Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * buffered writeback throttling. loosely based on CoDel. We can't drop
  3 * packets for IO scheduling, so the logic is something like this:
  4 *
  5 * - Monitor latencies in a defined window of time.
  6 * - If the minimum latency in the above window exceeds some target, increment
  7 *   scaling step and scale down queue depth by a factor of 2x. The monitoring
  8 *   window is then shrunk to 100 / sqrt(scaling step + 1).
  9 * - For any window where we don't have solid data on what the latencies
 10 *   look like, retain status quo.
 11 * - If latencies look good, decrement scaling step.
 12 * - If we're only doing writes, allow the scaling step to go negative. This
 13 *   will temporarily boost write performance, snapping back to a stable
 14 *   scaling step of 0 if reads show up or the heavy writers finish. Unlike
 15 *   positive scaling steps where we shrink the monitoring window, a negative
 16 *   scaling step retains the default step==0 window size.
 17 *
 18 * Copyright (C) 2016 Jens Axboe
 19 *
 20 */
 21#include <linux/kernel.h>
 22#include <linux/blk_types.h>
 23#include <linux/slab.h>
 24#include <linux/backing-dev.h>
 25#include <linux/swap.h>
 26
 27#include "blk-wbt.h"
 28
 29#define CREATE_TRACE_POINTS
 30#include <trace/events/wbt.h>
 31
 32enum {
 33	/*
 34	 * Default setting, we'll scale up (to 75% of QD max) or down (min 1)
 35	 * from here depending on device stats
 36	 */
 37	RWB_DEF_DEPTH	= 16,
 38
 39	/*
 40	 * 100msec window
 41	 */
 42	RWB_WINDOW_NSEC		= 100 * 1000 * 1000ULL,
 43
 44	/*
 45	 * Disregard stats, if we don't meet this minimum
 46	 */
 47	RWB_MIN_WRITE_SAMPLES	= 3,
 48
 49	/*
 50	 * If we have this number of consecutive windows with not enough
 51	 * information to scale up or down, scale up.
 52	 */
 53	RWB_UNKNOWN_BUMP	= 5,
 54};
 55
 56static inline bool rwb_enabled(struct rq_wb *rwb)
 57{
 58	return rwb && rwb->wb_normal != 0;
 59}
 60
 61/*
 62 * Increment 'v', if 'v' is below 'below'. Returns true if we succeeded,
 63 * false if 'v' + 1 would be bigger than 'below'.
 64 */
 65static bool atomic_inc_below(atomic_t *v, int below)
 66{
 67	int cur = atomic_read(v);
 68
 69	for (;;) {
 70		int old;
 71
 72		if (cur >= below)
 73			return false;
 74		old = atomic_cmpxchg(v, cur, cur + 1);
 75		if (old == cur)
 76			break;
 77		cur = old;
 78	}
 79
 80	return true;
 81}
 82
 83static void wb_timestamp(struct rq_wb *rwb, unsigned long *var)
 84{
 85	if (rwb_enabled(rwb)) {
 86		const unsigned long cur = jiffies;
 87
 88		if (cur != *var)
 89			*var = cur;
 90	}
 91}
 92
 93/*
 94 * If a task was rate throttled in balance_dirty_pages() within the last
 95 * second or so, use that to indicate a higher cleaning rate.
 96 */
 97static bool wb_recent_wait(struct rq_wb *rwb)
 98{
 99	struct bdi_writeback *wb = &rwb->queue->backing_dev_info->wb;
100
101	return time_before(jiffies, wb->dirty_sleep + HZ);
102}
103
104static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb, bool is_kswapd)
105{
106	return &rwb->rq_wait[is_kswapd];
107}
108
109static void rwb_wake_all(struct rq_wb *rwb)
110{
111	int i;
112
113	for (i = 0; i < WBT_NUM_RWQ; i++) {
114		struct rq_wait *rqw = &rwb->rq_wait[i];
115
116		if (waitqueue_active(&rqw->wait))
117			wake_up_all(&rqw->wait);
118	}
119}
120
121void __wbt_done(struct rq_wb *rwb, enum wbt_flags wb_acct)
122{
123	struct rq_wait *rqw;
124	int inflight, limit;
125
126	if (!(wb_acct & WBT_TRACKED))
127		return;
128
129	rqw = get_rq_wait(rwb, wb_acct & WBT_KSWAPD);
130	inflight = atomic_dec_return(&rqw->inflight);
131
132	/*
133	 * wbt got disabled with IO in flight. Wake up any potential
134	 * waiters, we don't have to do more than that.
135	 */
136	if (unlikely(!rwb_enabled(rwb))) {
137		rwb_wake_all(rwb);
138		return;
139	}
140
141	/*
142	 * If the device does write back caching, drop further down
143	 * before we wake people up.
144	 */
145	if (rwb->wc && !wb_recent_wait(rwb))
146		limit = 0;
147	else
148		limit = rwb->wb_normal;
149
150	/*
151	 * Don't wake anyone up if we are above the normal limit.
152	 */
153	if (inflight && inflight >= limit)
154		return;
155
156	if (waitqueue_active(&rqw->wait)) {
157		int diff = limit - inflight;
158
159		if (!inflight || diff >= rwb->wb_background / 2)
160			wake_up_all(&rqw->wait);
161	}
162}
163
164/*
165 * Called on completion of a request. Note that it's also called when
166 * a request is merged, when the request gets freed.
167 */
168void wbt_done(struct rq_wb *rwb, struct blk_issue_stat *stat)
169{
170	if (!rwb)
171		return;
172
173	if (!wbt_is_tracked(stat)) {
174		if (rwb->sync_cookie == stat) {
175			rwb->sync_issue = 0;
176			rwb->sync_cookie = NULL;
177		}
178
179		if (wbt_is_read(stat))
180			wb_timestamp(rwb, &rwb->last_comp);
 
181	} else {
182		WARN_ON_ONCE(stat == rwb->sync_cookie);
183		__wbt_done(rwb, wbt_stat_to_mask(stat));
 
184	}
185	wbt_clear_state(stat);
186}
187
188/*
189 * Return true, if we can't increase the depth further by scaling
190 */
191static bool calc_wb_limits(struct rq_wb *rwb)
192{
193	unsigned int depth;
194	bool ret = false;
195
196	if (!rwb->min_lat_nsec) {
197		rwb->wb_max = rwb->wb_normal = rwb->wb_background = 0;
198		return false;
199	}
200
201	/*
202	 * For QD=1 devices, this is a special case. It's important for those
203	 * to have one request ready when one completes, so force a depth of
204	 * 2 for those devices. On the backend, it'll be a depth of 1 anyway,
205	 * since the device can't have more than that in flight. If we're
206	 * scaling down, then keep a setting of 1/1/1.
207	 */
208	if (rwb->queue_depth == 1) {
209		if (rwb->scale_step > 0)
210			rwb->wb_max = rwb->wb_normal = 1;
211		else {
212			rwb->wb_max = rwb->wb_normal = 2;
213			ret = true;
214		}
215		rwb->wb_background = 1;
216	} else {
217		/*
218		 * scale_step == 0 is our default state. If we have suffered
219		 * latency spikes, step will be > 0, and we shrink the
220		 * allowed write depths. If step is < 0, we're only doing
221		 * writes, and we allow a temporarily higher depth to
222		 * increase performance.
223		 */
224		depth = min_t(unsigned int, RWB_DEF_DEPTH, rwb->queue_depth);
225		if (rwb->scale_step > 0)
226			depth = 1 + ((depth - 1) >> min(31, rwb->scale_step));
227		else if (rwb->scale_step < 0) {
228			unsigned int maxd = 3 * rwb->queue_depth / 4;
229
230			depth = 1 + ((depth - 1) << -rwb->scale_step);
231			if (depth > maxd) {
232				depth = maxd;
233				ret = true;
234			}
235		}
236
237		/*
238		 * Set our max/normal/bg queue depths based on how far
239		 * we have scaled down (->scale_step).
240		 */
241		rwb->wb_max = depth;
242		rwb->wb_normal = (rwb->wb_max + 1) / 2;
243		rwb->wb_background = (rwb->wb_max + 3) / 4;
244	}
245
246	return ret;
247}
248
249static inline bool stat_sample_valid(struct blk_rq_stat *stat)
250{
251	/*
252	 * We need at least one read sample, and a minimum of
253	 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know
254	 * that it's writes impacting us, and not just some sole read on
255	 * a device that is in a lower power state.
256	 */
257	return (stat[READ].nr_samples >= 1 &&
258		stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES);
259}
260
261static u64 rwb_sync_issue_lat(struct rq_wb *rwb)
262{
263	u64 now, issue = READ_ONCE(rwb->sync_issue);
264
265	if (!issue || !rwb->sync_cookie)
266		return 0;
267
268	now = ktime_to_ns(ktime_get());
269	return now - issue;
270}
271
272enum {
273	LAT_OK = 1,
274	LAT_UNKNOWN,
275	LAT_UNKNOWN_WRITES,
276	LAT_EXCEEDED,
277};
278
279static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat)
280{
281	struct backing_dev_info *bdi = rwb->queue->backing_dev_info;
282	u64 thislat;
283
284	/*
285	 * If our stored sync issue exceeds the window size, or it
286	 * exceeds our min target AND we haven't logged any entries,
287	 * flag the latency as exceeded. wbt works off completion latencies,
288	 * but for a flooded device, a single sync IO can take a long time
289	 * to complete after being issued. If this time exceeds our
290	 * monitoring window AND we didn't see any other completions in that
291	 * window, then count that sync IO as a violation of the latency.
292	 */
293	thislat = rwb_sync_issue_lat(rwb);
294	if (thislat > rwb->cur_win_nsec ||
295	    (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) {
296		trace_wbt_lat(bdi, thislat);
297		return LAT_EXCEEDED;
298	}
299
300	/*
301	 * No read/write mix, if stat isn't valid
302	 */
303	if (!stat_sample_valid(stat)) {
304		/*
305		 * If we had writes in this stat window and the window is
306		 * current, we're only doing writes. If a task recently
307		 * waited or still has writes in flights, consider us doing
308		 * just writes as well.
309		 */
310		if (stat[WRITE].nr_samples || wb_recent_wait(rwb) ||
311		    wbt_inflight(rwb))
312			return LAT_UNKNOWN_WRITES;
313		return LAT_UNKNOWN;
314	}
315
316	/*
317	 * If the 'min' latency exceeds our target, step down.
318	 */
319	if (stat[READ].min > rwb->min_lat_nsec) {
320		trace_wbt_lat(bdi, stat[READ].min);
321		trace_wbt_stat(bdi, stat);
322		return LAT_EXCEEDED;
323	}
324
325	if (rwb->scale_step)
326		trace_wbt_stat(bdi, stat);
327
328	return LAT_OK;
329}
330
 
 
 
 
 
 
 
 
331static void rwb_trace_step(struct rq_wb *rwb, const char *msg)
332{
333	struct backing_dev_info *bdi = rwb->queue->backing_dev_info;
334
335	trace_wbt_step(bdi, msg, rwb->scale_step, rwb->cur_win_nsec,
336			rwb->wb_background, rwb->wb_normal, rwb->wb_max);
337}
338
339static void scale_up(struct rq_wb *rwb)
340{
341	/*
342	 * Hit max in previous round, stop here
343	 */
344	if (rwb->scaled_max)
345		return;
346
347	rwb->scale_step--;
348	rwb->unknown_cnt = 0;
 
349
350	rwb->scaled_max = calc_wb_limits(rwb);
351
352	rwb_wake_all(rwb);
353
354	rwb_trace_step(rwb, "step up");
355}
356
357/*
358 * Scale rwb down. If 'hard_throttle' is set, do it quicker, since we
359 * had a latency violation.
360 */
361static void scale_down(struct rq_wb *rwb, bool hard_throttle)
362{
363	/*
364	 * Stop scaling down when we've hit the limit. This also prevents
365	 * ->scale_step from going to crazy values, if the device can't
366	 * keep up.
367	 */
368	if (rwb->wb_max == 1)
369		return;
370
371	if (rwb->scale_step < 0 && hard_throttle)
372		rwb->scale_step = 0;
373	else
374		rwb->scale_step++;
375
376	rwb->scaled_max = false;
377	rwb->unknown_cnt = 0;
 
378	calc_wb_limits(rwb);
379	rwb_trace_step(rwb, "step down");
380}
381
382static void rwb_arm_timer(struct rq_wb *rwb)
383{
 
 
384	if (rwb->scale_step > 0) {
385		/*
386		 * We should speed this up, using some variant of a fast
387		 * integer inverse square root calculation. Since we only do
388		 * this for every window expiration, it's not a huge deal,
389		 * though.
390		 */
391		rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4,
392					int_sqrt((rwb->scale_step + 1) << 8));
393	} else {
394		/*
395		 * For step < 0, we don't want to increase/decrease the
396		 * window size.
397		 */
398		rwb->cur_win_nsec = rwb->win_nsec;
399	}
400
401	blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec);
 
402}
403
404static void wb_timer_fn(struct blk_stat_callback *cb)
405{
406	struct rq_wb *rwb = cb->data;
407	unsigned int inflight = wbt_inflight(rwb);
408	int status;
409
410	status = latency_exceeded(rwb, cb->stat);
411
412	trace_wbt_timer(rwb->queue->backing_dev_info, status, rwb->scale_step,
413			inflight);
414
415	/*
416	 * If we exceeded the latency target, step down. If we did not,
417	 * step one level up. If we don't know enough to say either exceeded
418	 * or ok, then don't do anything.
419	 */
420	switch (status) {
421	case LAT_EXCEEDED:
422		scale_down(rwb, true);
423		break;
424	case LAT_OK:
425		scale_up(rwb);
426		break;
427	case LAT_UNKNOWN_WRITES:
428		/*
429		 * We started a the center step, but don't have a valid
430		 * read/write sample, but we do have writes going on.
431		 * Allow step to go negative, to increase write perf.
432		 */
433		scale_up(rwb);
434		break;
435	case LAT_UNKNOWN:
436		if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP)
437			break;
438		/*
439		 * We get here when previously scaled reduced depth, and we
440		 * currently don't have a valid read/write sample. For that
441		 * case, slowly return to center state (step == 0).
442		 */
443		if (rwb->scale_step > 0)
444			scale_up(rwb);
445		else if (rwb->scale_step < 0)
446			scale_down(rwb, false);
447		break;
448	default:
449		break;
450	}
451
452	/*
453	 * Re-arm timer, if we have IO in flight
454	 */
455	if (rwb->scale_step || inflight)
456		rwb_arm_timer(rwb);
457}
458
459void wbt_update_limits(struct rq_wb *rwb)
460{
461	rwb->scale_step = 0;
462	rwb->scaled_max = false;
463	calc_wb_limits(rwb);
464
465	rwb_wake_all(rwb);
466}
467
468static bool close_io(struct rq_wb *rwb)
469{
470	const unsigned long now = jiffies;
471
472	return time_before(now, rwb->last_issue + HZ / 10) ||
473		time_before(now, rwb->last_comp + HZ / 10);
474}
475
476#define REQ_HIPRIO	(REQ_SYNC | REQ_META | REQ_PRIO)
477
478static inline unsigned int get_limit(struct rq_wb *rwb, unsigned long rw)
479{
480	unsigned int limit;
481
482	/*
483	 * At this point we know it's a buffered write. If this is
484	 * kswapd trying to free memory, or REQ_SYNC is set, then
485	 * it's WB_SYNC_ALL writeback, and we'll use the max limit for
486	 * that. If the write is marked as a background write, then use
487	 * the idle limit, or go to normal if we haven't had competing
488	 * IO for a bit.
489	 */
490	if ((rw & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd())
491		limit = rwb->wb_max;
492	else if ((rw & REQ_BACKGROUND) || close_io(rwb)) {
493		/*
494		 * If less than 100ms since we completed unrelated IO,
495		 * limit us to half the depth for background writeback.
496		 */
497		limit = rwb->wb_background;
498	} else
499		limit = rwb->wb_normal;
500
501	return limit;
502}
503
504static inline bool may_queue(struct rq_wb *rwb, struct rq_wait *rqw,
505			     wait_queue_entry_t *wait, unsigned long rw)
506{
507	/*
508	 * inc it here even if disabled, since we'll dec it at completion.
509	 * this only happens if the task was sleeping in __wbt_wait(),
510	 * and someone turned it off at the same time.
511	 */
512	if (!rwb_enabled(rwb)) {
513		atomic_inc(&rqw->inflight);
514		return true;
515	}
516
517	/*
518	 * If the waitqueue is already active and we are not the next
519	 * in line to be woken up, wait for our turn.
520	 */
521	if (waitqueue_active(&rqw->wait) &&
522	    rqw->wait.head.next != &wait->entry)
523		return false;
524
525	return atomic_inc_below(&rqw->inflight, get_limit(rwb, rw));
526}
527
528/*
529 * Block if we will exceed our limit, or if we are currently waiting for
530 * the timer to kick off queuing again.
531 */
532static void __wbt_wait(struct rq_wb *rwb, unsigned long rw, spinlock_t *lock)
533	__releases(lock)
534	__acquires(lock)
535{
536	struct rq_wait *rqw = get_rq_wait(rwb, current_is_kswapd());
537	DEFINE_WAIT(wait);
538
539	if (may_queue(rwb, rqw, &wait, rw))
540		return;
541
542	do {
543		prepare_to_wait_exclusive(&rqw->wait, &wait,
544						TASK_UNINTERRUPTIBLE);
545
546		if (may_queue(rwb, rqw, &wait, rw))
547			break;
548
549		if (lock) {
550			spin_unlock_irq(lock);
551			io_schedule();
552			spin_lock_irq(lock);
553		} else
554			io_schedule();
555	} while (1);
556
557	finish_wait(&rqw->wait, &wait);
558}
559
560static inline bool wbt_should_throttle(struct rq_wb *rwb, struct bio *bio)
561{
562	const int op = bio_op(bio);
563
564	/*
565	 * If not a WRITE, do nothing
566	 */
567	if (op != REQ_OP_WRITE)
568		return false;
569
570	/*
571	 * Don't throttle WRITE_ODIRECT
572	 */
573	if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) == (REQ_SYNC | REQ_IDLE))
574		return false;
575
576	return true;
577}
578
579/*
580 * Returns true if the IO request should be accounted, false if not.
581 * May sleep, if we have exceeded the writeback limits. Caller can pass
582 * in an irq held spinlock, if it holds one when calling this function.
583 * If we do sleep, we'll release and re-grab it.
584 */
585enum wbt_flags wbt_wait(struct rq_wb *rwb, struct bio *bio, spinlock_t *lock)
586{
587	unsigned int ret = 0;
588
589	if (!rwb_enabled(rwb))
590		return 0;
591
592	if (bio_op(bio) == REQ_OP_READ)
593		ret = WBT_READ;
594
595	if (!wbt_should_throttle(rwb, bio)) {
596		if (ret & WBT_READ)
597			wb_timestamp(rwb, &rwb->last_issue);
598		return ret;
599	}
600
601	__wbt_wait(rwb, bio->bi_opf, lock);
602
603	if (!blk_stat_is_active(rwb->cb))
604		rwb_arm_timer(rwb);
605
606	if (current_is_kswapd())
607		ret |= WBT_KSWAPD;
608
609	return ret | WBT_TRACKED;
610}
611
612void wbt_issue(struct rq_wb *rwb, struct blk_issue_stat *stat)
613{
614	if (!rwb_enabled(rwb))
615		return;
616
617	/*
618	 * Track sync issue, in case it takes a long time to complete. Allows
619	 * us to react quicker, if a sync IO takes a long time to complete.
620	 * Note that this is just a hint. 'stat' can go away when the
621	 * request completes, so it's important we never dereference it. We
622	 * only use the address to compare with, which is why we store the
623	 * sync_issue time locally.
624	 */
625	if (wbt_is_read(stat) && !rwb->sync_issue) {
626		rwb->sync_cookie = stat;
627		rwb->sync_issue = blk_stat_time(stat);
628	}
629}
630
631void wbt_requeue(struct rq_wb *rwb, struct blk_issue_stat *stat)
632{
633	if (!rwb_enabled(rwb))
634		return;
635	if (stat == rwb->sync_cookie) {
636		rwb->sync_issue = 0;
637		rwb->sync_cookie = NULL;
638	}
639}
640
641void wbt_set_queue_depth(struct rq_wb *rwb, unsigned int depth)
642{
643	if (rwb) {
644		rwb->queue_depth = depth;
645		wbt_update_limits(rwb);
646	}
647}
648
649void wbt_set_write_cache(struct rq_wb *rwb, bool write_cache_on)
650{
651	if (rwb)
652		rwb->wc = write_cache_on;
653}
654
655/*
656 * Disable wbt, if enabled by default.
 
657 */
658void wbt_disable_default(struct request_queue *q)
659{
660	struct rq_wb *rwb = q->rq_wb;
661
662	if (rwb && rwb->enable_state == WBT_STATE_ON_DEFAULT)
663		wbt_exit(q);
 
 
 
664}
665EXPORT_SYMBOL_GPL(wbt_disable_default);
666
667/*
668 * Enable wbt if defaults are configured that way
669 */
670void wbt_enable_default(struct request_queue *q)
671{
672	/* Throttling already enabled? */
673	if (q->rq_wb)
674		return;
675
676	/* Queue not registered? Maybe shutting down... */
677	if (!test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags))
678		return;
679
680	if ((q->mq_ops && IS_ENABLED(CONFIG_BLK_WBT_MQ)) ||
681	    (q->request_fn && IS_ENABLED(CONFIG_BLK_WBT_SQ)))
682		wbt_init(q);
683}
684EXPORT_SYMBOL_GPL(wbt_enable_default);
685
686u64 wbt_default_latency_nsec(struct request_queue *q)
687{
688	/*
689	 * We default to 2msec for non-rotational storage, and 75msec
690	 * for rotational storage.
691	 */
692	if (blk_queue_nonrot(q))
693		return 2000000ULL;
694	else
695		return 75000000ULL;
696}
697
698static int wbt_data_dir(const struct request *rq)
699{
700	const int op = req_op(rq);
701
702	if (op == REQ_OP_READ)
703		return READ;
704	else if (op == REQ_OP_WRITE || op == REQ_OP_FLUSH)
705		return WRITE;
706
707	/* don't account */
708	return -1;
709}
710
711int wbt_init(struct request_queue *q)
712{
713	struct rq_wb *rwb;
714	int i;
715
 
 
 
 
 
 
716	BUILD_BUG_ON(WBT_NR_BITS > BLK_STAT_RES_BITS);
717
718	rwb = kzalloc(sizeof(*rwb), GFP_KERNEL);
719	if (!rwb)
720		return -ENOMEM;
721
722	rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb);
723	if (!rwb->cb) {
724		kfree(rwb);
725		return -ENOMEM;
726	}
727
728	for (i = 0; i < WBT_NUM_RWQ; i++) {
729		atomic_set(&rwb->rq_wait[i].inflight, 0);
730		init_waitqueue_head(&rwb->rq_wait[i].wait);
731	}
732
 
 
 
733	rwb->last_comp = rwb->last_issue = jiffies;
734	rwb->queue = q;
735	rwb->win_nsec = RWB_WINDOW_NSEC;
736	rwb->enable_state = WBT_STATE_ON_DEFAULT;
737	wbt_update_limits(rwb);
738
739	/*
740	 * Assign rwb and add the stats callback.
741	 */
742	q->rq_wb = rwb;
743	blk_stat_add_callback(q, rwb->cb);
744
745	rwb->min_lat_nsec = wbt_default_latency_nsec(q);
746
747	wbt_set_queue_depth(rwb, blk_queue_depth(q));
748	wbt_set_write_cache(rwb, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
749
750	return 0;
751}
752
753void wbt_exit(struct request_queue *q)
754{
755	struct rq_wb *rwb = q->rq_wb;
756
757	if (rwb) {
758		blk_stat_remove_callback(q, rwb->cb);
759		blk_stat_free_callback(rwb->cb);
760		q->rq_wb = NULL;
761		kfree(rwb);
762	}
763}
v4.10.11
  1/*
  2 * buffered writeback throttling. loosely based on CoDel. We can't drop
  3 * packets for IO scheduling, so the logic is something like this:
  4 *
  5 * - Monitor latencies in a defined window of time.
  6 * - If the minimum latency in the above window exceeds some target, increment
  7 *   scaling step and scale down queue depth by a factor of 2x. The monitoring
  8 *   window is then shrunk to 100 / sqrt(scaling step + 1).
  9 * - For any window where we don't have solid data on what the latencies
 10 *   look like, retain status quo.
 11 * - If latencies look good, decrement scaling step.
 12 * - If we're only doing writes, allow the scaling step to go negative. This
 13 *   will temporarily boost write performance, snapping back to a stable
 14 *   scaling step of 0 if reads show up or the heavy writers finish. Unlike
 15 *   positive scaling steps where we shrink the monitoring window, a negative
 16 *   scaling step retains the default step==0 window size.
 17 *
 18 * Copyright (C) 2016 Jens Axboe
 19 *
 20 */
 21#include <linux/kernel.h>
 22#include <linux/blk_types.h>
 23#include <linux/slab.h>
 24#include <linux/backing-dev.h>
 25#include <linux/swap.h>
 26
 27#include "blk-wbt.h"
 28
 29#define CREATE_TRACE_POINTS
 30#include <trace/events/wbt.h>
 31
 32enum {
 33	/*
 34	 * Default setting, we'll scale up (to 75% of QD max) or down (min 1)
 35	 * from here depending on device stats
 36	 */
 37	RWB_DEF_DEPTH	= 16,
 38
 39	/*
 40	 * 100msec window
 41	 */
 42	RWB_WINDOW_NSEC		= 100 * 1000 * 1000ULL,
 43
 44	/*
 45	 * Disregard stats, if we don't meet this minimum
 46	 */
 47	RWB_MIN_WRITE_SAMPLES	= 3,
 48
 49	/*
 50	 * If we have this number of consecutive windows with not enough
 51	 * information to scale up or down, scale up.
 52	 */
 53	RWB_UNKNOWN_BUMP	= 5,
 54};
 55
 56static inline bool rwb_enabled(struct rq_wb *rwb)
 57{
 58	return rwb && rwb->wb_normal != 0;
 59}
 60
 61/*
 62 * Increment 'v', if 'v' is below 'below'. Returns true if we succeeded,
 63 * false if 'v' + 1 would be bigger than 'below'.
 64 */
 65static bool atomic_inc_below(atomic_t *v, int below)
 66{
 67	int cur = atomic_read(v);
 68
 69	for (;;) {
 70		int old;
 71
 72		if (cur >= below)
 73			return false;
 74		old = atomic_cmpxchg(v, cur, cur + 1);
 75		if (old == cur)
 76			break;
 77		cur = old;
 78	}
 79
 80	return true;
 81}
 82
 83static void wb_timestamp(struct rq_wb *rwb, unsigned long *var)
 84{
 85	if (rwb_enabled(rwb)) {
 86		const unsigned long cur = jiffies;
 87
 88		if (cur != *var)
 89			*var = cur;
 90	}
 91}
 92
 93/*
 94 * If a task was rate throttled in balance_dirty_pages() within the last
 95 * second or so, use that to indicate a higher cleaning rate.
 96 */
 97static bool wb_recent_wait(struct rq_wb *rwb)
 98{
 99	struct bdi_writeback *wb = &rwb->queue->backing_dev_info.wb;
100
101	return time_before(jiffies, wb->dirty_sleep + HZ);
102}
103
104static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb, bool is_kswapd)
105{
106	return &rwb->rq_wait[is_kswapd];
107}
108
109static void rwb_wake_all(struct rq_wb *rwb)
110{
111	int i;
112
113	for (i = 0; i < WBT_NUM_RWQ; i++) {
114		struct rq_wait *rqw = &rwb->rq_wait[i];
115
116		if (waitqueue_active(&rqw->wait))
117			wake_up_all(&rqw->wait);
118	}
119}
120
121void __wbt_done(struct rq_wb *rwb, enum wbt_flags wb_acct)
122{
123	struct rq_wait *rqw;
124	int inflight, limit;
125
126	if (!(wb_acct & WBT_TRACKED))
127		return;
128
129	rqw = get_rq_wait(rwb, wb_acct & WBT_KSWAPD);
130	inflight = atomic_dec_return(&rqw->inflight);
131
132	/*
133	 * wbt got disabled with IO in flight. Wake up any potential
134	 * waiters, we don't have to do more than that.
135	 */
136	if (unlikely(!rwb_enabled(rwb))) {
137		rwb_wake_all(rwb);
138		return;
139	}
140
141	/*
142	 * If the device does write back caching, drop further down
143	 * before we wake people up.
144	 */
145	if (rwb->wc && !wb_recent_wait(rwb))
146		limit = 0;
147	else
148		limit = rwb->wb_normal;
149
150	/*
151	 * Don't wake anyone up if we are above the normal limit.
152	 */
153	if (inflight && inflight >= limit)
154		return;
155
156	if (waitqueue_active(&rqw->wait)) {
157		int diff = limit - inflight;
158
159		if (!inflight || diff >= rwb->wb_background / 2)
160			wake_up_all(&rqw->wait);
161	}
162}
163
164/*
165 * Called on completion of a request. Note that it's also called when
166 * a request is merged, when the request gets freed.
167 */
168void wbt_done(struct rq_wb *rwb, struct blk_issue_stat *stat)
169{
170	if (!rwb)
171		return;
172
173	if (!wbt_is_tracked(stat)) {
174		if (rwb->sync_cookie == stat) {
175			rwb->sync_issue = 0;
176			rwb->sync_cookie = NULL;
177		}
178
179		if (wbt_is_read(stat))
180			wb_timestamp(rwb, &rwb->last_comp);
181		wbt_clear_state(stat);
182	} else {
183		WARN_ON_ONCE(stat == rwb->sync_cookie);
184		__wbt_done(rwb, wbt_stat_to_mask(stat));
185		wbt_clear_state(stat);
186	}
 
187}
188
189/*
190 * Return true, if we can't increase the depth further by scaling
191 */
192static bool calc_wb_limits(struct rq_wb *rwb)
193{
194	unsigned int depth;
195	bool ret = false;
196
197	if (!rwb->min_lat_nsec) {
198		rwb->wb_max = rwb->wb_normal = rwb->wb_background = 0;
199		return false;
200	}
201
202	/*
203	 * For QD=1 devices, this is a special case. It's important for those
204	 * to have one request ready when one completes, so force a depth of
205	 * 2 for those devices. On the backend, it'll be a depth of 1 anyway,
206	 * since the device can't have more than that in flight. If we're
207	 * scaling down, then keep a setting of 1/1/1.
208	 */
209	if (rwb->queue_depth == 1) {
210		if (rwb->scale_step > 0)
211			rwb->wb_max = rwb->wb_normal = 1;
212		else {
213			rwb->wb_max = rwb->wb_normal = 2;
214			ret = true;
215		}
216		rwb->wb_background = 1;
217	} else {
218		/*
219		 * scale_step == 0 is our default state. If we have suffered
220		 * latency spikes, step will be > 0, and we shrink the
221		 * allowed write depths. If step is < 0, we're only doing
222		 * writes, and we allow a temporarily higher depth to
223		 * increase performance.
224		 */
225		depth = min_t(unsigned int, RWB_DEF_DEPTH, rwb->queue_depth);
226		if (rwb->scale_step > 0)
227			depth = 1 + ((depth - 1) >> min(31, rwb->scale_step));
228		else if (rwb->scale_step < 0) {
229			unsigned int maxd = 3 * rwb->queue_depth / 4;
230
231			depth = 1 + ((depth - 1) << -rwb->scale_step);
232			if (depth > maxd) {
233				depth = maxd;
234				ret = true;
235			}
236		}
237
238		/*
239		 * Set our max/normal/bg queue depths based on how far
240		 * we have scaled down (->scale_step).
241		 */
242		rwb->wb_max = depth;
243		rwb->wb_normal = (rwb->wb_max + 1) / 2;
244		rwb->wb_background = (rwb->wb_max + 3) / 4;
245	}
246
247	return ret;
248}
249
250static inline bool stat_sample_valid(struct blk_rq_stat *stat)
251{
252	/*
253	 * We need at least one read sample, and a minimum of
254	 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know
255	 * that it's writes impacting us, and not just some sole read on
256	 * a device that is in a lower power state.
257	 */
258	return stat[BLK_STAT_READ].nr_samples >= 1 &&
259		stat[BLK_STAT_WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES;
260}
261
262static u64 rwb_sync_issue_lat(struct rq_wb *rwb)
263{
264	u64 now, issue = ACCESS_ONCE(rwb->sync_issue);
265
266	if (!issue || !rwb->sync_cookie)
267		return 0;
268
269	now = ktime_to_ns(ktime_get());
270	return now - issue;
271}
272
273enum {
274	LAT_OK = 1,
275	LAT_UNKNOWN,
276	LAT_UNKNOWN_WRITES,
277	LAT_EXCEEDED,
278};
279
280static int __latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat)
281{
282	struct backing_dev_info *bdi = &rwb->queue->backing_dev_info;
283	u64 thislat;
284
285	/*
286	 * If our stored sync issue exceeds the window size, or it
287	 * exceeds our min target AND we haven't logged any entries,
288	 * flag the latency as exceeded. wbt works off completion latencies,
289	 * but for a flooded device, a single sync IO can take a long time
290	 * to complete after being issued. If this time exceeds our
291	 * monitoring window AND we didn't see any other completions in that
292	 * window, then count that sync IO as a violation of the latency.
293	 */
294	thislat = rwb_sync_issue_lat(rwb);
295	if (thislat > rwb->cur_win_nsec ||
296	    (thislat > rwb->min_lat_nsec && !stat[BLK_STAT_READ].nr_samples)) {
297		trace_wbt_lat(bdi, thislat);
298		return LAT_EXCEEDED;
299	}
300
301	/*
302	 * No read/write mix, if stat isn't valid
303	 */
304	if (!stat_sample_valid(stat)) {
305		/*
306		 * If we had writes in this stat window and the window is
307		 * current, we're only doing writes. If a task recently
308		 * waited or still has writes in flights, consider us doing
309		 * just writes as well.
310		 */
311		if ((stat[BLK_STAT_WRITE].nr_samples && blk_stat_is_current(stat)) ||
312		    wb_recent_wait(rwb) || wbt_inflight(rwb))
313			return LAT_UNKNOWN_WRITES;
314		return LAT_UNKNOWN;
315	}
316
317	/*
318	 * If the 'min' latency exceeds our target, step down.
319	 */
320	if (stat[BLK_STAT_READ].min > rwb->min_lat_nsec) {
321		trace_wbt_lat(bdi, stat[BLK_STAT_READ].min);
322		trace_wbt_stat(bdi, stat);
323		return LAT_EXCEEDED;
324	}
325
326	if (rwb->scale_step)
327		trace_wbt_stat(bdi, stat);
328
329	return LAT_OK;
330}
331
332static int latency_exceeded(struct rq_wb *rwb)
333{
334	struct blk_rq_stat stat[2];
335
336	blk_queue_stat_get(rwb->queue, stat);
337	return __latency_exceeded(rwb, stat);
338}
339
340static void rwb_trace_step(struct rq_wb *rwb, const char *msg)
341{
342	struct backing_dev_info *bdi = &rwb->queue->backing_dev_info;
343
344	trace_wbt_step(bdi, msg, rwb->scale_step, rwb->cur_win_nsec,
345			rwb->wb_background, rwb->wb_normal, rwb->wb_max);
346}
347
348static void scale_up(struct rq_wb *rwb)
349{
350	/*
351	 * Hit max in previous round, stop here
352	 */
353	if (rwb->scaled_max)
354		return;
355
356	rwb->scale_step--;
357	rwb->unknown_cnt = 0;
358	blk_stat_clear(rwb->queue);
359
360	rwb->scaled_max = calc_wb_limits(rwb);
361
362	rwb_wake_all(rwb);
363
364	rwb_trace_step(rwb, "step up");
365}
366
367/*
368 * Scale rwb down. If 'hard_throttle' is set, do it quicker, since we
369 * had a latency violation.
370 */
371static void scale_down(struct rq_wb *rwb, bool hard_throttle)
372{
373	/*
374	 * Stop scaling down when we've hit the limit. This also prevents
375	 * ->scale_step from going to crazy values, if the device can't
376	 * keep up.
377	 */
378	if (rwb->wb_max == 1)
379		return;
380
381	if (rwb->scale_step < 0 && hard_throttle)
382		rwb->scale_step = 0;
383	else
384		rwb->scale_step++;
385
386	rwb->scaled_max = false;
387	rwb->unknown_cnt = 0;
388	blk_stat_clear(rwb->queue);
389	calc_wb_limits(rwb);
390	rwb_trace_step(rwb, "step down");
391}
392
393static void rwb_arm_timer(struct rq_wb *rwb)
394{
395	unsigned long expires;
396
397	if (rwb->scale_step > 0) {
398		/*
399		 * We should speed this up, using some variant of a fast
400		 * integer inverse square root calculation. Since we only do
401		 * this for every window expiration, it's not a huge deal,
402		 * though.
403		 */
404		rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4,
405					int_sqrt((rwb->scale_step + 1) << 8));
406	} else {
407		/*
408		 * For step < 0, we don't want to increase/decrease the
409		 * window size.
410		 */
411		rwb->cur_win_nsec = rwb->win_nsec;
412	}
413
414	expires = jiffies + nsecs_to_jiffies(rwb->cur_win_nsec);
415	mod_timer(&rwb->window_timer, expires);
416}
417
418static void wb_timer_fn(unsigned long data)
419{
420	struct rq_wb *rwb = (struct rq_wb *) data;
421	unsigned int inflight = wbt_inflight(rwb);
422	int status;
423
424	status = latency_exceeded(rwb);
425
426	trace_wbt_timer(&rwb->queue->backing_dev_info, status, rwb->scale_step,
427			inflight);
428
429	/*
430	 * If we exceeded the latency target, step down. If we did not,
431	 * step one level up. If we don't know enough to say either exceeded
432	 * or ok, then don't do anything.
433	 */
434	switch (status) {
435	case LAT_EXCEEDED:
436		scale_down(rwb, true);
437		break;
438	case LAT_OK:
439		scale_up(rwb);
440		break;
441	case LAT_UNKNOWN_WRITES:
442		/*
443		 * We started a the center step, but don't have a valid
444		 * read/write sample, but we do have writes going on.
445		 * Allow step to go negative, to increase write perf.
446		 */
447		scale_up(rwb);
448		break;
449	case LAT_UNKNOWN:
450		if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP)
451			break;
452		/*
453		 * We get here when previously scaled reduced depth, and we
454		 * currently don't have a valid read/write sample. For that
455		 * case, slowly return to center state (step == 0).
456		 */
457		if (rwb->scale_step > 0)
458			scale_up(rwb);
459		else if (rwb->scale_step < 0)
460			scale_down(rwb, false);
461		break;
462	default:
463		break;
464	}
465
466	/*
467	 * Re-arm timer, if we have IO in flight
468	 */
469	if (rwb->scale_step || inflight)
470		rwb_arm_timer(rwb);
471}
472
473void wbt_update_limits(struct rq_wb *rwb)
474{
475	rwb->scale_step = 0;
476	rwb->scaled_max = false;
477	calc_wb_limits(rwb);
478
479	rwb_wake_all(rwb);
480}
481
482static bool close_io(struct rq_wb *rwb)
483{
484	const unsigned long now = jiffies;
485
486	return time_before(now, rwb->last_issue + HZ / 10) ||
487		time_before(now, rwb->last_comp + HZ / 10);
488}
489
490#define REQ_HIPRIO	(REQ_SYNC | REQ_META | REQ_PRIO)
491
492static inline unsigned int get_limit(struct rq_wb *rwb, unsigned long rw)
493{
494	unsigned int limit;
495
496	/*
497	 * At this point we know it's a buffered write. If this is
498	 * kswapd trying to free memory, or REQ_SYNC is set, set, then
499	 * it's WB_SYNC_ALL writeback, and we'll use the max limit for
500	 * that. If the write is marked as a background write, then use
501	 * the idle limit, or go to normal if we haven't had competing
502	 * IO for a bit.
503	 */
504	if ((rw & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd())
505		limit = rwb->wb_max;
506	else if ((rw & REQ_BACKGROUND) || close_io(rwb)) {
507		/*
508		 * If less than 100ms since we completed unrelated IO,
509		 * limit us to half the depth for background writeback.
510		 */
511		limit = rwb->wb_background;
512	} else
513		limit = rwb->wb_normal;
514
515	return limit;
516}
517
518static inline bool may_queue(struct rq_wb *rwb, struct rq_wait *rqw,
519			     wait_queue_t *wait, unsigned long rw)
520{
521	/*
522	 * inc it here even if disabled, since we'll dec it at completion.
523	 * this only happens if the task was sleeping in __wbt_wait(),
524	 * and someone turned it off at the same time.
525	 */
526	if (!rwb_enabled(rwb)) {
527		atomic_inc(&rqw->inflight);
528		return true;
529	}
530
531	/*
532	 * If the waitqueue is already active and we are not the next
533	 * in line to be woken up, wait for our turn.
534	 */
535	if (waitqueue_active(&rqw->wait) &&
536	    rqw->wait.task_list.next != &wait->task_list)
537		return false;
538
539	return atomic_inc_below(&rqw->inflight, get_limit(rwb, rw));
540}
541
542/*
543 * Block if we will exceed our limit, or if we are currently waiting for
544 * the timer to kick off queuing again.
545 */
546static void __wbt_wait(struct rq_wb *rwb, unsigned long rw, spinlock_t *lock)
547	__releases(lock)
548	__acquires(lock)
549{
550	struct rq_wait *rqw = get_rq_wait(rwb, current_is_kswapd());
551	DEFINE_WAIT(wait);
552
553	if (may_queue(rwb, rqw, &wait, rw))
554		return;
555
556	do {
557		prepare_to_wait_exclusive(&rqw->wait, &wait,
558						TASK_UNINTERRUPTIBLE);
559
560		if (may_queue(rwb, rqw, &wait, rw))
561			break;
562
563		if (lock) {
564			spin_unlock_irq(lock);
565			io_schedule();
566			spin_lock_irq(lock);
567		} else
568			io_schedule();
569	} while (1);
570
571	finish_wait(&rqw->wait, &wait);
572}
573
574static inline bool wbt_should_throttle(struct rq_wb *rwb, struct bio *bio)
575{
576	const int op = bio_op(bio);
577
578	/*
579	 * If not a WRITE, do nothing
580	 */
581	if (op != REQ_OP_WRITE)
582		return false;
583
584	/*
585	 * Don't throttle WRITE_ODIRECT
586	 */
587	if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) == (REQ_SYNC | REQ_IDLE))
588		return false;
589
590	return true;
591}
592
593/*
594 * Returns true if the IO request should be accounted, false if not.
595 * May sleep, if we have exceeded the writeback limits. Caller can pass
596 * in an irq held spinlock, if it holds one when calling this function.
597 * If we do sleep, we'll release and re-grab it.
598 */
599enum wbt_flags wbt_wait(struct rq_wb *rwb, struct bio *bio, spinlock_t *lock)
600{
601	unsigned int ret = 0;
602
603	if (!rwb_enabled(rwb))
604		return 0;
605
606	if (bio_op(bio) == REQ_OP_READ)
607		ret = WBT_READ;
608
609	if (!wbt_should_throttle(rwb, bio)) {
610		if (ret & WBT_READ)
611			wb_timestamp(rwb, &rwb->last_issue);
612		return ret;
613	}
614
615	__wbt_wait(rwb, bio->bi_opf, lock);
616
617	if (!timer_pending(&rwb->window_timer))
618		rwb_arm_timer(rwb);
619
620	if (current_is_kswapd())
621		ret |= WBT_KSWAPD;
622
623	return ret | WBT_TRACKED;
624}
625
626void wbt_issue(struct rq_wb *rwb, struct blk_issue_stat *stat)
627{
628	if (!rwb_enabled(rwb))
629		return;
630
631	/*
632	 * Track sync issue, in case it takes a long time to complete. Allows
633	 * us to react quicker, if a sync IO takes a long time to complete.
634	 * Note that this is just a hint. 'stat' can go away when the
635	 * request completes, so it's important we never dereference it. We
636	 * only use the address to compare with, which is why we store the
637	 * sync_issue time locally.
638	 */
639	if (wbt_is_read(stat) && !rwb->sync_issue) {
640		rwb->sync_cookie = stat;
641		rwb->sync_issue = blk_stat_time(stat);
642	}
643}
644
645void wbt_requeue(struct rq_wb *rwb, struct blk_issue_stat *stat)
646{
647	if (!rwb_enabled(rwb))
648		return;
649	if (stat == rwb->sync_cookie) {
650		rwb->sync_issue = 0;
651		rwb->sync_cookie = NULL;
652	}
653}
654
655void wbt_set_queue_depth(struct rq_wb *rwb, unsigned int depth)
656{
657	if (rwb) {
658		rwb->queue_depth = depth;
659		wbt_update_limits(rwb);
660	}
661}
662
663void wbt_set_write_cache(struct rq_wb *rwb, bool write_cache_on)
664{
665	if (rwb)
666		rwb->wc = write_cache_on;
667}
668
669 /*
670 * Disable wbt, if enabled by default. Only called from CFQ, if we have
671 * cgroups enabled
672 */
673void wbt_disable_default(struct request_queue *q)
674{
675	struct rq_wb *rwb = q->rq_wb;
676
677	if (rwb && rwb->enable_state == WBT_STATE_ON_DEFAULT) {
678		del_timer_sync(&rwb->window_timer);
679		rwb->win_nsec = rwb->min_lat_nsec = 0;
680		wbt_update_limits(rwb);
681	}
682}
683EXPORT_SYMBOL_GPL(wbt_disable_default);
684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
685u64 wbt_default_latency_nsec(struct request_queue *q)
686{
687	/*
688	 * We default to 2msec for non-rotational storage, and 75msec
689	 * for rotational storage.
690	 */
691	if (blk_queue_nonrot(q))
692		return 2000000ULL;
693	else
694		return 75000000ULL;
695}
696
 
 
 
 
 
 
 
 
 
 
 
 
 
697int wbt_init(struct request_queue *q)
698{
699	struct rq_wb *rwb;
700	int i;
701
702	/*
703	 * For now, we depend on the stats window being larger than
704	 * our monitoring window. Ensure that this isn't inadvertently
705	 * violated.
706	 */
707	BUILD_BUG_ON(RWB_WINDOW_NSEC > BLK_STAT_NSEC);
708	BUILD_BUG_ON(WBT_NR_BITS > BLK_STAT_RES_BITS);
709
710	rwb = kzalloc(sizeof(*rwb), GFP_KERNEL);
711	if (!rwb)
712		return -ENOMEM;
713
 
 
 
 
 
 
714	for (i = 0; i < WBT_NUM_RWQ; i++) {
715		atomic_set(&rwb->rq_wait[i].inflight, 0);
716		init_waitqueue_head(&rwb->rq_wait[i].wait);
717	}
718
719	setup_timer(&rwb->window_timer, wb_timer_fn, (unsigned long) rwb);
720	rwb->wc = 1;
721	rwb->queue_depth = RWB_DEF_DEPTH;
722	rwb->last_comp = rwb->last_issue = jiffies;
723	rwb->queue = q;
724	rwb->win_nsec = RWB_WINDOW_NSEC;
725	rwb->enable_state = WBT_STATE_ON_DEFAULT;
726	wbt_update_limits(rwb);
727
728	/*
729	 * Assign rwb, and turn on stats tracking for this queue
730	 */
731	q->rq_wb = rwb;
732	blk_stat_enable(q);
733
734	rwb->min_lat_nsec = wbt_default_latency_nsec(q);
735
736	wbt_set_queue_depth(rwb, blk_queue_depth(q));
737	wbt_set_write_cache(rwb, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
738
739	return 0;
740}
741
742void wbt_exit(struct request_queue *q)
743{
744	struct rq_wb *rwb = q->rq_wb;
745
746	if (rwb) {
747		del_timer_sync(&rwb->window_timer);
 
748		q->rq_wb = NULL;
749		kfree(rwb);
750	}
751}