Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * Block multiqueue core code
   3 *
   4 * Copyright (C) 2013-2014 Jens Axboe
   5 * Copyright (C) 2013-2014 Christoph Hellwig
   6 */
   7#include <linux/kernel.h>
   8#include <linux/module.h>
   9#include <linux/backing-dev.h>
  10#include <linux/bio.h>
  11#include <linux/blkdev.h>
  12#include <linux/kmemleak.h>
  13#include <linux/mm.h>
  14#include <linux/init.h>
  15#include <linux/slab.h>
  16#include <linux/workqueue.h>
  17#include <linux/smp.h>
  18#include <linux/llist.h>
  19#include <linux/list_sort.h>
  20#include <linux/cpu.h>
  21#include <linux/cache.h>
  22#include <linux/sched/sysctl.h>
  23#include <linux/sched/topology.h>
  24#include <linux/sched/signal.h>
  25#include <linux/delay.h>
  26#include <linux/crash_dump.h>
  27#include <linux/prefetch.h>
  28
  29#include <trace/events/block.h>
  30
  31#include <linux/blk-mq.h>
  32#include "blk.h"
  33#include "blk-mq.h"
  34#include "blk-mq-debugfs.h"
  35#include "blk-mq-tag.h"
  36#include "blk-stat.h"
  37#include "blk-wbt.h"
  38#include "blk-mq-sched.h"
  39
  40static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
  41static void blk_mq_poll_stats_start(struct request_queue *q);
  42static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
  43
  44static int blk_mq_poll_stats_bkt(const struct request *rq)
  45{
  46	int ddir, bytes, bucket;
  47
  48	ddir = rq_data_dir(rq);
  49	bytes = blk_rq_bytes(rq);
  50
  51	bucket = ddir + 2*(ilog2(bytes) - 9);
  52
  53	if (bucket < 0)
  54		return -1;
  55	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
  56		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
  57
  58	return bucket;
  59}
  60
  61/*
  62 * Check if any of the ctx's have pending work in this hardware queue
  63 */
  64static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
  65{
  66	return !list_empty_careful(&hctx->dispatch) ||
  67		sbitmap_any_bit_set(&hctx->ctx_map) ||
  68			blk_mq_sched_has_work(hctx);
  69}
  70
  71/*
  72 * Mark this ctx as having pending work in this hardware queue
  73 */
  74static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
  75				     struct blk_mq_ctx *ctx)
  76{
  77	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
  78		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
  79}
  80
  81static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
  82				      struct blk_mq_ctx *ctx)
  83{
  84	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
  85}
  86
  87struct mq_inflight {
  88	struct hd_struct *part;
  89	unsigned int *inflight;
  90};
  91
  92static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
  93				  struct request *rq, void *priv,
  94				  bool reserved)
  95{
  96	struct mq_inflight *mi = priv;
  97
  98	/*
  99	 * index[0] counts the specific partition that was asked for. index[1]
 100	 * counts the ones that are active on the whole device, so increment
 101	 * that if mi->part is indeed a partition, and not a whole device.
 102	 */
 103	if (rq->part == mi->part)
 104		mi->inflight[0]++;
 105	if (mi->part->partno)
 106		mi->inflight[1]++;
 107}
 108
 109void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
 110		      unsigned int inflight[2])
 111{
 112	struct mq_inflight mi = { .part = part, .inflight = inflight, };
 113
 114	inflight[0] = inflight[1] = 0;
 115	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
 116}
 117
 118static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
 119				     struct request *rq, void *priv,
 120				     bool reserved)
 121{
 122	struct mq_inflight *mi = priv;
 123
 124	if (rq->part == mi->part)
 125		mi->inflight[rq_data_dir(rq)]++;
 126}
 127
 128void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
 129			 unsigned int inflight[2])
 130{
 131	struct mq_inflight mi = { .part = part, .inflight = inflight, };
 132
 133	inflight[0] = inflight[1] = 0;
 134	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
 135}
 136
 137void blk_freeze_queue_start(struct request_queue *q)
 138{
 139	int freeze_depth;
 140
 141	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
 142	if (freeze_depth == 1) {
 143		percpu_ref_kill(&q->q_usage_counter);
 144		if (q->mq_ops)
 145			blk_mq_run_hw_queues(q, false);
 146	}
 147}
 148EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
 149
 150void blk_mq_freeze_queue_wait(struct request_queue *q)
 151{
 152	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
 153}
 154EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
 155
 156int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
 157				     unsigned long timeout)
 158{
 159	return wait_event_timeout(q->mq_freeze_wq,
 160					percpu_ref_is_zero(&q->q_usage_counter),
 161					timeout);
 162}
 163EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
 164
 165/*
 166 * Guarantee no request is in use, so we can change any data structure of
 167 * the queue afterward.
 168 */
 169void blk_freeze_queue(struct request_queue *q)
 170{
 171	/*
 172	 * In the !blk_mq case we are only calling this to kill the
 173	 * q_usage_counter, otherwise this increases the freeze depth
 174	 * and waits for it to return to zero.  For this reason there is
 175	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
 176	 * exported to drivers as the only user for unfreeze is blk_mq.
 177	 */
 178	blk_freeze_queue_start(q);
 179	if (!q->mq_ops)
 180		blk_drain_queue(q);
 181	blk_mq_freeze_queue_wait(q);
 182}
 183
 184void blk_mq_freeze_queue(struct request_queue *q)
 185{
 186	/*
 187	 * ...just an alias to keep freeze and unfreeze actions balanced
 188	 * in the blk_mq_* namespace
 189	 */
 190	blk_freeze_queue(q);
 191}
 192EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
 193
 194void blk_mq_unfreeze_queue(struct request_queue *q)
 195{
 196	int freeze_depth;
 197
 198	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
 199	WARN_ON_ONCE(freeze_depth < 0);
 200	if (!freeze_depth) {
 201		percpu_ref_reinit(&q->q_usage_counter);
 202		wake_up_all(&q->mq_freeze_wq);
 203	}
 204}
 205EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
 206
 207/*
 208 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 209 * mpt3sas driver such that this function can be removed.
 210 */
 211void blk_mq_quiesce_queue_nowait(struct request_queue *q)
 212{
 213	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
 214}
 215EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
 216
 217/**
 218 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
 219 * @q: request queue.
 220 *
 221 * Note: this function does not prevent that the struct request end_io()
 222 * callback function is invoked. Once this function is returned, we make
 223 * sure no dispatch can happen until the queue is unquiesced via
 224 * blk_mq_unquiesce_queue().
 225 */
 226void blk_mq_quiesce_queue(struct request_queue *q)
 227{
 228	struct blk_mq_hw_ctx *hctx;
 229	unsigned int i;
 230	bool rcu = false;
 231
 232	blk_mq_quiesce_queue_nowait(q);
 233
 234	queue_for_each_hw_ctx(q, hctx, i) {
 235		if (hctx->flags & BLK_MQ_F_BLOCKING)
 236			synchronize_srcu(hctx->srcu);
 237		else
 238			rcu = true;
 239	}
 240	if (rcu)
 241		synchronize_rcu();
 242}
 243EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
 244
 245/*
 246 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 247 * @q: request queue.
 248 *
 249 * This function recovers queue into the state before quiescing
 250 * which is done by blk_mq_quiesce_queue.
 251 */
 252void blk_mq_unquiesce_queue(struct request_queue *q)
 253{
 254	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
 255
 256	/* dispatch requests which are inserted during quiescing */
 257	blk_mq_run_hw_queues(q, true);
 258}
 259EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
 260
 261void blk_mq_wake_waiters(struct request_queue *q)
 262{
 263	struct blk_mq_hw_ctx *hctx;
 264	unsigned int i;
 265
 266	queue_for_each_hw_ctx(q, hctx, i)
 267		if (blk_mq_hw_queue_mapped(hctx))
 268			blk_mq_tag_wakeup_all(hctx->tags, true);
 
 
 
 
 
 
 
 269}
 270
 271bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
 272{
 273	return blk_mq_has_free_tags(hctx->tags);
 274}
 275EXPORT_SYMBOL(blk_mq_can_queue);
 276
 277static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
 278		unsigned int tag, unsigned int op)
 279{
 280	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
 281	struct request *rq = tags->static_rqs[tag];
 282	req_flags_t rq_flags = 0;
 283
 284	if (data->flags & BLK_MQ_REQ_INTERNAL) {
 285		rq->tag = -1;
 286		rq->internal_tag = tag;
 287	} else {
 288		if (blk_mq_tag_busy(data->hctx)) {
 289			rq_flags = RQF_MQ_INFLIGHT;
 290			atomic_inc(&data->hctx->nr_active);
 291		}
 292		rq->tag = tag;
 293		rq->internal_tag = -1;
 294		data->hctx->tags->rqs[rq->tag] = rq;
 295	}
 296
 297	/* csd/requeue_work/fifo_time is initialized before use */
 298	rq->q = data->q;
 299	rq->mq_ctx = data->ctx;
 300	rq->rq_flags = rq_flags;
 301	rq->cpu = -1;
 302	rq->cmd_flags = op;
 303	if (data->flags & BLK_MQ_REQ_PREEMPT)
 304		rq->rq_flags |= RQF_PREEMPT;
 305	if (blk_queue_io_stat(data->q))
 306		rq->rq_flags |= RQF_IO_STAT;
 307	INIT_LIST_HEAD(&rq->queuelist);
 
 308	INIT_HLIST_NODE(&rq->hash);
 309	RB_CLEAR_NODE(&rq->rb_node);
 310	rq->rq_disk = NULL;
 311	rq->part = NULL;
 312	rq->start_time = jiffies;
 
 
 
 
 
 313	rq->nr_phys_segments = 0;
 314#if defined(CONFIG_BLK_DEV_INTEGRITY)
 315	rq->nr_integrity_segments = 0;
 316#endif
 317	rq->special = NULL;
 318	/* tag was already set */
 
 
 
 
 319	rq->extra_len = 0;
 320	rq->__deadline = 0;
 
 
 321
 322	INIT_LIST_HEAD(&rq->timeout_list);
 323	rq->timeout = 0;
 324
 325	rq->end_io = NULL;
 326	rq->end_io_data = NULL;
 327	rq->next_rq = NULL;
 328
 329#ifdef CONFIG_BLK_CGROUP
 330	rq->rl = NULL;
 331	set_start_time_ns(rq);
 332	rq->io_start_time_ns = 0;
 333#endif
 334
 335	data->ctx->rq_dispatched[op_is_sync(op)]++;
 336	return rq;
 337}
 338
 339static struct request *blk_mq_get_request(struct request_queue *q,
 340		struct bio *bio, unsigned int op,
 341		struct blk_mq_alloc_data *data)
 342{
 343	struct elevator_queue *e = q->elevator;
 344	struct request *rq;
 345	unsigned int tag;
 346	bool put_ctx_on_error = false;
 347
 348	blk_queue_enter_live(q);
 349	data->q = q;
 350	if (likely(!data->ctx)) {
 351		data->ctx = blk_mq_get_ctx(q);
 352		put_ctx_on_error = true;
 353	}
 354	if (likely(!data->hctx))
 355		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
 356	if (op & REQ_NOWAIT)
 357		data->flags |= BLK_MQ_REQ_NOWAIT;
 358
 359	if (e) {
 360		data->flags |= BLK_MQ_REQ_INTERNAL;
 361
 362		/*
 363		 * Flush requests are special and go directly to the
 364		 * dispatch list.
 365		 */
 366		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
 367			e->type->ops.mq.limit_depth(op, data);
 368	}
 369
 370	tag = blk_mq_get_tag(data);
 371	if (tag == BLK_MQ_TAG_FAIL) {
 372		if (put_ctx_on_error) {
 373			blk_mq_put_ctx(data->ctx);
 374			data->ctx = NULL;
 375		}
 376		blk_queue_exit(q);
 377		return NULL;
 378	}
 379
 380	rq = blk_mq_rq_ctx_init(data, tag, op);
 381	if (!op_is_flush(op)) {
 382		rq->elv.icq = NULL;
 383		if (e && e->type->ops.mq.prepare_request) {
 384			if (e->type->icq_cache && rq_ioc(bio))
 385				blk_mq_sched_assign_ioc(rq, bio);
 386
 387			e->type->ops.mq.prepare_request(rq, bio);
 388			rq->rq_flags |= RQF_ELVPRIV;
 
 389		}
 
 
 
 
 390	}
 391	data->hctx->queued++;
 392	return rq;
 393}
 394
 395struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
 396		blk_mq_req_flags_t flags)
 397{
 398	struct blk_mq_alloc_data alloc_data = { .flags = flags };
 
 399	struct request *rq;
 
 400	int ret;
 401
 402	ret = blk_queue_enter(q, flags);
 403	if (ret)
 404		return ERR_PTR(ret);
 405
 406	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
 407	blk_queue_exit(q);
 
 
 
 408
 409	if (!rq)
 
 410		return ERR_PTR(-EWOULDBLOCK);
 411
 412	blk_mq_put_ctx(alloc_data.ctx);
 413
 414	rq->__data_len = 0;
 415	rq->__sector = (sector_t) -1;
 416	rq->bio = rq->biotail = NULL;
 417	return rq;
 418}
 419EXPORT_SYMBOL(blk_mq_alloc_request);
 420
 421struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
 422	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
 423{
 424	struct blk_mq_alloc_data alloc_data = { .flags = flags };
 
 425	struct request *rq;
 426	unsigned int cpu;
 427	int ret;
 428
 429	/*
 430	 * If the tag allocator sleeps we could get an allocation for a
 431	 * different hardware context.  No need to complicate the low level
 432	 * allocator for this for the rare use case of a command tied to
 433	 * a specific queue.
 434	 */
 435	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
 436		return ERR_PTR(-EINVAL);
 437
 438	if (hctx_idx >= q->nr_hw_queues)
 439		return ERR_PTR(-EIO);
 440
 441	ret = blk_queue_enter(q, flags);
 442	if (ret)
 443		return ERR_PTR(ret);
 444
 445	/*
 446	 * Check if the hardware context is actually mapped to anything.
 447	 * If not tell the caller that it should skip this queue.
 448	 */
 449	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
 450	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
 451		blk_queue_exit(q);
 452		return ERR_PTR(-EXDEV);
 
 
 
 
 
 
 
 
 453	}
 454	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
 455	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
 456
 457	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
 458	blk_queue_exit(q);
 459
 460	if (!rq)
 461		return ERR_PTR(-EWOULDBLOCK);
 462
 463	return rq;
 
 
 
 
 464}
 465EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
 466
 467void blk_mq_free_request(struct request *rq)
 
 468{
 
 469	struct request_queue *q = rq->q;
 470	struct elevator_queue *e = q->elevator;
 471	struct blk_mq_ctx *ctx = rq->mq_ctx;
 472	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
 473	const int sched_tag = rq->internal_tag;
 474
 475	if (rq->rq_flags & RQF_ELVPRIV) {
 476		if (e && e->type->ops.mq.finish_request)
 477			e->type->ops.mq.finish_request(rq);
 478		if (rq->elv.icq) {
 479			put_io_context(rq->elv.icq->ioc);
 480			rq->elv.icq = NULL;
 481		}
 482	}
 483
 484	ctx->rq_completed[rq_is_sync(rq)]++;
 485	if (rq->rq_flags & RQF_MQ_INFLIGHT)
 486		atomic_dec(&hctx->nr_active);
 487
 488	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
 489		laptop_io_completion(q->backing_dev_info);
 490
 491	wbt_done(q->rq_wb, &rq->issue_stat);
 
 492
 493	if (blk_rq_rl(rq))
 494		blk_put_rl(blk_rq_rl(rq));
 495
 496	blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
 497	if (rq->tag != -1)
 498		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
 499	if (sched_tag != -1)
 500		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
 501	blk_mq_sched_restart(hctx);
 502	blk_queue_exit(q);
 503}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 504EXPORT_SYMBOL_GPL(blk_mq_free_request);
 505
 506inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
 507{
 508	blk_account_io_done(rq);
 509
 510	if (rq->end_io) {
 511		wbt_done(rq->q->rq_wb, &rq->issue_stat);
 512		rq->end_io(rq, error);
 513	} else {
 514		if (unlikely(blk_bidi_rq(rq)))
 515			blk_mq_free_request(rq->next_rq);
 516		blk_mq_free_request(rq);
 517	}
 518}
 519EXPORT_SYMBOL(__blk_mq_end_request);
 520
 521void blk_mq_end_request(struct request *rq, blk_status_t error)
 522{
 523	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
 524		BUG();
 525	__blk_mq_end_request(rq, error);
 526}
 527EXPORT_SYMBOL(blk_mq_end_request);
 528
 529static void __blk_mq_complete_request_remote(void *data)
 530{
 531	struct request *rq = data;
 532
 533	rq->q->softirq_done_fn(rq);
 534}
 535
 536static void __blk_mq_complete_request(struct request *rq)
 537{
 538	struct blk_mq_ctx *ctx = rq->mq_ctx;
 539	bool shared = false;
 540	int cpu;
 541
 542	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
 543	blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
 544
 545	if (rq->internal_tag != -1)
 546		blk_mq_sched_completed_request(rq);
 547	if (rq->rq_flags & RQF_STATS) {
 548		blk_mq_poll_stats_start(rq->q);
 549		blk_stat_add(rq);
 550	}
 551
 552	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
 553		rq->q->softirq_done_fn(rq);
 554		return;
 555	}
 556
 557	cpu = get_cpu();
 558	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
 559		shared = cpus_share_cache(cpu, ctx->cpu);
 560
 561	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
 562		rq->csd.func = __blk_mq_complete_request_remote;
 563		rq->csd.info = rq;
 564		rq->csd.flags = 0;
 565		smp_call_function_single_async(ctx->cpu, &rq->csd);
 566	} else {
 567		rq->q->softirq_done_fn(rq);
 568	}
 569	put_cpu();
 570}
 571
 572static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
 573	__releases(hctx->srcu)
 574{
 575	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
 576		rcu_read_unlock();
 577	else
 578		srcu_read_unlock(hctx->srcu, srcu_idx);
 579}
 580
 581static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
 582	__acquires(hctx->srcu)
 583{
 584	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
 585		/* shut up gcc false positive */
 586		*srcu_idx = 0;
 587		rcu_read_lock();
 588	} else
 589		*srcu_idx = srcu_read_lock(hctx->srcu);
 590}
 591
 592static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
 593{
 594	unsigned long flags;
 595
 596	/*
 597	 * blk_mq_rq_aborted_gstate() is used from the completion path and
 598	 * can thus be called from irq context.  u64_stats_fetch in the
 599	 * middle of update on the same CPU leads to lockup.  Disable irq
 600	 * while updating.
 601	 */
 602	local_irq_save(flags);
 603	u64_stats_update_begin(&rq->aborted_gstate_sync);
 604	rq->aborted_gstate = gstate;
 605	u64_stats_update_end(&rq->aborted_gstate_sync);
 606	local_irq_restore(flags);
 607}
 608
 609static u64 blk_mq_rq_aborted_gstate(struct request *rq)
 610{
 611	unsigned int start;
 612	u64 aborted_gstate;
 613
 614	do {
 615		start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
 616		aborted_gstate = rq->aborted_gstate;
 617	} while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));
 618
 619	return aborted_gstate;
 
 
 
 620}
 621
 622/**
 623 * blk_mq_complete_request - end I/O on a request
 624 * @rq:		the request being processed
 625 *
 626 * Description:
 627 *	Ends all I/O on a request. It does not handle partial completions.
 628 *	The actual completion happens out-of-order, through a IPI handler.
 629 **/
 630void blk_mq_complete_request(struct request *rq)
 631{
 632	struct request_queue *q = rq->q;
 633	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
 634	int srcu_idx;
 635
 636	if (unlikely(blk_should_fake_timeout(q)))
 637		return;
 638
 639	/*
 640	 * If @rq->aborted_gstate equals the current instance, timeout is
 641	 * claiming @rq and we lost.  This is synchronized through
 642	 * hctx_lock().  See blk_mq_timeout_work() for details.
 643	 *
 644	 * Completion path never blocks and we can directly use RCU here
 645	 * instead of hctx_lock() which can be either RCU or SRCU.
 646	 * However, that would complicate paths which want to synchronize
 647	 * against us.  Let stay in sync with the issue path so that
 648	 * hctx_lock() covers both issue and completion paths.
 649	 */
 650	hctx_lock(hctx, &srcu_idx);
 651	if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
 652		__blk_mq_complete_request(rq);
 653	hctx_unlock(hctx, srcu_idx);
 654}
 655EXPORT_SYMBOL(blk_mq_complete_request);
 656
 657int blk_mq_request_started(struct request *rq)
 658{
 659	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
 660}
 661EXPORT_SYMBOL_GPL(blk_mq_request_started);
 662
 663void blk_mq_start_request(struct request *rq)
 664{
 665	struct request_queue *q = rq->q;
 666
 667	blk_mq_sched_started_request(rq);
 668
 669	trace_block_rq_issue(q, rq);
 670
 
 
 
 
 671	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
 672		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
 673		rq->rq_flags |= RQF_STATS;
 674		wbt_issue(q->rq_wb, &rq->issue_stat);
 675	}
 676
 677	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
 678
 679	/*
 680	 * Mark @rq in-flight which also advances the generation number,
 681	 * and register for timeout.  Protect with a seqcount to allow the
 682	 * timeout path to read both @rq->gstate and @rq->deadline
 683	 * coherently.
 684	 *
 685	 * This is the only place where a request is marked in-flight.  If
 686	 * the timeout path reads an in-flight @rq->gstate, the
 687	 * @rq->deadline it reads together under @rq->gstate_seq is
 688	 * guaranteed to be the matching one.
 689	 */
 690	preempt_disable();
 691	write_seqcount_begin(&rq->gstate_seq);
 692
 693	blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
 694	blk_add_timer(rq);
 695
 696	write_seqcount_end(&rq->gstate_seq);
 697	preempt_enable();
 
 
 
 
 
 698
 699	if (q->dma_drain_size && blk_rq_bytes(rq)) {
 700		/*
 701		 * Make sure space for the drain appears.  We know we can do
 702		 * this because max_hw_segments has been adjusted to be one
 703		 * fewer than the device can handle.
 704		 */
 705		rq->nr_phys_segments++;
 706	}
 707}
 708EXPORT_SYMBOL(blk_mq_start_request);
 709
 710/*
 711 * When we reach here because queue is busy, it's safe to change the state
 712 * to IDLE without checking @rq->aborted_gstate because we should still be
 713 * holding the RCU read lock and thus protected against timeout.
 714 */
 715static void __blk_mq_requeue_request(struct request *rq)
 716{
 717	struct request_queue *q = rq->q;
 718
 719	blk_mq_put_driver_tag(rq);
 720
 721	trace_block_rq_requeue(q, rq);
 722	wbt_requeue(q->rq_wb, &rq->issue_stat);
 723
 724	if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
 725		blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
 726		if (q->dma_drain_size && blk_rq_bytes(rq))
 727			rq->nr_phys_segments--;
 728	}
 729}
 730
 731void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
 732{
 733	__blk_mq_requeue_request(rq);
 734
 735	/* this request will be re-inserted to io scheduler queue */
 736	blk_mq_sched_requeue_request(rq);
 737
 738	BUG_ON(blk_queued_rq(rq));
 739	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
 740}
 741EXPORT_SYMBOL(blk_mq_requeue_request);
 742
 743static void blk_mq_requeue_work(struct work_struct *work)
 744{
 745	struct request_queue *q =
 746		container_of(work, struct request_queue, requeue_work.work);
 747	LIST_HEAD(rq_list);
 748	struct request *rq, *next;
 
 749
 750	spin_lock_irq(&q->requeue_lock);
 751	list_splice_init(&q->requeue_list, &rq_list);
 752	spin_unlock_irq(&q->requeue_lock);
 753
 754	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
 755		if (!(rq->rq_flags & RQF_SOFTBARRIER))
 756			continue;
 757
 758		rq->rq_flags &= ~RQF_SOFTBARRIER;
 759		list_del_init(&rq->queuelist);
 760		blk_mq_sched_insert_request(rq, true, false, false);
 761	}
 762
 763	while (!list_empty(&rq_list)) {
 764		rq = list_entry(rq_list.next, struct request, queuelist);
 765		list_del_init(&rq->queuelist);
 766		blk_mq_sched_insert_request(rq, false, false, false);
 767	}
 768
 769	blk_mq_run_hw_queues(q, false);
 770}
 771
 772void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
 773				bool kick_requeue_list)
 774{
 775	struct request_queue *q = rq->q;
 776	unsigned long flags;
 777
 778	/*
 779	 * We abuse this flag that is otherwise used by the I/O scheduler to
 780	 * request head insertion from the workqueue.
 781	 */
 782	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
 783
 784	spin_lock_irqsave(&q->requeue_lock, flags);
 785	if (at_head) {
 786		rq->rq_flags |= RQF_SOFTBARRIER;
 787		list_add(&rq->queuelist, &q->requeue_list);
 788	} else {
 789		list_add_tail(&rq->queuelist, &q->requeue_list);
 790	}
 791	spin_unlock_irqrestore(&q->requeue_lock, flags);
 792
 793	if (kick_requeue_list)
 794		blk_mq_kick_requeue_list(q);
 795}
 796EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
 797
 798void blk_mq_kick_requeue_list(struct request_queue *q)
 799{
 800	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
 801}
 802EXPORT_SYMBOL(blk_mq_kick_requeue_list);
 803
 804void blk_mq_delay_kick_requeue_list(struct request_queue *q,
 805				    unsigned long msecs)
 806{
 807	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
 808				    msecs_to_jiffies(msecs));
 809}
 810EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
 811
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 812struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
 813{
 814	if (tag < tags->nr_tags) {
 815		prefetch(tags->rqs[tag]);
 816		return tags->rqs[tag];
 817	}
 818
 819	return NULL;
 820}
 821EXPORT_SYMBOL(blk_mq_tag_to_rq);
 822
 823struct blk_mq_timeout_data {
 824	unsigned long next;
 825	unsigned int next_set;
 826	unsigned int nr_expired;
 827};
 828
 829static void blk_mq_rq_timed_out(struct request *req, bool reserved)
 830{
 831	const struct blk_mq_ops *ops = req->q->mq_ops;
 832	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
 833
 834	req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
 
 
 
 
 
 
 
 
 
 
 835
 836	if (ops->timeout)
 837		ret = ops->timeout(req, reserved);
 838
 839	switch (ret) {
 840	case BLK_EH_HANDLED:
 841		__blk_mq_complete_request(req);
 842		break;
 843	case BLK_EH_RESET_TIMER:
 844		/*
 845		 * As nothing prevents from completion happening while
 846		 * ->aborted_gstate is set, this may lead to ignored
 847		 * completions and further spurious timeouts.
 848		 */
 849		blk_mq_rq_update_aborted_gstate(req, 0);
 850		blk_add_timer(req);
 
 851		break;
 852	case BLK_EH_NOT_HANDLED:
 853		break;
 854	default:
 855		printk(KERN_ERR "block: bad eh return: %d\n", ret);
 856		break;
 857	}
 858}
 859
 860static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
 861		struct request *rq, void *priv, bool reserved)
 862{
 863	struct blk_mq_timeout_data *data = priv;
 864	unsigned long gstate, deadline;
 865	int start;
 866
 867	might_sleep();
 868
 869	if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
 870		return;
 871
 872	/* read coherent snapshots of @rq->state_gen and @rq->deadline */
 873	while (true) {
 874		start = read_seqcount_begin(&rq->gstate_seq);
 875		gstate = READ_ONCE(rq->gstate);
 876		deadline = blk_rq_deadline(rq);
 877		if (!read_seqcount_retry(&rq->gstate_seq, start))
 878			break;
 879		cond_resched();
 880	}
 881
 882	/* if in-flight && overdue, mark for abortion */
 883	if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
 884	    time_after_eq(jiffies, deadline)) {
 885		blk_mq_rq_update_aborted_gstate(rq, gstate);
 886		data->nr_expired++;
 887		hctx->nr_expired++;
 888	} else if (!data->next_set || time_after(data->next, deadline)) {
 889		data->next = deadline;
 890		data->next_set = 1;
 891	}
 892}
 893
 894static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
 895		struct request *rq, void *priv, bool reserved)
 896{
 897	/*
 898	 * We marked @rq->aborted_gstate and waited for RCU.  If there were
 899	 * completions that we lost to, they would have finished and
 900	 * updated @rq->gstate by now; otherwise, the completion path is
 901	 * now guaranteed to see @rq->aborted_gstate and yield.  If
 902	 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
 903	 */
 904	if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
 905	    READ_ONCE(rq->gstate) == rq->aborted_gstate)
 906		blk_mq_rq_timed_out(rq, reserved);
 907}
 908
 909static void blk_mq_timeout_work(struct work_struct *work)
 910{
 911	struct request_queue *q =
 912		container_of(work, struct request_queue, timeout_work);
 913	struct blk_mq_timeout_data data = {
 914		.next		= 0,
 915		.next_set	= 0,
 916		.nr_expired	= 0,
 917	};
 918	struct blk_mq_hw_ctx *hctx;
 919	int i;
 920
 921	/* A deadlock might occur if a request is stuck requiring a
 922	 * timeout at the same time a queue freeze is waiting
 923	 * completion, since the timeout code would not be able to
 924	 * acquire the queue reference here.
 925	 *
 926	 * That's why we don't use blk_queue_enter here; instead, we use
 927	 * percpu_ref_tryget directly, because we need to be able to
 928	 * obtain a reference even in the short window between the queue
 929	 * starting to freeze, by dropping the first reference in
 930	 * blk_freeze_queue_start, and the moment the last request is
 931	 * consumed, marked by the instant q_usage_counter reaches
 932	 * zero.
 933	 */
 934	if (!percpu_ref_tryget(&q->q_usage_counter))
 935		return;
 936
 937	/* scan for the expired ones and set their ->aborted_gstate */
 938	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
 939
 940	if (data.nr_expired) {
 941		bool has_rcu = false;
 942
 943		/*
 944		 * Wait till everyone sees ->aborted_gstate.  The
 945		 * sequential waits for SRCUs aren't ideal.  If this ever
 946		 * becomes a problem, we can add per-hw_ctx rcu_head and
 947		 * wait in parallel.
 948		 */
 949		queue_for_each_hw_ctx(q, hctx, i) {
 950			if (!hctx->nr_expired)
 951				continue;
 952
 953			if (!(hctx->flags & BLK_MQ_F_BLOCKING))
 954				has_rcu = true;
 955			else
 956				synchronize_srcu(hctx->srcu);
 957
 958			hctx->nr_expired = 0;
 959		}
 960		if (has_rcu)
 961			synchronize_rcu();
 962
 963		/* terminate the ones we won */
 964		blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
 965	}
 966
 967	if (data.next_set) {
 968		data.next = blk_rq_timeout(round_jiffies_up(data.next));
 969		mod_timer(&q->timeout, data.next);
 970	} else {
 971		/*
 972		 * Request timeouts are handled as a forward rolling timer. If
 973		 * we end up here it means that no requests are pending and
 974		 * also that no request has been pending for a while. Mark
 975		 * each hctx as idle.
 976		 */
 977		queue_for_each_hw_ctx(q, hctx, i) {
 978			/* the hctx may be unmapped, so check it here */
 979			if (blk_mq_hw_queue_mapped(hctx))
 980				blk_mq_tag_idle(hctx);
 981		}
 982	}
 983	blk_queue_exit(q);
 984}
 985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 986struct flush_busy_ctx_data {
 987	struct blk_mq_hw_ctx *hctx;
 988	struct list_head *list;
 989};
 990
 991static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
 992{
 993	struct flush_busy_ctx_data *flush_data = data;
 994	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
 995	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
 996
 
 997	spin_lock(&ctx->lock);
 998	list_splice_tail_init(&ctx->rq_list, flush_data->list);
 999	sbitmap_clear_bit(sb, bitnr);
1000	spin_unlock(&ctx->lock);
1001	return true;
1002}
1003
1004/*
1005 * Process software queues that have been marked busy, splicing them
1006 * to the for-dispatch
1007 */
1008void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1009{
1010	struct flush_busy_ctx_data data = {
1011		.hctx = hctx,
1012		.list = list,
1013	};
1014
1015	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1016}
1017EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1018
1019struct dispatch_rq_data {
1020	struct blk_mq_hw_ctx *hctx;
1021	struct request *rq;
1022};
1023
1024static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1025		void *data)
1026{
1027	struct dispatch_rq_data *dispatch_data = data;
1028	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1029	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1030
1031	spin_lock(&ctx->lock);
1032	if (unlikely(!list_empty(&ctx->rq_list))) {
1033		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
1034		list_del_init(&dispatch_data->rq->queuelist);
1035		if (list_empty(&ctx->rq_list))
1036			sbitmap_clear_bit(sb, bitnr);
1037	}
1038	spin_unlock(&ctx->lock);
1039
1040	return !dispatch_data->rq;
1041}
1042
1043struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1044					struct blk_mq_ctx *start)
1045{
1046	unsigned off = start ? start->index_hw : 0;
1047	struct dispatch_rq_data data = {
1048		.hctx = hctx,
1049		.rq   = NULL,
1050	};
1051
1052	__sbitmap_for_each_set(&hctx->ctx_map, off,
1053			       dispatch_rq_from_ctx, &data);
1054
1055	return data.rq;
1056}
1057
1058static inline unsigned int queued_to_index(unsigned int queued)
1059{
1060	if (!queued)
1061		return 0;
1062
1063	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1064}
1065
1066bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
1067			   bool wait)
1068{
1069	struct blk_mq_alloc_data data = {
1070		.q = rq->q,
1071		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1072		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
1073	};
1074
1075	might_sleep_if(wait);
1076
1077	if (rq->tag != -1)
1078		goto done;
1079
1080	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1081		data.flags |= BLK_MQ_REQ_RESERVED;
1082
1083	rq->tag = blk_mq_get_tag(&data);
1084	if (rq->tag >= 0) {
1085		if (blk_mq_tag_busy(data.hctx)) {
1086			rq->rq_flags |= RQF_MQ_INFLIGHT;
1087			atomic_inc(&data.hctx->nr_active);
1088		}
1089		data.hctx->tags->rqs[rq->tag] = rq;
1090	}
1091
1092done:
1093	if (hctx)
1094		*hctx = data.hctx;
1095	return rq->tag != -1;
1096}
1097
1098static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1099				int flags, void *key)
1100{
1101	struct blk_mq_hw_ctx *hctx;
1102
1103	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1104
1105	list_del_init(&wait->entry);
1106	blk_mq_run_hw_queue(hctx, true);
1107	return 1;
1108}
1109
1110/*
1111 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1112 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1113 * restart. For both cases, take care to check the condition again after
1114 * marking us as waiting.
1115 */
1116static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1117				 struct request *rq)
1118{
1119	struct blk_mq_hw_ctx *this_hctx = *hctx;
1120	struct sbq_wait_state *ws;
1121	wait_queue_entry_t *wait;
1122	bool ret;
1123
1124	if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1125		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1126			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1127
1128		/*
1129		 * It's possible that a tag was freed in the window between the
1130		 * allocation failure and adding the hardware queue to the wait
1131		 * queue.
1132		 *
1133		 * Don't clear RESTART here, someone else could have set it.
1134		 * At most this will cost an extra queue run.
1135		 */
1136		return blk_mq_get_driver_tag(rq, hctx, false);
1137	}
1138
1139	wait = &this_hctx->dispatch_wait;
1140	if (!list_empty_careful(&wait->entry))
1141		return false;
1142
1143	spin_lock(&this_hctx->lock);
1144	if (!list_empty(&wait->entry)) {
1145		spin_unlock(&this_hctx->lock);
1146		return false;
1147	}
1148
1149	ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1150	add_wait_queue(&ws->wait, wait);
1151
1152	/*
1153	 * It's possible that a tag was freed in the window between the
1154	 * allocation failure and adding the hardware queue to the wait
1155	 * queue.
1156	 */
1157	ret = blk_mq_get_driver_tag(rq, hctx, false);
1158	if (!ret) {
1159		spin_unlock(&this_hctx->lock);
1160		return false;
1161	}
1162
1163	/*
1164	 * We got a tag, remove ourselves from the wait queue to ensure
1165	 * someone else gets the wakeup.
1166	 */
1167	spin_lock_irq(&ws->wait.lock);
1168	list_del_init(&wait->entry);
1169	spin_unlock_irq(&ws->wait.lock);
1170	spin_unlock(&this_hctx->lock);
1171
1172	return true;
1173}
1174
1175#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1176
1177bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1178			     bool got_budget)
1179{
1180	struct blk_mq_hw_ctx *hctx;
1181	struct request *rq, *nxt;
1182	bool no_tag = false;
1183	int errors, queued;
1184	blk_status_t ret = BLK_STS_OK;
1185
1186	if (list_empty(list))
1187		return false;
1188
1189	WARN_ON(!list_is_singular(list) && got_budget);
1190
1191	/*
1192	 * Now process all the entries, sending them to the driver.
1193	 */
1194	errors = queued = 0;
1195	do {
1196		struct blk_mq_queue_data bd;
1197
1198		rq = list_first_entry(list, struct request, queuelist);
1199
1200		hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1201		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1202			break;
1203
1204		if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1205			/*
1206			 * The initial allocation attempt failed, so we need to
1207			 * rerun the hardware queue when a tag is freed. The
1208			 * waitqueue takes care of that. If the queue is run
1209			 * before we add this entry back on the dispatch list,
1210			 * we'll re-run it below.
1211			 */
1212			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1213				blk_mq_put_dispatch_budget(hctx);
1214				/*
1215				 * For non-shared tags, the RESTART check
1216				 * will suffice.
1217				 */
1218				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1219					no_tag = true;
1220				break;
1221			}
1222		}
1223
1224		list_del_init(&rq->queuelist);
1225
1226		bd.rq = rq;
1227
1228		/*
1229		 * Flag last if we have no more requests, or if we have more
1230		 * but can't assign a driver tag to it.
1231		 */
1232		if (list_empty(list))
1233			bd.last = true;
1234		else {
1235			nxt = list_first_entry(list, struct request, queuelist);
1236			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1237		}
1238
1239		ret = q->mq_ops->queue_rq(hctx, &bd);
1240		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1241			/*
1242			 * If an I/O scheduler has been configured and we got a
1243			 * driver tag for the next request already, free it
1244			 * again.
1245			 */
1246			if (!list_empty(list)) {
1247				nxt = list_first_entry(list, struct request, queuelist);
1248				blk_mq_put_driver_tag(nxt);
1249			}
1250			list_add(&rq->queuelist, list);
1251			__blk_mq_requeue_request(rq);
1252			break;
 
 
 
 
 
 
1253		}
1254
1255		if (unlikely(ret != BLK_STS_OK)) {
1256			errors++;
1257			blk_mq_end_request(rq, BLK_STS_IOERR);
1258			continue;
1259		}
1260
1261		queued++;
1262	} while (!list_empty(list));
 
 
 
 
 
1263
1264	hctx->dispatched[queued_to_index(queued)]++;
1265
1266	/*
1267	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1268	 * that is where we will continue on next queue run.
1269	 */
1270	if (!list_empty(list)) {
1271		bool needs_restart;
1272
1273		spin_lock(&hctx->lock);
1274		list_splice_init(list, &hctx->dispatch);
1275		spin_unlock(&hctx->lock);
1276
1277		/*
1278		 * If SCHED_RESTART was set by the caller of this function and
1279		 * it is no longer set that means that it was cleared by another
1280		 * thread and hence that a queue rerun is needed.
1281		 *
1282		 * If 'no_tag' is set, that means that we failed getting
1283		 * a driver tag with an I/O scheduler attached. If our dispatch
1284		 * waitqueue is no longer active, ensure that we run the queue
1285		 * AFTER adding our entries back to the list.
1286		 *
1287		 * If no I/O scheduler has been configured it is possible that
1288		 * the hardware queue got stopped and restarted before requests
1289		 * were pushed back onto the dispatch list. Rerun the queue to
1290		 * avoid starvation. Notes:
1291		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1292		 *   been stopped before rerunning a queue.
1293		 * - Some but not all block drivers stop a queue before
1294		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1295		 *   and dm-rq.
1296		 *
1297		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1298		 * bit is set, run queue after a delay to avoid IO stalls
1299		 * that could otherwise occur if the queue is idle.
1300		 */
1301		needs_restart = blk_mq_sched_needs_restart(hctx);
1302		if (!needs_restart ||
1303		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1304			blk_mq_run_hw_queue(hctx, true);
1305		else if (needs_restart && (ret == BLK_STS_RESOURCE))
1306			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1307	}
1308
1309	return (queued + errors) != 0;
1310}
1311
1312static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
 
 
 
 
 
 
1313{
1314	int srcu_idx;
 
 
 
 
 
1315
1316	/*
1317	 * We should be running this queue from one of the CPUs that
1318	 * are mapped to it.
1319	 *
1320	 * There are at least two related races now between setting
1321	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1322	 * __blk_mq_run_hw_queue():
1323	 *
1324	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1325	 *   but later it becomes online, then this warning is harmless
1326	 *   at all
1327	 *
1328	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1329	 *   but later it becomes offline, then the warning can't be
1330	 *   triggered, and we depend on blk-mq timeout handler to
1331	 *   handle dispatched requests to this hctx
1332	 */
1333	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1334		cpu_online(hctx->next_cpu)) {
1335		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1336			raw_smp_processor_id(),
1337			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1338		dump_stack();
1339	}
1340
1341	/*
1342	 * We can't run the queue inline with ints disabled. Ensure that
1343	 * we catch bad users of this early.
1344	 */
1345	WARN_ON_ONCE(in_interrupt());
1346
1347	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
 
 
 
1348
1349	hctx_lock(hctx, &srcu_idx);
1350	blk_mq_sched_dispatch_requests(hctx);
1351	hctx_unlock(hctx, srcu_idx);
1352}
1353
1354static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1355{
1356	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
 
 
 
1357
1358	if (cpu >= nr_cpu_ids)
1359		cpu = cpumask_first(hctx->cpumask);
1360	return cpu;
 
 
 
 
 
 
1361}
1362
1363/*
1364 * It'd be great if the workqueue API had a way to pass
1365 * in a mask and had some smarts for more clever placement.
1366 * For now we just round-robin here, switching for every
1367 * BLK_MQ_CPU_WORK_BATCH queued items.
1368 */
1369static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1370{
1371	bool tried = false;
1372	int next_cpu = hctx->next_cpu;
1373
1374	if (hctx->queue->nr_hw_queues == 1)
1375		return WORK_CPU_UNBOUND;
1376
1377	if (--hctx->next_cpu_batch <= 0) {
1378select_cpu:
1379		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1380				cpu_online_mask);
1381		if (next_cpu >= nr_cpu_ids)
1382			next_cpu = blk_mq_first_mapped_cpu(hctx);
1383		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1384	}
1385
1386	/*
1387	 * Do unbound schedule if we can't find a online CPU for this hctx,
1388	 * and it should only happen in the path of handling CPU DEAD.
1389	 */
1390	if (!cpu_online(next_cpu)) {
1391		if (!tried) {
1392			tried = true;
1393			goto select_cpu;
1394		}
1395
1396		/*
1397		 * Make sure to re-select CPU next time once after CPUs
1398		 * in hctx->cpumask become online again.
1399		 */
1400		hctx->next_cpu = next_cpu;
1401		hctx->next_cpu_batch = 1;
1402		return WORK_CPU_UNBOUND;
1403	}
1404
1405	hctx->next_cpu = next_cpu;
1406	return next_cpu;
1407}
1408
1409static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1410					unsigned long msecs)
1411{
1412	if (unlikely(blk_mq_hctx_stopped(hctx)))
 
1413		return;
1414
1415	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1416		int cpu = get_cpu();
1417		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1418			__blk_mq_run_hw_queue(hctx);
1419			put_cpu();
1420			return;
1421		}
1422
1423		put_cpu();
1424	}
1425
1426	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1427				    msecs_to_jiffies(msecs));
1428}
1429
1430void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1431{
1432	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1433}
1434EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1435
1436bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1437{
1438	int srcu_idx;
1439	bool need_run;
1440
1441	/*
1442	 * When queue is quiesced, we may be switching io scheduler, or
1443	 * updating nr_hw_queues, or other things, and we can't run queue
1444	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1445	 *
1446	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1447	 * quiesced.
1448	 */
1449	hctx_lock(hctx, &srcu_idx);
1450	need_run = !blk_queue_quiesced(hctx->queue) &&
1451		blk_mq_hctx_has_pending(hctx);
1452	hctx_unlock(hctx, srcu_idx);
1453
1454	if (need_run) {
1455		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1456		return true;
1457	}
1458
1459	return false;
1460}
1461EXPORT_SYMBOL(blk_mq_run_hw_queue);
1462
1463void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1464{
1465	struct blk_mq_hw_ctx *hctx;
1466	int i;
1467
1468	queue_for_each_hw_ctx(q, hctx, i) {
1469		if (blk_mq_hctx_stopped(hctx))
 
 
1470			continue;
1471
1472		blk_mq_run_hw_queue(hctx, async);
1473	}
1474}
1475EXPORT_SYMBOL(blk_mq_run_hw_queues);
1476
1477/**
1478 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1479 * @q: request queue.
1480 *
1481 * The caller is responsible for serializing this function against
1482 * blk_mq_{start,stop}_hw_queue().
1483 */
1484bool blk_mq_queue_stopped(struct request_queue *q)
1485{
1486	struct blk_mq_hw_ctx *hctx;
1487	int i;
1488
1489	queue_for_each_hw_ctx(q, hctx, i)
1490		if (blk_mq_hctx_stopped(hctx))
1491			return true;
1492
1493	return false;
1494}
1495EXPORT_SYMBOL(blk_mq_queue_stopped);
1496
1497/*
1498 * This function is often used for pausing .queue_rq() by driver when
1499 * there isn't enough resource or some conditions aren't satisfied, and
1500 * BLK_STS_RESOURCE is usually returned.
1501 *
1502 * We do not guarantee that dispatch can be drained or blocked
1503 * after blk_mq_stop_hw_queue() returns. Please use
1504 * blk_mq_quiesce_queue() for that requirement.
1505 */
1506void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1507{
1508	cancel_delayed_work(&hctx->run_work);
1509
1510	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1511}
1512EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1513
1514/*
1515 * This function is often used for pausing .queue_rq() by driver when
1516 * there isn't enough resource or some conditions aren't satisfied, and
1517 * BLK_STS_RESOURCE is usually returned.
1518 *
1519 * We do not guarantee that dispatch can be drained or blocked
1520 * after blk_mq_stop_hw_queues() returns. Please use
1521 * blk_mq_quiesce_queue() for that requirement.
1522 */
1523void blk_mq_stop_hw_queues(struct request_queue *q)
1524{
1525	struct blk_mq_hw_ctx *hctx;
1526	int i;
1527
1528	queue_for_each_hw_ctx(q, hctx, i)
1529		blk_mq_stop_hw_queue(hctx);
1530}
1531EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1532
1533void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1534{
1535	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1536
1537	blk_mq_run_hw_queue(hctx, false);
1538}
1539EXPORT_SYMBOL(blk_mq_start_hw_queue);
1540
1541void blk_mq_start_hw_queues(struct request_queue *q)
1542{
1543	struct blk_mq_hw_ctx *hctx;
1544	int i;
1545
1546	queue_for_each_hw_ctx(q, hctx, i)
1547		blk_mq_start_hw_queue(hctx);
1548}
1549EXPORT_SYMBOL(blk_mq_start_hw_queues);
1550
1551void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1552{
1553	if (!blk_mq_hctx_stopped(hctx))
1554		return;
1555
1556	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1557	blk_mq_run_hw_queue(hctx, async);
1558}
1559EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1560
1561void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1562{
1563	struct blk_mq_hw_ctx *hctx;
1564	int i;
1565
1566	queue_for_each_hw_ctx(q, hctx, i)
1567		blk_mq_start_stopped_hw_queue(hctx, async);
1568}
1569EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1570
1571static void blk_mq_run_work_fn(struct work_struct *work)
1572{
1573	struct blk_mq_hw_ctx *hctx;
1574
1575	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1576
1577	/*
1578	 * If we are stopped, don't run the queue.
1579	 */
1580	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1581		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1582
1583	__blk_mq_run_hw_queue(hctx);
1584}
1585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1586static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1587					    struct request *rq,
1588					    bool at_head)
1589{
1590	struct blk_mq_ctx *ctx = rq->mq_ctx;
1591
1592	lockdep_assert_held(&ctx->lock);
1593
1594	trace_block_rq_insert(hctx->queue, rq);
1595
1596	if (at_head)
1597		list_add(&rq->queuelist, &ctx->rq_list);
1598	else
1599		list_add_tail(&rq->queuelist, &ctx->rq_list);
1600}
1601
1602void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1603			     bool at_head)
1604{
1605	struct blk_mq_ctx *ctx = rq->mq_ctx;
1606
1607	lockdep_assert_held(&ctx->lock);
1608
1609	__blk_mq_insert_req_list(hctx, rq, at_head);
1610	blk_mq_hctx_mark_pending(hctx, ctx);
1611}
1612
1613/*
1614 * Should only be used carefully, when the caller knows we want to
1615 * bypass a potential IO scheduler on the target device.
1616 */
1617void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1618{
1619	struct blk_mq_ctx *ctx = rq->mq_ctx;
1620	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
 
1621
1622	spin_lock(&hctx->lock);
1623	list_add_tail(&rq->queuelist, &hctx->dispatch);
1624	spin_unlock(&hctx->lock);
1625
1626	if (run_queue)
1627		blk_mq_run_hw_queue(hctx, false);
1628}
1629
1630void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1631			    struct list_head *list)
 
 
 
1632
1633{
 
 
 
 
1634	/*
1635	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1636	 * offline now
1637	 */
1638	spin_lock(&ctx->lock);
1639	while (!list_empty(list)) {
1640		struct request *rq;
1641
1642		rq = list_first_entry(list, struct request, queuelist);
1643		BUG_ON(rq->mq_ctx != ctx);
1644		list_del_init(&rq->queuelist);
1645		__blk_mq_insert_req_list(hctx, rq, false);
1646	}
1647	blk_mq_hctx_mark_pending(hctx, ctx);
1648	spin_unlock(&ctx->lock);
 
 
1649}
1650
1651static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1652{
1653	struct request *rqa = container_of(a, struct request, queuelist);
1654	struct request *rqb = container_of(b, struct request, queuelist);
1655
1656	return !(rqa->mq_ctx < rqb->mq_ctx ||
1657		 (rqa->mq_ctx == rqb->mq_ctx &&
1658		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1659}
1660
1661void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1662{
1663	struct blk_mq_ctx *this_ctx;
1664	struct request_queue *this_q;
1665	struct request *rq;
1666	LIST_HEAD(list);
1667	LIST_HEAD(ctx_list);
1668	unsigned int depth;
1669
1670	list_splice_init(&plug->mq_list, &list);
1671
1672	list_sort(NULL, &list, plug_ctx_cmp);
1673
1674	this_q = NULL;
1675	this_ctx = NULL;
1676	depth = 0;
1677
1678	while (!list_empty(&list)) {
1679		rq = list_entry_rq(list.next);
1680		list_del_init(&rq->queuelist);
1681		BUG_ON(!rq->q);
1682		if (rq->mq_ctx != this_ctx) {
1683			if (this_ctx) {
1684				trace_block_unplug(this_q, depth, from_schedule);
1685				blk_mq_sched_insert_requests(this_q, this_ctx,
1686								&ctx_list,
1687								from_schedule);
1688			}
1689
1690			this_ctx = rq->mq_ctx;
1691			this_q = rq->q;
1692			depth = 0;
1693		}
1694
1695		depth++;
1696		list_add_tail(&rq->queuelist, &ctx_list);
1697	}
1698
1699	/*
1700	 * If 'this_ctx' is set, we know we have entries to complete
1701	 * on 'ctx_list'. Do those.
1702	 */
1703	if (this_ctx) {
1704		trace_block_unplug(this_q, depth, from_schedule);
1705		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1706						from_schedule);
1707	}
1708}
1709
1710static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1711{
1712	blk_init_request_from_bio(rq, bio);
1713
1714	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1715
1716	blk_account_io_start(rq, true);
1717}
1718
1719static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1720				   struct blk_mq_ctx *ctx,
1721				   struct request *rq)
1722{
1723	spin_lock(&ctx->lock);
1724	__blk_mq_insert_request(hctx, rq, false);
1725	spin_unlock(&ctx->lock);
1726}
1727
1728static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
 
 
1729{
1730	if (rq->tag != -1)
1731		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
 
 
 
 
 
 
 
1732
1733	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
 
 
 
 
 
 
 
 
 
1734}
1735
1736static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1737					    struct request *rq,
1738					    blk_qc_t *cookie)
1739{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1740	struct request_queue *q = rq->q;
 
1741	struct blk_mq_queue_data bd = {
1742		.rq = rq,
1743		.last = true,
 
1744	};
1745	blk_qc_t new_cookie;
1746	blk_status_t ret;
1747
1748	new_cookie = request_to_qc_t(hctx, rq);
 
1749
1750	/*
1751	 * For OK queue, we are done. For error, caller may kill it.
1752	 * Any other error (busy), just add it to our list as we
1753	 * previously would have done.
1754	 */
1755	ret = q->mq_ops->queue_rq(hctx, &bd);
1756	switch (ret) {
1757	case BLK_STS_OK:
1758		*cookie = new_cookie;
1759		break;
1760	case BLK_STS_RESOURCE:
1761	case BLK_STS_DEV_RESOURCE:
1762		__blk_mq_requeue_request(rq);
1763		break;
1764	default:
1765		*cookie = BLK_QC_T_NONE;
1766		break;
 
 
1767	}
1768
1769	return ret;
 
1770}
1771
1772static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1773						struct request *rq,
1774						blk_qc_t *cookie,
1775						bool bypass_insert)
 
 
1776{
1777	struct request_queue *q = rq->q;
1778	bool run_queue = true;
 
 
 
 
 
 
 
1779
1780	/*
1781	 * RCU or SRCU read lock is needed before checking quiesced flag.
1782	 *
1783	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1784	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1785	 * and avoid driver to try to dispatch again.
1786	 */
1787	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1788		run_queue = false;
1789		bypass_insert = false;
1790		goto insert;
1791	}
1792
1793	if (q->elevator && !bypass_insert)
1794		goto insert;
 
 
1795
1796	if (!blk_mq_get_dispatch_budget(hctx))
1797		goto insert;
1798
1799	if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1800		blk_mq_put_dispatch_budget(hctx);
1801		goto insert;
1802	}
1803
1804	return __blk_mq_issue_directly(hctx, rq, cookie);
1805insert:
1806	if (bypass_insert)
1807		return BLK_STS_RESOURCE;
1808
1809	blk_mq_sched_insert_request(rq, false, run_queue, false);
1810	return BLK_STS_OK;
1811}
 
 
1812
1813static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1814		struct request *rq, blk_qc_t *cookie)
1815{
1816	blk_status_t ret;
1817	int srcu_idx;
1818
1819	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1820
1821	hctx_lock(hctx, &srcu_idx);
 
 
 
 
1822
1823	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1824	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1825		blk_mq_sched_insert_request(rq, false, true, false);
1826	else if (ret != BLK_STS_OK)
1827		blk_mq_end_request(rq, ret);
 
 
 
 
1828
1829	hctx_unlock(hctx, srcu_idx);
1830}
1831
1832blk_status_t blk_mq_request_issue_directly(struct request *rq)
1833{
1834	blk_status_t ret;
1835	int srcu_idx;
1836	blk_qc_t unused_cookie;
1837	struct blk_mq_ctx *ctx = rq->mq_ctx;
1838	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1839
1840	hctx_lock(hctx, &srcu_idx);
1841	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1842	hctx_unlock(hctx, srcu_idx);
 
 
 
 
 
 
 
 
1843
1844	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
1845}
1846
1847static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
 
 
 
 
1848{
1849	const int is_sync = op_is_sync(bio->bi_opf);
1850	const int is_flush_fua = op_is_flush(bio->bi_opf);
1851	struct blk_mq_alloc_data data = { .flags = 0 };
1852	struct request *rq;
1853	unsigned int request_count = 0;
1854	struct blk_plug *plug;
1855	struct request *same_queue_rq = NULL;
 
 
1856	blk_qc_t cookie;
1857	unsigned int wb_acct;
1858
1859	blk_queue_bounce(q, &bio);
1860
1861	blk_queue_split(q, &bio);
1862
1863	if (!bio_integrity_prep(bio))
1864		return BLK_QC_T_NONE;
 
1865
1866	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1867	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1868		return BLK_QC_T_NONE;
1869
1870	if (blk_mq_sched_bio_merge(q, bio))
1871		return BLK_QC_T_NONE;
 
 
 
1872
1873	wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1874
1875	trace_block_getrq(q, bio, bio->bi_opf);
1876
1877	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1878	if (unlikely(!rq)) {
1879		__wbt_done(q->rq_wb, wb_acct);
1880		if (bio->bi_opf & REQ_NOWAIT)
1881			bio_wouldblock_error(bio);
1882		return BLK_QC_T_NONE;
1883	}
1884
1885	wbt_track(&rq->issue_stat, wb_acct);
1886
1887	cookie = request_to_qc_t(data.hctx, rq);
1888
1889	plug = current->plug;
1890	if (unlikely(is_flush_fua)) {
1891		blk_mq_put_ctx(data.ctx);
1892		blk_mq_bio_to_request(rq, bio);
1893
1894		/* bypass scheduler for flush rq */
1895		blk_insert_flush(rq);
1896		blk_mq_run_hw_queue(data.hctx, true);
1897	} else if (plug && q->nr_hw_queues == 1) {
 
 
 
 
 
 
 
 
1898		struct request *last = NULL;
1899
1900		blk_mq_put_ctx(data.ctx);
1901		blk_mq_bio_to_request(rq, bio);
1902
1903		/*
1904		 * @request_count may become stale because of schedule
1905		 * out, so check the list again.
1906		 */
1907		if (list_empty(&plug->mq_list))
1908			request_count = 0;
1909		else if (blk_queue_nomerges(q))
1910			request_count = blk_plug_queued_count(q);
1911
1912		if (!request_count)
1913			trace_block_plug(q);
1914		else
1915			last = list_entry_rq(plug->mq_list.prev);
1916
 
 
1917		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1918		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1919			blk_flush_plug_list(plug, false);
1920			trace_block_plug(q);
1921		}
1922
1923		list_add_tail(&rq->queuelist, &plug->mq_list);
1924	} else if (plug && !blk_queue_nomerges(q)) {
1925		blk_mq_bio_to_request(rq, bio);
1926
 
1927		/*
1928		 * We do limited plugging. If the bio can be merged, do that.
1929		 * Otherwise the existing request in the plug list will be
1930		 * issued. So the plug list will have one request at most
1931		 * The plug list might get flushed before this. If that happens,
1932		 * the plug list is empty, and same_queue_rq is invalid.
1933		 */
1934		if (list_empty(&plug->mq_list))
1935			same_queue_rq = NULL;
1936		if (same_queue_rq)
1937			list_del_init(&same_queue_rq->queuelist);
1938		list_add_tail(&rq->queuelist, &plug->mq_list);
1939
1940		blk_mq_put_ctx(data.ctx);
1941
1942		if (same_queue_rq) {
1943			data.hctx = blk_mq_map_queue(q,
1944					same_queue_rq->mq_ctx->cpu);
1945			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1946					&cookie);
1947		}
1948	} else if (q->nr_hw_queues > 1 && is_sync) {
1949		blk_mq_put_ctx(data.ctx);
1950		blk_mq_bio_to_request(rq, bio);
1951		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1952	} else if (q->elevator) {
1953		blk_mq_put_ctx(data.ctx);
1954		blk_mq_bio_to_request(rq, bio);
1955		blk_mq_sched_insert_request(rq, false, true, true);
1956	} else {
1957		blk_mq_put_ctx(data.ctx);
1958		blk_mq_bio_to_request(rq, bio);
1959		blk_mq_queue_io(data.hctx, data.ctx, rq);
1960		blk_mq_run_hw_queue(data.hctx, true);
1961	}
1962
 
1963	return cookie;
1964}
1965
1966void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1967		     unsigned int hctx_idx)
1968{
1969	struct page *page;
1970
1971	if (tags->rqs && set->ops->exit_request) {
1972		int i;
1973
1974		for (i = 0; i < tags->nr_tags; i++) {
1975			struct request *rq = tags->static_rqs[i];
1976
1977			if (!rq)
1978				continue;
1979			set->ops->exit_request(set, rq, hctx_idx);
1980			tags->static_rqs[i] = NULL;
 
1981		}
1982	}
1983
1984	while (!list_empty(&tags->page_list)) {
1985		page = list_first_entry(&tags->page_list, struct page, lru);
1986		list_del_init(&page->lru);
1987		/*
1988		 * Remove kmemleak object previously allocated in
1989		 * blk_mq_init_rq_map().
1990		 */
1991		kmemleak_free(page_address(page));
1992		__free_pages(page, page->private);
1993	}
1994}
1995
1996void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1997{
1998	kfree(tags->rqs);
1999	tags->rqs = NULL;
2000	kfree(tags->static_rqs);
2001	tags->static_rqs = NULL;
2002
2003	blk_mq_free_tags(tags);
2004}
2005
2006struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2007					unsigned int hctx_idx,
2008					unsigned int nr_tags,
2009					unsigned int reserved_tags)
2010{
2011	struct blk_mq_tags *tags;
2012	int node;
2013
2014	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2015	if (node == NUMA_NO_NODE)
2016		node = set->numa_node;
 
 
 
2017
2018	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
 
2019				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2020	if (!tags)
2021		return NULL;
2022
2023	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2024				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2025				 node);
2026	if (!tags->rqs) {
2027		blk_mq_free_tags(tags);
2028		return NULL;
2029	}
2030
2031	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2032				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2033				 node);
2034	if (!tags->static_rqs) {
2035		kfree(tags->rqs);
2036		blk_mq_free_tags(tags);
2037		return NULL;
2038	}
2039
2040	return tags;
2041}
2042
2043static size_t order_to_size(unsigned int order)
2044{
2045	return (size_t)PAGE_SIZE << order;
2046}
2047
2048static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2049			       unsigned int hctx_idx, int node)
2050{
2051	int ret;
2052
2053	if (set->ops->init_request) {
2054		ret = set->ops->init_request(set, rq, hctx_idx, node);
2055		if (ret)
2056			return ret;
2057	}
2058
2059	seqcount_init(&rq->gstate_seq);
2060	u64_stats_init(&rq->aborted_gstate_sync);
2061	/*
2062	 * start gstate with gen 1 instead of 0, otherwise it will be equal
2063	 * to aborted_gstate, and be identified timed out by
2064	 * blk_mq_terminate_expired.
2065	 */
2066	WRITE_ONCE(rq->gstate, MQ_RQ_GEN_INC);
2067
2068	return 0;
2069}
2070
2071int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2072		     unsigned int hctx_idx, unsigned int depth)
2073{
2074	unsigned int i, j, entries_per_page, max_order = 4;
2075	size_t rq_size, left;
2076	int node;
2077
2078	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2079	if (node == NUMA_NO_NODE)
2080		node = set->numa_node;
2081
2082	INIT_LIST_HEAD(&tags->page_list);
2083
2084	/*
2085	 * rq_size is the size of the request plus driver payload, rounded
2086	 * to the cacheline size
2087	 */
2088	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2089				cache_line_size());
2090	left = rq_size * depth;
2091
2092	for (i = 0; i < depth; ) {
2093		int this_order = max_order;
2094		struct page *page;
2095		int to_do;
2096		void *p;
2097
2098		while (this_order && left < order_to_size(this_order - 1))
2099			this_order--;
2100
2101		do {
2102			page = alloc_pages_node(node,
2103				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2104				this_order);
2105			if (page)
2106				break;
2107			if (!this_order--)
2108				break;
2109			if (order_to_size(this_order) < rq_size)
2110				break;
2111		} while (1);
2112
2113		if (!page)
2114			goto fail;
2115
2116		page->private = this_order;
2117		list_add_tail(&page->lru, &tags->page_list);
2118
2119		p = page_address(page);
2120		/*
2121		 * Allow kmemleak to scan these pages as they contain pointers
2122		 * to additional allocations like via ops->init_request().
2123		 */
2124		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2125		entries_per_page = order_to_size(this_order) / rq_size;
2126		to_do = min(entries_per_page, depth - i);
2127		left -= to_do * rq_size;
2128		for (j = 0; j < to_do; j++) {
2129			struct request *rq = p;
2130
2131			tags->static_rqs[i] = rq;
2132			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2133				tags->static_rqs[i] = NULL;
2134				goto fail;
 
 
2135			}
2136
2137			p += rq_size;
2138			i++;
2139		}
2140	}
2141	return 0;
2142
2143fail:
2144	blk_mq_free_rqs(set, tags, hctx_idx);
2145	return -ENOMEM;
2146}
2147
2148/*
2149 * 'cpu' is going away. splice any existing rq_list entries from this
2150 * software queue to the hw queue dispatch list, and ensure that it
2151 * gets run.
2152 */
2153static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2154{
2155	struct blk_mq_hw_ctx *hctx;
2156	struct blk_mq_ctx *ctx;
2157	LIST_HEAD(tmp);
2158
2159	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2160	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2161
2162	spin_lock(&ctx->lock);
2163	if (!list_empty(&ctx->rq_list)) {
2164		list_splice_init(&ctx->rq_list, &tmp);
2165		blk_mq_hctx_clear_pending(hctx, ctx);
2166	}
2167	spin_unlock(&ctx->lock);
2168
2169	if (list_empty(&tmp))
2170		return 0;
2171
2172	spin_lock(&hctx->lock);
2173	list_splice_tail_init(&tmp, &hctx->dispatch);
2174	spin_unlock(&hctx->lock);
2175
2176	blk_mq_run_hw_queue(hctx, true);
2177	return 0;
2178}
2179
2180static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2181{
2182	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2183					    &hctx->cpuhp_dead);
2184}
2185
2186/* hctx->ctxs will be freed in queue's release handler */
2187static void blk_mq_exit_hctx(struct request_queue *q,
2188		struct blk_mq_tag_set *set,
2189		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2190{
2191	blk_mq_debugfs_unregister_hctx(hctx);
2192
2193	if (blk_mq_hw_queue_mapped(hctx))
2194		blk_mq_tag_idle(hctx);
2195
2196	if (set->ops->exit_request)
2197		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2198
2199	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2200
2201	if (set->ops->exit_hctx)
2202		set->ops->exit_hctx(hctx, hctx_idx);
2203
2204	if (hctx->flags & BLK_MQ_F_BLOCKING)
2205		cleanup_srcu_struct(hctx->srcu);
2206
2207	blk_mq_remove_cpuhp(hctx);
2208	blk_free_flush_queue(hctx->fq);
2209	sbitmap_free(&hctx->ctx_map);
2210}
2211
2212static void blk_mq_exit_hw_queues(struct request_queue *q,
2213		struct blk_mq_tag_set *set, int nr_queue)
2214{
2215	struct blk_mq_hw_ctx *hctx;
2216	unsigned int i;
2217
2218	queue_for_each_hw_ctx(q, hctx, i) {
2219		if (i == nr_queue)
2220			break;
2221		blk_mq_exit_hctx(q, set, hctx, i);
2222	}
2223}
2224
 
 
 
 
 
 
 
 
 
 
2225static int blk_mq_init_hctx(struct request_queue *q,
2226		struct blk_mq_tag_set *set,
2227		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2228{
2229	int node;
 
2230
2231	node = hctx->numa_node;
2232	if (node == NUMA_NO_NODE)
2233		node = hctx->numa_node = set->numa_node;
2234
2235	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
 
2236	spin_lock_init(&hctx->lock);
2237	INIT_LIST_HEAD(&hctx->dispatch);
2238	hctx->queue = q;
 
2239	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2240
2241	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2242
2243	hctx->tags = set->tags[hctx_idx];
2244
2245	/*
2246	 * Allocate space for all possible cpus to avoid allocation at
2247	 * runtime
2248	 */
2249	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2250					GFP_KERNEL, node);
2251	if (!hctx->ctxs)
2252		goto unregister_cpu_notifier;
2253
2254	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2255			      node))
2256		goto free_ctxs;
2257
2258	hctx->nr_ctx = 0;
2259
2260	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2261	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2262
2263	if (set->ops->init_hctx &&
2264	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2265		goto free_bitmap;
2266
2267	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2268		goto exit_hctx;
2269
2270	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2271	if (!hctx->fq)
2272		goto sched_exit_hctx;
2273
2274	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
 
 
 
2275		goto free_fq;
2276
2277	if (hctx->flags & BLK_MQ_F_BLOCKING)
2278		init_srcu_struct(hctx->srcu);
2279
2280	blk_mq_debugfs_register_hctx(q, hctx);
2281
2282	return 0;
2283
2284 free_fq:
2285	kfree(hctx->fq);
2286 sched_exit_hctx:
2287	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2288 exit_hctx:
2289	if (set->ops->exit_hctx)
2290		set->ops->exit_hctx(hctx, hctx_idx);
2291 free_bitmap:
2292	sbitmap_free(&hctx->ctx_map);
2293 free_ctxs:
2294	kfree(hctx->ctxs);
2295 unregister_cpu_notifier:
2296	blk_mq_remove_cpuhp(hctx);
2297	return -1;
2298}
2299
2300static void blk_mq_init_cpu_queues(struct request_queue *q,
2301				   unsigned int nr_hw_queues)
2302{
2303	unsigned int i;
2304
2305	for_each_possible_cpu(i) {
2306		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2307		struct blk_mq_hw_ctx *hctx;
2308
 
2309		__ctx->cpu = i;
2310		spin_lock_init(&__ctx->lock);
2311		INIT_LIST_HEAD(&__ctx->rq_list);
2312		__ctx->queue = q;
 
 
 
 
 
 
 
 
2313
2314		/*
2315		 * Set local node, IFF we have more than one hw queue. If
2316		 * not, we remain on the home node of the device
2317		 */
2318		hctx = blk_mq_map_queue(q, i);
2319		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2320			hctx->numa_node = local_memory_node(cpu_to_node(i));
2321	}
2322}
2323
2324static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2325{
2326	int ret = 0;
2327
2328	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2329					set->queue_depth, set->reserved_tags);
2330	if (!set->tags[hctx_idx])
2331		return false;
2332
2333	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2334				set->queue_depth);
2335	if (!ret)
2336		return true;
2337
2338	blk_mq_free_rq_map(set->tags[hctx_idx]);
2339	set->tags[hctx_idx] = NULL;
2340	return false;
2341}
2342
2343static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2344					 unsigned int hctx_idx)
2345{
2346	if (set->tags[hctx_idx]) {
2347		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2348		blk_mq_free_rq_map(set->tags[hctx_idx]);
2349		set->tags[hctx_idx] = NULL;
2350	}
2351}
2352
2353static void blk_mq_map_swqueue(struct request_queue *q)
2354{
2355	unsigned int i, hctx_idx;
2356	struct blk_mq_hw_ctx *hctx;
2357	struct blk_mq_ctx *ctx;
2358	struct blk_mq_tag_set *set = q->tag_set;
2359
2360	/*
2361	 * Avoid others reading imcomplete hctx->cpumask through sysfs
2362	 */
2363	mutex_lock(&q->sysfs_lock);
2364
2365	queue_for_each_hw_ctx(q, hctx, i) {
2366		cpumask_clear(hctx->cpumask);
2367		hctx->nr_ctx = 0;
2368	}
2369
2370	/*
2371	 * Map software to hardware queues.
2372	 *
2373	 * If the cpu isn't present, the cpu is mapped to first hctx.
2374	 */
2375	for_each_possible_cpu(i) {
 
 
 
 
2376		hctx_idx = q->mq_map[i];
2377		/* unmapped hw queue can be remapped after CPU topo changed */
2378		if (!set->tags[hctx_idx] &&
2379		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
 
2380			/*
2381			 * If tags initialization fail for some hctx,
2382			 * that hctx won't be brought online.  In this
2383			 * case, remap the current ctx to hctx[0] which
2384			 * is guaranteed to always have tags allocated
2385			 */
2386			q->mq_map[i] = 0;
 
2387		}
2388
2389		ctx = per_cpu_ptr(q->queue_ctx, i);
2390		hctx = blk_mq_map_queue(q, i);
2391
2392		cpumask_set_cpu(i, hctx->cpumask);
2393		ctx->index_hw = hctx->nr_ctx;
2394		hctx->ctxs[hctx->nr_ctx++] = ctx;
2395	}
2396
2397	mutex_unlock(&q->sysfs_lock);
2398
2399	queue_for_each_hw_ctx(q, hctx, i) {
2400		/*
2401		 * If no software queues are mapped to this hardware queue,
2402		 * disable it and free the request entries.
2403		 */
2404		if (!hctx->nr_ctx) {
2405			/* Never unmap queue 0.  We need it as a
2406			 * fallback in case of a new remap fails
2407			 * allocation
2408			 */
2409			if (i && set->tags[i])
2410				blk_mq_free_map_and_requests(set, i);
2411
 
2412			hctx->tags = NULL;
2413			continue;
2414		}
2415
2416		hctx->tags = set->tags[i];
2417		WARN_ON(!hctx->tags);
2418
2419		/*
2420		 * Set the map size to the number of mapped software queues.
2421		 * This is more accurate and more efficient than looping
2422		 * over all possibly mapped software queues.
2423		 */
2424		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2425
2426		/*
2427		 * Initialize batch roundrobin counts
2428		 */
2429		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2430		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2431	}
2432}
2433
2434/*
2435 * Caller needs to ensure that we're either frozen/quiesced, or that
2436 * the queue isn't live yet.
2437 */
2438static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2439{
2440	struct blk_mq_hw_ctx *hctx;
2441	int i;
2442
2443	queue_for_each_hw_ctx(q, hctx, i) {
2444		if (shared) {
2445			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2446				atomic_inc(&q->shared_hctx_restart);
2447			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2448		} else {
2449			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2450				atomic_dec(&q->shared_hctx_restart);
2451			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2452		}
2453	}
2454}
2455
2456static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2457					bool shared)
2458{
2459	struct request_queue *q;
2460
2461	lockdep_assert_held(&set->tag_list_lock);
2462
2463	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2464		blk_mq_freeze_queue(q);
2465		queue_set_hctx_shared(q, shared);
2466		blk_mq_unfreeze_queue(q);
2467	}
2468}
2469
2470static void blk_mq_del_queue_tag_set(struct request_queue *q)
2471{
2472	struct blk_mq_tag_set *set = q->tag_set;
2473
2474	mutex_lock(&set->tag_list_lock);
2475	list_del_rcu(&q->tag_set_list);
2476	INIT_LIST_HEAD(&q->tag_set_list);
2477	if (list_is_singular(&set->tag_list)) {
2478		/* just transitioned to unshared */
2479		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2480		/* update existing queue */
2481		blk_mq_update_tag_set_depth(set, false);
2482	}
2483	mutex_unlock(&set->tag_list_lock);
2484
2485	synchronize_rcu();
2486}
2487
2488static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2489				     struct request_queue *q)
2490{
2491	q->tag_set = set;
2492
2493	mutex_lock(&set->tag_list_lock);
2494
2495	/*
2496	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2497	 */
2498	if (!list_empty(&set->tag_list) &&
2499	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2500		set->flags |= BLK_MQ_F_TAG_SHARED;
2501		/* update existing queue */
2502		blk_mq_update_tag_set_depth(set, true);
2503	}
2504	if (set->flags & BLK_MQ_F_TAG_SHARED)
2505		queue_set_hctx_shared(q, true);
2506	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2507
2508	mutex_unlock(&set->tag_list_lock);
2509}
2510
2511/*
2512 * It is the actual release handler for mq, but we do it from
2513 * request queue's release handler for avoiding use-after-free
2514 * and headache because q->mq_kobj shouldn't have been introduced,
2515 * but we can't group ctx/kctx kobj without it.
2516 */
2517void blk_mq_release(struct request_queue *q)
2518{
2519	struct blk_mq_hw_ctx *hctx;
2520	unsigned int i;
2521
2522	/* hctx kobj stays in hctx */
2523	queue_for_each_hw_ctx(q, hctx, i) {
2524		if (!hctx)
2525			continue;
2526		kobject_put(&hctx->kobj);
 
2527	}
2528
2529	q->mq_map = NULL;
2530
2531	kfree(q->queue_hw_ctx);
2532
2533	/*
2534	 * release .mq_kobj and sw queue's kobject now because
2535	 * both share lifetime with request queue.
2536	 */
2537	blk_mq_sysfs_deinit(q);
2538
2539	free_percpu(q->queue_ctx);
2540}
2541
2542struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2543{
2544	struct request_queue *uninit_q, *q;
2545
2546	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2547	if (!uninit_q)
2548		return ERR_PTR(-ENOMEM);
2549
2550	q = blk_mq_init_allocated_queue(set, uninit_q);
2551	if (IS_ERR(q))
2552		blk_cleanup_queue(uninit_q);
2553
2554	return q;
2555}
2556EXPORT_SYMBOL(blk_mq_init_queue);
2557
2558static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2559{
2560	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2561
2562	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2563			   __alignof__(struct blk_mq_hw_ctx)) !=
2564		     sizeof(struct blk_mq_hw_ctx));
2565
2566	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2567		hw_ctx_size += sizeof(struct srcu_struct);
2568
2569	return hw_ctx_size;
2570}
2571
2572static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2573						struct request_queue *q)
2574{
2575	int i, j;
2576	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2577
2578	blk_mq_sysfs_unregister(q);
2579
2580	/* protect against switching io scheduler  */
2581	mutex_lock(&q->sysfs_lock);
2582	for (i = 0; i < set->nr_hw_queues; i++) {
2583		int node;
2584
2585		if (hctxs[i])
2586			continue;
2587
2588		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2589		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2590					GFP_KERNEL, node);
2591		if (!hctxs[i])
2592			break;
2593
2594		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2595						node)) {
2596			kfree(hctxs[i]);
2597			hctxs[i] = NULL;
2598			break;
2599		}
2600
2601		atomic_set(&hctxs[i]->nr_active, 0);
2602		hctxs[i]->numa_node = node;
2603		hctxs[i]->queue_num = i;
2604
2605		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2606			free_cpumask_var(hctxs[i]->cpumask);
2607			kfree(hctxs[i]);
2608			hctxs[i] = NULL;
2609			break;
2610		}
2611		blk_mq_hctx_kobj_init(hctxs[i]);
2612	}
2613	for (j = i; j < q->nr_hw_queues; j++) {
2614		struct blk_mq_hw_ctx *hctx = hctxs[j];
2615
2616		if (hctx) {
2617			if (hctx->tags)
2618				blk_mq_free_map_and_requests(set, j);
 
 
2619			blk_mq_exit_hctx(q, set, hctx, j);
 
2620			kobject_put(&hctx->kobj);
 
 
2621			hctxs[j] = NULL;
2622
2623		}
2624	}
2625	q->nr_hw_queues = i;
2626	mutex_unlock(&q->sysfs_lock);
2627	blk_mq_sysfs_register(q);
2628}
2629
2630struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2631						  struct request_queue *q)
2632{
2633	/* mark the queue as mq asap */
2634	q->mq_ops = set->ops;
2635
2636	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2637					     blk_mq_poll_stats_bkt,
2638					     BLK_MQ_POLL_STATS_BKTS, q);
2639	if (!q->poll_cb)
2640		goto err_exit;
2641
2642	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2643	if (!q->queue_ctx)
2644		goto err_exit;
2645
2646	/* init q->mq_kobj and sw queues' kobjects */
2647	blk_mq_sysfs_init(q);
2648
2649	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2650						GFP_KERNEL, set->numa_node);
2651	if (!q->queue_hw_ctx)
2652		goto err_percpu;
2653
2654	q->mq_map = set->mq_map;
2655
2656	blk_mq_realloc_hw_ctxs(set, q);
2657	if (!q->nr_hw_queues)
2658		goto err_hctxs;
2659
2660	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2661	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2662
2663	q->nr_queues = nr_cpu_ids;
2664
2665	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2666
2667	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2668		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2669
2670	q->sg_reserved_size = INT_MAX;
2671
2672	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2673	INIT_LIST_HEAD(&q->requeue_list);
2674	spin_lock_init(&q->requeue_lock);
2675
2676	blk_queue_make_request(q, blk_mq_make_request);
2677	if (q->mq_ops->poll)
2678		q->poll_fn = blk_mq_poll;
 
2679
2680	/*
2681	 * Do this after blk_queue_make_request() overrides it...
2682	 */
2683	q->nr_requests = set->queue_depth;
2684
2685	/*
2686	 * Default to classic polling
2687	 */
2688	q->poll_nsec = -1;
2689
2690	if (set->ops->complete)
2691		blk_queue_softirq_done(q, set->ops->complete);
2692
2693	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2694	blk_mq_add_queue_tag_set(set, q);
2695	blk_mq_map_swqueue(q);
2696
2697	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2698		int ret;
2699
2700		ret = blk_mq_sched_init(q);
2701		if (ret)
2702			return ERR_PTR(ret);
2703	}
 
 
2704
2705	return q;
2706
2707err_hctxs:
2708	kfree(q->queue_hw_ctx);
2709err_percpu:
2710	free_percpu(q->queue_ctx);
2711err_exit:
2712	q->mq_ops = NULL;
2713	return ERR_PTR(-ENOMEM);
2714}
2715EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2716
2717void blk_mq_free_queue(struct request_queue *q)
2718{
2719	struct blk_mq_tag_set	*set = q->tag_set;
2720
 
 
 
 
 
 
2721	blk_mq_del_queue_tag_set(q);
 
2722	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
 
2723}
2724
2725/* Basically redo blk_mq_init_queue with queue frozen */
2726static void blk_mq_queue_reinit(struct request_queue *q)
 
2727{
2728	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2729
2730	blk_mq_debugfs_unregister_hctxs(q);
2731	blk_mq_sysfs_unregister(q);
2732
2733	/*
2734	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2735	 * we should change hctx numa_node according to the new topology (this
2736	 * involves freeing and re-allocating memory, worth doing?)
2737	 */
2738	blk_mq_map_swqueue(q);
 
2739
2740	blk_mq_sysfs_register(q);
2741	blk_mq_debugfs_register_hctxs(q);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2742}
2743
2744static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2745{
2746	int i;
2747
2748	for (i = 0; i < set->nr_hw_queues; i++)
2749		if (!__blk_mq_alloc_rq_map(set, i))
 
2750			goto out_unwind;
 
2751
2752	return 0;
2753
2754out_unwind:
2755	while (--i >= 0)
2756		blk_mq_free_rq_map(set->tags[i]);
2757
2758	return -ENOMEM;
2759}
2760
2761/*
2762 * Allocate the request maps associated with this tag_set. Note that this
2763 * may reduce the depth asked for, if memory is tight. set->queue_depth
2764 * will be updated to reflect the allocated depth.
2765 */
2766static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2767{
2768	unsigned int depth;
2769	int err;
2770
2771	depth = set->queue_depth;
2772	do {
2773		err = __blk_mq_alloc_rq_maps(set);
2774		if (!err)
2775			break;
2776
2777		set->queue_depth >>= 1;
2778		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2779			err = -ENOMEM;
2780			break;
2781		}
2782	} while (set->queue_depth);
2783
2784	if (!set->queue_depth || err) {
2785		pr_err("blk-mq: failed to allocate request map\n");
2786		return -ENOMEM;
2787	}
2788
2789	if (depth != set->queue_depth)
2790		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2791						depth, set->queue_depth);
2792
2793	return 0;
2794}
2795
2796static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2797{
2798	if (set->ops->map_queues) {
2799		int cpu;
2800		/*
2801		 * transport .map_queues is usually done in the following
2802		 * way:
2803		 *
2804		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2805		 * 	mask = get_cpu_mask(queue)
2806		 * 	for_each_cpu(cpu, mask)
2807		 * 		set->mq_map[cpu] = queue;
2808		 * }
2809		 *
2810		 * When we need to remap, the table has to be cleared for
2811		 * killing stale mapping since one CPU may not be mapped
2812		 * to any hw queue.
2813		 */
2814		for_each_possible_cpu(cpu)
2815			set->mq_map[cpu] = 0;
2816
2817		return set->ops->map_queues(set);
2818	} else
2819		return blk_mq_map_queues(set);
2820}
2821
2822/*
2823 * Alloc a tag set to be associated with one or more request queues.
2824 * May fail with EINVAL for various error conditions. May adjust the
2825 * requested depth down, if if it too large. In that case, the set
2826 * value will be stored in set->queue_depth.
2827 */
2828int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2829{
2830	int ret;
2831
2832	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2833
2834	if (!set->nr_hw_queues)
2835		return -EINVAL;
2836	if (!set->queue_depth)
2837		return -EINVAL;
2838	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2839		return -EINVAL;
2840
2841	if (!set->ops->queue_rq)
2842		return -EINVAL;
2843
2844	if (!set->ops->get_budget ^ !set->ops->put_budget)
2845		return -EINVAL;
2846
2847	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2848		pr_info("blk-mq: reduced tag depth to %u\n",
2849			BLK_MQ_MAX_DEPTH);
2850		set->queue_depth = BLK_MQ_MAX_DEPTH;
2851	}
2852
2853	/*
2854	 * If a crashdump is active, then we are potentially in a very
2855	 * memory constrained environment. Limit us to 1 queue and
2856	 * 64 tags to prevent using too much memory.
2857	 */
2858	if (is_kdump_kernel()) {
2859		set->nr_hw_queues = 1;
2860		set->queue_depth = min(64U, set->queue_depth);
2861	}
2862	/*
2863	 * There is no use for more h/w queues than cpus.
2864	 */
2865	if (set->nr_hw_queues > nr_cpu_ids)
2866		set->nr_hw_queues = nr_cpu_ids;
2867
2868	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2869				 GFP_KERNEL, set->numa_node);
2870	if (!set->tags)
2871		return -ENOMEM;
2872
2873	ret = -ENOMEM;
2874	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2875			GFP_KERNEL, set->numa_node);
2876	if (!set->mq_map)
2877		goto out_free_tags;
2878
2879	ret = blk_mq_update_queue_map(set);
 
 
 
2880	if (ret)
2881		goto out_free_mq_map;
2882
2883	ret = blk_mq_alloc_rq_maps(set);
2884	if (ret)
2885		goto out_free_mq_map;
2886
2887	mutex_init(&set->tag_list_lock);
2888	INIT_LIST_HEAD(&set->tag_list);
2889
2890	return 0;
2891
2892out_free_mq_map:
2893	kfree(set->mq_map);
2894	set->mq_map = NULL;
2895out_free_tags:
2896	kfree(set->tags);
2897	set->tags = NULL;
2898	return ret;
2899}
2900EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2901
2902void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2903{
2904	int i;
2905
2906	for (i = 0; i < nr_cpu_ids; i++)
2907		blk_mq_free_map_and_requests(set, i);
 
 
2908
2909	kfree(set->mq_map);
2910	set->mq_map = NULL;
2911
2912	kfree(set->tags);
2913	set->tags = NULL;
2914}
2915EXPORT_SYMBOL(blk_mq_free_tag_set);
2916
2917int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2918{
2919	struct blk_mq_tag_set *set = q->tag_set;
2920	struct blk_mq_hw_ctx *hctx;
2921	int i, ret;
2922
2923	if (!set)
2924		return -EINVAL;
2925
2926	blk_mq_freeze_queue(q);
2927	blk_mq_quiesce_queue(q);
2928
2929	ret = 0;
2930	queue_for_each_hw_ctx(q, hctx, i) {
2931		if (!hctx->tags)
2932			continue;
2933		/*
2934		 * If we're using an MQ scheduler, just update the scheduler
2935		 * queue depth. This is similar to what the old code would do.
2936		 */
2937		if (!hctx->sched_tags) {
2938			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2939							false);
2940		} else {
2941			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2942							nr, true);
2943		}
2944		if (ret)
2945			break;
2946	}
2947
2948	if (!ret)
2949		q->nr_requests = nr;
2950
2951	blk_mq_unquiesce_queue(q);
2952	blk_mq_unfreeze_queue(q);
2953
2954	return ret;
2955}
2956
2957static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2958							int nr_hw_queues)
2959{
2960	struct request_queue *q;
2961
2962	lockdep_assert_held(&set->tag_list_lock);
2963
2964	if (nr_hw_queues > nr_cpu_ids)
2965		nr_hw_queues = nr_cpu_ids;
2966	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2967		return;
2968
2969	list_for_each_entry(q, &set->tag_list, tag_set_list)
2970		blk_mq_freeze_queue(q);
2971
2972	set->nr_hw_queues = nr_hw_queues;
2973	blk_mq_update_queue_map(set);
2974	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2975		blk_mq_realloc_hw_ctxs(set, q);
2976		blk_mq_queue_reinit(q);
 
 
 
 
 
 
2977	}
2978
2979	list_for_each_entry(q, &set->tag_list, tag_set_list)
2980		blk_mq_unfreeze_queue(q);
2981}
2982
2983void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2984{
2985	mutex_lock(&set->tag_list_lock);
2986	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2987	mutex_unlock(&set->tag_list_lock);
2988}
2989EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2990
2991/* Enable polling stats and return whether they were already enabled. */
2992static bool blk_poll_stats_enable(struct request_queue *q)
2993{
2994	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2995	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
2996		return true;
2997	blk_stat_add_callback(q, q->poll_cb);
2998	return false;
2999}
3000
3001static void blk_mq_poll_stats_start(struct request_queue *q)
3002{
3003	/*
3004	 * We don't arm the callback if polling stats are not enabled or the
3005	 * callback is already active.
3006	 */
3007	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3008	    blk_stat_is_active(q->poll_cb))
3009		return;
3010
3011	blk_stat_activate_msecs(q->poll_cb, 100);
3012}
3013
3014static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3015{
3016	struct request_queue *q = cb->data;
3017	int bucket;
3018
3019	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3020		if (cb->stat[bucket].nr_samples)
3021			q->poll_stat[bucket] = cb->stat[bucket];
3022	}
3023}
3024
3025static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3026				       struct blk_mq_hw_ctx *hctx,
3027				       struct request *rq)
3028{
 
3029	unsigned long ret = 0;
3030	int bucket;
3031
3032	/*
3033	 * If stats collection isn't on, don't sleep but turn it on for
3034	 * future users
3035	 */
3036	if (!blk_poll_stats_enable(q))
3037		return 0;
3038
3039	/*
 
 
 
 
 
 
 
3040	 * As an optimistic guess, use half of the mean service time
3041	 * for this type of request. We can (and should) make this smarter.
3042	 * For instance, if the completion latencies are tight, we can
3043	 * get closer than just half the mean. This is especially
3044	 * important on devices where the completion latencies are longer
3045	 * than ~10 usec. We do use the stats for the relevant IO size
3046	 * if available which does lead to better estimates.
3047	 */
3048	bucket = blk_mq_poll_stats_bkt(rq);
3049	if (bucket < 0)
3050		return ret;
3051
3052	if (q->poll_stat[bucket].nr_samples)
3053		ret = (q->poll_stat[bucket].mean + 1) / 2;
3054
3055	return ret;
3056}
3057
3058static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3059				     struct blk_mq_hw_ctx *hctx,
3060				     struct request *rq)
3061{
3062	struct hrtimer_sleeper hs;
3063	enum hrtimer_mode mode;
3064	unsigned int nsecs;
3065	ktime_t kt;
3066
3067	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3068		return false;
3069
3070	/*
3071	 * poll_nsec can be:
3072	 *
3073	 * -1:	don't ever hybrid sleep
3074	 *  0:	use half of prev avg
3075	 * >0:	use this specific value
3076	 */
3077	if (q->poll_nsec == -1)
3078		return false;
3079	else if (q->poll_nsec > 0)
3080		nsecs = q->poll_nsec;
3081	else
3082		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3083
3084	if (!nsecs)
3085		return false;
3086
3087	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3088
3089	/*
3090	 * This will be replaced with the stats tracking code, using
3091	 * 'avg_completion_time / 2' as the pre-sleep target.
3092	 */
3093	kt = nsecs;
3094
3095	mode = HRTIMER_MODE_REL;
3096	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3097	hrtimer_set_expires(&hs.timer, kt);
3098
3099	hrtimer_init_sleeper(&hs, current);
3100	do {
3101		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3102			break;
3103		set_current_state(TASK_UNINTERRUPTIBLE);
3104		hrtimer_start_expires(&hs.timer, mode);
3105		if (hs.task)
3106			io_schedule();
3107		hrtimer_cancel(&hs.timer);
3108		mode = HRTIMER_MODE_ABS;
3109	} while (hs.task && !signal_pending(current));
3110
3111	__set_current_state(TASK_RUNNING);
3112	destroy_hrtimer_on_stack(&hs.timer);
3113	return true;
3114}
3115
3116static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3117{
3118	struct request_queue *q = hctx->queue;
3119	long state;
3120
3121	/*
3122	 * If we sleep, have the caller restart the poll loop to reset
3123	 * the state. Like for the other success return cases, the
3124	 * caller is responsible for checking if the IO completed. If
3125	 * the IO isn't complete, we'll get called again and will go
3126	 * straight to the busy poll loop.
3127	 */
3128	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3129		return true;
3130
3131	hctx->poll_considered++;
3132
3133	state = current->state;
3134	while (!need_resched()) {
3135		int ret;
3136
3137		hctx->poll_invoked++;
3138
3139		ret = q->mq_ops->poll(hctx, rq->tag);
3140		if (ret > 0) {
3141			hctx->poll_success++;
3142			set_current_state(TASK_RUNNING);
3143			return true;
3144		}
3145
3146		if (signal_pending_state(state, current))
3147			set_current_state(TASK_RUNNING);
3148
3149		if (current->state == TASK_RUNNING)
3150			return true;
3151		if (ret < 0)
3152			break;
3153		cpu_relax();
3154	}
3155
3156	__set_current_state(TASK_RUNNING);
3157	return false;
3158}
3159
3160static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3161{
3162	struct blk_mq_hw_ctx *hctx;
 
3163	struct request *rq;
3164
3165	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
 
3166		return false;
3167
 
 
 
 
3168	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3169	if (!blk_qc_t_is_internal(cookie))
3170		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3171	else {
3172		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3173		/*
3174		 * With scheduling, if the request has completed, we'll
3175		 * get a NULL return here, as we clear the sched tag when
3176		 * that happens. The request still remains valid, like always,
3177		 * so we should be safe with just the NULL check.
3178		 */
3179		if (!rq)
3180			return false;
3181	}
3182
3183	return __blk_mq_poll(hctx, rq);
3184}
 
 
 
 
 
 
 
 
 
 
 
3185
3186static int __init blk_mq_init(void)
3187{
3188	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3189				blk_mq_hctx_notify_dead);
 
 
 
 
3190	return 0;
3191}
3192subsys_initcall(blk_mq_init);
v4.10.11
   1/*
   2 * Block multiqueue core code
   3 *
   4 * Copyright (C) 2013-2014 Jens Axboe
   5 * Copyright (C) 2013-2014 Christoph Hellwig
   6 */
   7#include <linux/kernel.h>
   8#include <linux/module.h>
   9#include <linux/backing-dev.h>
  10#include <linux/bio.h>
  11#include <linux/blkdev.h>
  12#include <linux/kmemleak.h>
  13#include <linux/mm.h>
  14#include <linux/init.h>
  15#include <linux/slab.h>
  16#include <linux/workqueue.h>
  17#include <linux/smp.h>
  18#include <linux/llist.h>
  19#include <linux/list_sort.h>
  20#include <linux/cpu.h>
  21#include <linux/cache.h>
  22#include <linux/sched/sysctl.h>
 
 
  23#include <linux/delay.h>
  24#include <linux/crash_dump.h>
  25#include <linux/prefetch.h>
  26
  27#include <trace/events/block.h>
  28
  29#include <linux/blk-mq.h>
  30#include "blk.h"
  31#include "blk-mq.h"
 
  32#include "blk-mq-tag.h"
  33#include "blk-stat.h"
  34#include "blk-wbt.h"
 
  35
  36static DEFINE_MUTEX(all_q_mutex);
  37static LIST_HEAD(all_q_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  38
  39/*
  40 * Check if any of the ctx's have pending work in this hardware queue
  41 */
  42static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
  43{
  44	return sbitmap_any_bit_set(&hctx->ctx_map);
 
 
  45}
  46
  47/*
  48 * Mark this ctx as having pending work in this hardware queue
  49 */
  50static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
  51				     struct blk_mq_ctx *ctx)
  52{
  53	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
  54		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
  55}
  56
  57static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
  58				      struct blk_mq_ctx *ctx)
  59{
  60	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
  61}
  62
  63void blk_mq_freeze_queue_start(struct request_queue *q)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64{
  65	int freeze_depth;
  66
  67	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
  68	if (freeze_depth == 1) {
  69		percpu_ref_kill(&q->q_usage_counter);
  70		blk_mq_run_hw_queues(q, false);
 
  71	}
  72}
  73EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
  74
  75static void blk_mq_freeze_queue_wait(struct request_queue *q)
  76{
  77	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
  78}
 
 
 
 
 
 
 
 
 
 
  79
  80/*
  81 * Guarantee no request is in use, so we can change any data structure of
  82 * the queue afterward.
  83 */
  84void blk_freeze_queue(struct request_queue *q)
  85{
  86	/*
  87	 * In the !blk_mq case we are only calling this to kill the
  88	 * q_usage_counter, otherwise this increases the freeze depth
  89	 * and waits for it to return to zero.  For this reason there is
  90	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
  91	 * exported to drivers as the only user for unfreeze is blk_mq.
  92	 */
  93	blk_mq_freeze_queue_start(q);
 
 
  94	blk_mq_freeze_queue_wait(q);
  95}
  96
  97void blk_mq_freeze_queue(struct request_queue *q)
  98{
  99	/*
 100	 * ...just an alias to keep freeze and unfreeze actions balanced
 101	 * in the blk_mq_* namespace
 102	 */
 103	blk_freeze_queue(q);
 104}
 105EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
 106
 107void blk_mq_unfreeze_queue(struct request_queue *q)
 108{
 109	int freeze_depth;
 110
 111	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
 112	WARN_ON_ONCE(freeze_depth < 0);
 113	if (!freeze_depth) {
 114		percpu_ref_reinit(&q->q_usage_counter);
 115		wake_up_all(&q->mq_freeze_wq);
 116	}
 117}
 118EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
 119
 
 
 
 
 
 
 
 
 
 
 120/**
 121 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 122 * @q: request queue.
 123 *
 124 * Note: this function does not prevent that the struct request end_io()
 125 * callback function is invoked. Additionally, it is not prevented that
 126 * new queue_rq() calls occur unless the queue has been stopped first.
 
 127 */
 128void blk_mq_quiesce_queue(struct request_queue *q)
 129{
 130	struct blk_mq_hw_ctx *hctx;
 131	unsigned int i;
 132	bool rcu = false;
 133
 134	blk_mq_stop_hw_queues(q);
 135
 136	queue_for_each_hw_ctx(q, hctx, i) {
 137		if (hctx->flags & BLK_MQ_F_BLOCKING)
 138			synchronize_srcu(&hctx->queue_rq_srcu);
 139		else
 140			rcu = true;
 141	}
 142	if (rcu)
 143		synchronize_rcu();
 144}
 145EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
 146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 147void blk_mq_wake_waiters(struct request_queue *q)
 148{
 149	struct blk_mq_hw_ctx *hctx;
 150	unsigned int i;
 151
 152	queue_for_each_hw_ctx(q, hctx, i)
 153		if (blk_mq_hw_queue_mapped(hctx))
 154			blk_mq_tag_wakeup_all(hctx->tags, true);
 155
 156	/*
 157	 * If we are called because the queue has now been marked as
 158	 * dying, we need to ensure that processes currently waiting on
 159	 * the queue are notified as well.
 160	 */
 161	wake_up_all(&q->mq_freeze_wq);
 162}
 163
 164bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
 165{
 166	return blk_mq_has_free_tags(hctx->tags);
 167}
 168EXPORT_SYMBOL(blk_mq_can_queue);
 169
 170static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
 171			       struct request *rq, unsigned int op)
 172{
 173	INIT_LIST_HEAD(&rq->queuelist);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 174	/* csd/requeue_work/fifo_time is initialized before use */
 175	rq->q = q;
 176	rq->mq_ctx = ctx;
 
 
 177	rq->cmd_flags = op;
 178	if (blk_queue_io_stat(q))
 
 
 179		rq->rq_flags |= RQF_IO_STAT;
 180	/* do not touch atomic flags, it needs atomic ops against the timer */
 181	rq->cpu = -1;
 182	INIT_HLIST_NODE(&rq->hash);
 183	RB_CLEAR_NODE(&rq->rb_node);
 184	rq->rq_disk = NULL;
 185	rq->part = NULL;
 186	rq->start_time = jiffies;
 187#ifdef CONFIG_BLK_CGROUP
 188	rq->rl = NULL;
 189	set_start_time_ns(rq);
 190	rq->io_start_time_ns = 0;
 191#endif
 192	rq->nr_phys_segments = 0;
 193#if defined(CONFIG_BLK_DEV_INTEGRITY)
 194	rq->nr_integrity_segments = 0;
 195#endif
 196	rq->special = NULL;
 197	/* tag was already set */
 198	rq->errors = 0;
 199
 200	rq->cmd = rq->__cmd;
 201
 202	rq->extra_len = 0;
 203	rq->sense_len = 0;
 204	rq->resid_len = 0;
 205	rq->sense = NULL;
 206
 207	INIT_LIST_HEAD(&rq->timeout_list);
 208	rq->timeout = 0;
 209
 210	rq->end_io = NULL;
 211	rq->end_io_data = NULL;
 212	rq->next_rq = NULL;
 213
 214	ctx->rq_dispatched[op_is_sync(op)]++;
 
 
 
 
 
 
 
 215}
 216
 217static struct request *
 218__blk_mq_alloc_request(struct blk_mq_alloc_data *data, unsigned int op)
 
 219{
 
 220	struct request *rq;
 221	unsigned int tag;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 222
 223	tag = blk_mq_get_tag(data);
 224	if (tag != BLK_MQ_TAG_FAIL) {
 225		rq = data->hctx->tags->rqs[tag];
 
 
 
 
 
 
 
 
 
 
 
 
 
 226
 227		if (blk_mq_tag_busy(data->hctx)) {
 228			rq->rq_flags = RQF_MQ_INFLIGHT;
 229			atomic_inc(&data->hctx->nr_active);
 230		}
 231
 232		rq->tag = tag;
 233		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
 234		return rq;
 235	}
 236
 237	return NULL;
 238}
 239
 240struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
 241		unsigned int flags)
 242{
 243	struct blk_mq_ctx *ctx;
 244	struct blk_mq_hw_ctx *hctx;
 245	struct request *rq;
 246	struct blk_mq_alloc_data alloc_data;
 247	int ret;
 248
 249	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
 250	if (ret)
 251		return ERR_PTR(ret);
 252
 253	ctx = blk_mq_get_ctx(q);
 254	hctx = blk_mq_map_queue(q, ctx->cpu);
 255	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
 256	rq = __blk_mq_alloc_request(&alloc_data, rw);
 257	blk_mq_put_ctx(ctx);
 258
 259	if (!rq) {
 260		blk_queue_exit(q);
 261		return ERR_PTR(-EWOULDBLOCK);
 262	}
 
 263
 264	rq->__data_len = 0;
 265	rq->__sector = (sector_t) -1;
 266	rq->bio = rq->biotail = NULL;
 267	return rq;
 268}
 269EXPORT_SYMBOL(blk_mq_alloc_request);
 270
 271struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
 272		unsigned int flags, unsigned int hctx_idx)
 273{
 274	struct blk_mq_hw_ctx *hctx;
 275	struct blk_mq_ctx *ctx;
 276	struct request *rq;
 277	struct blk_mq_alloc_data alloc_data;
 278	int ret;
 279
 280	/*
 281	 * If the tag allocator sleeps we could get an allocation for a
 282	 * different hardware context.  No need to complicate the low level
 283	 * allocator for this for the rare use case of a command tied to
 284	 * a specific queue.
 285	 */
 286	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
 287		return ERR_PTR(-EINVAL);
 288
 289	if (hctx_idx >= q->nr_hw_queues)
 290		return ERR_PTR(-EIO);
 291
 292	ret = blk_queue_enter(q, true);
 293	if (ret)
 294		return ERR_PTR(ret);
 295
 296	/*
 297	 * Check if the hardware context is actually mapped to anything.
 298	 * If not tell the caller that it should skip this queue.
 299	 */
 300	hctx = q->queue_hw_ctx[hctx_idx];
 301	if (!blk_mq_hw_queue_mapped(hctx)) {
 302		ret = -EXDEV;
 303		goto out_queue_exit;
 304	}
 305	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
 306
 307	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
 308	rq = __blk_mq_alloc_request(&alloc_data, rw);
 309	if (!rq) {
 310		ret = -EWOULDBLOCK;
 311		goto out_queue_exit;
 312	}
 
 
 
 
 
 
 
 
 313
 314	return rq;
 315
 316out_queue_exit:
 317	blk_queue_exit(q);
 318	return ERR_PTR(ret);
 319}
 320EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
 321
 322static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
 323				  struct blk_mq_ctx *ctx, struct request *rq)
 324{
 325	const int tag = rq->tag;
 326	struct request_queue *q = rq->q;
 
 
 
 
 
 
 
 
 
 
 
 
 
 327
 
 328	if (rq->rq_flags & RQF_MQ_INFLIGHT)
 329		atomic_dec(&hctx->nr_active);
 330
 
 
 
 331	wbt_done(q->rq_wb, &rq->issue_stat);
 332	rq->rq_flags = 0;
 333
 334	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
 335	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
 336	blk_mq_put_tag(hctx, ctx, tag);
 
 
 
 
 
 
 337	blk_queue_exit(q);
 338}
 339
 340void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
 341{
 342	struct blk_mq_ctx *ctx = rq->mq_ctx;
 343
 344	ctx->rq_completed[rq_is_sync(rq)]++;
 345	__blk_mq_free_request(hctx, ctx, rq);
 346
 347}
 348EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
 349
 350void blk_mq_free_request(struct request *rq)
 351{
 352	blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
 353}
 354EXPORT_SYMBOL_GPL(blk_mq_free_request);
 355
 356inline void __blk_mq_end_request(struct request *rq, int error)
 357{
 358	blk_account_io_done(rq);
 359
 360	if (rq->end_io) {
 361		wbt_done(rq->q->rq_wb, &rq->issue_stat);
 362		rq->end_io(rq, error);
 363	} else {
 364		if (unlikely(blk_bidi_rq(rq)))
 365			blk_mq_free_request(rq->next_rq);
 366		blk_mq_free_request(rq);
 367	}
 368}
 369EXPORT_SYMBOL(__blk_mq_end_request);
 370
 371void blk_mq_end_request(struct request *rq, int error)
 372{
 373	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
 374		BUG();
 375	__blk_mq_end_request(rq, error);
 376}
 377EXPORT_SYMBOL(blk_mq_end_request);
 378
 379static void __blk_mq_complete_request_remote(void *data)
 380{
 381	struct request *rq = data;
 382
 383	rq->q->softirq_done_fn(rq);
 384}
 385
 386static void blk_mq_ipi_complete_request(struct request *rq)
 387{
 388	struct blk_mq_ctx *ctx = rq->mq_ctx;
 389	bool shared = false;
 390	int cpu;
 391
 
 
 
 
 
 
 
 
 
 
 392	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
 393		rq->q->softirq_done_fn(rq);
 394		return;
 395	}
 396
 397	cpu = get_cpu();
 398	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
 399		shared = cpus_share_cache(cpu, ctx->cpu);
 400
 401	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
 402		rq->csd.func = __blk_mq_complete_request_remote;
 403		rq->csd.info = rq;
 404		rq->csd.flags = 0;
 405		smp_call_function_single_async(ctx->cpu, &rq->csd);
 406	} else {
 407		rq->q->softirq_done_fn(rq);
 408	}
 409	put_cpu();
 410}
 411
 412static void blk_mq_stat_add(struct request *rq)
 
 413{
 414	if (rq->rq_flags & RQF_STATS) {
 415		/*
 416		 * We could rq->mq_ctx here, but there's less of a risk
 417		 * of races if we have the completion event add the stats
 418		 * to the local software queue.
 419		 */
 420		struct blk_mq_ctx *ctx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 421
 422		ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
 423		blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
 424	}
 
 
 
 
 
 
 
 
 425}
 426
 427static void __blk_mq_complete_request(struct request *rq)
 428{
 429	struct request_queue *q = rq->q;
 
 430
 431	blk_mq_stat_add(rq);
 
 
 
 432
 433	if (!q->softirq_done_fn)
 434		blk_mq_end_request(rq, rq->errors);
 435	else
 436		blk_mq_ipi_complete_request(rq);
 437}
 438
 439/**
 440 * blk_mq_complete_request - end I/O on a request
 441 * @rq:		the request being processed
 442 *
 443 * Description:
 444 *	Ends all I/O on a request. It does not handle partial completions.
 445 *	The actual completion happens out-of-order, through a IPI handler.
 446 **/
 447void blk_mq_complete_request(struct request *rq, int error)
 448{
 449	struct request_queue *q = rq->q;
 
 
 450
 451	if (unlikely(blk_should_fake_timeout(q)))
 452		return;
 453	if (!blk_mark_rq_complete(rq)) {
 454		rq->errors = error;
 
 
 
 
 
 
 
 
 
 
 
 
 455		__blk_mq_complete_request(rq);
 456	}
 457}
 458EXPORT_SYMBOL(blk_mq_complete_request);
 459
 460int blk_mq_request_started(struct request *rq)
 461{
 462	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
 463}
 464EXPORT_SYMBOL_GPL(blk_mq_request_started);
 465
 466void blk_mq_start_request(struct request *rq)
 467{
 468	struct request_queue *q = rq->q;
 469
 
 
 470	trace_block_rq_issue(q, rq);
 471
 472	rq->resid_len = blk_rq_bytes(rq);
 473	if (unlikely(blk_bidi_rq(rq)))
 474		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
 475
 476	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
 477		blk_stat_set_issue_time(&rq->issue_stat);
 478		rq->rq_flags |= RQF_STATS;
 479		wbt_issue(q->rq_wb, &rq->issue_stat);
 480	}
 481
 482	blk_add_timer(rq);
 483
 484	/*
 485	 * Ensure that ->deadline is visible before set the started
 486	 * flag and clear the completed flag.
 
 
 
 
 
 
 
 487	 */
 488	smp_mb__before_atomic();
 
 489
 490	/*
 491	 * Mark us as started and clear complete. Complete might have been
 492	 * set if requeue raced with timeout, which then marked it as
 493	 * complete. So be sure to clear complete again when we start
 494	 * the request, otherwise we'll ignore the completion event.
 495	 */
 496	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
 497		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
 498	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
 499		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
 500
 501	if (q->dma_drain_size && blk_rq_bytes(rq)) {
 502		/*
 503		 * Make sure space for the drain appears.  We know we can do
 504		 * this because max_hw_segments has been adjusted to be one
 505		 * fewer than the device can handle.
 506		 */
 507		rq->nr_phys_segments++;
 508	}
 509}
 510EXPORT_SYMBOL(blk_mq_start_request);
 511
 
 
 
 
 
 512static void __blk_mq_requeue_request(struct request *rq)
 513{
 514	struct request_queue *q = rq->q;
 515
 
 
 516	trace_block_rq_requeue(q, rq);
 517	wbt_requeue(q->rq_wb, &rq->issue_stat);
 518
 519	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
 
 520		if (q->dma_drain_size && blk_rq_bytes(rq))
 521			rq->nr_phys_segments--;
 522	}
 523}
 524
 525void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
 526{
 527	__blk_mq_requeue_request(rq);
 528
 
 
 
 529	BUG_ON(blk_queued_rq(rq));
 530	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
 531}
 532EXPORT_SYMBOL(blk_mq_requeue_request);
 533
 534static void blk_mq_requeue_work(struct work_struct *work)
 535{
 536	struct request_queue *q =
 537		container_of(work, struct request_queue, requeue_work.work);
 538	LIST_HEAD(rq_list);
 539	struct request *rq, *next;
 540	unsigned long flags;
 541
 542	spin_lock_irqsave(&q->requeue_lock, flags);
 543	list_splice_init(&q->requeue_list, &rq_list);
 544	spin_unlock_irqrestore(&q->requeue_lock, flags);
 545
 546	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
 547		if (!(rq->rq_flags & RQF_SOFTBARRIER))
 548			continue;
 549
 550		rq->rq_flags &= ~RQF_SOFTBARRIER;
 551		list_del_init(&rq->queuelist);
 552		blk_mq_insert_request(rq, true, false, false);
 553	}
 554
 555	while (!list_empty(&rq_list)) {
 556		rq = list_entry(rq_list.next, struct request, queuelist);
 557		list_del_init(&rq->queuelist);
 558		blk_mq_insert_request(rq, false, false, false);
 559	}
 560
 561	blk_mq_run_hw_queues(q, false);
 562}
 563
 564void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
 565				bool kick_requeue_list)
 566{
 567	struct request_queue *q = rq->q;
 568	unsigned long flags;
 569
 570	/*
 571	 * We abuse this flag that is otherwise used by the I/O scheduler to
 572	 * request head insertation from the workqueue.
 573	 */
 574	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
 575
 576	spin_lock_irqsave(&q->requeue_lock, flags);
 577	if (at_head) {
 578		rq->rq_flags |= RQF_SOFTBARRIER;
 579		list_add(&rq->queuelist, &q->requeue_list);
 580	} else {
 581		list_add_tail(&rq->queuelist, &q->requeue_list);
 582	}
 583	spin_unlock_irqrestore(&q->requeue_lock, flags);
 584
 585	if (kick_requeue_list)
 586		blk_mq_kick_requeue_list(q);
 587}
 588EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
 589
 590void blk_mq_kick_requeue_list(struct request_queue *q)
 591{
 592	kblockd_schedule_delayed_work(&q->requeue_work, 0);
 593}
 594EXPORT_SYMBOL(blk_mq_kick_requeue_list);
 595
 596void blk_mq_delay_kick_requeue_list(struct request_queue *q,
 597				    unsigned long msecs)
 598{
 599	kblockd_schedule_delayed_work(&q->requeue_work,
 600				      msecs_to_jiffies(msecs));
 601}
 602EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
 603
 604void blk_mq_abort_requeue_list(struct request_queue *q)
 605{
 606	unsigned long flags;
 607	LIST_HEAD(rq_list);
 608
 609	spin_lock_irqsave(&q->requeue_lock, flags);
 610	list_splice_init(&q->requeue_list, &rq_list);
 611	spin_unlock_irqrestore(&q->requeue_lock, flags);
 612
 613	while (!list_empty(&rq_list)) {
 614		struct request *rq;
 615
 616		rq = list_first_entry(&rq_list, struct request, queuelist);
 617		list_del_init(&rq->queuelist);
 618		rq->errors = -EIO;
 619		blk_mq_end_request(rq, rq->errors);
 620	}
 621}
 622EXPORT_SYMBOL(blk_mq_abort_requeue_list);
 623
 624struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
 625{
 626	if (tag < tags->nr_tags) {
 627		prefetch(tags->rqs[tag]);
 628		return tags->rqs[tag];
 629	}
 630
 631	return NULL;
 632}
 633EXPORT_SYMBOL(blk_mq_tag_to_rq);
 634
 635struct blk_mq_timeout_data {
 636	unsigned long next;
 637	unsigned int next_set;
 
 638};
 639
 640void blk_mq_rq_timed_out(struct request *req, bool reserved)
 641{
 642	struct blk_mq_ops *ops = req->q->mq_ops;
 643	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
 644
 645	/*
 646	 * We know that complete is set at this point. If STARTED isn't set
 647	 * anymore, then the request isn't active and the "timeout" should
 648	 * just be ignored. This can happen due to the bitflag ordering.
 649	 * Timeout first checks if STARTED is set, and if it is, assumes
 650	 * the request is active. But if we race with completion, then
 651	 * we both flags will get cleared. So check here again, and ignore
 652	 * a timeout event with a request that isn't active.
 653	 */
 654	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
 655		return;
 656
 657	if (ops->timeout)
 658		ret = ops->timeout(req, reserved);
 659
 660	switch (ret) {
 661	case BLK_EH_HANDLED:
 662		__blk_mq_complete_request(req);
 663		break;
 664	case BLK_EH_RESET_TIMER:
 
 
 
 
 
 
 665		blk_add_timer(req);
 666		blk_clear_rq_complete(req);
 667		break;
 668	case BLK_EH_NOT_HANDLED:
 669		break;
 670	default:
 671		printk(KERN_ERR "block: bad eh return: %d\n", ret);
 672		break;
 673	}
 674}
 675
 676static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
 677		struct request *rq, void *priv, bool reserved)
 678{
 679	struct blk_mq_timeout_data *data = priv;
 
 
 
 
 680
 681	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
 682		return;
 683
 684	if (time_after_eq(jiffies, rq->deadline)) {
 685		if (!blk_mark_rq_complete(rq))
 686			blk_mq_rq_timed_out(rq, reserved);
 687	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
 688		data->next = rq->deadline;
 
 
 
 
 
 
 
 
 
 
 
 
 
 689		data->next_set = 1;
 690	}
 691}
 692
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 693static void blk_mq_timeout_work(struct work_struct *work)
 694{
 695	struct request_queue *q =
 696		container_of(work, struct request_queue, timeout_work);
 697	struct blk_mq_timeout_data data = {
 698		.next		= 0,
 699		.next_set	= 0,
 
 700	};
 
 701	int i;
 702
 703	/* A deadlock might occur if a request is stuck requiring a
 704	 * timeout at the same time a queue freeze is waiting
 705	 * completion, since the timeout code would not be able to
 706	 * acquire the queue reference here.
 707	 *
 708	 * That's why we don't use blk_queue_enter here; instead, we use
 709	 * percpu_ref_tryget directly, because we need to be able to
 710	 * obtain a reference even in the short window between the queue
 711	 * starting to freeze, by dropping the first reference in
 712	 * blk_mq_freeze_queue_start, and the moment the last request is
 713	 * consumed, marked by the instant q_usage_counter reaches
 714	 * zero.
 715	 */
 716	if (!percpu_ref_tryget(&q->q_usage_counter))
 717		return;
 718
 
 719	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
 720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 721	if (data.next_set) {
 722		data.next = blk_rq_timeout(round_jiffies_up(data.next));
 723		mod_timer(&q->timeout, data.next);
 724	} else {
 725		struct blk_mq_hw_ctx *hctx;
 726
 
 
 
 
 727		queue_for_each_hw_ctx(q, hctx, i) {
 728			/* the hctx may be unmapped, so check it here */
 729			if (blk_mq_hw_queue_mapped(hctx))
 730				blk_mq_tag_idle(hctx);
 731		}
 732	}
 733	blk_queue_exit(q);
 734}
 735
 736/*
 737 * Reverse check our software queue for entries that we could potentially
 738 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 739 * too much time checking for merges.
 740 */
 741static bool blk_mq_attempt_merge(struct request_queue *q,
 742				 struct blk_mq_ctx *ctx, struct bio *bio)
 743{
 744	struct request *rq;
 745	int checked = 8;
 746
 747	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
 748		int el_ret;
 749
 750		if (!checked--)
 751			break;
 752
 753		if (!blk_rq_merge_ok(rq, bio))
 754			continue;
 755
 756		el_ret = blk_try_merge(rq, bio);
 757		if (el_ret == ELEVATOR_BACK_MERGE) {
 758			if (bio_attempt_back_merge(q, rq, bio)) {
 759				ctx->rq_merged++;
 760				return true;
 761			}
 762			break;
 763		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
 764			if (bio_attempt_front_merge(q, rq, bio)) {
 765				ctx->rq_merged++;
 766				return true;
 767			}
 768			break;
 769		}
 770	}
 771
 772	return false;
 773}
 774
 775struct flush_busy_ctx_data {
 776	struct blk_mq_hw_ctx *hctx;
 777	struct list_head *list;
 778};
 779
 780static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
 781{
 782	struct flush_busy_ctx_data *flush_data = data;
 783	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
 784	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
 785
 786	sbitmap_clear_bit(sb, bitnr);
 787	spin_lock(&ctx->lock);
 788	list_splice_tail_init(&ctx->rq_list, flush_data->list);
 
 789	spin_unlock(&ctx->lock);
 790	return true;
 791}
 792
 793/*
 794 * Process software queues that have been marked busy, splicing them
 795 * to the for-dispatch
 796 */
 797static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
 798{
 799	struct flush_busy_ctx_data data = {
 800		.hctx = hctx,
 801		.list = list,
 802	};
 803
 804	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
 805}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 806
 807static inline unsigned int queued_to_index(unsigned int queued)
 808{
 809	if (!queued)
 810		return 0;
 811
 812	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
 813}
 814
 815bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 816{
 817	struct request_queue *q = hctx->queue;
 818	struct request *rq;
 819	LIST_HEAD(driver_list);
 820	struct list_head *dptr;
 821	int queued, ret = BLK_MQ_RQ_QUEUE_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 822
 823	/*
 824	 * Start off with dptr being NULL, so we start the first request
 825	 * immediately, even if we have more pending.
 
 826	 */
 827	dptr = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 828
 829	/*
 830	 * Now process all the entries, sending them to the driver.
 831	 */
 832	queued = 0;
 833	while (!list_empty(list)) {
 834		struct blk_mq_queue_data bd;
 835
 836		rq = list_first_entry(list, struct request, queuelist);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 837		list_del_init(&rq->queuelist);
 838
 839		bd.rq = rq;
 840		bd.list = dptr;
 841		bd.last = list_empty(list);
 
 
 
 
 
 
 
 
 
 842
 843		ret = q->mq_ops->queue_rq(hctx, &bd);
 844		switch (ret) {
 845		case BLK_MQ_RQ_QUEUE_OK:
 846			queued++;
 847			break;
 848		case BLK_MQ_RQ_QUEUE_BUSY:
 
 
 
 
 
 849			list_add(&rq->queuelist, list);
 850			__blk_mq_requeue_request(rq);
 851			break;
 852		default:
 853			pr_err("blk-mq: bad return on queue: %d\n", ret);
 854		case BLK_MQ_RQ_QUEUE_ERROR:
 855			rq->errors = -EIO;
 856			blk_mq_end_request(rq, rq->errors);
 857			break;
 858		}
 859
 860		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
 861			break;
 
 
 
 862
 863		/*
 864		 * We've done the first request. If we have more than 1
 865		 * left in the list, set dptr to defer issue.
 866		 */
 867		if (!dptr && list->next != list->prev)
 868			dptr = &driver_list;
 869	}
 870
 871	hctx->dispatched[queued_to_index(queued)]++;
 872
 873	/*
 874	 * Any items that need requeuing? Stuff them into hctx->dispatch,
 875	 * that is where we will continue on next queue run.
 876	 */
 877	if (!list_empty(list)) {
 
 
 878		spin_lock(&hctx->lock);
 879		list_splice(list, &hctx->dispatch);
 880		spin_unlock(&hctx->lock);
 881
 882		/*
 883		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
 884		 * it's possible the queue is stopped and restarted again
 885		 * before this. Queue restart will dispatch requests. And since
 886		 * requests in rq_list aren't added into hctx->dispatch yet,
 887		 * the requests in rq_list might get lost.
 
 
 
 
 
 
 
 
 
 
 
 
 
 888		 *
 889		 * blk_mq_run_hw_queue() already checks the STOPPED bit
 890		 **/
 891		blk_mq_run_hw_queue(hctx, true);
 
 
 
 
 
 
 
 892	}
 893
 894	return ret != BLK_MQ_RQ_QUEUE_BUSY;
 895}
 896
 897/*
 898 * Run this hardware queue, pulling any software queues mapped to it in.
 899 * Note that this function currently has various problems around ordering
 900 * of IO. In particular, we'd like FIFO behaviour on handling existing
 901 * items on the hctx->dispatch list. Ignore that for now.
 902 */
 903static void blk_mq_process_rq_list(struct blk_mq_hw_ctx *hctx)
 904{
 905	LIST_HEAD(rq_list);
 906
 907	if (unlikely(blk_mq_hctx_stopped(hctx)))
 908		return;
 909
 910	hctx->run++;
 911
 912	/*
 913	 * Touch any software queue that has pending entries.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 914	 */
 915	flush_busy_ctxs(hctx, &rq_list);
 
 
 
 
 
 
 916
 917	/*
 918	 * If we have previous entries on our dispatch list, grab them
 919	 * and stuff them at the front for more fair dispatch.
 920	 */
 921	if (!list_empty_careful(&hctx->dispatch)) {
 922		spin_lock(&hctx->lock);
 923		if (!list_empty(&hctx->dispatch))
 924			list_splice_init(&hctx->dispatch, &rq_list);
 925		spin_unlock(&hctx->lock);
 926	}
 927
 928	blk_mq_dispatch_rq_list(hctx, &rq_list);
 
 
 929}
 930
 931static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
 932{
 933	int srcu_idx;
 934
 935	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
 936		cpu_online(hctx->next_cpu));
 937
 938	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
 939		rcu_read_lock();
 940		blk_mq_process_rq_list(hctx);
 941		rcu_read_unlock();
 942	} else {
 943		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
 944		blk_mq_process_rq_list(hctx);
 945		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
 946	}
 947}
 948
 949/*
 950 * It'd be great if the workqueue API had a way to pass
 951 * in a mask and had some smarts for more clever placement.
 952 * For now we just round-robin here, switching for every
 953 * BLK_MQ_CPU_WORK_BATCH queued items.
 954 */
 955static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
 956{
 
 
 
 957	if (hctx->queue->nr_hw_queues == 1)
 958		return WORK_CPU_UNBOUND;
 959
 960	if (--hctx->next_cpu_batch <= 0) {
 961		int next_cpu;
 
 
 
 
 
 
 962
 963		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
 964		if (next_cpu >= nr_cpu_ids)
 965			next_cpu = cpumask_first(hctx->cpumask);
 
 
 
 
 
 
 966
 
 
 
 
 967		hctx->next_cpu = next_cpu;
 968		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
 
 969	}
 970
 971	return hctx->next_cpu;
 
 972}
 973
 974void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
 
 975{
 976	if (unlikely(blk_mq_hctx_stopped(hctx) ||
 977		     !blk_mq_hw_queue_mapped(hctx)))
 978		return;
 979
 980	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
 981		int cpu = get_cpu();
 982		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
 983			__blk_mq_run_hw_queue(hctx);
 984			put_cpu();
 985			return;
 986		}
 987
 988		put_cpu();
 989	}
 990
 991	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
 
 992}
 993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 994void blk_mq_run_hw_queues(struct request_queue *q, bool async)
 995{
 996	struct blk_mq_hw_ctx *hctx;
 997	int i;
 998
 999	queue_for_each_hw_ctx(q, hctx, i) {
1000		if ((!blk_mq_hctx_has_pending(hctx) &&
1001		    list_empty_careful(&hctx->dispatch)) ||
1002		    blk_mq_hctx_stopped(hctx))
1003			continue;
1004
1005		blk_mq_run_hw_queue(hctx, async);
1006	}
1007}
1008EXPORT_SYMBOL(blk_mq_run_hw_queues);
1009
1010/**
1011 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1012 * @q: request queue.
1013 *
1014 * The caller is responsible for serializing this function against
1015 * blk_mq_{start,stop}_hw_queue().
1016 */
1017bool blk_mq_queue_stopped(struct request_queue *q)
1018{
1019	struct blk_mq_hw_ctx *hctx;
1020	int i;
1021
1022	queue_for_each_hw_ctx(q, hctx, i)
1023		if (blk_mq_hctx_stopped(hctx))
1024			return true;
1025
1026	return false;
1027}
1028EXPORT_SYMBOL(blk_mq_queue_stopped);
1029
 
 
 
 
 
 
 
 
 
1030void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1031{
1032	cancel_work(&hctx->run_work);
1033	cancel_delayed_work(&hctx->delay_work);
1034	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1035}
1036EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1037
 
 
 
 
 
 
 
 
 
1038void blk_mq_stop_hw_queues(struct request_queue *q)
1039{
1040	struct blk_mq_hw_ctx *hctx;
1041	int i;
1042
1043	queue_for_each_hw_ctx(q, hctx, i)
1044		blk_mq_stop_hw_queue(hctx);
1045}
1046EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1047
1048void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1049{
1050	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1051
1052	blk_mq_run_hw_queue(hctx, false);
1053}
1054EXPORT_SYMBOL(blk_mq_start_hw_queue);
1055
1056void blk_mq_start_hw_queues(struct request_queue *q)
1057{
1058	struct blk_mq_hw_ctx *hctx;
1059	int i;
1060
1061	queue_for_each_hw_ctx(q, hctx, i)
1062		blk_mq_start_hw_queue(hctx);
1063}
1064EXPORT_SYMBOL(blk_mq_start_hw_queues);
1065
1066void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1067{
1068	if (!blk_mq_hctx_stopped(hctx))
1069		return;
1070
1071	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1072	blk_mq_run_hw_queue(hctx, async);
1073}
1074EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1075
1076void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1077{
1078	struct blk_mq_hw_ctx *hctx;
1079	int i;
1080
1081	queue_for_each_hw_ctx(q, hctx, i)
1082		blk_mq_start_stopped_hw_queue(hctx, async);
1083}
1084EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1085
1086static void blk_mq_run_work_fn(struct work_struct *work)
1087{
1088	struct blk_mq_hw_ctx *hctx;
1089
1090	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
 
 
 
 
 
 
1091
1092	__blk_mq_run_hw_queue(hctx);
1093}
1094
1095static void blk_mq_delay_work_fn(struct work_struct *work)
1096{
1097	struct blk_mq_hw_ctx *hctx;
1098
1099	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1100
1101	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1102		__blk_mq_run_hw_queue(hctx);
1103}
1104
1105void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1106{
1107	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1108		return;
1109
1110	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1111			&hctx->delay_work, msecs_to_jiffies(msecs));
1112}
1113EXPORT_SYMBOL(blk_mq_delay_queue);
1114
1115static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1116					    struct request *rq,
1117					    bool at_head)
1118{
1119	struct blk_mq_ctx *ctx = rq->mq_ctx;
1120
 
 
1121	trace_block_rq_insert(hctx->queue, rq);
1122
1123	if (at_head)
1124		list_add(&rq->queuelist, &ctx->rq_list);
1125	else
1126		list_add_tail(&rq->queuelist, &ctx->rq_list);
1127}
1128
1129static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1130				    struct request *rq, bool at_head)
1131{
1132	struct blk_mq_ctx *ctx = rq->mq_ctx;
1133
 
 
1134	__blk_mq_insert_req_list(hctx, rq, at_head);
1135	blk_mq_hctx_mark_pending(hctx, ctx);
1136}
1137
1138void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1139			   bool async)
 
 
 
1140{
1141	struct blk_mq_ctx *ctx = rq->mq_ctx;
1142	struct request_queue *q = rq->q;
1143	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1144
1145	spin_lock(&ctx->lock);
1146	__blk_mq_insert_request(hctx, rq, at_head);
1147	spin_unlock(&ctx->lock);
1148
1149	if (run_queue)
1150		blk_mq_run_hw_queue(hctx, async);
1151}
1152
1153static void blk_mq_insert_requests(struct request_queue *q,
1154				     struct blk_mq_ctx *ctx,
1155				     struct list_head *list,
1156				     int depth,
1157				     bool from_schedule)
1158
1159{
1160	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1161
1162	trace_block_unplug(q, depth, !from_schedule);
1163
1164	/*
1165	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1166	 * offline now
1167	 */
1168	spin_lock(&ctx->lock);
1169	while (!list_empty(list)) {
1170		struct request *rq;
1171
1172		rq = list_first_entry(list, struct request, queuelist);
1173		BUG_ON(rq->mq_ctx != ctx);
1174		list_del_init(&rq->queuelist);
1175		__blk_mq_insert_req_list(hctx, rq, false);
1176	}
1177	blk_mq_hctx_mark_pending(hctx, ctx);
1178	spin_unlock(&ctx->lock);
1179
1180	blk_mq_run_hw_queue(hctx, from_schedule);
1181}
1182
1183static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1184{
1185	struct request *rqa = container_of(a, struct request, queuelist);
1186	struct request *rqb = container_of(b, struct request, queuelist);
1187
1188	return !(rqa->mq_ctx < rqb->mq_ctx ||
1189		 (rqa->mq_ctx == rqb->mq_ctx &&
1190		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1191}
1192
1193void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1194{
1195	struct blk_mq_ctx *this_ctx;
1196	struct request_queue *this_q;
1197	struct request *rq;
1198	LIST_HEAD(list);
1199	LIST_HEAD(ctx_list);
1200	unsigned int depth;
1201
1202	list_splice_init(&plug->mq_list, &list);
1203
1204	list_sort(NULL, &list, plug_ctx_cmp);
1205
1206	this_q = NULL;
1207	this_ctx = NULL;
1208	depth = 0;
1209
1210	while (!list_empty(&list)) {
1211		rq = list_entry_rq(list.next);
1212		list_del_init(&rq->queuelist);
1213		BUG_ON(!rq->q);
1214		if (rq->mq_ctx != this_ctx) {
1215			if (this_ctx) {
1216				blk_mq_insert_requests(this_q, this_ctx,
1217							&ctx_list, depth,
1218							from_schedule);
 
1219			}
1220
1221			this_ctx = rq->mq_ctx;
1222			this_q = rq->q;
1223			depth = 0;
1224		}
1225
1226		depth++;
1227		list_add_tail(&rq->queuelist, &ctx_list);
1228	}
1229
1230	/*
1231	 * If 'this_ctx' is set, we know we have entries to complete
1232	 * on 'ctx_list'. Do those.
1233	 */
1234	if (this_ctx) {
1235		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1236				       from_schedule);
 
1237	}
1238}
1239
1240static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1241{
1242	init_request_from_bio(rq, bio);
 
 
1243
1244	blk_account_io_start(rq, true);
1245}
1246
1247static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
 
 
1248{
1249	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1250		!blk_queue_nomerges(hctx->queue);
 
1251}
1252
1253static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1254					 struct blk_mq_ctx *ctx,
1255					 struct request *rq, struct bio *bio)
1256{
1257	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1258		blk_mq_bio_to_request(rq, bio);
1259		spin_lock(&ctx->lock);
1260insert_rq:
1261		__blk_mq_insert_request(hctx, rq, false);
1262		spin_unlock(&ctx->lock);
1263		return false;
1264	} else {
1265		struct request_queue *q = hctx->queue;
1266
1267		spin_lock(&ctx->lock);
1268		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1269			blk_mq_bio_to_request(rq, bio);
1270			goto insert_rq;
1271		}
1272
1273		spin_unlock(&ctx->lock);
1274		__blk_mq_free_request(hctx, ctx, rq);
1275		return true;
1276	}
1277}
1278
1279static struct request *blk_mq_map_request(struct request_queue *q,
1280					  struct bio *bio,
1281					  struct blk_mq_alloc_data *data)
1282{
1283	struct blk_mq_hw_ctx *hctx;
1284	struct blk_mq_ctx *ctx;
1285	struct request *rq;
1286
1287	blk_queue_enter_live(q);
1288	ctx = blk_mq_get_ctx(q);
1289	hctx = blk_mq_map_queue(q, ctx->cpu);
1290
1291	trace_block_getrq(q, bio, bio->bi_opf);
1292	blk_mq_set_alloc_data(data, q, 0, ctx, hctx);
1293	rq = __blk_mq_alloc_request(data, bio->bi_opf);
1294
1295	data->hctx->queued++;
1296	return rq;
1297}
1298
1299static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1300{
1301	int ret;
1302	struct request_queue *q = rq->q;
1303	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
1304	struct blk_mq_queue_data bd = {
1305		.rq = rq,
1306		.list = NULL,
1307		.last = 1
1308	};
1309	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
 
1310
1311	if (blk_mq_hctx_stopped(hctx))
1312		goto insert;
1313
1314	/*
1315	 * For OK queue, we are done. For error, kill it. Any other
1316	 * error (busy), just add it to our list as we previously
1317	 * would have done
1318	 */
1319	ret = q->mq_ops->queue_rq(hctx, &bd);
1320	if (ret == BLK_MQ_RQ_QUEUE_OK) {
 
1321		*cookie = new_cookie;
1322		return;
1323	}
1324
1325	__blk_mq_requeue_request(rq);
1326
1327	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1328		*cookie = BLK_QC_T_NONE;
1329		rq->errors = -EIO;
1330		blk_mq_end_request(rq, rq->errors);
1331		return;
1332	}
1333
1334insert:
1335	blk_mq_insert_request(rq, false, true, true);
1336}
1337
1338/*
1339 * Multiple hardware queue variant. This will not use per-process plugs,
1340 * but will attempt to bypass the hctx queueing if we can go straight to
1341 * hardware for SYNC IO.
1342 */
1343static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1344{
1345	const int is_sync = op_is_sync(bio->bi_opf);
1346	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1347	struct blk_mq_alloc_data data;
1348	struct request *rq;
1349	unsigned int request_count = 0, srcu_idx;
1350	struct blk_plug *plug;
1351	struct request *same_queue_rq = NULL;
1352	blk_qc_t cookie;
1353	unsigned int wb_acct;
1354
1355	blk_queue_bounce(q, &bio);
 
 
 
 
 
 
 
 
 
 
 
1356
1357	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1358		bio_io_error(bio);
1359		return BLK_QC_T_NONE;
1360	}
1361
1362	blk_queue_split(q, &bio, q->bio_split);
 
1363
1364	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1365	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1366		return BLK_QC_T_NONE;
 
1367
1368	wb_acct = wbt_wait(q->rq_wb, bio, NULL);
 
 
 
1369
1370	rq = blk_mq_map_request(q, bio, &data);
1371	if (unlikely(!rq)) {
1372		__wbt_done(q->rq_wb, wb_acct);
1373		return BLK_QC_T_NONE;
1374	}
1375
1376	wbt_track(&rq->issue_stat, wb_acct);
 
 
 
 
1377
1378	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1379
1380	if (unlikely(is_flush_fua)) {
1381		blk_mq_bio_to_request(rq, bio);
1382		blk_insert_flush(rq);
1383		goto run_queue;
1384	}
1385
1386	plug = current->plug;
1387	/*
1388	 * If the driver supports defer issued based on 'last', then
1389	 * queue it up like normal since we can potentially save some
1390	 * CPU this way.
1391	 */
1392	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1393	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1394		struct request *old_rq = NULL;
1395
1396		blk_mq_bio_to_request(rq, bio);
 
1397
1398		/*
1399		 * We do limited plugging. If the bio can be merged, do that.
1400		 * Otherwise the existing request in the plug list will be
1401		 * issued. So the plug list will have one request at most
1402		 */
1403		if (plug) {
1404			/*
1405			 * The plug list might get flushed before this. If that
1406			 * happens, same_queue_rq is invalid and plug list is
1407			 * empty
1408			 */
1409			if (same_queue_rq && !list_empty(&plug->mq_list)) {
1410				old_rq = same_queue_rq;
1411				list_del_init(&old_rq->queuelist);
1412			}
1413			list_add_tail(&rq->queuelist, &plug->mq_list);
1414		} else /* is_sync */
1415			old_rq = rq;
1416		blk_mq_put_ctx(data.ctx);
1417		if (!old_rq)
1418			goto done;
1419
1420		if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1421			rcu_read_lock();
1422			blk_mq_try_issue_directly(old_rq, &cookie);
1423			rcu_read_unlock();
1424		} else {
1425			srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1426			blk_mq_try_issue_directly(old_rq, &cookie);
1427			srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1428		}
1429		goto done;
1430	}
1431
1432	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1433		/*
1434		 * For a SYNC request, send it to the hardware immediately. For
1435		 * an ASYNC request, just ensure that we run it later on. The
1436		 * latter allows for merging opportunities and more efficient
1437		 * dispatching.
1438		 */
1439run_queue:
1440		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1441	}
1442	blk_mq_put_ctx(data.ctx);
1443done:
1444	return cookie;
1445}
1446
1447/*
1448 * Single hardware queue variant. This will attempt to use any per-process
1449 * plug for merging and IO deferral.
1450 */
1451static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1452{
1453	const int is_sync = op_is_sync(bio->bi_opf);
1454	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
 
 
 
1455	struct blk_plug *plug;
1456	unsigned int request_count = 0;
1457	struct blk_mq_alloc_data data;
1458	struct request *rq;
1459	blk_qc_t cookie;
1460	unsigned int wb_acct;
1461
1462	blk_queue_bounce(q, &bio);
1463
1464	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1465		bio_io_error(bio);
 
1466		return BLK_QC_T_NONE;
1467	}
1468
1469	blk_queue_split(q, &bio, q->bio_split);
 
 
1470
1471	if (!is_flush_fua && !blk_queue_nomerges(q)) {
1472		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1473			return BLK_QC_T_NONE;
1474	} else
1475		request_count = blk_plug_queued_count(q);
1476
1477	wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1478
1479	rq = blk_mq_map_request(q, bio, &data);
 
 
1480	if (unlikely(!rq)) {
1481		__wbt_done(q->rq_wb, wb_acct);
 
 
1482		return BLK_QC_T_NONE;
1483	}
1484
1485	wbt_track(&rq->issue_stat, wb_acct);
1486
1487	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1488
 
1489	if (unlikely(is_flush_fua)) {
 
1490		blk_mq_bio_to_request(rq, bio);
 
 
1491		blk_insert_flush(rq);
1492		goto run_queue;
1493	}
1494
1495	/*
1496	 * A task plug currently exists. Since this is completely lockless,
1497	 * utilize that to temporarily store requests until the task is
1498	 * either done or scheduled away.
1499	 */
1500	plug = current->plug;
1501	if (plug) {
1502		struct request *last = NULL;
1503
 
1504		blk_mq_bio_to_request(rq, bio);
1505
1506		/*
1507		 * @request_count may become stale because of schedule
1508		 * out, so check the list again.
1509		 */
1510		if (list_empty(&plug->mq_list))
1511			request_count = 0;
 
 
 
1512		if (!request_count)
1513			trace_block_plug(q);
1514		else
1515			last = list_entry_rq(plug->mq_list.prev);
1516
1517		blk_mq_put_ctx(data.ctx);
1518
1519		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1520		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1521			blk_flush_plug_list(plug, false);
1522			trace_block_plug(q);
1523		}
1524
1525		list_add_tail(&rq->queuelist, &plug->mq_list);
1526		return cookie;
1527	}
1528
1529	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1530		/*
1531		 * For a SYNC request, send it to the hardware immediately. For
1532		 * an ASYNC request, just ensure that we run it later on. The
1533		 * latter allows for merging opportunities and more efficient
1534		 * dispatching.
 
1535		 */
1536run_queue:
1537		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1538	}
1539
1540	blk_mq_put_ctx(data.ctx);
1541	return cookie;
1542}
1543
1544static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1545		struct blk_mq_tags *tags, unsigned int hctx_idx)
1546{
1547	struct page *page;
1548
1549	if (tags->rqs && set->ops->exit_request) {
1550		int i;
1551
1552		for (i = 0; i < tags->nr_tags; i++) {
1553			if (!tags->rqs[i])
 
 
1554				continue;
1555			set->ops->exit_request(set->driver_data, tags->rqs[i],
1556						hctx_idx, i);
1557			tags->rqs[i] = NULL;
1558		}
1559	}
1560
1561	while (!list_empty(&tags->page_list)) {
1562		page = list_first_entry(&tags->page_list, struct page, lru);
1563		list_del_init(&page->lru);
1564		/*
1565		 * Remove kmemleak object previously allocated in
1566		 * blk_mq_init_rq_map().
1567		 */
1568		kmemleak_free(page_address(page));
1569		__free_pages(page, page->private);
1570	}
 
1571
 
 
1572	kfree(tags->rqs);
 
 
 
1573
1574	blk_mq_free_tags(tags);
1575}
1576
1577static size_t order_to_size(unsigned int order)
 
 
 
1578{
1579	return (size_t)PAGE_SIZE << order;
1580}
1581
1582static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1583		unsigned int hctx_idx)
1584{
1585	struct blk_mq_tags *tags;
1586	unsigned int i, j, entries_per_page, max_order = 4;
1587	size_t rq_size, left;
1588
1589	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1590				set->numa_node,
1591				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1592	if (!tags)
1593		return NULL;
1594
1595	INIT_LIST_HEAD(&tags->page_list);
 
 
 
 
 
 
1596
1597	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1598				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1599				 set->numa_node);
1600	if (!tags->rqs) {
 
1601		blk_mq_free_tags(tags);
1602		return NULL;
1603	}
1604
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1605	/*
1606	 * rq_size is the size of the request plus driver payload, rounded
1607	 * to the cacheline size
1608	 */
1609	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1610				cache_line_size());
1611	left = rq_size * set->queue_depth;
1612
1613	for (i = 0; i < set->queue_depth; ) {
1614		int this_order = max_order;
1615		struct page *page;
1616		int to_do;
1617		void *p;
1618
1619		while (this_order && left < order_to_size(this_order - 1))
1620			this_order--;
1621
1622		do {
1623			page = alloc_pages_node(set->numa_node,
1624				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1625				this_order);
1626			if (page)
1627				break;
1628			if (!this_order--)
1629				break;
1630			if (order_to_size(this_order) < rq_size)
1631				break;
1632		} while (1);
1633
1634		if (!page)
1635			goto fail;
1636
1637		page->private = this_order;
1638		list_add_tail(&page->lru, &tags->page_list);
1639
1640		p = page_address(page);
1641		/*
1642		 * Allow kmemleak to scan these pages as they contain pointers
1643		 * to additional allocations like via ops->init_request().
1644		 */
1645		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1646		entries_per_page = order_to_size(this_order) / rq_size;
1647		to_do = min(entries_per_page, set->queue_depth - i);
1648		left -= to_do * rq_size;
1649		for (j = 0; j < to_do; j++) {
1650			tags->rqs[i] = p;
1651			if (set->ops->init_request) {
1652				if (set->ops->init_request(set->driver_data,
1653						tags->rqs[i], hctx_idx, i,
1654						set->numa_node)) {
1655					tags->rqs[i] = NULL;
1656					goto fail;
1657				}
1658			}
1659
1660			p += rq_size;
1661			i++;
1662		}
1663	}
1664	return tags;
1665
1666fail:
1667	blk_mq_free_rq_map(set, tags, hctx_idx);
1668	return NULL;
1669}
1670
1671/*
1672 * 'cpu' is going away. splice any existing rq_list entries from this
1673 * software queue to the hw queue dispatch list, and ensure that it
1674 * gets run.
1675 */
1676static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1677{
1678	struct blk_mq_hw_ctx *hctx;
1679	struct blk_mq_ctx *ctx;
1680	LIST_HEAD(tmp);
1681
1682	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1683	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1684
1685	spin_lock(&ctx->lock);
1686	if (!list_empty(&ctx->rq_list)) {
1687		list_splice_init(&ctx->rq_list, &tmp);
1688		blk_mq_hctx_clear_pending(hctx, ctx);
1689	}
1690	spin_unlock(&ctx->lock);
1691
1692	if (list_empty(&tmp))
1693		return 0;
1694
1695	spin_lock(&hctx->lock);
1696	list_splice_tail_init(&tmp, &hctx->dispatch);
1697	spin_unlock(&hctx->lock);
1698
1699	blk_mq_run_hw_queue(hctx, true);
1700	return 0;
1701}
1702
1703static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1704{
1705	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1706					    &hctx->cpuhp_dead);
1707}
1708
1709/* hctx->ctxs will be freed in queue's release handler */
1710static void blk_mq_exit_hctx(struct request_queue *q,
1711		struct blk_mq_tag_set *set,
1712		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1713{
1714	unsigned flush_start_tag = set->queue_depth;
1715
1716	blk_mq_tag_idle(hctx);
 
1717
1718	if (set->ops->exit_request)
1719		set->ops->exit_request(set->driver_data,
1720				       hctx->fq->flush_rq, hctx_idx,
1721				       flush_start_tag + hctx_idx);
1722
1723	if (set->ops->exit_hctx)
1724		set->ops->exit_hctx(hctx, hctx_idx);
1725
1726	if (hctx->flags & BLK_MQ_F_BLOCKING)
1727		cleanup_srcu_struct(&hctx->queue_rq_srcu);
1728
1729	blk_mq_remove_cpuhp(hctx);
1730	blk_free_flush_queue(hctx->fq);
1731	sbitmap_free(&hctx->ctx_map);
1732}
1733
1734static void blk_mq_exit_hw_queues(struct request_queue *q,
1735		struct blk_mq_tag_set *set, int nr_queue)
1736{
1737	struct blk_mq_hw_ctx *hctx;
1738	unsigned int i;
1739
1740	queue_for_each_hw_ctx(q, hctx, i) {
1741		if (i == nr_queue)
1742			break;
1743		blk_mq_exit_hctx(q, set, hctx, i);
1744	}
1745}
1746
1747static void blk_mq_free_hw_queues(struct request_queue *q,
1748		struct blk_mq_tag_set *set)
1749{
1750	struct blk_mq_hw_ctx *hctx;
1751	unsigned int i;
1752
1753	queue_for_each_hw_ctx(q, hctx, i)
1754		free_cpumask_var(hctx->cpumask);
1755}
1756
1757static int blk_mq_init_hctx(struct request_queue *q,
1758		struct blk_mq_tag_set *set,
1759		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1760{
1761	int node;
1762	unsigned flush_start_tag = set->queue_depth;
1763
1764	node = hctx->numa_node;
1765	if (node == NUMA_NO_NODE)
1766		node = hctx->numa_node = set->numa_node;
1767
1768	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1769	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1770	spin_lock_init(&hctx->lock);
1771	INIT_LIST_HEAD(&hctx->dispatch);
1772	hctx->queue = q;
1773	hctx->queue_num = hctx_idx;
1774	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1775
1776	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1777
1778	hctx->tags = set->tags[hctx_idx];
1779
1780	/*
1781	 * Allocate space for all possible cpus to avoid allocation at
1782	 * runtime
1783	 */
1784	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1785					GFP_KERNEL, node);
1786	if (!hctx->ctxs)
1787		goto unregister_cpu_notifier;
1788
1789	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1790			      node))
1791		goto free_ctxs;
1792
1793	hctx->nr_ctx = 0;
1794
 
 
 
1795	if (set->ops->init_hctx &&
1796	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1797		goto free_bitmap;
1798
 
 
 
1799	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1800	if (!hctx->fq)
1801		goto exit_hctx;
1802
1803	if (set->ops->init_request &&
1804	    set->ops->init_request(set->driver_data,
1805				   hctx->fq->flush_rq, hctx_idx,
1806				   flush_start_tag + hctx_idx, node))
1807		goto free_fq;
1808
1809	if (hctx->flags & BLK_MQ_F_BLOCKING)
1810		init_srcu_struct(&hctx->queue_rq_srcu);
 
 
1811
1812	return 0;
1813
1814 free_fq:
1815	kfree(hctx->fq);
 
 
1816 exit_hctx:
1817	if (set->ops->exit_hctx)
1818		set->ops->exit_hctx(hctx, hctx_idx);
1819 free_bitmap:
1820	sbitmap_free(&hctx->ctx_map);
1821 free_ctxs:
1822	kfree(hctx->ctxs);
1823 unregister_cpu_notifier:
1824	blk_mq_remove_cpuhp(hctx);
1825	return -1;
1826}
1827
1828static void blk_mq_init_cpu_queues(struct request_queue *q,
1829				   unsigned int nr_hw_queues)
1830{
1831	unsigned int i;
1832
1833	for_each_possible_cpu(i) {
1834		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1835		struct blk_mq_hw_ctx *hctx;
1836
1837		memset(__ctx, 0, sizeof(*__ctx));
1838		__ctx->cpu = i;
1839		spin_lock_init(&__ctx->lock);
1840		INIT_LIST_HEAD(&__ctx->rq_list);
1841		__ctx->queue = q;
1842		blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
1843		blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1844
1845		/* If the cpu isn't online, the cpu is mapped to first hctx */
1846		if (!cpu_online(i))
1847			continue;
1848
1849		hctx = blk_mq_map_queue(q, i);
1850
1851		/*
1852		 * Set local node, IFF we have more than one hw queue. If
1853		 * not, we remain on the home node of the device
1854		 */
 
1855		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1856			hctx->numa_node = local_memory_node(cpu_to_node(i));
1857	}
1858}
1859
1860static void blk_mq_map_swqueue(struct request_queue *q,
1861			       const struct cpumask *online_mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1862{
1863	unsigned int i, hctx_idx;
1864	struct blk_mq_hw_ctx *hctx;
1865	struct blk_mq_ctx *ctx;
1866	struct blk_mq_tag_set *set = q->tag_set;
1867
1868	/*
1869	 * Avoid others reading imcomplete hctx->cpumask through sysfs
1870	 */
1871	mutex_lock(&q->sysfs_lock);
1872
1873	queue_for_each_hw_ctx(q, hctx, i) {
1874		cpumask_clear(hctx->cpumask);
1875		hctx->nr_ctx = 0;
1876	}
1877
1878	/*
1879	 * Map software to hardware queues
 
 
1880	 */
1881	for_each_possible_cpu(i) {
1882		/* If the cpu isn't online, the cpu is mapped to first hctx */
1883		if (!cpumask_test_cpu(i, online_mask))
1884			continue;
1885
1886		hctx_idx = q->mq_map[i];
1887		/* unmapped hw queue can be remapped after CPU topo changed */
1888		if (!set->tags[hctx_idx]) {
1889			set->tags[hctx_idx] = blk_mq_init_rq_map(set, hctx_idx);
1890
1891			/*
1892			 * If tags initialization fail for some hctx,
1893			 * that hctx won't be brought online.  In this
1894			 * case, remap the current ctx to hctx[0] which
1895			 * is guaranteed to always have tags allocated
1896			 */
1897			if (!set->tags[hctx_idx])
1898				q->mq_map[i] = 0;
1899		}
1900
1901		ctx = per_cpu_ptr(q->queue_ctx, i);
1902		hctx = blk_mq_map_queue(q, i);
1903
1904		cpumask_set_cpu(i, hctx->cpumask);
1905		ctx->index_hw = hctx->nr_ctx;
1906		hctx->ctxs[hctx->nr_ctx++] = ctx;
1907	}
1908
1909	mutex_unlock(&q->sysfs_lock);
1910
1911	queue_for_each_hw_ctx(q, hctx, i) {
1912		/*
1913		 * If no software queues are mapped to this hardware queue,
1914		 * disable it and free the request entries.
1915		 */
1916		if (!hctx->nr_ctx) {
1917			/* Never unmap queue 0.  We need it as a
1918			 * fallback in case of a new remap fails
1919			 * allocation
1920			 */
1921			if (i && set->tags[i]) {
1922				blk_mq_free_rq_map(set, set->tags[i], i);
1923				set->tags[i] = NULL;
1924			}
1925			hctx->tags = NULL;
1926			continue;
1927		}
1928
1929		hctx->tags = set->tags[i];
1930		WARN_ON(!hctx->tags);
1931
1932		/*
1933		 * Set the map size to the number of mapped software queues.
1934		 * This is more accurate and more efficient than looping
1935		 * over all possibly mapped software queues.
1936		 */
1937		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
1938
1939		/*
1940		 * Initialize batch roundrobin counts
1941		 */
1942		hctx->next_cpu = cpumask_first(hctx->cpumask);
1943		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1944	}
1945}
1946
 
 
 
 
1947static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1948{
1949	struct blk_mq_hw_ctx *hctx;
1950	int i;
1951
1952	queue_for_each_hw_ctx(q, hctx, i) {
1953		if (shared)
 
 
1954			hctx->flags |= BLK_MQ_F_TAG_SHARED;
1955		else
 
 
1956			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
 
1957	}
1958}
1959
1960static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
 
1961{
1962	struct request_queue *q;
1963
 
 
1964	list_for_each_entry(q, &set->tag_list, tag_set_list) {
1965		blk_mq_freeze_queue(q);
1966		queue_set_hctx_shared(q, shared);
1967		blk_mq_unfreeze_queue(q);
1968	}
1969}
1970
1971static void blk_mq_del_queue_tag_set(struct request_queue *q)
1972{
1973	struct blk_mq_tag_set *set = q->tag_set;
1974
1975	mutex_lock(&set->tag_list_lock);
1976	list_del_init(&q->tag_set_list);
 
1977	if (list_is_singular(&set->tag_list)) {
1978		/* just transitioned to unshared */
1979		set->flags &= ~BLK_MQ_F_TAG_SHARED;
1980		/* update existing queue */
1981		blk_mq_update_tag_set_depth(set, false);
1982	}
1983	mutex_unlock(&set->tag_list_lock);
 
 
1984}
1985
1986static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1987				     struct request_queue *q)
1988{
1989	q->tag_set = set;
1990
1991	mutex_lock(&set->tag_list_lock);
1992
1993	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1994	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
 
 
 
1995		set->flags |= BLK_MQ_F_TAG_SHARED;
1996		/* update existing queue */
1997		blk_mq_update_tag_set_depth(set, true);
1998	}
1999	if (set->flags & BLK_MQ_F_TAG_SHARED)
2000		queue_set_hctx_shared(q, true);
2001	list_add_tail(&q->tag_set_list, &set->tag_list);
2002
2003	mutex_unlock(&set->tag_list_lock);
2004}
2005
2006/*
2007 * It is the actual release handler for mq, but we do it from
2008 * request queue's release handler for avoiding use-after-free
2009 * and headache because q->mq_kobj shouldn't have been introduced,
2010 * but we can't group ctx/kctx kobj without it.
2011 */
2012void blk_mq_release(struct request_queue *q)
2013{
2014	struct blk_mq_hw_ctx *hctx;
2015	unsigned int i;
2016
2017	/* hctx kobj stays in hctx */
2018	queue_for_each_hw_ctx(q, hctx, i) {
2019		if (!hctx)
2020			continue;
2021		kfree(hctx->ctxs);
2022		kfree(hctx);
2023	}
2024
2025	q->mq_map = NULL;
2026
2027	kfree(q->queue_hw_ctx);
2028
2029	/* ctx kobj stays in queue_ctx */
 
 
 
 
 
2030	free_percpu(q->queue_ctx);
2031}
2032
2033struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2034{
2035	struct request_queue *uninit_q, *q;
2036
2037	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2038	if (!uninit_q)
2039		return ERR_PTR(-ENOMEM);
2040
2041	q = blk_mq_init_allocated_queue(set, uninit_q);
2042	if (IS_ERR(q))
2043		blk_cleanup_queue(uninit_q);
2044
2045	return q;
2046}
2047EXPORT_SYMBOL(blk_mq_init_queue);
2048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2049static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2050						struct request_queue *q)
2051{
2052	int i, j;
2053	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2054
2055	blk_mq_sysfs_unregister(q);
 
 
 
2056	for (i = 0; i < set->nr_hw_queues; i++) {
2057		int node;
2058
2059		if (hctxs[i])
2060			continue;
2061
2062		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2063		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2064					GFP_KERNEL, node);
2065		if (!hctxs[i])
2066			break;
2067
2068		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2069						node)) {
2070			kfree(hctxs[i]);
2071			hctxs[i] = NULL;
2072			break;
2073		}
2074
2075		atomic_set(&hctxs[i]->nr_active, 0);
2076		hctxs[i]->numa_node = node;
2077		hctxs[i]->queue_num = i;
2078
2079		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2080			free_cpumask_var(hctxs[i]->cpumask);
2081			kfree(hctxs[i]);
2082			hctxs[i] = NULL;
2083			break;
2084		}
2085		blk_mq_hctx_kobj_init(hctxs[i]);
2086	}
2087	for (j = i; j < q->nr_hw_queues; j++) {
2088		struct blk_mq_hw_ctx *hctx = hctxs[j];
2089
2090		if (hctx) {
2091			if (hctx->tags) {
2092				blk_mq_free_rq_map(set, hctx->tags, j);
2093				set->tags[j] = NULL;
2094			}
2095			blk_mq_exit_hctx(q, set, hctx, j);
2096			free_cpumask_var(hctx->cpumask);
2097			kobject_put(&hctx->kobj);
2098			kfree(hctx->ctxs);
2099			kfree(hctx);
2100			hctxs[j] = NULL;
2101
2102		}
2103	}
2104	q->nr_hw_queues = i;
 
2105	blk_mq_sysfs_register(q);
2106}
2107
2108struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2109						  struct request_queue *q)
2110{
2111	/* mark the queue as mq asap */
2112	q->mq_ops = set->ops;
2113
 
 
 
 
 
 
2114	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2115	if (!q->queue_ctx)
2116		goto err_exit;
2117
 
 
 
2118	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2119						GFP_KERNEL, set->numa_node);
2120	if (!q->queue_hw_ctx)
2121		goto err_percpu;
2122
2123	q->mq_map = set->mq_map;
2124
2125	blk_mq_realloc_hw_ctxs(set, q);
2126	if (!q->nr_hw_queues)
2127		goto err_hctxs;
2128
2129	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2130	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2131
2132	q->nr_queues = nr_cpu_ids;
2133
2134	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2135
2136	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2137		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2138
2139	q->sg_reserved_size = INT_MAX;
2140
2141	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2142	INIT_LIST_HEAD(&q->requeue_list);
2143	spin_lock_init(&q->requeue_lock);
2144
2145	if (q->nr_hw_queues > 1)
2146		blk_queue_make_request(q, blk_mq_make_request);
2147	else
2148		blk_queue_make_request(q, blk_sq_make_request);
2149
2150	/*
2151	 * Do this after blk_queue_make_request() overrides it...
2152	 */
2153	q->nr_requests = set->queue_depth;
2154
2155	/*
2156	 * Default to classic polling
2157	 */
2158	q->poll_nsec = -1;
2159
2160	if (set->ops->complete)
2161		blk_queue_softirq_done(q, set->ops->complete);
2162
2163	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
 
 
2164
2165	get_online_cpus();
2166	mutex_lock(&all_q_mutex);
2167
2168	list_add_tail(&q->all_q_node, &all_q_list);
2169	blk_mq_add_queue_tag_set(set, q);
2170	blk_mq_map_swqueue(q, cpu_online_mask);
2171
2172	mutex_unlock(&all_q_mutex);
2173	put_online_cpus();
2174
2175	return q;
2176
2177err_hctxs:
2178	kfree(q->queue_hw_ctx);
2179err_percpu:
2180	free_percpu(q->queue_ctx);
2181err_exit:
2182	q->mq_ops = NULL;
2183	return ERR_PTR(-ENOMEM);
2184}
2185EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2186
2187void blk_mq_free_queue(struct request_queue *q)
2188{
2189	struct blk_mq_tag_set	*set = q->tag_set;
2190
2191	mutex_lock(&all_q_mutex);
2192	list_del_init(&q->all_q_node);
2193	mutex_unlock(&all_q_mutex);
2194
2195	wbt_exit(q);
2196
2197	blk_mq_del_queue_tag_set(q);
2198
2199	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2200	blk_mq_free_hw_queues(q, set);
2201}
2202
2203/* Basically redo blk_mq_init_queue with queue frozen */
2204static void blk_mq_queue_reinit(struct request_queue *q,
2205				const struct cpumask *online_mask)
2206{
2207	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2208
 
2209	blk_mq_sysfs_unregister(q);
2210
2211	/*
2212	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2213	 * we should change hctx numa_node according to new topology (this
2214	 * involves free and re-allocate memory, worthy doing?)
2215	 */
2216
2217	blk_mq_map_swqueue(q, online_mask);
2218
2219	blk_mq_sysfs_register(q);
2220}
2221
2222/*
2223 * New online cpumask which is going to be set in this hotplug event.
2224 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2225 * one-by-one and dynamically allocating this could result in a failure.
2226 */
2227static struct cpumask cpuhp_online_new;
2228
2229static void blk_mq_queue_reinit_work(void)
2230{
2231	struct request_queue *q;
2232
2233	mutex_lock(&all_q_mutex);
2234	/*
2235	 * We need to freeze and reinit all existing queues.  Freezing
2236	 * involves synchronous wait for an RCU grace period and doing it
2237	 * one by one may take a long time.  Start freezing all queues in
2238	 * one swoop and then wait for the completions so that freezing can
2239	 * take place in parallel.
2240	 */
2241	list_for_each_entry(q, &all_q_list, all_q_node)
2242		blk_mq_freeze_queue_start(q);
2243	list_for_each_entry(q, &all_q_list, all_q_node)
2244		blk_mq_freeze_queue_wait(q);
2245
2246	list_for_each_entry(q, &all_q_list, all_q_node)
2247		blk_mq_queue_reinit(q, &cpuhp_online_new);
2248
2249	list_for_each_entry(q, &all_q_list, all_q_node)
2250		blk_mq_unfreeze_queue(q);
2251
2252	mutex_unlock(&all_q_mutex);
2253}
2254
2255static int blk_mq_queue_reinit_dead(unsigned int cpu)
2256{
2257	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2258	blk_mq_queue_reinit_work();
2259	return 0;
2260}
2261
2262/*
2263 * Before hotadded cpu starts handling requests, new mappings must be
2264 * established.  Otherwise, these requests in hw queue might never be
2265 * dispatched.
2266 *
2267 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2268 * for CPU0, and ctx1 for CPU1).
2269 *
2270 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2271 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2272 *
2273 * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in
2274 * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2275 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list
2276 * is ignored.
2277 */
2278static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2279{
2280	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2281	cpumask_set_cpu(cpu, &cpuhp_online_new);
2282	blk_mq_queue_reinit_work();
2283	return 0;
2284}
2285
2286static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2287{
2288	int i;
2289
2290	for (i = 0; i < set->nr_hw_queues; i++) {
2291		set->tags[i] = blk_mq_init_rq_map(set, i);
2292		if (!set->tags[i])
2293			goto out_unwind;
2294	}
2295
2296	return 0;
2297
2298out_unwind:
2299	while (--i >= 0)
2300		blk_mq_free_rq_map(set, set->tags[i], i);
2301
2302	return -ENOMEM;
2303}
2304
2305/*
2306 * Allocate the request maps associated with this tag_set. Note that this
2307 * may reduce the depth asked for, if memory is tight. set->queue_depth
2308 * will be updated to reflect the allocated depth.
2309 */
2310static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2311{
2312	unsigned int depth;
2313	int err;
2314
2315	depth = set->queue_depth;
2316	do {
2317		err = __blk_mq_alloc_rq_maps(set);
2318		if (!err)
2319			break;
2320
2321		set->queue_depth >>= 1;
2322		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2323			err = -ENOMEM;
2324			break;
2325		}
2326	} while (set->queue_depth);
2327
2328	if (!set->queue_depth || err) {
2329		pr_err("blk-mq: failed to allocate request map\n");
2330		return -ENOMEM;
2331	}
2332
2333	if (depth != set->queue_depth)
2334		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2335						depth, set->queue_depth);
2336
2337	return 0;
2338}
2339
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2340/*
2341 * Alloc a tag set to be associated with one or more request queues.
2342 * May fail with EINVAL for various error conditions. May adjust the
2343 * requested depth down, if if it too large. In that case, the set
2344 * value will be stored in set->queue_depth.
2345 */
2346int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2347{
2348	int ret;
2349
2350	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2351
2352	if (!set->nr_hw_queues)
2353		return -EINVAL;
2354	if (!set->queue_depth)
2355		return -EINVAL;
2356	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2357		return -EINVAL;
2358
2359	if (!set->ops->queue_rq)
2360		return -EINVAL;
2361
 
 
 
2362	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2363		pr_info("blk-mq: reduced tag depth to %u\n",
2364			BLK_MQ_MAX_DEPTH);
2365		set->queue_depth = BLK_MQ_MAX_DEPTH;
2366	}
2367
2368	/*
2369	 * If a crashdump is active, then we are potentially in a very
2370	 * memory constrained environment. Limit us to 1 queue and
2371	 * 64 tags to prevent using too much memory.
2372	 */
2373	if (is_kdump_kernel()) {
2374		set->nr_hw_queues = 1;
2375		set->queue_depth = min(64U, set->queue_depth);
2376	}
2377	/*
2378	 * There is no use for more h/w queues than cpus.
2379	 */
2380	if (set->nr_hw_queues > nr_cpu_ids)
2381		set->nr_hw_queues = nr_cpu_ids;
2382
2383	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2384				 GFP_KERNEL, set->numa_node);
2385	if (!set->tags)
2386		return -ENOMEM;
2387
2388	ret = -ENOMEM;
2389	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2390			GFP_KERNEL, set->numa_node);
2391	if (!set->mq_map)
2392		goto out_free_tags;
2393
2394	if (set->ops->map_queues)
2395		ret = set->ops->map_queues(set);
2396	else
2397		ret = blk_mq_map_queues(set);
2398	if (ret)
2399		goto out_free_mq_map;
2400
2401	ret = blk_mq_alloc_rq_maps(set);
2402	if (ret)
2403		goto out_free_mq_map;
2404
2405	mutex_init(&set->tag_list_lock);
2406	INIT_LIST_HEAD(&set->tag_list);
2407
2408	return 0;
2409
2410out_free_mq_map:
2411	kfree(set->mq_map);
2412	set->mq_map = NULL;
2413out_free_tags:
2414	kfree(set->tags);
2415	set->tags = NULL;
2416	return ret;
2417}
2418EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2419
2420void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2421{
2422	int i;
2423
2424	for (i = 0; i < nr_cpu_ids; i++) {
2425		if (set->tags[i])
2426			blk_mq_free_rq_map(set, set->tags[i], i);
2427	}
2428
2429	kfree(set->mq_map);
2430	set->mq_map = NULL;
2431
2432	kfree(set->tags);
2433	set->tags = NULL;
2434}
2435EXPORT_SYMBOL(blk_mq_free_tag_set);
2436
2437int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2438{
2439	struct blk_mq_tag_set *set = q->tag_set;
2440	struct blk_mq_hw_ctx *hctx;
2441	int i, ret;
2442
2443	if (!set || nr > set->queue_depth)
2444		return -EINVAL;
2445
 
 
 
2446	ret = 0;
2447	queue_for_each_hw_ctx(q, hctx, i) {
2448		if (!hctx->tags)
2449			continue;
2450		ret = blk_mq_tag_update_depth(hctx->tags, nr);
 
 
 
 
 
 
 
 
 
 
2451		if (ret)
2452			break;
2453	}
2454
2455	if (!ret)
2456		q->nr_requests = nr;
2457
 
 
 
2458	return ret;
2459}
2460
2461void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
 
2462{
2463	struct request_queue *q;
2464
 
 
2465	if (nr_hw_queues > nr_cpu_ids)
2466		nr_hw_queues = nr_cpu_ids;
2467	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2468		return;
2469
2470	list_for_each_entry(q, &set->tag_list, tag_set_list)
2471		blk_mq_freeze_queue(q);
2472
2473	set->nr_hw_queues = nr_hw_queues;
 
2474	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2475		blk_mq_realloc_hw_ctxs(set, q);
2476
2477		if (q->nr_hw_queues > 1)
2478			blk_queue_make_request(q, blk_mq_make_request);
2479		else
2480			blk_queue_make_request(q, blk_sq_make_request);
2481
2482		blk_mq_queue_reinit(q, cpu_online_mask);
2483	}
2484
2485	list_for_each_entry(q, &set->tag_list, tag_set_list)
2486		blk_mq_unfreeze_queue(q);
2487}
 
 
 
 
 
 
 
2488EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2490static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2491				       struct blk_mq_hw_ctx *hctx,
2492				       struct request *rq)
2493{
2494	struct blk_rq_stat stat[2];
2495	unsigned long ret = 0;
 
2496
2497	/*
2498	 * If stats collection isn't on, don't sleep but turn it on for
2499	 * future users
2500	 */
2501	if (!blk_stat_enable(q))
2502		return 0;
2503
2504	/*
2505	 * We don't have to do this once per IO, should optimize this
2506	 * to just use the current window of stats until it changes
2507	 */
2508	memset(&stat, 0, sizeof(stat));
2509	blk_hctx_stat_get(hctx, stat);
2510
2511	/*
2512	 * As an optimistic guess, use half of the mean service time
2513	 * for this type of request. We can (and should) make this smarter.
2514	 * For instance, if the completion latencies are tight, we can
2515	 * get closer than just half the mean. This is especially
2516	 * important on devices where the completion latencies are longer
2517	 * than ~10 usec.
 
2518	 */
2519	if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2520		ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2521	else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2522		ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
 
 
2523
2524	return ret;
2525}
2526
2527static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2528				     struct blk_mq_hw_ctx *hctx,
2529				     struct request *rq)
2530{
2531	struct hrtimer_sleeper hs;
2532	enum hrtimer_mode mode;
2533	unsigned int nsecs;
2534	ktime_t kt;
2535
2536	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2537		return false;
2538
2539	/*
2540	 * poll_nsec can be:
2541	 *
2542	 * -1:	don't ever hybrid sleep
2543	 *  0:	use half of prev avg
2544	 * >0:	use this specific value
2545	 */
2546	if (q->poll_nsec == -1)
2547		return false;
2548	else if (q->poll_nsec > 0)
2549		nsecs = q->poll_nsec;
2550	else
2551		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2552
2553	if (!nsecs)
2554		return false;
2555
2556	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2557
2558	/*
2559	 * This will be replaced with the stats tracking code, using
2560	 * 'avg_completion_time / 2' as the pre-sleep target.
2561	 */
2562	kt = nsecs;
2563
2564	mode = HRTIMER_MODE_REL;
2565	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2566	hrtimer_set_expires(&hs.timer, kt);
2567
2568	hrtimer_init_sleeper(&hs, current);
2569	do {
2570		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2571			break;
2572		set_current_state(TASK_UNINTERRUPTIBLE);
2573		hrtimer_start_expires(&hs.timer, mode);
2574		if (hs.task)
2575			io_schedule();
2576		hrtimer_cancel(&hs.timer);
2577		mode = HRTIMER_MODE_ABS;
2578	} while (hs.task && !signal_pending(current));
2579
2580	__set_current_state(TASK_RUNNING);
2581	destroy_hrtimer_on_stack(&hs.timer);
2582	return true;
2583}
2584
2585static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2586{
2587	struct request_queue *q = hctx->queue;
2588	long state;
2589
2590	/*
2591	 * If we sleep, have the caller restart the poll loop to reset
2592	 * the state. Like for the other success return cases, the
2593	 * caller is responsible for checking if the IO completed. If
2594	 * the IO isn't complete, we'll get called again and will go
2595	 * straight to the busy poll loop.
2596	 */
2597	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2598		return true;
2599
2600	hctx->poll_considered++;
2601
2602	state = current->state;
2603	while (!need_resched()) {
2604		int ret;
2605
2606		hctx->poll_invoked++;
2607
2608		ret = q->mq_ops->poll(hctx, rq->tag);
2609		if (ret > 0) {
2610			hctx->poll_success++;
2611			set_current_state(TASK_RUNNING);
2612			return true;
2613		}
2614
2615		if (signal_pending_state(state, current))
2616			set_current_state(TASK_RUNNING);
2617
2618		if (current->state == TASK_RUNNING)
2619			return true;
2620		if (ret < 0)
2621			break;
2622		cpu_relax();
2623	}
2624
 
2625	return false;
2626}
2627
2628bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2629{
2630	struct blk_mq_hw_ctx *hctx;
2631	struct blk_plug *plug;
2632	struct request *rq;
2633
2634	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2635	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2636		return false;
2637
2638	plug = current->plug;
2639	if (plug)
2640		blk_flush_plug_list(plug, false);
2641
2642	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2643	rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
 
 
 
 
 
 
 
 
 
 
 
 
2644
2645	return __blk_mq_poll(hctx, rq);
2646}
2647EXPORT_SYMBOL_GPL(blk_mq_poll);
2648
2649void blk_mq_disable_hotplug(void)
2650{
2651	mutex_lock(&all_q_mutex);
2652}
2653
2654void blk_mq_enable_hotplug(void)
2655{
2656	mutex_unlock(&all_q_mutex);
2657}
2658
2659static int __init blk_mq_init(void)
2660{
2661	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2662				blk_mq_hctx_notify_dead);
2663
2664	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2665				  blk_mq_queue_reinit_prepare,
2666				  blk_mq_queue_reinit_dead);
2667	return 0;
2668}
2669subsys_initcall(blk_mq_init);