove)
1082 goto out_unlock;
1083
1084 net_device = ndev_ctx->nvdev;
1085 rdev = net_device->extension;
1086
1087 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1088 if (time_is_after_jiffies(next_reconfig)) {
1089 /* link_watch only sends one notification with current state
1090 * per second, avoid doing reconfig more frequently. Handle
1091 * wrap around.
1092 */
1093 delay = next_reconfig - jiffies;
1094 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1095 schedule_delayed_work(&ndev_ctx->dwork, delay);
1096 goto out_unlock;
1097 }
1098 ndev_ctx->last_reconfig = jiffies;
1099
1100 spin_lock_irqsave(&ndev_ctx->lock, flags);
1101 if (!list_empty(&ndev_ctx->reconfig_events)) {
1102 event = list_first_entry(&ndev_ctx->reconfig_events,
1103 struct netvsc_reconfig, list);
1104 list_del(&event->list);
1105 reschedule = !list_empty(&ndev_ctx->reconfig_events);
1106 }
1107 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1108
1109 if (!event)
1110 goto out_unlock;
1111
1112 switch (event->event) {
1113 /* Only the following events are possible due to the check in
1114 * netvsc_linkstatus_callback()
1115 */
1116 case RNDIS_STATUS_MEDIA_CONNECT:
1117 if (rdev->link_state) {
1118 rdev->link_state = false;
1119 netif_carrier_on(net);
1120 netif_tx_wake_all_queues(net);
1121 } else {
1122 notify = true;
1123 }
1124 kfree(event);
1125 break;
1126 case RNDIS_STATUS_MEDIA_DISCONNECT:
1127 if (!rdev->link_state) {
1128 rdev->link_state = true;
1129 netif_carrier_off(net);
1130 netif_tx_stop_all_queues(net);
1131 }
1132 kfree(event);
1133 break;
1134 case RNDIS_STATUS_NETWORK_CHANGE:
1135 /* Only makes sense if carrier is present */
1136 if (!rdev->link_state) {
1137 rdev->link_state = true;
1138 netif_carrier_off(net);
1139 netif_tx_stop_all_queues(net);
1140 event->event = RNDIS_STATUS_MEDIA_CONNECT;
1141 spin_lock_irqsave(&ndev_ctx->lock, flags);
1142 list_add(&event->list, &ndev_ctx->reconfig_events);
1143 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1144 reschedule = true;
1145 }
1146 break;
1147 }
1148
1149 rtnl_unlock();
1150
1151 if (notify)
1152 netdev_notify_peers(net);
1153
1154 /* link_watch only sends one notification with current state per
1155 * second, handle next reconfig event in 2 seconds.
1156 */
1157 if (reschedule)
1158 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1159
1160 return;
1161
1162out_unlock:
1163 rtnl_unlock();
1164}
1165
1166static void netvsc_free_netdev(struct net_device *netdev)
1167{
1168 struct net_device_context *net_device_ctx = netdev_priv(netdev);
1169
1170 free_percpu(net_device_ctx->tx_stats);
1171 free_percpu(net_device_ctx->rx_stats);
1172 free_netdev(netdev);
1173}
1174
1175static struct net_device *get_netvsc_bymac(const u8 *mac)
1176{
1177 struct net_device *dev;
1178
1179 ASSERT_RTNL();
1180
1181 for_each_netdev(&init_net, dev) {
1182 if (dev->netdev_ops != &device_ops)
1183 continue; /* not a netvsc device */
1184
1185 if (ether_addr_equal(mac, dev->perm_addr))
1186 return dev;
1187 }
1188
1189 return NULL;
1190}
1191
1192static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1193{
1194 struct net_device *dev;
1195
1196 ASSERT_RTNL();
1197
1198 for_each_netdev(&init_net, dev) {
1199 struct net_device_context *net_device_ctx;
1200
1201 if (dev->netdev_ops != &device_ops)
1202 continue; /* not a netvsc device */
1203
1204 net_device_ctx = netdev_priv(dev);
1205 if (net_device_ctx->nvdev == NULL)
1206 continue; /* device is removed */
1207
1208 if (rtnl_dereference(net_device_ctx->vf_netdev) == vf_netdev)
1209 return dev; /* a match */
1210 }
1211
1212 return NULL;
1213}
1214
1215static int netvsc_register_vf(struct net_device *vf_netdev)
1216{
1217 struct net_device *ndev;
1218 struct net_device_context *net_device_ctx;
1219 struct netvsc_device *netvsc_dev;
1220
1221 if (vf_netdev->addr_len != ETH_ALEN)
1222 return NOTIFY_DONE;
1223
1224 /*
1225 * We will use the MAC address to locate the synthetic interface to
1226 * associate with the VF interface. If we don't find a matching
1227 * synthetic interface, move on.
1228 */
1229 ndev = get_netvsc_bymac(vf_netdev->perm_addr);
1230 if (!ndev)
1231 return NOTIFY_DONE;
1232
1233 net_device_ctx = netdev_priv(ndev);
1234 netvsc_dev = net_device_ctx->nvdev;
1235 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
1236 return NOTIFY_DONE;
1237
1238 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
1239 /*
1240 * Take a reference on the module.
1241 */
1242 try_module_get(THIS_MODULE);
1243
1244 dev_hold(vf_netdev);
1245 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
1246 return NOTIFY_OK;
1247}
1248
1249static int netvsc_vf_up(struct net_device *vf_netdev)
1250{
1251 struct net_device *ndev;
1252 struct netvsc_device *netvsc_dev;
1253 struct net_device_context *net_device_ctx;
1254
1255 ndev = get_netvsc_byref(vf_netdev);
1256 if (!ndev)
1257 return NOTIFY_DONE;
1258
1259 net_device_ctx = netdev_priv(ndev);
1260 netvsc_dev = net_device_ctx->nvdev;
1261
1262 netdev_info(ndev, "VF up: %s\n", vf_netdev->name);
1263
1264 /*
1265 * Open the device before switching data path.
1266 */
1267 rndis_filter_open(netvsc_dev);
1268
1269 /*
1270 * notify the host to switch the data path.
1271 */
1272 netvsc_switch_datapath(ndev, true);
1273 netdev_info(ndev, "Data path switched to VF: %s\n", vf_netdev->name);
1274
1275 netif_carrier_off(ndev);
1276
1277 /* Now notify peers through VF device. */
1278 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, vf_netdev);
1279
1280 return NOTIFY_OK;
1281}
1282
1283static int netvsc_vf_down(struct net_device *vf_netdev)
1284{
1285 struct net_device *ndev;
1286 struct netvsc_device *netvsc_dev;
1287 struct net_device_context *net_device_ctx;
1288
1289 ndev = get_netvsc_byref(vf_netdev);
1290 if (!ndev)
1291 return NOTIFY_DONE;
1292
1293 net_device_ctx = netdev_priv(ndev);
1294 netvsc_dev = net_device_ctx->nvdev;
1295
1296 netdev_info(ndev, "VF down: %s\n", vf_netdev->name);
1297 netvsc_switch_datapath(ndev, false);
1298 netdev_info(ndev, "Data path switched from VF: %s\n", vf_netdev->name);
1299 rndis_filter_close(netvsc_dev);
1300 netif_carrier_on(ndev);
1301
1302 /* Now notify peers through netvsc device. */
1303 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, ndev);
1304
1305 return NOTIFY_OK;
1306}
1307
1308static int netvsc_unregister_vf(struct net_device *vf_netdev)
1309{
1310 struct net_device *ndev;
1311 struct netvsc_device *netvsc_dev;
1312 struct net_device_context *net_device_ctx;
1313
1314 ndev = get_netvsc_byref(vf_netdev);
1315 if (!ndev)
1316 return NOTIFY_DONE;
1317
1318 net_device_ctx = netdev_priv(ndev);
1319 netvsc_dev = net_device_ctx->nvdev;
1320
1321 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
1322
1323 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
1324 dev_put(vf_netdev);
1325 module_put(THIS_MODULE);
1326 return NOTIFY_OK;
1327}
1328
1329static int netvsc_probe(struct hv_device *dev,
1330 const struct hv_vmbus_device_id *dev_id)
1331{
1332 struct net_device *net = NULL;
1333 struct net_device_context *net_device_ctx;
1334 struct netvsc_device_info device_info;
1335 struct netvsc_device *nvdev;
1336 int ret;
1337
1338 net = alloc_etherdev_mq(sizeof(struct net_device_context),
1339 num_online_cpus());
1340 if (!net)
1341 return -ENOMEM;
1342
1343 netif_carrier_off(net);
1344
1345 netvsc_init_settings(net);
1346
1347 net_device_ctx = netdev_priv(net);
1348 net_device_ctx->device_ctx = dev;
1349 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
1350 if (netif_msg_probe(net_device_ctx))
1351 netdev_dbg(net, "netvsc msg_enable: %d\n",
1352 net_device_ctx->msg_enable);
1353
1354 net_device_ctx->tx_stats = netdev_alloc_pcpu_stats(struct netvsc_stats);
1355 if (!net_device_ctx->tx_stats) {
1356 free_netdev(net);
1357 return -ENOMEM;
1358 }
1359 net_device_ctx->rx_stats = netdev_alloc_pcpu_stats(struct netvsc_stats);
1360 if (!net_device_ctx->rx_stats) {
1361 free_percpu(net_device_ctx->tx_stats);
1362 free_netdev(net);
1363 return -ENOMEM;
1364 }
1365
1366 hv_set_drvdata(dev, net);
1367
1368 net_device_ctx->start_remove = false;
1369
1370 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
1371 INIT_WORK(&net_device_ctx->work, do_set_multicast);
1372
1373 spin_lock_init(&net_device_ctx->lock);
1374 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
1375
1376 net->netdev_ops = &device_ops;
1377
1378 net->hw_features = NETVSC_HW_FEATURES;
1379 net->features = NETVSC_HW_FEATURES | NETIF_F_HW_VLAN_CTAG_TX;
1380
1381 net->ethtool_ops = ðtool_ops;
1382 SET_NETDEV_DEV(net, &dev->device);
1383
1384 /* We always need headroom for rndis header */
1385 net->needed_headroom = RNDIS_AND_PPI_SIZE;
1386
1387 /* Notify the netvsc driver of the new device */
1388 memset(&device_info, 0, sizeof(device_info));
1389 device_info.ring_size = ring_size;
1390 device_info.max_num_vrss_chns = max_num_vrss_chns;
1391 ret = rndis_filter_device_add(dev, &device_info);
1392 if (ret != 0) {
1393 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
1394 netvsc_free_netdev(net);
1395 hv_set_drvdata(dev, NULL);
1396 return ret;
1397 }
1398 memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
1399
1400 nvdev = net_device_ctx->nvdev;
1401 netif_set_real_num_tx_queues(net, nvdev->num_chn);
1402 netif_set_real_num_rx_queues(net, nvdev->num_chn);
1403 netif_set_gso_max_size(net, NETVSC_GSO_MAX_SIZE);
1404
1405 /* MTU range: 68 - 1500 or 65521 */
1406 net->min_mtu = NETVSC_MTU_MIN;
1407 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
1408 net->max_mtu = NETVSC_MTU - ETH_HLEN;
1409 else
1410 net->max_mtu = ETH_DATA_LEN;
1411
1412 ret = register_netdev(net);
1413 if (ret != 0) {
1414 pr_err("Unable to register netdev.\n");
1415 rndis_filter_device_remove(dev);
1416 netvsc_free_netdev(net);
1417 }
1418
1419 return ret;
1420}
1421
1422static int netvsc_remove(struct hv_device *dev)
1423{
1424 struct net_device *net;
1425 struct net_device_context *ndev_ctx;
1426 struct netvsc_device *net_device;
1427
1428 net = hv_get_drvdata(dev);
1429
1430 if (net == NULL) {
1431 dev_err(&dev->device, "No net device to remove\n");
1432 return 0;
1433 }
1434
1435 ndev_ctx = netdev_priv(net);
1436 net_device = ndev_ctx->nvdev;
1437
1438 /* Avoid racing with netvsc_change_mtu()/netvsc_set_channels()
1439 * removing the device.
1440 */
1441 rtnl_lock();
1442 ndev_ctx->start_remove = true;
1443 rtnl_unlock();
1444
1445 cancel_delayed_work_sync(&ndev_ctx->dwork);
1446 cancel_work_sync(&ndev_ctx->work);
1447
1448 /* Stop outbound asap */
1449 netif_tx_disable(net);
1450
1451 unregister_netdev(net);
1452
1453 /*
1454 * Call to the vsc driver to let it know that the device is being
1455 * removed
1456 */
1457 rndis_filter_device_remove(dev);
1458
1459 hv_set_drvdata(dev, NULL);
1460
1461 netvsc_free_netdev(net);
1462 return 0;
1463}
1464
1465static const struct hv_vmbus_device_id id_table[] = {
1466 /* Network guid */
1467 { HV_NIC_GUID, },
1468 { },
1469};
1470
1471MODULE_DEVICE_TABLE(vmbus, id_table);
1472
1473/* The one and only one */
1474static struct hv_driver netvsc_drv = {
1475 .name = KBUILD_MODNAME,
1476 .id_table = id_table,
1477 .probe = netvsc_probe,
1478 .remove = netvsc_remove,
1479};
1480
1481/*
1482 * On Hyper-V, every VF interface is matched with a corresponding
1483 * synthetic interface. The synthetic interface is presented first
1484 * to the guest. When the corresponding VF instance is registered,
1485 * we will take care of switching the data path.
1486 */
1487static int netvsc_netdev_event(struct notifier_block *this,
1488 unsigned long event, void *ptr)
1489{
1490 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
1491
1492 /* Skip our own events */
1493 if (event_dev->netdev_ops == &device_ops)
1494 return NOTIFY_DONE;
1495
1496 /* Avoid non-Ethernet type devices */
1497 if (event_dev->type != ARPHRD_ETHER)
1498 return NOTIFY_DONE;
1499
1500 /* Avoid Vlan dev with same MAC registering as VF */
1501 if (event_dev->priv_flags & IFF_802_1Q_VLAN)
1502 return NOTIFY_DONE;
1503
1504 /* Avoid Bonding master dev with same MAC registering as VF */
1505 if ((event_dev->priv_flags & IFF_BONDING) &&
1506 (event_dev->flags & IFF_MASTER))
1507 return NOTIFY_DONE;
1508
1509 switch (event) {
1510 case NETDEV_REGISTER:
1511 return netvsc_register_vf(event_dev);
1512 case NETDEV_UNREGISTER:
1513 return netvsc_unregister_vf(event_dev);
1514 case NETDEV_UP:
1515 return netvsc_vf_up(event_dev);
1516 case NETDEV_DOWN:
1517 return netvsc_vf_down(event_dev);
1518 default:
1519 return NOTIFY_DONE;
1520 }
1521}
1522
1523static struct notifier_block netvsc_netdev_notifier = {
1524 .notifier_call = netvsc_netdev_event,
1525};
1526
1527static void __exit netvsc_drv_exit(void)
1528{
1529 unregister_netdevice_notifier(&netvsc_netdev_notifier);
1530 vmbus_driver_unregister(&netvsc_drv);
1531}
1532
1533static int __init netvsc_drv_init(void)
1534{
1535 int ret;
1536
1537 if (ring_size < RING_SIZE_MIN) {
1538 ring_size = RING_SIZE_MIN;
1539 pr_info("Increased ring_size to %d (min allowed)\n",
1540 ring_size);
1541 }
1542 ret = vmbus_driver_register(&netvsc_drv);
1543
1544 if (ret)
1545 return ret;
1546
1547 register_netdevice_notifier(&netvsc_netdev_notifier);
1548 return 0;
1549}
1550
1551MODULE_LICENSE("GPL");
1552MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
1553
1554module_init(netvsc_drv_init);
1555module_exit(netvsc_drv_exit);