Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * Common time routines among all ppc machines.
   3 *
   4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
   5 * Paul Mackerras' version and mine for PReP and Pmac.
   6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
   7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
   8 *
   9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10 * to make clock more stable (2.4.0-test5). The only thing
  11 * that this code assumes is that the timebases have been synchronized
  12 * by firmware on SMP and are never stopped (never do sleep
  13 * on SMP then, nap and doze are OK).
  14 * 
  15 * Speeded up do_gettimeofday by getting rid of references to
  16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17 *
  18 * TODO (not necessarily in this file):
  19 * - improve precision and reproducibility of timebase frequency
  20 * measurement at boot time.
  21 * - for astronomical applications: add a new function to get
  22 * non ambiguous timestamps even around leap seconds. This needs
  23 * a new timestamp format and a good name.
  24 *
  25 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
  26 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
  27 *
  28 *      This program is free software; you can redistribute it and/or
  29 *      modify it under the terms of the GNU General Public License
  30 *      as published by the Free Software Foundation; either version
  31 *      2 of the License, or (at your option) any later version.
  32 */
  33
  34#include <linux/errno.h>
  35#include <linux/export.h>
  36#include <linux/sched.h>
  37#include <linux/sched/clock.h>
  38#include <linux/kernel.h>
  39#include <linux/param.h>
  40#include <linux/string.h>
  41#include <linux/mm.h>
  42#include <linux/interrupt.h>
  43#include <linux/timex.h>
  44#include <linux/kernel_stat.h>
  45#include <linux/time.h>
  46#include <linux/clockchips.h>
  47#include <linux/init.h>
  48#include <linux/profile.h>
  49#include <linux/cpu.h>
  50#include <linux/security.h>
  51#include <linux/percpu.h>
  52#include <linux/rtc.h>
  53#include <linux/jiffies.h>
  54#include <linux/posix-timers.h>
  55#include <linux/irq.h>
  56#include <linux/delay.h>
  57#include <linux/irq_work.h>
  58#include <linux/clk-provider.h>
  59#include <linux/suspend.h>
  60#include <linux/rtc.h>
  61#include <linux/sched/cputime.h>
  62#include <linux/processor.h>
  63#include <asm/trace.h>
  64
  65#include <asm/io.h>
 
  66#include <asm/nvram.h>
  67#include <asm/cache.h>
  68#include <asm/machdep.h>
  69#include <linux/uaccess.h>
  70#include <asm/time.h>
  71#include <asm/prom.h>
  72#include <asm/irq.h>
  73#include <asm/div64.h>
  74#include <asm/smp.h>
  75#include <asm/vdso_datapage.h>
  76#include <asm/firmware.h>
 
  77#include <asm/asm-prototypes.h>
  78
  79/* powerpc clocksource/clockevent code */
  80
  81#include <linux/clockchips.h>
  82#include <linux/timekeeper_internal.h>
  83
  84static u64 rtc_read(struct clocksource *);
  85static struct clocksource clocksource_rtc = {
  86	.name         = "rtc",
  87	.rating       = 400,
  88	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  89	.mask         = CLOCKSOURCE_MASK(64),
  90	.read         = rtc_read,
  91};
  92
  93static u64 timebase_read(struct clocksource *);
  94static struct clocksource clocksource_timebase = {
  95	.name         = "timebase",
  96	.rating       = 400,
  97	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  98	.mask         = CLOCKSOURCE_MASK(64),
  99	.read         = timebase_read,
 100};
 101
 102#define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
 103u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
 104
 105static int decrementer_set_next_event(unsigned long evt,
 106				      struct clock_event_device *dev);
 107static int decrementer_shutdown(struct clock_event_device *evt);
 108
 109struct clock_event_device decrementer_clockevent = {
 110	.name			= "decrementer",
 111	.rating			= 200,
 112	.irq			= 0,
 113	.set_next_event		= decrementer_set_next_event,
 114	.set_state_shutdown	= decrementer_shutdown,
 115	.tick_resume		= decrementer_shutdown,
 116	.features		= CLOCK_EVT_FEAT_ONESHOT |
 117				  CLOCK_EVT_FEAT_C3STOP,
 118};
 119EXPORT_SYMBOL(decrementer_clockevent);
 120
 121DEFINE_PER_CPU(u64, decrementers_next_tb);
 122static DEFINE_PER_CPU(struct clock_event_device, decrementers);
 123
 124#define XSEC_PER_SEC (1024*1024)
 125
 126#ifdef CONFIG_PPC64
 127#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
 128#else
 129/* compute ((xsec << 12) * max) >> 32 */
 130#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
 131#endif
 132
 133unsigned long tb_ticks_per_jiffy;
 134unsigned long tb_ticks_per_usec = 100; /* sane default */
 135EXPORT_SYMBOL(tb_ticks_per_usec);
 136unsigned long tb_ticks_per_sec;
 137EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
 138
 139DEFINE_SPINLOCK(rtc_lock);
 140EXPORT_SYMBOL_GPL(rtc_lock);
 141
 142static u64 tb_to_ns_scale __read_mostly;
 143static unsigned tb_to_ns_shift __read_mostly;
 144static u64 boot_tb __read_mostly;
 145
 146extern struct timezone sys_tz;
 147static long timezone_offset;
 148
 149unsigned long ppc_proc_freq;
 150EXPORT_SYMBOL_GPL(ppc_proc_freq);
 151unsigned long ppc_tb_freq;
 152EXPORT_SYMBOL_GPL(ppc_tb_freq);
 153
 154#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 155/*
 156 * Factor for converting from cputime_t (timebase ticks) to
 157 * microseconds. This is stored as 0.64 fixed-point binary fraction.
 
 158 */
 
 
 159u64 __cputime_usec_factor;
 160EXPORT_SYMBOL(__cputime_usec_factor);
 
 
 
 
 
 
 161
 162#ifdef CONFIG_PPC_SPLPAR
 163void (*dtl_consumer)(struct dtl_entry *, u64);
 164#endif
 165
 166#ifdef CONFIG_PPC64
 167#define get_accounting(tsk)	(&get_paca()->accounting)
 168#else
 169#define get_accounting(tsk)	(&task_thread_info(tsk)->accounting)
 170#endif
 171
 172static void calc_cputime_factors(void)
 173{
 174	struct div_result res;
 175
 
 
 176	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
 177	__cputime_usec_factor = res.result_low;
 
 
 
 
 178}
 179
 180/*
 181 * Read the SPURR on systems that have it, otherwise the PURR,
 182 * or if that doesn't exist return the timebase value passed in.
 183 */
 184static unsigned long read_spurr(unsigned long tb)
 185{
 186	if (cpu_has_feature(CPU_FTR_SPURR))
 187		return mfspr(SPRN_SPURR);
 188	if (cpu_has_feature(CPU_FTR_PURR))
 189		return mfspr(SPRN_PURR);
 190	return tb;
 191}
 192
 193#ifdef CONFIG_PPC_SPLPAR
 194
 195/*
 196 * Scan the dispatch trace log and count up the stolen time.
 197 * Should be called with interrupts disabled.
 198 */
 199static u64 scan_dispatch_log(u64 stop_tb)
 200{
 201	u64 i = local_paca->dtl_ridx;
 202	struct dtl_entry *dtl = local_paca->dtl_curr;
 203	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
 204	struct lppaca *vpa = local_paca->lppaca_ptr;
 205	u64 tb_delta;
 206	u64 stolen = 0;
 207	u64 dtb;
 208
 209	if (!dtl)
 210		return 0;
 211
 212	if (i == be64_to_cpu(vpa->dtl_idx))
 213		return 0;
 214	while (i < be64_to_cpu(vpa->dtl_idx)) {
 215		dtb = be64_to_cpu(dtl->timebase);
 216		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
 217			be32_to_cpu(dtl->ready_to_enqueue_time);
 218		barrier();
 219		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
 220			/* buffer has overflowed */
 221			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
 222			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
 223			continue;
 224		}
 225		if (dtb > stop_tb)
 226			break;
 227		if (dtl_consumer)
 228			dtl_consumer(dtl, i);
 229		stolen += tb_delta;
 230		++i;
 231		++dtl;
 232		if (dtl == dtl_end)
 233			dtl = local_paca->dispatch_log;
 234	}
 235	local_paca->dtl_ridx = i;
 236	local_paca->dtl_curr = dtl;
 237	return stolen;
 238}
 239
 240/*
 241 * Accumulate stolen time by scanning the dispatch trace log.
 242 * Called on entry from user mode.
 243 */
 244void accumulate_stolen_time(void)
 245{
 246	u64 sst, ust;
 247	unsigned long save_irq_soft_mask = irq_soft_mask_return();
 248	struct cpu_accounting_data *acct = &local_paca->accounting;
 249
 250	/* We are called early in the exception entry, before
 251	 * soft/hard_enabled are sync'ed to the expected state
 252	 * for the exception. We are hard disabled but the PACA
 253	 * needs to reflect that so various debug stuff doesn't
 254	 * complain
 255	 */
 256	irq_soft_mask_set(IRQS_DISABLED);
 257
 258	sst = scan_dispatch_log(acct->starttime_user);
 259	ust = scan_dispatch_log(acct->starttime);
 260	acct->stime -= sst;
 261	acct->utime -= ust;
 262	acct->steal_time += ust + sst;
 263
 264	irq_soft_mask_set(save_irq_soft_mask);
 265}
 266
 267static inline u64 calculate_stolen_time(u64 stop_tb)
 268{
 269	if (!firmware_has_feature(FW_FEATURE_SPLPAR))
 270		return 0;
 271
 272	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
 273		return scan_dispatch_log(stop_tb);
 
 
 274
 275	return 0;
 
 
 276}
 277
 278#else /* CONFIG_PPC_SPLPAR */
 279static inline u64 calculate_stolen_time(u64 stop_tb)
 280{
 281	return 0;
 282}
 283
 284#endif /* CONFIG_PPC_SPLPAR */
 285
 286/*
 287 * Account time for a transition between system, hard irq
 288 * or soft irq state.
 289 */
 290static unsigned long vtime_delta(struct task_struct *tsk,
 291				 unsigned long *stime_scaled,
 292				 unsigned long *steal_time)
 293{
 294	unsigned long now, nowscaled, deltascaled;
 295	unsigned long stime;
 296	unsigned long utime, utime_scaled;
 297	struct cpu_accounting_data *acct = get_accounting(tsk);
 298
 299	WARN_ON_ONCE(!irqs_disabled());
 300
 301	now = mftb();
 302	nowscaled = read_spurr(now);
 303	stime = now - acct->starttime;
 304	acct->starttime = now;
 305	deltascaled = nowscaled - acct->startspurr;
 306	acct->startspurr = nowscaled;
 307
 308	*steal_time = calculate_stolen_time(now);
 309
 310	utime = acct->utime - acct->utime_sspurr;
 311	acct->utime_sspurr = acct->utime;
 
 
 312
 313	/*
 314	 * Because we don't read the SPURR on every kernel entry/exit,
 315	 * deltascaled includes both user and system SPURR ticks.
 316	 * Apportion these ticks to system SPURR ticks and user
 317	 * SPURR ticks in the same ratio as the system time (delta)
 318	 * and user time (udelta) values obtained from the timebase
 319	 * over the same interval.  The system ticks get accounted here;
 320	 * the user ticks get saved up in paca->user_time_scaled to be
 321	 * used by account_process_tick.
 322	 */
 323	*stime_scaled = stime;
 324	utime_scaled = utime;
 325	if (deltascaled != stime + utime) {
 326		if (utime) {
 327			*stime_scaled = deltascaled * stime / (stime + utime);
 328			utime_scaled = deltascaled - *stime_scaled;
 329		} else {
 330			*stime_scaled = deltascaled;
 331		}
 332	}
 333	acct->utime_scaled += utime_scaled;
 334
 335	return stime;
 336}
 337
 338void vtime_account_system(struct task_struct *tsk)
 339{
 340	unsigned long stime, stime_scaled, steal_time;
 341	struct cpu_accounting_data *acct = get_accounting(tsk);
 342
 343	stime = vtime_delta(tsk, &stime_scaled, &steal_time);
 344
 345	stime -= min(stime, steal_time);
 346	acct->steal_time += steal_time;
 347
 348	if ((tsk->flags & PF_VCPU) && !irq_count()) {
 349		acct->gtime += stime;
 350		acct->utime_scaled += stime_scaled;
 351	} else {
 352		if (hardirq_count())
 353			acct->hardirq_time += stime;
 354		else if (in_serving_softirq())
 355			acct->softirq_time += stime;
 356		else
 357			acct->stime += stime;
 358
 359		acct->stime_scaled += stime_scaled;
 360	}
 361}
 362EXPORT_SYMBOL_GPL(vtime_account_system);
 363
 364void vtime_account_idle(struct task_struct *tsk)
 365{
 366	unsigned long stime, stime_scaled, steal_time;
 367	struct cpu_accounting_data *acct = get_accounting(tsk);
 368
 369	stime = vtime_delta(tsk, &stime_scaled, &steal_time);
 370	acct->idle_time += stime + steal_time;
 371}
 372
 373/*
 374 * Account the whole cputime accumulated in the paca
 
 
 375 * Must be called with interrupts disabled.
 376 * Assumes that vtime_account_system/idle() has been called
 377 * recently (i.e. since the last entry from usermode) so that
 378 * get_paca()->user_time_scaled is up to date.
 379 */
 380void vtime_flush(struct task_struct *tsk)
 381{
 
 382	struct cpu_accounting_data *acct = get_accounting(tsk);
 383
 384	if (acct->utime)
 385		account_user_time(tsk, cputime_to_nsecs(acct->utime));
 386
 387	if (acct->utime_scaled)
 388		tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
 389
 390	if (acct->gtime)
 391		account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
 392
 393	if (acct->steal_time)
 394		account_steal_time(cputime_to_nsecs(acct->steal_time));
 395
 396	if (acct->idle_time)
 397		account_idle_time(cputime_to_nsecs(acct->idle_time));
 398
 399	if (acct->stime)
 400		account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
 401					  CPUTIME_SYSTEM);
 402	if (acct->stime_scaled)
 403		tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
 404
 405	if (acct->hardirq_time)
 406		account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
 407					  CPUTIME_IRQ);
 408	if (acct->softirq_time)
 409		account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
 410					  CPUTIME_SOFTIRQ);
 411
 412	acct->utime = 0;
 413	acct->utime_scaled = 0;
 414	acct->utime_sspurr = 0;
 415	acct->gtime = 0;
 416	acct->steal_time = 0;
 417	acct->idle_time = 0;
 418	acct->stime = 0;
 419	acct->stime_scaled = 0;
 420	acct->hardirq_time = 0;
 421	acct->softirq_time = 0;
 422}
 423
 424#ifdef CONFIG_PPC32
 425/*
 426 * Called from the context switch with interrupts disabled, to charge all
 427 * accumulated times to the current process, and to prepare accounting on
 428 * the next process.
 429 */
 430void arch_vtime_task_switch(struct task_struct *prev)
 431{
 432	struct cpu_accounting_data *acct = get_accounting(current);
 433
 434	acct->starttime = get_accounting(prev)->starttime;
 435	acct->startspurr = get_accounting(prev)->startspurr;
 
 436}
 437#endif /* CONFIG_PPC32 */
 438
 439#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 440#define calc_cputime_factors()
 441#endif
 442
 443void __delay(unsigned long loops)
 444{
 445	unsigned long start;
 446	int diff;
 447
 448	spin_begin();
 449	if (__USE_RTC()) {
 450		start = get_rtcl();
 451		do {
 452			/* the RTCL register wraps at 1000000000 */
 453			diff = get_rtcl() - start;
 454			if (diff < 0)
 455				diff += 1000000000;
 456			spin_cpu_relax();
 457		} while (diff < loops);
 458	} else {
 459		start = get_tbl();
 460		while (get_tbl() - start < loops)
 461			spin_cpu_relax();
 
 462	}
 463	spin_end();
 464}
 465EXPORT_SYMBOL(__delay);
 466
 467void udelay(unsigned long usecs)
 468{
 469	__delay(tb_ticks_per_usec * usecs);
 470}
 471EXPORT_SYMBOL(udelay);
 472
 473#ifdef CONFIG_SMP
 474unsigned long profile_pc(struct pt_regs *regs)
 475{
 476	unsigned long pc = instruction_pointer(regs);
 477
 478	if (in_lock_functions(pc))
 479		return regs->link;
 480
 481	return pc;
 482}
 483EXPORT_SYMBOL(profile_pc);
 484#endif
 485
 486#ifdef CONFIG_IRQ_WORK
 487
 488/*
 489 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 490 */
 491#ifdef CONFIG_PPC64
 492static inline unsigned long test_irq_work_pending(void)
 493{
 494	unsigned long x;
 495
 496	asm volatile("lbz %0,%1(13)"
 497		: "=r" (x)
 498		: "i" (offsetof(struct paca_struct, irq_work_pending)));
 499	return x;
 500}
 501
 502static inline void set_irq_work_pending_flag(void)
 503{
 504	asm volatile("stb %0,%1(13)" : :
 505		"r" (1),
 506		"i" (offsetof(struct paca_struct, irq_work_pending)));
 507}
 508
 509static inline void clear_irq_work_pending(void)
 510{
 511	asm volatile("stb %0,%1(13)" : :
 512		"r" (0),
 513		"i" (offsetof(struct paca_struct, irq_work_pending)));
 514}
 515
 516#else /* 32-bit */
 517
 518DEFINE_PER_CPU(u8, irq_work_pending);
 519
 520#define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
 521#define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
 522#define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
 523
 524#endif /* 32 vs 64 bit */
 525
 526void arch_irq_work_raise(void)
 527{
 528	preempt_disable();
 529	set_irq_work_pending_flag();
 530	set_dec(1);
 531	preempt_enable();
 532}
 533
 534#else  /* CONFIG_IRQ_WORK */
 535
 536#define test_irq_work_pending()	0
 537#define clear_irq_work_pending()
 538
 539#endif /* CONFIG_IRQ_WORK */
 540
 541static void __timer_interrupt(void)
 542{
 543	struct pt_regs *regs = get_irq_regs();
 544	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 545	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
 546	u64 now;
 547
 548	trace_timer_interrupt_entry(regs);
 549
 550	if (test_irq_work_pending()) {
 551		clear_irq_work_pending();
 552		irq_work_run();
 553	}
 554
 555	now = get_tb_or_rtc();
 556	if (now >= *next_tb) {
 557		*next_tb = ~(u64)0;
 558		if (evt->event_handler)
 559			evt->event_handler(evt);
 560		__this_cpu_inc(irq_stat.timer_irqs_event);
 561	} else {
 562		now = *next_tb - now;
 563		if (now <= decrementer_max)
 564			set_dec(now);
 565		/* We may have raced with new irq work */
 566		if (test_irq_work_pending())
 567			set_dec(1);
 568		__this_cpu_inc(irq_stat.timer_irqs_others);
 569	}
 570
 571#ifdef CONFIG_PPC64
 572	/* collect purr register values often, for accurate calculations */
 573	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
 574		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
 575		cu->current_tb = mfspr(SPRN_PURR);
 576	}
 577#endif
 578
 579	trace_timer_interrupt_exit(regs);
 580}
 581
 582/*
 583 * timer_interrupt - gets called when the decrementer overflows,
 584 * with interrupts disabled.
 585 */
 586void timer_interrupt(struct pt_regs * regs)
 587{
 588	struct pt_regs *old_regs;
 589	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 590
 591	/* Ensure a positive value is written to the decrementer, or else
 592	 * some CPUs will continue to take decrementer exceptions.
 593	 */
 594	set_dec(decrementer_max);
 595
 596	/* Some implementations of hotplug will get timer interrupts while
 597	 * offline, just ignore these and we also need to set
 598	 * decrementers_next_tb as MAX to make sure __check_irq_replay
 599	 * don't replay timer interrupt when return, otherwise we'll trap
 600	 * here infinitely :(
 601	 */
 602	if (!cpu_online(smp_processor_id())) {
 603		*next_tb = ~(u64)0;
 604		return;
 605	}
 606
 607	/* Conditionally hard-enable interrupts now that the DEC has been
 608	 * bumped to its maximum value
 609	 */
 610	may_hard_irq_enable();
 611
 612
 613#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
 614	if (atomic_read(&ppc_n_lost_interrupts) != 0)
 615		do_IRQ(regs);
 616#endif
 617
 618	old_regs = set_irq_regs(regs);
 619	irq_enter();
 620
 621	__timer_interrupt();
 622	irq_exit();
 623	set_irq_regs(old_regs);
 624}
 625EXPORT_SYMBOL(timer_interrupt);
 626
 627/*
 628 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
 629 * left pending on exit from a KVM guest.  We don't need to do anything
 630 * to clear them, as they are edge-triggered.
 631 */
 632void hdec_interrupt(struct pt_regs *regs)
 633{
 634}
 635
 636#ifdef CONFIG_SUSPEND
 637static void generic_suspend_disable_irqs(void)
 638{
 639	/* Disable the decrementer, so that it doesn't interfere
 640	 * with suspending.
 641	 */
 642
 643	set_dec(decrementer_max);
 644	local_irq_disable();
 645	set_dec(decrementer_max);
 646}
 647
 648static void generic_suspend_enable_irqs(void)
 649{
 650	local_irq_enable();
 651}
 652
 653/* Overrides the weak version in kernel/power/main.c */
 654void arch_suspend_disable_irqs(void)
 655{
 656	if (ppc_md.suspend_disable_irqs)
 657		ppc_md.suspend_disable_irqs();
 658	generic_suspend_disable_irqs();
 659}
 660
 661/* Overrides the weak version in kernel/power/main.c */
 662void arch_suspend_enable_irqs(void)
 663{
 664	generic_suspend_enable_irqs();
 665	if (ppc_md.suspend_enable_irqs)
 666		ppc_md.suspend_enable_irqs();
 667}
 668#endif
 669
 670unsigned long long tb_to_ns(unsigned long long ticks)
 671{
 672	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
 673}
 674EXPORT_SYMBOL_GPL(tb_to_ns);
 675
 676/*
 677 * Scheduler clock - returns current time in nanosec units.
 678 *
 679 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 680 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 681 * are 64-bit unsigned numbers.
 682 */
 683notrace unsigned long long sched_clock(void)
 684{
 685	if (__USE_RTC())
 686		return get_rtc();
 687	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 688}
 689
 690
 691#ifdef CONFIG_PPC_PSERIES
 692
 693/*
 694 * Running clock - attempts to give a view of time passing for a virtualised
 695 * kernels.
 696 * Uses the VTB register if available otherwise a next best guess.
 697 */
 698unsigned long long running_clock(void)
 699{
 700	/*
 701	 * Don't read the VTB as a host since KVM does not switch in host
 702	 * timebase into the VTB when it takes a guest off the CPU, reading the
 703	 * VTB would result in reading 'last switched out' guest VTB.
 704	 *
 705	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
 706	 * would be unsafe to rely only on the #ifdef above.
 707	 */
 708	if (firmware_has_feature(FW_FEATURE_LPAR) &&
 709	    cpu_has_feature(CPU_FTR_ARCH_207S))
 710		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 711
 712	/*
 713	 * This is a next best approximation without a VTB.
 714	 * On a host which is running bare metal there should never be any stolen
 715	 * time and on a host which doesn't do any virtualisation TB *should* equal
 716	 * VTB so it makes no difference anyway.
 717	 */
 718	return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
 719}
 720#endif
 721
 722static int __init get_freq(char *name, int cells, unsigned long *val)
 723{
 724	struct device_node *cpu;
 725	const __be32 *fp;
 726	int found = 0;
 727
 728	/* The cpu node should have timebase and clock frequency properties */
 729	cpu = of_find_node_by_type(NULL, "cpu");
 730
 731	if (cpu) {
 732		fp = of_get_property(cpu, name, NULL);
 733		if (fp) {
 734			found = 1;
 735			*val = of_read_ulong(fp, cells);
 736		}
 737
 738		of_node_put(cpu);
 739	}
 740
 741	return found;
 742}
 743
 744static void start_cpu_decrementer(void)
 745{
 746#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
 747	unsigned int tcr;
 748
 749	/* Clear any pending timer interrupts */
 750	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
 751
 752	tcr = mfspr(SPRN_TCR);
 753	/*
 754	 * The watchdog may have already been enabled by u-boot. So leave
 755	 * TRC[WP] (Watchdog Period) alone.
 756	 */
 757	tcr &= TCR_WP_MASK;	/* Clear all bits except for TCR[WP] */
 758	tcr |= TCR_DIE;		/* Enable decrementer */
 759	mtspr(SPRN_TCR, tcr);
 760#endif
 761}
 762
 763void __init generic_calibrate_decr(void)
 764{
 765	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
 766
 767	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
 768	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
 769
 770		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
 771				"(not found)\n");
 772	}
 773
 774	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
 775
 776	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
 777	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
 778
 779		printk(KERN_ERR "WARNING: Estimating processor frequency "
 780				"(not found)\n");
 781	}
 782}
 783
 784int update_persistent_clock(struct timespec now)
 785{
 786	struct rtc_time tm;
 787
 788	if (!ppc_md.set_rtc_time)
 789		return -ENODEV;
 790
 791	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
 792	tm.tm_year -= 1900;
 793	tm.tm_mon -= 1;
 794
 795	return ppc_md.set_rtc_time(&tm);
 796}
 797
 798static void __read_persistent_clock(struct timespec *ts)
 799{
 800	struct rtc_time tm;
 801	static int first = 1;
 802
 803	ts->tv_nsec = 0;
 804	/* XXX this is a litle fragile but will work okay in the short term */
 805	if (first) {
 806		first = 0;
 807		if (ppc_md.time_init)
 808			timezone_offset = ppc_md.time_init();
 809
 810		/* get_boot_time() isn't guaranteed to be safe to call late */
 811		if (ppc_md.get_boot_time) {
 812			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
 813			return;
 814		}
 815	}
 816	if (!ppc_md.get_rtc_time) {
 817		ts->tv_sec = 0;
 818		return;
 819	}
 820	ppc_md.get_rtc_time(&tm);
 821
 822	ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
 823			    tm.tm_hour, tm.tm_min, tm.tm_sec);
 824}
 825
 826void read_persistent_clock(struct timespec *ts)
 827{
 828	__read_persistent_clock(ts);
 829
 830	/* Sanitize it in case real time clock is set below EPOCH */
 831	if (ts->tv_sec < 0) {
 832		ts->tv_sec = 0;
 833		ts->tv_nsec = 0;
 834	}
 835		
 836}
 837
 838/* clocksource code */
 839static notrace u64 rtc_read(struct clocksource *cs)
 840{
 841	return (u64)get_rtc();
 842}
 843
 844static notrace u64 timebase_read(struct clocksource *cs)
 845{
 846	return (u64)get_tb();
 847}
 848
 849
 850void update_vsyscall(struct timekeeper *tk)
 851{
 852	struct timespec xt;
 853	struct clocksource *clock = tk->tkr_mono.clock;
 854	u32 mult = tk->tkr_mono.mult;
 855	u32 shift = tk->tkr_mono.shift;
 856	u64 cycle_last = tk->tkr_mono.cycle_last;
 857	u64 new_tb_to_xs, new_stamp_xsec;
 858	u64 frac_sec;
 859
 860	if (clock != &clocksource_timebase)
 861		return;
 862
 863	xt.tv_sec = tk->xtime_sec;
 864	xt.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 865
 866	/* Make userspace gettimeofday spin until we're done. */
 867	++vdso_data->tb_update_count;
 868	smp_mb();
 869
 870	/*
 871	 * This computes ((2^20 / 1e9) * mult) >> shift as a
 872	 * 0.64 fixed-point fraction.
 873	 * The computation in the else clause below won't overflow
 874	 * (as long as the timebase frequency is >= 1.049 MHz)
 875	 * but loses precision because we lose the low bits of the constant
 876	 * in the shift.  Note that 19342813113834067 ~= 2^(20+64) / 1e9.
 877	 * For a shift of 24 the error is about 0.5e-9, or about 0.5ns
 878	 * over a second.  (Shift values are usually 22, 23 or 24.)
 879	 * For high frequency clocks such as the 512MHz timebase clock
 880	 * on POWER[6789], the mult value is small (e.g. 32768000)
 881	 * and so we can shift the constant by 16 initially
 882	 * (295147905179 ~= 2^(20+64-16) / 1e9) and then do the
 883	 * remaining shifts after the multiplication, which gives a
 884	 * more accurate result (e.g. with mult = 32768000, shift = 24,
 885	 * the error is only about 1.2e-12, or 0.7ns over 10 minutes).
 886	 */
 887	if (mult <= 62500000 && clock->shift >= 16)
 888		new_tb_to_xs = ((u64) mult * 295147905179ULL) >> (clock->shift - 16);
 889	else
 890		new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
 891
 892	/*
 893	 * Compute the fractional second in units of 2^-32 seconds.
 894	 * The fractional second is tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift
 895	 * in nanoseconds, so multiplying that by 2^32 / 1e9 gives
 896	 * it in units of 2^-32 seconds.
 897	 * We assume shift <= 32 because clocks_calc_mult_shift()
 898	 * generates shift values in the range 0 - 32.
 899	 */
 900	frac_sec = tk->tkr_mono.xtime_nsec << (32 - shift);
 901	do_div(frac_sec, NSEC_PER_SEC);
 902
 903	/*
 904	 * Work out new stamp_xsec value for any legacy users of systemcfg.
 905	 * stamp_xsec is in units of 2^-20 seconds.
 906	 */
 907	new_stamp_xsec = frac_sec >> 12;
 908	new_stamp_xsec += tk->xtime_sec * XSEC_PER_SEC;
 909
 910	/*
 911	 * tb_update_count is used to allow the userspace gettimeofday code
 912	 * to assure itself that it sees a consistent view of the tb_to_xs and
 913	 * stamp_xsec variables.  It reads the tb_update_count, then reads
 914	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
 915	 * the two values of tb_update_count match and are even then the
 916	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
 917	 * loops back and reads them again until this criteria is met.
 
 
 918	 */
 919	vdso_data->tb_orig_stamp = cycle_last;
 920	vdso_data->stamp_xsec = new_stamp_xsec;
 921	vdso_data->tb_to_xs = new_tb_to_xs;
 922	vdso_data->wtom_clock_sec = tk->wall_to_monotonic.tv_sec;
 923	vdso_data->wtom_clock_nsec = tk->wall_to_monotonic.tv_nsec;
 924	vdso_data->stamp_xtime = xt;
 925	vdso_data->stamp_sec_fraction = frac_sec;
 926	smp_wmb();
 927	++(vdso_data->tb_update_count);
 928}
 929
 930void update_vsyscall_tz(void)
 931{
 932	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 933	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 934}
 935
 936static void __init clocksource_init(void)
 937{
 938	struct clocksource *clock;
 939
 940	if (__USE_RTC())
 941		clock = &clocksource_rtc;
 942	else
 943		clock = &clocksource_timebase;
 944
 945	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
 946		printk(KERN_ERR "clocksource: %s is already registered\n",
 947		       clock->name);
 948		return;
 949	}
 950
 951	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
 952	       clock->name, clock->mult, clock->shift);
 953}
 954
 955static int decrementer_set_next_event(unsigned long evt,
 956				      struct clock_event_device *dev)
 957{
 958	__this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
 959	set_dec(evt);
 960
 961	/* We may have raced with new irq work */
 962	if (test_irq_work_pending())
 963		set_dec(1);
 964
 965	return 0;
 966}
 967
 968static int decrementer_shutdown(struct clock_event_device *dev)
 969{
 970	decrementer_set_next_event(decrementer_max, dev);
 971	return 0;
 972}
 973
 974/* Interrupt handler for the timer broadcast IPI */
 975void tick_broadcast_ipi_handler(void)
 976{
 977	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 978
 979	*next_tb = get_tb_or_rtc();
 980	__timer_interrupt();
 981}
 982
 983static void register_decrementer_clockevent(int cpu)
 984{
 985	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
 986
 987	*dec = decrementer_clockevent;
 988	dec->cpumask = cpumask_of(cpu);
 989
 990	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
 991		    dec->name, dec->mult, dec->shift, cpu);
 992
 993	clockevents_register_device(dec);
 994}
 995
 996static void enable_large_decrementer(void)
 997{
 998	if (!cpu_has_feature(CPU_FTR_ARCH_300))
 999		return;
1000
1001	if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
1002		return;
1003
1004	/*
1005	 * If we're running as the hypervisor we need to enable the LD manually
1006	 * otherwise firmware should have done it for us.
1007	 */
1008	if (cpu_has_feature(CPU_FTR_HVMODE))
1009		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
1010}
1011
1012static void __init set_decrementer_max(void)
1013{
1014	struct device_node *cpu;
1015	u32 bits = 32;
1016
1017	/* Prior to ISAv3 the decrementer is always 32 bit */
1018	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1019		return;
1020
1021	cpu = of_find_node_by_type(NULL, "cpu");
1022
1023	if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
1024		if (bits > 64 || bits < 32) {
1025			pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
1026			bits = 32;
1027		}
1028
1029		/* calculate the signed maximum given this many bits */
1030		decrementer_max = (1ul << (bits - 1)) - 1;
1031	}
1032
1033	of_node_put(cpu);
1034
1035	pr_info("time_init: %u bit decrementer (max: %llx)\n",
1036		bits, decrementer_max);
1037}
1038
1039static void __init init_decrementer_clockevent(void)
1040{
1041	int cpu = smp_processor_id();
1042
1043	clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
1044
1045	decrementer_clockevent.max_delta_ns =
1046		clockevent_delta2ns(decrementer_max, &decrementer_clockevent);
1047	decrementer_clockevent.max_delta_ticks = decrementer_max;
1048	decrementer_clockevent.min_delta_ns =
1049		clockevent_delta2ns(2, &decrementer_clockevent);
1050	decrementer_clockevent.min_delta_ticks = 2;
1051
1052	register_decrementer_clockevent(cpu);
1053}
1054
1055void secondary_cpu_time_init(void)
1056{
1057	/* Enable and test the large decrementer for this cpu */
1058	enable_large_decrementer();
1059
1060	/* Start the decrementer on CPUs that have manual control
1061	 * such as BookE
1062	 */
1063	start_cpu_decrementer();
1064
1065	/* FIME: Should make unrelatred change to move snapshot_timebase
1066	 * call here ! */
1067	register_decrementer_clockevent(smp_processor_id());
1068}
1069
1070/* This function is only called on the boot processor */
1071void __init time_init(void)
1072{
1073	struct div_result res;
1074	u64 scale;
1075	unsigned shift;
1076
1077	if (__USE_RTC()) {
1078		/* 601 processor: dec counts down by 128 every 128ns */
1079		ppc_tb_freq = 1000000000;
1080	} else {
1081		/* Normal PowerPC with timebase register */
1082		ppc_md.calibrate_decr();
1083		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
1084		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
1085		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
1086		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
1087	}
1088
1089	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
1090	tb_ticks_per_sec = ppc_tb_freq;
1091	tb_ticks_per_usec = ppc_tb_freq / 1000000;
1092	calc_cputime_factors();
 
1093
1094	/*
1095	 * Compute scale factor for sched_clock.
1096	 * The calibrate_decr() function has set tb_ticks_per_sec,
1097	 * which is the timebase frequency.
1098	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1099	 * the 128-bit result as a 64.64 fixed-point number.
1100	 * We then shift that number right until it is less than 1.0,
1101	 * giving us the scale factor and shift count to use in
1102	 * sched_clock().
1103	 */
1104	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1105	scale = res.result_low;
1106	for (shift = 0; res.result_high != 0; ++shift) {
1107		scale = (scale >> 1) | (res.result_high << 63);
1108		res.result_high >>= 1;
1109	}
1110	tb_to_ns_scale = scale;
1111	tb_to_ns_shift = shift;
1112	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1113	boot_tb = get_tb_or_rtc();
1114
1115	/* If platform provided a timezone (pmac), we correct the time */
1116	if (timezone_offset) {
1117		sys_tz.tz_minuteswest = -timezone_offset / 60;
1118		sys_tz.tz_dsttime = 0;
1119	}
1120
1121	vdso_data->tb_update_count = 0;
1122	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1123
1124	/* initialise and enable the large decrementer (if we have one) */
1125	set_decrementer_max();
1126	enable_large_decrementer();
1127
1128	/* Start the decrementer on CPUs that have manual control
1129	 * such as BookE
1130	 */
1131	start_cpu_decrementer();
1132
1133	/* Register the clocksource */
1134	clocksource_init();
1135
1136	init_decrementer_clockevent();
1137	tick_setup_hrtimer_broadcast();
1138
1139#ifdef CONFIG_COMMON_CLK
1140	of_clk_init(NULL);
1141#endif
1142}
1143
1144
1145#define FEBRUARY	2
1146#define	STARTOFTIME	1970
1147#define SECDAY		86400L
1148#define SECYR		(SECDAY * 365)
1149#define	leapyear(year)		((year) % 4 == 0 && \
1150				 ((year) % 100 != 0 || (year) % 400 == 0))
1151#define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
1152#define	days_in_month(a) 	(month_days[(a) - 1])
1153
1154static int month_days[12] = {
1155	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1156};
1157
1158void to_tm(int tim, struct rtc_time * tm)
1159{
1160	register int    i;
1161	register long   hms, day;
1162
1163	day = tim / SECDAY;
1164	hms = tim % SECDAY;
1165
1166	/* Hours, minutes, seconds are easy */
1167	tm->tm_hour = hms / 3600;
1168	tm->tm_min = (hms % 3600) / 60;
1169	tm->tm_sec = (hms % 3600) % 60;
1170
1171	/* Number of years in days */
1172	for (i = STARTOFTIME; day >= days_in_year(i); i++)
1173		day -= days_in_year(i);
1174	tm->tm_year = i;
1175
1176	/* Number of months in days left */
1177	if (leapyear(tm->tm_year))
1178		days_in_month(FEBRUARY) = 29;
1179	for (i = 1; day >= days_in_month(i); i++)
1180		day -= days_in_month(i);
1181	days_in_month(FEBRUARY) = 28;
1182	tm->tm_mon = i;
1183
1184	/* Days are what is left over (+1) from all that. */
1185	tm->tm_mday = day + 1;
1186
1187	/*
1188	 * No-one uses the day of the week.
1189	 */
1190	tm->tm_wday = -1;
1191}
1192EXPORT_SYMBOL(to_tm);
1193
1194/*
1195 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1196 * result.
1197 */
1198void div128_by_32(u64 dividend_high, u64 dividend_low,
1199		  unsigned divisor, struct div_result *dr)
1200{
1201	unsigned long a, b, c, d;
1202	unsigned long w, x, y, z;
1203	u64 ra, rb, rc;
1204
1205	a = dividend_high >> 32;
1206	b = dividend_high & 0xffffffff;
1207	c = dividend_low >> 32;
1208	d = dividend_low & 0xffffffff;
1209
1210	w = a / divisor;
1211	ra = ((u64)(a - (w * divisor)) << 32) + b;
1212
1213	rb = ((u64) do_div(ra, divisor) << 32) + c;
1214	x = ra;
1215
1216	rc = ((u64) do_div(rb, divisor) << 32) + d;
1217	y = rb;
1218
1219	do_div(rc, divisor);
1220	z = rc;
1221
1222	dr->result_high = ((u64)w << 32) + x;
1223	dr->result_low  = ((u64)y << 32) + z;
1224
1225}
1226
1227/* We don't need to calibrate delay, we use the CPU timebase for that */
1228void calibrate_delay(void)
1229{
1230	/* Some generic code (such as spinlock debug) use loops_per_jiffy
1231	 * as the number of __delay(1) in a jiffy, so make it so
1232	 */
1233	loops_per_jiffy = tb_ticks_per_jiffy;
1234}
1235
1236#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
1237static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1238{
1239	ppc_md.get_rtc_time(tm);
1240	return 0;
1241}
1242
1243static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1244{
1245	if (!ppc_md.set_rtc_time)
1246		return -EOPNOTSUPP;
1247
1248	if (ppc_md.set_rtc_time(tm) < 0)
1249		return -EOPNOTSUPP;
1250
1251	return 0;
1252}
1253
1254static const struct rtc_class_ops rtc_generic_ops = {
1255	.read_time = rtc_generic_get_time,
1256	.set_time = rtc_generic_set_time,
1257};
1258
1259static int __init rtc_init(void)
1260{
1261	struct platform_device *pdev;
1262
1263	if (!ppc_md.get_rtc_time)
1264		return -ENODEV;
1265
1266	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1267					     &rtc_generic_ops,
1268					     sizeof(rtc_generic_ops));
1269
1270	return PTR_ERR_OR_ZERO(pdev);
1271}
1272
1273device_initcall(rtc_init);
1274#endif
v4.10.11
   1/*
   2 * Common time routines among all ppc machines.
   3 *
   4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
   5 * Paul Mackerras' version and mine for PReP and Pmac.
   6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
   7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
   8 *
   9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10 * to make clock more stable (2.4.0-test5). The only thing
  11 * that this code assumes is that the timebases have been synchronized
  12 * by firmware on SMP and are never stopped (never do sleep
  13 * on SMP then, nap and doze are OK).
  14 * 
  15 * Speeded up do_gettimeofday by getting rid of references to
  16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17 *
  18 * TODO (not necessarily in this file):
  19 * - improve precision and reproducibility of timebase frequency
  20 * measurement at boot time.
  21 * - for astronomical applications: add a new function to get
  22 * non ambiguous timestamps even around leap seconds. This needs
  23 * a new timestamp format and a good name.
  24 *
  25 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
  26 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
  27 *
  28 *      This program is free software; you can redistribute it and/or
  29 *      modify it under the terms of the GNU General Public License
  30 *      as published by the Free Software Foundation; either version
  31 *      2 of the License, or (at your option) any later version.
  32 */
  33
  34#include <linux/errno.h>
  35#include <linux/export.h>
  36#include <linux/sched.h>
 
  37#include <linux/kernel.h>
  38#include <linux/param.h>
  39#include <linux/string.h>
  40#include <linux/mm.h>
  41#include <linux/interrupt.h>
  42#include <linux/timex.h>
  43#include <linux/kernel_stat.h>
  44#include <linux/time.h>
  45#include <linux/clockchips.h>
  46#include <linux/init.h>
  47#include <linux/profile.h>
  48#include <linux/cpu.h>
  49#include <linux/security.h>
  50#include <linux/percpu.h>
  51#include <linux/rtc.h>
  52#include <linux/jiffies.h>
  53#include <linux/posix-timers.h>
  54#include <linux/irq.h>
  55#include <linux/delay.h>
  56#include <linux/irq_work.h>
  57#include <linux/clk-provider.h>
  58#include <linux/suspend.h>
  59#include <linux/rtc.h>
 
 
  60#include <asm/trace.h>
  61
  62#include <asm/io.h>
  63#include <asm/processor.h>
  64#include <asm/nvram.h>
  65#include <asm/cache.h>
  66#include <asm/machdep.h>
  67#include <linux/uaccess.h>
  68#include <asm/time.h>
  69#include <asm/prom.h>
  70#include <asm/irq.h>
  71#include <asm/div64.h>
  72#include <asm/smp.h>
  73#include <asm/vdso_datapage.h>
  74#include <asm/firmware.h>
  75#include <asm/cputime.h>
  76#include <asm/asm-prototypes.h>
  77
  78/* powerpc clocksource/clockevent code */
  79
  80#include <linux/clockchips.h>
  81#include <linux/timekeeper_internal.h>
  82
  83static u64 rtc_read(struct clocksource *);
  84static struct clocksource clocksource_rtc = {
  85	.name         = "rtc",
  86	.rating       = 400,
  87	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  88	.mask         = CLOCKSOURCE_MASK(64),
  89	.read         = rtc_read,
  90};
  91
  92static u64 timebase_read(struct clocksource *);
  93static struct clocksource clocksource_timebase = {
  94	.name         = "timebase",
  95	.rating       = 400,
  96	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  97	.mask         = CLOCKSOURCE_MASK(64),
  98	.read         = timebase_read,
  99};
 100
 101#define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
 102u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
 103
 104static int decrementer_set_next_event(unsigned long evt,
 105				      struct clock_event_device *dev);
 106static int decrementer_shutdown(struct clock_event_device *evt);
 107
 108struct clock_event_device decrementer_clockevent = {
 109	.name			= "decrementer",
 110	.rating			= 200,
 111	.irq			= 0,
 112	.set_next_event		= decrementer_set_next_event,
 113	.set_state_shutdown	= decrementer_shutdown,
 114	.tick_resume		= decrementer_shutdown,
 115	.features		= CLOCK_EVT_FEAT_ONESHOT |
 116				  CLOCK_EVT_FEAT_C3STOP,
 117};
 118EXPORT_SYMBOL(decrementer_clockevent);
 119
 120DEFINE_PER_CPU(u64, decrementers_next_tb);
 121static DEFINE_PER_CPU(struct clock_event_device, decrementers);
 122
 123#define XSEC_PER_SEC (1024*1024)
 124
 125#ifdef CONFIG_PPC64
 126#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
 127#else
 128/* compute ((xsec << 12) * max) >> 32 */
 129#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
 130#endif
 131
 132unsigned long tb_ticks_per_jiffy;
 133unsigned long tb_ticks_per_usec = 100; /* sane default */
 134EXPORT_SYMBOL(tb_ticks_per_usec);
 135unsigned long tb_ticks_per_sec;
 136EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
 137
 138DEFINE_SPINLOCK(rtc_lock);
 139EXPORT_SYMBOL_GPL(rtc_lock);
 140
 141static u64 tb_to_ns_scale __read_mostly;
 142static unsigned tb_to_ns_shift __read_mostly;
 143static u64 boot_tb __read_mostly;
 144
 145extern struct timezone sys_tz;
 146static long timezone_offset;
 147
 148unsigned long ppc_proc_freq;
 149EXPORT_SYMBOL_GPL(ppc_proc_freq);
 150unsigned long ppc_tb_freq;
 151EXPORT_SYMBOL_GPL(ppc_tb_freq);
 152
 153#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 154/*
 155 * Factors for converting from cputime_t (timebase ticks) to
 156 * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
 157 * These are all stored as 0.64 fixed-point binary fractions.
 158 */
 159u64 __cputime_jiffies_factor;
 160EXPORT_SYMBOL(__cputime_jiffies_factor);
 161u64 __cputime_usec_factor;
 162EXPORT_SYMBOL(__cputime_usec_factor);
 163u64 __cputime_sec_factor;
 164EXPORT_SYMBOL(__cputime_sec_factor);
 165u64 __cputime_clockt_factor;
 166EXPORT_SYMBOL(__cputime_clockt_factor);
 167
 168cputime_t cputime_one_jiffy;
 169
 170#ifdef CONFIG_PPC_SPLPAR
 171void (*dtl_consumer)(struct dtl_entry *, u64);
 172#endif
 173
 174#ifdef CONFIG_PPC64
 175#define get_accounting(tsk)	(&get_paca()->accounting)
 176#else
 177#define get_accounting(tsk)	(&task_thread_info(tsk)->accounting)
 178#endif
 179
 180static void calc_cputime_factors(void)
 181{
 182	struct div_result res;
 183
 184	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
 185	__cputime_jiffies_factor = res.result_low;
 186	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
 187	__cputime_usec_factor = res.result_low;
 188	div128_by_32(1, 0, tb_ticks_per_sec, &res);
 189	__cputime_sec_factor = res.result_low;
 190	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
 191	__cputime_clockt_factor = res.result_low;
 192}
 193
 194/*
 195 * Read the SPURR on systems that have it, otherwise the PURR,
 196 * or if that doesn't exist return the timebase value passed in.
 197 */
 198static unsigned long read_spurr(unsigned long tb)
 199{
 200	if (cpu_has_feature(CPU_FTR_SPURR))
 201		return mfspr(SPRN_SPURR);
 202	if (cpu_has_feature(CPU_FTR_PURR))
 203		return mfspr(SPRN_PURR);
 204	return tb;
 205}
 206
 207#ifdef CONFIG_PPC_SPLPAR
 208
 209/*
 210 * Scan the dispatch trace log and count up the stolen time.
 211 * Should be called with interrupts disabled.
 212 */
 213static u64 scan_dispatch_log(u64 stop_tb)
 214{
 215	u64 i = local_paca->dtl_ridx;
 216	struct dtl_entry *dtl = local_paca->dtl_curr;
 217	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
 218	struct lppaca *vpa = local_paca->lppaca_ptr;
 219	u64 tb_delta;
 220	u64 stolen = 0;
 221	u64 dtb;
 222
 223	if (!dtl)
 224		return 0;
 225
 226	if (i == be64_to_cpu(vpa->dtl_idx))
 227		return 0;
 228	while (i < be64_to_cpu(vpa->dtl_idx)) {
 229		dtb = be64_to_cpu(dtl->timebase);
 230		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
 231			be32_to_cpu(dtl->ready_to_enqueue_time);
 232		barrier();
 233		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
 234			/* buffer has overflowed */
 235			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
 236			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
 237			continue;
 238		}
 239		if (dtb > stop_tb)
 240			break;
 241		if (dtl_consumer)
 242			dtl_consumer(dtl, i);
 243		stolen += tb_delta;
 244		++i;
 245		++dtl;
 246		if (dtl == dtl_end)
 247			dtl = local_paca->dispatch_log;
 248	}
 249	local_paca->dtl_ridx = i;
 250	local_paca->dtl_curr = dtl;
 251	return stolen;
 252}
 253
 254/*
 255 * Accumulate stolen time by scanning the dispatch trace log.
 256 * Called on entry from user mode.
 257 */
 258void accumulate_stolen_time(void)
 259{
 260	u64 sst, ust;
 261	u8 save_soft_enabled = local_paca->soft_enabled;
 262	struct cpu_accounting_data *acct = &local_paca->accounting;
 263
 264	/* We are called early in the exception entry, before
 265	 * soft/hard_enabled are sync'ed to the expected state
 266	 * for the exception. We are hard disabled but the PACA
 267	 * needs to reflect that so various debug stuff doesn't
 268	 * complain
 269	 */
 270	local_paca->soft_enabled = 0;
 271
 272	sst = scan_dispatch_log(acct->starttime_user);
 273	ust = scan_dispatch_log(acct->starttime);
 274	acct->system_time -= sst;
 275	acct->user_time -= ust;
 276	local_paca->stolen_time += ust + sst;
 277
 278	local_paca->soft_enabled = save_soft_enabled;
 279}
 280
 281static inline u64 calculate_stolen_time(u64 stop_tb)
 282{
 283	u64 stolen = 0;
 
 284
 285	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) {
 286		stolen = scan_dispatch_log(stop_tb);
 287		get_paca()->accounting.system_time -= stolen;
 288	}
 289
 290	stolen += get_paca()->stolen_time;
 291	get_paca()->stolen_time = 0;
 292	return stolen;
 293}
 294
 295#else /* CONFIG_PPC_SPLPAR */
 296static inline u64 calculate_stolen_time(u64 stop_tb)
 297{
 298	return 0;
 299}
 300
 301#endif /* CONFIG_PPC_SPLPAR */
 302
 303/*
 304 * Account time for a transition between system, hard irq
 305 * or soft irq state.
 306 */
 307static unsigned long vtime_delta(struct task_struct *tsk,
 308				 unsigned long *sys_scaled,
 309				 unsigned long *stolen)
 310{
 311	unsigned long now, nowscaled, deltascaled;
 312	unsigned long udelta, delta, user_scaled;
 
 313	struct cpu_accounting_data *acct = get_accounting(tsk);
 314
 315	WARN_ON_ONCE(!irqs_disabled());
 316
 317	now = mftb();
 318	nowscaled = read_spurr(now);
 319	acct->system_time += now - acct->starttime;
 320	acct->starttime = now;
 321	deltascaled = nowscaled - acct->startspurr;
 322	acct->startspurr = nowscaled;
 323
 324	*stolen = calculate_stolen_time(now);
 325
 326	delta = acct->system_time;
 327	acct->system_time = 0;
 328	udelta = acct->user_time - acct->utime_sspurr;
 329	acct->utime_sspurr = acct->user_time;
 330
 331	/*
 332	 * Because we don't read the SPURR on every kernel entry/exit,
 333	 * deltascaled includes both user and system SPURR ticks.
 334	 * Apportion these ticks to system SPURR ticks and user
 335	 * SPURR ticks in the same ratio as the system time (delta)
 336	 * and user time (udelta) values obtained from the timebase
 337	 * over the same interval.  The system ticks get accounted here;
 338	 * the user ticks get saved up in paca->user_time_scaled to be
 339	 * used by account_process_tick.
 340	 */
 341	*sys_scaled = delta;
 342	user_scaled = udelta;
 343	if (deltascaled != delta + udelta) {
 344		if (udelta) {
 345			*sys_scaled = deltascaled * delta / (delta + udelta);
 346			user_scaled = deltascaled - *sys_scaled;
 347		} else {
 348			*sys_scaled = deltascaled;
 349		}
 350	}
 351	acct->user_time_scaled += user_scaled;
 352
 353	return delta;
 354}
 355
 356void vtime_account_system(struct task_struct *tsk)
 357{
 358	unsigned long delta, sys_scaled, stolen;
 
 
 
 
 
 
 359
 360	delta = vtime_delta(tsk, &sys_scaled, &stolen);
 361	account_system_time(tsk, 0, delta);
 362	tsk->stimescaled += sys_scaled;
 363	if (stolen)
 364		account_steal_time(stolen);
 
 
 
 
 
 
 
 
 365}
 366EXPORT_SYMBOL_GPL(vtime_account_system);
 367
 368void vtime_account_idle(struct task_struct *tsk)
 369{
 370	unsigned long delta, sys_scaled, stolen;
 
 371
 372	delta = vtime_delta(tsk, &sys_scaled, &stolen);
 373	account_idle_time(delta + stolen);
 374}
 375
 376/*
 377 * Transfer the user time accumulated in the paca
 378 * by the exception entry and exit code to the generic
 379 * process user time records.
 380 * Must be called with interrupts disabled.
 381 * Assumes that vtime_account_system/idle() has been called
 382 * recently (i.e. since the last entry from usermode) so that
 383 * get_paca()->user_time_scaled is up to date.
 384 */
 385void vtime_account_user(struct task_struct *tsk)
 386{
 387	cputime_t utime, utimescaled;
 388	struct cpu_accounting_data *acct = get_accounting(tsk);
 389
 390	utime = acct->user_time;
 391	utimescaled = acct->user_time_scaled;
 392	acct->user_time = 0;
 393	acct->user_time_scaled = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 394	acct->utime_sspurr = 0;
 395	account_user_time(tsk, utime);
 396	tsk->utimescaled += utimescaled;
 
 
 
 
 
 397}
 398
 399#ifdef CONFIG_PPC32
 400/*
 401 * Called from the context switch with interrupts disabled, to charge all
 402 * accumulated times to the current process, and to prepare accounting on
 403 * the next process.
 404 */
 405void arch_vtime_task_switch(struct task_struct *prev)
 406{
 407	struct cpu_accounting_data *acct = get_accounting(current);
 408
 409	acct->starttime = get_accounting(prev)->starttime;
 410	acct->system_time = 0;
 411	acct->user_time = 0;
 412}
 413#endif /* CONFIG_PPC32 */
 414
 415#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 416#define calc_cputime_factors()
 417#endif
 418
 419void __delay(unsigned long loops)
 420{
 421	unsigned long start;
 422	int diff;
 423
 
 424	if (__USE_RTC()) {
 425		start = get_rtcl();
 426		do {
 427			/* the RTCL register wraps at 1000000000 */
 428			diff = get_rtcl() - start;
 429			if (diff < 0)
 430				diff += 1000000000;
 
 431		} while (diff < loops);
 432	} else {
 433		start = get_tbl();
 434		while (get_tbl() - start < loops)
 435			HMT_low();
 436		HMT_medium();
 437	}
 
 438}
 439EXPORT_SYMBOL(__delay);
 440
 441void udelay(unsigned long usecs)
 442{
 443	__delay(tb_ticks_per_usec * usecs);
 444}
 445EXPORT_SYMBOL(udelay);
 446
 447#ifdef CONFIG_SMP
 448unsigned long profile_pc(struct pt_regs *regs)
 449{
 450	unsigned long pc = instruction_pointer(regs);
 451
 452	if (in_lock_functions(pc))
 453		return regs->link;
 454
 455	return pc;
 456}
 457EXPORT_SYMBOL(profile_pc);
 458#endif
 459
 460#ifdef CONFIG_IRQ_WORK
 461
 462/*
 463 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 464 */
 465#ifdef CONFIG_PPC64
 466static inline unsigned long test_irq_work_pending(void)
 467{
 468	unsigned long x;
 469
 470	asm volatile("lbz %0,%1(13)"
 471		: "=r" (x)
 472		: "i" (offsetof(struct paca_struct, irq_work_pending)));
 473	return x;
 474}
 475
 476static inline void set_irq_work_pending_flag(void)
 477{
 478	asm volatile("stb %0,%1(13)" : :
 479		"r" (1),
 480		"i" (offsetof(struct paca_struct, irq_work_pending)));
 481}
 482
 483static inline void clear_irq_work_pending(void)
 484{
 485	asm volatile("stb %0,%1(13)" : :
 486		"r" (0),
 487		"i" (offsetof(struct paca_struct, irq_work_pending)));
 488}
 489
 490#else /* 32-bit */
 491
 492DEFINE_PER_CPU(u8, irq_work_pending);
 493
 494#define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
 495#define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
 496#define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
 497
 498#endif /* 32 vs 64 bit */
 499
 500void arch_irq_work_raise(void)
 501{
 502	preempt_disable();
 503	set_irq_work_pending_flag();
 504	set_dec(1);
 505	preempt_enable();
 506}
 507
 508#else  /* CONFIG_IRQ_WORK */
 509
 510#define test_irq_work_pending()	0
 511#define clear_irq_work_pending()
 512
 513#endif /* CONFIG_IRQ_WORK */
 514
 515static void __timer_interrupt(void)
 516{
 517	struct pt_regs *regs = get_irq_regs();
 518	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 519	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
 520	u64 now;
 521
 522	trace_timer_interrupt_entry(regs);
 523
 524	if (test_irq_work_pending()) {
 525		clear_irq_work_pending();
 526		irq_work_run();
 527	}
 528
 529	now = get_tb_or_rtc();
 530	if (now >= *next_tb) {
 531		*next_tb = ~(u64)0;
 532		if (evt->event_handler)
 533			evt->event_handler(evt);
 534		__this_cpu_inc(irq_stat.timer_irqs_event);
 535	} else {
 536		now = *next_tb - now;
 537		if (now <= decrementer_max)
 538			set_dec(now);
 539		/* We may have raced with new irq work */
 540		if (test_irq_work_pending())
 541			set_dec(1);
 542		__this_cpu_inc(irq_stat.timer_irqs_others);
 543	}
 544
 545#ifdef CONFIG_PPC64
 546	/* collect purr register values often, for accurate calculations */
 547	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
 548		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
 549		cu->current_tb = mfspr(SPRN_PURR);
 550	}
 551#endif
 552
 553	trace_timer_interrupt_exit(regs);
 554}
 555
 556/*
 557 * timer_interrupt - gets called when the decrementer overflows,
 558 * with interrupts disabled.
 559 */
 560void timer_interrupt(struct pt_regs * regs)
 561{
 562	struct pt_regs *old_regs;
 563	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 564
 565	/* Ensure a positive value is written to the decrementer, or else
 566	 * some CPUs will continue to take decrementer exceptions.
 567	 */
 568	set_dec(decrementer_max);
 569
 570	/* Some implementations of hotplug will get timer interrupts while
 571	 * offline, just ignore these and we also need to set
 572	 * decrementers_next_tb as MAX to make sure __check_irq_replay
 573	 * don't replay timer interrupt when return, otherwise we'll trap
 574	 * here infinitely :(
 575	 */
 576	if (!cpu_online(smp_processor_id())) {
 577		*next_tb = ~(u64)0;
 578		return;
 579	}
 580
 581	/* Conditionally hard-enable interrupts now that the DEC has been
 582	 * bumped to its maximum value
 583	 */
 584	may_hard_irq_enable();
 585
 586
 587#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
 588	if (atomic_read(&ppc_n_lost_interrupts) != 0)
 589		do_IRQ(regs);
 590#endif
 591
 592	old_regs = set_irq_regs(regs);
 593	irq_enter();
 594
 595	__timer_interrupt();
 596	irq_exit();
 597	set_irq_regs(old_regs);
 598}
 599EXPORT_SYMBOL(timer_interrupt);
 600
 601/*
 602 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
 603 * left pending on exit from a KVM guest.  We don't need to do anything
 604 * to clear them, as they are edge-triggered.
 605 */
 606void hdec_interrupt(struct pt_regs *regs)
 607{
 608}
 609
 610#ifdef CONFIG_SUSPEND
 611static void generic_suspend_disable_irqs(void)
 612{
 613	/* Disable the decrementer, so that it doesn't interfere
 614	 * with suspending.
 615	 */
 616
 617	set_dec(decrementer_max);
 618	local_irq_disable();
 619	set_dec(decrementer_max);
 620}
 621
 622static void generic_suspend_enable_irqs(void)
 623{
 624	local_irq_enable();
 625}
 626
 627/* Overrides the weak version in kernel/power/main.c */
 628void arch_suspend_disable_irqs(void)
 629{
 630	if (ppc_md.suspend_disable_irqs)
 631		ppc_md.suspend_disable_irqs();
 632	generic_suspend_disable_irqs();
 633}
 634
 635/* Overrides the weak version in kernel/power/main.c */
 636void arch_suspend_enable_irqs(void)
 637{
 638	generic_suspend_enable_irqs();
 639	if (ppc_md.suspend_enable_irqs)
 640		ppc_md.suspend_enable_irqs();
 641}
 642#endif
 643
 644unsigned long long tb_to_ns(unsigned long long ticks)
 645{
 646	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
 647}
 648EXPORT_SYMBOL_GPL(tb_to_ns);
 649
 650/*
 651 * Scheduler clock - returns current time in nanosec units.
 652 *
 653 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 654 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 655 * are 64-bit unsigned numbers.
 656 */
 657unsigned long long sched_clock(void)
 658{
 659	if (__USE_RTC())
 660		return get_rtc();
 661	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 662}
 663
 664
 665#ifdef CONFIG_PPC_PSERIES
 666
 667/*
 668 * Running clock - attempts to give a view of time passing for a virtualised
 669 * kernels.
 670 * Uses the VTB register if available otherwise a next best guess.
 671 */
 672unsigned long long running_clock(void)
 673{
 674	/*
 675	 * Don't read the VTB as a host since KVM does not switch in host
 676	 * timebase into the VTB when it takes a guest off the CPU, reading the
 677	 * VTB would result in reading 'last switched out' guest VTB.
 678	 *
 679	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
 680	 * would be unsafe to rely only on the #ifdef above.
 681	 */
 682	if (firmware_has_feature(FW_FEATURE_LPAR) &&
 683	    cpu_has_feature(CPU_FTR_ARCH_207S))
 684		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 685
 686	/*
 687	 * This is a next best approximation without a VTB.
 688	 * On a host which is running bare metal there should never be any stolen
 689	 * time and on a host which doesn't do any virtualisation TB *should* equal
 690	 * VTB so it makes no difference anyway.
 691	 */
 692	return local_clock() - cputime_to_nsecs(kcpustat_this_cpu->cpustat[CPUTIME_STEAL]);
 693}
 694#endif
 695
 696static int __init get_freq(char *name, int cells, unsigned long *val)
 697{
 698	struct device_node *cpu;
 699	const __be32 *fp;
 700	int found = 0;
 701
 702	/* The cpu node should have timebase and clock frequency properties */
 703	cpu = of_find_node_by_type(NULL, "cpu");
 704
 705	if (cpu) {
 706		fp = of_get_property(cpu, name, NULL);
 707		if (fp) {
 708			found = 1;
 709			*val = of_read_ulong(fp, cells);
 710		}
 711
 712		of_node_put(cpu);
 713	}
 714
 715	return found;
 716}
 717
 718static void start_cpu_decrementer(void)
 719{
 720#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
 
 
 721	/* Clear any pending timer interrupts */
 722	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
 723
 724	/* Enable decrementer interrupt */
 725	mtspr(SPRN_TCR, TCR_DIE);
 726#endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
 
 
 
 
 
 
 727}
 728
 729void __init generic_calibrate_decr(void)
 730{
 731	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
 732
 733	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
 734	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
 735
 736		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
 737				"(not found)\n");
 738	}
 739
 740	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
 741
 742	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
 743	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
 744
 745		printk(KERN_ERR "WARNING: Estimating processor frequency "
 746				"(not found)\n");
 747	}
 748}
 749
 750int update_persistent_clock(struct timespec now)
 751{
 752	struct rtc_time tm;
 753
 754	if (!ppc_md.set_rtc_time)
 755		return -ENODEV;
 756
 757	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
 758	tm.tm_year -= 1900;
 759	tm.tm_mon -= 1;
 760
 761	return ppc_md.set_rtc_time(&tm);
 762}
 763
 764static void __read_persistent_clock(struct timespec *ts)
 765{
 766	struct rtc_time tm;
 767	static int first = 1;
 768
 769	ts->tv_nsec = 0;
 770	/* XXX this is a litle fragile but will work okay in the short term */
 771	if (first) {
 772		first = 0;
 773		if (ppc_md.time_init)
 774			timezone_offset = ppc_md.time_init();
 775
 776		/* get_boot_time() isn't guaranteed to be safe to call late */
 777		if (ppc_md.get_boot_time) {
 778			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
 779			return;
 780		}
 781	}
 782	if (!ppc_md.get_rtc_time) {
 783		ts->tv_sec = 0;
 784		return;
 785	}
 786	ppc_md.get_rtc_time(&tm);
 787
 788	ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
 789			    tm.tm_hour, tm.tm_min, tm.tm_sec);
 790}
 791
 792void read_persistent_clock(struct timespec *ts)
 793{
 794	__read_persistent_clock(ts);
 795
 796	/* Sanitize it in case real time clock is set below EPOCH */
 797	if (ts->tv_sec < 0) {
 798		ts->tv_sec = 0;
 799		ts->tv_nsec = 0;
 800	}
 801		
 802}
 803
 804/* clocksource code */
 805static u64 rtc_read(struct clocksource *cs)
 806{
 807	return (u64)get_rtc();
 808}
 809
 810static u64 timebase_read(struct clocksource *cs)
 811{
 812	return (u64)get_tb();
 813}
 814
 815void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
 816			 struct clocksource *clock, u32 mult, u64 cycle_last)
 817{
 
 
 
 
 
 818	u64 new_tb_to_xs, new_stamp_xsec;
 819	u32 frac_sec;
 820
 821	if (clock != &clocksource_timebase)
 822		return;
 823
 
 
 
 824	/* Make userspace gettimeofday spin until we're done. */
 825	++vdso_data->tb_update_count;
 826	smp_mb();
 827
 828	/* 19342813113834067 ~= 2^(20+64) / 1e9 */
 829	new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
 830	new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
 831	do_div(new_stamp_xsec, 1000000000);
 832	new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
 833
 834	BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
 835	/* this is tv_nsec / 1e9 as a 0.32 fraction */
 836	frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 837
 838	/*
 839	 * tb_update_count is used to allow the userspace gettimeofday code
 840	 * to assure itself that it sees a consistent view of the tb_to_xs and
 841	 * stamp_xsec variables.  It reads the tb_update_count, then reads
 842	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
 843	 * the two values of tb_update_count match and are even then the
 844	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
 845	 * loops back and reads them again until this criteria is met.
 846	 * We expect the caller to have done the first increment of
 847	 * vdso_data->tb_update_count already.
 848	 */
 849	vdso_data->tb_orig_stamp = cycle_last;
 850	vdso_data->stamp_xsec = new_stamp_xsec;
 851	vdso_data->tb_to_xs = new_tb_to_xs;
 852	vdso_data->wtom_clock_sec = wtm->tv_sec;
 853	vdso_data->wtom_clock_nsec = wtm->tv_nsec;
 854	vdso_data->stamp_xtime = *wall_time;
 855	vdso_data->stamp_sec_fraction = frac_sec;
 856	smp_wmb();
 857	++(vdso_data->tb_update_count);
 858}
 859
 860void update_vsyscall_tz(void)
 861{
 862	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 863	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 864}
 865
 866static void __init clocksource_init(void)
 867{
 868	struct clocksource *clock;
 869
 870	if (__USE_RTC())
 871		clock = &clocksource_rtc;
 872	else
 873		clock = &clocksource_timebase;
 874
 875	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
 876		printk(KERN_ERR "clocksource: %s is already registered\n",
 877		       clock->name);
 878		return;
 879	}
 880
 881	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
 882	       clock->name, clock->mult, clock->shift);
 883}
 884
 885static int decrementer_set_next_event(unsigned long evt,
 886				      struct clock_event_device *dev)
 887{
 888	__this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
 889	set_dec(evt);
 890
 891	/* We may have raced with new irq work */
 892	if (test_irq_work_pending())
 893		set_dec(1);
 894
 895	return 0;
 896}
 897
 898static int decrementer_shutdown(struct clock_event_device *dev)
 899{
 900	decrementer_set_next_event(decrementer_max, dev);
 901	return 0;
 902}
 903
 904/* Interrupt handler for the timer broadcast IPI */
 905void tick_broadcast_ipi_handler(void)
 906{
 907	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 908
 909	*next_tb = get_tb_or_rtc();
 910	__timer_interrupt();
 911}
 912
 913static void register_decrementer_clockevent(int cpu)
 914{
 915	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
 916
 917	*dec = decrementer_clockevent;
 918	dec->cpumask = cpumask_of(cpu);
 919
 920	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
 921		    dec->name, dec->mult, dec->shift, cpu);
 922
 923	clockevents_register_device(dec);
 924}
 925
 926static void enable_large_decrementer(void)
 927{
 928	if (!cpu_has_feature(CPU_FTR_ARCH_300))
 929		return;
 930
 931	if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
 932		return;
 933
 934	/*
 935	 * If we're running as the hypervisor we need to enable the LD manually
 936	 * otherwise firmware should have done it for us.
 937	 */
 938	if (cpu_has_feature(CPU_FTR_HVMODE))
 939		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
 940}
 941
 942static void __init set_decrementer_max(void)
 943{
 944	struct device_node *cpu;
 945	u32 bits = 32;
 946
 947	/* Prior to ISAv3 the decrementer is always 32 bit */
 948	if (!cpu_has_feature(CPU_FTR_ARCH_300))
 949		return;
 950
 951	cpu = of_find_node_by_type(NULL, "cpu");
 952
 953	if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
 954		if (bits > 64 || bits < 32) {
 955			pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
 956			bits = 32;
 957		}
 958
 959		/* calculate the signed maximum given this many bits */
 960		decrementer_max = (1ul << (bits - 1)) - 1;
 961	}
 962
 963	of_node_put(cpu);
 964
 965	pr_info("time_init: %u bit decrementer (max: %llx)\n",
 966		bits, decrementer_max);
 967}
 968
 969static void __init init_decrementer_clockevent(void)
 970{
 971	int cpu = smp_processor_id();
 972
 973	clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
 974
 975	decrementer_clockevent.max_delta_ns =
 976		clockevent_delta2ns(decrementer_max, &decrementer_clockevent);
 
 977	decrementer_clockevent.min_delta_ns =
 978		clockevent_delta2ns(2, &decrementer_clockevent);
 
 979
 980	register_decrementer_clockevent(cpu);
 981}
 982
 983void secondary_cpu_time_init(void)
 984{
 985	/* Enable and test the large decrementer for this cpu */
 986	enable_large_decrementer();
 987
 988	/* Start the decrementer on CPUs that have manual control
 989	 * such as BookE
 990	 */
 991	start_cpu_decrementer();
 992
 993	/* FIME: Should make unrelatred change to move snapshot_timebase
 994	 * call here ! */
 995	register_decrementer_clockevent(smp_processor_id());
 996}
 997
 998/* This function is only called on the boot processor */
 999void __init time_init(void)
1000{
1001	struct div_result res;
1002	u64 scale;
1003	unsigned shift;
1004
1005	if (__USE_RTC()) {
1006		/* 601 processor: dec counts down by 128 every 128ns */
1007		ppc_tb_freq = 1000000000;
1008	} else {
1009		/* Normal PowerPC with timebase register */
1010		ppc_md.calibrate_decr();
1011		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
1012		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
1013		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
1014		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
1015	}
1016
1017	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
1018	tb_ticks_per_sec = ppc_tb_freq;
1019	tb_ticks_per_usec = ppc_tb_freq / 1000000;
1020	calc_cputime_factors();
1021	setup_cputime_one_jiffy();
1022
1023	/*
1024	 * Compute scale factor for sched_clock.
1025	 * The calibrate_decr() function has set tb_ticks_per_sec,
1026	 * which is the timebase frequency.
1027	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1028	 * the 128-bit result as a 64.64 fixed-point number.
1029	 * We then shift that number right until it is less than 1.0,
1030	 * giving us the scale factor and shift count to use in
1031	 * sched_clock().
1032	 */
1033	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1034	scale = res.result_low;
1035	for (shift = 0; res.result_high != 0; ++shift) {
1036		scale = (scale >> 1) | (res.result_high << 63);
1037		res.result_high >>= 1;
1038	}
1039	tb_to_ns_scale = scale;
1040	tb_to_ns_shift = shift;
1041	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1042	boot_tb = get_tb_or_rtc();
1043
1044	/* If platform provided a timezone (pmac), we correct the time */
1045	if (timezone_offset) {
1046		sys_tz.tz_minuteswest = -timezone_offset / 60;
1047		sys_tz.tz_dsttime = 0;
1048	}
1049
1050	vdso_data->tb_update_count = 0;
1051	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1052
1053	/* initialise and enable the large decrementer (if we have one) */
1054	set_decrementer_max();
1055	enable_large_decrementer();
1056
1057	/* Start the decrementer on CPUs that have manual control
1058	 * such as BookE
1059	 */
1060	start_cpu_decrementer();
1061
1062	/* Register the clocksource */
1063	clocksource_init();
1064
1065	init_decrementer_clockevent();
1066	tick_setup_hrtimer_broadcast();
1067
1068#ifdef CONFIG_COMMON_CLK
1069	of_clk_init(NULL);
1070#endif
1071}
1072
1073
1074#define FEBRUARY	2
1075#define	STARTOFTIME	1970
1076#define SECDAY		86400L
1077#define SECYR		(SECDAY * 365)
1078#define	leapyear(year)		((year) % 4 == 0 && \
1079				 ((year) % 100 != 0 || (year) % 400 == 0))
1080#define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
1081#define	days_in_month(a) 	(month_days[(a) - 1])
1082
1083static int month_days[12] = {
1084	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1085};
1086
1087void to_tm(int tim, struct rtc_time * tm)
1088{
1089	register int    i;
1090	register long   hms, day;
1091
1092	day = tim / SECDAY;
1093	hms = tim % SECDAY;
1094
1095	/* Hours, minutes, seconds are easy */
1096	tm->tm_hour = hms / 3600;
1097	tm->tm_min = (hms % 3600) / 60;
1098	tm->tm_sec = (hms % 3600) % 60;
1099
1100	/* Number of years in days */
1101	for (i = STARTOFTIME; day >= days_in_year(i); i++)
1102		day -= days_in_year(i);
1103	tm->tm_year = i;
1104
1105	/* Number of months in days left */
1106	if (leapyear(tm->tm_year))
1107		days_in_month(FEBRUARY) = 29;
1108	for (i = 1; day >= days_in_month(i); i++)
1109		day -= days_in_month(i);
1110	days_in_month(FEBRUARY) = 28;
1111	tm->tm_mon = i;
1112
1113	/* Days are what is left over (+1) from all that. */
1114	tm->tm_mday = day + 1;
1115
1116	/*
1117	 * No-one uses the day of the week.
1118	 */
1119	tm->tm_wday = -1;
1120}
1121EXPORT_SYMBOL(to_tm);
1122
1123/*
1124 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1125 * result.
1126 */
1127void div128_by_32(u64 dividend_high, u64 dividend_low,
1128		  unsigned divisor, struct div_result *dr)
1129{
1130	unsigned long a, b, c, d;
1131	unsigned long w, x, y, z;
1132	u64 ra, rb, rc;
1133
1134	a = dividend_high >> 32;
1135	b = dividend_high & 0xffffffff;
1136	c = dividend_low >> 32;
1137	d = dividend_low & 0xffffffff;
1138
1139	w = a / divisor;
1140	ra = ((u64)(a - (w * divisor)) << 32) + b;
1141
1142	rb = ((u64) do_div(ra, divisor) << 32) + c;
1143	x = ra;
1144
1145	rc = ((u64) do_div(rb, divisor) << 32) + d;
1146	y = rb;
1147
1148	do_div(rc, divisor);
1149	z = rc;
1150
1151	dr->result_high = ((u64)w << 32) + x;
1152	dr->result_low  = ((u64)y << 32) + z;
1153
1154}
1155
1156/* We don't need to calibrate delay, we use the CPU timebase for that */
1157void calibrate_delay(void)
1158{
1159	/* Some generic code (such as spinlock debug) use loops_per_jiffy
1160	 * as the number of __delay(1) in a jiffy, so make it so
1161	 */
1162	loops_per_jiffy = tb_ticks_per_jiffy;
1163}
1164
1165#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
1166static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1167{
1168	ppc_md.get_rtc_time(tm);
1169	return rtc_valid_tm(tm);
1170}
1171
1172static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1173{
1174	if (!ppc_md.set_rtc_time)
1175		return -EOPNOTSUPP;
1176
1177	if (ppc_md.set_rtc_time(tm) < 0)
1178		return -EOPNOTSUPP;
1179
1180	return 0;
1181}
1182
1183static const struct rtc_class_ops rtc_generic_ops = {
1184	.read_time = rtc_generic_get_time,
1185	.set_time = rtc_generic_set_time,
1186};
1187
1188static int __init rtc_init(void)
1189{
1190	struct platform_device *pdev;
1191
1192	if (!ppc_md.get_rtc_time)
1193		return -ENODEV;
1194
1195	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1196					     &rtc_generic_ops,
1197					     sizeof(rtc_generic_ops));
1198
1199	return PTR_ERR_OR_ZERO(pdev);
1200}
1201
1202device_initcall(rtc_init);
1203#endif