Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * Common interrupt code for 32 and 64 bit
  3 */
  4#include <linux/cpu.h>
  5#include <linux/interrupt.h>
  6#include <linux/kernel_stat.h>
  7#include <linux/of.h>
  8#include <linux/seq_file.h>
  9#include <linux/smp.h>
 10#include <linux/ftrace.h>
 11#include <linux/delay.h>
 12#include <linux/export.h>
 13
 14#include <asm/apic.h>
 15#include <asm/io_apic.h>
 16#include <asm/irq.h>
 17#include <asm/mce.h>
 18#include <asm/hw_irq.h>
 19#include <asm/desc.h>
 20
 21#define CREATE_TRACE_POINTS
 22#include <asm/trace/irq_vectors.h>
 23
 24DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
 25EXPORT_PER_CPU_SYMBOL(irq_stat);
 26
 27DEFINE_PER_CPU(struct pt_regs *, irq_regs);
 28EXPORT_PER_CPU_SYMBOL(irq_regs);
 29
 30atomic_t irq_err_count;
 31
 
 
 
 32/*
 33 * 'what should we do if we get a hw irq event on an illegal vector'.
 34 * each architecture has to answer this themselves.
 35 */
 36void ack_bad_irq(unsigned int irq)
 37{
 38	if (printk_ratelimit())
 39		pr_err("unexpected IRQ trap at vector %02x\n", irq);
 40
 41	/*
 42	 * Currently unexpected vectors happen only on SMP and APIC.
 43	 * We _must_ ack these because every local APIC has only N
 44	 * irq slots per priority level, and a 'hanging, unacked' IRQ
 45	 * holds up an irq slot - in excessive cases (when multiple
 46	 * unexpected vectors occur) that might lock up the APIC
 47	 * completely.
 48	 * But only ack when the APIC is enabled -AK
 49	 */
 50	ack_APIC_irq();
 51}
 52
 53#define irq_stats(x)		(&per_cpu(irq_stat, x))
 54/*
 55 * /proc/interrupts printing for arch specific interrupts
 56 */
 57int arch_show_interrupts(struct seq_file *p, int prec)
 58{
 59	int j;
 60
 61	seq_printf(p, "%*s: ", prec, "NMI");
 62	for_each_online_cpu(j)
 63		seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
 64	seq_puts(p, "  Non-maskable interrupts\n");
 65#ifdef CONFIG_X86_LOCAL_APIC
 66	seq_printf(p, "%*s: ", prec, "LOC");
 67	for_each_online_cpu(j)
 68		seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
 69	seq_puts(p, "  Local timer interrupts\n");
 70
 71	seq_printf(p, "%*s: ", prec, "SPU");
 72	for_each_online_cpu(j)
 73		seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
 74	seq_puts(p, "  Spurious interrupts\n");
 75	seq_printf(p, "%*s: ", prec, "PMI");
 76	for_each_online_cpu(j)
 77		seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
 78	seq_puts(p, "  Performance monitoring interrupts\n");
 79	seq_printf(p, "%*s: ", prec, "IWI");
 80	for_each_online_cpu(j)
 81		seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
 82	seq_puts(p, "  IRQ work interrupts\n");
 83	seq_printf(p, "%*s: ", prec, "RTR");
 84	for_each_online_cpu(j)
 85		seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
 86	seq_puts(p, "  APIC ICR read retries\n");
 
 87	if (x86_platform_ipi_callback) {
 88		seq_printf(p, "%*s: ", prec, "PLT");
 89		for_each_online_cpu(j)
 90			seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
 91		seq_puts(p, "  Platform interrupts\n");
 92	}
 93#endif
 94#ifdef CONFIG_SMP
 95	seq_printf(p, "%*s: ", prec, "RES");
 96	for_each_online_cpu(j)
 97		seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
 98	seq_puts(p, "  Rescheduling interrupts\n");
 99	seq_printf(p, "%*s: ", prec, "CAL");
100	for_each_online_cpu(j)
101		seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
102	seq_puts(p, "  Function call interrupts\n");
103	seq_printf(p, "%*s: ", prec, "TLB");
104	for_each_online_cpu(j)
105		seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
106	seq_puts(p, "  TLB shootdowns\n");
107#endif
108#ifdef CONFIG_X86_THERMAL_VECTOR
109	seq_printf(p, "%*s: ", prec, "TRM");
110	for_each_online_cpu(j)
111		seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
112	seq_puts(p, "  Thermal event interrupts\n");
113#endif
114#ifdef CONFIG_X86_MCE_THRESHOLD
115	seq_printf(p, "%*s: ", prec, "THR");
116	for_each_online_cpu(j)
117		seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
118	seq_puts(p, "  Threshold APIC interrupts\n");
119#endif
120#ifdef CONFIG_X86_MCE_AMD
121	seq_printf(p, "%*s: ", prec, "DFR");
122	for_each_online_cpu(j)
123		seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count);
124	seq_puts(p, "  Deferred Error APIC interrupts\n");
125#endif
126#ifdef CONFIG_X86_MCE
127	seq_printf(p, "%*s: ", prec, "MCE");
128	for_each_online_cpu(j)
129		seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
130	seq_puts(p, "  Machine check exceptions\n");
131	seq_printf(p, "%*s: ", prec, "MCP");
132	for_each_online_cpu(j)
133		seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
134	seq_puts(p, "  Machine check polls\n");
135#endif
136#if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN)
137	if (test_bit(HYPERVISOR_CALLBACK_VECTOR, system_vectors)) {
138		seq_printf(p, "%*s: ", prec, "HYP");
139		for_each_online_cpu(j)
140			seq_printf(p, "%10u ",
141				   irq_stats(j)->irq_hv_callback_count);
142		seq_puts(p, "  Hypervisor callback interrupts\n");
143	}
144#endif
145#if IS_ENABLED(CONFIG_HYPERV)
146	if (test_bit(HYPERV_REENLIGHTENMENT_VECTOR, system_vectors)) {
147		seq_printf(p, "%*s: ", prec, "HRE");
148		for_each_online_cpu(j)
149			seq_printf(p, "%10u ",
150				   irq_stats(j)->irq_hv_reenlightenment_count);
151		seq_puts(p, "  Hyper-V reenlightenment interrupts\n");
152	}
153	if (test_bit(HYPERV_STIMER0_VECTOR, system_vectors)) {
154		seq_printf(p, "%*s: ", prec, "HVS");
155		for_each_online_cpu(j)
156			seq_printf(p, "%10u ",
157				   irq_stats(j)->hyperv_stimer0_count);
158		seq_puts(p, "  Hyper-V stimer0 interrupts\n");
159	}
160#endif
161	seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
162#if defined(CONFIG_X86_IO_APIC)
163	seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
164#endif
165#ifdef CONFIG_HAVE_KVM
166	seq_printf(p, "%*s: ", prec, "PIN");
167	for_each_online_cpu(j)
168		seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis);
169	seq_puts(p, "  Posted-interrupt notification event\n");
170
171	seq_printf(p, "%*s: ", prec, "NPI");
172	for_each_online_cpu(j)
173		seq_printf(p, "%10u ",
174			   irq_stats(j)->kvm_posted_intr_nested_ipis);
175	seq_puts(p, "  Nested posted-interrupt event\n");
176
177	seq_printf(p, "%*s: ", prec, "PIW");
178	for_each_online_cpu(j)
179		seq_printf(p, "%10u ",
180			   irq_stats(j)->kvm_posted_intr_wakeup_ipis);
181	seq_puts(p, "  Posted-interrupt wakeup event\n");
182#endif
183	return 0;
184}
185
186/*
187 * /proc/stat helpers
188 */
189u64 arch_irq_stat_cpu(unsigned int cpu)
190{
191	u64 sum = irq_stats(cpu)->__nmi_count;
192
193#ifdef CONFIG_X86_LOCAL_APIC
194	sum += irq_stats(cpu)->apic_timer_irqs;
195	sum += irq_stats(cpu)->irq_spurious_count;
196	sum += irq_stats(cpu)->apic_perf_irqs;
197	sum += irq_stats(cpu)->apic_irq_work_irqs;
198	sum += irq_stats(cpu)->icr_read_retry_count;
 
199	if (x86_platform_ipi_callback)
200		sum += irq_stats(cpu)->x86_platform_ipis;
201#endif
202#ifdef CONFIG_SMP
203	sum += irq_stats(cpu)->irq_resched_count;
204	sum += irq_stats(cpu)->irq_call_count;
205#endif
206#ifdef CONFIG_X86_THERMAL_VECTOR
207	sum += irq_stats(cpu)->irq_thermal_count;
208#endif
209#ifdef CONFIG_X86_MCE_THRESHOLD
210	sum += irq_stats(cpu)->irq_threshold_count;
211#endif
212#ifdef CONFIG_X86_MCE
213	sum += per_cpu(mce_exception_count, cpu);
214	sum += per_cpu(mce_poll_count, cpu);
215#endif
216	return sum;
217}
218
219u64 arch_irq_stat(void)
220{
221	u64 sum = atomic_read(&irq_err_count);
222	return sum;
223}
224
225
226/*
227 * do_IRQ handles all normal device IRQ's (the special
228 * SMP cross-CPU interrupts have their own specific
229 * handlers).
230 */
231__visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
232{
233	struct pt_regs *old_regs = set_irq_regs(regs);
234	struct irq_desc * desc;
235	/* high bit used in ret_from_ code  */
236	unsigned vector = ~regs->orig_ax;
237
 
 
 
 
 
 
 
 
 
 
 
 
238	entering_irq();
239
240	/* entering_irq() tells RCU that we're not quiescent.  Check it. */
241	RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU");
242
243	desc = __this_cpu_read(vector_irq[vector]);
244
245	if (!handle_irq(desc, regs)) {
246		ack_APIC_irq();
247
248		if (desc != VECTOR_RETRIGGERED) {
249			pr_emerg_ratelimited("%s: %d.%d No irq handler for vector\n",
250					     __func__, smp_processor_id(),
251					     vector);
252		} else {
253			__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
254		}
255	}
256
257	exiting_irq();
258
259	set_irq_regs(old_regs);
260	return 1;
261}
262
263#ifdef CONFIG_X86_LOCAL_APIC
264/* Function pointer for generic interrupt vector handling */
265void (*x86_platform_ipi_callback)(void) = NULL;
266/*
267 * Handler for X86_PLATFORM_IPI_VECTOR.
268 */
269__visible void __irq_entry smp_x86_platform_ipi(struct pt_regs *regs)
270{
271	struct pt_regs *old_regs = set_irq_regs(regs);
272
273	entering_ack_irq();
274	trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
275	inc_irq_stat(x86_platform_ipis);
 
276	if (x86_platform_ipi_callback)
277		x86_platform_ipi_callback();
278	trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
 
 
 
 
 
 
 
279	exiting_irq();
280	set_irq_regs(old_regs);
281}
282#endif
283
284#ifdef CONFIG_HAVE_KVM
285static void dummy_handler(void) {}
286static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler;
287
288void kvm_set_posted_intr_wakeup_handler(void (*handler)(void))
289{
290	if (handler)
291		kvm_posted_intr_wakeup_handler = handler;
292	else
293		kvm_posted_intr_wakeup_handler = dummy_handler;
294}
295EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler);
296
297/*
298 * Handler for POSTED_INTERRUPT_VECTOR.
299 */
300__visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs)
301{
302	struct pt_regs *old_regs = set_irq_regs(regs);
303
304	entering_ack_irq();
305	inc_irq_stat(kvm_posted_intr_ipis);
306	exiting_irq();
307	set_irq_regs(old_regs);
308}
309
310/*
311 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
312 */
313__visible void smp_kvm_posted_intr_wakeup_ipi(struct pt_regs *regs)
314{
315	struct pt_regs *old_regs = set_irq_regs(regs);
316
317	entering_ack_irq();
318	inc_irq_stat(kvm_posted_intr_wakeup_ipis);
319	kvm_posted_intr_wakeup_handler();
320	exiting_irq();
321	set_irq_regs(old_regs);
322}
 
323
324/*
325 * Handler for POSTED_INTERRUPT_NESTED_VECTOR.
326 */
327__visible void smp_kvm_posted_intr_nested_ipi(struct pt_regs *regs)
328{
329	struct pt_regs *old_regs = set_irq_regs(regs);
330
331	entering_ack_irq();
332	inc_irq_stat(kvm_posted_intr_nested_ipis);
 
 
333	exiting_irq();
334	set_irq_regs(old_regs);
335}
336#endif
337
 
338
339#ifdef CONFIG_HOTPLUG_CPU
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
340/* A cpu has been removed from cpu_online_mask.  Reset irq affinities. */
341void fixup_irqs(void)
342{
343	unsigned int irr, vector;
 
344	struct irq_desc *desc;
345	struct irq_data *data;
346	struct irq_chip *chip;
 
347
348	irq_migrate_all_off_this_cpu();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
349
350	/*
351	 * We can remove mdelay() and then send spuriuous interrupts to
352	 * new cpu targets for all the irqs that were handled previously by
353	 * this cpu. While it works, I have seen spurious interrupt messages
354	 * (nothing wrong but still...).
355	 *
356	 * So for now, retain mdelay(1) and check the IRR and then send those
357	 * interrupts to new targets as this cpu is already offlined...
358	 */
359	mdelay(1);
360
361	/*
362	 * We can walk the vector array of this cpu without holding
363	 * vector_lock because the cpu is already marked !online, so
364	 * nothing else will touch it.
365	 */
366	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
 
 
367		if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector])))
368			continue;
369
370		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
371		if (irr  & (1 << (vector % 32))) {
372			desc = __this_cpu_read(vector_irq[vector]);
373
374			raw_spin_lock(&desc->lock);
375			data = irq_desc_get_irq_data(desc);
376			chip = irq_data_get_irq_chip(data);
377			if (chip->irq_retrigger) {
378				chip->irq_retrigger(data);
379				__this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
380			}
381			raw_spin_unlock(&desc->lock);
382		}
383		if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
384			__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
385	}
386}
387#endif
v4.10.11
  1/*
  2 * Common interrupt code for 32 and 64 bit
  3 */
  4#include <linux/cpu.h>
  5#include <linux/interrupt.h>
  6#include <linux/kernel_stat.h>
  7#include <linux/of.h>
  8#include <linux/seq_file.h>
  9#include <linux/smp.h>
 10#include <linux/ftrace.h>
 11#include <linux/delay.h>
 12#include <linux/export.h>
 13
 14#include <asm/apic.h>
 15#include <asm/io_apic.h>
 16#include <asm/irq.h>
 17#include <asm/mce.h>
 18#include <asm/hw_irq.h>
 19#include <asm/desc.h>
 20
 21#define CREATE_TRACE_POINTS
 22#include <asm/trace/irq_vectors.h>
 23
 24DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
 25EXPORT_PER_CPU_SYMBOL(irq_stat);
 26
 27DEFINE_PER_CPU(struct pt_regs *, irq_regs);
 28EXPORT_PER_CPU_SYMBOL(irq_regs);
 29
 30atomic_t irq_err_count;
 31
 32/* Function pointer for generic interrupt vector handling */
 33void (*x86_platform_ipi_callback)(void) = NULL;
 34
 35/*
 36 * 'what should we do if we get a hw irq event on an illegal vector'.
 37 * each architecture has to answer this themselves.
 38 */
 39void ack_bad_irq(unsigned int irq)
 40{
 41	if (printk_ratelimit())
 42		pr_err("unexpected IRQ trap at vector %02x\n", irq);
 43
 44	/*
 45	 * Currently unexpected vectors happen only on SMP and APIC.
 46	 * We _must_ ack these because every local APIC has only N
 47	 * irq slots per priority level, and a 'hanging, unacked' IRQ
 48	 * holds up an irq slot - in excessive cases (when multiple
 49	 * unexpected vectors occur) that might lock up the APIC
 50	 * completely.
 51	 * But only ack when the APIC is enabled -AK
 52	 */
 53	ack_APIC_irq();
 54}
 55
 56#define irq_stats(x)		(&per_cpu(irq_stat, x))
 57/*
 58 * /proc/interrupts printing for arch specific interrupts
 59 */
 60int arch_show_interrupts(struct seq_file *p, int prec)
 61{
 62	int j;
 63
 64	seq_printf(p, "%*s: ", prec, "NMI");
 65	for_each_online_cpu(j)
 66		seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
 67	seq_puts(p, "  Non-maskable interrupts\n");
 68#ifdef CONFIG_X86_LOCAL_APIC
 69	seq_printf(p, "%*s: ", prec, "LOC");
 70	for_each_online_cpu(j)
 71		seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
 72	seq_puts(p, "  Local timer interrupts\n");
 73
 74	seq_printf(p, "%*s: ", prec, "SPU");
 75	for_each_online_cpu(j)
 76		seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
 77	seq_puts(p, "  Spurious interrupts\n");
 78	seq_printf(p, "%*s: ", prec, "PMI");
 79	for_each_online_cpu(j)
 80		seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
 81	seq_puts(p, "  Performance monitoring interrupts\n");
 82	seq_printf(p, "%*s: ", prec, "IWI");
 83	for_each_online_cpu(j)
 84		seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
 85	seq_puts(p, "  IRQ work interrupts\n");
 86	seq_printf(p, "%*s: ", prec, "RTR");
 87	for_each_online_cpu(j)
 88		seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
 89	seq_puts(p, "  APIC ICR read retries\n");
 90#endif
 91	if (x86_platform_ipi_callback) {
 92		seq_printf(p, "%*s: ", prec, "PLT");
 93		for_each_online_cpu(j)
 94			seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
 95		seq_puts(p, "  Platform interrupts\n");
 96	}
 
 97#ifdef CONFIG_SMP
 98	seq_printf(p, "%*s: ", prec, "RES");
 99	for_each_online_cpu(j)
100		seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
101	seq_puts(p, "  Rescheduling interrupts\n");
102	seq_printf(p, "%*s: ", prec, "CAL");
103	for_each_online_cpu(j)
104		seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
105	seq_puts(p, "  Function call interrupts\n");
106	seq_printf(p, "%*s: ", prec, "TLB");
107	for_each_online_cpu(j)
108		seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
109	seq_puts(p, "  TLB shootdowns\n");
110#endif
111#ifdef CONFIG_X86_THERMAL_VECTOR
112	seq_printf(p, "%*s: ", prec, "TRM");
113	for_each_online_cpu(j)
114		seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
115	seq_puts(p, "  Thermal event interrupts\n");
116#endif
117#ifdef CONFIG_X86_MCE_THRESHOLD
118	seq_printf(p, "%*s: ", prec, "THR");
119	for_each_online_cpu(j)
120		seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
121	seq_puts(p, "  Threshold APIC interrupts\n");
122#endif
123#ifdef CONFIG_X86_MCE_AMD
124	seq_printf(p, "%*s: ", prec, "DFR");
125	for_each_online_cpu(j)
126		seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count);
127	seq_puts(p, "  Deferred Error APIC interrupts\n");
128#endif
129#ifdef CONFIG_X86_MCE
130	seq_printf(p, "%*s: ", prec, "MCE");
131	for_each_online_cpu(j)
132		seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
133	seq_puts(p, "  Machine check exceptions\n");
134	seq_printf(p, "%*s: ", prec, "MCP");
135	for_each_online_cpu(j)
136		seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
137	seq_puts(p, "  Machine check polls\n");
138#endif
139#if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN)
140	if (test_bit(HYPERVISOR_CALLBACK_VECTOR, used_vectors)) {
141		seq_printf(p, "%*s: ", prec, "HYP");
142		for_each_online_cpu(j)
143			seq_printf(p, "%10u ",
144				   irq_stats(j)->irq_hv_callback_count);
145		seq_puts(p, "  Hypervisor callback interrupts\n");
146	}
147#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148	seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
149#if defined(CONFIG_X86_IO_APIC)
150	seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
151#endif
152#ifdef CONFIG_HAVE_KVM
153	seq_printf(p, "%*s: ", prec, "PIN");
154	for_each_online_cpu(j)
155		seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis);
156	seq_puts(p, "  Posted-interrupt notification event\n");
157
 
 
 
 
 
 
158	seq_printf(p, "%*s: ", prec, "PIW");
159	for_each_online_cpu(j)
160		seq_printf(p, "%10u ",
161			   irq_stats(j)->kvm_posted_intr_wakeup_ipis);
162	seq_puts(p, "  Posted-interrupt wakeup event\n");
163#endif
164	return 0;
165}
166
167/*
168 * /proc/stat helpers
169 */
170u64 arch_irq_stat_cpu(unsigned int cpu)
171{
172	u64 sum = irq_stats(cpu)->__nmi_count;
173
174#ifdef CONFIG_X86_LOCAL_APIC
175	sum += irq_stats(cpu)->apic_timer_irqs;
176	sum += irq_stats(cpu)->irq_spurious_count;
177	sum += irq_stats(cpu)->apic_perf_irqs;
178	sum += irq_stats(cpu)->apic_irq_work_irqs;
179	sum += irq_stats(cpu)->icr_read_retry_count;
180#endif
181	if (x86_platform_ipi_callback)
182		sum += irq_stats(cpu)->x86_platform_ipis;
 
183#ifdef CONFIG_SMP
184	sum += irq_stats(cpu)->irq_resched_count;
185	sum += irq_stats(cpu)->irq_call_count;
186#endif
187#ifdef CONFIG_X86_THERMAL_VECTOR
188	sum += irq_stats(cpu)->irq_thermal_count;
189#endif
190#ifdef CONFIG_X86_MCE_THRESHOLD
191	sum += irq_stats(cpu)->irq_threshold_count;
192#endif
193#ifdef CONFIG_X86_MCE
194	sum += per_cpu(mce_exception_count, cpu);
195	sum += per_cpu(mce_poll_count, cpu);
196#endif
197	return sum;
198}
199
200u64 arch_irq_stat(void)
201{
202	u64 sum = atomic_read(&irq_err_count);
203	return sum;
204}
205
206
207/*
208 * do_IRQ handles all normal device IRQ's (the special
209 * SMP cross-CPU interrupts have their own specific
210 * handlers).
211 */
212__visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
213{
214	struct pt_regs *old_regs = set_irq_regs(regs);
215	struct irq_desc * desc;
216	/* high bit used in ret_from_ code  */
217	unsigned vector = ~regs->orig_ax;
218
219	/*
220	 * NB: Unlike exception entries, IRQ entries do not reliably
221	 * handle context tracking in the low-level entry code.  This is
222	 * because syscall entries execute briefly with IRQs on before
223	 * updating context tracking state, so we can take an IRQ from
224	 * kernel mode with CONTEXT_USER.  The low-level entry code only
225	 * updates the context if we came from user mode, so we won't
226	 * switch to CONTEXT_KERNEL.  We'll fix that once the syscall
227	 * code is cleaned up enough that we can cleanly defer enabling
228	 * IRQs.
229	 */
230
231	entering_irq();
232
233	/* entering_irq() tells RCU that we're not quiescent.  Check it. */
234	RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU");
235
236	desc = __this_cpu_read(vector_irq[vector]);
237
238	if (!handle_irq(desc, regs)) {
239		ack_APIC_irq();
240
241		if (desc != VECTOR_RETRIGGERED) {
242			pr_emerg_ratelimited("%s: %d.%d No irq handler for vector\n",
243					     __func__, smp_processor_id(),
244					     vector);
245		} else {
246			__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
247		}
248	}
249
250	exiting_irq();
251
252	set_irq_regs(old_regs);
253	return 1;
254}
255
 
 
 
256/*
257 * Handler for X86_PLATFORM_IPI_VECTOR.
258 */
259void __smp_x86_platform_ipi(void)
260{
 
 
 
 
261	inc_irq_stat(x86_platform_ipis);
262
263	if (x86_platform_ipi_callback)
264		x86_platform_ipi_callback();
265}
266
267__visible void smp_x86_platform_ipi(struct pt_regs *regs)
268{
269	struct pt_regs *old_regs = set_irq_regs(regs);
270
271	entering_ack_irq();
272	__smp_x86_platform_ipi();
273	exiting_irq();
274	set_irq_regs(old_regs);
275}
 
276
277#ifdef CONFIG_HAVE_KVM
278static void dummy_handler(void) {}
279static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler;
280
281void kvm_set_posted_intr_wakeup_handler(void (*handler)(void))
282{
283	if (handler)
284		kvm_posted_intr_wakeup_handler = handler;
285	else
286		kvm_posted_intr_wakeup_handler = dummy_handler;
287}
288EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler);
289
290/*
291 * Handler for POSTED_INTERRUPT_VECTOR.
292 */
293__visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs)
294{
295	struct pt_regs *old_regs = set_irq_regs(regs);
296
297	entering_ack_irq();
298	inc_irq_stat(kvm_posted_intr_ipis);
299	exiting_irq();
300	set_irq_regs(old_regs);
301}
302
303/*
304 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
305 */
306__visible void smp_kvm_posted_intr_wakeup_ipi(struct pt_regs *regs)
307{
308	struct pt_regs *old_regs = set_irq_regs(regs);
309
310	entering_ack_irq();
311	inc_irq_stat(kvm_posted_intr_wakeup_ipis);
312	kvm_posted_intr_wakeup_handler();
313	exiting_irq();
314	set_irq_regs(old_regs);
315}
316#endif
317
318__visible void smp_trace_x86_platform_ipi(struct pt_regs *regs)
 
 
 
319{
320	struct pt_regs *old_regs = set_irq_regs(regs);
321
322	entering_ack_irq();
323	trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
324	__smp_x86_platform_ipi();
325	trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
326	exiting_irq();
327	set_irq_regs(old_regs);
328}
 
329
330EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq);
331
332#ifdef CONFIG_HOTPLUG_CPU
333
334/* These two declarations are only used in check_irq_vectors_for_cpu_disable()
335 * below, which is protected by stop_machine().  Putting them on the stack
336 * results in a stack frame overflow.  Dynamically allocating could result in a
337 * failure so declare these two cpumasks as global.
338 */
339static struct cpumask affinity_new, online_new;
340
341/*
342 * This cpu is going to be removed and its vectors migrated to the remaining
343 * online cpus.  Check to see if there are enough vectors in the remaining cpus.
344 * This function is protected by stop_machine().
345 */
346int check_irq_vectors_for_cpu_disable(void)
347{
348	unsigned int this_cpu, vector, this_count, count;
349	struct irq_desc *desc;
350	struct irq_data *data;
351	int cpu;
352
353	this_cpu = smp_processor_id();
354	cpumask_copy(&online_new, cpu_online_mask);
355	cpumask_clear_cpu(this_cpu, &online_new);
356
357	this_count = 0;
358	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
359		desc = __this_cpu_read(vector_irq[vector]);
360		if (IS_ERR_OR_NULL(desc))
361			continue;
362		/*
363		 * Protect against concurrent action removal, affinity
364		 * changes etc.
365		 */
366		raw_spin_lock(&desc->lock);
367		data = irq_desc_get_irq_data(desc);
368		cpumask_copy(&affinity_new,
369			     irq_data_get_affinity_mask(data));
370		cpumask_clear_cpu(this_cpu, &affinity_new);
371
372		/* Do not count inactive or per-cpu irqs. */
373		if (!irq_desc_has_action(desc) || irqd_is_per_cpu(data)) {
374			raw_spin_unlock(&desc->lock);
375			continue;
376		}
377
378		raw_spin_unlock(&desc->lock);
379		/*
380		 * A single irq may be mapped to multiple cpu's
381		 * vector_irq[] (for example IOAPIC cluster mode).  In
382		 * this case we have two possibilities:
383		 *
384		 * 1) the resulting affinity mask is empty; that is
385		 * this the down'd cpu is the last cpu in the irq's
386		 * affinity mask, or
387		 *
388		 * 2) the resulting affinity mask is no longer a
389		 * subset of the online cpus but the affinity mask is
390		 * not zero; that is the down'd cpu is the last online
391		 * cpu in a user set affinity mask.
392		 */
393		if (cpumask_empty(&affinity_new) ||
394		    !cpumask_subset(&affinity_new, &online_new))
395			this_count++;
396	}
397
398	count = 0;
399	for_each_online_cpu(cpu) {
400		if (cpu == this_cpu)
401			continue;
402		/*
403		 * We scan from FIRST_EXTERNAL_VECTOR to first system
404		 * vector. If the vector is marked in the used vectors
405		 * bitmap or an irq is assigned to it, we don't count
406		 * it as available.
407		 *
408		 * As this is an inaccurate snapshot anyway, we can do
409		 * this w/o holding vector_lock.
410		 */
411		for (vector = FIRST_EXTERNAL_VECTOR;
412		     vector < first_system_vector; vector++) {
413			if (!test_bit(vector, used_vectors) &&
414			    IS_ERR_OR_NULL(per_cpu(vector_irq, cpu)[vector]))
415			    count++;
416		}
417	}
418
419	if (count < this_count) {
420		pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n",
421			this_cpu, this_count, count);
422		return -ERANGE;
423	}
424	return 0;
425}
426
427/* A cpu has been removed from cpu_online_mask.  Reset irq affinities. */
428void fixup_irqs(void)
429{
430	unsigned int irq, vector;
431	static int warned;
432	struct irq_desc *desc;
433	struct irq_data *data;
434	struct irq_chip *chip;
435	int ret;
436
437	for_each_irq_desc(irq, desc) {
438		int break_affinity = 0;
439		int set_affinity = 1;
440		const struct cpumask *affinity;
441
442		if (!desc)
443			continue;
444		if (irq == 2)
445			continue;
446
447		/* interrupt's are disabled at this point */
448		raw_spin_lock(&desc->lock);
449
450		data = irq_desc_get_irq_data(desc);
451		affinity = irq_data_get_affinity_mask(data);
452		if (!irq_has_action(irq) || irqd_is_per_cpu(data) ||
453		    cpumask_subset(affinity, cpu_online_mask)) {
454			raw_spin_unlock(&desc->lock);
455			continue;
456		}
457
458		/*
459		 * Complete the irq move. This cpu is going down and for
460		 * non intr-remapping case, we can't wait till this interrupt
461		 * arrives at this cpu before completing the irq move.
462		 */
463		irq_force_complete_move(desc);
464
465		if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) {
466			break_affinity = 1;
467			affinity = cpu_online_mask;
468		}
469
470		chip = irq_data_get_irq_chip(data);
471		/*
472		 * The interrupt descriptor might have been cleaned up
473		 * already, but it is not yet removed from the radix tree
474		 */
475		if (!chip) {
476			raw_spin_unlock(&desc->lock);
477			continue;
478		}
479
480		if (!irqd_can_move_in_process_context(data) && chip->irq_mask)
481			chip->irq_mask(data);
482
483		if (chip->irq_set_affinity) {
484			ret = chip->irq_set_affinity(data, affinity, true);
485			if (ret == -ENOSPC)
486				pr_crit("IRQ %d set affinity failed because there are no available vectors.  The device assigned to this IRQ is unstable.\n", irq);
487		} else {
488			if (!(warned++))
489				set_affinity = 0;
490		}
491
492		/*
493		 * We unmask if the irq was not marked masked by the
494		 * core code. That respects the lazy irq disable
495		 * behaviour.
496		 */
497		if (!irqd_can_move_in_process_context(data) &&
498		    !irqd_irq_masked(data) && chip->irq_unmask)
499			chip->irq_unmask(data);
500
501		raw_spin_unlock(&desc->lock);
502
503		if (break_affinity && set_affinity)
504			pr_notice("Broke affinity for irq %i\n", irq);
505		else if (!set_affinity)
506			pr_notice("Cannot set affinity for irq %i\n", irq);
507	}
508
509	/*
510	 * We can remove mdelay() and then send spuriuous interrupts to
511	 * new cpu targets for all the irqs that were handled previously by
512	 * this cpu. While it works, I have seen spurious interrupt messages
513	 * (nothing wrong but still...).
514	 *
515	 * So for now, retain mdelay(1) and check the IRR and then send those
516	 * interrupts to new targets as this cpu is already offlined...
517	 */
518	mdelay(1);
519
520	/*
521	 * We can walk the vector array of this cpu without holding
522	 * vector_lock because the cpu is already marked !online, so
523	 * nothing else will touch it.
524	 */
525	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
526		unsigned int irr;
527
528		if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector])))
529			continue;
530
531		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
532		if (irr  & (1 << (vector % 32))) {
533			desc = __this_cpu_read(vector_irq[vector]);
534
535			raw_spin_lock(&desc->lock);
536			data = irq_desc_get_irq_data(desc);
537			chip = irq_data_get_irq_chip(data);
538			if (chip->irq_retrigger) {
539				chip->irq_retrigger(data);
540				__this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
541			}
542			raw_spin_unlock(&desc->lock);
543		}
544		if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
545			__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
546	}
547}
548#endif