Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _SPARC64_HYPERVISOR_H
3#define _SPARC64_HYPERVISOR_H
4
5/* Sun4v hypervisor interfaces and defines.
6 *
7 * Hypervisor calls are made via traps to software traps number 0x80
8 * and above. Registers %o0 to %o5 serve as argument, status, and
9 * return value registers.
10 *
11 * There are two kinds of these traps. First there are the normal
12 * "fast traps" which use software trap 0x80 and encode the function
13 * to invoke by number in register %o5. Argument and return value
14 * handling is as follows:
15 *
16 * -----------------------------------------------
17 * | %o5 | function number | undefined |
18 * | %o0 | argument 0 | return status |
19 * | %o1 | argument 1 | return value 1 |
20 * | %o2 | argument 2 | return value 2 |
21 * | %o3 | argument 3 | return value 3 |
22 * | %o4 | argument 4 | return value 4 |
23 * -----------------------------------------------
24 *
25 * The second type are "hyper-fast traps" which encode the function
26 * number in the software trap number itself. So these use trap
27 * numbers > 0x80. The register usage for hyper-fast traps is as
28 * follows:
29 *
30 * -----------------------------------------------
31 * | %o0 | argument 0 | return status |
32 * | %o1 | argument 1 | return value 1 |
33 * | %o2 | argument 2 | return value 2 |
34 * | %o3 | argument 3 | return value 3 |
35 * | %o4 | argument 4 | return value 4 |
36 * -----------------------------------------------
37 *
38 * Registers providing explicit arguments to the hypervisor calls
39 * are volatile across the call. Upon return their values are
40 * undefined unless explicitly specified as containing a particular
41 * return value by the specific call. The return status is always
42 * returned in register %o0, zero indicates a successful execution of
43 * the hypervisor call and other values indicate an error status as
44 * defined below. So, for example, if a hyper-fast trap takes
45 * arguments 0, 1, and 2, then %o0, %o1, and %o2 are volatile across
46 * the call and %o3, %o4, and %o5 would be preserved.
47 *
48 * If the hypervisor trap is invalid, or the fast trap function number
49 * is invalid, HV_EBADTRAP will be returned in %o0. Also, all 64-bits
50 * of the argument and return values are significant.
51 */
52
53/* Trap numbers. */
54#define HV_FAST_TRAP 0x80
55#define HV_MMU_MAP_ADDR_TRAP 0x83
56#define HV_MMU_UNMAP_ADDR_TRAP 0x84
57#define HV_TTRACE_ADDENTRY_TRAP 0x85
58#define HV_CORE_TRAP 0xff
59
60/* Error codes. */
61#define HV_EOK 0 /* Successful return */
62#define HV_ENOCPU 1 /* Invalid CPU id */
63#define HV_ENORADDR 2 /* Invalid real address */
64#define HV_ENOINTR 3 /* Invalid interrupt id */
65#define HV_EBADPGSZ 4 /* Invalid pagesize encoding */
66#define HV_EBADTSB 5 /* Invalid TSB description */
67#define HV_EINVAL 6 /* Invalid argument */
68#define HV_EBADTRAP 7 /* Invalid function number */
69#define HV_EBADALIGN 8 /* Invalid address alignment */
70#define HV_EWOULDBLOCK 9 /* Cannot complete w/o blocking */
71#define HV_ENOACCESS 10 /* No access to resource */
72#define HV_EIO 11 /* I/O error */
73#define HV_ECPUERROR 12 /* CPU in error state */
74#define HV_ENOTSUPPORTED 13 /* Function not supported */
75#define HV_ENOMAP 14 /* No mapping found */
76#define HV_ETOOMANY 15 /* Too many items specified */
77#define HV_ECHANNEL 16 /* Invalid LDC channel */
78#define HV_EBUSY 17 /* Resource busy */
79#define HV_EUNAVAILABLE 23 /* Resource or operation not
80 * currently available, but may
81 * become available in the future
82 */
83
84/* mach_exit()
85 * TRAP: HV_FAST_TRAP
86 * FUNCTION: HV_FAST_MACH_EXIT
87 * ARG0: exit code
88 * ERRORS: This service does not return.
89 *
90 * Stop all CPUs in the virtual domain and place them into the stopped
91 * state. The 64-bit exit code may be passed to a service entity as
92 * the domain's exit status. On systems without a service entity, the
93 * domain will undergo a reset, and the boot firmware will be
94 * reloaded.
95 *
96 * This function will never return to the guest that invokes it.
97 *
98 * Note: By convention an exit code of zero denotes a successful exit by
99 * the guest code. A non-zero exit code denotes a guest specific
100 * error indication.
101 *
102 */
103#define HV_FAST_MACH_EXIT 0x00
104
105#ifndef __ASSEMBLY__
106void sun4v_mach_exit(unsigned long exit_code);
107#endif
108
109/* Domain services. */
110
111/* mach_desc()
112 * TRAP: HV_FAST_TRAP
113 * FUNCTION: HV_FAST_MACH_DESC
114 * ARG0: buffer
115 * ARG1: length
116 * RET0: status
117 * RET1: length
118 * ERRORS: HV_EBADALIGN Buffer is badly aligned
119 * HV_ENORADDR Buffer is to an illegal real address.
120 * HV_EINVAL Buffer length is too small for complete
121 * machine description.
122 *
123 * Copy the most current machine description into the buffer indicated
124 * by the real address in ARG0. The buffer provided must be 16 byte
125 * aligned. Upon success or HV_EINVAL, this service returns the
126 * actual size of the machine description in the RET1 return value.
127 *
128 * Note: A method of determining the appropriate buffer size for the
129 * machine description is to first call this service with a buffer
130 * length of 0 bytes.
131 */
132#define HV_FAST_MACH_DESC 0x01
133
134#ifndef __ASSEMBLY__
135unsigned long sun4v_mach_desc(unsigned long buffer_pa,
136 unsigned long buf_len,
137 unsigned long *real_buf_len);
138#endif
139
140/* mach_sir()
141 * TRAP: HV_FAST_TRAP
142 * FUNCTION: HV_FAST_MACH_SIR
143 * ERRORS: This service does not return.
144 *
145 * Perform a software initiated reset of the virtual machine domain.
146 * All CPUs are captured as soon as possible, all hardware devices are
147 * returned to the entry default state, and the domain is restarted at
148 * the SIR (trap type 0x04) real trap table (RTBA) entry point on one
149 * of the CPUs. The single CPU restarted is selected as determined by
150 * platform specific policy. Memory is preserved across this
151 * operation.
152 */
153#define HV_FAST_MACH_SIR 0x02
154
155#ifndef __ASSEMBLY__
156void sun4v_mach_sir(void);
157#endif
158
159/* mach_set_watchdog()
160 * TRAP: HV_FAST_TRAP
161 * FUNCTION: HV_FAST_MACH_SET_WATCHDOG
162 * ARG0: timeout in milliseconds
163 * RET0: status
164 * RET1: time remaining in milliseconds
165 *
166 * A guest uses this API to set a watchdog timer. Once the gues has set
167 * the timer, it must call the timer service again either to disable or
168 * postpone the expiration. If the timer expires before being reset or
169 * disabled, then the hypervisor take a platform specific action leading
170 * to guest termination within a bounded time period. The platform action
171 * may include recovery actions such as reporting the expiration to a
172 * Service Processor, and/or automatically restarting the gues.
173 *
174 * The 'timeout' parameter is specified in milliseconds, however the
175 * implementated granularity is given by the 'watchdog-resolution'
176 * property in the 'platform' node of the guest's machine description.
177 * The largest allowed timeout value is specified by the
178 * 'watchdog-max-timeout' property of the 'platform' node.
179 *
180 * If the 'timeout' argument is not zero, the watchdog timer is set to
181 * expire after a minimum of 'timeout' milliseconds.
182 *
183 * If the 'timeout' argument is zero, the watchdog timer is disabled.
184 *
185 * If the 'timeout' value exceeds the value of the 'max-watchdog-timeout'
186 * property, the hypervisor leaves the watchdog timer state unchanged,
187 * and returns a status of EINVAL.
188 *
189 * The 'time remaining' return value is valid regardless of whether the
190 * return status is EOK or EINVAL. A non-zero return value indicates the
191 * number of milliseconds that were remaining until the timer was to expire.
192 * If less than one millisecond remains, the return value is '1'. If the
193 * watchdog timer was disabled at the time of the call, the return value is
194 * zero.
195 *
196 * If the hypervisor cannot support the exact timeout value requested, but
197 * can support a larger timeout value, the hypervisor may round the actual
198 * timeout to a value larger than the requested timeout, consequently the
199 * 'time remaining' return value may be larger than the previously requested
200 * timeout value.
201 *
202 * Any guest OS debugger should be aware that the watchdog service may be in
203 * use. Consequently, it is recommended that the watchdog service is
204 * disabled upon debugger entry (e.g. reaching a breakpoint), and then
205 * re-enabled upon returning to normal execution. The API has been designed
206 * with this in mind, and the 'time remaining' result of the disable call may
207 * be used directly as the timeout argument of the re-enable call.
208 */
209#define HV_FAST_MACH_SET_WATCHDOG 0x05
210
211#ifndef __ASSEMBLY__
212unsigned long sun4v_mach_set_watchdog(unsigned long timeout,
213 unsigned long *orig_timeout);
214#endif
215
216/* CPU services.
217 *
218 * CPUs represent devices that can execute software threads. A single
219 * chip that contains multiple cores or strands is represented as
220 * multiple CPUs with unique CPU identifiers. CPUs are exported to
221 * OBP via the machine description (and to the OS via the OBP device
222 * tree). CPUs are always in one of three states: stopped, running,
223 * or error.
224 *
225 * A CPU ID is a pre-assigned 16-bit value that uniquely identifies a
226 * CPU within a logical domain. Operations that are to be performed
227 * on multiple CPUs specify them via a CPU list. A CPU list is an
228 * array in real memory, of which each 16-bit word is a CPU ID. CPU
229 * lists are passed through the API as two arguments. The first is
230 * the number of entries (16-bit words) in the CPU list, and the
231 * second is the (real address) pointer to the CPU ID list.
232 */
233
234/* cpu_start()
235 * TRAP: HV_FAST_TRAP
236 * FUNCTION: HV_FAST_CPU_START
237 * ARG0: CPU ID
238 * ARG1: PC
239 * ARG2: RTBA
240 * ARG3: target ARG0
241 * RET0: status
242 * ERRORS: ENOCPU Invalid CPU ID
243 * EINVAL Target CPU ID is not in the stopped state
244 * ENORADDR Invalid PC or RTBA real address
245 * EBADALIGN Unaligned PC or unaligned RTBA
246 * EWOULDBLOCK Starting resources are not available
247 *
248 * Start CPU with given CPU ID with PC in %pc and with a real trap
249 * base address value of RTBA. The indicated CPU must be in the
250 * stopped state. The supplied RTBA must be aligned on a 256 byte
251 * boundary. On successful completion, the specified CPU will be in
252 * the running state and will be supplied with "target ARG0" in %o0
253 * and RTBA in %tba.
254 */
255#define HV_FAST_CPU_START 0x10
256
257#ifndef __ASSEMBLY__
258unsigned long sun4v_cpu_start(unsigned long cpuid,
259 unsigned long pc,
260 unsigned long rtba,
261 unsigned long arg0);
262#endif
263
264/* cpu_stop()
265 * TRAP: HV_FAST_TRAP
266 * FUNCTION: HV_FAST_CPU_STOP
267 * ARG0: CPU ID
268 * RET0: status
269 * ERRORS: ENOCPU Invalid CPU ID
270 * EINVAL Target CPU ID is the current cpu
271 * EINVAL Target CPU ID is not in the running state
272 * EWOULDBLOCK Stopping resources are not available
273 * ENOTSUPPORTED Not supported on this platform
274 *
275 * The specified CPU is stopped. The indicated CPU must be in the
276 * running state. On completion, it will be in the stopped state. It
277 * is not legal to stop the current CPU.
278 *
279 * Note: As this service cannot be used to stop the current cpu, this service
280 * may not be used to stop the last running CPU in a domain. To stop
281 * and exit a running domain, a guest must use the mach_exit() service.
282 */
283#define HV_FAST_CPU_STOP 0x11
284
285#ifndef __ASSEMBLY__
286unsigned long sun4v_cpu_stop(unsigned long cpuid);
287#endif
288
289/* cpu_yield()
290 * TRAP: HV_FAST_TRAP
291 * FUNCTION: HV_FAST_CPU_YIELD
292 * RET0: status
293 * ERRORS: No possible error.
294 *
295 * Suspend execution on the current CPU. Execution will resume when
296 * an interrupt (device, %stick_compare, or cross-call) is targeted to
297 * the CPU. On some CPUs, this API may be used by the hypervisor to
298 * save power by disabling hardware strands.
299 */
300#define HV_FAST_CPU_YIELD 0x12
301
302#ifndef __ASSEMBLY__
303unsigned long sun4v_cpu_yield(void);
304#endif
305
306/* cpu_poke()
307 * TRAP: HV_FAST_TRAP
308 * FUNCTION: HV_FAST_CPU_POKE
309 * RET0: status
310 * ERRORS: ENOCPU cpuid refers to a CPU that does not exist
311 * EINVAL cpuid is current CPU
312 *
313 * Poke CPU cpuid. If the target CPU is currently suspended having
314 * invoked the cpu-yield service, that vCPU will be resumed.
315 * Poke interrupts may only be sent to valid, non-local CPUs.
316 * It is not legal to poke the current vCPU.
317 */
318#define HV_FAST_CPU_POKE 0x13
319
320#ifndef __ASSEMBLY__
321unsigned long sun4v_cpu_poke(unsigned long cpuid);
322#endif
323
324/* cpu_qconf()
325 * TRAP: HV_FAST_TRAP
326 * FUNCTION: HV_FAST_CPU_QCONF
327 * ARG0: queue
328 * ARG1: base real address
329 * ARG2: number of entries
330 * RET0: status
331 * ERRORS: ENORADDR Invalid base real address
332 * EINVAL Invalid queue or number of entries is less
333 * than 2 or too large.
334 * EBADALIGN Base real address is not correctly aligned
335 * for size.
336 *
337 * Configure the given queue to be placed at the given base real
338 * address, with the given number of entries. The number of entries
339 * must be a power of 2. The base real address must be aligned
340 * exactly to match the queue size. Each queue entry is 64 bytes
341 * long, so for example a 32 entry queue must be aligned on a 2048
342 * byte real address boundary.
343 *
344 * The specified queue is unconfigured if the number of entries is given
345 * as zero.
346 *
347 * For the current version of this API service, the argument queue is defined
348 * as follows:
349 *
350 * queue description
351 * ----- -------------------------
352 * 0x3c cpu mondo queue
353 * 0x3d device mondo queue
354 * 0x3e resumable error queue
355 * 0x3f non-resumable error queue
356 *
357 * Note: The maximum number of entries for each queue for a specific cpu may
358 * be determined from the machine description.
359 */
360#define HV_FAST_CPU_QCONF 0x14
361#define HV_CPU_QUEUE_CPU_MONDO 0x3c
362#define HV_CPU_QUEUE_DEVICE_MONDO 0x3d
363#define HV_CPU_QUEUE_RES_ERROR 0x3e
364#define HV_CPU_QUEUE_NONRES_ERROR 0x3f
365
366#ifndef __ASSEMBLY__
367unsigned long sun4v_cpu_qconf(unsigned long type,
368 unsigned long queue_paddr,
369 unsigned long num_queue_entries);
370#endif
371
372/* cpu_qinfo()
373 * TRAP: HV_FAST_TRAP
374 * FUNCTION: HV_FAST_CPU_QINFO
375 * ARG0: queue
376 * RET0: status
377 * RET1: base real address
378 * RET1: number of entries
379 * ERRORS: EINVAL Invalid queue
380 *
381 * Return the configuration info for the given queue. The base real
382 * address and number of entries of the defined queue are returned.
383 * The queue argument values are the same as for cpu_qconf() above.
384 *
385 * If the specified queue is a valid queue number, but no queue has
386 * been defined, the number of entries will be set to zero and the
387 * base real address returned is undefined.
388 */
389#define HV_FAST_CPU_QINFO 0x15
390
391/* cpu_mondo_send()
392 * TRAP: HV_FAST_TRAP
393 * FUNCTION: HV_FAST_CPU_MONDO_SEND
394 * ARG0-1: CPU list
395 * ARG2: data real address
396 * RET0: status
397 * ERRORS: EBADALIGN Mondo data is not 64-byte aligned or CPU list
398 * is not 2-byte aligned.
399 * ENORADDR Invalid data mondo address, or invalid cpu list
400 * address.
401 * ENOCPU Invalid cpu in CPU list
402 * EWOULDBLOCK Some or all of the listed CPUs did not receive
403 * the mondo
404 * ECPUERROR One or more of the listed CPUs are in error
405 * state, use HV_FAST_CPU_STATE to see which ones
406 * EINVAL CPU list includes caller's CPU ID
407 *
408 * Send a mondo interrupt to the CPUs in the given CPU list with the
409 * 64-bytes at the given data real address. The data must be 64-byte
410 * aligned. The mondo data will be delivered to the cpu_mondo queues
411 * of the recipient CPUs.
412 *
413 * In all cases, error or not, the CPUs in the CPU list to which the
414 * mondo has been successfully delivered will be indicated by having
415 * their entry in CPU list updated with the value 0xffff.
416 */
417#define HV_FAST_CPU_MONDO_SEND 0x42
418
419#ifndef __ASSEMBLY__
420unsigned long sun4v_cpu_mondo_send(unsigned long cpu_count,
421 unsigned long cpu_list_pa,
422 unsigned long mondo_block_pa);
423#endif
424
425/* cpu_myid()
426 * TRAP: HV_FAST_TRAP
427 * FUNCTION: HV_FAST_CPU_MYID
428 * RET0: status
429 * RET1: CPU ID
430 * ERRORS: No errors defined.
431 *
432 * Return the hypervisor ID handle for the current CPU. Use by a
433 * virtual CPU to discover it's own identity.
434 */
435#define HV_FAST_CPU_MYID 0x16
436
437/* cpu_state()
438 * TRAP: HV_FAST_TRAP
439 * FUNCTION: HV_FAST_CPU_STATE
440 * ARG0: CPU ID
441 * RET0: status
442 * RET1: state
443 * ERRORS: ENOCPU Invalid CPU ID
444 *
445 * Retrieve the current state of the CPU with the given CPU ID.
446 */
447#define HV_FAST_CPU_STATE 0x17
448#define HV_CPU_STATE_STOPPED 0x01
449#define HV_CPU_STATE_RUNNING 0x02
450#define HV_CPU_STATE_ERROR 0x03
451
452#ifndef __ASSEMBLY__
453long sun4v_cpu_state(unsigned long cpuid);
454#endif
455
456/* cpu_set_rtba()
457 * TRAP: HV_FAST_TRAP
458 * FUNCTION: HV_FAST_CPU_SET_RTBA
459 * ARG0: RTBA
460 * RET0: status
461 * RET1: previous RTBA
462 * ERRORS: ENORADDR Invalid RTBA real address
463 * EBADALIGN RTBA is incorrectly aligned for a trap table
464 *
465 * Set the real trap base address of the local cpu to the given RTBA.
466 * The supplied RTBA must be aligned on a 256 byte boundary. Upon
467 * success the previous value of the RTBA is returned in RET1.
468 *
469 * Note: This service does not affect %tba
470 */
471#define HV_FAST_CPU_SET_RTBA 0x18
472
473/* cpu_set_rtba()
474 * TRAP: HV_FAST_TRAP
475 * FUNCTION: HV_FAST_CPU_GET_RTBA
476 * RET0: status
477 * RET1: previous RTBA
478 * ERRORS: No possible error.
479 *
480 * Returns the current value of RTBA in RET1.
481 */
482#define HV_FAST_CPU_GET_RTBA 0x19
483
484/* MMU services.
485 *
486 * Layout of a TSB description for mmu_tsb_ctx{,non}0() calls.
487 */
488#ifndef __ASSEMBLY__
489struct hv_tsb_descr {
490 unsigned short pgsz_idx;
491 unsigned short assoc;
492 unsigned int num_ttes; /* in TTEs */
493 unsigned int ctx_idx;
494 unsigned int pgsz_mask;
495 unsigned long tsb_base;
496 unsigned long resv;
497};
498#endif
499#define HV_TSB_DESCR_PGSZ_IDX_OFFSET 0x00
500#define HV_TSB_DESCR_ASSOC_OFFSET 0x02
501#define HV_TSB_DESCR_NUM_TTES_OFFSET 0x04
502#define HV_TSB_DESCR_CTX_IDX_OFFSET 0x08
503#define HV_TSB_DESCR_PGSZ_MASK_OFFSET 0x0c
504#define HV_TSB_DESCR_TSB_BASE_OFFSET 0x10
505#define HV_TSB_DESCR_RESV_OFFSET 0x18
506
507/* Page size bitmask. */
508#define HV_PGSZ_MASK_8K (1 << 0)
509#define HV_PGSZ_MASK_64K (1 << 1)
510#define HV_PGSZ_MASK_512K (1 << 2)
511#define HV_PGSZ_MASK_4MB (1 << 3)
512#define HV_PGSZ_MASK_32MB (1 << 4)
513#define HV_PGSZ_MASK_256MB (1 << 5)
514#define HV_PGSZ_MASK_2GB (1 << 6)
515#define HV_PGSZ_MASK_16GB (1 << 7)
516
517/* Page size index. The value given in the TSB descriptor must correspond
518 * to the smallest page size specified in the pgsz_mask page size bitmask.
519 */
520#define HV_PGSZ_IDX_8K 0
521#define HV_PGSZ_IDX_64K 1
522#define HV_PGSZ_IDX_512K 2
523#define HV_PGSZ_IDX_4MB 3
524#define HV_PGSZ_IDX_32MB 4
525#define HV_PGSZ_IDX_256MB 5
526#define HV_PGSZ_IDX_2GB 6
527#define HV_PGSZ_IDX_16GB 7
528
529/* MMU fault status area.
530 *
531 * MMU related faults have their status and fault address information
532 * placed into a memory region made available by privileged code. Each
533 * virtual processor must make a mmu_fault_area_conf() call to tell the
534 * hypervisor where that processor's fault status should be stored.
535 *
536 * The fault status block is a multiple of 64-bytes and must be aligned
537 * on a 64-byte boundary.
538 */
539#ifndef __ASSEMBLY__
540struct hv_fault_status {
541 unsigned long i_fault_type;
542 unsigned long i_fault_addr;
543 unsigned long i_fault_ctx;
544 unsigned long i_reserved[5];
545 unsigned long d_fault_type;
546 unsigned long d_fault_addr;
547 unsigned long d_fault_ctx;
548 unsigned long d_reserved[5];
549};
550#endif
551#define HV_FAULT_I_TYPE_OFFSET 0x00
552#define HV_FAULT_I_ADDR_OFFSET 0x08
553#define HV_FAULT_I_CTX_OFFSET 0x10
554#define HV_FAULT_D_TYPE_OFFSET 0x40
555#define HV_FAULT_D_ADDR_OFFSET 0x48
556#define HV_FAULT_D_CTX_OFFSET 0x50
557
558#define HV_FAULT_TYPE_FAST_MISS 1
559#define HV_FAULT_TYPE_FAST_PROT 2
560#define HV_FAULT_TYPE_MMU_MISS 3
561#define HV_FAULT_TYPE_INV_RA 4
562#define HV_FAULT_TYPE_PRIV_VIOL 5
563#define HV_FAULT_TYPE_PROT_VIOL 6
564#define HV_FAULT_TYPE_NFO 7
565#define HV_FAULT_TYPE_NFO_SEFF 8
566#define HV_FAULT_TYPE_INV_VA 9
567#define HV_FAULT_TYPE_INV_ASI 10
568#define HV_FAULT_TYPE_NC_ATOMIC 11
569#define HV_FAULT_TYPE_PRIV_ACT 12
570#define HV_FAULT_TYPE_RESV1 13
571#define HV_FAULT_TYPE_UNALIGNED 14
572#define HV_FAULT_TYPE_INV_PGSZ 15
573#define HV_FAULT_TYPE_MCD 17
574#define HV_FAULT_TYPE_MCD_DIS 18
575/* Values 16 --> -2 are reserved. */
576#define HV_FAULT_TYPE_MULTIPLE -1
577
578/* Flags argument for mmu_{map,unmap}_addr(), mmu_demap_{page,context,all}(),
579 * and mmu_{map,unmap}_perm_addr().
580 */
581#define HV_MMU_DMMU 0x01
582#define HV_MMU_IMMU 0x02
583#define HV_MMU_ALL (HV_MMU_DMMU | HV_MMU_IMMU)
584
585/* mmu_map_addr()
586 * TRAP: HV_MMU_MAP_ADDR_TRAP
587 * ARG0: virtual address
588 * ARG1: mmu context
589 * ARG2: TTE
590 * ARG3: flags (HV_MMU_{IMMU,DMMU})
591 * ERRORS: EINVAL Invalid virtual address, mmu context, or flags
592 * EBADPGSZ Invalid page size value
593 * ENORADDR Invalid real address in TTE
594 *
595 * Create a non-permanent mapping using the given TTE, virtual
596 * address, and mmu context. The flags argument determines which
597 * (data, or instruction, or both) TLB the mapping gets loaded into.
598 *
599 * The behavior is undefined if the valid bit is clear in the TTE.
600 *
601 * Note: This API call is for privileged code to specify temporary translation
602 * mappings without the need to create and manage a TSB.
603 */
604
605/* mmu_unmap_addr()
606 * TRAP: HV_MMU_UNMAP_ADDR_TRAP
607 * ARG0: virtual address
608 * ARG1: mmu context
609 * ARG2: flags (HV_MMU_{IMMU,DMMU})
610 * ERRORS: EINVAL Invalid virtual address, mmu context, or flags
611 *
612 * Demaps the given virtual address in the given mmu context on this
613 * CPU. This function is intended to be used to demap pages mapped
614 * with mmu_map_addr. This service is equivalent to invoking
615 * mmu_demap_page() with only the current CPU in the CPU list. The
616 * flags argument determines which (data, or instruction, or both) TLB
617 * the mapping gets unmapped from.
618 *
619 * Attempting to perform an unmap operation for a previously defined
620 * permanent mapping will have undefined results.
621 */
622
623/* mmu_tsb_ctx0()
624 * TRAP: HV_FAST_TRAP
625 * FUNCTION: HV_FAST_MMU_TSB_CTX0
626 * ARG0: number of TSB descriptions
627 * ARG1: TSB descriptions pointer
628 * RET0: status
629 * ERRORS: ENORADDR Invalid TSB descriptions pointer or
630 * TSB base within a descriptor
631 * EBADALIGN TSB descriptions pointer is not aligned
632 * to an 8-byte boundary, or TSB base
633 * within a descriptor is not aligned for
634 * the given TSB size
635 * EBADPGSZ Invalid page size in a TSB descriptor
636 * EBADTSB Invalid associativity or size in a TSB
637 * descriptor
638 * EINVAL Invalid number of TSB descriptions, or
639 * invalid context index in a TSB
640 * descriptor, or index page size not
641 * equal to smallest page size in page
642 * size bitmask field.
643 *
644 * Configures the TSBs for the current CPU for virtual addresses with
645 * context zero. The TSB descriptions pointer is a pointer to an
646 * array of the given number of TSB descriptions.
647 *
648 * Note: The maximum number of TSBs available to a virtual CPU is given by the
649 * mmu-max-#tsbs property of the cpu's corresponding "cpu" node in the
650 * machine description.
651 */
652#define HV_FAST_MMU_TSB_CTX0 0x20
653
654#ifndef __ASSEMBLY__
655unsigned long sun4v_mmu_tsb_ctx0(unsigned long num_descriptions,
656 unsigned long tsb_desc_ra);
657#endif
658
659/* mmu_tsb_ctxnon0()
660 * TRAP: HV_FAST_TRAP
661 * FUNCTION: HV_FAST_MMU_TSB_CTXNON0
662 * ARG0: number of TSB descriptions
663 * ARG1: TSB descriptions pointer
664 * RET0: status
665 * ERRORS: Same as for mmu_tsb_ctx0() above.
666 *
667 * Configures the TSBs for the current CPU for virtual addresses with
668 * non-zero contexts. The TSB descriptions pointer is a pointer to an
669 * array of the given number of TSB descriptions.
670 *
671 * Note: A maximum of 16 TSBs may be specified in the TSB description list.
672 */
673#define HV_FAST_MMU_TSB_CTXNON0 0x21
674
675/* mmu_demap_page()
676 * TRAP: HV_FAST_TRAP
677 * FUNCTION: HV_FAST_MMU_DEMAP_PAGE
678 * ARG0: reserved, must be zero
679 * ARG1: reserved, must be zero
680 * ARG2: virtual address
681 * ARG3: mmu context
682 * ARG4: flags (HV_MMU_{IMMU,DMMU})
683 * RET0: status
684 * ERRORS: EINVAL Invalid virtual address, context, or
685 * flags value
686 * ENOTSUPPORTED ARG0 or ARG1 is non-zero
687 *
688 * Demaps any page mapping of the given virtual address in the given
689 * mmu context for the current virtual CPU. Any virtually tagged
690 * caches are guaranteed to be kept consistent. The flags argument
691 * determines which TLB (instruction, or data, or both) participate in
692 * the operation.
693 *
694 * ARG0 and ARG1 are both reserved and must be set to zero.
695 */
696#define HV_FAST_MMU_DEMAP_PAGE 0x22
697
698/* mmu_demap_ctx()
699 * TRAP: HV_FAST_TRAP
700 * FUNCTION: HV_FAST_MMU_DEMAP_CTX
701 * ARG0: reserved, must be zero
702 * ARG1: reserved, must be zero
703 * ARG2: mmu context
704 * ARG3: flags (HV_MMU_{IMMU,DMMU})
705 * RET0: status
706 * ERRORS: EINVAL Invalid context or flags value
707 * ENOTSUPPORTED ARG0 or ARG1 is non-zero
708 *
709 * Demaps all non-permanent virtual page mappings previously specified
710 * for the given context for the current virtual CPU. Any virtual
711 * tagged caches are guaranteed to be kept consistent. The flags
712 * argument determines which TLB (instruction, or data, or both)
713 * participate in the operation.
714 *
715 * ARG0 and ARG1 are both reserved and must be set to zero.
716 */
717#define HV_FAST_MMU_DEMAP_CTX 0x23
718
719/* mmu_demap_all()
720 * TRAP: HV_FAST_TRAP
721 * FUNCTION: HV_FAST_MMU_DEMAP_ALL
722 * ARG0: reserved, must be zero
723 * ARG1: reserved, must be zero
724 * ARG2: flags (HV_MMU_{IMMU,DMMU})
725 * RET0: status
726 * ERRORS: EINVAL Invalid flags value
727 * ENOTSUPPORTED ARG0 or ARG1 is non-zero
728 *
729 * Demaps all non-permanent virtual page mappings previously specified
730 * for the current virtual CPU. Any virtual tagged caches are
731 * guaranteed to be kept consistent. The flags argument determines
732 * which TLB (instruction, or data, or both) participate in the
733 * operation.
734 *
735 * ARG0 and ARG1 are both reserved and must be set to zero.
736 */
737#define HV_FAST_MMU_DEMAP_ALL 0x24
738
739#ifndef __ASSEMBLY__
740void sun4v_mmu_demap_all(void);
741#endif
742
743/* mmu_map_perm_addr()
744 * TRAP: HV_FAST_TRAP
745 * FUNCTION: HV_FAST_MMU_MAP_PERM_ADDR
746 * ARG0: virtual address
747 * ARG1: reserved, must be zero
748 * ARG2: TTE
749 * ARG3: flags (HV_MMU_{IMMU,DMMU})
750 * RET0: status
751 * ERRORS: EINVAL Invalid virtual address or flags value
752 * EBADPGSZ Invalid page size value
753 * ENORADDR Invalid real address in TTE
754 * ETOOMANY Too many mappings (max of 8 reached)
755 *
756 * Create a permanent mapping using the given TTE and virtual address
757 * for context 0 on the calling virtual CPU. A maximum of 8 such
758 * permanent mappings may be specified by privileged code. Mappings
759 * may be removed with mmu_unmap_perm_addr().
760 *
761 * The behavior is undefined if a TTE with the valid bit clear is given.
762 *
763 * Note: This call is used to specify address space mappings for which
764 * privileged code does not expect to receive misses. For example,
765 * this mechanism can be used to map kernel nucleus code and data.
766 */
767#define HV_FAST_MMU_MAP_PERM_ADDR 0x25
768
769#ifndef __ASSEMBLY__
770unsigned long sun4v_mmu_map_perm_addr(unsigned long vaddr,
771 unsigned long set_to_zero,
772 unsigned long tte,
773 unsigned long flags);
774#endif
775
776/* mmu_fault_area_conf()
777 * TRAP: HV_FAST_TRAP
778 * FUNCTION: HV_FAST_MMU_FAULT_AREA_CONF
779 * ARG0: real address
780 * RET0: status
781 * RET1: previous mmu fault area real address
782 * ERRORS: ENORADDR Invalid real address
783 * EBADALIGN Invalid alignment for fault area
784 *
785 * Configure the MMU fault status area for the calling CPU. A 64-byte
786 * aligned real address specifies where MMU fault status information
787 * is placed. The return value is the previously specified area, or 0
788 * for the first invocation. Specifying a fault area at real address
789 * 0 is not allowed.
790 */
791#define HV_FAST_MMU_FAULT_AREA_CONF 0x26
792
793/* mmu_enable()
794 * TRAP: HV_FAST_TRAP
795 * FUNCTION: HV_FAST_MMU_ENABLE
796 * ARG0: enable flag
797 * ARG1: return target address
798 * RET0: status
799 * ERRORS: ENORADDR Invalid real address when disabling
800 * translation.
801 * EBADALIGN The return target address is not
802 * aligned to an instruction.
803 * EINVAL The enable flag request the current
804 * operating mode (e.g. disable if already
805 * disabled)
806 *
807 * Enable or disable virtual address translation for the calling CPU
808 * within the virtual machine domain. If the enable flag is zero,
809 * translation is disabled, any non-zero value will enable
810 * translation.
811 *
812 * When this function returns, the newly selected translation mode
813 * will be active. If the mmu is being enabled, then the return
814 * target address is a virtual address else it is a real address.
815 *
816 * Upon successful completion, control will be returned to the given
817 * return target address (ie. the cpu will jump to that address). On
818 * failure, the previous mmu mode remains and the trap simply returns
819 * as normal with the appropriate error code in RET0.
820 */
821#define HV_FAST_MMU_ENABLE 0x27
822
823/* mmu_unmap_perm_addr()
824 * TRAP: HV_FAST_TRAP
825 * FUNCTION: HV_FAST_MMU_UNMAP_PERM_ADDR
826 * ARG0: virtual address
827 * ARG1: reserved, must be zero
828 * ARG2: flags (HV_MMU_{IMMU,DMMU})
829 * RET0: status
830 * ERRORS: EINVAL Invalid virtual address or flags value
831 * ENOMAP Specified mapping was not found
832 *
833 * Demaps any permanent page mapping (established via
834 * mmu_map_perm_addr()) at the given virtual address for context 0 on
835 * the current virtual CPU. Any virtual tagged caches are guaranteed
836 * to be kept consistent.
837 */
838#define HV_FAST_MMU_UNMAP_PERM_ADDR 0x28
839
840/* mmu_tsb_ctx0_info()
841 * TRAP: HV_FAST_TRAP
842 * FUNCTION: HV_FAST_MMU_TSB_CTX0_INFO
843 * ARG0: max TSBs
844 * ARG1: buffer pointer
845 * RET0: status
846 * RET1: number of TSBs
847 * ERRORS: EINVAL Supplied buffer is too small
848 * EBADALIGN The buffer pointer is badly aligned
849 * ENORADDR Invalid real address for buffer pointer
850 *
851 * Return the TSB configuration as previous defined by mmu_tsb_ctx0()
852 * into the provided buffer. The size of the buffer is given in ARG1
853 * in terms of the number of TSB description entries.
854 *
855 * Upon return, RET1 always contains the number of TSB descriptions
856 * previously configured. If zero TSBs were configured, EOK is
857 * returned with RET1 containing 0.
858 */
859#define HV_FAST_MMU_TSB_CTX0_INFO 0x29
860
861/* mmu_tsb_ctxnon0_info()
862 * TRAP: HV_FAST_TRAP
863 * FUNCTION: HV_FAST_MMU_TSB_CTXNON0_INFO
864 * ARG0: max TSBs
865 * ARG1: buffer pointer
866 * RET0: status
867 * RET1: number of TSBs
868 * ERRORS: EINVAL Supplied buffer is too small
869 * EBADALIGN The buffer pointer is badly aligned
870 * ENORADDR Invalid real address for buffer pointer
871 *
872 * Return the TSB configuration as previous defined by
873 * mmu_tsb_ctxnon0() into the provided buffer. The size of the buffer
874 * is given in ARG1 in terms of the number of TSB description entries.
875 *
876 * Upon return, RET1 always contains the number of TSB descriptions
877 * previously configured. If zero TSBs were configured, EOK is
878 * returned with RET1 containing 0.
879 */
880#define HV_FAST_MMU_TSB_CTXNON0_INFO 0x2a
881
882/* mmu_fault_area_info()
883 * TRAP: HV_FAST_TRAP
884 * FUNCTION: HV_FAST_MMU_FAULT_AREA_INFO
885 * RET0: status
886 * RET1: fault area real address
887 * ERRORS: No errors defined.
888 *
889 * Return the currently defined MMU fault status area for the current
890 * CPU. The real address of the fault status area is returned in
891 * RET1, or 0 is returned in RET1 if no fault status area is defined.
892 *
893 * Note: mmu_fault_area_conf() may be called with the return value (RET1)
894 * from this service if there is a need to save and restore the fault
895 * area for a cpu.
896 */
897#define HV_FAST_MMU_FAULT_AREA_INFO 0x2b
898
899/* Cache and Memory services. */
900
901/* mem_scrub()
902 * TRAP: HV_FAST_TRAP
903 * FUNCTION: HV_FAST_MEM_SCRUB
904 * ARG0: real address
905 * ARG1: length
906 * RET0: status
907 * RET1: length scrubbed
908 * ERRORS: ENORADDR Invalid real address
909 * EBADALIGN Start address or length are not correctly
910 * aligned
911 * EINVAL Length is zero
912 *
913 * Zero the memory contents in the range real address to real address
914 * plus length minus 1. Also, valid ECC will be generated for that
915 * memory address range. Scrubbing is started at the given real
916 * address, but may not scrub the entire given length. The actual
917 * length scrubbed will be returned in RET1.
918 *
919 * The real address and length must be aligned on an 8K boundary, or
920 * contain the start address and length from a sun4v error report.
921 *
922 * Note: There are two uses for this function. The first use is to block clear
923 * and initialize memory and the second is to scrub an u ncorrectable
924 * error reported via a resumable or non-resumable trap. The second
925 * use requires the arguments to be equal to the real address and length
926 * provided in a sun4v memory error report.
927 */
928#define HV_FAST_MEM_SCRUB 0x31
929
930/* mem_sync()
931 * TRAP: HV_FAST_TRAP
932 * FUNCTION: HV_FAST_MEM_SYNC
933 * ARG0: real address
934 * ARG1: length
935 * RET0: status
936 * RET1: length synced
937 * ERRORS: ENORADDR Invalid real address
938 * EBADALIGN Start address or length are not correctly
939 * aligned
940 * EINVAL Length is zero
941 *
942 * Force the next access within the real address to real address plus
943 * length minus 1 to be fetches from main system memory. Less than
944 * the given length may be synced, the actual amount synced is
945 * returned in RET1. The real address and length must be aligned on
946 * an 8K boundary.
947 */
948#define HV_FAST_MEM_SYNC 0x32
949
950/* Coprocessor services
951 *
952 * M7 and later processors provide an on-chip coprocessor which
953 * accelerates database operations, and is known internally as
954 * DAX.
955 */
956
957/* ccb_submit()
958 * TRAP: HV_FAST_TRAP
959 * FUNCTION: HV_CCB_SUBMIT
960 * ARG0: address of CCB array
961 * ARG1: size (in bytes) of CCB array being submitted
962 * ARG2: flags
963 * ARG3: reserved
964 * RET0: status (success or error code)
965 * RET1: size (in bytes) of CCB array that was accepted (might be less
966 * than arg1)
967 * RET2: status data
968 * if status == ENOMAP or ENOACCESS, identifies the VA in question
969 * if status == EUNAVAILBLE, unavailable code
970 * RET3: reserved
971 *
972 * ERRORS: EOK successful submission (check size)
973 * EWOULDBLOCK could not finish submissions, try again
974 * EBADALIGN array not 64B aligned or size not 64B multiple
975 * ENORADDR invalid RA for array or in CCB
976 * ENOMAP could not translate address (see status data)
977 * EINVAL invalid ccb or arguments
978 * ETOOMANY too many ccbs with all-or-nothing flag
979 * ENOACCESS guest has no access to submit ccbs or address
980 * in CCB does not have correct permissions (check
981 * status data)
982 * EUNAVAILABLE ccb operation could not be performed at this
983 * time (check status data)
984 * Status data codes:
985 * 0 - exact CCB could not be executed
986 * 1 - CCB opcode cannot be executed
987 * 2 - CCB version cannot be executed
988 * 3 - vcpu cannot execute CCBs
989 * 4 - no CCBs can be executed
990 */
991
992#define HV_CCB_SUBMIT 0x34
993#ifndef __ASSEMBLY__
994unsigned long sun4v_ccb_submit(unsigned long ccb_buf,
995 unsigned long len,
996 unsigned long flags,
997 unsigned long reserved,
998 void *submitted_len,
999 void *status_data);
1000#endif
1001
1002/* flags (ARG2) */
1003#define HV_CCB_QUERY_CMD BIT(1)
1004#define HV_CCB_ARG0_TYPE_REAL 0UL
1005#define HV_CCB_ARG0_TYPE_PRIMARY BIT(4)
1006#define HV_CCB_ARG0_TYPE_SECONDARY BIT(5)
1007#define HV_CCB_ARG0_TYPE_NUCLEUS GENMASK(5, 4)
1008#define HV_CCB_ARG0_PRIVILEGED BIT(6)
1009#define HV_CCB_ALL_OR_NOTHING BIT(7)
1010#define HV_CCB_QUEUE_INFO BIT(8)
1011#define HV_CCB_VA_REJECT 0UL
1012#define HV_CCB_VA_SECONDARY BIT(13)
1013#define HV_CCB_VA_NUCLEUS GENMASK(13, 12)
1014#define HV_CCB_VA_PRIVILEGED BIT(14)
1015#define HV_CCB_VA_READ_ADI_DISABLE BIT(15) /* DAX2 only */
1016
1017/* ccb_info()
1018 * TRAP: HV_FAST_TRAP
1019 * FUNCTION: HV_CCB_INFO
1020 * ARG0: real address of CCB completion area
1021 * RET0: status (success or error code)
1022 * RET1: info array
1023 * - RET1[0]: CCB state
1024 * - RET1[1]: dax unit
1025 * - RET1[2]: queue number
1026 * - RET1[3]: queue position
1027 *
1028 * ERRORS: EOK operation successful
1029 * EBADALIGN address not 64B aligned
1030 * ENORADDR RA in address not valid
1031 * EINVAL CA not valid
1032 * EWOULDBLOCK info not available for this CCB currently, try
1033 * again
1034 * ENOACCESS guest cannot use dax
1035 */
1036
1037#define HV_CCB_INFO 0x35
1038#ifndef __ASSEMBLY__
1039unsigned long sun4v_ccb_info(unsigned long ca,
1040 void *info_arr);
1041#endif
1042
1043/* info array byte offsets (RET1) */
1044#define CCB_INFO_OFFSET_CCB_STATE 0
1045#define CCB_INFO_OFFSET_DAX_UNIT 2
1046#define CCB_INFO_OFFSET_QUEUE_NUM 4
1047#define CCB_INFO_OFFSET_QUEUE_POS 6
1048
1049/* CCB state (RET1[0]) */
1050#define HV_CCB_STATE_COMPLETED 0
1051#define HV_CCB_STATE_ENQUEUED 1
1052#define HV_CCB_STATE_INPROGRESS 2
1053#define HV_CCB_STATE_NOTFOUND 3
1054
1055/* ccb_kill()
1056 * TRAP: HV_FAST_TRAP
1057 * FUNCTION: HV_CCB_KILL
1058 * ARG0: real address of CCB completion area
1059 * RET0: status (success or error code)
1060 * RET1: CCB kill status
1061 *
1062 * ERRORS: EOK operation successful
1063 * EBADALIGN address not 64B aligned
1064 * ENORADDR RA in address not valid
1065 * EINVAL CA not valid
1066 * EWOULDBLOCK kill not available for this CCB currently, try
1067 * again
1068 * ENOACCESS guest cannot use dax
1069 */
1070
1071#define HV_CCB_KILL 0x36
1072#ifndef __ASSEMBLY__
1073unsigned long sun4v_ccb_kill(unsigned long ca,
1074 void *kill_status);
1075#endif
1076
1077/* CCB kill status (RET1) */
1078#define HV_CCB_KILL_COMPLETED 0
1079#define HV_CCB_KILL_DEQUEUED 1
1080#define HV_CCB_KILL_KILLED 2
1081#define HV_CCB_KILL_NOTFOUND 3
1082
1083/* Time of day services.
1084 *
1085 * The hypervisor maintains the time of day on a per-domain basis.
1086 * Changing the time of day in one domain does not affect the time of
1087 * day on any other domain.
1088 *
1089 * Time is described by a single unsigned 64-bit word which is the
1090 * number of seconds since the UNIX Epoch (00:00:00 UTC, January 1,
1091 * 1970).
1092 */
1093
1094/* tod_get()
1095 * TRAP: HV_FAST_TRAP
1096 * FUNCTION: HV_FAST_TOD_GET
1097 * RET0: status
1098 * RET1: TOD
1099 * ERRORS: EWOULDBLOCK TOD resource is temporarily unavailable
1100 * ENOTSUPPORTED If TOD not supported on this platform
1101 *
1102 * Return the current time of day. May block if TOD access is
1103 * temporarily not possible.
1104 */
1105#define HV_FAST_TOD_GET 0x50
1106
1107#ifndef __ASSEMBLY__
1108unsigned long sun4v_tod_get(unsigned long *time);
1109#endif
1110
1111/* tod_set()
1112 * TRAP: HV_FAST_TRAP
1113 * FUNCTION: HV_FAST_TOD_SET
1114 * ARG0: TOD
1115 * RET0: status
1116 * ERRORS: EWOULDBLOCK TOD resource is temporarily unavailable
1117 * ENOTSUPPORTED If TOD not supported on this platform
1118 *
1119 * The current time of day is set to the value specified in ARG0. May
1120 * block if TOD access is temporarily not possible.
1121 */
1122#define HV_FAST_TOD_SET 0x51
1123
1124#ifndef __ASSEMBLY__
1125unsigned long sun4v_tod_set(unsigned long time);
1126#endif
1127
1128/* Console services */
1129
1130/* con_getchar()
1131 * TRAP: HV_FAST_TRAP
1132 * FUNCTION: HV_FAST_CONS_GETCHAR
1133 * RET0: status
1134 * RET1: character
1135 * ERRORS: EWOULDBLOCK No character available.
1136 *
1137 * Returns a character from the console device. If no character is
1138 * available then an EWOULDBLOCK error is returned. If a character is
1139 * available, then the returned status is EOK and the character value
1140 * is in RET1.
1141 *
1142 * A virtual BREAK is represented by the 64-bit value -1.
1143 *
1144 * A virtual HUP signal is represented by the 64-bit value -2.
1145 */
1146#define HV_FAST_CONS_GETCHAR 0x60
1147
1148/* con_putchar()
1149 * TRAP: HV_FAST_TRAP
1150 * FUNCTION: HV_FAST_CONS_PUTCHAR
1151 * ARG0: character
1152 * RET0: status
1153 * ERRORS: EINVAL Illegal character
1154 * EWOULDBLOCK Output buffer currently full, would block
1155 *
1156 * Send a character to the console device. Only character values
1157 * between 0 and 255 may be used. Values outside this range are
1158 * invalid except for the 64-bit value -1 which is used to send a
1159 * virtual BREAK.
1160 */
1161#define HV_FAST_CONS_PUTCHAR 0x61
1162
1163/* con_read()
1164 * TRAP: HV_FAST_TRAP
1165 * FUNCTION: HV_FAST_CONS_READ
1166 * ARG0: buffer real address
1167 * ARG1: buffer size in bytes
1168 * RET0: status
1169 * RET1: bytes read or BREAK or HUP
1170 * ERRORS: EWOULDBLOCK No character available.
1171 *
1172 * Reads characters into a buffer from the console device. If no
1173 * character is available then an EWOULDBLOCK error is returned.
1174 * If a character is available, then the returned status is EOK
1175 * and the number of bytes read into the given buffer is provided
1176 * in RET1.
1177 *
1178 * A virtual BREAK is represented by the 64-bit RET1 value -1.
1179 *
1180 * A virtual HUP signal is represented by the 64-bit RET1 value -2.
1181 *
1182 * If BREAK or HUP are indicated, no bytes were read into buffer.
1183 */
1184#define HV_FAST_CONS_READ 0x62
1185
1186/* con_write()
1187 * TRAP: HV_FAST_TRAP
1188 * FUNCTION: HV_FAST_CONS_WRITE
1189 * ARG0: buffer real address
1190 * ARG1: buffer size in bytes
1191 * RET0: status
1192 * RET1: bytes written
1193 * ERRORS: EWOULDBLOCK Output buffer currently full, would block
1194 *
1195 * Send a characters in buffer to the console device. Breaks must be
1196 * sent using con_putchar().
1197 */
1198#define HV_FAST_CONS_WRITE 0x63
1199
1200#ifndef __ASSEMBLY__
1201long sun4v_con_getchar(long *status);
1202long sun4v_con_putchar(long c);
1203long sun4v_con_read(unsigned long buffer,
1204 unsigned long size,
1205 unsigned long *bytes_read);
1206unsigned long sun4v_con_write(unsigned long buffer,
1207 unsigned long size,
1208 unsigned long *bytes_written);
1209#endif
1210
1211/* mach_set_soft_state()
1212 * TRAP: HV_FAST_TRAP
1213 * FUNCTION: HV_FAST_MACH_SET_SOFT_STATE
1214 * ARG0: software state
1215 * ARG1: software state description pointer
1216 * RET0: status
1217 * ERRORS: EINVAL software state not valid or software state
1218 * description is not NULL terminated
1219 * ENORADDR software state description pointer is not a
1220 * valid real address
1221 * EBADALIGNED software state description is not correctly
1222 * aligned
1223 *
1224 * This allows the guest to report it's soft state to the hypervisor. There
1225 * are two primary components to this state. The first part states whether
1226 * the guest software is running or not. The second containts optional
1227 * details specific to the software.
1228 *
1229 * The software state argument is defined below in HV_SOFT_STATE_*, and
1230 * indicates whether the guest is operating normally or in a transitional
1231 * state.
1232 *
1233 * The software state description argument is a real address of a data buffer
1234 * of size 32-bytes aligned on a 32-byte boundary. It is treated as a NULL
1235 * terminated 7-bit ASCII string of up to 31 characters not including the
1236 * NULL termination.
1237 */
1238#define HV_FAST_MACH_SET_SOFT_STATE 0x70
1239#define HV_SOFT_STATE_NORMAL 0x01
1240#define HV_SOFT_STATE_TRANSITION 0x02
1241
1242#ifndef __ASSEMBLY__
1243unsigned long sun4v_mach_set_soft_state(unsigned long soft_state,
1244 unsigned long msg_string_ra);
1245#endif
1246
1247/* mach_get_soft_state()
1248 * TRAP: HV_FAST_TRAP
1249 * FUNCTION: HV_FAST_MACH_GET_SOFT_STATE
1250 * ARG0: software state description pointer
1251 * RET0: status
1252 * RET1: software state
1253 * ERRORS: ENORADDR software state description pointer is not a
1254 * valid real address
1255 * EBADALIGNED software state description is not correctly
1256 * aligned
1257 *
1258 * Retrieve the current value of the guest's software state. The rules
1259 * for the software state pointer are the same as for mach_set_soft_state()
1260 * above.
1261 */
1262#define HV_FAST_MACH_GET_SOFT_STATE 0x71
1263
1264/* svc_send()
1265 * TRAP: HV_FAST_TRAP
1266 * FUNCTION: HV_FAST_SVC_SEND
1267 * ARG0: service ID
1268 * ARG1: buffer real address
1269 * ARG2: buffer size
1270 * RET0: STATUS
1271 * RET1: sent_bytes
1272 *
1273 * Be careful, all output registers are clobbered by this operation,
1274 * so for example it is not possible to save away a value in %o4
1275 * across the trap.
1276 */
1277#define HV_FAST_SVC_SEND 0x80
1278
1279/* svc_recv()
1280 * TRAP: HV_FAST_TRAP
1281 * FUNCTION: HV_FAST_SVC_RECV
1282 * ARG0: service ID
1283 * ARG1: buffer real address
1284 * ARG2: buffer size
1285 * RET0: STATUS
1286 * RET1: recv_bytes
1287 *
1288 * Be careful, all output registers are clobbered by this operation,
1289 * so for example it is not possible to save away a value in %o4
1290 * across the trap.
1291 */
1292#define HV_FAST_SVC_RECV 0x81
1293
1294/* svc_getstatus()
1295 * TRAP: HV_FAST_TRAP
1296 * FUNCTION: HV_FAST_SVC_GETSTATUS
1297 * ARG0: service ID
1298 * RET0: STATUS
1299 * RET1: status bits
1300 */
1301#define HV_FAST_SVC_GETSTATUS 0x82
1302
1303/* svc_setstatus()
1304 * TRAP: HV_FAST_TRAP
1305 * FUNCTION: HV_FAST_SVC_SETSTATUS
1306 * ARG0: service ID
1307 * ARG1: bits to set
1308 * RET0: STATUS
1309 */
1310#define HV_FAST_SVC_SETSTATUS 0x83
1311
1312/* svc_clrstatus()
1313 * TRAP: HV_FAST_TRAP
1314 * FUNCTION: HV_FAST_SVC_CLRSTATUS
1315 * ARG0: service ID
1316 * ARG1: bits to clear
1317 * RET0: STATUS
1318 */
1319#define HV_FAST_SVC_CLRSTATUS 0x84
1320
1321#ifndef __ASSEMBLY__
1322unsigned long sun4v_svc_send(unsigned long svc_id,
1323 unsigned long buffer,
1324 unsigned long buffer_size,
1325 unsigned long *sent_bytes);
1326unsigned long sun4v_svc_recv(unsigned long svc_id,
1327 unsigned long buffer,
1328 unsigned long buffer_size,
1329 unsigned long *recv_bytes);
1330unsigned long sun4v_svc_getstatus(unsigned long svc_id,
1331 unsigned long *status_bits);
1332unsigned long sun4v_svc_setstatus(unsigned long svc_id,
1333 unsigned long status_bits);
1334unsigned long sun4v_svc_clrstatus(unsigned long svc_id,
1335 unsigned long status_bits);
1336#endif
1337
1338/* Trap trace services.
1339 *
1340 * The hypervisor provides a trap tracing capability for privileged
1341 * code running on each virtual CPU. Privileged code provides a
1342 * round-robin trap trace queue within which the hypervisor writes
1343 * 64-byte entries detailing hyperprivileged traps taken n behalf of
1344 * privileged code. This is provided as a debugging capability for
1345 * privileged code.
1346 *
1347 * The trap trace control structure is 64-bytes long and placed at the
1348 * start (offset 0) of the trap trace buffer, and is described as
1349 * follows:
1350 */
1351#ifndef __ASSEMBLY__
1352struct hv_trap_trace_control {
1353 unsigned long head_offset;
1354 unsigned long tail_offset;
1355 unsigned long __reserved[0x30 / sizeof(unsigned long)];
1356};
1357#endif
1358#define HV_TRAP_TRACE_CTRL_HEAD_OFFSET 0x00
1359#define HV_TRAP_TRACE_CTRL_TAIL_OFFSET 0x08
1360
1361/* The head offset is the offset of the most recently completed entry
1362 * in the trap-trace buffer. The tail offset is the offset of the
1363 * next entry to be written. The control structure is owned and
1364 * modified by the hypervisor. A guest may not modify the control
1365 * structure contents. Attempts to do so will result in undefined
1366 * behavior for the guest.
1367 *
1368 * Each trap trace buffer entry is laid out as follows:
1369 */
1370#ifndef __ASSEMBLY__
1371struct hv_trap_trace_entry {
1372 unsigned char type; /* Hypervisor or guest entry? */
1373 unsigned char hpstate; /* Hyper-privileged state */
1374 unsigned char tl; /* Trap level */
1375 unsigned char gl; /* Global register level */
1376 unsigned short tt; /* Trap type */
1377 unsigned short tag; /* Extended trap identifier */
1378 unsigned long tstate; /* Trap state */
1379 unsigned long tick; /* Tick */
1380 unsigned long tpc; /* Trap PC */
1381 unsigned long f1; /* Entry specific */
1382 unsigned long f2; /* Entry specific */
1383 unsigned long f3; /* Entry specific */
1384 unsigned long f4; /* Entry specific */
1385};
1386#endif
1387#define HV_TRAP_TRACE_ENTRY_TYPE 0x00
1388#define HV_TRAP_TRACE_ENTRY_HPSTATE 0x01
1389#define HV_TRAP_TRACE_ENTRY_TL 0x02
1390#define HV_TRAP_TRACE_ENTRY_GL 0x03
1391#define HV_TRAP_TRACE_ENTRY_TT 0x04
1392#define HV_TRAP_TRACE_ENTRY_TAG 0x06
1393#define HV_TRAP_TRACE_ENTRY_TSTATE 0x08
1394#define HV_TRAP_TRACE_ENTRY_TICK 0x10
1395#define HV_TRAP_TRACE_ENTRY_TPC 0x18
1396#define HV_TRAP_TRACE_ENTRY_F1 0x20
1397#define HV_TRAP_TRACE_ENTRY_F2 0x28
1398#define HV_TRAP_TRACE_ENTRY_F3 0x30
1399#define HV_TRAP_TRACE_ENTRY_F4 0x38
1400
1401/* The type field is encoded as follows. */
1402#define HV_TRAP_TYPE_UNDEF 0x00 /* Entry content undefined */
1403#define HV_TRAP_TYPE_HV 0x01 /* Hypervisor trap entry */
1404#define HV_TRAP_TYPE_GUEST 0xff /* Added via ttrace_addentry() */
1405
1406/* ttrace_buf_conf()
1407 * TRAP: HV_FAST_TRAP
1408 * FUNCTION: HV_FAST_TTRACE_BUF_CONF
1409 * ARG0: real address
1410 * ARG1: number of entries
1411 * RET0: status
1412 * RET1: number of entries
1413 * ERRORS: ENORADDR Invalid real address
1414 * EINVAL Size is too small
1415 * EBADALIGN Real address not aligned on 64-byte boundary
1416 *
1417 * Requests hypervisor trap tracing and declares a virtual CPU's trap
1418 * trace buffer to the hypervisor. The real address supplies the real
1419 * base address of the trap trace queue and must be 64-byte aligned.
1420 * Specifying a value of 0 for the number of entries disables trap
1421 * tracing for the calling virtual CPU. The buffer allocated must be
1422 * sized for a power of two number of 64-byte trap trace entries plus
1423 * an initial 64-byte control structure.
1424 *
1425 * This may be invoked any number of times so that a virtual CPU may
1426 * relocate a trap trace buffer or create "snapshots" of information.
1427 *
1428 * If the real address is illegal or badly aligned, then trap tracing
1429 * is disabled and an error is returned.
1430 *
1431 * Upon failure with EINVAL, this service call returns in RET1 the
1432 * minimum number of buffer entries required. Upon other failures
1433 * RET1 is undefined.
1434 */
1435#define HV_FAST_TTRACE_BUF_CONF 0x90
1436
1437/* ttrace_buf_info()
1438 * TRAP: HV_FAST_TRAP
1439 * FUNCTION: HV_FAST_TTRACE_BUF_INFO
1440 * RET0: status
1441 * RET1: real address
1442 * RET2: size
1443 * ERRORS: None defined.
1444 *
1445 * Returns the size and location of the previously declared trap-trace
1446 * buffer. In the event that no buffer was previously defined, or the
1447 * buffer is disabled, this call will return a size of zero bytes.
1448 */
1449#define HV_FAST_TTRACE_BUF_INFO 0x91
1450
1451/* ttrace_enable()
1452 * TRAP: HV_FAST_TRAP
1453 * FUNCTION: HV_FAST_TTRACE_ENABLE
1454 * ARG0: enable
1455 * RET0: status
1456 * RET1: previous enable state
1457 * ERRORS: EINVAL No trap trace buffer currently defined
1458 *
1459 * Enable or disable trap tracing, and return the previous enabled
1460 * state in RET1. Future systems may define various flags for the
1461 * enable argument (ARG0), for the moment a guest should pass
1462 * "(uint64_t) -1" to enable, and "(uint64_t) 0" to disable all
1463 * tracing - which will ensure future compatibility.
1464 */
1465#define HV_FAST_TTRACE_ENABLE 0x92
1466
1467/* ttrace_freeze()
1468 * TRAP: HV_FAST_TRAP
1469 * FUNCTION: HV_FAST_TTRACE_FREEZE
1470 * ARG0: freeze
1471 * RET0: status
1472 * RET1: previous freeze state
1473 * ERRORS: EINVAL No trap trace buffer currently defined
1474 *
1475 * Freeze or unfreeze trap tracing, returning the previous freeze
1476 * state in RET1. A guest should pass a non-zero value to freeze and
1477 * a zero value to unfreeze all tracing. The returned previous state
1478 * is 0 for not frozen and 1 for frozen.
1479 */
1480#define HV_FAST_TTRACE_FREEZE 0x93
1481
1482/* ttrace_addentry()
1483 * TRAP: HV_TTRACE_ADDENTRY_TRAP
1484 * ARG0: tag (16-bits)
1485 * ARG1: data word 0
1486 * ARG2: data word 1
1487 * ARG3: data word 2
1488 * ARG4: data word 3
1489 * RET0: status
1490 * ERRORS: EINVAL No trap trace buffer currently defined
1491 *
1492 * Add an entry to the trap trace buffer. Upon return only ARG0/RET0
1493 * is modified - none of the other registers holding arguments are
1494 * volatile across this hypervisor service.
1495 */
1496
1497/* Core dump services.
1498 *
1499 * Since the hypervisor viraulizes and thus obscures a lot of the
1500 * physical machine layout and state, traditional OS crash dumps can
1501 * be difficult to diagnose especially when the problem is a
1502 * configuration error of some sort.
1503 *
1504 * The dump services provide an opaque buffer into which the
1505 * hypervisor can place it's internal state in order to assist in
1506 * debugging such situations. The contents are opaque and extremely
1507 * platform and hypervisor implementation specific. The guest, during
1508 * a core dump, requests that the hypervisor update any information in
1509 * the dump buffer in preparation to being dumped as part of the
1510 * domain's memory image.
1511 */
1512
1513/* dump_buf_update()
1514 * TRAP: HV_FAST_TRAP
1515 * FUNCTION: HV_FAST_DUMP_BUF_UPDATE
1516 * ARG0: real address
1517 * ARG1: size
1518 * RET0: status
1519 * RET1: required size of dump buffer
1520 * ERRORS: ENORADDR Invalid real address
1521 * EBADALIGN Real address is not aligned on a 64-byte
1522 * boundary
1523 * EINVAL Size is non-zero but less than minimum size
1524 * required
1525 * ENOTSUPPORTED Operation not supported on current logical
1526 * domain
1527 *
1528 * Declare a domain dump buffer to the hypervisor. The real address
1529 * provided for the domain dump buffer must be 64-byte aligned. The
1530 * size specifies the size of the dump buffer and may be larger than
1531 * the minimum size specified in the machine description. The
1532 * hypervisor will fill the dump buffer with opaque data.
1533 *
1534 * Note: A guest may elect to include dump buffer contents as part of a crash
1535 * dump to assist with debugging. This function may be called any number
1536 * of times so that a guest may relocate a dump buffer, or create
1537 * "snapshots" of any dump-buffer information. Each call to
1538 * dump_buf_update() atomically declares the new dump buffer to the
1539 * hypervisor.
1540 *
1541 * A specified size of 0 unconfigures the dump buffer. If the real
1542 * address is illegal or badly aligned, then any currently active dump
1543 * buffer is disabled and an error is returned.
1544 *
1545 * In the event that the call fails with EINVAL, RET1 contains the
1546 * minimum size requires by the hypervisor for a valid dump buffer.
1547 */
1548#define HV_FAST_DUMP_BUF_UPDATE 0x94
1549
1550/* dump_buf_info()
1551 * TRAP: HV_FAST_TRAP
1552 * FUNCTION: HV_FAST_DUMP_BUF_INFO
1553 * RET0: status
1554 * RET1: real address of current dump buffer
1555 * RET2: size of current dump buffer
1556 * ERRORS: No errors defined.
1557 *
1558 * Return the currently configures dump buffer description. A
1559 * returned size of 0 bytes indicates an undefined dump buffer. In
1560 * this case the return address in RET1 is undefined.
1561 */
1562#define HV_FAST_DUMP_BUF_INFO 0x95
1563
1564/* Device interrupt services.
1565 *
1566 * Device interrupts are allocated to system bus bridges by the hypervisor,
1567 * and described to OBP in the machine description. OBP then describes
1568 * these interrupts to the OS via properties in the device tree.
1569 *
1570 * Terminology:
1571 *
1572 * cpuid Unique opaque value which represents a target cpu.
1573 *
1574 * devhandle Device handle. It uniquely identifies a device, and
1575 * consistes of the lower 28-bits of the hi-cell of the
1576 * first entry of the device's "reg" property in the
1577 * OBP device tree.
1578 *
1579 * devino Device interrupt number. Specifies the relative
1580 * interrupt number within the device. The unique
1581 * combination of devhandle and devino are used to
1582 * identify a specific device interrupt.
1583 *
1584 * Note: The devino value is the same as the values in the
1585 * "interrupts" property or "interrupt-map" property
1586 * in the OBP device tree for that device.
1587 *
1588 * sysino System interrupt number. A 64-bit unsigned interger
1589 * representing a unique interrupt within a virtual
1590 * machine.
1591 *
1592 * intr_state A flag representing the interrupt state for a given
1593 * sysino. The state values are defined below.
1594 *
1595 * intr_enabled A flag representing the 'enabled' state for a given
1596 * sysino. The enable values are defined below.
1597 */
1598
1599#define HV_INTR_STATE_IDLE 0 /* Nothing pending */
1600#define HV_INTR_STATE_RECEIVED 1 /* Interrupt received by hardware */
1601#define HV_INTR_STATE_DELIVERED 2 /* Interrupt delivered to queue */
1602
1603#define HV_INTR_DISABLED 0 /* sysino not enabled */
1604#define HV_INTR_ENABLED 1 /* sysino enabled */
1605
1606/* intr_devino_to_sysino()
1607 * TRAP: HV_FAST_TRAP
1608 * FUNCTION: HV_FAST_INTR_DEVINO2SYSINO
1609 * ARG0: devhandle
1610 * ARG1: devino
1611 * RET0: status
1612 * RET1: sysino
1613 * ERRORS: EINVAL Invalid devhandle/devino
1614 *
1615 * Converts a device specific interrupt number of the given
1616 * devhandle/devino into a system specific ino (sysino).
1617 */
1618#define HV_FAST_INTR_DEVINO2SYSINO 0xa0
1619
1620#ifndef __ASSEMBLY__
1621unsigned long sun4v_devino_to_sysino(unsigned long devhandle,
1622 unsigned long devino);
1623#endif
1624
1625/* intr_getenabled()
1626 * TRAP: HV_FAST_TRAP
1627 * FUNCTION: HV_FAST_INTR_GETENABLED
1628 * ARG0: sysino
1629 * RET0: status
1630 * RET1: intr_enabled (HV_INTR_{DISABLED,ENABLED})
1631 * ERRORS: EINVAL Invalid sysino
1632 *
1633 * Returns interrupt enabled state in RET1 for the interrupt defined
1634 * by the given sysino.
1635 */
1636#define HV_FAST_INTR_GETENABLED 0xa1
1637
1638#ifndef __ASSEMBLY__
1639unsigned long sun4v_intr_getenabled(unsigned long sysino);
1640#endif
1641
1642/* intr_setenabled()
1643 * TRAP: HV_FAST_TRAP
1644 * FUNCTION: HV_FAST_INTR_SETENABLED
1645 * ARG0: sysino
1646 * ARG1: intr_enabled (HV_INTR_{DISABLED,ENABLED})
1647 * RET0: status
1648 * ERRORS: EINVAL Invalid sysino or intr_enabled value
1649 *
1650 * Set the 'enabled' state of the interrupt sysino.
1651 */
1652#define HV_FAST_INTR_SETENABLED 0xa2
1653
1654#ifndef __ASSEMBLY__
1655unsigned long sun4v_intr_setenabled(unsigned long sysino,
1656 unsigned long intr_enabled);
1657#endif
1658
1659/* intr_getstate()
1660 * TRAP: HV_FAST_TRAP
1661 * FUNCTION: HV_FAST_INTR_GETSTATE
1662 * ARG0: sysino
1663 * RET0: status
1664 * RET1: intr_state (HV_INTR_STATE_*)
1665 * ERRORS: EINVAL Invalid sysino
1666 *
1667 * Returns current state of the interrupt defined by the given sysino.
1668 */
1669#define HV_FAST_INTR_GETSTATE 0xa3
1670
1671#ifndef __ASSEMBLY__
1672unsigned long sun4v_intr_getstate(unsigned long sysino);
1673#endif
1674
1675/* intr_setstate()
1676 * TRAP: HV_FAST_TRAP
1677 * FUNCTION: HV_FAST_INTR_SETSTATE
1678 * ARG0: sysino
1679 * ARG1: intr_state (HV_INTR_STATE_*)
1680 * RET0: status
1681 * ERRORS: EINVAL Invalid sysino or intr_state value
1682 *
1683 * Sets the current state of the interrupt described by the given sysino
1684 * value.
1685 *
1686 * Note: Setting the state to HV_INTR_STATE_IDLE clears any pending
1687 * interrupt for sysino.
1688 */
1689#define HV_FAST_INTR_SETSTATE 0xa4
1690
1691#ifndef __ASSEMBLY__
1692unsigned long sun4v_intr_setstate(unsigned long sysino, unsigned long intr_state);
1693#endif
1694
1695/* intr_gettarget()
1696 * TRAP: HV_FAST_TRAP
1697 * FUNCTION: HV_FAST_INTR_GETTARGET
1698 * ARG0: sysino
1699 * RET0: status
1700 * RET1: cpuid
1701 * ERRORS: EINVAL Invalid sysino
1702 *
1703 * Returns CPU that is the current target of the interrupt defined by
1704 * the given sysino. The CPU value returned is undefined if the target
1705 * has not been set via intr_settarget().
1706 */
1707#define HV_FAST_INTR_GETTARGET 0xa5
1708
1709#ifndef __ASSEMBLY__
1710unsigned long sun4v_intr_gettarget(unsigned long sysino);
1711#endif
1712
1713/* intr_settarget()
1714 * TRAP: HV_FAST_TRAP
1715 * FUNCTION: HV_FAST_INTR_SETTARGET
1716 * ARG0: sysino
1717 * ARG1: cpuid
1718 * RET0: status
1719 * ERRORS: EINVAL Invalid sysino
1720 * ENOCPU Invalid cpuid
1721 *
1722 * Set the target CPU for the interrupt defined by the given sysino.
1723 */
1724#define HV_FAST_INTR_SETTARGET 0xa6
1725
1726#ifndef __ASSEMBLY__
1727unsigned long sun4v_intr_settarget(unsigned long sysino, unsigned long cpuid);
1728#endif
1729
1730/* vintr_get_cookie()
1731 * TRAP: HV_FAST_TRAP
1732 * FUNCTION: HV_FAST_VINTR_GET_COOKIE
1733 * ARG0: device handle
1734 * ARG1: device ino
1735 * RET0: status
1736 * RET1: cookie
1737 */
1738#define HV_FAST_VINTR_GET_COOKIE 0xa7
1739
1740/* vintr_set_cookie()
1741 * TRAP: HV_FAST_TRAP
1742 * FUNCTION: HV_FAST_VINTR_SET_COOKIE
1743 * ARG0: device handle
1744 * ARG1: device ino
1745 * ARG2: cookie
1746 * RET0: status
1747 */
1748#define HV_FAST_VINTR_SET_COOKIE 0xa8
1749
1750/* vintr_get_valid()
1751 * TRAP: HV_FAST_TRAP
1752 * FUNCTION: HV_FAST_VINTR_GET_VALID
1753 * ARG0: device handle
1754 * ARG1: device ino
1755 * RET0: status
1756 * RET1: valid state
1757 */
1758#define HV_FAST_VINTR_GET_VALID 0xa9
1759
1760/* vintr_set_valid()
1761 * TRAP: HV_FAST_TRAP
1762 * FUNCTION: HV_FAST_VINTR_SET_VALID
1763 * ARG0: device handle
1764 * ARG1: device ino
1765 * ARG2: valid state
1766 * RET0: status
1767 */
1768#define HV_FAST_VINTR_SET_VALID 0xaa
1769
1770/* vintr_get_state()
1771 * TRAP: HV_FAST_TRAP
1772 * FUNCTION: HV_FAST_VINTR_GET_STATE
1773 * ARG0: device handle
1774 * ARG1: device ino
1775 * RET0: status
1776 * RET1: state
1777 */
1778#define HV_FAST_VINTR_GET_STATE 0xab
1779
1780/* vintr_set_state()
1781 * TRAP: HV_FAST_TRAP
1782 * FUNCTION: HV_FAST_VINTR_SET_STATE
1783 * ARG0: device handle
1784 * ARG1: device ino
1785 * ARG2: state
1786 * RET0: status
1787 */
1788#define HV_FAST_VINTR_SET_STATE 0xac
1789
1790/* vintr_get_target()
1791 * TRAP: HV_FAST_TRAP
1792 * FUNCTION: HV_FAST_VINTR_GET_TARGET
1793 * ARG0: device handle
1794 * ARG1: device ino
1795 * RET0: status
1796 * RET1: cpuid
1797 */
1798#define HV_FAST_VINTR_GET_TARGET 0xad
1799
1800/* vintr_set_target()
1801 * TRAP: HV_FAST_TRAP
1802 * FUNCTION: HV_FAST_VINTR_SET_TARGET
1803 * ARG0: device handle
1804 * ARG1: device ino
1805 * ARG2: cpuid
1806 * RET0: status
1807 */
1808#define HV_FAST_VINTR_SET_TARGET 0xae
1809
1810#ifndef __ASSEMBLY__
1811unsigned long sun4v_vintr_get_cookie(unsigned long dev_handle,
1812 unsigned long dev_ino,
1813 unsigned long *cookie);
1814unsigned long sun4v_vintr_set_cookie(unsigned long dev_handle,
1815 unsigned long dev_ino,
1816 unsigned long cookie);
1817unsigned long sun4v_vintr_get_valid(unsigned long dev_handle,
1818 unsigned long dev_ino,
1819 unsigned long *valid);
1820unsigned long sun4v_vintr_set_valid(unsigned long dev_handle,
1821 unsigned long dev_ino,
1822 unsigned long valid);
1823unsigned long sun4v_vintr_get_state(unsigned long dev_handle,
1824 unsigned long dev_ino,
1825 unsigned long *state);
1826unsigned long sun4v_vintr_set_state(unsigned long dev_handle,
1827 unsigned long dev_ino,
1828 unsigned long state);
1829unsigned long sun4v_vintr_get_target(unsigned long dev_handle,
1830 unsigned long dev_ino,
1831 unsigned long *cpuid);
1832unsigned long sun4v_vintr_set_target(unsigned long dev_handle,
1833 unsigned long dev_ino,
1834 unsigned long cpuid);
1835#endif
1836
1837/* PCI IO services.
1838 *
1839 * See the terminology descriptions in the device interrupt services
1840 * section above as those apply here too. Here are terminology
1841 * definitions specific to these PCI IO services:
1842 *
1843 * tsbnum TSB number. Indentifies which io-tsb is used.
1844 * For this version of the specification, tsbnum
1845 * must be zero.
1846 *
1847 * tsbindex TSB index. Identifies which entry in the TSB
1848 * is used. The first entry is zero.
1849 *
1850 * tsbid A 64-bit aligned data structure which contains
1851 * a tsbnum and a tsbindex. Bits 63:32 contain the
1852 * tsbnum and bits 31:00 contain the tsbindex.
1853 *
1854 * Use the HV_PCI_TSBID() macro to construct such
1855 * values.
1856 *
1857 * io_attributes IO attributes for IOMMU mappings. One of more
1858 * of the attritbute bits are stores in a 64-bit
1859 * value. The values are defined below.
1860 *
1861 * r_addr 64-bit real address
1862 *
1863 * pci_device PCI device address. A PCI device address identifies
1864 * a specific device on a specific PCI bus segment.
1865 * A PCI device address ia a 32-bit unsigned integer
1866 * with the following format:
1867 *
1868 * 00000000.bbbbbbbb.dddddfff.00000000
1869 *
1870 * Use the HV_PCI_DEVICE_BUILD() macro to construct
1871 * such values.
1872 *
1873 * pci_config_offset
1874 * PCI configureation space offset. For conventional
1875 * PCI a value between 0 and 255. For extended
1876 * configuration space, a value between 0 and 4095.
1877 *
1878 * Note: For PCI configuration space accesses, the offset
1879 * must be aligned to the access size.
1880 *
1881 * error_flag A return value which specifies if the action succeeded
1882 * or failed. 0 means no error, non-0 means some error
1883 * occurred while performing the service.
1884 *
1885 * io_sync_direction
1886 * Direction definition for pci_dma_sync(), defined
1887 * below in HV_PCI_SYNC_*.
1888 *
1889 * io_page_list A list of io_page_addresses, an io_page_address is
1890 * a real address.
1891 *
1892 * io_page_list_p A pointer to an io_page_list.
1893 *
1894 * "size based byte swap" - Some functions do size based byte swapping
1895 * which allows sw to access pointers and
1896 * counters in native form when the processor
1897 * operates in a different endianness than the
1898 * IO bus. Size-based byte swapping converts a
1899 * multi-byte field between big-endian and
1900 * little-endian format.
1901 */
1902
1903#define HV_PCI_MAP_ATTR_READ 0x01
1904#define HV_PCI_MAP_ATTR_WRITE 0x02
1905#define HV_PCI_MAP_ATTR_RELAXED_ORDER 0x04
1906
1907#define HV_PCI_DEVICE_BUILD(b,d,f) \
1908 ((((b) & 0xff) << 16) | \
1909 (((d) & 0x1f) << 11) | \
1910 (((f) & 0x07) << 8))
1911
1912#define HV_PCI_TSBID(__tsb_num, __tsb_index) \
1913 ((((u64)(__tsb_num)) << 32UL) | ((u64)(__tsb_index)))
1914
1915#define HV_PCI_SYNC_FOR_DEVICE 0x01
1916#define HV_PCI_SYNC_FOR_CPU 0x02
1917
1918/* pci_iommu_map()
1919 * TRAP: HV_FAST_TRAP
1920 * FUNCTION: HV_FAST_PCI_IOMMU_MAP
1921 * ARG0: devhandle
1922 * ARG1: tsbid
1923 * ARG2: #ttes
1924 * ARG3: io_attributes
1925 * ARG4: io_page_list_p
1926 * RET0: status
1927 * RET1: #ttes mapped
1928 * ERRORS: EINVAL Invalid devhandle/tsbnum/tsbindex/io_attributes
1929 * EBADALIGN Improperly aligned real address
1930 * ENORADDR Invalid real address
1931 *
1932 * Create IOMMU mappings in the sun4v device defined by the given
1933 * devhandle. The mappings are created in the TSB defined by the
1934 * tsbnum component of the given tsbid. The first mapping is created
1935 * in the TSB i ndex defined by the tsbindex component of the given tsbid.
1936 * The call creates up to #ttes mappings, the first one at tsbnum, tsbindex,
1937 * the second at tsbnum, tsbindex + 1, etc.
1938 *
1939 * All mappings are created with the attributes defined by the io_attributes
1940 * argument. The page mapping addresses are described in the io_page_list
1941 * defined by the given io_page_list_p, which is a pointer to the io_page_list.
1942 * The first entry in the io_page_list is the address for the first iotte, the
1943 * 2nd for the 2nd iotte, and so on.
1944 *
1945 * Each io_page_address in the io_page_list must be appropriately aligned.
1946 * #ttes must be greater than zero. For this version of the spec, the tsbnum
1947 * component of the given tsbid must be zero.
1948 *
1949 * Returns the actual number of mappings creates, which may be less than
1950 * or equal to the argument #ttes. If the function returns a value which
1951 * is less than the #ttes, the caller may continus to call the function with
1952 * an updated tsbid, #ttes, io_page_list_p arguments until all pages are
1953 * mapped.
1954 *
1955 * Note: This function does not imply an iotte cache flush. The guest must
1956 * demap an entry before re-mapping it.
1957 */
1958#define HV_FAST_PCI_IOMMU_MAP 0xb0
1959
1960/* pci_iommu_demap()
1961 * TRAP: HV_FAST_TRAP
1962 * FUNCTION: HV_FAST_PCI_IOMMU_DEMAP
1963 * ARG0: devhandle
1964 * ARG1: tsbid
1965 * ARG2: #ttes
1966 * RET0: status
1967 * RET1: #ttes demapped
1968 * ERRORS: EINVAL Invalid devhandle/tsbnum/tsbindex
1969 *
1970 * Demap and flush IOMMU mappings in the device defined by the given
1971 * devhandle. Demaps up to #ttes entries in the TSB defined by the tsbnum
1972 * component of the given tsbid, starting at the TSB index defined by the
1973 * tsbindex component of the given tsbid.
1974 *
1975 * For this version of the spec, the tsbnum of the given tsbid must be zero.
1976 * #ttes must be greater than zero.
1977 *
1978 * Returns the actual number of ttes demapped, which may be less than or equal
1979 * to the argument #ttes. If #ttes demapped is less than #ttes, the caller
1980 * may continue to call this function with updated tsbid and #ttes arguments
1981 * until all pages are demapped.
1982 *
1983 * Note: Entries do not have to be mapped to be demapped. A demap of an
1984 * unmapped page will flush the entry from the tte cache.
1985 */
1986#define HV_FAST_PCI_IOMMU_DEMAP 0xb1
1987
1988/* pci_iommu_getmap()
1989 * TRAP: HV_FAST_TRAP
1990 * FUNCTION: HV_FAST_PCI_IOMMU_GETMAP
1991 * ARG0: devhandle
1992 * ARG1: tsbid
1993 * RET0: status
1994 * RET1: io_attributes
1995 * RET2: real address
1996 * ERRORS: EINVAL Invalid devhandle/tsbnum/tsbindex
1997 * ENOMAP Mapping is not valid, no translation exists
1998 *
1999 * Read and return the mapping in the device described by the given devhandle
2000 * and tsbid. If successful, the io_attributes shall be returned in RET1
2001 * and the page address of the mapping shall be returned in RET2.
2002 *
2003 * For this version of the spec, the tsbnum component of the given tsbid
2004 * must be zero.
2005 */
2006#define HV_FAST_PCI_IOMMU_GETMAP 0xb2
2007
2008/* pci_iommu_getbypass()
2009 * TRAP: HV_FAST_TRAP
2010 * FUNCTION: HV_FAST_PCI_IOMMU_GETBYPASS
2011 * ARG0: devhandle
2012 * ARG1: real address
2013 * ARG2: io_attributes
2014 * RET0: status
2015 * RET1: io_addr
2016 * ERRORS: EINVAL Invalid devhandle/io_attributes
2017 * ENORADDR Invalid real address
2018 * ENOTSUPPORTED Function not supported in this implementation.
2019 *
2020 * Create a "special" mapping in the device described by the given devhandle,
2021 * for the given real address and attributes. Return the IO address in RET1
2022 * if successful.
2023 */
2024#define HV_FAST_PCI_IOMMU_GETBYPASS 0xb3
2025
2026/* pci_config_get()
2027 * TRAP: HV_FAST_TRAP
2028 * FUNCTION: HV_FAST_PCI_CONFIG_GET
2029 * ARG0: devhandle
2030 * ARG1: pci_device
2031 * ARG2: pci_config_offset
2032 * ARG3: size
2033 * RET0: status
2034 * RET1: error_flag
2035 * RET2: data
2036 * ERRORS: EINVAL Invalid devhandle/pci_device/offset/size
2037 * EBADALIGN pci_config_offset not size aligned
2038 * ENOACCESS Access to this offset is not permitted
2039 *
2040 * Read PCI configuration space for the adapter described by the given
2041 * devhandle. Read size (1, 2, or 4) bytes of data from the given
2042 * pci_device, at pci_config_offset from the beginning of the device's
2043 * configuration space. If there was no error, RET1 is set to zero and
2044 * RET2 is set to the data read. Insignificant bits in RET2 are not
2045 * guaranteed to have any specific value and therefore must be ignored.
2046 *
2047 * The data returned in RET2 is size based byte swapped.
2048 *
2049 * If an error occurs during the read, set RET1 to a non-zero value. The
2050 * given pci_config_offset must be 'size' aligned.
2051 */
2052#define HV_FAST_PCI_CONFIG_GET 0xb4
2053
2054/* pci_config_put()
2055 * TRAP: HV_FAST_TRAP
2056 * FUNCTION: HV_FAST_PCI_CONFIG_PUT
2057 * ARG0: devhandle
2058 * ARG1: pci_device
2059 * ARG2: pci_config_offset
2060 * ARG3: size
2061 * ARG4: data
2062 * RET0: status
2063 * RET1: error_flag
2064 * ERRORS: EINVAL Invalid devhandle/pci_device/offset/size
2065 * EBADALIGN pci_config_offset not size aligned
2066 * ENOACCESS Access to this offset is not permitted
2067 *
2068 * Write PCI configuration space for the adapter described by the given
2069 * devhandle. Write size (1, 2, or 4) bytes of data in a single operation,
2070 * at pci_config_offset from the beginning of the device's configuration
2071 * space. The data argument contains the data to be written to configuration
2072 * space. Prior to writing, the data is size based byte swapped.
2073 *
2074 * If an error occurs during the write access, do not generate an error
2075 * report, do set RET1 to a non-zero value. Otherwise RET1 is zero.
2076 * The given pci_config_offset must be 'size' aligned.
2077 *
2078 * This function is permitted to read from offset zero in the configuration
2079 * space described by the given pci_device if necessary to ensure that the
2080 * write access to config space completes.
2081 */
2082#define HV_FAST_PCI_CONFIG_PUT 0xb5
2083
2084/* pci_peek()
2085 * TRAP: HV_FAST_TRAP
2086 * FUNCTION: HV_FAST_PCI_PEEK
2087 * ARG0: devhandle
2088 * ARG1: real address
2089 * ARG2: size
2090 * RET0: status
2091 * RET1: error_flag
2092 * RET2: data
2093 * ERRORS: EINVAL Invalid devhandle or size
2094 * EBADALIGN Improperly aligned real address
2095 * ENORADDR Bad real address
2096 * ENOACCESS Guest access prohibited
2097 *
2098 * Attempt to read the IO address given by the given devhandle, real address,
2099 * and size. Size must be 1, 2, 4, or 8. The read is performed as a single
2100 * access operation using the given size. If an error occurs when reading
2101 * from the given location, do not generate an error report, but return a
2102 * non-zero value in RET1. If the read was successful, return zero in RET1
2103 * and return the actual data read in RET2. The data returned is size based
2104 * byte swapped.
2105 *
2106 * Non-significant bits in RET2 are not guaranteed to have any specific value
2107 * and therefore must be ignored. If RET1 is returned as non-zero, the data
2108 * value is not guaranteed to have any specific value and should be ignored.
2109 *
2110 * The caller must have permission to read from the given devhandle, real
2111 * address, which must be an IO address. The argument real address must be a
2112 * size aligned address.
2113 *
2114 * The hypervisor implementation of this function must block access to any
2115 * IO address that the guest does not have explicit permission to access.
2116 */
2117#define HV_FAST_PCI_PEEK 0xb6
2118
2119/* pci_poke()
2120 * TRAP: HV_FAST_TRAP
2121 * FUNCTION: HV_FAST_PCI_POKE
2122 * ARG0: devhandle
2123 * ARG1: real address
2124 * ARG2: size
2125 * ARG3: data
2126 * ARG4: pci_device
2127 * RET0: status
2128 * RET1: error_flag
2129 * ERRORS: EINVAL Invalid devhandle, size, or pci_device
2130 * EBADALIGN Improperly aligned real address
2131 * ENORADDR Bad real address
2132 * ENOACCESS Guest access prohibited
2133 * ENOTSUPPORTED Function is not supported by implementation
2134 *
2135 * Attempt to write data to the IO address given by the given devhandle,
2136 * real address, and size. Size must be 1, 2, 4, or 8. The write is
2137 * performed as a single access operation using the given size. Prior to
2138 * writing the data is size based swapped.
2139 *
2140 * If an error occurs when writing to the given location, do not generate an
2141 * error report, but return a non-zero value in RET1. If the write was
2142 * successful, return zero in RET1.
2143 *
2144 * pci_device describes the configuration address of the device being
2145 * written to. The implementation may safely read from offset 0 with
2146 * the configuration space of the device described by devhandle and
2147 * pci_device in order to guarantee that the write portion of the operation
2148 * completes
2149 *
2150 * Any error that occurs due to the read shall be reported using the normal
2151 * error reporting mechanisms .. the read error is not suppressed.
2152 *
2153 * The caller must have permission to write to the given devhandle, real
2154 * address, which must be an IO address. The argument real address must be a
2155 * size aligned address. The caller must have permission to read from
2156 * the given devhandle, pci_device cofiguration space offset 0.
2157 *
2158 * The hypervisor implementation of this function must block access to any
2159 * IO address that the guest does not have explicit permission to access.
2160 */
2161#define HV_FAST_PCI_POKE 0xb7
2162
2163/* pci_dma_sync()
2164 * TRAP: HV_FAST_TRAP
2165 * FUNCTION: HV_FAST_PCI_DMA_SYNC
2166 * ARG0: devhandle
2167 * ARG1: real address
2168 * ARG2: size
2169 * ARG3: io_sync_direction
2170 * RET0: status
2171 * RET1: #synced
2172 * ERRORS: EINVAL Invalid devhandle or io_sync_direction
2173 * ENORADDR Bad real address
2174 *
2175 * Synchronize a memory region described by the given real address and size,
2176 * for the device defined by the given devhandle using the direction(s)
2177 * defined by the given io_sync_direction. The argument size is the size of
2178 * the memory region in bytes.
2179 *
2180 * Return the actual number of bytes synchronized in the return value #synced,
2181 * which may be less than or equal to the argument size. If the return
2182 * value #synced is less than size, the caller must continue to call this
2183 * function with updated real address and size arguments until the entire
2184 * memory region is synchronized.
2185 */
2186#define HV_FAST_PCI_DMA_SYNC 0xb8
2187
2188/* PCI MSI services. */
2189
2190#define HV_MSITYPE_MSI32 0x00
2191#define HV_MSITYPE_MSI64 0x01
2192
2193#define HV_MSIQSTATE_IDLE 0x00
2194#define HV_MSIQSTATE_ERROR 0x01
2195
2196#define HV_MSIQ_INVALID 0x00
2197#define HV_MSIQ_VALID 0x01
2198
2199#define HV_MSISTATE_IDLE 0x00
2200#define HV_MSISTATE_DELIVERED 0x01
2201
2202#define HV_MSIVALID_INVALID 0x00
2203#define HV_MSIVALID_VALID 0x01
2204
2205#define HV_PCIE_MSGTYPE_PME_MSG 0x18
2206#define HV_PCIE_MSGTYPE_PME_ACK_MSG 0x1b
2207#define HV_PCIE_MSGTYPE_CORR_MSG 0x30
2208#define HV_PCIE_MSGTYPE_NONFATAL_MSG 0x31
2209#define HV_PCIE_MSGTYPE_FATAL_MSG 0x33
2210
2211#define HV_MSG_INVALID 0x00
2212#define HV_MSG_VALID 0x01
2213
2214/* pci_msiq_conf()
2215 * TRAP: HV_FAST_TRAP
2216 * FUNCTION: HV_FAST_PCI_MSIQ_CONF
2217 * ARG0: devhandle
2218 * ARG1: msiqid
2219 * ARG2: real address
2220 * ARG3: number of entries
2221 * RET0: status
2222 * ERRORS: EINVAL Invalid devhandle, msiqid or nentries
2223 * EBADALIGN Improperly aligned real address
2224 * ENORADDR Bad real address
2225 *
2226 * Configure the MSI queue given by the devhandle and msiqid arguments,
2227 * and to be placed at the given real address and be of the given
2228 * number of entries. The real address must be aligned exactly to match
2229 * the queue size. Each queue entry is 64-bytes long, so f.e. a 32 entry
2230 * queue must be aligned on a 2048 byte real address boundary. The MSI-EQ
2231 * Head and Tail are initialized so that the MSI-EQ is 'empty'.
2232 *
2233 * Implementation Note: Certain implementations have fixed sized queues. In
2234 * that case, number of entries must contain the correct
2235 * value.
2236 */
2237#define HV_FAST_PCI_MSIQ_CONF 0xc0
2238
2239/* pci_msiq_info()
2240 * TRAP: HV_FAST_TRAP
2241 * FUNCTION: HV_FAST_PCI_MSIQ_INFO
2242 * ARG0: devhandle
2243 * ARG1: msiqid
2244 * RET0: status
2245 * RET1: real address
2246 * RET2: number of entries
2247 * ERRORS: EINVAL Invalid devhandle or msiqid
2248 *
2249 * Return the configuration information for the MSI queue described
2250 * by the given devhandle and msiqid. The base address of the queue
2251 * is returned in ARG1 and the number of entries is returned in ARG2.
2252 * If the queue is unconfigured, the real address is undefined and the
2253 * number of entries will be returned as zero.
2254 */
2255#define HV_FAST_PCI_MSIQ_INFO 0xc1
2256
2257/* pci_msiq_getvalid()
2258 * TRAP: HV_FAST_TRAP
2259 * FUNCTION: HV_FAST_PCI_MSIQ_GETVALID
2260 * ARG0: devhandle
2261 * ARG1: msiqid
2262 * RET0: status
2263 * RET1: msiqvalid (HV_MSIQ_VALID or HV_MSIQ_INVALID)
2264 * ERRORS: EINVAL Invalid devhandle or msiqid
2265 *
2266 * Get the valid state of the MSI-EQ described by the given devhandle and
2267 * msiqid.
2268 */
2269#define HV_FAST_PCI_MSIQ_GETVALID 0xc2
2270
2271/* pci_msiq_setvalid()
2272 * TRAP: HV_FAST_TRAP
2273 * FUNCTION: HV_FAST_PCI_MSIQ_SETVALID
2274 * ARG0: devhandle
2275 * ARG1: msiqid
2276 * ARG2: msiqvalid (HV_MSIQ_VALID or HV_MSIQ_INVALID)
2277 * RET0: status
2278 * ERRORS: EINVAL Invalid devhandle or msiqid or msiqvalid
2279 * value or MSI EQ is uninitialized
2280 *
2281 * Set the valid state of the MSI-EQ described by the given devhandle and
2282 * msiqid to the given msiqvalid.
2283 */
2284#define HV_FAST_PCI_MSIQ_SETVALID 0xc3
2285
2286/* pci_msiq_getstate()
2287 * TRAP: HV_FAST_TRAP
2288 * FUNCTION: HV_FAST_PCI_MSIQ_GETSTATE
2289 * ARG0: devhandle
2290 * ARG1: msiqid
2291 * RET0: status
2292 * RET1: msiqstate (HV_MSIQSTATE_IDLE or HV_MSIQSTATE_ERROR)
2293 * ERRORS: EINVAL Invalid devhandle or msiqid
2294 *
2295 * Get the state of the MSI-EQ described by the given devhandle and
2296 * msiqid.
2297 */
2298#define HV_FAST_PCI_MSIQ_GETSTATE 0xc4
2299
2300/* pci_msiq_getvalid()
2301 * TRAP: HV_FAST_TRAP
2302 * FUNCTION: HV_FAST_PCI_MSIQ_GETVALID
2303 * ARG0: devhandle
2304 * ARG1: msiqid
2305 * ARG2: msiqstate (HV_MSIQSTATE_IDLE or HV_MSIQSTATE_ERROR)
2306 * RET0: status
2307 * ERRORS: EINVAL Invalid devhandle or msiqid or msiqstate
2308 * value or MSI EQ is uninitialized
2309 *
2310 * Set the state of the MSI-EQ described by the given devhandle and
2311 * msiqid to the given msiqvalid.
2312 */
2313#define HV_FAST_PCI_MSIQ_SETSTATE 0xc5
2314
2315/* pci_msiq_gethead()
2316 * TRAP: HV_FAST_TRAP
2317 * FUNCTION: HV_FAST_PCI_MSIQ_GETHEAD
2318 * ARG0: devhandle
2319 * ARG1: msiqid
2320 * RET0: status
2321 * RET1: msiqhead
2322 * ERRORS: EINVAL Invalid devhandle or msiqid
2323 *
2324 * Get the current MSI EQ queue head for the MSI-EQ described by the
2325 * given devhandle and msiqid.
2326 */
2327#define HV_FAST_PCI_MSIQ_GETHEAD 0xc6
2328
2329/* pci_msiq_sethead()
2330 * TRAP: HV_FAST_TRAP
2331 * FUNCTION: HV_FAST_PCI_MSIQ_SETHEAD
2332 * ARG0: devhandle
2333 * ARG1: msiqid
2334 * ARG2: msiqhead
2335 * RET0: status
2336 * ERRORS: EINVAL Invalid devhandle or msiqid or msiqhead,
2337 * or MSI EQ is uninitialized
2338 *
2339 * Set the current MSI EQ queue head for the MSI-EQ described by the
2340 * given devhandle and msiqid.
2341 */
2342#define HV_FAST_PCI_MSIQ_SETHEAD 0xc7
2343
2344/* pci_msiq_gettail()
2345 * TRAP: HV_FAST_TRAP
2346 * FUNCTION: HV_FAST_PCI_MSIQ_GETTAIL
2347 * ARG0: devhandle
2348 * ARG1: msiqid
2349 * RET0: status
2350 * RET1: msiqtail
2351 * ERRORS: EINVAL Invalid devhandle or msiqid
2352 *
2353 * Get the current MSI EQ queue tail for the MSI-EQ described by the
2354 * given devhandle and msiqid.
2355 */
2356#define HV_FAST_PCI_MSIQ_GETTAIL 0xc8
2357
2358/* pci_msi_getvalid()
2359 * TRAP: HV_FAST_TRAP
2360 * FUNCTION: HV_FAST_PCI_MSI_GETVALID
2361 * ARG0: devhandle
2362 * ARG1: msinum
2363 * RET0: status
2364 * RET1: msivalidstate
2365 * ERRORS: EINVAL Invalid devhandle or msinum
2366 *
2367 * Get the current valid/enabled state for the MSI defined by the
2368 * given devhandle and msinum.
2369 */
2370#define HV_FAST_PCI_MSI_GETVALID 0xc9
2371
2372/* pci_msi_setvalid()
2373 * TRAP: HV_FAST_TRAP
2374 * FUNCTION: HV_FAST_PCI_MSI_SETVALID
2375 * ARG0: devhandle
2376 * ARG1: msinum
2377 * ARG2: msivalidstate
2378 * RET0: status
2379 * ERRORS: EINVAL Invalid devhandle or msinum or msivalidstate
2380 *
2381 * Set the current valid/enabled state for the MSI defined by the
2382 * given devhandle and msinum.
2383 */
2384#define HV_FAST_PCI_MSI_SETVALID 0xca
2385
2386/* pci_msi_getmsiq()
2387 * TRAP: HV_FAST_TRAP
2388 * FUNCTION: HV_FAST_PCI_MSI_GETMSIQ
2389 * ARG0: devhandle
2390 * ARG1: msinum
2391 * RET0: status
2392 * RET1: msiqid
2393 * ERRORS: EINVAL Invalid devhandle or msinum or MSI is unbound
2394 *
2395 * Get the MSI EQ that the MSI defined by the given devhandle and
2396 * msinum is bound to.
2397 */
2398#define HV_FAST_PCI_MSI_GETMSIQ 0xcb
2399
2400/* pci_msi_setmsiq()
2401 * TRAP: HV_FAST_TRAP
2402 * FUNCTION: HV_FAST_PCI_MSI_SETMSIQ
2403 * ARG0: devhandle
2404 * ARG1: msinum
2405 * ARG2: msitype
2406 * ARG3: msiqid
2407 * RET0: status
2408 * ERRORS: EINVAL Invalid devhandle or msinum or msiqid
2409 *
2410 * Set the MSI EQ that the MSI defined by the given devhandle and
2411 * msinum is bound to.
2412 */
2413#define HV_FAST_PCI_MSI_SETMSIQ 0xcc
2414
2415/* pci_msi_getstate()
2416 * TRAP: HV_FAST_TRAP
2417 * FUNCTION: HV_FAST_PCI_MSI_GETSTATE
2418 * ARG0: devhandle
2419 * ARG1: msinum
2420 * RET0: status
2421 * RET1: msistate
2422 * ERRORS: EINVAL Invalid devhandle or msinum
2423 *
2424 * Get the state of the MSI defined by the given devhandle and msinum.
2425 * If not initialized, return HV_MSISTATE_IDLE.
2426 */
2427#define HV_FAST_PCI_MSI_GETSTATE 0xcd
2428
2429/* pci_msi_setstate()
2430 * TRAP: HV_FAST_TRAP
2431 * FUNCTION: HV_FAST_PCI_MSI_SETSTATE
2432 * ARG0: devhandle
2433 * ARG1: msinum
2434 * ARG2: msistate
2435 * RET0: status
2436 * ERRORS: EINVAL Invalid devhandle or msinum or msistate
2437 *
2438 * Set the state of the MSI defined by the given devhandle and msinum.
2439 */
2440#define HV_FAST_PCI_MSI_SETSTATE 0xce
2441
2442/* pci_msg_getmsiq()
2443 * TRAP: HV_FAST_TRAP
2444 * FUNCTION: HV_FAST_PCI_MSG_GETMSIQ
2445 * ARG0: devhandle
2446 * ARG1: msgtype
2447 * RET0: status
2448 * RET1: msiqid
2449 * ERRORS: EINVAL Invalid devhandle or msgtype
2450 *
2451 * Get the MSI EQ of the MSG defined by the given devhandle and msgtype.
2452 */
2453#define HV_FAST_PCI_MSG_GETMSIQ 0xd0
2454
2455/* pci_msg_setmsiq()
2456 * TRAP: HV_FAST_TRAP
2457 * FUNCTION: HV_FAST_PCI_MSG_SETMSIQ
2458 * ARG0: devhandle
2459 * ARG1: msgtype
2460 * ARG2: msiqid
2461 * RET0: status
2462 * ERRORS: EINVAL Invalid devhandle, msgtype, or msiqid
2463 *
2464 * Set the MSI EQ of the MSG defined by the given devhandle and msgtype.
2465 */
2466#define HV_FAST_PCI_MSG_SETMSIQ 0xd1
2467
2468/* pci_msg_getvalid()
2469 * TRAP: HV_FAST_TRAP
2470 * FUNCTION: HV_FAST_PCI_MSG_GETVALID
2471 * ARG0: devhandle
2472 * ARG1: msgtype
2473 * RET0: status
2474 * RET1: msgvalidstate
2475 * ERRORS: EINVAL Invalid devhandle or msgtype
2476 *
2477 * Get the valid/enabled state of the MSG defined by the given
2478 * devhandle and msgtype.
2479 */
2480#define HV_FAST_PCI_MSG_GETVALID 0xd2
2481
2482/* pci_msg_setvalid()
2483 * TRAP: HV_FAST_TRAP
2484 * FUNCTION: HV_FAST_PCI_MSG_SETVALID
2485 * ARG0: devhandle
2486 * ARG1: msgtype
2487 * ARG2: msgvalidstate
2488 * RET0: status
2489 * ERRORS: EINVAL Invalid devhandle or msgtype or msgvalidstate
2490 *
2491 * Set the valid/enabled state of the MSG defined by the given
2492 * devhandle and msgtype.
2493 */
2494#define HV_FAST_PCI_MSG_SETVALID 0xd3
2495
2496/* PCI IOMMU v2 definitions and services
2497 *
2498 * While the PCI IO definitions above is valid IOMMU v2 adds new PCI IO
2499 * definitions and services.
2500 *
2501 * CTE Clump Table Entry. First level table entry in the ATU.
2502 *
2503 * pci_device_list
2504 * A 32-bit aligned list of pci_devices.
2505 *
2506 * pci_device_listp
2507 * real address of a pci_device_list. 32-bit aligned.
2508 *
2509 * iotte IOMMU translation table entry.
2510 *
2511 * iotte_attributes
2512 * IO Attributes for IOMMU v2 mappings. In addition to
2513 * read, write IOMMU v2 supports relax ordering
2514 *
2515 * io_page_list A 64-bit aligned list of real addresses. Each real
2516 * address in an io_page_list must be properly aligned
2517 * to the pagesize of the given IOTSB.
2518 *
2519 * io_page_list_p Real address of an io_page_list, 64-bit aligned.
2520 *
2521 * IOTSB IO Translation Storage Buffer. An aligned table of
2522 * IOTTEs. Each IOTSB has a pagesize, table size, and
2523 * virtual address associated with it that must match
2524 * a pagesize and table size supported by the un-derlying
2525 * hardware implementation. The alignment requirements
2526 * for an IOTSB depend on the pagesize used for that IOTSB.
2527 * Each IOTTE in an IOTSB maps one pagesize-sized page.
2528 * The size of the IOTSB dictates how large of a virtual
2529 * address space the IOTSB is capable of mapping.
2530 *
2531 * iotsb_handle An opaque identifier for an IOTSB. A devhandle plus
2532 * iotsb_handle represents a binding of an IOTSB to a
2533 * PCI root complex.
2534 *
2535 * iotsb_index Zero-based IOTTE number within an IOTSB.
2536 */
2537
2538/* The index_count argument consists of two fields:
2539 * bits 63:48 #iottes and bits 47:0 iotsb_index
2540 */
2541#define HV_PCI_IOTSB_INDEX_COUNT(__iottes, __iotsb_index) \
2542 (((u64)(__iottes) << 48UL) | ((u64)(__iotsb_index)))
2543
2544/* pci_iotsb_conf()
2545 * TRAP: HV_FAST_TRAP
2546 * FUNCTION: HV_FAST_PCI_IOTSB_CONF
2547 * ARG0: devhandle
2548 * ARG1: r_addr
2549 * ARG2: size
2550 * ARG3: pagesize
2551 * ARG4: iova
2552 * RET0: status
2553 * RET1: iotsb_handle
2554 * ERRORS: EINVAL Invalid devhandle, size, iova, or pagesize
2555 * EBADALIGN r_addr is not properly aligned
2556 * ENORADDR r_addr is not a valid real address
2557 * ETOOMANY No further IOTSBs may be configured
2558 * EBUSY Duplicate devhandle, raddir, iova combination
2559 *
2560 * Create an IOTSB suitable for the PCI root complex identified by devhandle,
2561 * for the DMA virtual address defined by the argument iova.
2562 *
2563 * r_addr is the properly aligned base address of the IOTSB and size is the
2564 * IOTSB (table) size in bytes.The IOTSB is required to be zeroed prior to
2565 * being configured. If it contains any values other than zeros then the
2566 * behavior is undefined.
2567 *
2568 * pagesize is the size of each page in the IOTSB. Note that the combination of
2569 * size (table size) and pagesize must be valid.
2570 *
2571 * virt is the DMA virtual address this IOTSB will map.
2572 *
2573 * If successful, the opaque 64-bit handle iotsb_handle is returned in ret1.
2574 * Once configured, privileged access to the IOTSB memory is prohibited and
2575 * creates undefined behavior. The only permitted access is indirect via these
2576 * services.
2577 */
2578#define HV_FAST_PCI_IOTSB_CONF 0x190
2579
2580/* pci_iotsb_info()
2581 * TRAP: HV_FAST_TRAP
2582 * FUNCTION: HV_FAST_PCI_IOTSB_INFO
2583 * ARG0: devhandle
2584 * ARG1: iotsb_handle
2585 * RET0: status
2586 * RET1: r_addr
2587 * RET2: size
2588 * RET3: pagesize
2589 * RET4: iova
2590 * RET5: #bound
2591 * ERRORS: EINVAL Invalid devhandle or iotsb_handle
2592 *
2593 * This service returns configuration information about an IOTSB previously
2594 * created with pci_iotsb_conf.
2595 *
2596 * iotsb_handle value 0 may be used with this service to inquire about the
2597 * legacy IOTSB that may or may not exist. If the service succeeds, the return
2598 * values describe the legacy IOTSB and I/O virtual addresses mapped by that
2599 * table. However, the table base address r_addr may contain the value -1 which
2600 * indicates a memory range that cannot be accessed or be reclaimed.
2601 *
2602 * The return value #bound contains the number of PCI devices that iotsb_handle
2603 * is currently bound to.
2604 */
2605#define HV_FAST_PCI_IOTSB_INFO 0x191
2606
2607/* pci_iotsb_unconf()
2608 * TRAP: HV_FAST_TRAP
2609 * FUNCTION: HV_FAST_PCI_IOTSB_UNCONF
2610 * ARG0: devhandle
2611 * ARG1: iotsb_handle
2612 * RET0: status
2613 * ERRORS: EINVAL Invalid devhandle or iotsb_handle
2614 * EBUSY The IOTSB is bound and may not be unconfigured
2615 *
2616 * This service unconfigures the IOTSB identified by the devhandle and
2617 * iotsb_handle arguments, previously created with pci_iotsb_conf.
2618 * The IOTSB must not be currently bound to any device or the service will fail
2619 *
2620 * If the call succeeds, iotsb_handle is no longer valid.
2621 */
2622#define HV_FAST_PCI_IOTSB_UNCONF 0x192
2623
2624/* pci_iotsb_bind()
2625 * TRAP: HV_FAST_TRAP
2626 * FUNCTION: HV_FAST_PCI_IOTSB_BIND
2627 * ARG0: devhandle
2628 * ARG1: iotsb_handle
2629 * ARG2: pci_device
2630 * RET0: status
2631 * ERRORS: EINVAL Invalid devhandle, iotsb_handle, or pci_device
2632 * EBUSY A PCI function is already bound to an IOTSB at the same
2633 * address range as specified by devhandle, iotsb_handle.
2634 *
2635 * This service binds the PCI function specified by the argument pci_device to
2636 * the IOTSB specified by the arguments devhandle and iotsb_handle.
2637 *
2638 * The PCI device function is bound to the specified IOTSB with the IOVA range
2639 * specified when the IOTSB was configured via pci_iotsb_conf. If the function
2640 * is already bound then it is unbound first.
2641 */
2642#define HV_FAST_PCI_IOTSB_BIND 0x193
2643
2644/* pci_iotsb_unbind()
2645 * TRAP: HV_FAST_TRAP
2646 * FUNCTION: HV_FAST_PCI_IOTSB_UNBIND
2647 * ARG0: devhandle
2648 * ARG1: iotsb_handle
2649 * ARG2: pci_device
2650 * RET0: status
2651 * ERRORS: EINVAL Invalid devhandle, iotsb_handle, or pci_device
2652 * ENOMAP The PCI function was not bound to the specified IOTSB
2653 *
2654 * This service unbinds the PCI device specified by the argument pci_device
2655 * from the IOTSB identified * by the arguments devhandle and iotsb_handle.
2656 *
2657 * If the PCI device is not bound to the specified IOTSB then this service will
2658 * fail with status ENOMAP
2659 */
2660#define HV_FAST_PCI_IOTSB_UNBIND 0x194
2661
2662/* pci_iotsb_get_binding()
2663 * TRAP: HV_FAST_TRAP
2664 * FUNCTION: HV_FAST_PCI_IOTSB_GET_BINDING
2665 * ARG0: devhandle
2666 * ARG1: iotsb_handle
2667 * ARG2: iova
2668 * RET0: status
2669 * RET1: iotsb_handle
2670 * ERRORS: EINVAL Invalid devhandle, pci_device, or iova
2671 * ENOMAP The PCI function is not bound to an IOTSB at iova
2672 *
2673 * This service returns the IOTSB binding, iotsb_handle, for a given pci_device
2674 * and DMA virtual address, iova.
2675 *
2676 * iova must be the base address of a DMA virtual address range as defined by
2677 * the iommu-address-ranges property in the root complex device node defined
2678 * by the argument devhandle.
2679 */
2680#define HV_FAST_PCI_IOTSB_GET_BINDING 0x195
2681
2682/* pci_iotsb_map()
2683 * TRAP: HV_FAST_TRAP
2684 * FUNCTION: HV_FAST_PCI_IOTSB_MAP
2685 * ARG0: devhandle
2686 * ARG1: iotsb_handle
2687 * ARG2: index_count
2688 * ARG3: iotte_attributes
2689 * ARG4: io_page_list_p
2690 * RET0: status
2691 * RET1: #mapped
2692 * ERRORS: EINVAL Invalid devhandle, iotsb_handle, #iottes,
2693 * iotsb_index or iotte_attributes
2694 * EBADALIGN Improperly aligned io_page_list_p or I/O page
2695 * address in the I/O page list.
2696 * ENORADDR Invalid io_page_list_p or I/O page address in
2697 * the I/O page list.
2698 *
2699 * This service creates and flushes mappings in the IOTSB defined by the
2700 * arguments devhandle, iotsb.
2701 *
2702 * The index_count argument consists of two fields. Bits 63:48 contain #iotte
2703 * and bits 47:0 contain iotsb_index
2704 *
2705 * The first mapping is created in the IOTSB index specified by iotsb_index.
2706 * Subsequent mappings are created at iotsb_index+1 and so on.
2707 *
2708 * The attributes of each mapping are defined by the argument iotte_attributes.
2709 *
2710 * The io_page_list_p specifies the real address of the 64-bit-aligned list of
2711 * #iottes I/O page addresses. Each page address must be a properly aligned
2712 * real address of a page to be mapped in the IOTSB. The first entry in the I/O
2713 * page list contains the real address of the first page, the 2nd entry for the
2714 * 2nd page, and so on.
2715 *
2716 * #iottes must be greater than zero.
2717 *
2718 * The return value #mapped is the actual number of mappings created, which may
2719 * be less than or equal to the argument #iottes. If the function returns
2720 * successfully with a #mapped value less than the requested #iottes then the
2721 * caller should continue to invoke the service with updated iotsb_index,
2722 * #iottes, and io_page_list_p arguments until all pages are mapped.
2723 *
2724 * This service must not be used to demap a mapping. In other words, all
2725 * mappings must be valid and have one or both of the RW attribute bits set.
2726 *
2727 * Note:
2728 * It is implementation-defined whether I/O page real address validity checking
2729 * is done at time mappings are established or deferred until they are
2730 * accessed.
2731 */
2732#define HV_FAST_PCI_IOTSB_MAP 0x196
2733
2734/* pci_iotsb_map_one()
2735 * TRAP: HV_FAST_TRAP
2736 * FUNCTION: HV_FAST_PCI_IOTSB_MAP_ONE
2737 * ARG0: devhandle
2738 * ARG1: iotsb_handle
2739 * ARG2: iotsb_index
2740 * ARG3: iotte_attributes
2741 * ARG4: r_addr
2742 * RET0: status
2743 * ERRORS: EINVAL Invalid devhandle,iotsb_handle, iotsb_index
2744 * or iotte_attributes
2745 * EBADALIGN Improperly aligned r_addr
2746 * ENORADDR Invalid r_addr
2747 *
2748 * This service creates and flushes a single mapping in the IOTSB defined by the
2749 * arguments devhandle, iotsb.
2750 *
2751 * The mapping for the page at r_addr is created at the IOTSB index specified by
2752 * iotsb_index with the attributes iotte_attributes.
2753 *
2754 * This service must not be used to demap a mapping. In other words, the mapping
2755 * must be valid and have one or both of the RW attribute bits set.
2756 *
2757 * Note:
2758 * It is implementation-defined whether I/O page real address validity checking
2759 * is done at time mappings are established or deferred until they are
2760 * accessed.
2761 */
2762#define HV_FAST_PCI_IOTSB_MAP_ONE 0x197
2763
2764/* pci_iotsb_demap()
2765 * TRAP: HV_FAST_TRAP
2766 * FUNCTION: HV_FAST_PCI_IOTSB_DEMAP
2767 * ARG0: devhandle
2768 * ARG1: iotsb_handle
2769 * ARG2: iotsb_index
2770 * ARG3: #iottes
2771 * RET0: status
2772 * RET1: #unmapped
2773 * ERRORS: EINVAL Invalid devhandle, iotsb_handle, iotsb_index or #iottes
2774 *
2775 * This service unmaps and flushes up to #iottes mappings starting at index
2776 * iotsb_index from the IOTSB defined by the arguments devhandle, iotsb.
2777 *
2778 * #iottes must be greater than zero.
2779 *
2780 * The actual number of IOTTEs unmapped is returned in #unmapped and may be less
2781 * than or equal to the requested number of IOTTEs, #iottes.
2782 *
2783 * If #unmapped is less than #iottes, the caller should continue to invoke this
2784 * service with updated iotsb_index and #iottes arguments until all pages are
2785 * demapped.
2786 */
2787#define HV_FAST_PCI_IOTSB_DEMAP 0x198
2788
2789/* pci_iotsb_getmap()
2790 * TRAP: HV_FAST_TRAP
2791 * FUNCTION: HV_FAST_PCI_IOTSB_GETMAP
2792 * ARG0: devhandle
2793 * ARG1: iotsb_handle
2794 * ARG2: iotsb_index
2795 * RET0: status
2796 * RET1: r_addr
2797 * RET2: iotte_attributes
2798 * ERRORS: EINVAL Invalid devhandle, iotsb_handle, or iotsb_index
2799 * ENOMAP No mapping was found
2800 *
2801 * This service returns the mapping specified by index iotsb_index from the
2802 * IOTSB defined by the arguments devhandle, iotsb.
2803 *
2804 * Upon success, the real address of the mapping shall be returned in
2805 * r_addr and thethe IOTTE mapping attributes shall be returned in
2806 * iotte_attributes.
2807 *
2808 * The return value iotte_attributes may not include optional features used in
2809 * the call to create the mapping.
2810 */
2811#define HV_FAST_PCI_IOTSB_GETMAP 0x199
2812
2813/* pci_iotsb_sync_mappings()
2814 * TRAP: HV_FAST_TRAP
2815 * FUNCTION: HV_FAST_PCI_IOTSB_SYNC_MAPPINGS
2816 * ARG0: devhandle
2817 * ARG1: iotsb_handle
2818 * ARG2: iotsb_index
2819 * ARG3: #iottes
2820 * RET0: status
2821 * RET1: #synced
2822 * ERROS: EINVAL Invalid devhandle, iotsb_handle, iotsb_index, or #iottes
2823 *
2824 * This service synchronizes #iottes mappings starting at index iotsb_index in
2825 * the IOTSB defined by the arguments devhandle, iotsb.
2826 *
2827 * #iottes must be greater than zero.
2828 *
2829 * The actual number of IOTTEs synchronized is returned in #synced, which may
2830 * be less than or equal to the requested number, #iottes.
2831 *
2832 * Upon a successful return, #synced is less than #iottes, the caller should
2833 * continue to invoke this service with updated iotsb_index and #iottes
2834 * arguments until all pages are synchronized.
2835 */
2836#define HV_FAST_PCI_IOTSB_SYNC_MAPPINGS 0x19a
2837
2838/* Logical Domain Channel services. */
2839
2840#define LDC_CHANNEL_DOWN 0
2841#define LDC_CHANNEL_UP 1
2842#define LDC_CHANNEL_RESETTING 2
2843
2844/* ldc_tx_qconf()
2845 * TRAP: HV_FAST_TRAP
2846 * FUNCTION: HV_FAST_LDC_TX_QCONF
2847 * ARG0: channel ID
2848 * ARG1: real address base of queue
2849 * ARG2: num entries in queue
2850 * RET0: status
2851 *
2852 * Configure transmit queue for the LDC endpoint specified by the
2853 * given channel ID, to be placed at the given real address, and
2854 * be of the given num entries. Num entries must be a power of two.
2855 * The real address base of the queue must be aligned on the queue
2856 * size. Each queue entry is 64-bytes, so for example, a 32 entry
2857 * queue must be aligned on a 2048 byte real address boundary.
2858 *
2859 * Upon configuration of a valid transmit queue the head and tail
2860 * pointers are set to a hypervisor specific identical value indicating
2861 * that the queue initially is empty.
2862 *
2863 * The endpoint's transmit queue is un-configured if num entries is zero.
2864 *
2865 * The maximum number of entries for each queue for a specific cpu may be
2866 * determined from the machine description. A transmit queue may be
2867 * specified even in the event that the LDC is down (peer endpoint has no
2868 * receive queue specified). Transmission will begin as soon as the peer
2869 * endpoint defines a receive queue.
2870 *
2871 * It is recommended that a guest wait for a transmit queue to empty prior
2872 * to reconfiguring it, or un-configuring it. Re or un-configuring of a
2873 * non-empty transmit queue behaves exactly as defined above, however it
2874 * is undefined as to how many of the pending entries in the original queue
2875 * will be delivered prior to the re-configuration taking effect.
2876 * Furthermore, as the queue configuration causes a reset of the head and
2877 * tail pointers there is no way for a guest to determine how many entries
2878 * have been sent after the configuration operation.
2879 */
2880#define HV_FAST_LDC_TX_QCONF 0xe0
2881
2882/* ldc_tx_qinfo()
2883 * TRAP: HV_FAST_TRAP
2884 * FUNCTION: HV_FAST_LDC_TX_QINFO
2885 * ARG0: channel ID
2886 * RET0: status
2887 * RET1: real address base of queue
2888 * RET2: num entries in queue
2889 *
2890 * Return the configuration info for the transmit queue of LDC endpoint
2891 * defined by the given channel ID. The real address is the currently
2892 * defined real address base of the defined queue, and num entries is the
2893 * size of the queue in terms of number of entries.
2894 *
2895 * If the specified channel ID is a valid endpoint number, but no transmit
2896 * queue has been defined this service will return success, but with num
2897 * entries set to zero and the real address will have an undefined value.
2898 */
2899#define HV_FAST_LDC_TX_QINFO 0xe1
2900
2901/* ldc_tx_get_state()
2902 * TRAP: HV_FAST_TRAP
2903 * FUNCTION: HV_FAST_LDC_TX_GET_STATE
2904 * ARG0: channel ID
2905 * RET0: status
2906 * RET1: head offset
2907 * RET2: tail offset
2908 * RET3: channel state
2909 *
2910 * Return the transmit state, and the head and tail queue pointers, for
2911 * the transmit queue of the LDC endpoint defined by the given channel ID.
2912 * The head and tail values are the byte offset of the head and tail
2913 * positions of the transmit queue for the specified endpoint.
2914 */
2915#define HV_FAST_LDC_TX_GET_STATE 0xe2
2916
2917/* ldc_tx_set_qtail()
2918 * TRAP: HV_FAST_TRAP
2919 * FUNCTION: HV_FAST_LDC_TX_SET_QTAIL
2920 * ARG0: channel ID
2921 * ARG1: tail offset
2922 * RET0: status
2923 *
2924 * Update the tail pointer for the transmit queue associated with the LDC
2925 * endpoint defined by the given channel ID. The tail offset specified
2926 * must be aligned on a 64 byte boundary, and calculated so as to increase
2927 * the number of pending entries on the transmit queue. Any attempt to
2928 * decrease the number of pending transmit queue entires is considered
2929 * an invalid tail offset and will result in an EINVAL error.
2930 *
2931 * Since the tail of the transmit queue may not be moved backwards, the
2932 * transmit queue may be flushed by configuring a new transmit queue,
2933 * whereupon the hypervisor will configure the initial transmit head and
2934 * tail pointers to be equal.
2935 */
2936#define HV_FAST_LDC_TX_SET_QTAIL 0xe3
2937
2938/* ldc_rx_qconf()
2939 * TRAP: HV_FAST_TRAP
2940 * FUNCTION: HV_FAST_LDC_RX_QCONF
2941 * ARG0: channel ID
2942 * ARG1: real address base of queue
2943 * ARG2: num entries in queue
2944 * RET0: status
2945 *
2946 * Configure receive queue for the LDC endpoint specified by the
2947 * given channel ID, to be placed at the given real address, and
2948 * be of the given num entries. Num entries must be a power of two.
2949 * The real address base of the queue must be aligned on the queue
2950 * size. Each queue entry is 64-bytes, so for example, a 32 entry
2951 * queue must be aligned on a 2048 byte real address boundary.
2952 *
2953 * The endpoint's transmit queue is un-configured if num entries is zero.
2954 *
2955 * If a valid receive queue is specified for a local endpoint the LDC is
2956 * in the up state for the purpose of transmission to this endpoint.
2957 *
2958 * The maximum number of entries for each queue for a specific cpu may be
2959 * determined from the machine description.
2960 *
2961 * As receive queue configuration causes a reset of the queue's head and
2962 * tail pointers there is no way for a gues to determine how many entries
2963 * have been received between a preceding ldc_get_rx_state() API call
2964 * and the completion of the configuration operation. It should be noted
2965 * that datagram delivery is not guaranteed via domain channels anyway,
2966 * and therefore any higher protocol should be resilient to datagram
2967 * loss if necessary. However, to overcome this specific race potential
2968 * it is recommended, for example, that a higher level protocol be employed
2969 * to ensure either retransmission, or ensure that no datagrams are pending
2970 * on the peer endpoint's transmit queue prior to the configuration process.
2971 */
2972#define HV_FAST_LDC_RX_QCONF 0xe4
2973
2974/* ldc_rx_qinfo()
2975 * TRAP: HV_FAST_TRAP
2976 * FUNCTION: HV_FAST_LDC_RX_QINFO
2977 * ARG0: channel ID
2978 * RET0: status
2979 * RET1: real address base of queue
2980 * RET2: num entries in queue
2981 *
2982 * Return the configuration info for the receive queue of LDC endpoint
2983 * defined by the given channel ID. The real address is the currently
2984 * defined real address base of the defined queue, and num entries is the
2985 * size of the queue in terms of number of entries.
2986 *
2987 * If the specified channel ID is a valid endpoint number, but no receive
2988 * queue has been defined this service will return success, but with num
2989 * entries set to zero and the real address will have an undefined value.
2990 */
2991#define HV_FAST_LDC_RX_QINFO 0xe5
2992
2993/* ldc_rx_get_state()
2994 * TRAP: HV_FAST_TRAP
2995 * FUNCTION: HV_FAST_LDC_RX_GET_STATE
2996 * ARG0: channel ID
2997 * RET0: status
2998 * RET1: head offset
2999 * RET2: tail offset
3000 * RET3: channel state
3001 *
3002 * Return the receive state, and the head and tail queue pointers, for
3003 * the receive queue of the LDC endpoint defined by the given channel ID.
3004 * The head and tail values are the byte offset of the head and tail
3005 * positions of the receive queue for the specified endpoint.
3006 */
3007#define HV_FAST_LDC_RX_GET_STATE 0xe6
3008
3009/* ldc_rx_set_qhead()
3010 * TRAP: HV_FAST_TRAP
3011 * FUNCTION: HV_FAST_LDC_RX_SET_QHEAD
3012 * ARG0: channel ID
3013 * ARG1: head offset
3014 * RET0: status
3015 *
3016 * Update the head pointer for the receive queue associated with the LDC
3017 * endpoint defined by the given channel ID. The head offset specified
3018 * must be aligned on a 64 byte boundary, and calculated so as to decrease
3019 * the number of pending entries on the receive queue. Any attempt to
3020 * increase the number of pending receive queue entires is considered
3021 * an invalid head offset and will result in an EINVAL error.
3022 *
3023 * The receive queue may be flushed by setting the head offset equal
3024 * to the current tail offset.
3025 */
3026#define HV_FAST_LDC_RX_SET_QHEAD 0xe7
3027
3028/* LDC Map Table Entry. Each slot is defined by a translation table
3029 * entry, as specified by the LDC_MTE_* bits below, and a 64-bit
3030 * hypervisor invalidation cookie.
3031 */
3032#define LDC_MTE_PADDR 0x0fffffffffffe000 /* pa[55:13] */
3033#define LDC_MTE_COPY_W 0x0000000000000400 /* copy write access */
3034#define LDC_MTE_COPY_R 0x0000000000000200 /* copy read access */
3035#define LDC_MTE_IOMMU_W 0x0000000000000100 /* IOMMU write access */
3036#define LDC_MTE_IOMMU_R 0x0000000000000080 /* IOMMU read access */
3037#define LDC_MTE_EXEC 0x0000000000000040 /* execute */
3038#define LDC_MTE_WRITE 0x0000000000000020 /* read */
3039#define LDC_MTE_READ 0x0000000000000010 /* write */
3040#define LDC_MTE_SZALL 0x000000000000000f /* page size bits */
3041#define LDC_MTE_SZ16GB 0x0000000000000007 /* 16GB page */
3042#define LDC_MTE_SZ2GB 0x0000000000000006 /* 2GB page */
3043#define LDC_MTE_SZ256MB 0x0000000000000005 /* 256MB page */
3044#define LDC_MTE_SZ32MB 0x0000000000000004 /* 32MB page */
3045#define LDC_MTE_SZ4MB 0x0000000000000003 /* 4MB page */
3046#define LDC_MTE_SZ512K 0x0000000000000002 /* 512K page */
3047#define LDC_MTE_SZ64K 0x0000000000000001 /* 64K page */
3048#define LDC_MTE_SZ8K 0x0000000000000000 /* 8K page */
3049
3050#ifndef __ASSEMBLY__
3051struct ldc_mtable_entry {
3052 unsigned long mte;
3053 unsigned long cookie;
3054};
3055#endif
3056
3057/* ldc_set_map_table()
3058 * TRAP: HV_FAST_TRAP
3059 * FUNCTION: HV_FAST_LDC_SET_MAP_TABLE
3060 * ARG0: channel ID
3061 * ARG1: table real address
3062 * ARG2: num entries
3063 * RET0: status
3064 *
3065 * Register the MTE table at the given table real address, with the
3066 * specified num entries, for the LDC indicated by the given channel
3067 * ID.
3068 */
3069#define HV_FAST_LDC_SET_MAP_TABLE 0xea
3070
3071/* ldc_get_map_table()
3072 * TRAP: HV_FAST_TRAP
3073 * FUNCTION: HV_FAST_LDC_GET_MAP_TABLE
3074 * ARG0: channel ID
3075 * RET0: status
3076 * RET1: table real address
3077 * RET2: num entries
3078 *
3079 * Return the configuration of the current mapping table registered
3080 * for the given channel ID.
3081 */
3082#define HV_FAST_LDC_GET_MAP_TABLE 0xeb
3083
3084#define LDC_COPY_IN 0
3085#define LDC_COPY_OUT 1
3086
3087/* ldc_copy()
3088 * TRAP: HV_FAST_TRAP
3089 * FUNCTION: HV_FAST_LDC_COPY
3090 * ARG0: channel ID
3091 * ARG1: LDC_COPY_* direction code
3092 * ARG2: target real address
3093 * ARG3: local real address
3094 * ARG4: length in bytes
3095 * RET0: status
3096 * RET1: actual length in bytes
3097 */
3098#define HV_FAST_LDC_COPY 0xec
3099
3100#define LDC_MEM_READ 1
3101#define LDC_MEM_WRITE 2
3102#define LDC_MEM_EXEC 4
3103
3104/* ldc_mapin()
3105 * TRAP: HV_FAST_TRAP
3106 * FUNCTION: HV_FAST_LDC_MAPIN
3107 * ARG0: channel ID
3108 * ARG1: cookie
3109 * RET0: status
3110 * RET1: real address
3111 * RET2: LDC_MEM_* permissions
3112 */
3113#define HV_FAST_LDC_MAPIN 0xed
3114
3115/* ldc_unmap()
3116 * TRAP: HV_FAST_TRAP
3117 * FUNCTION: HV_FAST_LDC_UNMAP
3118 * ARG0: real address
3119 * RET0: status
3120 */
3121#define HV_FAST_LDC_UNMAP 0xee
3122
3123/* ldc_revoke()
3124 * TRAP: HV_FAST_TRAP
3125 * FUNCTION: HV_FAST_LDC_REVOKE
3126 * ARG0: channel ID
3127 * ARG1: cookie
3128 * ARG2: ldc_mtable_entry cookie
3129 * RET0: status
3130 */
3131#define HV_FAST_LDC_REVOKE 0xef
3132
3133#ifndef __ASSEMBLY__
3134unsigned long sun4v_ldc_tx_qconf(unsigned long channel,
3135 unsigned long ra,
3136 unsigned long num_entries);
3137unsigned long sun4v_ldc_tx_qinfo(unsigned long channel,
3138 unsigned long *ra,
3139 unsigned long *num_entries);
3140unsigned long sun4v_ldc_tx_get_state(unsigned long channel,
3141 unsigned long *head_off,
3142 unsigned long *tail_off,
3143 unsigned long *chan_state);
3144unsigned long sun4v_ldc_tx_set_qtail(unsigned long channel,
3145 unsigned long tail_off);
3146unsigned long sun4v_ldc_rx_qconf(unsigned long channel,
3147 unsigned long ra,
3148 unsigned long num_entries);
3149unsigned long sun4v_ldc_rx_qinfo(unsigned long channel,
3150 unsigned long *ra,
3151 unsigned long *num_entries);
3152unsigned long sun4v_ldc_rx_get_state(unsigned long channel,
3153 unsigned long *head_off,
3154 unsigned long *tail_off,
3155 unsigned long *chan_state);
3156unsigned long sun4v_ldc_rx_set_qhead(unsigned long channel,
3157 unsigned long head_off);
3158unsigned long sun4v_ldc_set_map_table(unsigned long channel,
3159 unsigned long ra,
3160 unsigned long num_entries);
3161unsigned long sun4v_ldc_get_map_table(unsigned long channel,
3162 unsigned long *ra,
3163 unsigned long *num_entries);
3164unsigned long sun4v_ldc_copy(unsigned long channel,
3165 unsigned long dir_code,
3166 unsigned long tgt_raddr,
3167 unsigned long lcl_raddr,
3168 unsigned long len,
3169 unsigned long *actual_len);
3170unsigned long sun4v_ldc_mapin(unsigned long channel,
3171 unsigned long cookie,
3172 unsigned long *ra,
3173 unsigned long *perm);
3174unsigned long sun4v_ldc_unmap(unsigned long ra);
3175unsigned long sun4v_ldc_revoke(unsigned long channel,
3176 unsigned long cookie,
3177 unsigned long mte_cookie);
3178#endif
3179
3180/* Performance counter services. */
3181
3182#define HV_PERF_JBUS_PERF_CTRL_REG 0x00
3183#define HV_PERF_JBUS_PERF_CNT_REG 0x01
3184#define HV_PERF_DRAM_PERF_CTRL_REG_0 0x02
3185#define HV_PERF_DRAM_PERF_CNT_REG_0 0x03
3186#define HV_PERF_DRAM_PERF_CTRL_REG_1 0x04
3187#define HV_PERF_DRAM_PERF_CNT_REG_1 0x05
3188#define HV_PERF_DRAM_PERF_CTRL_REG_2 0x06
3189#define HV_PERF_DRAM_PERF_CNT_REG_2 0x07
3190#define HV_PERF_DRAM_PERF_CTRL_REG_3 0x08
3191#define HV_PERF_DRAM_PERF_CNT_REG_3 0x09
3192
3193/* get_perfreg()
3194 * TRAP: HV_FAST_TRAP
3195 * FUNCTION: HV_FAST_GET_PERFREG
3196 * ARG0: performance reg number
3197 * RET0: status
3198 * RET1: performance reg value
3199 * ERRORS: EINVAL Invalid performance register number
3200 * ENOACCESS No access allowed to performance counters
3201 *
3202 * Read the value of the given DRAM/JBUS performance counter/control register.
3203 */
3204#define HV_FAST_GET_PERFREG 0x100
3205
3206/* set_perfreg()
3207 * TRAP: HV_FAST_TRAP
3208 * FUNCTION: HV_FAST_SET_PERFREG
3209 * ARG0: performance reg number
3210 * ARG1: performance reg value
3211 * RET0: status
3212 * ERRORS: EINVAL Invalid performance register number
3213 * ENOACCESS No access allowed to performance counters
3214 *
3215 * Write the given performance reg value to the given DRAM/JBUS
3216 * performance counter/control register.
3217 */
3218#define HV_FAST_SET_PERFREG 0x101
3219
3220#define HV_N2_PERF_SPARC_CTL 0x0
3221#define HV_N2_PERF_DRAM_CTL0 0x1
3222#define HV_N2_PERF_DRAM_CNT0 0x2
3223#define HV_N2_PERF_DRAM_CTL1 0x3
3224#define HV_N2_PERF_DRAM_CNT1 0x4
3225#define HV_N2_PERF_DRAM_CTL2 0x5
3226#define HV_N2_PERF_DRAM_CNT2 0x6
3227#define HV_N2_PERF_DRAM_CTL3 0x7
3228#define HV_N2_PERF_DRAM_CNT3 0x8
3229
3230#define HV_FAST_N2_GET_PERFREG 0x104
3231#define HV_FAST_N2_SET_PERFREG 0x105
3232
3233#ifndef __ASSEMBLY__
3234unsigned long sun4v_niagara_getperf(unsigned long reg,
3235 unsigned long *val);
3236unsigned long sun4v_niagara_setperf(unsigned long reg,
3237 unsigned long val);
3238unsigned long sun4v_niagara2_getperf(unsigned long reg,
3239 unsigned long *val);
3240unsigned long sun4v_niagara2_setperf(unsigned long reg,
3241 unsigned long val);
3242#endif
3243
3244/* MMU statistics services.
3245 *
3246 * The hypervisor maintains MMU statistics and privileged code provides
3247 * a buffer where these statistics can be collected. It is continually
3248 * updated once configured. The layout is as follows:
3249 */
3250#ifndef __ASSEMBLY__
3251struct hv_mmu_statistics {
3252 unsigned long immu_tsb_hits_ctx0_8k_tte;
3253 unsigned long immu_tsb_ticks_ctx0_8k_tte;
3254 unsigned long immu_tsb_hits_ctx0_64k_tte;
3255 unsigned long immu_tsb_ticks_ctx0_64k_tte;
3256 unsigned long __reserved1[2];
3257 unsigned long immu_tsb_hits_ctx0_4mb_tte;
3258 unsigned long immu_tsb_ticks_ctx0_4mb_tte;
3259 unsigned long __reserved2[2];
3260 unsigned long immu_tsb_hits_ctx0_256mb_tte;
3261 unsigned long immu_tsb_ticks_ctx0_256mb_tte;
3262 unsigned long __reserved3[4];
3263 unsigned long immu_tsb_hits_ctxnon0_8k_tte;
3264 unsigned long immu_tsb_ticks_ctxnon0_8k_tte;
3265 unsigned long immu_tsb_hits_ctxnon0_64k_tte;
3266 unsigned long immu_tsb_ticks_ctxnon0_64k_tte;
3267 unsigned long __reserved4[2];
3268 unsigned long immu_tsb_hits_ctxnon0_4mb_tte;
3269 unsigned long immu_tsb_ticks_ctxnon0_4mb_tte;
3270 unsigned long __reserved5[2];
3271 unsigned long immu_tsb_hits_ctxnon0_256mb_tte;
3272 unsigned long immu_tsb_ticks_ctxnon0_256mb_tte;
3273 unsigned long __reserved6[4];
3274 unsigned long dmmu_tsb_hits_ctx0_8k_tte;
3275 unsigned long dmmu_tsb_ticks_ctx0_8k_tte;
3276 unsigned long dmmu_tsb_hits_ctx0_64k_tte;
3277 unsigned long dmmu_tsb_ticks_ctx0_64k_tte;
3278 unsigned long __reserved7[2];
3279 unsigned long dmmu_tsb_hits_ctx0_4mb_tte;
3280 unsigned long dmmu_tsb_ticks_ctx0_4mb_tte;
3281 unsigned long __reserved8[2];
3282 unsigned long dmmu_tsb_hits_ctx0_256mb_tte;
3283 unsigned long dmmu_tsb_ticks_ctx0_256mb_tte;
3284 unsigned long __reserved9[4];
3285 unsigned long dmmu_tsb_hits_ctxnon0_8k_tte;
3286 unsigned long dmmu_tsb_ticks_ctxnon0_8k_tte;
3287 unsigned long dmmu_tsb_hits_ctxnon0_64k_tte;
3288 unsigned long dmmu_tsb_ticks_ctxnon0_64k_tte;
3289 unsigned long __reserved10[2];
3290 unsigned long dmmu_tsb_hits_ctxnon0_4mb_tte;
3291 unsigned long dmmu_tsb_ticks_ctxnon0_4mb_tte;
3292 unsigned long __reserved11[2];
3293 unsigned long dmmu_tsb_hits_ctxnon0_256mb_tte;
3294 unsigned long dmmu_tsb_ticks_ctxnon0_256mb_tte;
3295 unsigned long __reserved12[4];
3296};
3297#endif
3298
3299/* mmustat_conf()
3300 * TRAP: HV_FAST_TRAP
3301 * FUNCTION: HV_FAST_MMUSTAT_CONF
3302 * ARG0: real address
3303 * RET0: status
3304 * RET1: real address
3305 * ERRORS: ENORADDR Invalid real address
3306 * EBADALIGN Real address not aligned on 64-byte boundary
3307 * EBADTRAP API not supported on this processor
3308 *
3309 * Enable MMU statistic gathering using the buffer at the given real
3310 * address on the current virtual CPU. The new buffer real address
3311 * is given in ARG1, and the previously specified buffer real address
3312 * is returned in RET1, or is returned as zero for the first invocation.
3313 *
3314 * If the passed in real address argument is zero, this will disable
3315 * MMU statistic collection on the current virtual CPU. If an error is
3316 * returned then no statistics are collected.
3317 *
3318 * The buffer contents should be initialized to all zeros before being
3319 * given to the hypervisor or else the statistics will be meaningless.
3320 */
3321#define HV_FAST_MMUSTAT_CONF 0x102
3322
3323/* mmustat_info()
3324 * TRAP: HV_FAST_TRAP
3325 * FUNCTION: HV_FAST_MMUSTAT_INFO
3326 * RET0: status
3327 * RET1: real address
3328 * ERRORS: EBADTRAP API not supported on this processor
3329 *
3330 * Return the current state and real address of the currently configured
3331 * MMU statistics buffer on the current virtual CPU.
3332 */
3333#define HV_FAST_MMUSTAT_INFO 0x103
3334
3335#ifndef __ASSEMBLY__
3336unsigned long sun4v_mmustat_conf(unsigned long ra, unsigned long *orig_ra);
3337unsigned long sun4v_mmustat_info(unsigned long *ra);
3338#endif
3339
3340/* NCS crypto services */
3341
3342/* ncs_request() sub-function numbers */
3343#define HV_NCS_QCONF 0x01
3344#define HV_NCS_QTAIL_UPDATE 0x02
3345
3346#ifndef __ASSEMBLY__
3347struct hv_ncs_queue_entry {
3348 /* MAU Control Register */
3349 unsigned long mau_control;
3350#define MAU_CONTROL_INV_PARITY 0x0000000000002000
3351#define MAU_CONTROL_STRAND 0x0000000000001800
3352#define MAU_CONTROL_BUSY 0x0000000000000400
3353#define MAU_CONTROL_INT 0x0000000000000200
3354#define MAU_CONTROL_OP 0x00000000000001c0
3355#define MAU_CONTROL_OP_SHIFT 6
3356#define MAU_OP_LOAD_MA_MEMORY 0x0
3357#define MAU_OP_STORE_MA_MEMORY 0x1
3358#define MAU_OP_MODULAR_MULT 0x2
3359#define MAU_OP_MODULAR_REDUCE 0x3
3360#define MAU_OP_MODULAR_EXP_LOOP 0x4
3361#define MAU_CONTROL_LEN 0x000000000000003f
3362#define MAU_CONTROL_LEN_SHIFT 0
3363
3364 /* Real address of bytes to load or store bytes
3365 * into/out-of the MAU.
3366 */
3367 unsigned long mau_mpa;
3368
3369 /* Modular Arithmetic MA Offset Register. */
3370 unsigned long mau_ma;
3371
3372 /* Modular Arithmetic N Prime Register. */
3373 unsigned long mau_np;
3374};
3375
3376struct hv_ncs_qconf_arg {
3377 unsigned long mid; /* MAU ID, 1 per core on Niagara */
3378 unsigned long base; /* Real address base of queue */
3379 unsigned long end; /* Real address end of queue */
3380 unsigned long num_ents; /* Number of entries in queue */
3381};
3382
3383struct hv_ncs_qtail_update_arg {
3384 unsigned long mid; /* MAU ID, 1 per core on Niagara */
3385 unsigned long tail; /* New tail index to use */
3386 unsigned long syncflag; /* only SYNCFLAG_SYNC is implemented */
3387#define HV_NCS_SYNCFLAG_SYNC 0x00
3388#define HV_NCS_SYNCFLAG_ASYNC 0x01
3389};
3390#endif
3391
3392/* ncs_request()
3393 * TRAP: HV_FAST_TRAP
3394 * FUNCTION: HV_FAST_NCS_REQUEST
3395 * ARG0: NCS sub-function
3396 * ARG1: sub-function argument real address
3397 * ARG2: size in bytes of sub-function argument
3398 * RET0: status
3399 *
3400 * The MAU chip of the Niagara processor is not directly accessible
3401 * to privileged code, instead it is programmed indirectly via this
3402 * hypervisor API.
3403 *
3404 * The interfaces defines a queue of MAU operations to perform.
3405 * Privileged code registers a queue with the hypervisor by invoking
3406 * this HVAPI with the HV_NCS_QCONF sub-function, which defines the
3407 * base, end, and number of entries of the queue. Each queue entry
3408 * contains a MAU register struct block.
3409 *
3410 * The privileged code then proceeds to add entries to the queue and
3411 * then invoke the HV_NCS_QTAIL_UPDATE sub-function. Since only
3412 * synchronous operations are supported by the current hypervisor,
3413 * HV_NCS_QTAIL_UPDATE will run all the pending queue entries to
3414 * completion and return HV_EOK, or return an error code.
3415 *
3416 * The real address of the sub-function argument must be aligned on at
3417 * least an 8-byte boundary.
3418 *
3419 * The tail argument of HV_NCS_QTAIL_UPDATE is an index, not a byte
3420 * offset, into the queue and must be less than or equal the 'num_ents'
3421 * argument given in the HV_NCS_QCONF call.
3422 */
3423#define HV_FAST_NCS_REQUEST 0x110
3424
3425#ifndef __ASSEMBLY__
3426unsigned long sun4v_ncs_request(unsigned long request,
3427 unsigned long arg_ra,
3428 unsigned long arg_size);
3429#endif
3430
3431#define HV_FAST_FIRE_GET_PERFREG 0x120
3432#define HV_FAST_FIRE_SET_PERFREG 0x121
3433
3434#define HV_FAST_REBOOT_DATA_SET 0x172
3435
3436#ifndef __ASSEMBLY__
3437unsigned long sun4v_reboot_data_set(unsigned long ra,
3438 unsigned long len);
3439#endif
3440
3441#define HV_FAST_VT_GET_PERFREG 0x184
3442#define HV_FAST_VT_SET_PERFREG 0x185
3443
3444#ifndef __ASSEMBLY__
3445unsigned long sun4v_vt_get_perfreg(unsigned long reg_num,
3446 unsigned long *reg_val);
3447unsigned long sun4v_vt_set_perfreg(unsigned long reg_num,
3448 unsigned long reg_val);
3449#endif
3450
3451#define HV_FAST_T5_GET_PERFREG 0x1a8
3452#define HV_FAST_T5_SET_PERFREG 0x1a9
3453
3454#ifndef __ASSEMBLY__
3455unsigned long sun4v_t5_get_perfreg(unsigned long reg_num,
3456 unsigned long *reg_val);
3457unsigned long sun4v_t5_set_perfreg(unsigned long reg_num,
3458 unsigned long reg_val);
3459#endif
3460
3461
3462#define HV_FAST_M7_GET_PERFREG 0x43
3463#define HV_FAST_M7_SET_PERFREG 0x44
3464
3465#ifndef __ASSEMBLY__
3466unsigned long sun4v_m7_get_perfreg(unsigned long reg_num,
3467 unsigned long *reg_val);
3468unsigned long sun4v_m7_set_perfreg(unsigned long reg_num,
3469 unsigned long reg_val);
3470#endif
3471
3472/* Function numbers for HV_CORE_TRAP. */
3473#define HV_CORE_SET_VER 0x00
3474#define HV_CORE_PUTCHAR 0x01
3475#define HV_CORE_EXIT 0x02
3476#define HV_CORE_GET_VER 0x03
3477
3478/* Hypervisor API groups for use with HV_CORE_SET_VER and
3479 * HV_CORE_GET_VER.
3480 */
3481#define HV_GRP_SUN4V 0x0000
3482#define HV_GRP_CORE 0x0001
3483#define HV_GRP_INTR 0x0002
3484#define HV_GRP_SOFT_STATE 0x0003
3485#define HV_GRP_TM 0x0080
3486#define HV_GRP_PCI 0x0100
3487#define HV_GRP_LDOM 0x0101
3488#define HV_GRP_SVC_CHAN 0x0102
3489#define HV_GRP_NCS 0x0103
3490#define HV_GRP_RNG 0x0104
3491#define HV_GRP_PBOOT 0x0105
3492#define HV_GRP_TPM 0x0107
3493#define HV_GRP_SDIO 0x0108
3494#define HV_GRP_SDIO_ERR 0x0109
3495#define HV_GRP_REBOOT_DATA 0x0110
3496#define HV_GRP_ATU 0x0111
3497#define HV_GRP_DAX 0x0113
3498#define HV_GRP_M7_PERF 0x0114
3499#define HV_GRP_NIAG_PERF 0x0200
3500#define HV_GRP_FIRE_PERF 0x0201
3501#define HV_GRP_N2_CPU 0x0202
3502#define HV_GRP_NIU 0x0204
3503#define HV_GRP_VF_CPU 0x0205
3504#define HV_GRP_KT_CPU 0x0209
3505#define HV_GRP_VT_CPU 0x020c
3506#define HV_GRP_T5_CPU 0x0211
3507#define HV_GRP_DIAG 0x0300
3508
3509#ifndef __ASSEMBLY__
3510unsigned long sun4v_get_version(unsigned long group,
3511 unsigned long *major,
3512 unsigned long *minor);
3513unsigned long sun4v_set_version(unsigned long group,
3514 unsigned long major,
3515 unsigned long minor,
3516 unsigned long *actual_minor);
3517
3518int sun4v_hvapi_register(unsigned long group, unsigned long major,
3519 unsigned long *minor);
3520void sun4v_hvapi_unregister(unsigned long group);
3521int sun4v_hvapi_get(unsigned long group,
3522 unsigned long *major,
3523 unsigned long *minor);
3524void sun4v_hvapi_init(void);
3525#endif
3526
3527#endif /* !(_SPARC64_HYPERVISOR_H) */
1#ifndef _SPARC64_HYPERVISOR_H
2#define _SPARC64_HYPERVISOR_H
3
4/* Sun4v hypervisor interfaces and defines.
5 *
6 * Hypervisor calls are made via traps to software traps number 0x80
7 * and above. Registers %o0 to %o5 serve as argument, status, and
8 * return value registers.
9 *
10 * There are two kinds of these traps. First there are the normal
11 * "fast traps" which use software trap 0x80 and encode the function
12 * to invoke by number in register %o5. Argument and return value
13 * handling is as follows:
14 *
15 * -----------------------------------------------
16 * | %o5 | function number | undefined |
17 * | %o0 | argument 0 | return status |
18 * | %o1 | argument 1 | return value 1 |
19 * | %o2 | argument 2 | return value 2 |
20 * | %o3 | argument 3 | return value 3 |
21 * | %o4 | argument 4 | return value 4 |
22 * -----------------------------------------------
23 *
24 * The second type are "hyper-fast traps" which encode the function
25 * number in the software trap number itself. So these use trap
26 * numbers > 0x80. The register usage for hyper-fast traps is as
27 * follows:
28 *
29 * -----------------------------------------------
30 * | %o0 | argument 0 | return status |
31 * | %o1 | argument 1 | return value 1 |
32 * | %o2 | argument 2 | return value 2 |
33 * | %o3 | argument 3 | return value 3 |
34 * | %o4 | argument 4 | return value 4 |
35 * -----------------------------------------------
36 *
37 * Registers providing explicit arguments to the hypervisor calls
38 * are volatile across the call. Upon return their values are
39 * undefined unless explicitly specified as containing a particular
40 * return value by the specific call. The return status is always
41 * returned in register %o0, zero indicates a successful execution of
42 * the hypervisor call and other values indicate an error status as
43 * defined below. So, for example, if a hyper-fast trap takes
44 * arguments 0, 1, and 2, then %o0, %o1, and %o2 are volatile across
45 * the call and %o3, %o4, and %o5 would be preserved.
46 *
47 * If the hypervisor trap is invalid, or the fast trap function number
48 * is invalid, HV_EBADTRAP will be returned in %o0. Also, all 64-bits
49 * of the argument and return values are significant.
50 */
51
52/* Trap numbers. */
53#define HV_FAST_TRAP 0x80
54#define HV_MMU_MAP_ADDR_TRAP 0x83
55#define HV_MMU_UNMAP_ADDR_TRAP 0x84
56#define HV_TTRACE_ADDENTRY_TRAP 0x85
57#define HV_CORE_TRAP 0xff
58
59/* Error codes. */
60#define HV_EOK 0 /* Successful return */
61#define HV_ENOCPU 1 /* Invalid CPU id */
62#define HV_ENORADDR 2 /* Invalid real address */
63#define HV_ENOINTR 3 /* Invalid interrupt id */
64#define HV_EBADPGSZ 4 /* Invalid pagesize encoding */
65#define HV_EBADTSB 5 /* Invalid TSB description */
66#define HV_EINVAL 6 /* Invalid argument */
67#define HV_EBADTRAP 7 /* Invalid function number */
68#define HV_EBADALIGN 8 /* Invalid address alignment */
69#define HV_EWOULDBLOCK 9 /* Cannot complete w/o blocking */
70#define HV_ENOACCESS 10 /* No access to resource */
71#define HV_EIO 11 /* I/O error */
72#define HV_ECPUERROR 12 /* CPU in error state */
73#define HV_ENOTSUPPORTED 13 /* Function not supported */
74#define HV_ENOMAP 14 /* No mapping found */
75#define HV_ETOOMANY 15 /* Too many items specified */
76#define HV_ECHANNEL 16 /* Invalid LDC channel */
77#define HV_EBUSY 17 /* Resource busy */
78
79/* mach_exit()
80 * TRAP: HV_FAST_TRAP
81 * FUNCTION: HV_FAST_MACH_EXIT
82 * ARG0: exit code
83 * ERRORS: This service does not return.
84 *
85 * Stop all CPUs in the virtual domain and place them into the stopped
86 * state. The 64-bit exit code may be passed to a service entity as
87 * the domain's exit status. On systems without a service entity, the
88 * domain will undergo a reset, and the boot firmware will be
89 * reloaded.
90 *
91 * This function will never return to the guest that invokes it.
92 *
93 * Note: By convention an exit code of zero denotes a successful exit by
94 * the guest code. A non-zero exit code denotes a guest specific
95 * error indication.
96 *
97 */
98#define HV_FAST_MACH_EXIT 0x00
99
100#ifndef __ASSEMBLY__
101void sun4v_mach_exit(unsigned long exit_code);
102#endif
103
104/* Domain services. */
105
106/* mach_desc()
107 * TRAP: HV_FAST_TRAP
108 * FUNCTION: HV_FAST_MACH_DESC
109 * ARG0: buffer
110 * ARG1: length
111 * RET0: status
112 * RET1: length
113 * ERRORS: HV_EBADALIGN Buffer is badly aligned
114 * HV_ENORADDR Buffer is to an illegal real address.
115 * HV_EINVAL Buffer length is too small for complete
116 * machine description.
117 *
118 * Copy the most current machine description into the buffer indicated
119 * by the real address in ARG0. The buffer provided must be 16 byte
120 * aligned. Upon success or HV_EINVAL, this service returns the
121 * actual size of the machine description in the RET1 return value.
122 *
123 * Note: A method of determining the appropriate buffer size for the
124 * machine description is to first call this service with a buffer
125 * length of 0 bytes.
126 */
127#define HV_FAST_MACH_DESC 0x01
128
129#ifndef __ASSEMBLY__
130unsigned long sun4v_mach_desc(unsigned long buffer_pa,
131 unsigned long buf_len,
132 unsigned long *real_buf_len);
133#endif
134
135/* mach_sir()
136 * TRAP: HV_FAST_TRAP
137 * FUNCTION: HV_FAST_MACH_SIR
138 * ERRORS: This service does not return.
139 *
140 * Perform a software initiated reset of the virtual machine domain.
141 * All CPUs are captured as soon as possible, all hardware devices are
142 * returned to the entry default state, and the domain is restarted at
143 * the SIR (trap type 0x04) real trap table (RTBA) entry point on one
144 * of the CPUs. The single CPU restarted is selected as determined by
145 * platform specific policy. Memory is preserved across this
146 * operation.
147 */
148#define HV_FAST_MACH_SIR 0x02
149
150#ifndef __ASSEMBLY__
151void sun4v_mach_sir(void);
152#endif
153
154/* mach_set_watchdog()
155 * TRAP: HV_FAST_TRAP
156 * FUNCTION: HV_FAST_MACH_SET_WATCHDOG
157 * ARG0: timeout in milliseconds
158 * RET0: status
159 * RET1: time remaining in milliseconds
160 *
161 * A guest uses this API to set a watchdog timer. Once the gues has set
162 * the timer, it must call the timer service again either to disable or
163 * postpone the expiration. If the timer expires before being reset or
164 * disabled, then the hypervisor take a platform specific action leading
165 * to guest termination within a bounded time period. The platform action
166 * may include recovery actions such as reporting the expiration to a
167 * Service Processor, and/or automatically restarting the gues.
168 *
169 * The 'timeout' parameter is specified in milliseconds, however the
170 * implementated granularity is given by the 'watchdog-resolution'
171 * property in the 'platform' node of the guest's machine description.
172 * The largest allowed timeout value is specified by the
173 * 'watchdog-max-timeout' property of the 'platform' node.
174 *
175 * If the 'timeout' argument is not zero, the watchdog timer is set to
176 * expire after a minimum of 'timeout' milliseconds.
177 *
178 * If the 'timeout' argument is zero, the watchdog timer is disabled.
179 *
180 * If the 'timeout' value exceeds the value of the 'max-watchdog-timeout'
181 * property, the hypervisor leaves the watchdog timer state unchanged,
182 * and returns a status of EINVAL.
183 *
184 * The 'time remaining' return value is valid regardless of whether the
185 * return status is EOK or EINVAL. A non-zero return value indicates the
186 * number of milliseconds that were remaining until the timer was to expire.
187 * If less than one millisecond remains, the return value is '1'. If the
188 * watchdog timer was disabled at the time of the call, the return value is
189 * zero.
190 *
191 * If the hypervisor cannot support the exact timeout value requested, but
192 * can support a larger timeout value, the hypervisor may round the actual
193 * timeout to a value larger than the requested timeout, consequently the
194 * 'time remaining' return value may be larger than the previously requested
195 * timeout value.
196 *
197 * Any guest OS debugger should be aware that the watchdog service may be in
198 * use. Consequently, it is recommended that the watchdog service is
199 * disabled upon debugger entry (e.g. reaching a breakpoint), and then
200 * re-enabled upon returning to normal execution. The API has been designed
201 * with this in mind, and the 'time remaining' result of the disable call may
202 * be used directly as the timeout argument of the re-enable call.
203 */
204#define HV_FAST_MACH_SET_WATCHDOG 0x05
205
206#ifndef __ASSEMBLY__
207unsigned long sun4v_mach_set_watchdog(unsigned long timeout,
208 unsigned long *orig_timeout);
209#endif
210
211/* CPU services.
212 *
213 * CPUs represent devices that can execute software threads. A single
214 * chip that contains multiple cores or strands is represented as
215 * multiple CPUs with unique CPU identifiers. CPUs are exported to
216 * OBP via the machine description (and to the OS via the OBP device
217 * tree). CPUs are always in one of three states: stopped, running,
218 * or error.
219 *
220 * A CPU ID is a pre-assigned 16-bit value that uniquely identifies a
221 * CPU within a logical domain. Operations that are to be performed
222 * on multiple CPUs specify them via a CPU list. A CPU list is an
223 * array in real memory, of which each 16-bit word is a CPU ID. CPU
224 * lists are passed through the API as two arguments. The first is
225 * the number of entries (16-bit words) in the CPU list, and the
226 * second is the (real address) pointer to the CPU ID list.
227 */
228
229/* cpu_start()
230 * TRAP: HV_FAST_TRAP
231 * FUNCTION: HV_FAST_CPU_START
232 * ARG0: CPU ID
233 * ARG1: PC
234 * ARG2: RTBA
235 * ARG3: target ARG0
236 * RET0: status
237 * ERRORS: ENOCPU Invalid CPU ID
238 * EINVAL Target CPU ID is not in the stopped state
239 * ENORADDR Invalid PC or RTBA real address
240 * EBADALIGN Unaligned PC or unaligned RTBA
241 * EWOULDBLOCK Starting resources are not available
242 *
243 * Start CPU with given CPU ID with PC in %pc and with a real trap
244 * base address value of RTBA. The indicated CPU must be in the
245 * stopped state. The supplied RTBA must be aligned on a 256 byte
246 * boundary. On successful completion, the specified CPU will be in
247 * the running state and will be supplied with "target ARG0" in %o0
248 * and RTBA in %tba.
249 */
250#define HV_FAST_CPU_START 0x10
251
252#ifndef __ASSEMBLY__
253unsigned long sun4v_cpu_start(unsigned long cpuid,
254 unsigned long pc,
255 unsigned long rtba,
256 unsigned long arg0);
257#endif
258
259/* cpu_stop()
260 * TRAP: HV_FAST_TRAP
261 * FUNCTION: HV_FAST_CPU_STOP
262 * ARG0: CPU ID
263 * RET0: status
264 * ERRORS: ENOCPU Invalid CPU ID
265 * EINVAL Target CPU ID is the current cpu
266 * EINVAL Target CPU ID is not in the running state
267 * EWOULDBLOCK Stopping resources are not available
268 * ENOTSUPPORTED Not supported on this platform
269 *
270 * The specified CPU is stopped. The indicated CPU must be in the
271 * running state. On completion, it will be in the stopped state. It
272 * is not legal to stop the current CPU.
273 *
274 * Note: As this service cannot be used to stop the current cpu, this service
275 * may not be used to stop the last running CPU in a domain. To stop
276 * and exit a running domain, a guest must use the mach_exit() service.
277 */
278#define HV_FAST_CPU_STOP 0x11
279
280#ifndef __ASSEMBLY__
281unsigned long sun4v_cpu_stop(unsigned long cpuid);
282#endif
283
284/* cpu_yield()
285 * TRAP: HV_FAST_TRAP
286 * FUNCTION: HV_FAST_CPU_YIELD
287 * RET0: status
288 * ERRORS: No possible error.
289 *
290 * Suspend execution on the current CPU. Execution will resume when
291 * an interrupt (device, %stick_compare, or cross-call) is targeted to
292 * the CPU. On some CPUs, this API may be used by the hypervisor to
293 * save power by disabling hardware strands.
294 */
295#define HV_FAST_CPU_YIELD 0x12
296
297#ifndef __ASSEMBLY__
298unsigned long sun4v_cpu_yield(void);
299#endif
300
301/* cpu_qconf()
302 * TRAP: HV_FAST_TRAP
303 * FUNCTION: HV_FAST_CPU_QCONF
304 * ARG0: queue
305 * ARG1: base real address
306 * ARG2: number of entries
307 * RET0: status
308 * ERRORS: ENORADDR Invalid base real address
309 * EINVAL Invalid queue or number of entries is less
310 * than 2 or too large.
311 * EBADALIGN Base real address is not correctly aligned
312 * for size.
313 *
314 * Configure the given queue to be placed at the given base real
315 * address, with the given number of entries. The number of entries
316 * must be a power of 2. The base real address must be aligned
317 * exactly to match the queue size. Each queue entry is 64 bytes
318 * long, so for example a 32 entry queue must be aligned on a 2048
319 * byte real address boundary.
320 *
321 * The specified queue is unconfigured if the number of entries is given
322 * as zero.
323 *
324 * For the current version of this API service, the argument queue is defined
325 * as follows:
326 *
327 * queue description
328 * ----- -------------------------
329 * 0x3c cpu mondo queue
330 * 0x3d device mondo queue
331 * 0x3e resumable error queue
332 * 0x3f non-resumable error queue
333 *
334 * Note: The maximum number of entries for each queue for a specific cpu may
335 * be determined from the machine description.
336 */
337#define HV_FAST_CPU_QCONF 0x14
338#define HV_CPU_QUEUE_CPU_MONDO 0x3c
339#define HV_CPU_QUEUE_DEVICE_MONDO 0x3d
340#define HV_CPU_QUEUE_RES_ERROR 0x3e
341#define HV_CPU_QUEUE_NONRES_ERROR 0x3f
342
343#ifndef __ASSEMBLY__
344unsigned long sun4v_cpu_qconf(unsigned long type,
345 unsigned long queue_paddr,
346 unsigned long num_queue_entries);
347#endif
348
349/* cpu_qinfo()
350 * TRAP: HV_FAST_TRAP
351 * FUNCTION: HV_FAST_CPU_QINFO
352 * ARG0: queue
353 * RET0: status
354 * RET1: base real address
355 * RET1: number of entries
356 * ERRORS: EINVAL Invalid queue
357 *
358 * Return the configuration info for the given queue. The base real
359 * address and number of entries of the defined queue are returned.
360 * The queue argument values are the same as for cpu_qconf() above.
361 *
362 * If the specified queue is a valid queue number, but no queue has
363 * been defined, the number of entries will be set to zero and the
364 * base real address returned is undefined.
365 */
366#define HV_FAST_CPU_QINFO 0x15
367
368/* cpu_mondo_send()
369 * TRAP: HV_FAST_TRAP
370 * FUNCTION: HV_FAST_CPU_MONDO_SEND
371 * ARG0-1: CPU list
372 * ARG2: data real address
373 * RET0: status
374 * ERRORS: EBADALIGN Mondo data is not 64-byte aligned or CPU list
375 * is not 2-byte aligned.
376 * ENORADDR Invalid data mondo address, or invalid cpu list
377 * address.
378 * ENOCPU Invalid cpu in CPU list
379 * EWOULDBLOCK Some or all of the listed CPUs did not receive
380 * the mondo
381 * ECPUERROR One or more of the listed CPUs are in error
382 * state, use HV_FAST_CPU_STATE to see which ones
383 * EINVAL CPU list includes caller's CPU ID
384 *
385 * Send a mondo interrupt to the CPUs in the given CPU list with the
386 * 64-bytes at the given data real address. The data must be 64-byte
387 * aligned. The mondo data will be delivered to the cpu_mondo queues
388 * of the recipient CPUs.
389 *
390 * In all cases, error or not, the CPUs in the CPU list to which the
391 * mondo has been successfully delivered will be indicated by having
392 * their entry in CPU list updated with the value 0xffff.
393 */
394#define HV_FAST_CPU_MONDO_SEND 0x42
395
396#ifndef __ASSEMBLY__
397unsigned long sun4v_cpu_mondo_send(unsigned long cpu_count,
398 unsigned long cpu_list_pa,
399 unsigned long mondo_block_pa);
400#endif
401
402/* cpu_myid()
403 * TRAP: HV_FAST_TRAP
404 * FUNCTION: HV_FAST_CPU_MYID
405 * RET0: status
406 * RET1: CPU ID
407 * ERRORS: No errors defined.
408 *
409 * Return the hypervisor ID handle for the current CPU. Use by a
410 * virtual CPU to discover it's own identity.
411 */
412#define HV_FAST_CPU_MYID 0x16
413
414/* cpu_state()
415 * TRAP: HV_FAST_TRAP
416 * FUNCTION: HV_FAST_CPU_STATE
417 * ARG0: CPU ID
418 * RET0: status
419 * RET1: state
420 * ERRORS: ENOCPU Invalid CPU ID
421 *
422 * Retrieve the current state of the CPU with the given CPU ID.
423 */
424#define HV_FAST_CPU_STATE 0x17
425#define HV_CPU_STATE_STOPPED 0x01
426#define HV_CPU_STATE_RUNNING 0x02
427#define HV_CPU_STATE_ERROR 0x03
428
429#ifndef __ASSEMBLY__
430long sun4v_cpu_state(unsigned long cpuid);
431#endif
432
433/* cpu_set_rtba()
434 * TRAP: HV_FAST_TRAP
435 * FUNCTION: HV_FAST_CPU_SET_RTBA
436 * ARG0: RTBA
437 * RET0: status
438 * RET1: previous RTBA
439 * ERRORS: ENORADDR Invalid RTBA real address
440 * EBADALIGN RTBA is incorrectly aligned for a trap table
441 *
442 * Set the real trap base address of the local cpu to the given RTBA.
443 * The supplied RTBA must be aligned on a 256 byte boundary. Upon
444 * success the previous value of the RTBA is returned in RET1.
445 *
446 * Note: This service does not affect %tba
447 */
448#define HV_FAST_CPU_SET_RTBA 0x18
449
450/* cpu_set_rtba()
451 * TRAP: HV_FAST_TRAP
452 * FUNCTION: HV_FAST_CPU_GET_RTBA
453 * RET0: status
454 * RET1: previous RTBA
455 * ERRORS: No possible error.
456 *
457 * Returns the current value of RTBA in RET1.
458 */
459#define HV_FAST_CPU_GET_RTBA 0x19
460
461/* MMU services.
462 *
463 * Layout of a TSB description for mmu_tsb_ctx{,non}0() calls.
464 */
465#ifndef __ASSEMBLY__
466struct hv_tsb_descr {
467 unsigned short pgsz_idx;
468 unsigned short assoc;
469 unsigned int num_ttes; /* in TTEs */
470 unsigned int ctx_idx;
471 unsigned int pgsz_mask;
472 unsigned long tsb_base;
473 unsigned long resv;
474};
475#endif
476#define HV_TSB_DESCR_PGSZ_IDX_OFFSET 0x00
477#define HV_TSB_DESCR_ASSOC_OFFSET 0x02
478#define HV_TSB_DESCR_NUM_TTES_OFFSET 0x04
479#define HV_TSB_DESCR_CTX_IDX_OFFSET 0x08
480#define HV_TSB_DESCR_PGSZ_MASK_OFFSET 0x0c
481#define HV_TSB_DESCR_TSB_BASE_OFFSET 0x10
482#define HV_TSB_DESCR_RESV_OFFSET 0x18
483
484/* Page size bitmask. */
485#define HV_PGSZ_MASK_8K (1 << 0)
486#define HV_PGSZ_MASK_64K (1 << 1)
487#define HV_PGSZ_MASK_512K (1 << 2)
488#define HV_PGSZ_MASK_4MB (1 << 3)
489#define HV_PGSZ_MASK_32MB (1 << 4)
490#define HV_PGSZ_MASK_256MB (1 << 5)
491#define HV_PGSZ_MASK_2GB (1 << 6)
492#define HV_PGSZ_MASK_16GB (1 << 7)
493
494/* Page size index. The value given in the TSB descriptor must correspond
495 * to the smallest page size specified in the pgsz_mask page size bitmask.
496 */
497#define HV_PGSZ_IDX_8K 0
498#define HV_PGSZ_IDX_64K 1
499#define HV_PGSZ_IDX_512K 2
500#define HV_PGSZ_IDX_4MB 3
501#define HV_PGSZ_IDX_32MB 4
502#define HV_PGSZ_IDX_256MB 5
503#define HV_PGSZ_IDX_2GB 6
504#define HV_PGSZ_IDX_16GB 7
505
506/* MMU fault status area.
507 *
508 * MMU related faults have their status and fault address information
509 * placed into a memory region made available by privileged code. Each
510 * virtual processor must make a mmu_fault_area_conf() call to tell the
511 * hypervisor where that processor's fault status should be stored.
512 *
513 * The fault status block is a multiple of 64-bytes and must be aligned
514 * on a 64-byte boundary.
515 */
516#ifndef __ASSEMBLY__
517struct hv_fault_status {
518 unsigned long i_fault_type;
519 unsigned long i_fault_addr;
520 unsigned long i_fault_ctx;
521 unsigned long i_reserved[5];
522 unsigned long d_fault_type;
523 unsigned long d_fault_addr;
524 unsigned long d_fault_ctx;
525 unsigned long d_reserved[5];
526};
527#endif
528#define HV_FAULT_I_TYPE_OFFSET 0x00
529#define HV_FAULT_I_ADDR_OFFSET 0x08
530#define HV_FAULT_I_CTX_OFFSET 0x10
531#define HV_FAULT_D_TYPE_OFFSET 0x40
532#define HV_FAULT_D_ADDR_OFFSET 0x48
533#define HV_FAULT_D_CTX_OFFSET 0x50
534
535#define HV_FAULT_TYPE_FAST_MISS 1
536#define HV_FAULT_TYPE_FAST_PROT 2
537#define HV_FAULT_TYPE_MMU_MISS 3
538#define HV_FAULT_TYPE_INV_RA 4
539#define HV_FAULT_TYPE_PRIV_VIOL 5
540#define HV_FAULT_TYPE_PROT_VIOL 6
541#define HV_FAULT_TYPE_NFO 7
542#define HV_FAULT_TYPE_NFO_SEFF 8
543#define HV_FAULT_TYPE_INV_VA 9
544#define HV_FAULT_TYPE_INV_ASI 10
545#define HV_FAULT_TYPE_NC_ATOMIC 11
546#define HV_FAULT_TYPE_PRIV_ACT 12
547#define HV_FAULT_TYPE_RESV1 13
548#define HV_FAULT_TYPE_UNALIGNED 14
549#define HV_FAULT_TYPE_INV_PGSZ 15
550/* Values 16 --> -2 are reserved. */
551#define HV_FAULT_TYPE_MULTIPLE -1
552
553/* Flags argument for mmu_{map,unmap}_addr(), mmu_demap_{page,context,all}(),
554 * and mmu_{map,unmap}_perm_addr().
555 */
556#define HV_MMU_DMMU 0x01
557#define HV_MMU_IMMU 0x02
558#define HV_MMU_ALL (HV_MMU_DMMU | HV_MMU_IMMU)
559
560/* mmu_map_addr()
561 * TRAP: HV_MMU_MAP_ADDR_TRAP
562 * ARG0: virtual address
563 * ARG1: mmu context
564 * ARG2: TTE
565 * ARG3: flags (HV_MMU_{IMMU,DMMU})
566 * ERRORS: EINVAL Invalid virtual address, mmu context, or flags
567 * EBADPGSZ Invalid page size value
568 * ENORADDR Invalid real address in TTE
569 *
570 * Create a non-permanent mapping using the given TTE, virtual
571 * address, and mmu context. The flags argument determines which
572 * (data, or instruction, or both) TLB the mapping gets loaded into.
573 *
574 * The behavior is undefined if the valid bit is clear in the TTE.
575 *
576 * Note: This API call is for privileged code to specify temporary translation
577 * mappings without the need to create and manage a TSB.
578 */
579
580/* mmu_unmap_addr()
581 * TRAP: HV_MMU_UNMAP_ADDR_TRAP
582 * ARG0: virtual address
583 * ARG1: mmu context
584 * ARG2: flags (HV_MMU_{IMMU,DMMU})
585 * ERRORS: EINVAL Invalid virtual address, mmu context, or flags
586 *
587 * Demaps the given virtual address in the given mmu context on this
588 * CPU. This function is intended to be used to demap pages mapped
589 * with mmu_map_addr. This service is equivalent to invoking
590 * mmu_demap_page() with only the current CPU in the CPU list. The
591 * flags argument determines which (data, or instruction, or both) TLB
592 * the mapping gets unmapped from.
593 *
594 * Attempting to perform an unmap operation for a previously defined
595 * permanent mapping will have undefined results.
596 */
597
598/* mmu_tsb_ctx0()
599 * TRAP: HV_FAST_TRAP
600 * FUNCTION: HV_FAST_MMU_TSB_CTX0
601 * ARG0: number of TSB descriptions
602 * ARG1: TSB descriptions pointer
603 * RET0: status
604 * ERRORS: ENORADDR Invalid TSB descriptions pointer or
605 * TSB base within a descriptor
606 * EBADALIGN TSB descriptions pointer is not aligned
607 * to an 8-byte boundary, or TSB base
608 * within a descriptor is not aligned for
609 * the given TSB size
610 * EBADPGSZ Invalid page size in a TSB descriptor
611 * EBADTSB Invalid associativity or size in a TSB
612 * descriptor
613 * EINVAL Invalid number of TSB descriptions, or
614 * invalid context index in a TSB
615 * descriptor, or index page size not
616 * equal to smallest page size in page
617 * size bitmask field.
618 *
619 * Configures the TSBs for the current CPU for virtual addresses with
620 * context zero. The TSB descriptions pointer is a pointer to an
621 * array of the given number of TSB descriptions.
622 *
623 * Note: The maximum number of TSBs available to a virtual CPU is given by the
624 * mmu-max-#tsbs property of the cpu's corresponding "cpu" node in the
625 * machine description.
626 */
627#define HV_FAST_MMU_TSB_CTX0 0x20
628
629#ifndef __ASSEMBLY__
630unsigned long sun4v_mmu_tsb_ctx0(unsigned long num_descriptions,
631 unsigned long tsb_desc_ra);
632#endif
633
634/* mmu_tsb_ctxnon0()
635 * TRAP: HV_FAST_TRAP
636 * FUNCTION: HV_FAST_MMU_TSB_CTXNON0
637 * ARG0: number of TSB descriptions
638 * ARG1: TSB descriptions pointer
639 * RET0: status
640 * ERRORS: Same as for mmu_tsb_ctx0() above.
641 *
642 * Configures the TSBs for the current CPU for virtual addresses with
643 * non-zero contexts. The TSB descriptions pointer is a pointer to an
644 * array of the given number of TSB descriptions.
645 *
646 * Note: A maximum of 16 TSBs may be specified in the TSB description list.
647 */
648#define HV_FAST_MMU_TSB_CTXNON0 0x21
649
650/* mmu_demap_page()
651 * TRAP: HV_FAST_TRAP
652 * FUNCTION: HV_FAST_MMU_DEMAP_PAGE
653 * ARG0: reserved, must be zero
654 * ARG1: reserved, must be zero
655 * ARG2: virtual address
656 * ARG3: mmu context
657 * ARG4: flags (HV_MMU_{IMMU,DMMU})
658 * RET0: status
659 * ERRORS: EINVAL Invalid virtual address, context, or
660 * flags value
661 * ENOTSUPPORTED ARG0 or ARG1 is non-zero
662 *
663 * Demaps any page mapping of the given virtual address in the given
664 * mmu context for the current virtual CPU. Any virtually tagged
665 * caches are guaranteed to be kept consistent. The flags argument
666 * determines which TLB (instruction, or data, or both) participate in
667 * the operation.
668 *
669 * ARG0 and ARG1 are both reserved and must be set to zero.
670 */
671#define HV_FAST_MMU_DEMAP_PAGE 0x22
672
673/* mmu_demap_ctx()
674 * TRAP: HV_FAST_TRAP
675 * FUNCTION: HV_FAST_MMU_DEMAP_CTX
676 * ARG0: reserved, must be zero
677 * ARG1: reserved, must be zero
678 * ARG2: mmu context
679 * ARG3: flags (HV_MMU_{IMMU,DMMU})
680 * RET0: status
681 * ERRORS: EINVAL Invalid context or flags value
682 * ENOTSUPPORTED ARG0 or ARG1 is non-zero
683 *
684 * Demaps all non-permanent virtual page mappings previously specified
685 * for the given context for the current virtual CPU. Any virtual
686 * tagged caches are guaranteed to be kept consistent. The flags
687 * argument determines which TLB (instruction, or data, or both)
688 * participate in the operation.
689 *
690 * ARG0 and ARG1 are both reserved and must be set to zero.
691 */
692#define HV_FAST_MMU_DEMAP_CTX 0x23
693
694/* mmu_demap_all()
695 * TRAP: HV_FAST_TRAP
696 * FUNCTION: HV_FAST_MMU_DEMAP_ALL
697 * ARG0: reserved, must be zero
698 * ARG1: reserved, must be zero
699 * ARG2: flags (HV_MMU_{IMMU,DMMU})
700 * RET0: status
701 * ERRORS: EINVAL Invalid flags value
702 * ENOTSUPPORTED ARG0 or ARG1 is non-zero
703 *
704 * Demaps all non-permanent virtual page mappings previously specified
705 * for the current virtual CPU. Any virtual tagged caches are
706 * guaranteed to be kept consistent. The flags argument determines
707 * which TLB (instruction, or data, or both) participate in the
708 * operation.
709 *
710 * ARG0 and ARG1 are both reserved and must be set to zero.
711 */
712#define HV_FAST_MMU_DEMAP_ALL 0x24
713
714#ifndef __ASSEMBLY__
715void sun4v_mmu_demap_all(void);
716#endif
717
718/* mmu_map_perm_addr()
719 * TRAP: HV_FAST_TRAP
720 * FUNCTION: HV_FAST_MMU_MAP_PERM_ADDR
721 * ARG0: virtual address
722 * ARG1: reserved, must be zero
723 * ARG2: TTE
724 * ARG3: flags (HV_MMU_{IMMU,DMMU})
725 * RET0: status
726 * ERRORS: EINVAL Invalid virtual address or flags value
727 * EBADPGSZ Invalid page size value
728 * ENORADDR Invalid real address in TTE
729 * ETOOMANY Too many mappings (max of 8 reached)
730 *
731 * Create a permanent mapping using the given TTE and virtual address
732 * for context 0 on the calling virtual CPU. A maximum of 8 such
733 * permanent mappings may be specified by privileged code. Mappings
734 * may be removed with mmu_unmap_perm_addr().
735 *
736 * The behavior is undefined if a TTE with the valid bit clear is given.
737 *
738 * Note: This call is used to specify address space mappings for which
739 * privileged code does not expect to receive misses. For example,
740 * this mechanism can be used to map kernel nucleus code and data.
741 */
742#define HV_FAST_MMU_MAP_PERM_ADDR 0x25
743
744#ifndef __ASSEMBLY__
745unsigned long sun4v_mmu_map_perm_addr(unsigned long vaddr,
746 unsigned long set_to_zero,
747 unsigned long tte,
748 unsigned long flags);
749#endif
750
751/* mmu_fault_area_conf()
752 * TRAP: HV_FAST_TRAP
753 * FUNCTION: HV_FAST_MMU_FAULT_AREA_CONF
754 * ARG0: real address
755 * RET0: status
756 * RET1: previous mmu fault area real address
757 * ERRORS: ENORADDR Invalid real address
758 * EBADALIGN Invalid alignment for fault area
759 *
760 * Configure the MMU fault status area for the calling CPU. A 64-byte
761 * aligned real address specifies where MMU fault status information
762 * is placed. The return value is the previously specified area, or 0
763 * for the first invocation. Specifying a fault area at real address
764 * 0 is not allowed.
765 */
766#define HV_FAST_MMU_FAULT_AREA_CONF 0x26
767
768/* mmu_enable()
769 * TRAP: HV_FAST_TRAP
770 * FUNCTION: HV_FAST_MMU_ENABLE
771 * ARG0: enable flag
772 * ARG1: return target address
773 * RET0: status
774 * ERRORS: ENORADDR Invalid real address when disabling
775 * translation.
776 * EBADALIGN The return target address is not
777 * aligned to an instruction.
778 * EINVAL The enable flag request the current
779 * operating mode (e.g. disable if already
780 * disabled)
781 *
782 * Enable or disable virtual address translation for the calling CPU
783 * within the virtual machine domain. If the enable flag is zero,
784 * translation is disabled, any non-zero value will enable
785 * translation.
786 *
787 * When this function returns, the newly selected translation mode
788 * will be active. If the mmu is being enabled, then the return
789 * target address is a virtual address else it is a real address.
790 *
791 * Upon successful completion, control will be returned to the given
792 * return target address (ie. the cpu will jump to that address). On
793 * failure, the previous mmu mode remains and the trap simply returns
794 * as normal with the appropriate error code in RET0.
795 */
796#define HV_FAST_MMU_ENABLE 0x27
797
798/* mmu_unmap_perm_addr()
799 * TRAP: HV_FAST_TRAP
800 * FUNCTION: HV_FAST_MMU_UNMAP_PERM_ADDR
801 * ARG0: virtual address
802 * ARG1: reserved, must be zero
803 * ARG2: flags (HV_MMU_{IMMU,DMMU})
804 * RET0: status
805 * ERRORS: EINVAL Invalid virtual address or flags value
806 * ENOMAP Specified mapping was not found
807 *
808 * Demaps any permanent page mapping (established via
809 * mmu_map_perm_addr()) at the given virtual address for context 0 on
810 * the current virtual CPU. Any virtual tagged caches are guaranteed
811 * to be kept consistent.
812 */
813#define HV_FAST_MMU_UNMAP_PERM_ADDR 0x28
814
815/* mmu_tsb_ctx0_info()
816 * TRAP: HV_FAST_TRAP
817 * FUNCTION: HV_FAST_MMU_TSB_CTX0_INFO
818 * ARG0: max TSBs
819 * ARG1: buffer pointer
820 * RET0: status
821 * RET1: number of TSBs
822 * ERRORS: EINVAL Supplied buffer is too small
823 * EBADALIGN The buffer pointer is badly aligned
824 * ENORADDR Invalid real address for buffer pointer
825 *
826 * Return the TSB configuration as previous defined by mmu_tsb_ctx0()
827 * into the provided buffer. The size of the buffer is given in ARG1
828 * in terms of the number of TSB description entries.
829 *
830 * Upon return, RET1 always contains the number of TSB descriptions
831 * previously configured. If zero TSBs were configured, EOK is
832 * returned with RET1 containing 0.
833 */
834#define HV_FAST_MMU_TSB_CTX0_INFO 0x29
835
836/* mmu_tsb_ctxnon0_info()
837 * TRAP: HV_FAST_TRAP
838 * FUNCTION: HV_FAST_MMU_TSB_CTXNON0_INFO
839 * ARG0: max TSBs
840 * ARG1: buffer pointer
841 * RET0: status
842 * RET1: number of TSBs
843 * ERRORS: EINVAL Supplied buffer is too small
844 * EBADALIGN The buffer pointer is badly aligned
845 * ENORADDR Invalid real address for buffer pointer
846 *
847 * Return the TSB configuration as previous defined by
848 * mmu_tsb_ctxnon0() into the provided buffer. The size of the buffer
849 * is given in ARG1 in terms of the number of TSB description entries.
850 *
851 * Upon return, RET1 always contains the number of TSB descriptions
852 * previously configured. If zero TSBs were configured, EOK is
853 * returned with RET1 containing 0.
854 */
855#define HV_FAST_MMU_TSB_CTXNON0_INFO 0x2a
856
857/* mmu_fault_area_info()
858 * TRAP: HV_FAST_TRAP
859 * FUNCTION: HV_FAST_MMU_FAULT_AREA_INFO
860 * RET0: status
861 * RET1: fault area real address
862 * ERRORS: No errors defined.
863 *
864 * Return the currently defined MMU fault status area for the current
865 * CPU. The real address of the fault status area is returned in
866 * RET1, or 0 is returned in RET1 if no fault status area is defined.
867 *
868 * Note: mmu_fault_area_conf() may be called with the return value (RET1)
869 * from this service if there is a need to save and restore the fault
870 * area for a cpu.
871 */
872#define HV_FAST_MMU_FAULT_AREA_INFO 0x2b
873
874/* Cache and Memory services. */
875
876/* mem_scrub()
877 * TRAP: HV_FAST_TRAP
878 * FUNCTION: HV_FAST_MEM_SCRUB
879 * ARG0: real address
880 * ARG1: length
881 * RET0: status
882 * RET1: length scrubbed
883 * ERRORS: ENORADDR Invalid real address
884 * EBADALIGN Start address or length are not correctly
885 * aligned
886 * EINVAL Length is zero
887 *
888 * Zero the memory contents in the range real address to real address
889 * plus length minus 1. Also, valid ECC will be generated for that
890 * memory address range. Scrubbing is started at the given real
891 * address, but may not scrub the entire given length. The actual
892 * length scrubbed will be returned in RET1.
893 *
894 * The real address and length must be aligned on an 8K boundary, or
895 * contain the start address and length from a sun4v error report.
896 *
897 * Note: There are two uses for this function. The first use is to block clear
898 * and initialize memory and the second is to scrub an u ncorrectable
899 * error reported via a resumable or non-resumable trap. The second
900 * use requires the arguments to be equal to the real address and length
901 * provided in a sun4v memory error report.
902 */
903#define HV_FAST_MEM_SCRUB 0x31
904
905/* mem_sync()
906 * TRAP: HV_FAST_TRAP
907 * FUNCTION: HV_FAST_MEM_SYNC
908 * ARG0: real address
909 * ARG1: length
910 * RET0: status
911 * RET1: length synced
912 * ERRORS: ENORADDR Invalid real address
913 * EBADALIGN Start address or length are not correctly
914 * aligned
915 * EINVAL Length is zero
916 *
917 * Force the next access within the real address to real address plus
918 * length minus 1 to be fetches from main system memory. Less than
919 * the given length may be synced, the actual amount synced is
920 * returned in RET1. The real address and length must be aligned on
921 * an 8K boundary.
922 */
923#define HV_FAST_MEM_SYNC 0x32
924
925/* Time of day services.
926 *
927 * The hypervisor maintains the time of day on a per-domain basis.
928 * Changing the time of day in one domain does not affect the time of
929 * day on any other domain.
930 *
931 * Time is described by a single unsigned 64-bit word which is the
932 * number of seconds since the UNIX Epoch (00:00:00 UTC, January 1,
933 * 1970).
934 */
935
936/* tod_get()
937 * TRAP: HV_FAST_TRAP
938 * FUNCTION: HV_FAST_TOD_GET
939 * RET0: status
940 * RET1: TOD
941 * ERRORS: EWOULDBLOCK TOD resource is temporarily unavailable
942 * ENOTSUPPORTED If TOD not supported on this platform
943 *
944 * Return the current time of day. May block if TOD access is
945 * temporarily not possible.
946 */
947#define HV_FAST_TOD_GET 0x50
948
949#ifndef __ASSEMBLY__
950unsigned long sun4v_tod_get(unsigned long *time);
951#endif
952
953/* tod_set()
954 * TRAP: HV_FAST_TRAP
955 * FUNCTION: HV_FAST_TOD_SET
956 * ARG0: TOD
957 * RET0: status
958 * ERRORS: EWOULDBLOCK TOD resource is temporarily unavailable
959 * ENOTSUPPORTED If TOD not supported on this platform
960 *
961 * The current time of day is set to the value specified in ARG0. May
962 * block if TOD access is temporarily not possible.
963 */
964#define HV_FAST_TOD_SET 0x51
965
966#ifndef __ASSEMBLY__
967unsigned long sun4v_tod_set(unsigned long time);
968#endif
969
970/* Console services */
971
972/* con_getchar()
973 * TRAP: HV_FAST_TRAP
974 * FUNCTION: HV_FAST_CONS_GETCHAR
975 * RET0: status
976 * RET1: character
977 * ERRORS: EWOULDBLOCK No character available.
978 *
979 * Returns a character from the console device. If no character is
980 * available then an EWOULDBLOCK error is returned. If a character is
981 * available, then the returned status is EOK and the character value
982 * is in RET1.
983 *
984 * A virtual BREAK is represented by the 64-bit value -1.
985 *
986 * A virtual HUP signal is represented by the 64-bit value -2.
987 */
988#define HV_FAST_CONS_GETCHAR 0x60
989
990/* con_putchar()
991 * TRAP: HV_FAST_TRAP
992 * FUNCTION: HV_FAST_CONS_PUTCHAR
993 * ARG0: character
994 * RET0: status
995 * ERRORS: EINVAL Illegal character
996 * EWOULDBLOCK Output buffer currently full, would block
997 *
998 * Send a character to the console device. Only character values
999 * between 0 and 255 may be used. Values outside this range are
1000 * invalid except for the 64-bit value -1 which is used to send a
1001 * virtual BREAK.
1002 */
1003#define HV_FAST_CONS_PUTCHAR 0x61
1004
1005/* con_read()
1006 * TRAP: HV_FAST_TRAP
1007 * FUNCTION: HV_FAST_CONS_READ
1008 * ARG0: buffer real address
1009 * ARG1: buffer size in bytes
1010 * RET0: status
1011 * RET1: bytes read or BREAK or HUP
1012 * ERRORS: EWOULDBLOCK No character available.
1013 *
1014 * Reads characters into a buffer from the console device. If no
1015 * character is available then an EWOULDBLOCK error is returned.
1016 * If a character is available, then the returned status is EOK
1017 * and the number of bytes read into the given buffer is provided
1018 * in RET1.
1019 *
1020 * A virtual BREAK is represented by the 64-bit RET1 value -1.
1021 *
1022 * A virtual HUP signal is represented by the 64-bit RET1 value -2.
1023 *
1024 * If BREAK or HUP are indicated, no bytes were read into buffer.
1025 */
1026#define HV_FAST_CONS_READ 0x62
1027
1028/* con_write()
1029 * TRAP: HV_FAST_TRAP
1030 * FUNCTION: HV_FAST_CONS_WRITE
1031 * ARG0: buffer real address
1032 * ARG1: buffer size in bytes
1033 * RET0: status
1034 * RET1: bytes written
1035 * ERRORS: EWOULDBLOCK Output buffer currently full, would block
1036 *
1037 * Send a characters in buffer to the console device. Breaks must be
1038 * sent using con_putchar().
1039 */
1040#define HV_FAST_CONS_WRITE 0x63
1041
1042#ifndef __ASSEMBLY__
1043long sun4v_con_getchar(long *status);
1044long sun4v_con_putchar(long c);
1045long sun4v_con_read(unsigned long buffer,
1046 unsigned long size,
1047 unsigned long *bytes_read);
1048unsigned long sun4v_con_write(unsigned long buffer,
1049 unsigned long size,
1050 unsigned long *bytes_written);
1051#endif
1052
1053/* mach_set_soft_state()
1054 * TRAP: HV_FAST_TRAP
1055 * FUNCTION: HV_FAST_MACH_SET_SOFT_STATE
1056 * ARG0: software state
1057 * ARG1: software state description pointer
1058 * RET0: status
1059 * ERRORS: EINVAL software state not valid or software state
1060 * description is not NULL terminated
1061 * ENORADDR software state description pointer is not a
1062 * valid real address
1063 * EBADALIGNED software state description is not correctly
1064 * aligned
1065 *
1066 * This allows the guest to report it's soft state to the hypervisor. There
1067 * are two primary components to this state. The first part states whether
1068 * the guest software is running or not. The second containts optional
1069 * details specific to the software.
1070 *
1071 * The software state argument is defined below in HV_SOFT_STATE_*, and
1072 * indicates whether the guest is operating normally or in a transitional
1073 * state.
1074 *
1075 * The software state description argument is a real address of a data buffer
1076 * of size 32-bytes aligned on a 32-byte boundary. It is treated as a NULL
1077 * terminated 7-bit ASCII string of up to 31 characters not including the
1078 * NULL termination.
1079 */
1080#define HV_FAST_MACH_SET_SOFT_STATE 0x70
1081#define HV_SOFT_STATE_NORMAL 0x01
1082#define HV_SOFT_STATE_TRANSITION 0x02
1083
1084#ifndef __ASSEMBLY__
1085unsigned long sun4v_mach_set_soft_state(unsigned long soft_state,
1086 unsigned long msg_string_ra);
1087#endif
1088
1089/* mach_get_soft_state()
1090 * TRAP: HV_FAST_TRAP
1091 * FUNCTION: HV_FAST_MACH_GET_SOFT_STATE
1092 * ARG0: software state description pointer
1093 * RET0: status
1094 * RET1: software state
1095 * ERRORS: ENORADDR software state description pointer is not a
1096 * valid real address
1097 * EBADALIGNED software state description is not correctly
1098 * aligned
1099 *
1100 * Retrieve the current value of the guest's software state. The rules
1101 * for the software state pointer are the same as for mach_set_soft_state()
1102 * above.
1103 */
1104#define HV_FAST_MACH_GET_SOFT_STATE 0x71
1105
1106/* svc_send()
1107 * TRAP: HV_FAST_TRAP
1108 * FUNCTION: HV_FAST_SVC_SEND
1109 * ARG0: service ID
1110 * ARG1: buffer real address
1111 * ARG2: buffer size
1112 * RET0: STATUS
1113 * RET1: sent_bytes
1114 *
1115 * Be careful, all output registers are clobbered by this operation,
1116 * so for example it is not possible to save away a value in %o4
1117 * across the trap.
1118 */
1119#define HV_FAST_SVC_SEND 0x80
1120
1121/* svc_recv()
1122 * TRAP: HV_FAST_TRAP
1123 * FUNCTION: HV_FAST_SVC_RECV
1124 * ARG0: service ID
1125 * ARG1: buffer real address
1126 * ARG2: buffer size
1127 * RET0: STATUS
1128 * RET1: recv_bytes
1129 *
1130 * Be careful, all output registers are clobbered by this operation,
1131 * so for example it is not possible to save away a value in %o4
1132 * across the trap.
1133 */
1134#define HV_FAST_SVC_RECV 0x81
1135
1136/* svc_getstatus()
1137 * TRAP: HV_FAST_TRAP
1138 * FUNCTION: HV_FAST_SVC_GETSTATUS
1139 * ARG0: service ID
1140 * RET0: STATUS
1141 * RET1: status bits
1142 */
1143#define HV_FAST_SVC_GETSTATUS 0x82
1144
1145/* svc_setstatus()
1146 * TRAP: HV_FAST_TRAP
1147 * FUNCTION: HV_FAST_SVC_SETSTATUS
1148 * ARG0: service ID
1149 * ARG1: bits to set
1150 * RET0: STATUS
1151 */
1152#define HV_FAST_SVC_SETSTATUS 0x83
1153
1154/* svc_clrstatus()
1155 * TRAP: HV_FAST_TRAP
1156 * FUNCTION: HV_FAST_SVC_CLRSTATUS
1157 * ARG0: service ID
1158 * ARG1: bits to clear
1159 * RET0: STATUS
1160 */
1161#define HV_FAST_SVC_CLRSTATUS 0x84
1162
1163#ifndef __ASSEMBLY__
1164unsigned long sun4v_svc_send(unsigned long svc_id,
1165 unsigned long buffer,
1166 unsigned long buffer_size,
1167 unsigned long *sent_bytes);
1168unsigned long sun4v_svc_recv(unsigned long svc_id,
1169 unsigned long buffer,
1170 unsigned long buffer_size,
1171 unsigned long *recv_bytes);
1172unsigned long sun4v_svc_getstatus(unsigned long svc_id,
1173 unsigned long *status_bits);
1174unsigned long sun4v_svc_setstatus(unsigned long svc_id,
1175 unsigned long status_bits);
1176unsigned long sun4v_svc_clrstatus(unsigned long svc_id,
1177 unsigned long status_bits);
1178#endif
1179
1180/* Trap trace services.
1181 *
1182 * The hypervisor provides a trap tracing capability for privileged
1183 * code running on each virtual CPU. Privileged code provides a
1184 * round-robin trap trace queue within which the hypervisor writes
1185 * 64-byte entries detailing hyperprivileged traps taken n behalf of
1186 * privileged code. This is provided as a debugging capability for
1187 * privileged code.
1188 *
1189 * The trap trace control structure is 64-bytes long and placed at the
1190 * start (offset 0) of the trap trace buffer, and is described as
1191 * follows:
1192 */
1193#ifndef __ASSEMBLY__
1194struct hv_trap_trace_control {
1195 unsigned long head_offset;
1196 unsigned long tail_offset;
1197 unsigned long __reserved[0x30 / sizeof(unsigned long)];
1198};
1199#endif
1200#define HV_TRAP_TRACE_CTRL_HEAD_OFFSET 0x00
1201#define HV_TRAP_TRACE_CTRL_TAIL_OFFSET 0x08
1202
1203/* The head offset is the offset of the most recently completed entry
1204 * in the trap-trace buffer. The tail offset is the offset of the
1205 * next entry to be written. The control structure is owned and
1206 * modified by the hypervisor. A guest may not modify the control
1207 * structure contents. Attempts to do so will result in undefined
1208 * behavior for the guest.
1209 *
1210 * Each trap trace buffer entry is laid out as follows:
1211 */
1212#ifndef __ASSEMBLY__
1213struct hv_trap_trace_entry {
1214 unsigned char type; /* Hypervisor or guest entry? */
1215 unsigned char hpstate; /* Hyper-privileged state */
1216 unsigned char tl; /* Trap level */
1217 unsigned char gl; /* Global register level */
1218 unsigned short tt; /* Trap type */
1219 unsigned short tag; /* Extended trap identifier */
1220 unsigned long tstate; /* Trap state */
1221 unsigned long tick; /* Tick */
1222 unsigned long tpc; /* Trap PC */
1223 unsigned long f1; /* Entry specific */
1224 unsigned long f2; /* Entry specific */
1225 unsigned long f3; /* Entry specific */
1226 unsigned long f4; /* Entry specific */
1227};
1228#endif
1229#define HV_TRAP_TRACE_ENTRY_TYPE 0x00
1230#define HV_TRAP_TRACE_ENTRY_HPSTATE 0x01
1231#define HV_TRAP_TRACE_ENTRY_TL 0x02
1232#define HV_TRAP_TRACE_ENTRY_GL 0x03
1233#define HV_TRAP_TRACE_ENTRY_TT 0x04
1234#define HV_TRAP_TRACE_ENTRY_TAG 0x06
1235#define HV_TRAP_TRACE_ENTRY_TSTATE 0x08
1236#define HV_TRAP_TRACE_ENTRY_TICK 0x10
1237#define HV_TRAP_TRACE_ENTRY_TPC 0x18
1238#define HV_TRAP_TRACE_ENTRY_F1 0x20
1239#define HV_TRAP_TRACE_ENTRY_F2 0x28
1240#define HV_TRAP_TRACE_ENTRY_F3 0x30
1241#define HV_TRAP_TRACE_ENTRY_F4 0x38
1242
1243/* The type field is encoded as follows. */
1244#define HV_TRAP_TYPE_UNDEF 0x00 /* Entry content undefined */
1245#define HV_TRAP_TYPE_HV 0x01 /* Hypervisor trap entry */
1246#define HV_TRAP_TYPE_GUEST 0xff /* Added via ttrace_addentry() */
1247
1248/* ttrace_buf_conf()
1249 * TRAP: HV_FAST_TRAP
1250 * FUNCTION: HV_FAST_TTRACE_BUF_CONF
1251 * ARG0: real address
1252 * ARG1: number of entries
1253 * RET0: status
1254 * RET1: number of entries
1255 * ERRORS: ENORADDR Invalid real address
1256 * EINVAL Size is too small
1257 * EBADALIGN Real address not aligned on 64-byte boundary
1258 *
1259 * Requests hypervisor trap tracing and declares a virtual CPU's trap
1260 * trace buffer to the hypervisor. The real address supplies the real
1261 * base address of the trap trace queue and must be 64-byte aligned.
1262 * Specifying a value of 0 for the number of entries disables trap
1263 * tracing for the calling virtual CPU. The buffer allocated must be
1264 * sized for a power of two number of 64-byte trap trace entries plus
1265 * an initial 64-byte control structure.
1266 *
1267 * This may be invoked any number of times so that a virtual CPU may
1268 * relocate a trap trace buffer or create "snapshots" of information.
1269 *
1270 * If the real address is illegal or badly aligned, then trap tracing
1271 * is disabled and an error is returned.
1272 *
1273 * Upon failure with EINVAL, this service call returns in RET1 the
1274 * minimum number of buffer entries required. Upon other failures
1275 * RET1 is undefined.
1276 */
1277#define HV_FAST_TTRACE_BUF_CONF 0x90
1278
1279/* ttrace_buf_info()
1280 * TRAP: HV_FAST_TRAP
1281 * FUNCTION: HV_FAST_TTRACE_BUF_INFO
1282 * RET0: status
1283 * RET1: real address
1284 * RET2: size
1285 * ERRORS: None defined.
1286 *
1287 * Returns the size and location of the previously declared trap-trace
1288 * buffer. In the event that no buffer was previously defined, or the
1289 * buffer is disabled, this call will return a size of zero bytes.
1290 */
1291#define HV_FAST_TTRACE_BUF_INFO 0x91
1292
1293/* ttrace_enable()
1294 * TRAP: HV_FAST_TRAP
1295 * FUNCTION: HV_FAST_TTRACE_ENABLE
1296 * ARG0: enable
1297 * RET0: status
1298 * RET1: previous enable state
1299 * ERRORS: EINVAL No trap trace buffer currently defined
1300 *
1301 * Enable or disable trap tracing, and return the previous enabled
1302 * state in RET1. Future systems may define various flags for the
1303 * enable argument (ARG0), for the moment a guest should pass
1304 * "(uint64_t) -1" to enable, and "(uint64_t) 0" to disable all
1305 * tracing - which will ensure future compatibility.
1306 */
1307#define HV_FAST_TTRACE_ENABLE 0x92
1308
1309/* ttrace_freeze()
1310 * TRAP: HV_FAST_TRAP
1311 * FUNCTION: HV_FAST_TTRACE_FREEZE
1312 * ARG0: freeze
1313 * RET0: status
1314 * RET1: previous freeze state
1315 * ERRORS: EINVAL No trap trace buffer currently defined
1316 *
1317 * Freeze or unfreeze trap tracing, returning the previous freeze
1318 * state in RET1. A guest should pass a non-zero value to freeze and
1319 * a zero value to unfreeze all tracing. The returned previous state
1320 * is 0 for not frozen and 1 for frozen.
1321 */
1322#define HV_FAST_TTRACE_FREEZE 0x93
1323
1324/* ttrace_addentry()
1325 * TRAP: HV_TTRACE_ADDENTRY_TRAP
1326 * ARG0: tag (16-bits)
1327 * ARG1: data word 0
1328 * ARG2: data word 1
1329 * ARG3: data word 2
1330 * ARG4: data word 3
1331 * RET0: status
1332 * ERRORS: EINVAL No trap trace buffer currently defined
1333 *
1334 * Add an entry to the trap trace buffer. Upon return only ARG0/RET0
1335 * is modified - none of the other registers holding arguments are
1336 * volatile across this hypervisor service.
1337 */
1338
1339/* Core dump services.
1340 *
1341 * Since the hypervisor viraulizes and thus obscures a lot of the
1342 * physical machine layout and state, traditional OS crash dumps can
1343 * be difficult to diagnose especially when the problem is a
1344 * configuration error of some sort.
1345 *
1346 * The dump services provide an opaque buffer into which the
1347 * hypervisor can place it's internal state in order to assist in
1348 * debugging such situations. The contents are opaque and extremely
1349 * platform and hypervisor implementation specific. The guest, during
1350 * a core dump, requests that the hypervisor update any information in
1351 * the dump buffer in preparation to being dumped as part of the
1352 * domain's memory image.
1353 */
1354
1355/* dump_buf_update()
1356 * TRAP: HV_FAST_TRAP
1357 * FUNCTION: HV_FAST_DUMP_BUF_UPDATE
1358 * ARG0: real address
1359 * ARG1: size
1360 * RET0: status
1361 * RET1: required size of dump buffer
1362 * ERRORS: ENORADDR Invalid real address
1363 * EBADALIGN Real address is not aligned on a 64-byte
1364 * boundary
1365 * EINVAL Size is non-zero but less than minimum size
1366 * required
1367 * ENOTSUPPORTED Operation not supported on current logical
1368 * domain
1369 *
1370 * Declare a domain dump buffer to the hypervisor. The real address
1371 * provided for the domain dump buffer must be 64-byte aligned. The
1372 * size specifies the size of the dump buffer and may be larger than
1373 * the minimum size specified in the machine description. The
1374 * hypervisor will fill the dump buffer with opaque data.
1375 *
1376 * Note: A guest may elect to include dump buffer contents as part of a crash
1377 * dump to assist with debugging. This function may be called any number
1378 * of times so that a guest may relocate a dump buffer, or create
1379 * "snapshots" of any dump-buffer information. Each call to
1380 * dump_buf_update() atomically declares the new dump buffer to the
1381 * hypervisor.
1382 *
1383 * A specified size of 0 unconfigures the dump buffer. If the real
1384 * address is illegal or badly aligned, then any currently active dump
1385 * buffer is disabled and an error is returned.
1386 *
1387 * In the event that the call fails with EINVAL, RET1 contains the
1388 * minimum size requires by the hypervisor for a valid dump buffer.
1389 */
1390#define HV_FAST_DUMP_BUF_UPDATE 0x94
1391
1392/* dump_buf_info()
1393 * TRAP: HV_FAST_TRAP
1394 * FUNCTION: HV_FAST_DUMP_BUF_INFO
1395 * RET0: status
1396 * RET1: real address of current dump buffer
1397 * RET2: size of current dump buffer
1398 * ERRORS: No errors defined.
1399 *
1400 * Return the currently configures dump buffer description. A
1401 * returned size of 0 bytes indicates an undefined dump buffer. In
1402 * this case the return address in RET1 is undefined.
1403 */
1404#define HV_FAST_DUMP_BUF_INFO 0x95
1405
1406/* Device interrupt services.
1407 *
1408 * Device interrupts are allocated to system bus bridges by the hypervisor,
1409 * and described to OBP in the machine description. OBP then describes
1410 * these interrupts to the OS via properties in the device tree.
1411 *
1412 * Terminology:
1413 *
1414 * cpuid Unique opaque value which represents a target cpu.
1415 *
1416 * devhandle Device handle. It uniquely identifies a device, and
1417 * consistes of the lower 28-bits of the hi-cell of the
1418 * first entry of the device's "reg" property in the
1419 * OBP device tree.
1420 *
1421 * devino Device interrupt number. Specifies the relative
1422 * interrupt number within the device. The unique
1423 * combination of devhandle and devino are used to
1424 * identify a specific device interrupt.
1425 *
1426 * Note: The devino value is the same as the values in the
1427 * "interrupts" property or "interrupt-map" property
1428 * in the OBP device tree for that device.
1429 *
1430 * sysino System interrupt number. A 64-bit unsigned interger
1431 * representing a unique interrupt within a virtual
1432 * machine.
1433 *
1434 * intr_state A flag representing the interrupt state for a given
1435 * sysino. The state values are defined below.
1436 *
1437 * intr_enabled A flag representing the 'enabled' state for a given
1438 * sysino. The enable values are defined below.
1439 */
1440
1441#define HV_INTR_STATE_IDLE 0 /* Nothing pending */
1442#define HV_INTR_STATE_RECEIVED 1 /* Interrupt received by hardware */
1443#define HV_INTR_STATE_DELIVERED 2 /* Interrupt delivered to queue */
1444
1445#define HV_INTR_DISABLED 0 /* sysino not enabled */
1446#define HV_INTR_ENABLED 1 /* sysino enabled */
1447
1448/* intr_devino_to_sysino()
1449 * TRAP: HV_FAST_TRAP
1450 * FUNCTION: HV_FAST_INTR_DEVINO2SYSINO
1451 * ARG0: devhandle
1452 * ARG1: devino
1453 * RET0: status
1454 * RET1: sysino
1455 * ERRORS: EINVAL Invalid devhandle/devino
1456 *
1457 * Converts a device specific interrupt number of the given
1458 * devhandle/devino into a system specific ino (sysino).
1459 */
1460#define HV_FAST_INTR_DEVINO2SYSINO 0xa0
1461
1462#ifndef __ASSEMBLY__
1463unsigned long sun4v_devino_to_sysino(unsigned long devhandle,
1464 unsigned long devino);
1465#endif
1466
1467/* intr_getenabled()
1468 * TRAP: HV_FAST_TRAP
1469 * FUNCTION: HV_FAST_INTR_GETENABLED
1470 * ARG0: sysino
1471 * RET0: status
1472 * RET1: intr_enabled (HV_INTR_{DISABLED,ENABLED})
1473 * ERRORS: EINVAL Invalid sysino
1474 *
1475 * Returns interrupt enabled state in RET1 for the interrupt defined
1476 * by the given sysino.
1477 */
1478#define HV_FAST_INTR_GETENABLED 0xa1
1479
1480#ifndef __ASSEMBLY__
1481unsigned long sun4v_intr_getenabled(unsigned long sysino);
1482#endif
1483
1484/* intr_setenabled()
1485 * TRAP: HV_FAST_TRAP
1486 * FUNCTION: HV_FAST_INTR_SETENABLED
1487 * ARG0: sysino
1488 * ARG1: intr_enabled (HV_INTR_{DISABLED,ENABLED})
1489 * RET0: status
1490 * ERRORS: EINVAL Invalid sysino or intr_enabled value
1491 *
1492 * Set the 'enabled' state of the interrupt sysino.
1493 */
1494#define HV_FAST_INTR_SETENABLED 0xa2
1495
1496#ifndef __ASSEMBLY__
1497unsigned long sun4v_intr_setenabled(unsigned long sysino,
1498 unsigned long intr_enabled);
1499#endif
1500
1501/* intr_getstate()
1502 * TRAP: HV_FAST_TRAP
1503 * FUNCTION: HV_FAST_INTR_GETSTATE
1504 * ARG0: sysino
1505 * RET0: status
1506 * RET1: intr_state (HV_INTR_STATE_*)
1507 * ERRORS: EINVAL Invalid sysino
1508 *
1509 * Returns current state of the interrupt defined by the given sysino.
1510 */
1511#define HV_FAST_INTR_GETSTATE 0xa3
1512
1513#ifndef __ASSEMBLY__
1514unsigned long sun4v_intr_getstate(unsigned long sysino);
1515#endif
1516
1517/* intr_setstate()
1518 * TRAP: HV_FAST_TRAP
1519 * FUNCTION: HV_FAST_INTR_SETSTATE
1520 * ARG0: sysino
1521 * ARG1: intr_state (HV_INTR_STATE_*)
1522 * RET0: status
1523 * ERRORS: EINVAL Invalid sysino or intr_state value
1524 *
1525 * Sets the current state of the interrupt described by the given sysino
1526 * value.
1527 *
1528 * Note: Setting the state to HV_INTR_STATE_IDLE clears any pending
1529 * interrupt for sysino.
1530 */
1531#define HV_FAST_INTR_SETSTATE 0xa4
1532
1533#ifndef __ASSEMBLY__
1534unsigned long sun4v_intr_setstate(unsigned long sysino, unsigned long intr_state);
1535#endif
1536
1537/* intr_gettarget()
1538 * TRAP: HV_FAST_TRAP
1539 * FUNCTION: HV_FAST_INTR_GETTARGET
1540 * ARG0: sysino
1541 * RET0: status
1542 * RET1: cpuid
1543 * ERRORS: EINVAL Invalid sysino
1544 *
1545 * Returns CPU that is the current target of the interrupt defined by
1546 * the given sysino. The CPU value returned is undefined if the target
1547 * has not been set via intr_settarget().
1548 */
1549#define HV_FAST_INTR_GETTARGET 0xa5
1550
1551#ifndef __ASSEMBLY__
1552unsigned long sun4v_intr_gettarget(unsigned long sysino);
1553#endif
1554
1555/* intr_settarget()
1556 * TRAP: HV_FAST_TRAP
1557 * FUNCTION: HV_FAST_INTR_SETTARGET
1558 * ARG0: sysino
1559 * ARG1: cpuid
1560 * RET0: status
1561 * ERRORS: EINVAL Invalid sysino
1562 * ENOCPU Invalid cpuid
1563 *
1564 * Set the target CPU for the interrupt defined by the given sysino.
1565 */
1566#define HV_FAST_INTR_SETTARGET 0xa6
1567
1568#ifndef __ASSEMBLY__
1569unsigned long sun4v_intr_settarget(unsigned long sysino, unsigned long cpuid);
1570#endif
1571
1572/* vintr_get_cookie()
1573 * TRAP: HV_FAST_TRAP
1574 * FUNCTION: HV_FAST_VINTR_GET_COOKIE
1575 * ARG0: device handle
1576 * ARG1: device ino
1577 * RET0: status
1578 * RET1: cookie
1579 */
1580#define HV_FAST_VINTR_GET_COOKIE 0xa7
1581
1582/* vintr_set_cookie()
1583 * TRAP: HV_FAST_TRAP
1584 * FUNCTION: HV_FAST_VINTR_SET_COOKIE
1585 * ARG0: device handle
1586 * ARG1: device ino
1587 * ARG2: cookie
1588 * RET0: status
1589 */
1590#define HV_FAST_VINTR_SET_COOKIE 0xa8
1591
1592/* vintr_get_valid()
1593 * TRAP: HV_FAST_TRAP
1594 * FUNCTION: HV_FAST_VINTR_GET_VALID
1595 * ARG0: device handle
1596 * ARG1: device ino
1597 * RET0: status
1598 * RET1: valid state
1599 */
1600#define HV_FAST_VINTR_GET_VALID 0xa9
1601
1602/* vintr_set_valid()
1603 * TRAP: HV_FAST_TRAP
1604 * FUNCTION: HV_FAST_VINTR_SET_VALID
1605 * ARG0: device handle
1606 * ARG1: device ino
1607 * ARG2: valid state
1608 * RET0: status
1609 */
1610#define HV_FAST_VINTR_SET_VALID 0xaa
1611
1612/* vintr_get_state()
1613 * TRAP: HV_FAST_TRAP
1614 * FUNCTION: HV_FAST_VINTR_GET_STATE
1615 * ARG0: device handle
1616 * ARG1: device ino
1617 * RET0: status
1618 * RET1: state
1619 */
1620#define HV_FAST_VINTR_GET_STATE 0xab
1621
1622/* vintr_set_state()
1623 * TRAP: HV_FAST_TRAP
1624 * FUNCTION: HV_FAST_VINTR_SET_STATE
1625 * ARG0: device handle
1626 * ARG1: device ino
1627 * ARG2: state
1628 * RET0: status
1629 */
1630#define HV_FAST_VINTR_SET_STATE 0xac
1631
1632/* vintr_get_target()
1633 * TRAP: HV_FAST_TRAP
1634 * FUNCTION: HV_FAST_VINTR_GET_TARGET
1635 * ARG0: device handle
1636 * ARG1: device ino
1637 * RET0: status
1638 * RET1: cpuid
1639 */
1640#define HV_FAST_VINTR_GET_TARGET 0xad
1641
1642/* vintr_set_target()
1643 * TRAP: HV_FAST_TRAP
1644 * FUNCTION: HV_FAST_VINTR_SET_TARGET
1645 * ARG0: device handle
1646 * ARG1: device ino
1647 * ARG2: cpuid
1648 * RET0: status
1649 */
1650#define HV_FAST_VINTR_SET_TARGET 0xae
1651
1652#ifndef __ASSEMBLY__
1653unsigned long sun4v_vintr_get_cookie(unsigned long dev_handle,
1654 unsigned long dev_ino,
1655 unsigned long *cookie);
1656unsigned long sun4v_vintr_set_cookie(unsigned long dev_handle,
1657 unsigned long dev_ino,
1658 unsigned long cookie);
1659unsigned long sun4v_vintr_get_valid(unsigned long dev_handle,
1660 unsigned long dev_ino,
1661 unsigned long *valid);
1662unsigned long sun4v_vintr_set_valid(unsigned long dev_handle,
1663 unsigned long dev_ino,
1664 unsigned long valid);
1665unsigned long sun4v_vintr_get_state(unsigned long dev_handle,
1666 unsigned long dev_ino,
1667 unsigned long *state);
1668unsigned long sun4v_vintr_set_state(unsigned long dev_handle,
1669 unsigned long dev_ino,
1670 unsigned long state);
1671unsigned long sun4v_vintr_get_target(unsigned long dev_handle,
1672 unsigned long dev_ino,
1673 unsigned long *cpuid);
1674unsigned long sun4v_vintr_set_target(unsigned long dev_handle,
1675 unsigned long dev_ino,
1676 unsigned long cpuid);
1677#endif
1678
1679/* PCI IO services.
1680 *
1681 * See the terminology descriptions in the device interrupt services
1682 * section above as those apply here too. Here are terminology
1683 * definitions specific to these PCI IO services:
1684 *
1685 * tsbnum TSB number. Indentifies which io-tsb is used.
1686 * For this version of the specification, tsbnum
1687 * must be zero.
1688 *
1689 * tsbindex TSB index. Identifies which entry in the TSB
1690 * is used. The first entry is zero.
1691 *
1692 * tsbid A 64-bit aligned data structure which contains
1693 * a tsbnum and a tsbindex. Bits 63:32 contain the
1694 * tsbnum and bits 31:00 contain the tsbindex.
1695 *
1696 * Use the HV_PCI_TSBID() macro to construct such
1697 * values.
1698 *
1699 * io_attributes IO attributes for IOMMU mappings. One of more
1700 * of the attritbute bits are stores in a 64-bit
1701 * value. The values are defined below.
1702 *
1703 * r_addr 64-bit real address
1704 *
1705 * pci_device PCI device address. A PCI device address identifies
1706 * a specific device on a specific PCI bus segment.
1707 * A PCI device address ia a 32-bit unsigned integer
1708 * with the following format:
1709 *
1710 * 00000000.bbbbbbbb.dddddfff.00000000
1711 *
1712 * Use the HV_PCI_DEVICE_BUILD() macro to construct
1713 * such values.
1714 *
1715 * pci_config_offset
1716 * PCI configureation space offset. For conventional
1717 * PCI a value between 0 and 255. For extended
1718 * configuration space, a value between 0 and 4095.
1719 *
1720 * Note: For PCI configuration space accesses, the offset
1721 * must be aligned to the access size.
1722 *
1723 * error_flag A return value which specifies if the action succeeded
1724 * or failed. 0 means no error, non-0 means some error
1725 * occurred while performing the service.
1726 *
1727 * io_sync_direction
1728 * Direction definition for pci_dma_sync(), defined
1729 * below in HV_PCI_SYNC_*.
1730 *
1731 * io_page_list A list of io_page_addresses, an io_page_address is
1732 * a real address.
1733 *
1734 * io_page_list_p A pointer to an io_page_list.
1735 *
1736 * "size based byte swap" - Some functions do size based byte swapping
1737 * which allows sw to access pointers and
1738 * counters in native form when the processor
1739 * operates in a different endianness than the
1740 * IO bus. Size-based byte swapping converts a
1741 * multi-byte field between big-endian and
1742 * little-endian format.
1743 */
1744
1745#define HV_PCI_MAP_ATTR_READ 0x01
1746#define HV_PCI_MAP_ATTR_WRITE 0x02
1747#define HV_PCI_MAP_ATTR_RELAXED_ORDER 0x04
1748
1749#define HV_PCI_DEVICE_BUILD(b,d,f) \
1750 ((((b) & 0xff) << 16) | \
1751 (((d) & 0x1f) << 11) | \
1752 (((f) & 0x07) << 8))
1753
1754#define HV_PCI_TSBID(__tsb_num, __tsb_index) \
1755 ((((u64)(__tsb_num)) << 32UL) | ((u64)(__tsb_index)))
1756
1757#define HV_PCI_SYNC_FOR_DEVICE 0x01
1758#define HV_PCI_SYNC_FOR_CPU 0x02
1759
1760/* pci_iommu_map()
1761 * TRAP: HV_FAST_TRAP
1762 * FUNCTION: HV_FAST_PCI_IOMMU_MAP
1763 * ARG0: devhandle
1764 * ARG1: tsbid
1765 * ARG2: #ttes
1766 * ARG3: io_attributes
1767 * ARG4: io_page_list_p
1768 * RET0: status
1769 * RET1: #ttes mapped
1770 * ERRORS: EINVAL Invalid devhandle/tsbnum/tsbindex/io_attributes
1771 * EBADALIGN Improperly aligned real address
1772 * ENORADDR Invalid real address
1773 *
1774 * Create IOMMU mappings in the sun4v device defined by the given
1775 * devhandle. The mappings are created in the TSB defined by the
1776 * tsbnum component of the given tsbid. The first mapping is created
1777 * in the TSB i ndex defined by the tsbindex component of the given tsbid.
1778 * The call creates up to #ttes mappings, the first one at tsbnum, tsbindex,
1779 * the second at tsbnum, tsbindex + 1, etc.
1780 *
1781 * All mappings are created with the attributes defined by the io_attributes
1782 * argument. The page mapping addresses are described in the io_page_list
1783 * defined by the given io_page_list_p, which is a pointer to the io_page_list.
1784 * The first entry in the io_page_list is the address for the first iotte, the
1785 * 2nd for the 2nd iotte, and so on.
1786 *
1787 * Each io_page_address in the io_page_list must be appropriately aligned.
1788 * #ttes must be greater than zero. For this version of the spec, the tsbnum
1789 * component of the given tsbid must be zero.
1790 *
1791 * Returns the actual number of mappings creates, which may be less than
1792 * or equal to the argument #ttes. If the function returns a value which
1793 * is less than the #ttes, the caller may continus to call the function with
1794 * an updated tsbid, #ttes, io_page_list_p arguments until all pages are
1795 * mapped.
1796 *
1797 * Note: This function does not imply an iotte cache flush. The guest must
1798 * demap an entry before re-mapping it.
1799 */
1800#define HV_FAST_PCI_IOMMU_MAP 0xb0
1801
1802/* pci_iommu_demap()
1803 * TRAP: HV_FAST_TRAP
1804 * FUNCTION: HV_FAST_PCI_IOMMU_DEMAP
1805 * ARG0: devhandle
1806 * ARG1: tsbid
1807 * ARG2: #ttes
1808 * RET0: status
1809 * RET1: #ttes demapped
1810 * ERRORS: EINVAL Invalid devhandle/tsbnum/tsbindex
1811 *
1812 * Demap and flush IOMMU mappings in the device defined by the given
1813 * devhandle. Demaps up to #ttes entries in the TSB defined by the tsbnum
1814 * component of the given tsbid, starting at the TSB index defined by the
1815 * tsbindex component of the given tsbid.
1816 *
1817 * For this version of the spec, the tsbnum of the given tsbid must be zero.
1818 * #ttes must be greater than zero.
1819 *
1820 * Returns the actual number of ttes demapped, which may be less than or equal
1821 * to the argument #ttes. If #ttes demapped is less than #ttes, the caller
1822 * may continue to call this function with updated tsbid and #ttes arguments
1823 * until all pages are demapped.
1824 *
1825 * Note: Entries do not have to be mapped to be demapped. A demap of an
1826 * unmapped page will flush the entry from the tte cache.
1827 */
1828#define HV_FAST_PCI_IOMMU_DEMAP 0xb1
1829
1830/* pci_iommu_getmap()
1831 * TRAP: HV_FAST_TRAP
1832 * FUNCTION: HV_FAST_PCI_IOMMU_GETMAP
1833 * ARG0: devhandle
1834 * ARG1: tsbid
1835 * RET0: status
1836 * RET1: io_attributes
1837 * RET2: real address
1838 * ERRORS: EINVAL Invalid devhandle/tsbnum/tsbindex
1839 * ENOMAP Mapping is not valid, no translation exists
1840 *
1841 * Read and return the mapping in the device described by the given devhandle
1842 * and tsbid. If successful, the io_attributes shall be returned in RET1
1843 * and the page address of the mapping shall be returned in RET2.
1844 *
1845 * For this version of the spec, the tsbnum component of the given tsbid
1846 * must be zero.
1847 */
1848#define HV_FAST_PCI_IOMMU_GETMAP 0xb2
1849
1850/* pci_iommu_getbypass()
1851 * TRAP: HV_FAST_TRAP
1852 * FUNCTION: HV_FAST_PCI_IOMMU_GETBYPASS
1853 * ARG0: devhandle
1854 * ARG1: real address
1855 * ARG2: io_attributes
1856 * RET0: status
1857 * RET1: io_addr
1858 * ERRORS: EINVAL Invalid devhandle/io_attributes
1859 * ENORADDR Invalid real address
1860 * ENOTSUPPORTED Function not supported in this implementation.
1861 *
1862 * Create a "special" mapping in the device described by the given devhandle,
1863 * for the given real address and attributes. Return the IO address in RET1
1864 * if successful.
1865 */
1866#define HV_FAST_PCI_IOMMU_GETBYPASS 0xb3
1867
1868/* pci_config_get()
1869 * TRAP: HV_FAST_TRAP
1870 * FUNCTION: HV_FAST_PCI_CONFIG_GET
1871 * ARG0: devhandle
1872 * ARG1: pci_device
1873 * ARG2: pci_config_offset
1874 * ARG3: size
1875 * RET0: status
1876 * RET1: error_flag
1877 * RET2: data
1878 * ERRORS: EINVAL Invalid devhandle/pci_device/offset/size
1879 * EBADALIGN pci_config_offset not size aligned
1880 * ENOACCESS Access to this offset is not permitted
1881 *
1882 * Read PCI configuration space for the adapter described by the given
1883 * devhandle. Read size (1, 2, or 4) bytes of data from the given
1884 * pci_device, at pci_config_offset from the beginning of the device's
1885 * configuration space. If there was no error, RET1 is set to zero and
1886 * RET2 is set to the data read. Insignificant bits in RET2 are not
1887 * guaranteed to have any specific value and therefore must be ignored.
1888 *
1889 * The data returned in RET2 is size based byte swapped.
1890 *
1891 * If an error occurs during the read, set RET1 to a non-zero value. The
1892 * given pci_config_offset must be 'size' aligned.
1893 */
1894#define HV_FAST_PCI_CONFIG_GET 0xb4
1895
1896/* pci_config_put()
1897 * TRAP: HV_FAST_TRAP
1898 * FUNCTION: HV_FAST_PCI_CONFIG_PUT
1899 * ARG0: devhandle
1900 * ARG1: pci_device
1901 * ARG2: pci_config_offset
1902 * ARG3: size
1903 * ARG4: data
1904 * RET0: status
1905 * RET1: error_flag
1906 * ERRORS: EINVAL Invalid devhandle/pci_device/offset/size
1907 * EBADALIGN pci_config_offset not size aligned
1908 * ENOACCESS Access to this offset is not permitted
1909 *
1910 * Write PCI configuration space for the adapter described by the given
1911 * devhandle. Write size (1, 2, or 4) bytes of data in a single operation,
1912 * at pci_config_offset from the beginning of the device's configuration
1913 * space. The data argument contains the data to be written to configuration
1914 * space. Prior to writing, the data is size based byte swapped.
1915 *
1916 * If an error occurs during the write access, do not generate an error
1917 * report, do set RET1 to a non-zero value. Otherwise RET1 is zero.
1918 * The given pci_config_offset must be 'size' aligned.
1919 *
1920 * This function is permitted to read from offset zero in the configuration
1921 * space described by the given pci_device if necessary to ensure that the
1922 * write access to config space completes.
1923 */
1924#define HV_FAST_PCI_CONFIG_PUT 0xb5
1925
1926/* pci_peek()
1927 * TRAP: HV_FAST_TRAP
1928 * FUNCTION: HV_FAST_PCI_PEEK
1929 * ARG0: devhandle
1930 * ARG1: real address
1931 * ARG2: size
1932 * RET0: status
1933 * RET1: error_flag
1934 * RET2: data
1935 * ERRORS: EINVAL Invalid devhandle or size
1936 * EBADALIGN Improperly aligned real address
1937 * ENORADDR Bad real address
1938 * ENOACCESS Guest access prohibited
1939 *
1940 * Attempt to read the IO address given by the given devhandle, real address,
1941 * and size. Size must be 1, 2, 4, or 8. The read is performed as a single
1942 * access operation using the given size. If an error occurs when reading
1943 * from the given location, do not generate an error report, but return a
1944 * non-zero value in RET1. If the read was successful, return zero in RET1
1945 * and return the actual data read in RET2. The data returned is size based
1946 * byte swapped.
1947 *
1948 * Non-significant bits in RET2 are not guaranteed to have any specific value
1949 * and therefore must be ignored. If RET1 is returned as non-zero, the data
1950 * value is not guaranteed to have any specific value and should be ignored.
1951 *
1952 * The caller must have permission to read from the given devhandle, real
1953 * address, which must be an IO address. The argument real address must be a
1954 * size aligned address.
1955 *
1956 * The hypervisor implementation of this function must block access to any
1957 * IO address that the guest does not have explicit permission to access.
1958 */
1959#define HV_FAST_PCI_PEEK 0xb6
1960
1961/* pci_poke()
1962 * TRAP: HV_FAST_TRAP
1963 * FUNCTION: HV_FAST_PCI_POKE
1964 * ARG0: devhandle
1965 * ARG1: real address
1966 * ARG2: size
1967 * ARG3: data
1968 * ARG4: pci_device
1969 * RET0: status
1970 * RET1: error_flag
1971 * ERRORS: EINVAL Invalid devhandle, size, or pci_device
1972 * EBADALIGN Improperly aligned real address
1973 * ENORADDR Bad real address
1974 * ENOACCESS Guest access prohibited
1975 * ENOTSUPPORTED Function is not supported by implementation
1976 *
1977 * Attempt to write data to the IO address given by the given devhandle,
1978 * real address, and size. Size must be 1, 2, 4, or 8. The write is
1979 * performed as a single access operation using the given size. Prior to
1980 * writing the data is size based swapped.
1981 *
1982 * If an error occurs when writing to the given location, do not generate an
1983 * error report, but return a non-zero value in RET1. If the write was
1984 * successful, return zero in RET1.
1985 *
1986 * pci_device describes the configuration address of the device being
1987 * written to. The implementation may safely read from offset 0 with
1988 * the configuration space of the device described by devhandle and
1989 * pci_device in order to guarantee that the write portion of the operation
1990 * completes
1991 *
1992 * Any error that occurs due to the read shall be reported using the normal
1993 * error reporting mechanisms .. the read error is not suppressed.
1994 *
1995 * The caller must have permission to write to the given devhandle, real
1996 * address, which must be an IO address. The argument real address must be a
1997 * size aligned address. The caller must have permission to read from
1998 * the given devhandle, pci_device cofiguration space offset 0.
1999 *
2000 * The hypervisor implementation of this function must block access to any
2001 * IO address that the guest does not have explicit permission to access.
2002 */
2003#define HV_FAST_PCI_POKE 0xb7
2004
2005/* pci_dma_sync()
2006 * TRAP: HV_FAST_TRAP
2007 * FUNCTION: HV_FAST_PCI_DMA_SYNC
2008 * ARG0: devhandle
2009 * ARG1: real address
2010 * ARG2: size
2011 * ARG3: io_sync_direction
2012 * RET0: status
2013 * RET1: #synced
2014 * ERRORS: EINVAL Invalid devhandle or io_sync_direction
2015 * ENORADDR Bad real address
2016 *
2017 * Synchronize a memory region described by the given real address and size,
2018 * for the device defined by the given devhandle using the direction(s)
2019 * defined by the given io_sync_direction. The argument size is the size of
2020 * the memory region in bytes.
2021 *
2022 * Return the actual number of bytes synchronized in the return value #synced,
2023 * which may be less than or equal to the argument size. If the return
2024 * value #synced is less than size, the caller must continue to call this
2025 * function with updated real address and size arguments until the entire
2026 * memory region is synchronized.
2027 */
2028#define HV_FAST_PCI_DMA_SYNC 0xb8
2029
2030/* PCI MSI services. */
2031
2032#define HV_MSITYPE_MSI32 0x00
2033#define HV_MSITYPE_MSI64 0x01
2034
2035#define HV_MSIQSTATE_IDLE 0x00
2036#define HV_MSIQSTATE_ERROR 0x01
2037
2038#define HV_MSIQ_INVALID 0x00
2039#define HV_MSIQ_VALID 0x01
2040
2041#define HV_MSISTATE_IDLE 0x00
2042#define HV_MSISTATE_DELIVERED 0x01
2043
2044#define HV_MSIVALID_INVALID 0x00
2045#define HV_MSIVALID_VALID 0x01
2046
2047#define HV_PCIE_MSGTYPE_PME_MSG 0x18
2048#define HV_PCIE_MSGTYPE_PME_ACK_MSG 0x1b
2049#define HV_PCIE_MSGTYPE_CORR_MSG 0x30
2050#define HV_PCIE_MSGTYPE_NONFATAL_MSG 0x31
2051#define HV_PCIE_MSGTYPE_FATAL_MSG 0x33
2052
2053#define HV_MSG_INVALID 0x00
2054#define HV_MSG_VALID 0x01
2055
2056/* pci_msiq_conf()
2057 * TRAP: HV_FAST_TRAP
2058 * FUNCTION: HV_FAST_PCI_MSIQ_CONF
2059 * ARG0: devhandle
2060 * ARG1: msiqid
2061 * ARG2: real address
2062 * ARG3: number of entries
2063 * RET0: status
2064 * ERRORS: EINVAL Invalid devhandle, msiqid or nentries
2065 * EBADALIGN Improperly aligned real address
2066 * ENORADDR Bad real address
2067 *
2068 * Configure the MSI queue given by the devhandle and msiqid arguments,
2069 * and to be placed at the given real address and be of the given
2070 * number of entries. The real address must be aligned exactly to match
2071 * the queue size. Each queue entry is 64-bytes long, so f.e. a 32 entry
2072 * queue must be aligned on a 2048 byte real address boundary. The MSI-EQ
2073 * Head and Tail are initialized so that the MSI-EQ is 'empty'.
2074 *
2075 * Implementation Note: Certain implementations have fixed sized queues. In
2076 * that case, number of entries must contain the correct
2077 * value.
2078 */
2079#define HV_FAST_PCI_MSIQ_CONF 0xc0
2080
2081/* pci_msiq_info()
2082 * TRAP: HV_FAST_TRAP
2083 * FUNCTION: HV_FAST_PCI_MSIQ_INFO
2084 * ARG0: devhandle
2085 * ARG1: msiqid
2086 * RET0: status
2087 * RET1: real address
2088 * RET2: number of entries
2089 * ERRORS: EINVAL Invalid devhandle or msiqid
2090 *
2091 * Return the configuration information for the MSI queue described
2092 * by the given devhandle and msiqid. The base address of the queue
2093 * is returned in ARG1 and the number of entries is returned in ARG2.
2094 * If the queue is unconfigured, the real address is undefined and the
2095 * number of entries will be returned as zero.
2096 */
2097#define HV_FAST_PCI_MSIQ_INFO 0xc1
2098
2099/* pci_msiq_getvalid()
2100 * TRAP: HV_FAST_TRAP
2101 * FUNCTION: HV_FAST_PCI_MSIQ_GETVALID
2102 * ARG0: devhandle
2103 * ARG1: msiqid
2104 * RET0: status
2105 * RET1: msiqvalid (HV_MSIQ_VALID or HV_MSIQ_INVALID)
2106 * ERRORS: EINVAL Invalid devhandle or msiqid
2107 *
2108 * Get the valid state of the MSI-EQ described by the given devhandle and
2109 * msiqid.
2110 */
2111#define HV_FAST_PCI_MSIQ_GETVALID 0xc2
2112
2113/* pci_msiq_setvalid()
2114 * TRAP: HV_FAST_TRAP
2115 * FUNCTION: HV_FAST_PCI_MSIQ_SETVALID
2116 * ARG0: devhandle
2117 * ARG1: msiqid
2118 * ARG2: msiqvalid (HV_MSIQ_VALID or HV_MSIQ_INVALID)
2119 * RET0: status
2120 * ERRORS: EINVAL Invalid devhandle or msiqid or msiqvalid
2121 * value or MSI EQ is uninitialized
2122 *
2123 * Set the valid state of the MSI-EQ described by the given devhandle and
2124 * msiqid to the given msiqvalid.
2125 */
2126#define HV_FAST_PCI_MSIQ_SETVALID 0xc3
2127
2128/* pci_msiq_getstate()
2129 * TRAP: HV_FAST_TRAP
2130 * FUNCTION: HV_FAST_PCI_MSIQ_GETSTATE
2131 * ARG0: devhandle
2132 * ARG1: msiqid
2133 * RET0: status
2134 * RET1: msiqstate (HV_MSIQSTATE_IDLE or HV_MSIQSTATE_ERROR)
2135 * ERRORS: EINVAL Invalid devhandle or msiqid
2136 *
2137 * Get the state of the MSI-EQ described by the given devhandle and
2138 * msiqid.
2139 */
2140#define HV_FAST_PCI_MSIQ_GETSTATE 0xc4
2141
2142/* pci_msiq_getvalid()
2143 * TRAP: HV_FAST_TRAP
2144 * FUNCTION: HV_FAST_PCI_MSIQ_GETVALID
2145 * ARG0: devhandle
2146 * ARG1: msiqid
2147 * ARG2: msiqstate (HV_MSIQSTATE_IDLE or HV_MSIQSTATE_ERROR)
2148 * RET0: status
2149 * ERRORS: EINVAL Invalid devhandle or msiqid or msiqstate
2150 * value or MSI EQ is uninitialized
2151 *
2152 * Set the state of the MSI-EQ described by the given devhandle and
2153 * msiqid to the given msiqvalid.
2154 */
2155#define HV_FAST_PCI_MSIQ_SETSTATE 0xc5
2156
2157/* pci_msiq_gethead()
2158 * TRAP: HV_FAST_TRAP
2159 * FUNCTION: HV_FAST_PCI_MSIQ_GETHEAD
2160 * ARG0: devhandle
2161 * ARG1: msiqid
2162 * RET0: status
2163 * RET1: msiqhead
2164 * ERRORS: EINVAL Invalid devhandle or msiqid
2165 *
2166 * Get the current MSI EQ queue head for the MSI-EQ described by the
2167 * given devhandle and msiqid.
2168 */
2169#define HV_FAST_PCI_MSIQ_GETHEAD 0xc6
2170
2171/* pci_msiq_sethead()
2172 * TRAP: HV_FAST_TRAP
2173 * FUNCTION: HV_FAST_PCI_MSIQ_SETHEAD
2174 * ARG0: devhandle
2175 * ARG1: msiqid
2176 * ARG2: msiqhead
2177 * RET0: status
2178 * ERRORS: EINVAL Invalid devhandle or msiqid or msiqhead,
2179 * or MSI EQ is uninitialized
2180 *
2181 * Set the current MSI EQ queue head for the MSI-EQ described by the
2182 * given devhandle and msiqid.
2183 */
2184#define HV_FAST_PCI_MSIQ_SETHEAD 0xc7
2185
2186/* pci_msiq_gettail()
2187 * TRAP: HV_FAST_TRAP
2188 * FUNCTION: HV_FAST_PCI_MSIQ_GETTAIL
2189 * ARG0: devhandle
2190 * ARG1: msiqid
2191 * RET0: status
2192 * RET1: msiqtail
2193 * ERRORS: EINVAL Invalid devhandle or msiqid
2194 *
2195 * Get the current MSI EQ queue tail for the MSI-EQ described by the
2196 * given devhandle and msiqid.
2197 */
2198#define HV_FAST_PCI_MSIQ_GETTAIL 0xc8
2199
2200/* pci_msi_getvalid()
2201 * TRAP: HV_FAST_TRAP
2202 * FUNCTION: HV_FAST_PCI_MSI_GETVALID
2203 * ARG0: devhandle
2204 * ARG1: msinum
2205 * RET0: status
2206 * RET1: msivalidstate
2207 * ERRORS: EINVAL Invalid devhandle or msinum
2208 *
2209 * Get the current valid/enabled state for the MSI defined by the
2210 * given devhandle and msinum.
2211 */
2212#define HV_FAST_PCI_MSI_GETVALID 0xc9
2213
2214/* pci_msi_setvalid()
2215 * TRAP: HV_FAST_TRAP
2216 * FUNCTION: HV_FAST_PCI_MSI_SETVALID
2217 * ARG0: devhandle
2218 * ARG1: msinum
2219 * ARG2: msivalidstate
2220 * RET0: status
2221 * ERRORS: EINVAL Invalid devhandle or msinum or msivalidstate
2222 *
2223 * Set the current valid/enabled state for the MSI defined by the
2224 * given devhandle and msinum.
2225 */
2226#define HV_FAST_PCI_MSI_SETVALID 0xca
2227
2228/* pci_msi_getmsiq()
2229 * TRAP: HV_FAST_TRAP
2230 * FUNCTION: HV_FAST_PCI_MSI_GETMSIQ
2231 * ARG0: devhandle
2232 * ARG1: msinum
2233 * RET0: status
2234 * RET1: msiqid
2235 * ERRORS: EINVAL Invalid devhandle or msinum or MSI is unbound
2236 *
2237 * Get the MSI EQ that the MSI defined by the given devhandle and
2238 * msinum is bound to.
2239 */
2240#define HV_FAST_PCI_MSI_GETMSIQ 0xcb
2241
2242/* pci_msi_setmsiq()
2243 * TRAP: HV_FAST_TRAP
2244 * FUNCTION: HV_FAST_PCI_MSI_SETMSIQ
2245 * ARG0: devhandle
2246 * ARG1: msinum
2247 * ARG2: msitype
2248 * ARG3: msiqid
2249 * RET0: status
2250 * ERRORS: EINVAL Invalid devhandle or msinum or msiqid
2251 *
2252 * Set the MSI EQ that the MSI defined by the given devhandle and
2253 * msinum is bound to.
2254 */
2255#define HV_FAST_PCI_MSI_SETMSIQ 0xcc
2256
2257/* pci_msi_getstate()
2258 * TRAP: HV_FAST_TRAP
2259 * FUNCTION: HV_FAST_PCI_MSI_GETSTATE
2260 * ARG0: devhandle
2261 * ARG1: msinum
2262 * RET0: status
2263 * RET1: msistate
2264 * ERRORS: EINVAL Invalid devhandle or msinum
2265 *
2266 * Get the state of the MSI defined by the given devhandle and msinum.
2267 * If not initialized, return HV_MSISTATE_IDLE.
2268 */
2269#define HV_FAST_PCI_MSI_GETSTATE 0xcd
2270
2271/* pci_msi_setstate()
2272 * TRAP: HV_FAST_TRAP
2273 * FUNCTION: HV_FAST_PCI_MSI_SETSTATE
2274 * ARG0: devhandle
2275 * ARG1: msinum
2276 * ARG2: msistate
2277 * RET0: status
2278 * ERRORS: EINVAL Invalid devhandle or msinum or msistate
2279 *
2280 * Set the state of the MSI defined by the given devhandle and msinum.
2281 */
2282#define HV_FAST_PCI_MSI_SETSTATE 0xce
2283
2284/* pci_msg_getmsiq()
2285 * TRAP: HV_FAST_TRAP
2286 * FUNCTION: HV_FAST_PCI_MSG_GETMSIQ
2287 * ARG0: devhandle
2288 * ARG1: msgtype
2289 * RET0: status
2290 * RET1: msiqid
2291 * ERRORS: EINVAL Invalid devhandle or msgtype
2292 *
2293 * Get the MSI EQ of the MSG defined by the given devhandle and msgtype.
2294 */
2295#define HV_FAST_PCI_MSG_GETMSIQ 0xd0
2296
2297/* pci_msg_setmsiq()
2298 * TRAP: HV_FAST_TRAP
2299 * FUNCTION: HV_FAST_PCI_MSG_SETMSIQ
2300 * ARG0: devhandle
2301 * ARG1: msgtype
2302 * ARG2: msiqid
2303 * RET0: status
2304 * ERRORS: EINVAL Invalid devhandle, msgtype, or msiqid
2305 *
2306 * Set the MSI EQ of the MSG defined by the given devhandle and msgtype.
2307 */
2308#define HV_FAST_PCI_MSG_SETMSIQ 0xd1
2309
2310/* pci_msg_getvalid()
2311 * TRAP: HV_FAST_TRAP
2312 * FUNCTION: HV_FAST_PCI_MSG_GETVALID
2313 * ARG0: devhandle
2314 * ARG1: msgtype
2315 * RET0: status
2316 * RET1: msgvalidstate
2317 * ERRORS: EINVAL Invalid devhandle or msgtype
2318 *
2319 * Get the valid/enabled state of the MSG defined by the given
2320 * devhandle and msgtype.
2321 */
2322#define HV_FAST_PCI_MSG_GETVALID 0xd2
2323
2324/* pci_msg_setvalid()
2325 * TRAP: HV_FAST_TRAP
2326 * FUNCTION: HV_FAST_PCI_MSG_SETVALID
2327 * ARG0: devhandle
2328 * ARG1: msgtype
2329 * ARG2: msgvalidstate
2330 * RET0: status
2331 * ERRORS: EINVAL Invalid devhandle or msgtype or msgvalidstate
2332 *
2333 * Set the valid/enabled state of the MSG defined by the given
2334 * devhandle and msgtype.
2335 */
2336#define HV_FAST_PCI_MSG_SETVALID 0xd3
2337
2338/* PCI IOMMU v2 definitions and services
2339 *
2340 * While the PCI IO definitions above is valid IOMMU v2 adds new PCI IO
2341 * definitions and services.
2342 *
2343 * CTE Clump Table Entry. First level table entry in the ATU.
2344 *
2345 * pci_device_list
2346 * A 32-bit aligned list of pci_devices.
2347 *
2348 * pci_device_listp
2349 * real address of a pci_device_list. 32-bit aligned.
2350 *
2351 * iotte IOMMU translation table entry.
2352 *
2353 * iotte_attributes
2354 * IO Attributes for IOMMU v2 mappings. In addition to
2355 * read, write IOMMU v2 supports relax ordering
2356 *
2357 * io_page_list A 64-bit aligned list of real addresses. Each real
2358 * address in an io_page_list must be properly aligned
2359 * to the pagesize of the given IOTSB.
2360 *
2361 * io_page_list_p Real address of an io_page_list, 64-bit aligned.
2362 *
2363 * IOTSB IO Translation Storage Buffer. An aligned table of
2364 * IOTTEs. Each IOTSB has a pagesize, table size, and
2365 * virtual address associated with it that must match
2366 * a pagesize and table size supported by the un-derlying
2367 * hardware implementation. The alignment requirements
2368 * for an IOTSB depend on the pagesize used for that IOTSB.
2369 * Each IOTTE in an IOTSB maps one pagesize-sized page.
2370 * The size of the IOTSB dictates how large of a virtual
2371 * address space the IOTSB is capable of mapping.
2372 *
2373 * iotsb_handle An opaque identifier for an IOTSB. A devhandle plus
2374 * iotsb_handle represents a binding of an IOTSB to a
2375 * PCI root complex.
2376 *
2377 * iotsb_index Zero-based IOTTE number within an IOTSB.
2378 */
2379
2380/* The index_count argument consists of two fields:
2381 * bits 63:48 #iottes and bits 47:0 iotsb_index
2382 */
2383#define HV_PCI_IOTSB_INDEX_COUNT(__iottes, __iotsb_index) \
2384 (((u64)(__iottes) << 48UL) | ((u64)(__iotsb_index)))
2385
2386/* pci_iotsb_conf()
2387 * TRAP: HV_FAST_TRAP
2388 * FUNCTION: HV_FAST_PCI_IOTSB_CONF
2389 * ARG0: devhandle
2390 * ARG1: r_addr
2391 * ARG2: size
2392 * ARG3: pagesize
2393 * ARG4: iova
2394 * RET0: status
2395 * RET1: iotsb_handle
2396 * ERRORS: EINVAL Invalid devhandle, size, iova, or pagesize
2397 * EBADALIGN r_addr is not properly aligned
2398 * ENORADDR r_addr is not a valid real address
2399 * ETOOMANY No further IOTSBs may be configured
2400 * EBUSY Duplicate devhandle, raddir, iova combination
2401 *
2402 * Create an IOTSB suitable for the PCI root complex identified by devhandle,
2403 * for the DMA virtual address defined by the argument iova.
2404 *
2405 * r_addr is the properly aligned base address of the IOTSB and size is the
2406 * IOTSB (table) size in bytes.The IOTSB is required to be zeroed prior to
2407 * being configured. If it contains any values other than zeros then the
2408 * behavior is undefined.
2409 *
2410 * pagesize is the size of each page in the IOTSB. Note that the combination of
2411 * size (table size) and pagesize must be valid.
2412 *
2413 * virt is the DMA virtual address this IOTSB will map.
2414 *
2415 * If successful, the opaque 64-bit handle iotsb_handle is returned in ret1.
2416 * Once configured, privileged access to the IOTSB memory is prohibited and
2417 * creates undefined behavior. The only permitted access is indirect via these
2418 * services.
2419 */
2420#define HV_FAST_PCI_IOTSB_CONF 0x190
2421
2422/* pci_iotsb_info()
2423 * TRAP: HV_FAST_TRAP
2424 * FUNCTION: HV_FAST_PCI_IOTSB_INFO
2425 * ARG0: devhandle
2426 * ARG1: iotsb_handle
2427 * RET0: status
2428 * RET1: r_addr
2429 * RET2: size
2430 * RET3: pagesize
2431 * RET4: iova
2432 * RET5: #bound
2433 * ERRORS: EINVAL Invalid devhandle or iotsb_handle
2434 *
2435 * This service returns configuration information about an IOTSB previously
2436 * created with pci_iotsb_conf.
2437 *
2438 * iotsb_handle value 0 may be used with this service to inquire about the
2439 * legacy IOTSB that may or may not exist. If the service succeeds, the return
2440 * values describe the legacy IOTSB and I/O virtual addresses mapped by that
2441 * table. However, the table base address r_addr may contain the value -1 which
2442 * indicates a memory range that cannot be accessed or be reclaimed.
2443 *
2444 * The return value #bound contains the number of PCI devices that iotsb_handle
2445 * is currently bound to.
2446 */
2447#define HV_FAST_PCI_IOTSB_INFO 0x191
2448
2449/* pci_iotsb_unconf()
2450 * TRAP: HV_FAST_TRAP
2451 * FUNCTION: HV_FAST_PCI_IOTSB_UNCONF
2452 * ARG0: devhandle
2453 * ARG1: iotsb_handle
2454 * RET0: status
2455 * ERRORS: EINVAL Invalid devhandle or iotsb_handle
2456 * EBUSY The IOTSB is bound and may not be unconfigured
2457 *
2458 * This service unconfigures the IOTSB identified by the devhandle and
2459 * iotsb_handle arguments, previously created with pci_iotsb_conf.
2460 * The IOTSB must not be currently bound to any device or the service will fail
2461 *
2462 * If the call succeeds, iotsb_handle is no longer valid.
2463 */
2464#define HV_FAST_PCI_IOTSB_UNCONF 0x192
2465
2466/* pci_iotsb_bind()
2467 * TRAP: HV_FAST_TRAP
2468 * FUNCTION: HV_FAST_PCI_IOTSB_BIND
2469 * ARG0: devhandle
2470 * ARG1: iotsb_handle
2471 * ARG2: pci_device
2472 * RET0: status
2473 * ERRORS: EINVAL Invalid devhandle, iotsb_handle, or pci_device
2474 * EBUSY A PCI function is already bound to an IOTSB at the same
2475 * address range as specified by devhandle, iotsb_handle.
2476 *
2477 * This service binds the PCI function specified by the argument pci_device to
2478 * the IOTSB specified by the arguments devhandle and iotsb_handle.
2479 *
2480 * The PCI device function is bound to the specified IOTSB with the IOVA range
2481 * specified when the IOTSB was configured via pci_iotsb_conf. If the function
2482 * is already bound then it is unbound first.
2483 */
2484#define HV_FAST_PCI_IOTSB_BIND 0x193
2485
2486/* pci_iotsb_unbind()
2487 * TRAP: HV_FAST_TRAP
2488 * FUNCTION: HV_FAST_PCI_IOTSB_UNBIND
2489 * ARG0: devhandle
2490 * ARG1: iotsb_handle
2491 * ARG2: pci_device
2492 * RET0: status
2493 * ERRORS: EINVAL Invalid devhandle, iotsb_handle, or pci_device
2494 * ENOMAP The PCI function was not bound to the specified IOTSB
2495 *
2496 * This service unbinds the PCI device specified by the argument pci_device
2497 * from the IOTSB identified * by the arguments devhandle and iotsb_handle.
2498 *
2499 * If the PCI device is not bound to the specified IOTSB then this service will
2500 * fail with status ENOMAP
2501 */
2502#define HV_FAST_PCI_IOTSB_UNBIND 0x194
2503
2504/* pci_iotsb_get_binding()
2505 * TRAP: HV_FAST_TRAP
2506 * FUNCTION: HV_FAST_PCI_IOTSB_GET_BINDING
2507 * ARG0: devhandle
2508 * ARG1: iotsb_handle
2509 * ARG2: iova
2510 * RET0: status
2511 * RET1: iotsb_handle
2512 * ERRORS: EINVAL Invalid devhandle, pci_device, or iova
2513 * ENOMAP The PCI function is not bound to an IOTSB at iova
2514 *
2515 * This service returns the IOTSB binding, iotsb_handle, for a given pci_device
2516 * and DMA virtual address, iova.
2517 *
2518 * iova must be the base address of a DMA virtual address range as defined by
2519 * the iommu-address-ranges property in the root complex device node defined
2520 * by the argument devhandle.
2521 */
2522#define HV_FAST_PCI_IOTSB_GET_BINDING 0x195
2523
2524/* pci_iotsb_map()
2525 * TRAP: HV_FAST_TRAP
2526 * FUNCTION: HV_FAST_PCI_IOTSB_MAP
2527 * ARG0: devhandle
2528 * ARG1: iotsb_handle
2529 * ARG2: index_count
2530 * ARG3: iotte_attributes
2531 * ARG4: io_page_list_p
2532 * RET0: status
2533 * RET1: #mapped
2534 * ERRORS: EINVAL Invalid devhandle, iotsb_handle, #iottes,
2535 * iotsb_index or iotte_attributes
2536 * EBADALIGN Improperly aligned io_page_list_p or I/O page
2537 * address in the I/O page list.
2538 * ENORADDR Invalid io_page_list_p or I/O page address in
2539 * the I/O page list.
2540 *
2541 * This service creates and flushes mappings in the IOTSB defined by the
2542 * arguments devhandle, iotsb.
2543 *
2544 * The index_count argument consists of two fields. Bits 63:48 contain #iotte
2545 * and bits 47:0 contain iotsb_index
2546 *
2547 * The first mapping is created in the IOTSB index specified by iotsb_index.
2548 * Subsequent mappings are created at iotsb_index+1 and so on.
2549 *
2550 * The attributes of each mapping are defined by the argument iotte_attributes.
2551 *
2552 * The io_page_list_p specifies the real address of the 64-bit-aligned list of
2553 * #iottes I/O page addresses. Each page address must be a properly aligned
2554 * real address of a page to be mapped in the IOTSB. The first entry in the I/O
2555 * page list contains the real address of the first page, the 2nd entry for the
2556 * 2nd page, and so on.
2557 *
2558 * #iottes must be greater than zero.
2559 *
2560 * The return value #mapped is the actual number of mappings created, which may
2561 * be less than or equal to the argument #iottes. If the function returns
2562 * successfully with a #mapped value less than the requested #iottes then the
2563 * caller should continue to invoke the service with updated iotsb_index,
2564 * #iottes, and io_page_list_p arguments until all pages are mapped.
2565 *
2566 * This service must not be used to demap a mapping. In other words, all
2567 * mappings must be valid and have one or both of the RW attribute bits set.
2568 *
2569 * Note:
2570 * It is implementation-defined whether I/O page real address validity checking
2571 * is done at time mappings are established or deferred until they are
2572 * accessed.
2573 */
2574#define HV_FAST_PCI_IOTSB_MAP 0x196
2575
2576/* pci_iotsb_map_one()
2577 * TRAP: HV_FAST_TRAP
2578 * FUNCTION: HV_FAST_PCI_IOTSB_MAP_ONE
2579 * ARG0: devhandle
2580 * ARG1: iotsb_handle
2581 * ARG2: iotsb_index
2582 * ARG3: iotte_attributes
2583 * ARG4: r_addr
2584 * RET0: status
2585 * ERRORS: EINVAL Invalid devhandle,iotsb_handle, iotsb_index
2586 * or iotte_attributes
2587 * EBADALIGN Improperly aligned r_addr
2588 * ENORADDR Invalid r_addr
2589 *
2590 * This service creates and flushes a single mapping in the IOTSB defined by the
2591 * arguments devhandle, iotsb.
2592 *
2593 * The mapping for the page at r_addr is created at the IOTSB index specified by
2594 * iotsb_index with the attributes iotte_attributes.
2595 *
2596 * This service must not be used to demap a mapping. In other words, the mapping
2597 * must be valid and have one or both of the RW attribute bits set.
2598 *
2599 * Note:
2600 * It is implementation-defined whether I/O page real address validity checking
2601 * is done at time mappings are established or deferred until they are
2602 * accessed.
2603 */
2604#define HV_FAST_PCI_IOTSB_MAP_ONE 0x197
2605
2606/* pci_iotsb_demap()
2607 * TRAP: HV_FAST_TRAP
2608 * FUNCTION: HV_FAST_PCI_IOTSB_DEMAP
2609 * ARG0: devhandle
2610 * ARG1: iotsb_handle
2611 * ARG2: iotsb_index
2612 * ARG3: #iottes
2613 * RET0: status
2614 * RET1: #unmapped
2615 * ERRORS: EINVAL Invalid devhandle, iotsb_handle, iotsb_index or #iottes
2616 *
2617 * This service unmaps and flushes up to #iottes mappings starting at index
2618 * iotsb_index from the IOTSB defined by the arguments devhandle, iotsb.
2619 *
2620 * #iottes must be greater than zero.
2621 *
2622 * The actual number of IOTTEs unmapped is returned in #unmapped and may be less
2623 * than or equal to the requested number of IOTTEs, #iottes.
2624 *
2625 * If #unmapped is less than #iottes, the caller should continue to invoke this
2626 * service with updated iotsb_index and #iottes arguments until all pages are
2627 * demapped.
2628 */
2629#define HV_FAST_PCI_IOTSB_DEMAP 0x198
2630
2631/* pci_iotsb_getmap()
2632 * TRAP: HV_FAST_TRAP
2633 * FUNCTION: HV_FAST_PCI_IOTSB_GETMAP
2634 * ARG0: devhandle
2635 * ARG1: iotsb_handle
2636 * ARG2: iotsb_index
2637 * RET0: status
2638 * RET1: r_addr
2639 * RET2: iotte_attributes
2640 * ERRORS: EINVAL Invalid devhandle, iotsb_handle, or iotsb_index
2641 * ENOMAP No mapping was found
2642 *
2643 * This service returns the mapping specified by index iotsb_index from the
2644 * IOTSB defined by the arguments devhandle, iotsb.
2645 *
2646 * Upon success, the real address of the mapping shall be returned in
2647 * r_addr and thethe IOTTE mapping attributes shall be returned in
2648 * iotte_attributes.
2649 *
2650 * The return value iotte_attributes may not include optional features used in
2651 * the call to create the mapping.
2652 */
2653#define HV_FAST_PCI_IOTSB_GETMAP 0x199
2654
2655/* pci_iotsb_sync_mappings()
2656 * TRAP: HV_FAST_TRAP
2657 * FUNCTION: HV_FAST_PCI_IOTSB_SYNC_MAPPINGS
2658 * ARG0: devhandle
2659 * ARG1: iotsb_handle
2660 * ARG2: iotsb_index
2661 * ARG3: #iottes
2662 * RET0: status
2663 * RET1: #synced
2664 * ERROS: EINVAL Invalid devhandle, iotsb_handle, iotsb_index, or #iottes
2665 *
2666 * This service synchronizes #iottes mappings starting at index iotsb_index in
2667 * the IOTSB defined by the arguments devhandle, iotsb.
2668 *
2669 * #iottes must be greater than zero.
2670 *
2671 * The actual number of IOTTEs synchronized is returned in #synced, which may
2672 * be less than or equal to the requested number, #iottes.
2673 *
2674 * Upon a successful return, #synced is less than #iottes, the caller should
2675 * continue to invoke this service with updated iotsb_index and #iottes
2676 * arguments until all pages are synchronized.
2677 */
2678#define HV_FAST_PCI_IOTSB_SYNC_MAPPINGS 0x19a
2679
2680/* Logical Domain Channel services. */
2681
2682#define LDC_CHANNEL_DOWN 0
2683#define LDC_CHANNEL_UP 1
2684#define LDC_CHANNEL_RESETTING 2
2685
2686/* ldc_tx_qconf()
2687 * TRAP: HV_FAST_TRAP
2688 * FUNCTION: HV_FAST_LDC_TX_QCONF
2689 * ARG0: channel ID
2690 * ARG1: real address base of queue
2691 * ARG2: num entries in queue
2692 * RET0: status
2693 *
2694 * Configure transmit queue for the LDC endpoint specified by the
2695 * given channel ID, to be placed at the given real address, and
2696 * be of the given num entries. Num entries must be a power of two.
2697 * The real address base of the queue must be aligned on the queue
2698 * size. Each queue entry is 64-bytes, so for example, a 32 entry
2699 * queue must be aligned on a 2048 byte real address boundary.
2700 *
2701 * Upon configuration of a valid transmit queue the head and tail
2702 * pointers are set to a hypervisor specific identical value indicating
2703 * that the queue initially is empty.
2704 *
2705 * The endpoint's transmit queue is un-configured if num entries is zero.
2706 *
2707 * The maximum number of entries for each queue for a specific cpu may be
2708 * determined from the machine description. A transmit queue may be
2709 * specified even in the event that the LDC is down (peer endpoint has no
2710 * receive queue specified). Transmission will begin as soon as the peer
2711 * endpoint defines a receive queue.
2712 *
2713 * It is recommended that a guest wait for a transmit queue to empty prior
2714 * to reconfiguring it, or un-configuring it. Re or un-configuring of a
2715 * non-empty transmit queue behaves exactly as defined above, however it
2716 * is undefined as to how many of the pending entries in the original queue
2717 * will be delivered prior to the re-configuration taking effect.
2718 * Furthermore, as the queue configuration causes a reset of the head and
2719 * tail pointers there is no way for a guest to determine how many entries
2720 * have been sent after the configuration operation.
2721 */
2722#define HV_FAST_LDC_TX_QCONF 0xe0
2723
2724/* ldc_tx_qinfo()
2725 * TRAP: HV_FAST_TRAP
2726 * FUNCTION: HV_FAST_LDC_TX_QINFO
2727 * ARG0: channel ID
2728 * RET0: status
2729 * RET1: real address base of queue
2730 * RET2: num entries in queue
2731 *
2732 * Return the configuration info for the transmit queue of LDC endpoint
2733 * defined by the given channel ID. The real address is the currently
2734 * defined real address base of the defined queue, and num entries is the
2735 * size of the queue in terms of number of entries.
2736 *
2737 * If the specified channel ID is a valid endpoint number, but no transmit
2738 * queue has been defined this service will return success, but with num
2739 * entries set to zero and the real address will have an undefined value.
2740 */
2741#define HV_FAST_LDC_TX_QINFO 0xe1
2742
2743/* ldc_tx_get_state()
2744 * TRAP: HV_FAST_TRAP
2745 * FUNCTION: HV_FAST_LDC_TX_GET_STATE
2746 * ARG0: channel ID
2747 * RET0: status
2748 * RET1: head offset
2749 * RET2: tail offset
2750 * RET3: channel state
2751 *
2752 * Return the transmit state, and the head and tail queue pointers, for
2753 * the transmit queue of the LDC endpoint defined by the given channel ID.
2754 * The head and tail values are the byte offset of the head and tail
2755 * positions of the transmit queue for the specified endpoint.
2756 */
2757#define HV_FAST_LDC_TX_GET_STATE 0xe2
2758
2759/* ldc_tx_set_qtail()
2760 * TRAP: HV_FAST_TRAP
2761 * FUNCTION: HV_FAST_LDC_TX_SET_QTAIL
2762 * ARG0: channel ID
2763 * ARG1: tail offset
2764 * RET0: status
2765 *
2766 * Update the tail pointer for the transmit queue associated with the LDC
2767 * endpoint defined by the given channel ID. The tail offset specified
2768 * must be aligned on a 64 byte boundary, and calculated so as to increase
2769 * the number of pending entries on the transmit queue. Any attempt to
2770 * decrease the number of pending transmit queue entires is considered
2771 * an invalid tail offset and will result in an EINVAL error.
2772 *
2773 * Since the tail of the transmit queue may not be moved backwards, the
2774 * transmit queue may be flushed by configuring a new transmit queue,
2775 * whereupon the hypervisor will configure the initial transmit head and
2776 * tail pointers to be equal.
2777 */
2778#define HV_FAST_LDC_TX_SET_QTAIL 0xe3
2779
2780/* ldc_rx_qconf()
2781 * TRAP: HV_FAST_TRAP
2782 * FUNCTION: HV_FAST_LDC_RX_QCONF
2783 * ARG0: channel ID
2784 * ARG1: real address base of queue
2785 * ARG2: num entries in queue
2786 * RET0: status
2787 *
2788 * Configure receive queue for the LDC endpoint specified by the
2789 * given channel ID, to be placed at the given real address, and
2790 * be of the given num entries. Num entries must be a power of two.
2791 * The real address base of the queue must be aligned on the queue
2792 * size. Each queue entry is 64-bytes, so for example, a 32 entry
2793 * queue must be aligned on a 2048 byte real address boundary.
2794 *
2795 * The endpoint's transmit queue is un-configured if num entries is zero.
2796 *
2797 * If a valid receive queue is specified for a local endpoint the LDC is
2798 * in the up state for the purpose of transmission to this endpoint.
2799 *
2800 * The maximum number of entries for each queue for a specific cpu may be
2801 * determined from the machine description.
2802 *
2803 * As receive queue configuration causes a reset of the queue's head and
2804 * tail pointers there is no way for a gues to determine how many entries
2805 * have been received between a preceding ldc_get_rx_state() API call
2806 * and the completion of the configuration operation. It should be noted
2807 * that datagram delivery is not guaranteed via domain channels anyway,
2808 * and therefore any higher protocol should be resilient to datagram
2809 * loss if necessary. However, to overcome this specific race potential
2810 * it is recommended, for example, that a higher level protocol be employed
2811 * to ensure either retransmission, or ensure that no datagrams are pending
2812 * on the peer endpoint's transmit queue prior to the configuration process.
2813 */
2814#define HV_FAST_LDC_RX_QCONF 0xe4
2815
2816/* ldc_rx_qinfo()
2817 * TRAP: HV_FAST_TRAP
2818 * FUNCTION: HV_FAST_LDC_RX_QINFO
2819 * ARG0: channel ID
2820 * RET0: status
2821 * RET1: real address base of queue
2822 * RET2: num entries in queue
2823 *
2824 * Return the configuration info for the receive queue of LDC endpoint
2825 * defined by the given channel ID. The real address is the currently
2826 * defined real address base of the defined queue, and num entries is the
2827 * size of the queue in terms of number of entries.
2828 *
2829 * If the specified channel ID is a valid endpoint number, but no receive
2830 * queue has been defined this service will return success, but with num
2831 * entries set to zero and the real address will have an undefined value.
2832 */
2833#define HV_FAST_LDC_RX_QINFO 0xe5
2834
2835/* ldc_rx_get_state()
2836 * TRAP: HV_FAST_TRAP
2837 * FUNCTION: HV_FAST_LDC_RX_GET_STATE
2838 * ARG0: channel ID
2839 * RET0: status
2840 * RET1: head offset
2841 * RET2: tail offset
2842 * RET3: channel state
2843 *
2844 * Return the receive state, and the head and tail queue pointers, for
2845 * the receive queue of the LDC endpoint defined by the given channel ID.
2846 * The head and tail values are the byte offset of the head and tail
2847 * positions of the receive queue for the specified endpoint.
2848 */
2849#define HV_FAST_LDC_RX_GET_STATE 0xe6
2850
2851/* ldc_rx_set_qhead()
2852 * TRAP: HV_FAST_TRAP
2853 * FUNCTION: HV_FAST_LDC_RX_SET_QHEAD
2854 * ARG0: channel ID
2855 * ARG1: head offset
2856 * RET0: status
2857 *
2858 * Update the head pointer for the receive queue associated with the LDC
2859 * endpoint defined by the given channel ID. The head offset specified
2860 * must be aligned on a 64 byte boundary, and calculated so as to decrease
2861 * the number of pending entries on the receive queue. Any attempt to
2862 * increase the number of pending receive queue entires is considered
2863 * an invalid head offset and will result in an EINVAL error.
2864 *
2865 * The receive queue may be flushed by setting the head offset equal
2866 * to the current tail offset.
2867 */
2868#define HV_FAST_LDC_RX_SET_QHEAD 0xe7
2869
2870/* LDC Map Table Entry. Each slot is defined by a translation table
2871 * entry, as specified by the LDC_MTE_* bits below, and a 64-bit
2872 * hypervisor invalidation cookie.
2873 */
2874#define LDC_MTE_PADDR 0x0fffffffffffe000 /* pa[55:13] */
2875#define LDC_MTE_COPY_W 0x0000000000000400 /* copy write access */
2876#define LDC_MTE_COPY_R 0x0000000000000200 /* copy read access */
2877#define LDC_MTE_IOMMU_W 0x0000000000000100 /* IOMMU write access */
2878#define LDC_MTE_IOMMU_R 0x0000000000000080 /* IOMMU read access */
2879#define LDC_MTE_EXEC 0x0000000000000040 /* execute */
2880#define LDC_MTE_WRITE 0x0000000000000020 /* read */
2881#define LDC_MTE_READ 0x0000000000000010 /* write */
2882#define LDC_MTE_SZALL 0x000000000000000f /* page size bits */
2883#define LDC_MTE_SZ16GB 0x0000000000000007 /* 16GB page */
2884#define LDC_MTE_SZ2GB 0x0000000000000006 /* 2GB page */
2885#define LDC_MTE_SZ256MB 0x0000000000000005 /* 256MB page */
2886#define LDC_MTE_SZ32MB 0x0000000000000004 /* 32MB page */
2887#define LDC_MTE_SZ4MB 0x0000000000000003 /* 4MB page */
2888#define LDC_MTE_SZ512K 0x0000000000000002 /* 512K page */
2889#define LDC_MTE_SZ64K 0x0000000000000001 /* 64K page */
2890#define LDC_MTE_SZ8K 0x0000000000000000 /* 8K page */
2891
2892#ifndef __ASSEMBLY__
2893struct ldc_mtable_entry {
2894 unsigned long mte;
2895 unsigned long cookie;
2896};
2897#endif
2898
2899/* ldc_set_map_table()
2900 * TRAP: HV_FAST_TRAP
2901 * FUNCTION: HV_FAST_LDC_SET_MAP_TABLE
2902 * ARG0: channel ID
2903 * ARG1: table real address
2904 * ARG2: num entries
2905 * RET0: status
2906 *
2907 * Register the MTE table at the given table real address, with the
2908 * specified num entries, for the LDC indicated by the given channel
2909 * ID.
2910 */
2911#define HV_FAST_LDC_SET_MAP_TABLE 0xea
2912
2913/* ldc_get_map_table()
2914 * TRAP: HV_FAST_TRAP
2915 * FUNCTION: HV_FAST_LDC_GET_MAP_TABLE
2916 * ARG0: channel ID
2917 * RET0: status
2918 * RET1: table real address
2919 * RET2: num entries
2920 *
2921 * Return the configuration of the current mapping table registered
2922 * for the given channel ID.
2923 */
2924#define HV_FAST_LDC_GET_MAP_TABLE 0xeb
2925
2926#define LDC_COPY_IN 0
2927#define LDC_COPY_OUT 1
2928
2929/* ldc_copy()
2930 * TRAP: HV_FAST_TRAP
2931 * FUNCTION: HV_FAST_LDC_COPY
2932 * ARG0: channel ID
2933 * ARG1: LDC_COPY_* direction code
2934 * ARG2: target real address
2935 * ARG3: local real address
2936 * ARG4: length in bytes
2937 * RET0: status
2938 * RET1: actual length in bytes
2939 */
2940#define HV_FAST_LDC_COPY 0xec
2941
2942#define LDC_MEM_READ 1
2943#define LDC_MEM_WRITE 2
2944#define LDC_MEM_EXEC 4
2945
2946/* ldc_mapin()
2947 * TRAP: HV_FAST_TRAP
2948 * FUNCTION: HV_FAST_LDC_MAPIN
2949 * ARG0: channel ID
2950 * ARG1: cookie
2951 * RET0: status
2952 * RET1: real address
2953 * RET2: LDC_MEM_* permissions
2954 */
2955#define HV_FAST_LDC_MAPIN 0xed
2956
2957/* ldc_unmap()
2958 * TRAP: HV_FAST_TRAP
2959 * FUNCTION: HV_FAST_LDC_UNMAP
2960 * ARG0: real address
2961 * RET0: status
2962 */
2963#define HV_FAST_LDC_UNMAP 0xee
2964
2965/* ldc_revoke()
2966 * TRAP: HV_FAST_TRAP
2967 * FUNCTION: HV_FAST_LDC_REVOKE
2968 * ARG0: channel ID
2969 * ARG1: cookie
2970 * ARG2: ldc_mtable_entry cookie
2971 * RET0: status
2972 */
2973#define HV_FAST_LDC_REVOKE 0xef
2974
2975#ifndef __ASSEMBLY__
2976unsigned long sun4v_ldc_tx_qconf(unsigned long channel,
2977 unsigned long ra,
2978 unsigned long num_entries);
2979unsigned long sun4v_ldc_tx_qinfo(unsigned long channel,
2980 unsigned long *ra,
2981 unsigned long *num_entries);
2982unsigned long sun4v_ldc_tx_get_state(unsigned long channel,
2983 unsigned long *head_off,
2984 unsigned long *tail_off,
2985 unsigned long *chan_state);
2986unsigned long sun4v_ldc_tx_set_qtail(unsigned long channel,
2987 unsigned long tail_off);
2988unsigned long sun4v_ldc_rx_qconf(unsigned long channel,
2989 unsigned long ra,
2990 unsigned long num_entries);
2991unsigned long sun4v_ldc_rx_qinfo(unsigned long channel,
2992 unsigned long *ra,
2993 unsigned long *num_entries);
2994unsigned long sun4v_ldc_rx_get_state(unsigned long channel,
2995 unsigned long *head_off,
2996 unsigned long *tail_off,
2997 unsigned long *chan_state);
2998unsigned long sun4v_ldc_rx_set_qhead(unsigned long channel,
2999 unsigned long head_off);
3000unsigned long sun4v_ldc_set_map_table(unsigned long channel,
3001 unsigned long ra,
3002 unsigned long num_entries);
3003unsigned long sun4v_ldc_get_map_table(unsigned long channel,
3004 unsigned long *ra,
3005 unsigned long *num_entries);
3006unsigned long sun4v_ldc_copy(unsigned long channel,
3007 unsigned long dir_code,
3008 unsigned long tgt_raddr,
3009 unsigned long lcl_raddr,
3010 unsigned long len,
3011 unsigned long *actual_len);
3012unsigned long sun4v_ldc_mapin(unsigned long channel,
3013 unsigned long cookie,
3014 unsigned long *ra,
3015 unsigned long *perm);
3016unsigned long sun4v_ldc_unmap(unsigned long ra);
3017unsigned long sun4v_ldc_revoke(unsigned long channel,
3018 unsigned long cookie,
3019 unsigned long mte_cookie);
3020#endif
3021
3022/* Performance counter services. */
3023
3024#define HV_PERF_JBUS_PERF_CTRL_REG 0x00
3025#define HV_PERF_JBUS_PERF_CNT_REG 0x01
3026#define HV_PERF_DRAM_PERF_CTRL_REG_0 0x02
3027#define HV_PERF_DRAM_PERF_CNT_REG_0 0x03
3028#define HV_PERF_DRAM_PERF_CTRL_REG_1 0x04
3029#define HV_PERF_DRAM_PERF_CNT_REG_1 0x05
3030#define HV_PERF_DRAM_PERF_CTRL_REG_2 0x06
3031#define HV_PERF_DRAM_PERF_CNT_REG_2 0x07
3032#define HV_PERF_DRAM_PERF_CTRL_REG_3 0x08
3033#define HV_PERF_DRAM_PERF_CNT_REG_3 0x09
3034
3035/* get_perfreg()
3036 * TRAP: HV_FAST_TRAP
3037 * FUNCTION: HV_FAST_GET_PERFREG
3038 * ARG0: performance reg number
3039 * RET0: status
3040 * RET1: performance reg value
3041 * ERRORS: EINVAL Invalid performance register number
3042 * ENOACCESS No access allowed to performance counters
3043 *
3044 * Read the value of the given DRAM/JBUS performance counter/control register.
3045 */
3046#define HV_FAST_GET_PERFREG 0x100
3047
3048/* set_perfreg()
3049 * TRAP: HV_FAST_TRAP
3050 * FUNCTION: HV_FAST_SET_PERFREG
3051 * ARG0: performance reg number
3052 * ARG1: performance reg value
3053 * RET0: status
3054 * ERRORS: EINVAL Invalid performance register number
3055 * ENOACCESS No access allowed to performance counters
3056 *
3057 * Write the given performance reg value to the given DRAM/JBUS
3058 * performance counter/control register.
3059 */
3060#define HV_FAST_SET_PERFREG 0x101
3061
3062#define HV_N2_PERF_SPARC_CTL 0x0
3063#define HV_N2_PERF_DRAM_CTL0 0x1
3064#define HV_N2_PERF_DRAM_CNT0 0x2
3065#define HV_N2_PERF_DRAM_CTL1 0x3
3066#define HV_N2_PERF_DRAM_CNT1 0x4
3067#define HV_N2_PERF_DRAM_CTL2 0x5
3068#define HV_N2_PERF_DRAM_CNT2 0x6
3069#define HV_N2_PERF_DRAM_CTL3 0x7
3070#define HV_N2_PERF_DRAM_CNT3 0x8
3071
3072#define HV_FAST_N2_GET_PERFREG 0x104
3073#define HV_FAST_N2_SET_PERFREG 0x105
3074
3075#ifndef __ASSEMBLY__
3076unsigned long sun4v_niagara_getperf(unsigned long reg,
3077 unsigned long *val);
3078unsigned long sun4v_niagara_setperf(unsigned long reg,
3079 unsigned long val);
3080unsigned long sun4v_niagara2_getperf(unsigned long reg,
3081 unsigned long *val);
3082unsigned long sun4v_niagara2_setperf(unsigned long reg,
3083 unsigned long val);
3084#endif
3085
3086/* MMU statistics services.
3087 *
3088 * The hypervisor maintains MMU statistics and privileged code provides
3089 * a buffer where these statistics can be collected. It is continually
3090 * updated once configured. The layout is as follows:
3091 */
3092#ifndef __ASSEMBLY__
3093struct hv_mmu_statistics {
3094 unsigned long immu_tsb_hits_ctx0_8k_tte;
3095 unsigned long immu_tsb_ticks_ctx0_8k_tte;
3096 unsigned long immu_tsb_hits_ctx0_64k_tte;
3097 unsigned long immu_tsb_ticks_ctx0_64k_tte;
3098 unsigned long __reserved1[2];
3099 unsigned long immu_tsb_hits_ctx0_4mb_tte;
3100 unsigned long immu_tsb_ticks_ctx0_4mb_tte;
3101 unsigned long __reserved2[2];
3102 unsigned long immu_tsb_hits_ctx0_256mb_tte;
3103 unsigned long immu_tsb_ticks_ctx0_256mb_tte;
3104 unsigned long __reserved3[4];
3105 unsigned long immu_tsb_hits_ctxnon0_8k_tte;
3106 unsigned long immu_tsb_ticks_ctxnon0_8k_tte;
3107 unsigned long immu_tsb_hits_ctxnon0_64k_tte;
3108 unsigned long immu_tsb_ticks_ctxnon0_64k_tte;
3109 unsigned long __reserved4[2];
3110 unsigned long immu_tsb_hits_ctxnon0_4mb_tte;
3111 unsigned long immu_tsb_ticks_ctxnon0_4mb_tte;
3112 unsigned long __reserved5[2];
3113 unsigned long immu_tsb_hits_ctxnon0_256mb_tte;
3114 unsigned long immu_tsb_ticks_ctxnon0_256mb_tte;
3115 unsigned long __reserved6[4];
3116 unsigned long dmmu_tsb_hits_ctx0_8k_tte;
3117 unsigned long dmmu_tsb_ticks_ctx0_8k_tte;
3118 unsigned long dmmu_tsb_hits_ctx0_64k_tte;
3119 unsigned long dmmu_tsb_ticks_ctx0_64k_tte;
3120 unsigned long __reserved7[2];
3121 unsigned long dmmu_tsb_hits_ctx0_4mb_tte;
3122 unsigned long dmmu_tsb_ticks_ctx0_4mb_tte;
3123 unsigned long __reserved8[2];
3124 unsigned long dmmu_tsb_hits_ctx0_256mb_tte;
3125 unsigned long dmmu_tsb_ticks_ctx0_256mb_tte;
3126 unsigned long __reserved9[4];
3127 unsigned long dmmu_tsb_hits_ctxnon0_8k_tte;
3128 unsigned long dmmu_tsb_ticks_ctxnon0_8k_tte;
3129 unsigned long dmmu_tsb_hits_ctxnon0_64k_tte;
3130 unsigned long dmmu_tsb_ticks_ctxnon0_64k_tte;
3131 unsigned long __reserved10[2];
3132 unsigned long dmmu_tsb_hits_ctxnon0_4mb_tte;
3133 unsigned long dmmu_tsb_ticks_ctxnon0_4mb_tte;
3134 unsigned long __reserved11[2];
3135 unsigned long dmmu_tsb_hits_ctxnon0_256mb_tte;
3136 unsigned long dmmu_tsb_ticks_ctxnon0_256mb_tte;
3137 unsigned long __reserved12[4];
3138};
3139#endif
3140
3141/* mmustat_conf()
3142 * TRAP: HV_FAST_TRAP
3143 * FUNCTION: HV_FAST_MMUSTAT_CONF
3144 * ARG0: real address
3145 * RET0: status
3146 * RET1: real address
3147 * ERRORS: ENORADDR Invalid real address
3148 * EBADALIGN Real address not aligned on 64-byte boundary
3149 * EBADTRAP API not supported on this processor
3150 *
3151 * Enable MMU statistic gathering using the buffer at the given real
3152 * address on the current virtual CPU. The new buffer real address
3153 * is given in ARG1, and the previously specified buffer real address
3154 * is returned in RET1, or is returned as zero for the first invocation.
3155 *
3156 * If the passed in real address argument is zero, this will disable
3157 * MMU statistic collection on the current virtual CPU. If an error is
3158 * returned then no statistics are collected.
3159 *
3160 * The buffer contents should be initialized to all zeros before being
3161 * given to the hypervisor or else the statistics will be meaningless.
3162 */
3163#define HV_FAST_MMUSTAT_CONF 0x102
3164
3165/* mmustat_info()
3166 * TRAP: HV_FAST_TRAP
3167 * FUNCTION: HV_FAST_MMUSTAT_INFO
3168 * RET0: status
3169 * RET1: real address
3170 * ERRORS: EBADTRAP API not supported on this processor
3171 *
3172 * Return the current state and real address of the currently configured
3173 * MMU statistics buffer on the current virtual CPU.
3174 */
3175#define HV_FAST_MMUSTAT_INFO 0x103
3176
3177#ifndef __ASSEMBLY__
3178unsigned long sun4v_mmustat_conf(unsigned long ra, unsigned long *orig_ra);
3179unsigned long sun4v_mmustat_info(unsigned long *ra);
3180#endif
3181
3182/* NCS crypto services */
3183
3184/* ncs_request() sub-function numbers */
3185#define HV_NCS_QCONF 0x01
3186#define HV_NCS_QTAIL_UPDATE 0x02
3187
3188#ifndef __ASSEMBLY__
3189struct hv_ncs_queue_entry {
3190 /* MAU Control Register */
3191 unsigned long mau_control;
3192#define MAU_CONTROL_INV_PARITY 0x0000000000002000
3193#define MAU_CONTROL_STRAND 0x0000000000001800
3194#define MAU_CONTROL_BUSY 0x0000000000000400
3195#define MAU_CONTROL_INT 0x0000000000000200
3196#define MAU_CONTROL_OP 0x00000000000001c0
3197#define MAU_CONTROL_OP_SHIFT 6
3198#define MAU_OP_LOAD_MA_MEMORY 0x0
3199#define MAU_OP_STORE_MA_MEMORY 0x1
3200#define MAU_OP_MODULAR_MULT 0x2
3201#define MAU_OP_MODULAR_REDUCE 0x3
3202#define MAU_OP_MODULAR_EXP_LOOP 0x4
3203#define MAU_CONTROL_LEN 0x000000000000003f
3204#define MAU_CONTROL_LEN_SHIFT 0
3205
3206 /* Real address of bytes to load or store bytes
3207 * into/out-of the MAU.
3208 */
3209 unsigned long mau_mpa;
3210
3211 /* Modular Arithmetic MA Offset Register. */
3212 unsigned long mau_ma;
3213
3214 /* Modular Arithmetic N Prime Register. */
3215 unsigned long mau_np;
3216};
3217
3218struct hv_ncs_qconf_arg {
3219 unsigned long mid; /* MAU ID, 1 per core on Niagara */
3220 unsigned long base; /* Real address base of queue */
3221 unsigned long end; /* Real address end of queue */
3222 unsigned long num_ents; /* Number of entries in queue */
3223};
3224
3225struct hv_ncs_qtail_update_arg {
3226 unsigned long mid; /* MAU ID, 1 per core on Niagara */
3227 unsigned long tail; /* New tail index to use */
3228 unsigned long syncflag; /* only SYNCFLAG_SYNC is implemented */
3229#define HV_NCS_SYNCFLAG_SYNC 0x00
3230#define HV_NCS_SYNCFLAG_ASYNC 0x01
3231};
3232#endif
3233
3234/* ncs_request()
3235 * TRAP: HV_FAST_TRAP
3236 * FUNCTION: HV_FAST_NCS_REQUEST
3237 * ARG0: NCS sub-function
3238 * ARG1: sub-function argument real address
3239 * ARG2: size in bytes of sub-function argument
3240 * RET0: status
3241 *
3242 * The MAU chip of the Niagara processor is not directly accessible
3243 * to privileged code, instead it is programmed indirectly via this
3244 * hypervisor API.
3245 *
3246 * The interfaces defines a queue of MAU operations to perform.
3247 * Privileged code registers a queue with the hypervisor by invoking
3248 * this HVAPI with the HV_NCS_QCONF sub-function, which defines the
3249 * base, end, and number of entries of the queue. Each queue entry
3250 * contains a MAU register struct block.
3251 *
3252 * The privileged code then proceeds to add entries to the queue and
3253 * then invoke the HV_NCS_QTAIL_UPDATE sub-function. Since only
3254 * synchronous operations are supported by the current hypervisor,
3255 * HV_NCS_QTAIL_UPDATE will run all the pending queue entries to
3256 * completion and return HV_EOK, or return an error code.
3257 *
3258 * The real address of the sub-function argument must be aligned on at
3259 * least an 8-byte boundary.
3260 *
3261 * The tail argument of HV_NCS_QTAIL_UPDATE is an index, not a byte
3262 * offset, into the queue and must be less than or equal the 'num_ents'
3263 * argument given in the HV_NCS_QCONF call.
3264 */
3265#define HV_FAST_NCS_REQUEST 0x110
3266
3267#ifndef __ASSEMBLY__
3268unsigned long sun4v_ncs_request(unsigned long request,
3269 unsigned long arg_ra,
3270 unsigned long arg_size);
3271#endif
3272
3273#define HV_FAST_FIRE_GET_PERFREG 0x120
3274#define HV_FAST_FIRE_SET_PERFREG 0x121
3275
3276#define HV_FAST_REBOOT_DATA_SET 0x172
3277
3278#ifndef __ASSEMBLY__
3279unsigned long sun4v_reboot_data_set(unsigned long ra,
3280 unsigned long len);
3281#endif
3282
3283#define HV_FAST_VT_GET_PERFREG 0x184
3284#define HV_FAST_VT_SET_PERFREG 0x185
3285
3286#ifndef __ASSEMBLY__
3287unsigned long sun4v_vt_get_perfreg(unsigned long reg_num,
3288 unsigned long *reg_val);
3289unsigned long sun4v_vt_set_perfreg(unsigned long reg_num,
3290 unsigned long reg_val);
3291#endif
3292
3293#define HV_FAST_T5_GET_PERFREG 0x1a8
3294#define HV_FAST_T5_SET_PERFREG 0x1a9
3295
3296#ifndef __ASSEMBLY__
3297unsigned long sun4v_t5_get_perfreg(unsigned long reg_num,
3298 unsigned long *reg_val);
3299unsigned long sun4v_t5_set_perfreg(unsigned long reg_num,
3300 unsigned long reg_val);
3301#endif
3302
3303
3304#define HV_FAST_M7_GET_PERFREG 0x43
3305#define HV_FAST_M7_SET_PERFREG 0x44
3306
3307#ifndef __ASSEMBLY__
3308unsigned long sun4v_m7_get_perfreg(unsigned long reg_num,
3309 unsigned long *reg_val);
3310unsigned long sun4v_m7_set_perfreg(unsigned long reg_num,
3311 unsigned long reg_val);
3312#endif
3313
3314/* Function numbers for HV_CORE_TRAP. */
3315#define HV_CORE_SET_VER 0x00
3316#define HV_CORE_PUTCHAR 0x01
3317#define HV_CORE_EXIT 0x02
3318#define HV_CORE_GET_VER 0x03
3319
3320/* Hypervisor API groups for use with HV_CORE_SET_VER and
3321 * HV_CORE_GET_VER.
3322 */
3323#define HV_GRP_SUN4V 0x0000
3324#define HV_GRP_CORE 0x0001
3325#define HV_GRP_INTR 0x0002
3326#define HV_GRP_SOFT_STATE 0x0003
3327#define HV_GRP_TM 0x0080
3328#define HV_GRP_PCI 0x0100
3329#define HV_GRP_LDOM 0x0101
3330#define HV_GRP_SVC_CHAN 0x0102
3331#define HV_GRP_NCS 0x0103
3332#define HV_GRP_RNG 0x0104
3333#define HV_GRP_PBOOT 0x0105
3334#define HV_GRP_TPM 0x0107
3335#define HV_GRP_SDIO 0x0108
3336#define HV_GRP_SDIO_ERR 0x0109
3337#define HV_GRP_REBOOT_DATA 0x0110
3338#define HV_GRP_ATU 0x0111
3339#define HV_GRP_M7_PERF 0x0114
3340#define HV_GRP_NIAG_PERF 0x0200
3341#define HV_GRP_FIRE_PERF 0x0201
3342#define HV_GRP_N2_CPU 0x0202
3343#define HV_GRP_NIU 0x0204
3344#define HV_GRP_VF_CPU 0x0205
3345#define HV_GRP_KT_CPU 0x0209
3346#define HV_GRP_VT_CPU 0x020c
3347#define HV_GRP_T5_CPU 0x0211
3348#define HV_GRP_DIAG 0x0300
3349
3350#ifndef __ASSEMBLY__
3351unsigned long sun4v_get_version(unsigned long group,
3352 unsigned long *major,
3353 unsigned long *minor);
3354unsigned long sun4v_set_version(unsigned long group,
3355 unsigned long major,
3356 unsigned long minor,
3357 unsigned long *actual_minor);
3358
3359int sun4v_hvapi_register(unsigned long group, unsigned long major,
3360 unsigned long *minor);
3361void sun4v_hvapi_unregister(unsigned long group);
3362int sun4v_hvapi_get(unsigned long group,
3363 unsigned long *major,
3364 unsigned long *minor);
3365void sun4v_hvapi_init(void);
3366#endif
3367
3368#endif /* !(_SPARC64_HYPERVISOR_H) */