Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Intel(R) Ethernet Switch Host Interface Driver
3 * Copyright(c) 2013 - 2018 Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * The full GNU General Public License is included in this distribution in
15 * the file called "COPYING".
16 *
17 * Contact Information:
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
21
22#include "fm10k_pf.h"
23#include "fm10k_vf.h"
24
25/**
26 * fm10k_reset_hw_pf - PF hardware reset
27 * @hw: pointer to hardware structure
28 *
29 * This function should return the hardware to a state similar to the
30 * one it is in after being powered on.
31 **/
32static s32 fm10k_reset_hw_pf(struct fm10k_hw *hw)
33{
34 s32 err;
35 u32 reg;
36 u16 i;
37
38 /* Disable interrupts */
39 fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(ALL));
40
41 /* Lock ITR2 reg 0 into itself and disable interrupt moderation */
42 fm10k_write_reg(hw, FM10K_ITR2(0), 0);
43 fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
44
45 /* We assume here Tx and Rx queue 0 are owned by the PF */
46
47 /* Shut off VF access to their queues forcing them to queue 0 */
48 for (i = 0; i < FM10K_TQMAP_TABLE_SIZE; i++) {
49 fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
50 fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
51 }
52
53 /* shut down all rings */
54 err = fm10k_disable_queues_generic(hw, FM10K_MAX_QUEUES);
55 if (err == FM10K_ERR_REQUESTS_PENDING) {
56 hw->mac.reset_while_pending++;
57 goto force_reset;
58 } else if (err) {
59 return err;
60 }
61
62 /* Verify that DMA is no longer active */
63 reg = fm10k_read_reg(hw, FM10K_DMA_CTRL);
64 if (reg & (FM10K_DMA_CTRL_TX_ACTIVE | FM10K_DMA_CTRL_RX_ACTIVE))
65 return FM10K_ERR_DMA_PENDING;
66
67force_reset:
68 /* Inititate data path reset */
69 reg = FM10K_DMA_CTRL_DATAPATH_RESET;
70 fm10k_write_reg(hw, FM10K_DMA_CTRL, reg);
71
72 /* Flush write and allow 100us for reset to complete */
73 fm10k_write_flush(hw);
74 udelay(FM10K_RESET_TIMEOUT);
75
76 /* Verify we made it out of reset */
77 reg = fm10k_read_reg(hw, FM10K_IP);
78 if (!(reg & FM10K_IP_NOTINRESET))
79 return FM10K_ERR_RESET_FAILED;
80
81 return 0;
82}
83
84/**
85 * fm10k_is_ari_hierarchy_pf - Indicate ARI hierarchy support
86 * @hw: pointer to hardware structure
87 *
88 * Looks at the ARI hierarchy bit to determine whether ARI is supported or not.
89 **/
90static bool fm10k_is_ari_hierarchy_pf(struct fm10k_hw *hw)
91{
92 u16 sriov_ctrl = fm10k_read_pci_cfg_word(hw, FM10K_PCIE_SRIOV_CTRL);
93
94 return !!(sriov_ctrl & FM10K_PCIE_SRIOV_CTRL_VFARI);
95}
96
97/**
98 * fm10k_init_hw_pf - PF hardware initialization
99 * @hw: pointer to hardware structure
100 *
101 **/
102static s32 fm10k_init_hw_pf(struct fm10k_hw *hw)
103{
104 u32 dma_ctrl, txqctl;
105 u16 i;
106
107 /* Establish default VSI as valid */
108 fm10k_write_reg(hw, FM10K_DGLORTDEC(fm10k_dglort_default), 0);
109 fm10k_write_reg(hw, FM10K_DGLORTMAP(fm10k_dglort_default),
110 FM10K_DGLORTMAP_ANY);
111
112 /* Invalidate all other GLORT entries */
113 for (i = 1; i < FM10K_DGLORT_COUNT; i++)
114 fm10k_write_reg(hw, FM10K_DGLORTMAP(i), FM10K_DGLORTMAP_NONE);
115
116 /* reset ITR2(0) to point to itself */
117 fm10k_write_reg(hw, FM10K_ITR2(0), 0);
118
119 /* reset VF ITR2(0) to point to 0 avoid PF registers */
120 fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), 0);
121
122 /* loop through all PF ITR2 registers pointing them to the previous */
123 for (i = 1; i < FM10K_ITR_REG_COUNT_PF; i++)
124 fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
125
126 /* Enable interrupt moderator if not already enabled */
127 fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
128
129 /* compute the default txqctl configuration */
130 txqctl = FM10K_TXQCTL_PF | FM10K_TXQCTL_UNLIMITED_BW |
131 (hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT);
132
133 for (i = 0; i < FM10K_MAX_QUEUES; i++) {
134 /* configure rings for 256 Queue / 32 Descriptor cache mode */
135 fm10k_write_reg(hw, FM10K_TQDLOC(i),
136 (i * FM10K_TQDLOC_BASE_32_DESC) |
137 FM10K_TQDLOC_SIZE_32_DESC);
138 fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
139
140 /* configure rings to provide TPH processing hints */
141 fm10k_write_reg(hw, FM10K_TPH_TXCTRL(i),
142 FM10K_TPH_TXCTRL_DESC_TPHEN |
143 FM10K_TPH_TXCTRL_DESC_RROEN |
144 FM10K_TPH_TXCTRL_DESC_WROEN |
145 FM10K_TPH_TXCTRL_DATA_RROEN);
146 fm10k_write_reg(hw, FM10K_TPH_RXCTRL(i),
147 FM10K_TPH_RXCTRL_DESC_TPHEN |
148 FM10K_TPH_RXCTRL_DESC_RROEN |
149 FM10K_TPH_RXCTRL_DATA_WROEN |
150 FM10K_TPH_RXCTRL_HDR_WROEN);
151 }
152
153 /* set max hold interval to align with 1.024 usec in all modes and
154 * store ITR scale
155 */
156 switch (hw->bus.speed) {
157 case fm10k_bus_speed_2500:
158 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN1;
159 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN1;
160 break;
161 case fm10k_bus_speed_5000:
162 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN2;
163 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN2;
164 break;
165 case fm10k_bus_speed_8000:
166 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN3;
167 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
168 break;
169 default:
170 dma_ctrl = 0;
171 /* just in case, assume Gen3 ITR scale */
172 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
173 break;
174 }
175
176 /* Configure TSO flags */
177 fm10k_write_reg(hw, FM10K_DTXTCPFLGL, FM10K_TSO_FLAGS_LOW);
178 fm10k_write_reg(hw, FM10K_DTXTCPFLGH, FM10K_TSO_FLAGS_HI);
179
180 /* Enable DMA engine
181 * Set Rx Descriptor size to 32
182 * Set Minimum MSS to 64
183 * Set Maximum number of Rx queues to 256 / 32 Descriptor
184 */
185 dma_ctrl |= FM10K_DMA_CTRL_TX_ENABLE | FM10K_DMA_CTRL_RX_ENABLE |
186 FM10K_DMA_CTRL_RX_DESC_SIZE | FM10K_DMA_CTRL_MINMSS_64 |
187 FM10K_DMA_CTRL_32_DESC;
188
189 fm10k_write_reg(hw, FM10K_DMA_CTRL, dma_ctrl);
190
191 /* record maximum queue count, we limit ourselves to 128 */
192 hw->mac.max_queues = FM10K_MAX_QUEUES_PF;
193
194 /* We support either 64 VFs or 7 VFs depending on if we have ARI */
195 hw->iov.total_vfs = fm10k_is_ari_hierarchy_pf(hw) ? 64 : 7;
196
197 return 0;
198}
199
200/**
201 * fm10k_update_vlan_pf - Update status of VLAN ID in VLAN filter table
202 * @hw: pointer to hardware structure
203 * @vid: VLAN ID to add to table
204 * @vsi: Index indicating VF ID or PF ID in table
205 * @set: Indicates if this is a set or clear operation
206 *
207 * This function adds or removes the corresponding VLAN ID from the VLAN
208 * filter table for the corresponding function. In addition to the
209 * standard set/clear that supports one bit a multi-bit write is
210 * supported to set 64 bits at a time.
211 **/
212static s32 fm10k_update_vlan_pf(struct fm10k_hw *hw, u32 vid, u8 vsi, bool set)
213{
214 u32 vlan_table, reg, mask, bit, len;
215
216 /* verify the VSI index is valid */
217 if (vsi > FM10K_VLAN_TABLE_VSI_MAX)
218 return FM10K_ERR_PARAM;
219
220 /* VLAN multi-bit write:
221 * The multi-bit write has several parts to it.
222 * 24 16 8 0
223 * 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
224 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
225 * | RSVD0 | Length |C|RSVD0| VLAN ID |
226 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
227 *
228 * VLAN ID: Vlan Starting value
229 * RSVD0: Reserved section, must be 0
230 * C: Flag field, 0 is set, 1 is clear (Used in VF VLAN message)
231 * Length: Number of times to repeat the bit being set
232 */
233 len = vid >> 16;
234 vid = (vid << 17) >> 17;
235
236 /* verify the reserved 0 fields are 0 */
237 if (len >= FM10K_VLAN_TABLE_VID_MAX || vid >= FM10K_VLAN_TABLE_VID_MAX)
238 return FM10K_ERR_PARAM;
239
240 /* Loop through the table updating all required VLANs */
241 for (reg = FM10K_VLAN_TABLE(vsi, vid / 32), bit = vid % 32;
242 len < FM10K_VLAN_TABLE_VID_MAX;
243 len -= 32 - bit, reg++, bit = 0) {
244 /* record the initial state of the register */
245 vlan_table = fm10k_read_reg(hw, reg);
246
247 /* truncate mask if we are at the start or end of the run */
248 mask = (~(u32)0 >> ((len < 31) ? 31 - len : 0)) << bit;
249
250 /* make necessary modifications to the register */
251 mask &= set ? ~vlan_table : vlan_table;
252 if (mask)
253 fm10k_write_reg(hw, reg, vlan_table ^ mask);
254 }
255
256 return 0;
257}
258
259/**
260 * fm10k_read_mac_addr_pf - Read device MAC address
261 * @hw: pointer to the HW structure
262 *
263 * Reads the device MAC address from the SM_AREA and stores the value.
264 **/
265static s32 fm10k_read_mac_addr_pf(struct fm10k_hw *hw)
266{
267 u8 perm_addr[ETH_ALEN];
268 u32 serial_num;
269
270 serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(1));
271
272 /* last byte should be all 1's */
273 if ((~serial_num) << 24)
274 return FM10K_ERR_INVALID_MAC_ADDR;
275
276 perm_addr[0] = (u8)(serial_num >> 24);
277 perm_addr[1] = (u8)(serial_num >> 16);
278 perm_addr[2] = (u8)(serial_num >> 8);
279
280 serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(0));
281
282 /* first byte should be all 1's */
283 if ((~serial_num) >> 24)
284 return FM10K_ERR_INVALID_MAC_ADDR;
285
286 perm_addr[3] = (u8)(serial_num >> 16);
287 perm_addr[4] = (u8)(serial_num >> 8);
288 perm_addr[5] = (u8)(serial_num);
289
290 ether_addr_copy(hw->mac.perm_addr, perm_addr);
291 ether_addr_copy(hw->mac.addr, perm_addr);
292
293 return 0;
294}
295
296/**
297 * fm10k_glort_valid_pf - Validate that the provided glort is valid
298 * @hw: pointer to the HW structure
299 * @glort: base glort to be validated
300 *
301 * This function will return an error if the provided glort is invalid
302 **/
303bool fm10k_glort_valid_pf(struct fm10k_hw *hw, u16 glort)
304{
305 glort &= hw->mac.dglort_map >> FM10K_DGLORTMAP_MASK_SHIFT;
306
307 return glort == (hw->mac.dglort_map & FM10K_DGLORTMAP_NONE);
308}
309
310/**
311 * fm10k_update_xc_addr_pf - Update device addresses
312 * @hw: pointer to the HW structure
313 * @glort: base resource tag for this request
314 * @mac: MAC address to add/remove from table
315 * @vid: VLAN ID to add/remove from table
316 * @add: Indicates if this is an add or remove operation
317 * @flags: flags field to indicate add and secure
318 *
319 * This function generates a message to the Switch API requesting
320 * that the given logical port add/remove the given L2 MAC/VLAN address.
321 **/
322static s32 fm10k_update_xc_addr_pf(struct fm10k_hw *hw, u16 glort,
323 const u8 *mac, u16 vid, bool add, u8 flags)
324{
325 struct fm10k_mbx_info *mbx = &hw->mbx;
326 struct fm10k_mac_update mac_update;
327 u32 msg[5];
328
329 /* clear set bit from VLAN ID */
330 vid &= ~FM10K_VLAN_CLEAR;
331
332 /* if glort or VLAN are not valid return error */
333 if (!fm10k_glort_valid_pf(hw, glort) || vid >= FM10K_VLAN_TABLE_VID_MAX)
334 return FM10K_ERR_PARAM;
335
336 /* record fields */
337 mac_update.mac_lower = cpu_to_le32(((u32)mac[2] << 24) |
338 ((u32)mac[3] << 16) |
339 ((u32)mac[4] << 8) |
340 ((u32)mac[5]));
341 mac_update.mac_upper = cpu_to_le16(((u16)mac[0] << 8) |
342 ((u16)mac[1]));
343 mac_update.vlan = cpu_to_le16(vid);
344 mac_update.glort = cpu_to_le16(glort);
345 mac_update.action = add ? 0 : 1;
346 mac_update.flags = flags;
347
348 /* populate mac_update fields */
349 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_UPDATE_MAC_FWD_RULE);
350 fm10k_tlv_attr_put_le_struct(msg, FM10K_PF_ATTR_ID_MAC_UPDATE,
351 &mac_update, sizeof(mac_update));
352
353 /* load onto outgoing mailbox */
354 return mbx->ops.enqueue_tx(hw, mbx, msg);
355}
356
357/**
358 * fm10k_update_uc_addr_pf - Update device unicast addresses
359 * @hw: pointer to the HW structure
360 * @glort: base resource tag for this request
361 * @mac: MAC address to add/remove from table
362 * @vid: VLAN ID to add/remove from table
363 * @add: Indicates if this is an add or remove operation
364 * @flags: flags field to indicate add and secure
365 *
366 * This function is used to add or remove unicast addresses for
367 * the PF.
368 **/
369static s32 fm10k_update_uc_addr_pf(struct fm10k_hw *hw, u16 glort,
370 const u8 *mac, u16 vid, bool add, u8 flags)
371{
372 /* verify MAC address is valid */
373 if (!is_valid_ether_addr(mac))
374 return FM10K_ERR_PARAM;
375
376 return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, flags);
377}
378
379/**
380 * fm10k_update_mc_addr_pf - Update device multicast addresses
381 * @hw: pointer to the HW structure
382 * @glort: base resource tag for this request
383 * @mac: MAC address to add/remove from table
384 * @vid: VLAN ID to add/remove from table
385 * @add: Indicates if this is an add or remove operation
386 *
387 * This function is used to add or remove multicast MAC addresses for
388 * the PF.
389 **/
390static s32 fm10k_update_mc_addr_pf(struct fm10k_hw *hw, u16 glort,
391 const u8 *mac, u16 vid, bool add)
392{
393 /* verify multicast address is valid */
394 if (!is_multicast_ether_addr(mac))
395 return FM10K_ERR_PARAM;
396
397 return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, 0);
398}
399
400/**
401 * fm10k_update_xcast_mode_pf - Request update of multicast mode
402 * @hw: pointer to hardware structure
403 * @glort: base resource tag for this request
404 * @mode: integer value indicating mode being requested
405 *
406 * This function will attempt to request a higher mode for the port
407 * so that it can enable either multicast, multicast promiscuous, or
408 * promiscuous mode of operation.
409 **/
410static s32 fm10k_update_xcast_mode_pf(struct fm10k_hw *hw, u16 glort, u8 mode)
411{
412 struct fm10k_mbx_info *mbx = &hw->mbx;
413 u32 msg[3], xcast_mode;
414
415 if (mode > FM10K_XCAST_MODE_NONE)
416 return FM10K_ERR_PARAM;
417
418 /* if glort is not valid return error */
419 if (!fm10k_glort_valid_pf(hw, glort))
420 return FM10K_ERR_PARAM;
421
422 /* write xcast mode as a single u32 value,
423 * lower 16 bits: glort
424 * upper 16 bits: mode
425 */
426 xcast_mode = ((u32)mode << 16) | glort;
427
428 /* generate message requesting to change xcast mode */
429 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_XCAST_MODES);
430 fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_XCAST_MODE, xcast_mode);
431
432 /* load onto outgoing mailbox */
433 return mbx->ops.enqueue_tx(hw, mbx, msg);
434}
435
436/**
437 * fm10k_update_int_moderator_pf - Update interrupt moderator linked list
438 * @hw: pointer to hardware structure
439 *
440 * This function walks through the MSI-X vector table to determine the
441 * number of active interrupts and based on that information updates the
442 * interrupt moderator linked list.
443 **/
444static void fm10k_update_int_moderator_pf(struct fm10k_hw *hw)
445{
446 u32 i;
447
448 /* Disable interrupt moderator */
449 fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
450
451 /* loop through PF from last to first looking enabled vectors */
452 for (i = FM10K_ITR_REG_COUNT_PF - 1; i; i--) {
453 if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
454 break;
455 }
456
457 /* always reset VFITR2[0] to point to last enabled PF vector */
458 fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), i);
459
460 /* reset ITR2[0] to point to last enabled PF vector */
461 if (!hw->iov.num_vfs)
462 fm10k_write_reg(hw, FM10K_ITR2(0), i);
463
464 /* Enable interrupt moderator */
465 fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
466}
467
468/**
469 * fm10k_update_lport_state_pf - Notify the switch of a change in port state
470 * @hw: pointer to the HW structure
471 * @glort: base resource tag for this request
472 * @count: number of logical ports being updated
473 * @enable: boolean value indicating enable or disable
474 *
475 * This function is used to add/remove a logical port from the switch.
476 **/
477static s32 fm10k_update_lport_state_pf(struct fm10k_hw *hw, u16 glort,
478 u16 count, bool enable)
479{
480 struct fm10k_mbx_info *mbx = &hw->mbx;
481 u32 msg[3], lport_msg;
482
483 /* do nothing if we are being asked to create or destroy 0 ports */
484 if (!count)
485 return 0;
486
487 /* if glort is not valid return error */
488 if (!fm10k_glort_valid_pf(hw, glort))
489 return FM10K_ERR_PARAM;
490
491 /* reset multicast mode if deleting lport */
492 if (!enable)
493 fm10k_update_xcast_mode_pf(hw, glort, FM10K_XCAST_MODE_NONE);
494
495 /* construct the lport message from the 2 pieces of data we have */
496 lport_msg = ((u32)count << 16) | glort;
497
498 /* generate lport create/delete message */
499 fm10k_tlv_msg_init(msg, enable ? FM10K_PF_MSG_ID_LPORT_CREATE :
500 FM10K_PF_MSG_ID_LPORT_DELETE);
501 fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_PORT, lport_msg);
502
503 /* load onto outgoing mailbox */
504 return mbx->ops.enqueue_tx(hw, mbx, msg);
505}
506
507/**
508 * fm10k_configure_dglort_map_pf - Configures GLORT entry and queues
509 * @hw: pointer to hardware structure
510 * @dglort: pointer to dglort configuration structure
511 *
512 * Reads the configuration structure contained in dglort_cfg and uses
513 * that information to then populate a DGLORTMAP/DEC entry and the queues
514 * to which it has been assigned.
515 **/
516static s32 fm10k_configure_dglort_map_pf(struct fm10k_hw *hw,
517 struct fm10k_dglort_cfg *dglort)
518{
519 u16 glort, queue_count, vsi_count, pc_count;
520 u16 vsi, queue, pc, q_idx;
521 u32 txqctl, dglortdec, dglortmap;
522
523 /* verify the dglort pointer */
524 if (!dglort)
525 return FM10K_ERR_PARAM;
526
527 /* verify the dglort values */
528 if ((dglort->idx > 7) || (dglort->rss_l > 7) || (dglort->pc_l > 3) ||
529 (dglort->vsi_l > 6) || (dglort->vsi_b > 64) ||
530 (dglort->queue_l > 8) || (dglort->queue_b >= 256))
531 return FM10K_ERR_PARAM;
532
533 /* determine count of VSIs and queues */
534 queue_count = BIT(dglort->rss_l + dglort->pc_l);
535 vsi_count = BIT(dglort->vsi_l + dglort->queue_l);
536 glort = dglort->glort;
537 q_idx = dglort->queue_b;
538
539 /* configure SGLORT for queues */
540 for (vsi = 0; vsi < vsi_count; vsi++, glort++) {
541 for (queue = 0; queue < queue_count; queue++, q_idx++) {
542 if (q_idx >= FM10K_MAX_QUEUES)
543 break;
544
545 fm10k_write_reg(hw, FM10K_TX_SGLORT(q_idx), glort);
546 fm10k_write_reg(hw, FM10K_RX_SGLORT(q_idx), glort);
547 }
548 }
549
550 /* determine count of PCs and queues */
551 queue_count = BIT(dglort->queue_l + dglort->rss_l + dglort->vsi_l);
552 pc_count = BIT(dglort->pc_l);
553
554 /* configure PC for Tx queues */
555 for (pc = 0; pc < pc_count; pc++) {
556 q_idx = pc + dglort->queue_b;
557 for (queue = 0; queue < queue_count; queue++) {
558 if (q_idx >= FM10K_MAX_QUEUES)
559 break;
560
561 txqctl = fm10k_read_reg(hw, FM10K_TXQCTL(q_idx));
562 txqctl &= ~FM10K_TXQCTL_PC_MASK;
563 txqctl |= pc << FM10K_TXQCTL_PC_SHIFT;
564 fm10k_write_reg(hw, FM10K_TXQCTL(q_idx), txqctl);
565
566 q_idx += pc_count;
567 }
568 }
569
570 /* configure DGLORTDEC */
571 dglortdec = ((u32)(dglort->rss_l) << FM10K_DGLORTDEC_RSSLENGTH_SHIFT) |
572 ((u32)(dglort->queue_b) << FM10K_DGLORTDEC_QBASE_SHIFT) |
573 ((u32)(dglort->pc_l) << FM10K_DGLORTDEC_PCLENGTH_SHIFT) |
574 ((u32)(dglort->vsi_b) << FM10K_DGLORTDEC_VSIBASE_SHIFT) |
575 ((u32)(dglort->vsi_l) << FM10K_DGLORTDEC_VSILENGTH_SHIFT) |
576 ((u32)(dglort->queue_l));
577 if (dglort->inner_rss)
578 dglortdec |= FM10K_DGLORTDEC_INNERRSS_ENABLE;
579
580 /* configure DGLORTMAP */
581 dglortmap = (dglort->idx == fm10k_dglort_default) ?
582 FM10K_DGLORTMAP_ANY : FM10K_DGLORTMAP_ZERO;
583 dglortmap <<= dglort->vsi_l + dglort->queue_l + dglort->shared_l;
584 dglortmap |= dglort->glort;
585
586 /* write values to hardware */
587 fm10k_write_reg(hw, FM10K_DGLORTDEC(dglort->idx), dglortdec);
588 fm10k_write_reg(hw, FM10K_DGLORTMAP(dglort->idx), dglortmap);
589
590 return 0;
591}
592
593u16 fm10k_queues_per_pool(struct fm10k_hw *hw)
594{
595 u16 num_pools = hw->iov.num_pools;
596
597 return (num_pools > 32) ? 2 : (num_pools > 16) ? 4 : (num_pools > 8) ?
598 8 : FM10K_MAX_QUEUES_POOL;
599}
600
601u16 fm10k_vf_queue_index(struct fm10k_hw *hw, u16 vf_idx)
602{
603 u16 num_vfs = hw->iov.num_vfs;
604 u16 vf_q_idx = FM10K_MAX_QUEUES;
605
606 vf_q_idx -= fm10k_queues_per_pool(hw) * (num_vfs - vf_idx);
607
608 return vf_q_idx;
609}
610
611static u16 fm10k_vectors_per_pool(struct fm10k_hw *hw)
612{
613 u16 num_pools = hw->iov.num_pools;
614
615 return (num_pools > 32) ? 8 : (num_pools > 16) ? 16 :
616 FM10K_MAX_VECTORS_POOL;
617}
618
619static u16 fm10k_vf_vector_index(struct fm10k_hw *hw, u16 vf_idx)
620{
621 u16 vf_v_idx = FM10K_MAX_VECTORS_PF;
622
623 vf_v_idx += fm10k_vectors_per_pool(hw) * vf_idx;
624
625 return vf_v_idx;
626}
627
628/**
629 * fm10k_iov_assign_resources_pf - Assign pool resources for virtualization
630 * @hw: pointer to the HW structure
631 * @num_vfs: number of VFs to be allocated
632 * @num_pools: number of virtualization pools to be allocated
633 *
634 * Allocates queues and traffic classes to virtualization entities to prepare
635 * the PF for SR-IOV and VMDq
636 **/
637static s32 fm10k_iov_assign_resources_pf(struct fm10k_hw *hw, u16 num_vfs,
638 u16 num_pools)
639{
640 u16 qmap_stride, qpp, vpp, vf_q_idx, vf_q_idx0, qmap_idx;
641 u32 vid = hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT;
642 int i, j;
643
644 /* hardware only supports up to 64 pools */
645 if (num_pools > 64)
646 return FM10K_ERR_PARAM;
647
648 /* the number of VFs cannot exceed the number of pools */
649 if ((num_vfs > num_pools) || (num_vfs > hw->iov.total_vfs))
650 return FM10K_ERR_PARAM;
651
652 /* record number of virtualization entities */
653 hw->iov.num_vfs = num_vfs;
654 hw->iov.num_pools = num_pools;
655
656 /* determine qmap offsets and counts */
657 qmap_stride = (num_vfs > 8) ? 32 : 256;
658 qpp = fm10k_queues_per_pool(hw);
659 vpp = fm10k_vectors_per_pool(hw);
660
661 /* calculate starting index for queues */
662 vf_q_idx = fm10k_vf_queue_index(hw, 0);
663 qmap_idx = 0;
664
665 /* establish TCs with -1 credits and no quanta to prevent transmit */
666 for (i = 0; i < num_vfs; i++) {
667 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(i), 0);
668 fm10k_write_reg(hw, FM10K_TC_RATE(i), 0);
669 fm10k_write_reg(hw, FM10K_TC_CREDIT(i),
670 FM10K_TC_CREDIT_CREDIT_MASK);
671 }
672
673 /* zero out all mbmem registers */
674 for (i = FM10K_VFMBMEM_LEN * num_vfs; i--;)
675 fm10k_write_reg(hw, FM10K_MBMEM(i), 0);
676
677 /* clear event notification of VF FLR */
678 fm10k_write_reg(hw, FM10K_PFVFLREC(0), ~0);
679 fm10k_write_reg(hw, FM10K_PFVFLREC(1), ~0);
680
681 /* loop through unallocated rings assigning them back to PF */
682 for (i = FM10K_MAX_QUEUES_PF; i < vf_q_idx; i++) {
683 fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
684 fm10k_write_reg(hw, FM10K_TXQCTL(i), FM10K_TXQCTL_PF |
685 FM10K_TXQCTL_UNLIMITED_BW | vid);
686 fm10k_write_reg(hw, FM10K_RXQCTL(i), FM10K_RXQCTL_PF);
687 }
688
689 /* PF should have already updated VFITR2[0] */
690
691 /* update all ITR registers to flow to VFITR2[0] */
692 for (i = FM10K_ITR_REG_COUNT_PF + 1; i < FM10K_ITR_REG_COUNT; i++) {
693 if (!(i & (vpp - 1)))
694 fm10k_write_reg(hw, FM10K_ITR2(i), i - vpp);
695 else
696 fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
697 }
698
699 /* update PF ITR2[0] to reference the last vector */
700 fm10k_write_reg(hw, FM10K_ITR2(0),
701 fm10k_vf_vector_index(hw, num_vfs - 1));
702
703 /* loop through rings populating rings and TCs */
704 for (i = 0; i < num_vfs; i++) {
705 /* record index for VF queue 0 for use in end of loop */
706 vf_q_idx0 = vf_q_idx;
707
708 for (j = 0; j < qpp; j++, qmap_idx++, vf_q_idx++) {
709 /* assign VF and locked TC to queues */
710 fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
711 fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx),
712 (i << FM10K_TXQCTL_TC_SHIFT) | i |
713 FM10K_TXQCTL_VF | vid);
714 fm10k_write_reg(hw, FM10K_RXDCTL(vf_q_idx),
715 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
716 FM10K_RXDCTL_DROP_ON_EMPTY);
717 fm10k_write_reg(hw, FM10K_RXQCTL(vf_q_idx),
718 (i << FM10K_RXQCTL_VF_SHIFT) |
719 FM10K_RXQCTL_VF);
720
721 /* map queue pair to VF */
722 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
723 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx);
724 }
725
726 /* repeat the first ring for all of the remaining VF rings */
727 for (; j < qmap_stride; j++, qmap_idx++) {
728 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx0);
729 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx0);
730 }
731 }
732
733 /* loop through remaining indexes assigning all to queue 0 */
734 while (qmap_idx < FM10K_TQMAP_TABLE_SIZE) {
735 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
736 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), 0);
737 qmap_idx++;
738 }
739
740 return 0;
741}
742
743/**
744 * fm10k_iov_configure_tc_pf - Configure the shaping group for VF
745 * @hw: pointer to the HW structure
746 * @vf_idx: index of VF receiving GLORT
747 * @rate: Rate indicated in Mb/s
748 *
749 * Configured the TC for a given VF to allow only up to a given number
750 * of Mb/s of outgoing Tx throughput.
751 **/
752static s32 fm10k_iov_configure_tc_pf(struct fm10k_hw *hw, u16 vf_idx, int rate)
753{
754 /* configure defaults */
755 u32 interval = FM10K_TC_RATE_INTERVAL_4US_GEN3;
756 u32 tc_rate = FM10K_TC_RATE_QUANTA_MASK;
757
758 /* verify vf is in range */
759 if (vf_idx >= hw->iov.num_vfs)
760 return FM10K_ERR_PARAM;
761
762 /* set interval to align with 4.096 usec in all modes */
763 switch (hw->bus.speed) {
764 case fm10k_bus_speed_2500:
765 interval = FM10K_TC_RATE_INTERVAL_4US_GEN1;
766 break;
767 case fm10k_bus_speed_5000:
768 interval = FM10K_TC_RATE_INTERVAL_4US_GEN2;
769 break;
770 default:
771 break;
772 }
773
774 if (rate) {
775 if (rate > FM10K_VF_TC_MAX || rate < FM10K_VF_TC_MIN)
776 return FM10K_ERR_PARAM;
777
778 /* The quanta is measured in Bytes per 4.096 or 8.192 usec
779 * The rate is provided in Mbits per second
780 * To tralslate from rate to quanta we need to multiply the
781 * rate by 8.192 usec and divide by 8 bits/byte. To avoid
782 * dealing with floating point we can round the values up
783 * to the nearest whole number ratio which gives us 128 / 125.
784 */
785 tc_rate = (rate * 128) / 125;
786
787 /* try to keep the rate limiting accurate by increasing
788 * the number of credits and interval for rates less than 4Gb/s
789 */
790 if (rate < 4000)
791 interval <<= 1;
792 else
793 tc_rate >>= 1;
794 }
795
796 /* update rate limiter with new values */
797 fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), tc_rate | interval);
798 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
799 fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
800
801 return 0;
802}
803
804/**
805 * fm10k_iov_assign_int_moderator_pf - Add VF interrupts to moderator list
806 * @hw: pointer to the HW structure
807 * @vf_idx: index of VF receiving GLORT
808 *
809 * Update the interrupt moderator linked list to include any MSI-X
810 * interrupts which the VF has enabled in the MSI-X vector table.
811 **/
812static s32 fm10k_iov_assign_int_moderator_pf(struct fm10k_hw *hw, u16 vf_idx)
813{
814 u16 vf_v_idx, vf_v_limit, i;
815
816 /* verify vf is in range */
817 if (vf_idx >= hw->iov.num_vfs)
818 return FM10K_ERR_PARAM;
819
820 /* determine vector offset and count */
821 vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
822 vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
823
824 /* search for first vector that is not masked */
825 for (i = vf_v_limit - 1; i > vf_v_idx; i--) {
826 if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
827 break;
828 }
829
830 /* reset linked list so it now includes our active vectors */
831 if (vf_idx == (hw->iov.num_vfs - 1))
832 fm10k_write_reg(hw, FM10K_ITR2(0), i);
833 else
834 fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), i);
835
836 return 0;
837}
838
839/**
840 * fm10k_iov_assign_default_mac_vlan_pf - Assign a MAC and VLAN to VF
841 * @hw: pointer to the HW structure
842 * @vf_info: pointer to VF information structure
843 *
844 * Assign a MAC address and default VLAN to a VF and notify it of the update
845 **/
846static s32 fm10k_iov_assign_default_mac_vlan_pf(struct fm10k_hw *hw,
847 struct fm10k_vf_info *vf_info)
848{
849 u16 qmap_stride, queues_per_pool, vf_q_idx, timeout, qmap_idx, i;
850 u32 msg[4], txdctl, txqctl, tdbal = 0, tdbah = 0;
851 s32 err = 0;
852 u16 vf_idx, vf_vid;
853
854 /* verify vf is in range */
855 if (!vf_info || vf_info->vf_idx >= hw->iov.num_vfs)
856 return FM10K_ERR_PARAM;
857
858 /* determine qmap offsets and counts */
859 qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
860 queues_per_pool = fm10k_queues_per_pool(hw);
861
862 /* calculate starting index for queues */
863 vf_idx = vf_info->vf_idx;
864 vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
865 qmap_idx = qmap_stride * vf_idx;
866
867 /* Determine correct default VLAN ID. The FM10K_VLAN_OVERRIDE bit is
868 * used here to indicate to the VF that it will not have privilege to
869 * write VLAN_TABLE. All policy is enforced on the PF but this allows
870 * the VF to correctly report errors to userspace requests.
871 */
872 if (vf_info->pf_vid)
873 vf_vid = vf_info->pf_vid | FM10K_VLAN_OVERRIDE;
874 else
875 vf_vid = vf_info->sw_vid;
876
877 /* generate MAC_ADDR request */
878 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_MAC_VLAN);
879 fm10k_tlv_attr_put_mac_vlan(msg, FM10K_MAC_VLAN_MSG_DEFAULT_MAC,
880 vf_info->mac, vf_vid);
881
882 /* Configure Queue control register with new VLAN ID. The TXQCTL
883 * register is RO from the VF, so the PF must do this even in the
884 * case of notifying the VF of a new VID via the mailbox.
885 */
886 txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) &
887 FM10K_TXQCTL_VID_MASK;
888 txqctl |= (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
889 FM10K_TXQCTL_VF | vf_idx;
890
891 for (i = 0; i < queues_per_pool; i++)
892 fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx + i), txqctl);
893
894 /* try loading a message onto outgoing mailbox first */
895 if (vf_info->mbx.ops.enqueue_tx) {
896 err = vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
897 if (err != FM10K_MBX_ERR_NO_MBX)
898 return err;
899 err = 0;
900 }
901
902 /* If we aren't connected to a mailbox, this is most likely because
903 * the VF driver is not running. It should thus be safe to re-map
904 * queues and use the registers to pass the MAC address so that the VF
905 * driver gets correct information during its initialization.
906 */
907
908 /* MAP Tx queue back to 0 temporarily, and disable it */
909 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
910 fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
911
912 /* verify ring has disabled before modifying base address registers */
913 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
914 for (timeout = 0; txdctl & FM10K_TXDCTL_ENABLE; timeout++) {
915 /* limit ourselves to a 1ms timeout */
916 if (timeout == 10) {
917 err = FM10K_ERR_DMA_PENDING;
918 goto err_out;
919 }
920
921 usleep_range(100, 200);
922 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
923 }
924
925 /* Update base address registers to contain MAC address */
926 if (is_valid_ether_addr(vf_info->mac)) {
927 tdbal = (((u32)vf_info->mac[3]) << 24) |
928 (((u32)vf_info->mac[4]) << 16) |
929 (((u32)vf_info->mac[5]) << 8);
930
931 tdbah = (((u32)0xFF) << 24) |
932 (((u32)vf_info->mac[0]) << 16) |
933 (((u32)vf_info->mac[1]) << 8) |
934 ((u32)vf_info->mac[2]);
935 }
936
937 /* Record the base address into queue 0 */
938 fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx), tdbal);
939 fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx), tdbah);
940
941 /* Provide the VF the ITR scale, using software-defined fields in TDLEN
942 * to pass the information during VF initialization. See definition of
943 * FM10K_TDLEN_ITR_SCALE_SHIFT for more details.
944 */
945 fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx), hw->mac.itr_scale <<
946 FM10K_TDLEN_ITR_SCALE_SHIFT);
947
948err_out:
949 /* restore the queue back to VF ownership */
950 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
951 return err;
952}
953
954/**
955 * fm10k_iov_reset_resources_pf - Reassign queues and interrupts to a VF
956 * @hw: pointer to the HW structure
957 * @vf_info: pointer to VF information structure
958 *
959 * Reassign the interrupts and queues to a VF following an FLR
960 **/
961static s32 fm10k_iov_reset_resources_pf(struct fm10k_hw *hw,
962 struct fm10k_vf_info *vf_info)
963{
964 u16 qmap_stride, queues_per_pool, vf_q_idx, qmap_idx;
965 u32 tdbal = 0, tdbah = 0, txqctl, rxqctl;
966 u16 vf_v_idx, vf_v_limit, vf_vid;
967 u8 vf_idx = vf_info->vf_idx;
968 int i;
969
970 /* verify vf is in range */
971 if (vf_idx >= hw->iov.num_vfs)
972 return FM10K_ERR_PARAM;
973
974 /* clear event notification of VF FLR */
975 fm10k_write_reg(hw, FM10K_PFVFLREC(vf_idx / 32), BIT(vf_idx % 32));
976
977 /* force timeout and then disconnect the mailbox */
978 vf_info->mbx.timeout = 0;
979 if (vf_info->mbx.ops.disconnect)
980 vf_info->mbx.ops.disconnect(hw, &vf_info->mbx);
981
982 /* determine vector offset and count */
983 vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
984 vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
985
986 /* determine qmap offsets and counts */
987 qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
988 queues_per_pool = fm10k_queues_per_pool(hw);
989 qmap_idx = qmap_stride * vf_idx;
990
991 /* make all the queues inaccessible to the VF */
992 for (i = qmap_idx; i < (qmap_idx + qmap_stride); i++) {
993 fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
994 fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
995 }
996
997 /* calculate starting index for queues */
998 vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
999
1000 /* determine correct default VLAN ID */
1001 if (vf_info->pf_vid)
1002 vf_vid = vf_info->pf_vid;
1003 else
1004 vf_vid = vf_info->sw_vid;
1005
1006 /* configure Queue control register */
1007 txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) |
1008 (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
1009 FM10K_TXQCTL_VF | vf_idx;
1010 rxqctl = (vf_idx << FM10K_RXQCTL_VF_SHIFT) | FM10K_RXQCTL_VF;
1011
1012 /* stop further DMA and reset queue ownership back to VF */
1013 for (i = vf_q_idx; i < (queues_per_pool + vf_q_idx); i++) {
1014 fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
1015 fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
1016 fm10k_write_reg(hw, FM10K_RXDCTL(i),
1017 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
1018 FM10K_RXDCTL_DROP_ON_EMPTY);
1019 fm10k_write_reg(hw, FM10K_RXQCTL(i), rxqctl);
1020 }
1021
1022 /* reset TC with -1 credits and no quanta to prevent transmit */
1023 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), 0);
1024 fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), 0);
1025 fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx),
1026 FM10K_TC_CREDIT_CREDIT_MASK);
1027
1028 /* update our first entry in the table based on previous VF */
1029 if (!vf_idx)
1030 hw->mac.ops.update_int_moderator(hw);
1031 else
1032 hw->iov.ops.assign_int_moderator(hw, vf_idx - 1);
1033
1034 /* reset linked list so it now includes our active vectors */
1035 if (vf_idx == (hw->iov.num_vfs - 1))
1036 fm10k_write_reg(hw, FM10K_ITR2(0), vf_v_idx);
1037 else
1038 fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), vf_v_idx);
1039
1040 /* link remaining vectors so that next points to previous */
1041 for (vf_v_idx++; vf_v_idx < vf_v_limit; vf_v_idx++)
1042 fm10k_write_reg(hw, FM10K_ITR2(vf_v_idx), vf_v_idx - 1);
1043
1044 /* zero out MBMEM, VLAN_TABLE, RETA, RSSRK, and MRQC registers */
1045 for (i = FM10K_VFMBMEM_LEN; i--;)
1046 fm10k_write_reg(hw, FM10K_MBMEM_VF(vf_idx, i), 0);
1047 for (i = FM10K_VLAN_TABLE_SIZE; i--;)
1048 fm10k_write_reg(hw, FM10K_VLAN_TABLE(vf_info->vsi, i), 0);
1049 for (i = FM10K_RETA_SIZE; i--;)
1050 fm10k_write_reg(hw, FM10K_RETA(vf_info->vsi, i), 0);
1051 for (i = FM10K_RSSRK_SIZE; i--;)
1052 fm10k_write_reg(hw, FM10K_RSSRK(vf_info->vsi, i), 0);
1053 fm10k_write_reg(hw, FM10K_MRQC(vf_info->vsi), 0);
1054
1055 /* Update base address registers to contain MAC address */
1056 if (is_valid_ether_addr(vf_info->mac)) {
1057 tdbal = (((u32)vf_info->mac[3]) << 24) |
1058 (((u32)vf_info->mac[4]) << 16) |
1059 (((u32)vf_info->mac[5]) << 8);
1060 tdbah = (((u32)0xFF) << 24) |
1061 (((u32)vf_info->mac[0]) << 16) |
1062 (((u32)vf_info->mac[1]) << 8) |
1063 ((u32)vf_info->mac[2]);
1064 }
1065
1066 /* map queue pairs back to VF from last to first */
1067 for (i = queues_per_pool; i--;) {
1068 fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx + i), tdbal);
1069 fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx + i), tdbah);
1070 /* See definition of FM10K_TDLEN_ITR_SCALE_SHIFT for an
1071 * explanation of how TDLEN is used.
1072 */
1073 fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx + i),
1074 hw->mac.itr_scale <<
1075 FM10K_TDLEN_ITR_SCALE_SHIFT);
1076 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx + i);
1077 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx + i);
1078 }
1079
1080 /* repeat the first ring for all the remaining VF rings */
1081 for (i = queues_per_pool; i < qmap_stride; i++) {
1082 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx);
1083 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx);
1084 }
1085
1086 return 0;
1087}
1088
1089/**
1090 * fm10k_iov_set_lport_pf - Assign and enable a logical port for a given VF
1091 * @hw: pointer to hardware structure
1092 * @vf_info: pointer to VF information structure
1093 * @lport_idx: Logical port offset from the hardware glort
1094 * @flags: Set of capability flags to extend port beyond basic functionality
1095 *
1096 * This function allows enabling a VF port by assigning it a GLORT and
1097 * setting the flags so that it can enable an Rx mode.
1098 **/
1099static s32 fm10k_iov_set_lport_pf(struct fm10k_hw *hw,
1100 struct fm10k_vf_info *vf_info,
1101 u16 lport_idx, u8 flags)
1102{
1103 u16 glort = (hw->mac.dglort_map + lport_idx) & FM10K_DGLORTMAP_NONE;
1104
1105 /* if glort is not valid return error */
1106 if (!fm10k_glort_valid_pf(hw, glort))
1107 return FM10K_ERR_PARAM;
1108
1109 vf_info->vf_flags = flags | FM10K_VF_FLAG_NONE_CAPABLE;
1110 vf_info->glort = glort;
1111
1112 return 0;
1113}
1114
1115/**
1116 * fm10k_iov_reset_lport_pf - Disable a logical port for a given VF
1117 * @hw: pointer to hardware structure
1118 * @vf_info: pointer to VF information structure
1119 *
1120 * This function disables a VF port by stripping it of a GLORT and
1121 * setting the flags so that it cannot enable any Rx mode.
1122 **/
1123static void fm10k_iov_reset_lport_pf(struct fm10k_hw *hw,
1124 struct fm10k_vf_info *vf_info)
1125{
1126 u32 msg[1];
1127
1128 /* need to disable the port if it is already enabled */
1129 if (FM10K_VF_FLAG_ENABLED(vf_info)) {
1130 /* notify switch that this port has been disabled */
1131 fm10k_update_lport_state_pf(hw, vf_info->glort, 1, false);
1132
1133 /* generate port state response to notify VF it is not ready */
1134 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1135 vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1136 }
1137
1138 /* clear flags and glort if it exists */
1139 vf_info->vf_flags = 0;
1140 vf_info->glort = 0;
1141}
1142
1143/**
1144 * fm10k_iov_update_stats_pf - Updates hardware related statistics for VFs
1145 * @hw: pointer to hardware structure
1146 * @q: stats for all queues of a VF
1147 * @vf_idx: index of VF
1148 *
1149 * This function collects queue stats for VFs.
1150 **/
1151static void fm10k_iov_update_stats_pf(struct fm10k_hw *hw,
1152 struct fm10k_hw_stats_q *q,
1153 u16 vf_idx)
1154{
1155 u32 idx, qpp;
1156
1157 /* get stats for all of the queues */
1158 qpp = fm10k_queues_per_pool(hw);
1159 idx = fm10k_vf_queue_index(hw, vf_idx);
1160 fm10k_update_hw_stats_q(hw, q, idx, qpp);
1161}
1162
1163/**
1164 * fm10k_iov_msg_msix_pf - Message handler for MSI-X request from VF
1165 * @hw: Pointer to hardware structure
1166 * @results: Pointer array to message, results[0] is pointer to message
1167 * @mbx: Pointer to mailbox information structure
1168 *
1169 * This function is a default handler for MSI-X requests from the VF. The
1170 * assumption is that in this case it is acceptable to just directly
1171 * hand off the message from the VF to the underlying shared code.
1172 **/
1173s32 fm10k_iov_msg_msix_pf(struct fm10k_hw *hw, u32 **results,
1174 struct fm10k_mbx_info *mbx)
1175{
1176 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1177 u8 vf_idx = vf_info->vf_idx;
1178
1179 return hw->iov.ops.assign_int_moderator(hw, vf_idx);
1180}
1181
1182/**
1183 * fm10k_iov_select_vid - Select correct default VLAN ID
1184 * @vf_info: pointer to VF information structure
1185 * @vid: VLAN ID to correct
1186 *
1187 * Will report an error if the VLAN ID is out of range. For VID = 0, it will
1188 * return either the pf_vid or sw_vid depending on which one is set.
1189 */
1190s32 fm10k_iov_select_vid(struct fm10k_vf_info *vf_info, u16 vid)
1191{
1192 if (!vid)
1193 return vf_info->pf_vid ? vf_info->pf_vid : vf_info->sw_vid;
1194 else if (vf_info->pf_vid && vid != vf_info->pf_vid)
1195 return FM10K_ERR_PARAM;
1196 else
1197 return vid;
1198}
1199
1200/**
1201 * fm10k_iov_msg_mac_vlan_pf - Message handler for MAC/VLAN request from VF
1202 * @hw: Pointer to hardware structure
1203 * @results: Pointer array to message, results[0] is pointer to message
1204 * @mbx: Pointer to mailbox information structure
1205 *
1206 * This function is a default handler for MAC/VLAN requests from the VF.
1207 * The assumption is that in this case it is acceptable to just directly
1208 * hand off the message from the VF to the underlying shared code.
1209 **/
1210s32 fm10k_iov_msg_mac_vlan_pf(struct fm10k_hw *hw, u32 **results,
1211 struct fm10k_mbx_info *mbx)
1212{
1213 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1214 u8 mac[ETH_ALEN];
1215 u32 *result;
1216 int err = 0;
1217 bool set;
1218 u16 vlan;
1219 u32 vid;
1220
1221 /* we shouldn't be updating rules on a disabled interface */
1222 if (!FM10K_VF_FLAG_ENABLED(vf_info))
1223 err = FM10K_ERR_PARAM;
1224
1225 if (!err && !!results[FM10K_MAC_VLAN_MSG_VLAN]) {
1226 result = results[FM10K_MAC_VLAN_MSG_VLAN];
1227
1228 /* record VLAN id requested */
1229 err = fm10k_tlv_attr_get_u32(result, &vid);
1230 if (err)
1231 return err;
1232
1233 set = !(vid & FM10K_VLAN_CLEAR);
1234 vid &= ~FM10K_VLAN_CLEAR;
1235
1236 /* if the length field has been set, this is a multi-bit
1237 * update request. For multi-bit requests, simply disallow
1238 * them when the pf_vid has been set. In this case, the PF
1239 * should have already cleared the VLAN_TABLE, and if we
1240 * allowed them, it could allow a rogue VF to receive traffic
1241 * on a VLAN it was not assigned. In the single-bit case, we
1242 * need to modify requests for VLAN 0 to use the default PF or
1243 * SW vid when assigned.
1244 */
1245
1246 if (vid >> 16) {
1247 /* prevent multi-bit requests when PF has
1248 * administratively set the VLAN for this VF
1249 */
1250 if (vf_info->pf_vid)
1251 return FM10K_ERR_PARAM;
1252 } else {
1253 err = fm10k_iov_select_vid(vf_info, (u16)vid);
1254 if (err < 0)
1255 return err;
1256
1257 vid = err;
1258 }
1259
1260 /* update VSI info for VF in regards to VLAN table */
1261 err = hw->mac.ops.update_vlan(hw, vid, vf_info->vsi, set);
1262 }
1263
1264 if (!err && !!results[FM10K_MAC_VLAN_MSG_MAC]) {
1265 result = results[FM10K_MAC_VLAN_MSG_MAC];
1266
1267 /* record unicast MAC address requested */
1268 err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1269 if (err)
1270 return err;
1271
1272 /* block attempts to set MAC for a locked device */
1273 if (is_valid_ether_addr(vf_info->mac) &&
1274 !ether_addr_equal(mac, vf_info->mac))
1275 return FM10K_ERR_PARAM;
1276
1277 set = !(vlan & FM10K_VLAN_CLEAR);
1278 vlan &= ~FM10K_VLAN_CLEAR;
1279
1280 err = fm10k_iov_select_vid(vf_info, vlan);
1281 if (err < 0)
1282 return err;
1283
1284 vlan = (u16)err;
1285
1286 /* notify switch of request for new unicast address */
1287 err = hw->mac.ops.update_uc_addr(hw, vf_info->glort,
1288 mac, vlan, set, 0);
1289 }
1290
1291 if (!err && !!results[FM10K_MAC_VLAN_MSG_MULTICAST]) {
1292 result = results[FM10K_MAC_VLAN_MSG_MULTICAST];
1293
1294 /* record multicast MAC address requested */
1295 err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1296 if (err)
1297 return err;
1298
1299 /* verify that the VF is allowed to request multicast */
1300 if (!(vf_info->vf_flags & FM10K_VF_FLAG_MULTI_ENABLED))
1301 return FM10K_ERR_PARAM;
1302
1303 set = !(vlan & FM10K_VLAN_CLEAR);
1304 vlan &= ~FM10K_VLAN_CLEAR;
1305
1306 err = fm10k_iov_select_vid(vf_info, vlan);
1307 if (err < 0)
1308 return err;
1309
1310 vlan = (u16)err;
1311
1312 /* notify switch of request for new multicast address */
1313 err = hw->mac.ops.update_mc_addr(hw, vf_info->glort,
1314 mac, vlan, set);
1315 }
1316
1317 return err;
1318}
1319
1320/**
1321 * fm10k_iov_supported_xcast_mode_pf - Determine best match for xcast mode
1322 * @vf_info: VF info structure containing capability flags
1323 * @mode: Requested xcast mode
1324 *
1325 * This function outputs the mode that most closely matches the requested
1326 * mode. If not modes match it will request we disable the port
1327 **/
1328static u8 fm10k_iov_supported_xcast_mode_pf(struct fm10k_vf_info *vf_info,
1329 u8 mode)
1330{
1331 u8 vf_flags = vf_info->vf_flags;
1332
1333 /* match up mode to capabilities as best as possible */
1334 switch (mode) {
1335 case FM10K_XCAST_MODE_PROMISC:
1336 if (vf_flags & FM10K_VF_FLAG_PROMISC_CAPABLE)
1337 return FM10K_XCAST_MODE_PROMISC;
1338 /* fall through */
1339 case FM10K_XCAST_MODE_ALLMULTI:
1340 if (vf_flags & FM10K_VF_FLAG_ALLMULTI_CAPABLE)
1341 return FM10K_XCAST_MODE_ALLMULTI;
1342 /* fall through */
1343 case FM10K_XCAST_MODE_MULTI:
1344 if (vf_flags & FM10K_VF_FLAG_MULTI_CAPABLE)
1345 return FM10K_XCAST_MODE_MULTI;
1346 /* fall through */
1347 case FM10K_XCAST_MODE_NONE:
1348 if (vf_flags & FM10K_VF_FLAG_NONE_CAPABLE)
1349 return FM10K_XCAST_MODE_NONE;
1350 /* fall through */
1351 default:
1352 break;
1353 }
1354
1355 /* disable interface as it should not be able to request any */
1356 return FM10K_XCAST_MODE_DISABLE;
1357}
1358
1359/**
1360 * fm10k_iov_msg_lport_state_pf - Message handler for port state requests
1361 * @hw: Pointer to hardware structure
1362 * @results: Pointer array to message, results[0] is pointer to message
1363 * @mbx: Pointer to mailbox information structure
1364 *
1365 * This function is a default handler for port state requests. The port
1366 * state requests for now are basic and consist of enabling or disabling
1367 * the port.
1368 **/
1369s32 fm10k_iov_msg_lport_state_pf(struct fm10k_hw *hw, u32 **results,
1370 struct fm10k_mbx_info *mbx)
1371{
1372 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1373 u32 *result;
1374 s32 err = 0;
1375 u32 msg[2];
1376 u8 mode = 0;
1377
1378 /* verify VF is allowed to enable even minimal mode */
1379 if (!(vf_info->vf_flags & FM10K_VF_FLAG_NONE_CAPABLE))
1380 return FM10K_ERR_PARAM;
1381
1382 if (!!results[FM10K_LPORT_STATE_MSG_XCAST_MODE]) {
1383 result = results[FM10K_LPORT_STATE_MSG_XCAST_MODE];
1384
1385 /* XCAST mode update requested */
1386 err = fm10k_tlv_attr_get_u8(result, &mode);
1387 if (err)
1388 return FM10K_ERR_PARAM;
1389
1390 /* prep for possible demotion depending on capabilities */
1391 mode = fm10k_iov_supported_xcast_mode_pf(vf_info, mode);
1392
1393 /* if mode is not currently enabled, enable it */
1394 if (!(FM10K_VF_FLAG_ENABLED(vf_info) & BIT(mode)))
1395 fm10k_update_xcast_mode_pf(hw, vf_info->glort, mode);
1396
1397 /* swap mode back to a bit flag */
1398 mode = FM10K_VF_FLAG_SET_MODE(mode);
1399 } else if (!results[FM10K_LPORT_STATE_MSG_DISABLE]) {
1400 /* need to disable the port if it is already enabled */
1401 if (FM10K_VF_FLAG_ENABLED(vf_info))
1402 err = fm10k_update_lport_state_pf(hw, vf_info->glort,
1403 1, false);
1404
1405 /* we need to clear VF_FLAG_ENABLED flags in order to ensure
1406 * that we actually re-enable the LPORT state below. Note that
1407 * this has no impact if the VF is already disabled, as the
1408 * flags are already cleared.
1409 */
1410 if (!err)
1411 vf_info->vf_flags = FM10K_VF_FLAG_CAPABLE(vf_info);
1412
1413 /* when enabling the port we should reset the rate limiters */
1414 hw->iov.ops.configure_tc(hw, vf_info->vf_idx, vf_info->rate);
1415
1416 /* set mode for minimal functionality */
1417 mode = FM10K_VF_FLAG_SET_MODE_NONE;
1418
1419 /* generate port state response to notify VF it is ready */
1420 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1421 fm10k_tlv_attr_put_bool(msg, FM10K_LPORT_STATE_MSG_READY);
1422 mbx->ops.enqueue_tx(hw, mbx, msg);
1423 }
1424
1425 /* if enable state toggled note the update */
1426 if (!err && (!FM10K_VF_FLAG_ENABLED(vf_info) != !mode))
1427 err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1,
1428 !!mode);
1429
1430 /* if state change succeeded, then update our stored state */
1431 mode |= FM10K_VF_FLAG_CAPABLE(vf_info);
1432 if (!err)
1433 vf_info->vf_flags = mode;
1434
1435 return err;
1436}
1437
1438/**
1439 * fm10k_update_stats_hw_pf - Updates hardware related statistics of PF
1440 * @hw: pointer to hardware structure
1441 * @stats: pointer to the stats structure to update
1442 *
1443 * This function collects and aggregates global and per queue hardware
1444 * statistics.
1445 **/
1446static void fm10k_update_hw_stats_pf(struct fm10k_hw *hw,
1447 struct fm10k_hw_stats *stats)
1448{
1449 u32 timeout, ur, ca, um, xec, vlan_drop, loopback_drop, nodesc_drop;
1450 u32 id, id_prev;
1451
1452 /* Use Tx queue 0 as a canary to detect a reset */
1453 id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1454
1455 /* Read Global Statistics */
1456 do {
1457 timeout = fm10k_read_hw_stats_32b(hw, FM10K_STATS_TIMEOUT,
1458 &stats->timeout);
1459 ur = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UR, &stats->ur);
1460 ca = fm10k_read_hw_stats_32b(hw, FM10K_STATS_CA, &stats->ca);
1461 um = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UM, &stats->um);
1462 xec = fm10k_read_hw_stats_32b(hw, FM10K_STATS_XEC, &stats->xec);
1463 vlan_drop = fm10k_read_hw_stats_32b(hw, FM10K_STATS_VLAN_DROP,
1464 &stats->vlan_drop);
1465 loopback_drop =
1466 fm10k_read_hw_stats_32b(hw,
1467 FM10K_STATS_LOOPBACK_DROP,
1468 &stats->loopback_drop);
1469 nodesc_drop = fm10k_read_hw_stats_32b(hw,
1470 FM10K_STATS_NODESC_DROP,
1471 &stats->nodesc_drop);
1472
1473 /* if value has not changed then we have consistent data */
1474 id_prev = id;
1475 id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1476 } while ((id ^ id_prev) & FM10K_TXQCTL_ID_MASK);
1477
1478 /* drop non-ID bits and set VALID ID bit */
1479 id &= FM10K_TXQCTL_ID_MASK;
1480 id |= FM10K_STAT_VALID;
1481
1482 /* Update Global Statistics */
1483 if (stats->stats_idx == id) {
1484 stats->timeout.count += timeout;
1485 stats->ur.count += ur;
1486 stats->ca.count += ca;
1487 stats->um.count += um;
1488 stats->xec.count += xec;
1489 stats->vlan_drop.count += vlan_drop;
1490 stats->loopback_drop.count += loopback_drop;
1491 stats->nodesc_drop.count += nodesc_drop;
1492 }
1493
1494 /* Update bases and record current PF id */
1495 fm10k_update_hw_base_32b(&stats->timeout, timeout);
1496 fm10k_update_hw_base_32b(&stats->ur, ur);
1497 fm10k_update_hw_base_32b(&stats->ca, ca);
1498 fm10k_update_hw_base_32b(&stats->um, um);
1499 fm10k_update_hw_base_32b(&stats->xec, xec);
1500 fm10k_update_hw_base_32b(&stats->vlan_drop, vlan_drop);
1501 fm10k_update_hw_base_32b(&stats->loopback_drop, loopback_drop);
1502 fm10k_update_hw_base_32b(&stats->nodesc_drop, nodesc_drop);
1503 stats->stats_idx = id;
1504
1505 /* Update Queue Statistics */
1506 fm10k_update_hw_stats_q(hw, stats->q, 0, hw->mac.max_queues);
1507}
1508
1509/**
1510 * fm10k_rebind_hw_stats_pf - Resets base for hardware statistics of PF
1511 * @hw: pointer to hardware structure
1512 * @stats: pointer to the stats structure to update
1513 *
1514 * This function resets the base for global and per queue hardware
1515 * statistics.
1516 **/
1517static void fm10k_rebind_hw_stats_pf(struct fm10k_hw *hw,
1518 struct fm10k_hw_stats *stats)
1519{
1520 /* Unbind Global Statistics */
1521 fm10k_unbind_hw_stats_32b(&stats->timeout);
1522 fm10k_unbind_hw_stats_32b(&stats->ur);
1523 fm10k_unbind_hw_stats_32b(&stats->ca);
1524 fm10k_unbind_hw_stats_32b(&stats->um);
1525 fm10k_unbind_hw_stats_32b(&stats->xec);
1526 fm10k_unbind_hw_stats_32b(&stats->vlan_drop);
1527 fm10k_unbind_hw_stats_32b(&stats->loopback_drop);
1528 fm10k_unbind_hw_stats_32b(&stats->nodesc_drop);
1529
1530 /* Unbind Queue Statistics */
1531 fm10k_unbind_hw_stats_q(stats->q, 0, hw->mac.max_queues);
1532
1533 /* Reinitialize bases for all stats */
1534 fm10k_update_hw_stats_pf(hw, stats);
1535}
1536
1537/**
1538 * fm10k_set_dma_mask_pf - Configures PhyAddrSpace to limit DMA to system
1539 * @hw: pointer to hardware structure
1540 * @dma_mask: 64 bit DMA mask required for platform
1541 *
1542 * This function sets the PHYADDR.PhyAddrSpace bits for the endpoint in order
1543 * to limit the access to memory beyond what is physically in the system.
1544 **/
1545static void fm10k_set_dma_mask_pf(struct fm10k_hw *hw, u64 dma_mask)
1546{
1547 /* we need to write the upper 32 bits of DMA mask to PhyAddrSpace */
1548 u32 phyaddr = (u32)(dma_mask >> 32);
1549
1550 fm10k_write_reg(hw, FM10K_PHYADDR, phyaddr);
1551}
1552
1553/**
1554 * fm10k_get_fault_pf - Record a fault in one of the interface units
1555 * @hw: pointer to hardware structure
1556 * @type: pointer to fault type register offset
1557 * @fault: pointer to memory location to record the fault
1558 *
1559 * Record the fault register contents to the fault data structure and
1560 * clear the entry from the register.
1561 *
1562 * Returns ERR_PARAM if invalid register is specified or no error is present.
1563 **/
1564static s32 fm10k_get_fault_pf(struct fm10k_hw *hw, int type,
1565 struct fm10k_fault *fault)
1566{
1567 u32 func;
1568
1569 /* verify the fault register is in range and is aligned */
1570 switch (type) {
1571 case FM10K_PCA_FAULT:
1572 case FM10K_THI_FAULT:
1573 case FM10K_FUM_FAULT:
1574 break;
1575 default:
1576 return FM10K_ERR_PARAM;
1577 }
1578
1579 /* only service faults that are valid */
1580 func = fm10k_read_reg(hw, type + FM10K_FAULT_FUNC);
1581 if (!(func & FM10K_FAULT_FUNC_VALID))
1582 return FM10K_ERR_PARAM;
1583
1584 /* read remaining fields */
1585 fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_HI);
1586 fault->address <<= 32;
1587 fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_LO);
1588 fault->specinfo = fm10k_read_reg(hw, type + FM10K_FAULT_SPECINFO);
1589
1590 /* clear valid bit to allow for next error */
1591 fm10k_write_reg(hw, type + FM10K_FAULT_FUNC, FM10K_FAULT_FUNC_VALID);
1592
1593 /* Record which function triggered the error */
1594 if (func & FM10K_FAULT_FUNC_PF)
1595 fault->func = 0;
1596 else
1597 fault->func = 1 + ((func & FM10K_FAULT_FUNC_VF_MASK) >>
1598 FM10K_FAULT_FUNC_VF_SHIFT);
1599
1600 /* record fault type */
1601 fault->type = func & FM10K_FAULT_FUNC_TYPE_MASK;
1602
1603 return 0;
1604}
1605
1606/**
1607 * fm10k_request_lport_map_pf - Request LPORT map from the switch API
1608 * @hw: pointer to hardware structure
1609 *
1610 **/
1611static s32 fm10k_request_lport_map_pf(struct fm10k_hw *hw)
1612{
1613 struct fm10k_mbx_info *mbx = &hw->mbx;
1614 u32 msg[1];
1615
1616 /* issue request asking for LPORT map */
1617 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_LPORT_MAP);
1618
1619 /* load onto outgoing mailbox */
1620 return mbx->ops.enqueue_tx(hw, mbx, msg);
1621}
1622
1623/**
1624 * fm10k_get_host_state_pf - Returns the state of the switch and mailbox
1625 * @hw: pointer to hardware structure
1626 * @switch_ready: pointer to boolean value that will record switch state
1627 *
1628 * This function will check the DMA_CTRL2 register and mailbox in order
1629 * to determine if the switch is ready for the PF to begin requesting
1630 * addresses and mapping traffic to the local interface.
1631 **/
1632static s32 fm10k_get_host_state_pf(struct fm10k_hw *hw, bool *switch_ready)
1633{
1634 u32 dma_ctrl2;
1635
1636 /* verify the switch is ready for interaction */
1637 dma_ctrl2 = fm10k_read_reg(hw, FM10K_DMA_CTRL2);
1638 if (!(dma_ctrl2 & FM10K_DMA_CTRL2_SWITCH_READY))
1639 return 0;
1640
1641 /* retrieve generic host state info */
1642 return fm10k_get_host_state_generic(hw, switch_ready);
1643}
1644
1645/* This structure defines the attibutes to be parsed below */
1646const struct fm10k_tlv_attr fm10k_lport_map_msg_attr[] = {
1647 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1648 sizeof(struct fm10k_swapi_error)),
1649 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_LPORT_MAP),
1650 FM10K_TLV_ATTR_LAST
1651};
1652
1653/**
1654 * fm10k_msg_lport_map_pf - Message handler for lport_map message from SM
1655 * @hw: Pointer to hardware structure
1656 * @results: pointer array containing parsed data
1657 * @mbx: Pointer to mailbox information structure
1658 *
1659 * This handler configures the lport mapping based on the reply from the
1660 * switch API.
1661 **/
1662s32 fm10k_msg_lport_map_pf(struct fm10k_hw *hw, u32 **results,
1663 struct fm10k_mbx_info *mbx)
1664{
1665 u16 glort, mask;
1666 u32 dglort_map;
1667 s32 err;
1668
1669 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_LPORT_MAP],
1670 &dglort_map);
1671 if (err)
1672 return err;
1673
1674 /* extract values out of the header */
1675 glort = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_GLORT);
1676 mask = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_MASK);
1677
1678 /* verify mask is set and none of the masked bits in glort are set */
1679 if (!mask || (glort & ~mask))
1680 return FM10K_ERR_PARAM;
1681
1682 /* verify the mask is contiguous, and that it is 1's followed by 0's */
1683 if (((~(mask - 1) & mask) + mask) & FM10K_DGLORTMAP_NONE)
1684 return FM10K_ERR_PARAM;
1685
1686 /* record the glort, mask, and port count */
1687 hw->mac.dglort_map = dglort_map;
1688
1689 return 0;
1690}
1691
1692const struct fm10k_tlv_attr fm10k_update_pvid_msg_attr[] = {
1693 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_UPDATE_PVID),
1694 FM10K_TLV_ATTR_LAST
1695};
1696
1697/**
1698 * fm10k_msg_update_pvid_pf - Message handler for port VLAN message from SM
1699 * @hw: Pointer to hardware structure
1700 * @results: pointer array containing parsed data
1701 * @mbx: Pointer to mailbox information structure
1702 *
1703 * This handler configures the default VLAN for the PF
1704 **/
1705static s32 fm10k_msg_update_pvid_pf(struct fm10k_hw *hw, u32 **results,
1706 struct fm10k_mbx_info *mbx)
1707{
1708 u16 glort, pvid;
1709 u32 pvid_update;
1710 s32 err;
1711
1712 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
1713 &pvid_update);
1714 if (err)
1715 return err;
1716
1717 /* extract values from the pvid update */
1718 glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
1719 pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
1720
1721 /* if glort is not valid return error */
1722 if (!fm10k_glort_valid_pf(hw, glort))
1723 return FM10K_ERR_PARAM;
1724
1725 /* verify VLAN ID is valid */
1726 if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
1727 return FM10K_ERR_PARAM;
1728
1729 /* record the port VLAN ID value */
1730 hw->mac.default_vid = pvid;
1731
1732 return 0;
1733}
1734
1735/**
1736 * fm10k_record_global_table_data - Move global table data to swapi table info
1737 * @from: pointer to source table data structure
1738 * @to: pointer to destination table info structure
1739 *
1740 * This function is will copy table_data to the table_info contained in
1741 * the hw struct.
1742 **/
1743static void fm10k_record_global_table_data(struct fm10k_global_table_data *from,
1744 struct fm10k_swapi_table_info *to)
1745{
1746 /* convert from le32 struct to CPU byte ordered values */
1747 to->used = le32_to_cpu(from->used);
1748 to->avail = le32_to_cpu(from->avail);
1749}
1750
1751const struct fm10k_tlv_attr fm10k_err_msg_attr[] = {
1752 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1753 sizeof(struct fm10k_swapi_error)),
1754 FM10K_TLV_ATTR_LAST
1755};
1756
1757/**
1758 * fm10k_msg_err_pf - Message handler for error reply
1759 * @hw: Pointer to hardware structure
1760 * @results: pointer array containing parsed data
1761 * @mbx: Pointer to mailbox information structure
1762 *
1763 * This handler will capture the data for any error replies to previous
1764 * messages that the PF has sent.
1765 **/
1766s32 fm10k_msg_err_pf(struct fm10k_hw *hw, u32 **results,
1767 struct fm10k_mbx_info *mbx)
1768{
1769 struct fm10k_swapi_error err_msg;
1770 s32 err;
1771
1772 /* extract structure from message */
1773 err = fm10k_tlv_attr_get_le_struct(results[FM10K_PF_ATTR_ID_ERR],
1774 &err_msg, sizeof(err_msg));
1775 if (err)
1776 return err;
1777
1778 /* record table status */
1779 fm10k_record_global_table_data(&err_msg.mac, &hw->swapi.mac);
1780 fm10k_record_global_table_data(&err_msg.nexthop, &hw->swapi.nexthop);
1781 fm10k_record_global_table_data(&err_msg.ffu, &hw->swapi.ffu);
1782
1783 /* record SW API status value */
1784 hw->swapi.status = le32_to_cpu(err_msg.status);
1785
1786 return 0;
1787}
1788
1789static const struct fm10k_msg_data fm10k_msg_data_pf[] = {
1790 FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
1791 FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
1792 FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf),
1793 FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
1794 FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
1795 FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf),
1796 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
1797};
1798
1799static const struct fm10k_mac_ops mac_ops_pf = {
1800 .get_bus_info = fm10k_get_bus_info_generic,
1801 .reset_hw = fm10k_reset_hw_pf,
1802 .init_hw = fm10k_init_hw_pf,
1803 .start_hw = fm10k_start_hw_generic,
1804 .stop_hw = fm10k_stop_hw_generic,
1805 .update_vlan = fm10k_update_vlan_pf,
1806 .read_mac_addr = fm10k_read_mac_addr_pf,
1807 .update_uc_addr = fm10k_update_uc_addr_pf,
1808 .update_mc_addr = fm10k_update_mc_addr_pf,
1809 .update_xcast_mode = fm10k_update_xcast_mode_pf,
1810 .update_int_moderator = fm10k_update_int_moderator_pf,
1811 .update_lport_state = fm10k_update_lport_state_pf,
1812 .update_hw_stats = fm10k_update_hw_stats_pf,
1813 .rebind_hw_stats = fm10k_rebind_hw_stats_pf,
1814 .configure_dglort_map = fm10k_configure_dglort_map_pf,
1815 .set_dma_mask = fm10k_set_dma_mask_pf,
1816 .get_fault = fm10k_get_fault_pf,
1817 .get_host_state = fm10k_get_host_state_pf,
1818 .request_lport_map = fm10k_request_lport_map_pf,
1819};
1820
1821static const struct fm10k_iov_ops iov_ops_pf = {
1822 .assign_resources = fm10k_iov_assign_resources_pf,
1823 .configure_tc = fm10k_iov_configure_tc_pf,
1824 .assign_int_moderator = fm10k_iov_assign_int_moderator_pf,
1825 .assign_default_mac_vlan = fm10k_iov_assign_default_mac_vlan_pf,
1826 .reset_resources = fm10k_iov_reset_resources_pf,
1827 .set_lport = fm10k_iov_set_lport_pf,
1828 .reset_lport = fm10k_iov_reset_lport_pf,
1829 .update_stats = fm10k_iov_update_stats_pf,
1830};
1831
1832static s32 fm10k_get_invariants_pf(struct fm10k_hw *hw)
1833{
1834 fm10k_get_invariants_generic(hw);
1835
1836 return fm10k_sm_mbx_init(hw, &hw->mbx, fm10k_msg_data_pf);
1837}
1838
1839const struct fm10k_info fm10k_pf_info = {
1840 .mac = fm10k_mac_pf,
1841 .get_invariants = fm10k_get_invariants_pf,
1842 .mac_ops = &mac_ops_pf,
1843 .iov_ops = &iov_ops_pf,
1844};
1/* Intel(R) Ethernet Switch Host Interface Driver
2 * Copyright(c) 2013 - 2016 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19 */
20
21#include "fm10k_pf.h"
22#include "fm10k_vf.h"
23
24/**
25 * fm10k_reset_hw_pf - PF hardware reset
26 * @hw: pointer to hardware structure
27 *
28 * This function should return the hardware to a state similar to the
29 * one it is in after being powered on.
30 **/
31static s32 fm10k_reset_hw_pf(struct fm10k_hw *hw)
32{
33 s32 err;
34 u32 reg;
35 u16 i;
36
37 /* Disable interrupts */
38 fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(ALL));
39
40 /* Lock ITR2 reg 0 into itself and disable interrupt moderation */
41 fm10k_write_reg(hw, FM10K_ITR2(0), 0);
42 fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
43
44 /* We assume here Tx and Rx queue 0 are owned by the PF */
45
46 /* Shut off VF access to their queues forcing them to queue 0 */
47 for (i = 0; i < FM10K_TQMAP_TABLE_SIZE; i++) {
48 fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
49 fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
50 }
51
52 /* shut down all rings */
53 err = fm10k_disable_queues_generic(hw, FM10K_MAX_QUEUES);
54 if (err == FM10K_ERR_REQUESTS_PENDING) {
55 hw->mac.reset_while_pending++;
56 goto force_reset;
57 } else if (err) {
58 return err;
59 }
60
61 /* Verify that DMA is no longer active */
62 reg = fm10k_read_reg(hw, FM10K_DMA_CTRL);
63 if (reg & (FM10K_DMA_CTRL_TX_ACTIVE | FM10K_DMA_CTRL_RX_ACTIVE))
64 return FM10K_ERR_DMA_PENDING;
65
66force_reset:
67 /* Inititate data path reset */
68 reg = FM10K_DMA_CTRL_DATAPATH_RESET;
69 fm10k_write_reg(hw, FM10K_DMA_CTRL, reg);
70
71 /* Flush write and allow 100us for reset to complete */
72 fm10k_write_flush(hw);
73 udelay(FM10K_RESET_TIMEOUT);
74
75 /* Reset mailbox global interrupts */
76 reg = FM10K_MBX_GLOBAL_REQ_INTERRUPT | FM10K_MBX_GLOBAL_ACK_INTERRUPT;
77 fm10k_write_reg(hw, FM10K_GMBX, reg);
78
79 /* Verify we made it out of reset */
80 reg = fm10k_read_reg(hw, FM10K_IP);
81 if (!(reg & FM10K_IP_NOTINRESET))
82 return FM10K_ERR_RESET_FAILED;
83
84 return 0;
85}
86
87/**
88 * fm10k_is_ari_hierarchy_pf - Indicate ARI hierarchy support
89 * @hw: pointer to hardware structure
90 *
91 * Looks at the ARI hierarchy bit to determine whether ARI is supported or not.
92 **/
93static bool fm10k_is_ari_hierarchy_pf(struct fm10k_hw *hw)
94{
95 u16 sriov_ctrl = fm10k_read_pci_cfg_word(hw, FM10K_PCIE_SRIOV_CTRL);
96
97 return !!(sriov_ctrl & FM10K_PCIE_SRIOV_CTRL_VFARI);
98}
99
100/**
101 * fm10k_init_hw_pf - PF hardware initialization
102 * @hw: pointer to hardware structure
103 *
104 **/
105static s32 fm10k_init_hw_pf(struct fm10k_hw *hw)
106{
107 u32 dma_ctrl, txqctl;
108 u16 i;
109
110 /* Establish default VSI as valid */
111 fm10k_write_reg(hw, FM10K_DGLORTDEC(fm10k_dglort_default), 0);
112 fm10k_write_reg(hw, FM10K_DGLORTMAP(fm10k_dglort_default),
113 FM10K_DGLORTMAP_ANY);
114
115 /* Invalidate all other GLORT entries */
116 for (i = 1; i < FM10K_DGLORT_COUNT; i++)
117 fm10k_write_reg(hw, FM10K_DGLORTMAP(i), FM10K_DGLORTMAP_NONE);
118
119 /* reset ITR2(0) to point to itself */
120 fm10k_write_reg(hw, FM10K_ITR2(0), 0);
121
122 /* reset VF ITR2(0) to point to 0 avoid PF registers */
123 fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), 0);
124
125 /* loop through all PF ITR2 registers pointing them to the previous */
126 for (i = 1; i < FM10K_ITR_REG_COUNT_PF; i++)
127 fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
128
129 /* Enable interrupt moderator if not already enabled */
130 fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
131
132 /* compute the default txqctl configuration */
133 txqctl = FM10K_TXQCTL_PF | FM10K_TXQCTL_UNLIMITED_BW |
134 (hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT);
135
136 for (i = 0; i < FM10K_MAX_QUEUES; i++) {
137 /* configure rings for 256 Queue / 32 Descriptor cache mode */
138 fm10k_write_reg(hw, FM10K_TQDLOC(i),
139 (i * FM10K_TQDLOC_BASE_32_DESC) |
140 FM10K_TQDLOC_SIZE_32_DESC);
141 fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
142
143 /* configure rings to provide TPH processing hints */
144 fm10k_write_reg(hw, FM10K_TPH_TXCTRL(i),
145 FM10K_TPH_TXCTRL_DESC_TPHEN |
146 FM10K_TPH_TXCTRL_DESC_RROEN |
147 FM10K_TPH_TXCTRL_DESC_WROEN |
148 FM10K_TPH_TXCTRL_DATA_RROEN);
149 fm10k_write_reg(hw, FM10K_TPH_RXCTRL(i),
150 FM10K_TPH_RXCTRL_DESC_TPHEN |
151 FM10K_TPH_RXCTRL_DESC_RROEN |
152 FM10K_TPH_RXCTRL_DATA_WROEN |
153 FM10K_TPH_RXCTRL_HDR_WROEN);
154 }
155
156 /* set max hold interval to align with 1.024 usec in all modes and
157 * store ITR scale
158 */
159 switch (hw->bus.speed) {
160 case fm10k_bus_speed_2500:
161 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN1;
162 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN1;
163 break;
164 case fm10k_bus_speed_5000:
165 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN2;
166 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN2;
167 break;
168 case fm10k_bus_speed_8000:
169 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN3;
170 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
171 break;
172 default:
173 dma_ctrl = 0;
174 /* just in case, assume Gen3 ITR scale */
175 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
176 break;
177 }
178
179 /* Configure TSO flags */
180 fm10k_write_reg(hw, FM10K_DTXTCPFLGL, FM10K_TSO_FLAGS_LOW);
181 fm10k_write_reg(hw, FM10K_DTXTCPFLGH, FM10K_TSO_FLAGS_HI);
182
183 /* Enable DMA engine
184 * Set Rx Descriptor size to 32
185 * Set Minimum MSS to 64
186 * Set Maximum number of Rx queues to 256 / 32 Descriptor
187 */
188 dma_ctrl |= FM10K_DMA_CTRL_TX_ENABLE | FM10K_DMA_CTRL_RX_ENABLE |
189 FM10K_DMA_CTRL_RX_DESC_SIZE | FM10K_DMA_CTRL_MINMSS_64 |
190 FM10K_DMA_CTRL_32_DESC;
191
192 fm10k_write_reg(hw, FM10K_DMA_CTRL, dma_ctrl);
193
194 /* record maximum queue count, we limit ourselves to 128 */
195 hw->mac.max_queues = FM10K_MAX_QUEUES_PF;
196
197 /* We support either 64 VFs or 7 VFs depending on if we have ARI */
198 hw->iov.total_vfs = fm10k_is_ari_hierarchy_pf(hw) ? 64 : 7;
199
200 return 0;
201}
202
203/**
204 * fm10k_update_vlan_pf - Update status of VLAN ID in VLAN filter table
205 * @hw: pointer to hardware structure
206 * @vid: VLAN ID to add to table
207 * @vsi: Index indicating VF ID or PF ID in table
208 * @set: Indicates if this is a set or clear operation
209 *
210 * This function adds or removes the corresponding VLAN ID from the VLAN
211 * filter table for the corresponding function. In addition to the
212 * standard set/clear that supports one bit a multi-bit write is
213 * supported to set 64 bits at a time.
214 **/
215static s32 fm10k_update_vlan_pf(struct fm10k_hw *hw, u32 vid, u8 vsi, bool set)
216{
217 u32 vlan_table, reg, mask, bit, len;
218
219 /* verify the VSI index is valid */
220 if (vsi > FM10K_VLAN_TABLE_VSI_MAX)
221 return FM10K_ERR_PARAM;
222
223 /* VLAN multi-bit write:
224 * The multi-bit write has several parts to it.
225 * 24 16 8 0
226 * 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
227 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
228 * | RSVD0 | Length |C|RSVD0| VLAN ID |
229 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
230 *
231 * VLAN ID: Vlan Starting value
232 * RSVD0: Reserved section, must be 0
233 * C: Flag field, 0 is set, 1 is clear (Used in VF VLAN message)
234 * Length: Number of times to repeat the bit being set
235 */
236 len = vid >> 16;
237 vid = (vid << 17) >> 17;
238
239 /* verify the reserved 0 fields are 0 */
240 if (len >= FM10K_VLAN_TABLE_VID_MAX || vid >= FM10K_VLAN_TABLE_VID_MAX)
241 return FM10K_ERR_PARAM;
242
243 /* Loop through the table updating all required VLANs */
244 for (reg = FM10K_VLAN_TABLE(vsi, vid / 32), bit = vid % 32;
245 len < FM10K_VLAN_TABLE_VID_MAX;
246 len -= 32 - bit, reg++, bit = 0) {
247 /* record the initial state of the register */
248 vlan_table = fm10k_read_reg(hw, reg);
249
250 /* truncate mask if we are at the start or end of the run */
251 mask = (~(u32)0 >> ((len < 31) ? 31 - len : 0)) << bit;
252
253 /* make necessary modifications to the register */
254 mask &= set ? ~vlan_table : vlan_table;
255 if (mask)
256 fm10k_write_reg(hw, reg, vlan_table ^ mask);
257 }
258
259 return 0;
260}
261
262/**
263 * fm10k_read_mac_addr_pf - Read device MAC address
264 * @hw: pointer to the HW structure
265 *
266 * Reads the device MAC address from the SM_AREA and stores the value.
267 **/
268static s32 fm10k_read_mac_addr_pf(struct fm10k_hw *hw)
269{
270 u8 perm_addr[ETH_ALEN];
271 u32 serial_num;
272
273 serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(1));
274
275 /* last byte should be all 1's */
276 if ((~serial_num) << 24)
277 return FM10K_ERR_INVALID_MAC_ADDR;
278
279 perm_addr[0] = (u8)(serial_num >> 24);
280 perm_addr[1] = (u8)(serial_num >> 16);
281 perm_addr[2] = (u8)(serial_num >> 8);
282
283 serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(0));
284
285 /* first byte should be all 1's */
286 if ((~serial_num) >> 24)
287 return FM10K_ERR_INVALID_MAC_ADDR;
288
289 perm_addr[3] = (u8)(serial_num >> 16);
290 perm_addr[4] = (u8)(serial_num >> 8);
291 perm_addr[5] = (u8)(serial_num);
292
293 ether_addr_copy(hw->mac.perm_addr, perm_addr);
294 ether_addr_copy(hw->mac.addr, perm_addr);
295
296 return 0;
297}
298
299/**
300 * fm10k_glort_valid_pf - Validate that the provided glort is valid
301 * @hw: pointer to the HW structure
302 * @glort: base glort to be validated
303 *
304 * This function will return an error if the provided glort is invalid
305 **/
306bool fm10k_glort_valid_pf(struct fm10k_hw *hw, u16 glort)
307{
308 glort &= hw->mac.dglort_map >> FM10K_DGLORTMAP_MASK_SHIFT;
309
310 return glort == (hw->mac.dglort_map & FM10K_DGLORTMAP_NONE);
311}
312
313/**
314 * fm10k_update_xc_addr_pf - Update device addresses
315 * @hw: pointer to the HW structure
316 * @glort: base resource tag for this request
317 * @mac: MAC address to add/remove from table
318 * @vid: VLAN ID to add/remove from table
319 * @add: Indicates if this is an add or remove operation
320 * @flags: flags field to indicate add and secure
321 *
322 * This function generates a message to the Switch API requesting
323 * that the given logical port add/remove the given L2 MAC/VLAN address.
324 **/
325static s32 fm10k_update_xc_addr_pf(struct fm10k_hw *hw, u16 glort,
326 const u8 *mac, u16 vid, bool add, u8 flags)
327{
328 struct fm10k_mbx_info *mbx = &hw->mbx;
329 struct fm10k_mac_update mac_update;
330 u32 msg[5];
331
332 /* clear set bit from VLAN ID */
333 vid &= ~FM10K_VLAN_CLEAR;
334
335 /* if glort or VLAN are not valid return error */
336 if (!fm10k_glort_valid_pf(hw, glort) || vid >= FM10K_VLAN_TABLE_VID_MAX)
337 return FM10K_ERR_PARAM;
338
339 /* record fields */
340 mac_update.mac_lower = cpu_to_le32(((u32)mac[2] << 24) |
341 ((u32)mac[3] << 16) |
342 ((u32)mac[4] << 8) |
343 ((u32)mac[5]));
344 mac_update.mac_upper = cpu_to_le16(((u16)mac[0] << 8) |
345 ((u16)mac[1]));
346 mac_update.vlan = cpu_to_le16(vid);
347 mac_update.glort = cpu_to_le16(glort);
348 mac_update.action = add ? 0 : 1;
349 mac_update.flags = flags;
350
351 /* populate mac_update fields */
352 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_UPDATE_MAC_FWD_RULE);
353 fm10k_tlv_attr_put_le_struct(msg, FM10K_PF_ATTR_ID_MAC_UPDATE,
354 &mac_update, sizeof(mac_update));
355
356 /* load onto outgoing mailbox */
357 return mbx->ops.enqueue_tx(hw, mbx, msg);
358}
359
360/**
361 * fm10k_update_uc_addr_pf - Update device unicast addresses
362 * @hw: pointer to the HW structure
363 * @glort: base resource tag for this request
364 * @mac: MAC address to add/remove from table
365 * @vid: VLAN ID to add/remove from table
366 * @add: Indicates if this is an add or remove operation
367 * @flags: flags field to indicate add and secure
368 *
369 * This function is used to add or remove unicast addresses for
370 * the PF.
371 **/
372static s32 fm10k_update_uc_addr_pf(struct fm10k_hw *hw, u16 glort,
373 const u8 *mac, u16 vid, bool add, u8 flags)
374{
375 /* verify MAC address is valid */
376 if (!is_valid_ether_addr(mac))
377 return FM10K_ERR_PARAM;
378
379 return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, flags);
380}
381
382/**
383 * fm10k_update_mc_addr_pf - Update device multicast addresses
384 * @hw: pointer to the HW structure
385 * @glort: base resource tag for this request
386 * @mac: MAC address to add/remove from table
387 * @vid: VLAN ID to add/remove from table
388 * @add: Indicates if this is an add or remove operation
389 *
390 * This function is used to add or remove multicast MAC addresses for
391 * the PF.
392 **/
393static s32 fm10k_update_mc_addr_pf(struct fm10k_hw *hw, u16 glort,
394 const u8 *mac, u16 vid, bool add)
395{
396 /* verify multicast address is valid */
397 if (!is_multicast_ether_addr(mac))
398 return FM10K_ERR_PARAM;
399
400 return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, 0);
401}
402
403/**
404 * fm10k_update_xcast_mode_pf - Request update of multicast mode
405 * @hw: pointer to hardware structure
406 * @glort: base resource tag for this request
407 * @mode: integer value indicating mode being requested
408 *
409 * This function will attempt to request a higher mode for the port
410 * so that it can enable either multicast, multicast promiscuous, or
411 * promiscuous mode of operation.
412 **/
413static s32 fm10k_update_xcast_mode_pf(struct fm10k_hw *hw, u16 glort, u8 mode)
414{
415 struct fm10k_mbx_info *mbx = &hw->mbx;
416 u32 msg[3], xcast_mode;
417
418 if (mode > FM10K_XCAST_MODE_NONE)
419 return FM10K_ERR_PARAM;
420
421 /* if glort is not valid return error */
422 if (!fm10k_glort_valid_pf(hw, glort))
423 return FM10K_ERR_PARAM;
424
425 /* write xcast mode as a single u32 value,
426 * lower 16 bits: glort
427 * upper 16 bits: mode
428 */
429 xcast_mode = ((u32)mode << 16) | glort;
430
431 /* generate message requesting to change xcast mode */
432 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_XCAST_MODES);
433 fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_XCAST_MODE, xcast_mode);
434
435 /* load onto outgoing mailbox */
436 return mbx->ops.enqueue_tx(hw, mbx, msg);
437}
438
439/**
440 * fm10k_update_int_moderator_pf - Update interrupt moderator linked list
441 * @hw: pointer to hardware structure
442 *
443 * This function walks through the MSI-X vector table to determine the
444 * number of active interrupts and based on that information updates the
445 * interrupt moderator linked list.
446 **/
447static void fm10k_update_int_moderator_pf(struct fm10k_hw *hw)
448{
449 u32 i;
450
451 /* Disable interrupt moderator */
452 fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
453
454 /* loop through PF from last to first looking enabled vectors */
455 for (i = FM10K_ITR_REG_COUNT_PF - 1; i; i--) {
456 if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
457 break;
458 }
459
460 /* always reset VFITR2[0] to point to last enabled PF vector */
461 fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), i);
462
463 /* reset ITR2[0] to point to last enabled PF vector */
464 if (!hw->iov.num_vfs)
465 fm10k_write_reg(hw, FM10K_ITR2(0), i);
466
467 /* Enable interrupt moderator */
468 fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
469}
470
471/**
472 * fm10k_update_lport_state_pf - Notify the switch of a change in port state
473 * @hw: pointer to the HW structure
474 * @glort: base resource tag for this request
475 * @count: number of logical ports being updated
476 * @enable: boolean value indicating enable or disable
477 *
478 * This function is used to add/remove a logical port from the switch.
479 **/
480static s32 fm10k_update_lport_state_pf(struct fm10k_hw *hw, u16 glort,
481 u16 count, bool enable)
482{
483 struct fm10k_mbx_info *mbx = &hw->mbx;
484 u32 msg[3], lport_msg;
485
486 /* do nothing if we are being asked to create or destroy 0 ports */
487 if (!count)
488 return 0;
489
490 /* if glort is not valid return error */
491 if (!fm10k_glort_valid_pf(hw, glort))
492 return FM10K_ERR_PARAM;
493
494 /* reset multicast mode if deleting lport */
495 if (!enable)
496 fm10k_update_xcast_mode_pf(hw, glort, FM10K_XCAST_MODE_NONE);
497
498 /* construct the lport message from the 2 pieces of data we have */
499 lport_msg = ((u32)count << 16) | glort;
500
501 /* generate lport create/delete message */
502 fm10k_tlv_msg_init(msg, enable ? FM10K_PF_MSG_ID_LPORT_CREATE :
503 FM10K_PF_MSG_ID_LPORT_DELETE);
504 fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_PORT, lport_msg);
505
506 /* load onto outgoing mailbox */
507 return mbx->ops.enqueue_tx(hw, mbx, msg);
508}
509
510/**
511 * fm10k_configure_dglort_map_pf - Configures GLORT entry and queues
512 * @hw: pointer to hardware structure
513 * @dglort: pointer to dglort configuration structure
514 *
515 * Reads the configuration structure contained in dglort_cfg and uses
516 * that information to then populate a DGLORTMAP/DEC entry and the queues
517 * to which it has been assigned.
518 **/
519static s32 fm10k_configure_dglort_map_pf(struct fm10k_hw *hw,
520 struct fm10k_dglort_cfg *dglort)
521{
522 u16 glort, queue_count, vsi_count, pc_count;
523 u16 vsi, queue, pc, q_idx;
524 u32 txqctl, dglortdec, dglortmap;
525
526 /* verify the dglort pointer */
527 if (!dglort)
528 return FM10K_ERR_PARAM;
529
530 /* verify the dglort values */
531 if ((dglort->idx > 7) || (dglort->rss_l > 7) || (dglort->pc_l > 3) ||
532 (dglort->vsi_l > 6) || (dglort->vsi_b > 64) ||
533 (dglort->queue_l > 8) || (dglort->queue_b >= 256))
534 return FM10K_ERR_PARAM;
535
536 /* determine count of VSIs and queues */
537 queue_count = BIT(dglort->rss_l + dglort->pc_l);
538 vsi_count = BIT(dglort->vsi_l + dglort->queue_l);
539 glort = dglort->glort;
540 q_idx = dglort->queue_b;
541
542 /* configure SGLORT for queues */
543 for (vsi = 0; vsi < vsi_count; vsi++, glort++) {
544 for (queue = 0; queue < queue_count; queue++, q_idx++) {
545 if (q_idx >= FM10K_MAX_QUEUES)
546 break;
547
548 fm10k_write_reg(hw, FM10K_TX_SGLORT(q_idx), glort);
549 fm10k_write_reg(hw, FM10K_RX_SGLORT(q_idx), glort);
550 }
551 }
552
553 /* determine count of PCs and queues */
554 queue_count = BIT(dglort->queue_l + dglort->rss_l + dglort->vsi_l);
555 pc_count = BIT(dglort->pc_l);
556
557 /* configure PC for Tx queues */
558 for (pc = 0; pc < pc_count; pc++) {
559 q_idx = pc + dglort->queue_b;
560 for (queue = 0; queue < queue_count; queue++) {
561 if (q_idx >= FM10K_MAX_QUEUES)
562 break;
563
564 txqctl = fm10k_read_reg(hw, FM10K_TXQCTL(q_idx));
565 txqctl &= ~FM10K_TXQCTL_PC_MASK;
566 txqctl |= pc << FM10K_TXQCTL_PC_SHIFT;
567 fm10k_write_reg(hw, FM10K_TXQCTL(q_idx), txqctl);
568
569 q_idx += pc_count;
570 }
571 }
572
573 /* configure DGLORTDEC */
574 dglortdec = ((u32)(dglort->rss_l) << FM10K_DGLORTDEC_RSSLENGTH_SHIFT) |
575 ((u32)(dglort->queue_b) << FM10K_DGLORTDEC_QBASE_SHIFT) |
576 ((u32)(dglort->pc_l) << FM10K_DGLORTDEC_PCLENGTH_SHIFT) |
577 ((u32)(dglort->vsi_b) << FM10K_DGLORTDEC_VSIBASE_SHIFT) |
578 ((u32)(dglort->vsi_l) << FM10K_DGLORTDEC_VSILENGTH_SHIFT) |
579 ((u32)(dglort->queue_l));
580 if (dglort->inner_rss)
581 dglortdec |= FM10K_DGLORTDEC_INNERRSS_ENABLE;
582
583 /* configure DGLORTMAP */
584 dglortmap = (dglort->idx == fm10k_dglort_default) ?
585 FM10K_DGLORTMAP_ANY : FM10K_DGLORTMAP_ZERO;
586 dglortmap <<= dglort->vsi_l + dglort->queue_l + dglort->shared_l;
587 dglortmap |= dglort->glort;
588
589 /* write values to hardware */
590 fm10k_write_reg(hw, FM10K_DGLORTDEC(dglort->idx), dglortdec);
591 fm10k_write_reg(hw, FM10K_DGLORTMAP(dglort->idx), dglortmap);
592
593 return 0;
594}
595
596u16 fm10k_queues_per_pool(struct fm10k_hw *hw)
597{
598 u16 num_pools = hw->iov.num_pools;
599
600 return (num_pools > 32) ? 2 : (num_pools > 16) ? 4 : (num_pools > 8) ?
601 8 : FM10K_MAX_QUEUES_POOL;
602}
603
604u16 fm10k_vf_queue_index(struct fm10k_hw *hw, u16 vf_idx)
605{
606 u16 num_vfs = hw->iov.num_vfs;
607 u16 vf_q_idx = FM10K_MAX_QUEUES;
608
609 vf_q_idx -= fm10k_queues_per_pool(hw) * (num_vfs - vf_idx);
610
611 return vf_q_idx;
612}
613
614static u16 fm10k_vectors_per_pool(struct fm10k_hw *hw)
615{
616 u16 num_pools = hw->iov.num_pools;
617
618 return (num_pools > 32) ? 8 : (num_pools > 16) ? 16 :
619 FM10K_MAX_VECTORS_POOL;
620}
621
622static u16 fm10k_vf_vector_index(struct fm10k_hw *hw, u16 vf_idx)
623{
624 u16 vf_v_idx = FM10K_MAX_VECTORS_PF;
625
626 vf_v_idx += fm10k_vectors_per_pool(hw) * vf_idx;
627
628 return vf_v_idx;
629}
630
631/**
632 * fm10k_iov_assign_resources_pf - Assign pool resources for virtualization
633 * @hw: pointer to the HW structure
634 * @num_vfs: number of VFs to be allocated
635 * @num_pools: number of virtualization pools to be allocated
636 *
637 * Allocates queues and traffic classes to virtualization entities to prepare
638 * the PF for SR-IOV and VMDq
639 **/
640static s32 fm10k_iov_assign_resources_pf(struct fm10k_hw *hw, u16 num_vfs,
641 u16 num_pools)
642{
643 u16 qmap_stride, qpp, vpp, vf_q_idx, vf_q_idx0, qmap_idx;
644 u32 vid = hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT;
645 int i, j;
646
647 /* hardware only supports up to 64 pools */
648 if (num_pools > 64)
649 return FM10K_ERR_PARAM;
650
651 /* the number of VFs cannot exceed the number of pools */
652 if ((num_vfs > num_pools) || (num_vfs > hw->iov.total_vfs))
653 return FM10K_ERR_PARAM;
654
655 /* record number of virtualization entities */
656 hw->iov.num_vfs = num_vfs;
657 hw->iov.num_pools = num_pools;
658
659 /* determine qmap offsets and counts */
660 qmap_stride = (num_vfs > 8) ? 32 : 256;
661 qpp = fm10k_queues_per_pool(hw);
662 vpp = fm10k_vectors_per_pool(hw);
663
664 /* calculate starting index for queues */
665 vf_q_idx = fm10k_vf_queue_index(hw, 0);
666 qmap_idx = 0;
667
668 /* establish TCs with -1 credits and no quanta to prevent transmit */
669 for (i = 0; i < num_vfs; i++) {
670 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(i), 0);
671 fm10k_write_reg(hw, FM10K_TC_RATE(i), 0);
672 fm10k_write_reg(hw, FM10K_TC_CREDIT(i),
673 FM10K_TC_CREDIT_CREDIT_MASK);
674 }
675
676 /* zero out all mbmem registers */
677 for (i = FM10K_VFMBMEM_LEN * num_vfs; i--;)
678 fm10k_write_reg(hw, FM10K_MBMEM(i), 0);
679
680 /* clear event notification of VF FLR */
681 fm10k_write_reg(hw, FM10K_PFVFLREC(0), ~0);
682 fm10k_write_reg(hw, FM10K_PFVFLREC(1), ~0);
683
684 /* loop through unallocated rings assigning them back to PF */
685 for (i = FM10K_MAX_QUEUES_PF; i < vf_q_idx; i++) {
686 fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
687 fm10k_write_reg(hw, FM10K_TXQCTL(i), FM10K_TXQCTL_PF |
688 FM10K_TXQCTL_UNLIMITED_BW | vid);
689 fm10k_write_reg(hw, FM10K_RXQCTL(i), FM10K_RXQCTL_PF);
690 }
691
692 /* PF should have already updated VFITR2[0] */
693
694 /* update all ITR registers to flow to VFITR2[0] */
695 for (i = FM10K_ITR_REG_COUNT_PF + 1; i < FM10K_ITR_REG_COUNT; i++) {
696 if (!(i & (vpp - 1)))
697 fm10k_write_reg(hw, FM10K_ITR2(i), i - vpp);
698 else
699 fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
700 }
701
702 /* update PF ITR2[0] to reference the last vector */
703 fm10k_write_reg(hw, FM10K_ITR2(0),
704 fm10k_vf_vector_index(hw, num_vfs - 1));
705
706 /* loop through rings populating rings and TCs */
707 for (i = 0; i < num_vfs; i++) {
708 /* record index for VF queue 0 for use in end of loop */
709 vf_q_idx0 = vf_q_idx;
710
711 for (j = 0; j < qpp; j++, qmap_idx++, vf_q_idx++) {
712 /* assign VF and locked TC to queues */
713 fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
714 fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx),
715 (i << FM10K_TXQCTL_TC_SHIFT) | i |
716 FM10K_TXQCTL_VF | vid);
717 fm10k_write_reg(hw, FM10K_RXDCTL(vf_q_idx),
718 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
719 FM10K_RXDCTL_DROP_ON_EMPTY);
720 fm10k_write_reg(hw, FM10K_RXQCTL(vf_q_idx),
721 (i << FM10K_RXQCTL_VF_SHIFT) |
722 FM10K_RXQCTL_VF);
723
724 /* map queue pair to VF */
725 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
726 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx);
727 }
728
729 /* repeat the first ring for all of the remaining VF rings */
730 for (; j < qmap_stride; j++, qmap_idx++) {
731 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx0);
732 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx0);
733 }
734 }
735
736 /* loop through remaining indexes assigning all to queue 0 */
737 while (qmap_idx < FM10K_TQMAP_TABLE_SIZE) {
738 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
739 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), 0);
740 qmap_idx++;
741 }
742
743 return 0;
744}
745
746/**
747 * fm10k_iov_configure_tc_pf - Configure the shaping group for VF
748 * @hw: pointer to the HW structure
749 * @vf_idx: index of VF receiving GLORT
750 * @rate: Rate indicated in Mb/s
751 *
752 * Configured the TC for a given VF to allow only up to a given number
753 * of Mb/s of outgoing Tx throughput.
754 **/
755static s32 fm10k_iov_configure_tc_pf(struct fm10k_hw *hw, u16 vf_idx, int rate)
756{
757 /* configure defaults */
758 u32 interval = FM10K_TC_RATE_INTERVAL_4US_GEN3;
759 u32 tc_rate = FM10K_TC_RATE_QUANTA_MASK;
760
761 /* verify vf is in range */
762 if (vf_idx >= hw->iov.num_vfs)
763 return FM10K_ERR_PARAM;
764
765 /* set interval to align with 4.096 usec in all modes */
766 switch (hw->bus.speed) {
767 case fm10k_bus_speed_2500:
768 interval = FM10K_TC_RATE_INTERVAL_4US_GEN1;
769 break;
770 case fm10k_bus_speed_5000:
771 interval = FM10K_TC_RATE_INTERVAL_4US_GEN2;
772 break;
773 default:
774 break;
775 }
776
777 if (rate) {
778 if (rate > FM10K_VF_TC_MAX || rate < FM10K_VF_TC_MIN)
779 return FM10K_ERR_PARAM;
780
781 /* The quanta is measured in Bytes per 4.096 or 8.192 usec
782 * The rate is provided in Mbits per second
783 * To tralslate from rate to quanta we need to multiply the
784 * rate by 8.192 usec and divide by 8 bits/byte. To avoid
785 * dealing with floating point we can round the values up
786 * to the nearest whole number ratio which gives us 128 / 125.
787 */
788 tc_rate = (rate * 128) / 125;
789
790 /* try to keep the rate limiting accurate by increasing
791 * the number of credits and interval for rates less than 4Gb/s
792 */
793 if (rate < 4000)
794 interval <<= 1;
795 else
796 tc_rate >>= 1;
797 }
798
799 /* update rate limiter with new values */
800 fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), tc_rate | interval);
801 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
802 fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
803
804 return 0;
805}
806
807/**
808 * fm10k_iov_assign_int_moderator_pf - Add VF interrupts to moderator list
809 * @hw: pointer to the HW structure
810 * @vf_idx: index of VF receiving GLORT
811 *
812 * Update the interrupt moderator linked list to include any MSI-X
813 * interrupts which the VF has enabled in the MSI-X vector table.
814 **/
815static s32 fm10k_iov_assign_int_moderator_pf(struct fm10k_hw *hw, u16 vf_idx)
816{
817 u16 vf_v_idx, vf_v_limit, i;
818
819 /* verify vf is in range */
820 if (vf_idx >= hw->iov.num_vfs)
821 return FM10K_ERR_PARAM;
822
823 /* determine vector offset and count */
824 vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
825 vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
826
827 /* search for first vector that is not masked */
828 for (i = vf_v_limit - 1; i > vf_v_idx; i--) {
829 if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
830 break;
831 }
832
833 /* reset linked list so it now includes our active vectors */
834 if (vf_idx == (hw->iov.num_vfs - 1))
835 fm10k_write_reg(hw, FM10K_ITR2(0), i);
836 else
837 fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), i);
838
839 return 0;
840}
841
842/**
843 * fm10k_iov_assign_default_mac_vlan_pf - Assign a MAC and VLAN to VF
844 * @hw: pointer to the HW structure
845 * @vf_info: pointer to VF information structure
846 *
847 * Assign a MAC address and default VLAN to a VF and notify it of the update
848 **/
849static s32 fm10k_iov_assign_default_mac_vlan_pf(struct fm10k_hw *hw,
850 struct fm10k_vf_info *vf_info)
851{
852 u16 qmap_stride, queues_per_pool, vf_q_idx, timeout, qmap_idx, i;
853 u32 msg[4], txdctl, txqctl, tdbal = 0, tdbah = 0;
854 s32 err = 0;
855 u16 vf_idx, vf_vid;
856
857 /* verify vf is in range */
858 if (!vf_info || vf_info->vf_idx >= hw->iov.num_vfs)
859 return FM10K_ERR_PARAM;
860
861 /* determine qmap offsets and counts */
862 qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
863 queues_per_pool = fm10k_queues_per_pool(hw);
864
865 /* calculate starting index for queues */
866 vf_idx = vf_info->vf_idx;
867 vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
868 qmap_idx = qmap_stride * vf_idx;
869
870 /* Determine correct default VLAN ID. The FM10K_VLAN_OVERRIDE bit is
871 * used here to indicate to the VF that it will not have privilege to
872 * write VLAN_TABLE. All policy is enforced on the PF but this allows
873 * the VF to correctly report errors to userspace rqeuests.
874 */
875 if (vf_info->pf_vid)
876 vf_vid = vf_info->pf_vid | FM10K_VLAN_OVERRIDE;
877 else
878 vf_vid = vf_info->sw_vid;
879
880 /* generate MAC_ADDR request */
881 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_MAC_VLAN);
882 fm10k_tlv_attr_put_mac_vlan(msg, FM10K_MAC_VLAN_MSG_DEFAULT_MAC,
883 vf_info->mac, vf_vid);
884
885 /* Configure Queue control register with new VLAN ID. The TXQCTL
886 * register is RO from the VF, so the PF must do this even in the
887 * case of notifying the VF of a new VID via the mailbox.
888 */
889 txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) &
890 FM10K_TXQCTL_VID_MASK;
891 txqctl |= (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
892 FM10K_TXQCTL_VF | vf_idx;
893
894 for (i = 0; i < queues_per_pool; i++)
895 fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx + i), txqctl);
896
897 /* try loading a message onto outgoing mailbox first */
898 if (vf_info->mbx.ops.enqueue_tx) {
899 err = vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
900 if (err != FM10K_MBX_ERR_NO_MBX)
901 return err;
902 err = 0;
903 }
904
905 /* If we aren't connected to a mailbox, this is most likely because
906 * the VF driver is not running. It should thus be safe to re-map
907 * queues and use the registers to pass the MAC address so that the VF
908 * driver gets correct information during its initialization.
909 */
910
911 /* MAP Tx queue back to 0 temporarily, and disable it */
912 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
913 fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
914
915 /* verify ring has disabled before modifying base address registers */
916 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
917 for (timeout = 0; txdctl & FM10K_TXDCTL_ENABLE; timeout++) {
918 /* limit ourselves to a 1ms timeout */
919 if (timeout == 10) {
920 err = FM10K_ERR_DMA_PENDING;
921 goto err_out;
922 }
923
924 usleep_range(100, 200);
925 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
926 }
927
928 /* Update base address registers to contain MAC address */
929 if (is_valid_ether_addr(vf_info->mac)) {
930 tdbal = (((u32)vf_info->mac[3]) << 24) |
931 (((u32)vf_info->mac[4]) << 16) |
932 (((u32)vf_info->mac[5]) << 8);
933
934 tdbah = (((u32)0xFF) << 24) |
935 (((u32)vf_info->mac[0]) << 16) |
936 (((u32)vf_info->mac[1]) << 8) |
937 ((u32)vf_info->mac[2]);
938 }
939
940 /* Record the base address into queue 0 */
941 fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx), tdbal);
942 fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx), tdbah);
943
944 /* Provide the VF the ITR scale, using software-defined fields in TDLEN
945 * to pass the information during VF initialization. See definition of
946 * FM10K_TDLEN_ITR_SCALE_SHIFT for more details.
947 */
948 fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx), hw->mac.itr_scale <<
949 FM10K_TDLEN_ITR_SCALE_SHIFT);
950
951err_out:
952 /* restore the queue back to VF ownership */
953 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
954 return err;
955}
956
957/**
958 * fm10k_iov_reset_resources_pf - Reassign queues and interrupts to a VF
959 * @hw: pointer to the HW structure
960 * @vf_info: pointer to VF information structure
961 *
962 * Reassign the interrupts and queues to a VF following an FLR
963 **/
964static s32 fm10k_iov_reset_resources_pf(struct fm10k_hw *hw,
965 struct fm10k_vf_info *vf_info)
966{
967 u16 qmap_stride, queues_per_pool, vf_q_idx, qmap_idx;
968 u32 tdbal = 0, tdbah = 0, txqctl, rxqctl;
969 u16 vf_v_idx, vf_v_limit, vf_vid;
970 u8 vf_idx = vf_info->vf_idx;
971 int i;
972
973 /* verify vf is in range */
974 if (vf_idx >= hw->iov.num_vfs)
975 return FM10K_ERR_PARAM;
976
977 /* clear event notification of VF FLR */
978 fm10k_write_reg(hw, FM10K_PFVFLREC(vf_idx / 32), BIT(vf_idx % 32));
979
980 /* force timeout and then disconnect the mailbox */
981 vf_info->mbx.timeout = 0;
982 if (vf_info->mbx.ops.disconnect)
983 vf_info->mbx.ops.disconnect(hw, &vf_info->mbx);
984
985 /* determine vector offset and count */
986 vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
987 vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
988
989 /* determine qmap offsets and counts */
990 qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
991 queues_per_pool = fm10k_queues_per_pool(hw);
992 qmap_idx = qmap_stride * vf_idx;
993
994 /* make all the queues inaccessible to the VF */
995 for (i = qmap_idx; i < (qmap_idx + qmap_stride); i++) {
996 fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
997 fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
998 }
999
1000 /* calculate starting index for queues */
1001 vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
1002
1003 /* determine correct default VLAN ID */
1004 if (vf_info->pf_vid)
1005 vf_vid = vf_info->pf_vid;
1006 else
1007 vf_vid = vf_info->sw_vid;
1008
1009 /* configure Queue control register */
1010 txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) |
1011 (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
1012 FM10K_TXQCTL_VF | vf_idx;
1013 rxqctl = (vf_idx << FM10K_RXQCTL_VF_SHIFT) | FM10K_RXQCTL_VF;
1014
1015 /* stop further DMA and reset queue ownership back to VF */
1016 for (i = vf_q_idx; i < (queues_per_pool + vf_q_idx); i++) {
1017 fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
1018 fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
1019 fm10k_write_reg(hw, FM10K_RXDCTL(i),
1020 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
1021 FM10K_RXDCTL_DROP_ON_EMPTY);
1022 fm10k_write_reg(hw, FM10K_RXQCTL(i), rxqctl);
1023 }
1024
1025 /* reset TC with -1 credits and no quanta to prevent transmit */
1026 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), 0);
1027 fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), 0);
1028 fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx),
1029 FM10K_TC_CREDIT_CREDIT_MASK);
1030
1031 /* update our first entry in the table based on previous VF */
1032 if (!vf_idx)
1033 hw->mac.ops.update_int_moderator(hw);
1034 else
1035 hw->iov.ops.assign_int_moderator(hw, vf_idx - 1);
1036
1037 /* reset linked list so it now includes our active vectors */
1038 if (vf_idx == (hw->iov.num_vfs - 1))
1039 fm10k_write_reg(hw, FM10K_ITR2(0), vf_v_idx);
1040 else
1041 fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), vf_v_idx);
1042
1043 /* link remaining vectors so that next points to previous */
1044 for (vf_v_idx++; vf_v_idx < vf_v_limit; vf_v_idx++)
1045 fm10k_write_reg(hw, FM10K_ITR2(vf_v_idx), vf_v_idx - 1);
1046
1047 /* zero out MBMEM, VLAN_TABLE, RETA, RSSRK, and MRQC registers */
1048 for (i = FM10K_VFMBMEM_LEN; i--;)
1049 fm10k_write_reg(hw, FM10K_MBMEM_VF(vf_idx, i), 0);
1050 for (i = FM10K_VLAN_TABLE_SIZE; i--;)
1051 fm10k_write_reg(hw, FM10K_VLAN_TABLE(vf_info->vsi, i), 0);
1052 for (i = FM10K_RETA_SIZE; i--;)
1053 fm10k_write_reg(hw, FM10K_RETA(vf_info->vsi, i), 0);
1054 for (i = FM10K_RSSRK_SIZE; i--;)
1055 fm10k_write_reg(hw, FM10K_RSSRK(vf_info->vsi, i), 0);
1056 fm10k_write_reg(hw, FM10K_MRQC(vf_info->vsi), 0);
1057
1058 /* Update base address registers to contain MAC address */
1059 if (is_valid_ether_addr(vf_info->mac)) {
1060 tdbal = (((u32)vf_info->mac[3]) << 24) |
1061 (((u32)vf_info->mac[4]) << 16) |
1062 (((u32)vf_info->mac[5]) << 8);
1063 tdbah = (((u32)0xFF) << 24) |
1064 (((u32)vf_info->mac[0]) << 16) |
1065 (((u32)vf_info->mac[1]) << 8) |
1066 ((u32)vf_info->mac[2]);
1067 }
1068
1069 /* map queue pairs back to VF from last to first */
1070 for (i = queues_per_pool; i--;) {
1071 fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx + i), tdbal);
1072 fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx + i), tdbah);
1073 /* See definition of FM10K_TDLEN_ITR_SCALE_SHIFT for an
1074 * explanation of how TDLEN is used.
1075 */
1076 fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx + i),
1077 hw->mac.itr_scale <<
1078 FM10K_TDLEN_ITR_SCALE_SHIFT);
1079 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx + i);
1080 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx + i);
1081 }
1082
1083 /* repeat the first ring for all the remaining VF rings */
1084 for (i = queues_per_pool; i < qmap_stride; i++) {
1085 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx);
1086 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx);
1087 }
1088
1089 return 0;
1090}
1091
1092/**
1093 * fm10k_iov_set_lport_pf - Assign and enable a logical port for a given VF
1094 * @hw: pointer to hardware structure
1095 * @vf_info: pointer to VF information structure
1096 * @lport_idx: Logical port offset from the hardware glort
1097 * @flags: Set of capability flags to extend port beyond basic functionality
1098 *
1099 * This function allows enabling a VF port by assigning it a GLORT and
1100 * setting the flags so that it can enable an Rx mode.
1101 **/
1102static s32 fm10k_iov_set_lport_pf(struct fm10k_hw *hw,
1103 struct fm10k_vf_info *vf_info,
1104 u16 lport_idx, u8 flags)
1105{
1106 u16 glort = (hw->mac.dglort_map + lport_idx) & FM10K_DGLORTMAP_NONE;
1107
1108 /* if glort is not valid return error */
1109 if (!fm10k_glort_valid_pf(hw, glort))
1110 return FM10K_ERR_PARAM;
1111
1112 vf_info->vf_flags = flags | FM10K_VF_FLAG_NONE_CAPABLE;
1113 vf_info->glort = glort;
1114
1115 return 0;
1116}
1117
1118/**
1119 * fm10k_iov_reset_lport_pf - Disable a logical port for a given VF
1120 * @hw: pointer to hardware structure
1121 * @vf_info: pointer to VF information structure
1122 *
1123 * This function disables a VF port by stripping it of a GLORT and
1124 * setting the flags so that it cannot enable any Rx mode.
1125 **/
1126static void fm10k_iov_reset_lport_pf(struct fm10k_hw *hw,
1127 struct fm10k_vf_info *vf_info)
1128{
1129 u32 msg[1];
1130
1131 /* need to disable the port if it is already enabled */
1132 if (FM10K_VF_FLAG_ENABLED(vf_info)) {
1133 /* notify switch that this port has been disabled */
1134 fm10k_update_lport_state_pf(hw, vf_info->glort, 1, false);
1135
1136 /* generate port state response to notify VF it is not ready */
1137 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1138 vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1139 }
1140
1141 /* clear flags and glort if it exists */
1142 vf_info->vf_flags = 0;
1143 vf_info->glort = 0;
1144}
1145
1146/**
1147 * fm10k_iov_update_stats_pf - Updates hardware related statistics for VFs
1148 * @hw: pointer to hardware structure
1149 * @q: stats for all queues of a VF
1150 * @vf_idx: index of VF
1151 *
1152 * This function collects queue stats for VFs.
1153 **/
1154static void fm10k_iov_update_stats_pf(struct fm10k_hw *hw,
1155 struct fm10k_hw_stats_q *q,
1156 u16 vf_idx)
1157{
1158 u32 idx, qpp;
1159
1160 /* get stats for all of the queues */
1161 qpp = fm10k_queues_per_pool(hw);
1162 idx = fm10k_vf_queue_index(hw, vf_idx);
1163 fm10k_update_hw_stats_q(hw, q, idx, qpp);
1164}
1165
1166/**
1167 * fm10k_iov_msg_msix_pf - Message handler for MSI-X request from VF
1168 * @hw: Pointer to hardware structure
1169 * @results: Pointer array to message, results[0] is pointer to message
1170 * @mbx: Pointer to mailbox information structure
1171 *
1172 * This function is a default handler for MSI-X requests from the VF. The
1173 * assumption is that in this case it is acceptable to just directly
1174 * hand off the message from the VF to the underlying shared code.
1175 **/
1176s32 fm10k_iov_msg_msix_pf(struct fm10k_hw *hw, u32 **results,
1177 struct fm10k_mbx_info *mbx)
1178{
1179 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1180 u8 vf_idx = vf_info->vf_idx;
1181
1182 return hw->iov.ops.assign_int_moderator(hw, vf_idx);
1183}
1184
1185/**
1186 * fm10k_iov_select_vid - Select correct default VLAN ID
1187 * @hw: Pointer to hardware structure
1188 * @vid: VLAN ID to correct
1189 *
1190 * Will report an error if the VLAN ID is out of range. For VID = 0, it will
1191 * return either the pf_vid or sw_vid depending on which one is set.
1192 */
1193static s32 fm10k_iov_select_vid(struct fm10k_vf_info *vf_info, u16 vid)
1194{
1195 if (!vid)
1196 return vf_info->pf_vid ? vf_info->pf_vid : vf_info->sw_vid;
1197 else if (vf_info->pf_vid && vid != vf_info->pf_vid)
1198 return FM10K_ERR_PARAM;
1199 else
1200 return vid;
1201}
1202
1203/**
1204 * fm10k_iov_msg_mac_vlan_pf - Message handler for MAC/VLAN request from VF
1205 * @hw: Pointer to hardware structure
1206 * @results: Pointer array to message, results[0] is pointer to message
1207 * @mbx: Pointer to mailbox information structure
1208 *
1209 * This function is a default handler for MAC/VLAN requests from the VF.
1210 * The assumption is that in this case it is acceptable to just directly
1211 * hand off the message from the VF to the underlying shared code.
1212 **/
1213s32 fm10k_iov_msg_mac_vlan_pf(struct fm10k_hw *hw, u32 **results,
1214 struct fm10k_mbx_info *mbx)
1215{
1216 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1217 u8 mac[ETH_ALEN];
1218 u32 *result;
1219 int err = 0;
1220 bool set;
1221 u16 vlan;
1222 u32 vid;
1223
1224 /* we shouldn't be updating rules on a disabled interface */
1225 if (!FM10K_VF_FLAG_ENABLED(vf_info))
1226 err = FM10K_ERR_PARAM;
1227
1228 if (!err && !!results[FM10K_MAC_VLAN_MSG_VLAN]) {
1229 result = results[FM10K_MAC_VLAN_MSG_VLAN];
1230
1231 /* record VLAN id requested */
1232 err = fm10k_tlv_attr_get_u32(result, &vid);
1233 if (err)
1234 return err;
1235
1236 set = !(vid & FM10K_VLAN_CLEAR);
1237 vid &= ~FM10K_VLAN_CLEAR;
1238
1239 /* if the length field has been set, this is a multi-bit
1240 * update request. For multi-bit requests, simply disallow
1241 * them when the pf_vid has been set. In this case, the PF
1242 * should have already cleared the VLAN_TABLE, and if we
1243 * allowed them, it could allow a rogue VF to receive traffic
1244 * on a VLAN it was not assigned. In the single-bit case, we
1245 * need to modify requests for VLAN 0 to use the default PF or
1246 * SW vid when assigned.
1247 */
1248
1249 if (vid >> 16) {
1250 /* prevent multi-bit requests when PF has
1251 * administratively set the VLAN for this VF
1252 */
1253 if (vf_info->pf_vid)
1254 return FM10K_ERR_PARAM;
1255 } else {
1256 err = fm10k_iov_select_vid(vf_info, (u16)vid);
1257 if (err < 0)
1258 return err;
1259
1260 vid = err;
1261 }
1262
1263 /* update VSI info for VF in regards to VLAN table */
1264 err = hw->mac.ops.update_vlan(hw, vid, vf_info->vsi, set);
1265 }
1266
1267 if (!err && !!results[FM10K_MAC_VLAN_MSG_MAC]) {
1268 result = results[FM10K_MAC_VLAN_MSG_MAC];
1269
1270 /* record unicast MAC address requested */
1271 err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1272 if (err)
1273 return err;
1274
1275 /* block attempts to set MAC for a locked device */
1276 if (is_valid_ether_addr(vf_info->mac) &&
1277 !ether_addr_equal(mac, vf_info->mac))
1278 return FM10K_ERR_PARAM;
1279
1280 set = !(vlan & FM10K_VLAN_CLEAR);
1281 vlan &= ~FM10K_VLAN_CLEAR;
1282
1283 err = fm10k_iov_select_vid(vf_info, vlan);
1284 if (err < 0)
1285 return err;
1286
1287 vlan = (u16)err;
1288
1289 /* notify switch of request for new unicast address */
1290 err = hw->mac.ops.update_uc_addr(hw, vf_info->glort,
1291 mac, vlan, set, 0);
1292 }
1293
1294 if (!err && !!results[FM10K_MAC_VLAN_MSG_MULTICAST]) {
1295 result = results[FM10K_MAC_VLAN_MSG_MULTICAST];
1296
1297 /* record multicast MAC address requested */
1298 err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1299 if (err)
1300 return err;
1301
1302 /* verify that the VF is allowed to request multicast */
1303 if (!(vf_info->vf_flags & FM10K_VF_FLAG_MULTI_ENABLED))
1304 return FM10K_ERR_PARAM;
1305
1306 set = !(vlan & FM10K_VLAN_CLEAR);
1307 vlan &= ~FM10K_VLAN_CLEAR;
1308
1309 err = fm10k_iov_select_vid(vf_info, vlan);
1310 if (err < 0)
1311 return err;
1312
1313 vlan = (u16)err;
1314
1315 /* notify switch of request for new multicast address */
1316 err = hw->mac.ops.update_mc_addr(hw, vf_info->glort,
1317 mac, vlan, set);
1318 }
1319
1320 return err;
1321}
1322
1323/**
1324 * fm10k_iov_supported_xcast_mode_pf - Determine best match for xcast mode
1325 * @vf_info: VF info structure containing capability flags
1326 * @mode: Requested xcast mode
1327 *
1328 * This function outputs the mode that most closely matches the requested
1329 * mode. If not modes match it will request we disable the port
1330 **/
1331static u8 fm10k_iov_supported_xcast_mode_pf(struct fm10k_vf_info *vf_info,
1332 u8 mode)
1333{
1334 u8 vf_flags = vf_info->vf_flags;
1335
1336 /* match up mode to capabilities as best as possible */
1337 switch (mode) {
1338 case FM10K_XCAST_MODE_PROMISC:
1339 if (vf_flags & FM10K_VF_FLAG_PROMISC_CAPABLE)
1340 return FM10K_XCAST_MODE_PROMISC;
1341 /* fallthough */
1342 case FM10K_XCAST_MODE_ALLMULTI:
1343 if (vf_flags & FM10K_VF_FLAG_ALLMULTI_CAPABLE)
1344 return FM10K_XCAST_MODE_ALLMULTI;
1345 /* fallthough */
1346 case FM10K_XCAST_MODE_MULTI:
1347 if (vf_flags & FM10K_VF_FLAG_MULTI_CAPABLE)
1348 return FM10K_XCAST_MODE_MULTI;
1349 /* fallthough */
1350 case FM10K_XCAST_MODE_NONE:
1351 if (vf_flags & FM10K_VF_FLAG_NONE_CAPABLE)
1352 return FM10K_XCAST_MODE_NONE;
1353 /* fallthough */
1354 default:
1355 break;
1356 }
1357
1358 /* disable interface as it should not be able to request any */
1359 return FM10K_XCAST_MODE_DISABLE;
1360}
1361
1362/**
1363 * fm10k_iov_msg_lport_state_pf - Message handler for port state requests
1364 * @hw: Pointer to hardware structure
1365 * @results: Pointer array to message, results[0] is pointer to message
1366 * @mbx: Pointer to mailbox information structure
1367 *
1368 * This function is a default handler for port state requests. The port
1369 * state requests for now are basic and consist of enabling or disabling
1370 * the port.
1371 **/
1372s32 fm10k_iov_msg_lport_state_pf(struct fm10k_hw *hw, u32 **results,
1373 struct fm10k_mbx_info *mbx)
1374{
1375 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1376 u32 *result;
1377 s32 err = 0;
1378 u32 msg[2];
1379 u8 mode = 0;
1380
1381 /* verify VF is allowed to enable even minimal mode */
1382 if (!(vf_info->vf_flags & FM10K_VF_FLAG_NONE_CAPABLE))
1383 return FM10K_ERR_PARAM;
1384
1385 if (!!results[FM10K_LPORT_STATE_MSG_XCAST_MODE]) {
1386 result = results[FM10K_LPORT_STATE_MSG_XCAST_MODE];
1387
1388 /* XCAST mode update requested */
1389 err = fm10k_tlv_attr_get_u8(result, &mode);
1390 if (err)
1391 return FM10K_ERR_PARAM;
1392
1393 /* prep for possible demotion depending on capabilities */
1394 mode = fm10k_iov_supported_xcast_mode_pf(vf_info, mode);
1395
1396 /* if mode is not currently enabled, enable it */
1397 if (!(FM10K_VF_FLAG_ENABLED(vf_info) & BIT(mode)))
1398 fm10k_update_xcast_mode_pf(hw, vf_info->glort, mode);
1399
1400 /* swap mode back to a bit flag */
1401 mode = FM10K_VF_FLAG_SET_MODE(mode);
1402 } else if (!results[FM10K_LPORT_STATE_MSG_DISABLE]) {
1403 /* need to disable the port if it is already enabled */
1404 if (FM10K_VF_FLAG_ENABLED(vf_info))
1405 err = fm10k_update_lport_state_pf(hw, vf_info->glort,
1406 1, false);
1407
1408 /* we need to clear VF_FLAG_ENABLED flags in order to ensure
1409 * that we actually re-enable the LPORT state below. Note that
1410 * this has no impact if the VF is already disabled, as the
1411 * flags are already cleared.
1412 */
1413 if (!err)
1414 vf_info->vf_flags = FM10K_VF_FLAG_CAPABLE(vf_info);
1415
1416 /* when enabling the port we should reset the rate limiters */
1417 hw->iov.ops.configure_tc(hw, vf_info->vf_idx, vf_info->rate);
1418
1419 /* set mode for minimal functionality */
1420 mode = FM10K_VF_FLAG_SET_MODE_NONE;
1421
1422 /* generate port state response to notify VF it is ready */
1423 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1424 fm10k_tlv_attr_put_bool(msg, FM10K_LPORT_STATE_MSG_READY);
1425 mbx->ops.enqueue_tx(hw, mbx, msg);
1426 }
1427
1428 /* if enable state toggled note the update */
1429 if (!err && (!FM10K_VF_FLAG_ENABLED(vf_info) != !mode))
1430 err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1,
1431 !!mode);
1432
1433 /* if state change succeeded, then update our stored state */
1434 mode |= FM10K_VF_FLAG_CAPABLE(vf_info);
1435 if (!err)
1436 vf_info->vf_flags = mode;
1437
1438 return err;
1439}
1440
1441/**
1442 * fm10k_update_stats_hw_pf - Updates hardware related statistics of PF
1443 * @hw: pointer to hardware structure
1444 * @stats: pointer to the stats structure to update
1445 *
1446 * This function collects and aggregates global and per queue hardware
1447 * statistics.
1448 **/
1449static void fm10k_update_hw_stats_pf(struct fm10k_hw *hw,
1450 struct fm10k_hw_stats *stats)
1451{
1452 u32 timeout, ur, ca, um, xec, vlan_drop, loopback_drop, nodesc_drop;
1453 u32 id, id_prev;
1454
1455 /* Use Tx queue 0 as a canary to detect a reset */
1456 id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1457
1458 /* Read Global Statistics */
1459 do {
1460 timeout = fm10k_read_hw_stats_32b(hw, FM10K_STATS_TIMEOUT,
1461 &stats->timeout);
1462 ur = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UR, &stats->ur);
1463 ca = fm10k_read_hw_stats_32b(hw, FM10K_STATS_CA, &stats->ca);
1464 um = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UM, &stats->um);
1465 xec = fm10k_read_hw_stats_32b(hw, FM10K_STATS_XEC, &stats->xec);
1466 vlan_drop = fm10k_read_hw_stats_32b(hw, FM10K_STATS_VLAN_DROP,
1467 &stats->vlan_drop);
1468 loopback_drop =
1469 fm10k_read_hw_stats_32b(hw,
1470 FM10K_STATS_LOOPBACK_DROP,
1471 &stats->loopback_drop);
1472 nodesc_drop = fm10k_read_hw_stats_32b(hw,
1473 FM10K_STATS_NODESC_DROP,
1474 &stats->nodesc_drop);
1475
1476 /* if value has not changed then we have consistent data */
1477 id_prev = id;
1478 id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1479 } while ((id ^ id_prev) & FM10K_TXQCTL_ID_MASK);
1480
1481 /* drop non-ID bits and set VALID ID bit */
1482 id &= FM10K_TXQCTL_ID_MASK;
1483 id |= FM10K_STAT_VALID;
1484
1485 /* Update Global Statistics */
1486 if (stats->stats_idx == id) {
1487 stats->timeout.count += timeout;
1488 stats->ur.count += ur;
1489 stats->ca.count += ca;
1490 stats->um.count += um;
1491 stats->xec.count += xec;
1492 stats->vlan_drop.count += vlan_drop;
1493 stats->loopback_drop.count += loopback_drop;
1494 stats->nodesc_drop.count += nodesc_drop;
1495 }
1496
1497 /* Update bases and record current PF id */
1498 fm10k_update_hw_base_32b(&stats->timeout, timeout);
1499 fm10k_update_hw_base_32b(&stats->ur, ur);
1500 fm10k_update_hw_base_32b(&stats->ca, ca);
1501 fm10k_update_hw_base_32b(&stats->um, um);
1502 fm10k_update_hw_base_32b(&stats->xec, xec);
1503 fm10k_update_hw_base_32b(&stats->vlan_drop, vlan_drop);
1504 fm10k_update_hw_base_32b(&stats->loopback_drop, loopback_drop);
1505 fm10k_update_hw_base_32b(&stats->nodesc_drop, nodesc_drop);
1506 stats->stats_idx = id;
1507
1508 /* Update Queue Statistics */
1509 fm10k_update_hw_stats_q(hw, stats->q, 0, hw->mac.max_queues);
1510}
1511
1512/**
1513 * fm10k_rebind_hw_stats_pf - Resets base for hardware statistics of PF
1514 * @hw: pointer to hardware structure
1515 * @stats: pointer to the stats structure to update
1516 *
1517 * This function resets the base for global and per queue hardware
1518 * statistics.
1519 **/
1520static void fm10k_rebind_hw_stats_pf(struct fm10k_hw *hw,
1521 struct fm10k_hw_stats *stats)
1522{
1523 /* Unbind Global Statistics */
1524 fm10k_unbind_hw_stats_32b(&stats->timeout);
1525 fm10k_unbind_hw_stats_32b(&stats->ur);
1526 fm10k_unbind_hw_stats_32b(&stats->ca);
1527 fm10k_unbind_hw_stats_32b(&stats->um);
1528 fm10k_unbind_hw_stats_32b(&stats->xec);
1529 fm10k_unbind_hw_stats_32b(&stats->vlan_drop);
1530 fm10k_unbind_hw_stats_32b(&stats->loopback_drop);
1531 fm10k_unbind_hw_stats_32b(&stats->nodesc_drop);
1532
1533 /* Unbind Queue Statistics */
1534 fm10k_unbind_hw_stats_q(stats->q, 0, hw->mac.max_queues);
1535
1536 /* Reinitialize bases for all stats */
1537 fm10k_update_hw_stats_pf(hw, stats);
1538}
1539
1540/**
1541 * fm10k_set_dma_mask_pf - Configures PhyAddrSpace to limit DMA to system
1542 * @hw: pointer to hardware structure
1543 * @dma_mask: 64 bit DMA mask required for platform
1544 *
1545 * This function sets the PHYADDR.PhyAddrSpace bits for the endpoint in order
1546 * to limit the access to memory beyond what is physically in the system.
1547 **/
1548static void fm10k_set_dma_mask_pf(struct fm10k_hw *hw, u64 dma_mask)
1549{
1550 /* we need to write the upper 32 bits of DMA mask to PhyAddrSpace */
1551 u32 phyaddr = (u32)(dma_mask >> 32);
1552
1553 fm10k_write_reg(hw, FM10K_PHYADDR, phyaddr);
1554}
1555
1556/**
1557 * fm10k_get_fault_pf - Record a fault in one of the interface units
1558 * @hw: pointer to hardware structure
1559 * @type: pointer to fault type register offset
1560 * @fault: pointer to memory location to record the fault
1561 *
1562 * Record the fault register contents to the fault data structure and
1563 * clear the entry from the register.
1564 *
1565 * Returns ERR_PARAM if invalid register is specified or no error is present.
1566 **/
1567static s32 fm10k_get_fault_pf(struct fm10k_hw *hw, int type,
1568 struct fm10k_fault *fault)
1569{
1570 u32 func;
1571
1572 /* verify the fault register is in range and is aligned */
1573 switch (type) {
1574 case FM10K_PCA_FAULT:
1575 case FM10K_THI_FAULT:
1576 case FM10K_FUM_FAULT:
1577 break;
1578 default:
1579 return FM10K_ERR_PARAM;
1580 }
1581
1582 /* only service faults that are valid */
1583 func = fm10k_read_reg(hw, type + FM10K_FAULT_FUNC);
1584 if (!(func & FM10K_FAULT_FUNC_VALID))
1585 return FM10K_ERR_PARAM;
1586
1587 /* read remaining fields */
1588 fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_HI);
1589 fault->address <<= 32;
1590 fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_LO);
1591 fault->specinfo = fm10k_read_reg(hw, type + FM10K_FAULT_SPECINFO);
1592
1593 /* clear valid bit to allow for next error */
1594 fm10k_write_reg(hw, type + FM10K_FAULT_FUNC, FM10K_FAULT_FUNC_VALID);
1595
1596 /* Record which function triggered the error */
1597 if (func & FM10K_FAULT_FUNC_PF)
1598 fault->func = 0;
1599 else
1600 fault->func = 1 + ((func & FM10K_FAULT_FUNC_VF_MASK) >>
1601 FM10K_FAULT_FUNC_VF_SHIFT);
1602
1603 /* record fault type */
1604 fault->type = func & FM10K_FAULT_FUNC_TYPE_MASK;
1605
1606 return 0;
1607}
1608
1609/**
1610 * fm10k_request_lport_map_pf - Request LPORT map from the switch API
1611 * @hw: pointer to hardware structure
1612 *
1613 **/
1614static s32 fm10k_request_lport_map_pf(struct fm10k_hw *hw)
1615{
1616 struct fm10k_mbx_info *mbx = &hw->mbx;
1617 u32 msg[1];
1618
1619 /* issue request asking for LPORT map */
1620 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_LPORT_MAP);
1621
1622 /* load onto outgoing mailbox */
1623 return mbx->ops.enqueue_tx(hw, mbx, msg);
1624}
1625
1626/**
1627 * fm10k_get_host_state_pf - Returns the state of the switch and mailbox
1628 * @hw: pointer to hardware structure
1629 * @switch_ready: pointer to boolean value that will record switch state
1630 *
1631 * This function will check the DMA_CTRL2 register and mailbox in order
1632 * to determine if the switch is ready for the PF to begin requesting
1633 * addresses and mapping traffic to the local interface.
1634 **/
1635static s32 fm10k_get_host_state_pf(struct fm10k_hw *hw, bool *switch_ready)
1636{
1637 u32 dma_ctrl2;
1638
1639 /* verify the switch is ready for interaction */
1640 dma_ctrl2 = fm10k_read_reg(hw, FM10K_DMA_CTRL2);
1641 if (!(dma_ctrl2 & FM10K_DMA_CTRL2_SWITCH_READY))
1642 return 0;
1643
1644 /* retrieve generic host state info */
1645 return fm10k_get_host_state_generic(hw, switch_ready);
1646}
1647
1648/* This structure defines the attibutes to be parsed below */
1649const struct fm10k_tlv_attr fm10k_lport_map_msg_attr[] = {
1650 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1651 sizeof(struct fm10k_swapi_error)),
1652 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_LPORT_MAP),
1653 FM10K_TLV_ATTR_LAST
1654};
1655
1656/**
1657 * fm10k_msg_lport_map_pf - Message handler for lport_map message from SM
1658 * @hw: Pointer to hardware structure
1659 * @results: pointer array containing parsed data
1660 * @mbx: Pointer to mailbox information structure
1661 *
1662 * This handler configures the lport mapping based on the reply from the
1663 * switch API.
1664 **/
1665s32 fm10k_msg_lport_map_pf(struct fm10k_hw *hw, u32 **results,
1666 struct fm10k_mbx_info *mbx)
1667{
1668 u16 glort, mask;
1669 u32 dglort_map;
1670 s32 err;
1671
1672 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_LPORT_MAP],
1673 &dglort_map);
1674 if (err)
1675 return err;
1676
1677 /* extract values out of the header */
1678 glort = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_GLORT);
1679 mask = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_MASK);
1680
1681 /* verify mask is set and none of the masked bits in glort are set */
1682 if (!mask || (glort & ~mask))
1683 return FM10K_ERR_PARAM;
1684
1685 /* verify the mask is contiguous, and that it is 1's followed by 0's */
1686 if (((~(mask - 1) & mask) + mask) & FM10K_DGLORTMAP_NONE)
1687 return FM10K_ERR_PARAM;
1688
1689 /* record the glort, mask, and port count */
1690 hw->mac.dglort_map = dglort_map;
1691
1692 return 0;
1693}
1694
1695const struct fm10k_tlv_attr fm10k_update_pvid_msg_attr[] = {
1696 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_UPDATE_PVID),
1697 FM10K_TLV_ATTR_LAST
1698};
1699
1700/**
1701 * fm10k_msg_update_pvid_pf - Message handler for port VLAN message from SM
1702 * @hw: Pointer to hardware structure
1703 * @results: pointer array containing parsed data
1704 * @mbx: Pointer to mailbox information structure
1705 *
1706 * This handler configures the default VLAN for the PF
1707 **/
1708static s32 fm10k_msg_update_pvid_pf(struct fm10k_hw *hw, u32 **results,
1709 struct fm10k_mbx_info *mbx)
1710{
1711 u16 glort, pvid;
1712 u32 pvid_update;
1713 s32 err;
1714
1715 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
1716 &pvid_update);
1717 if (err)
1718 return err;
1719
1720 /* extract values from the pvid update */
1721 glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
1722 pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
1723
1724 /* if glort is not valid return error */
1725 if (!fm10k_glort_valid_pf(hw, glort))
1726 return FM10K_ERR_PARAM;
1727
1728 /* verify VLAN ID is valid */
1729 if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
1730 return FM10K_ERR_PARAM;
1731
1732 /* record the port VLAN ID value */
1733 hw->mac.default_vid = pvid;
1734
1735 return 0;
1736}
1737
1738/**
1739 * fm10k_record_global_table_data - Move global table data to swapi table info
1740 * @from: pointer to source table data structure
1741 * @to: pointer to destination table info structure
1742 *
1743 * This function is will copy table_data to the table_info contained in
1744 * the hw struct.
1745 **/
1746static void fm10k_record_global_table_data(struct fm10k_global_table_data *from,
1747 struct fm10k_swapi_table_info *to)
1748{
1749 /* convert from le32 struct to CPU byte ordered values */
1750 to->used = le32_to_cpu(from->used);
1751 to->avail = le32_to_cpu(from->avail);
1752}
1753
1754const struct fm10k_tlv_attr fm10k_err_msg_attr[] = {
1755 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1756 sizeof(struct fm10k_swapi_error)),
1757 FM10K_TLV_ATTR_LAST
1758};
1759
1760/**
1761 * fm10k_msg_err_pf - Message handler for error reply
1762 * @hw: Pointer to hardware structure
1763 * @results: pointer array containing parsed data
1764 * @mbx: Pointer to mailbox information structure
1765 *
1766 * This handler will capture the data for any error replies to previous
1767 * messages that the PF has sent.
1768 **/
1769s32 fm10k_msg_err_pf(struct fm10k_hw *hw, u32 **results,
1770 struct fm10k_mbx_info *mbx)
1771{
1772 struct fm10k_swapi_error err_msg;
1773 s32 err;
1774
1775 /* extract structure from message */
1776 err = fm10k_tlv_attr_get_le_struct(results[FM10K_PF_ATTR_ID_ERR],
1777 &err_msg, sizeof(err_msg));
1778 if (err)
1779 return err;
1780
1781 /* record table status */
1782 fm10k_record_global_table_data(&err_msg.mac, &hw->swapi.mac);
1783 fm10k_record_global_table_data(&err_msg.nexthop, &hw->swapi.nexthop);
1784 fm10k_record_global_table_data(&err_msg.ffu, &hw->swapi.ffu);
1785
1786 /* record SW API status value */
1787 hw->swapi.status = le32_to_cpu(err_msg.status);
1788
1789 return 0;
1790}
1791
1792static const struct fm10k_msg_data fm10k_msg_data_pf[] = {
1793 FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
1794 FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
1795 FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf),
1796 FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
1797 FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
1798 FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf),
1799 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
1800};
1801
1802static const struct fm10k_mac_ops mac_ops_pf = {
1803 .get_bus_info = fm10k_get_bus_info_generic,
1804 .reset_hw = fm10k_reset_hw_pf,
1805 .init_hw = fm10k_init_hw_pf,
1806 .start_hw = fm10k_start_hw_generic,
1807 .stop_hw = fm10k_stop_hw_generic,
1808 .update_vlan = fm10k_update_vlan_pf,
1809 .read_mac_addr = fm10k_read_mac_addr_pf,
1810 .update_uc_addr = fm10k_update_uc_addr_pf,
1811 .update_mc_addr = fm10k_update_mc_addr_pf,
1812 .update_xcast_mode = fm10k_update_xcast_mode_pf,
1813 .update_int_moderator = fm10k_update_int_moderator_pf,
1814 .update_lport_state = fm10k_update_lport_state_pf,
1815 .update_hw_stats = fm10k_update_hw_stats_pf,
1816 .rebind_hw_stats = fm10k_rebind_hw_stats_pf,
1817 .configure_dglort_map = fm10k_configure_dglort_map_pf,
1818 .set_dma_mask = fm10k_set_dma_mask_pf,
1819 .get_fault = fm10k_get_fault_pf,
1820 .get_host_state = fm10k_get_host_state_pf,
1821 .request_lport_map = fm10k_request_lport_map_pf,
1822};
1823
1824static const struct fm10k_iov_ops iov_ops_pf = {
1825 .assign_resources = fm10k_iov_assign_resources_pf,
1826 .configure_tc = fm10k_iov_configure_tc_pf,
1827 .assign_int_moderator = fm10k_iov_assign_int_moderator_pf,
1828 .assign_default_mac_vlan = fm10k_iov_assign_default_mac_vlan_pf,
1829 .reset_resources = fm10k_iov_reset_resources_pf,
1830 .set_lport = fm10k_iov_set_lport_pf,
1831 .reset_lport = fm10k_iov_reset_lport_pf,
1832 .update_stats = fm10k_iov_update_stats_pf,
1833};
1834
1835static s32 fm10k_get_invariants_pf(struct fm10k_hw *hw)
1836{
1837 fm10k_get_invariants_generic(hw);
1838
1839 return fm10k_sm_mbx_init(hw, &hw->mbx, fm10k_msg_data_pf);
1840}
1841
1842const struct fm10k_info fm10k_pf_info = {
1843 .mac = fm10k_mac_pf,
1844 .get_invariants = fm10k_get_invariants_pf,
1845 .mac_ops = &mac_ops_pf,
1846 .iov_ops = &iov_ops_pf,
1847};